uhf_module.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. #include "uhf_module.h"
  2. #include "uhf_module_cmd.h"
  3. #define DELAY_MS 100
  4. #define WAIT_TICK 4000 // max wait time in between each byte
  5. static M100ResponseType setup_and_send_rx(M100Module* module, uint8_t* cmd, size_t cmd_length) {
  6. UHFUart* uart = module->uart;
  7. Buffer* buffer = uart->buffer;
  8. // clear buffer
  9. uhf_buffer_reset(buffer);
  10. // send cmd
  11. uhf_uart_send_wait(uart, cmd, cmd_length);
  12. // wait for response by polling
  13. while(!uhf_is_buffer_closed(buffer) && !uhf_uart_tick(uart)) {
  14. }
  15. // reset tick
  16. uhf_uart_tick_reset(uart);
  17. // Validation Checks
  18. uint8_t* data = uhf_buffer_get_data(buffer);
  19. size_t length = uhf_buffer_get_size(buffer);
  20. // check if size > 0
  21. if(!length) return M100EmptyResponse;
  22. // check if data is valid
  23. if(data[0] != FRAME_START || data[length - 1] != FRAME_END) return M100ValidationFail;
  24. // check if checksum is correct
  25. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ChecksumFail;
  26. return M100SuccessResponse;
  27. }
  28. M100ModuleInfo* m100_module_info_alloc() {
  29. M100ModuleInfo* module_info = (M100ModuleInfo*)malloc(sizeof(M100ModuleInfo));
  30. return module_info;
  31. }
  32. void m100_module_info_free(M100ModuleInfo* module_info) {
  33. if(module_info->hw_version != NULL) free(module_info->hw_version);
  34. if(module_info->sw_version != NULL) free(module_info->sw_version);
  35. if(module_info->manufacturer != NULL) free(module_info->manufacturer);
  36. free(module_info);
  37. }
  38. M100Module* m100_module_alloc() {
  39. M100Module* module = (M100Module*)malloc(sizeof(M100Module));
  40. module->transmitting_power = DEFAULT_TRANSMITTING_POWER;
  41. module->region = DEFAULT_WORKING_REGION;
  42. module->info = m100_module_info_alloc();
  43. module->uart = uhf_uart_alloc();
  44. module->write_mask = WRITE_EPC; // default to write epc only
  45. return module;
  46. }
  47. void m100_module_free(M100Module* module) {
  48. m100_module_info_free(module->info);
  49. uhf_uart_free(module->uart);
  50. free(module);
  51. }
  52. uint8_t checksum(const uint8_t* data, size_t length) {
  53. // CheckSum8 Modulo 256
  54. // Sum of Bytes % 256
  55. uint64_t sum_val = 0x00;
  56. for(size_t i = 0; i < length; i++) {
  57. sum_val += data[i];
  58. }
  59. return (uint8_t)(sum_val % 0x100);
  60. }
  61. uint16_t crc16_genibus(const uint8_t* data, size_t length) {
  62. uint16_t crc = 0xFFFF; // Initial value
  63. uint16_t polynomial = 0x1021; // CRC-16/GENIBUS polynomial
  64. for(size_t i = 0; i < length; i++) {
  65. crc ^= (data[i] << 8); // Move byte into MSB of 16bit CRC
  66. for(int j = 0; j < 8; j++) {
  67. if(crc & 0x8000) {
  68. crc = (crc << 1) ^ polynomial;
  69. } else {
  70. crc <<= 1;
  71. }
  72. }
  73. }
  74. return crc ^ 0xFFFF; // Post-inversion
  75. }
  76. char* _m100_info_helper(M100Module* module, char** info) {
  77. if(!uhf_buffer_get_size(module->uart->buffer)) return NULL;
  78. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  79. uint16_t payload_len = data[3];
  80. payload_len = (payload_len << 8) + data[4];
  81. FuriString* temp_str = furi_string_alloc();
  82. for(int i = 0; i < payload_len; i++) {
  83. furi_string_cat_printf(temp_str, "%c", data[6 + i]);
  84. }
  85. if(*info == NULL) {
  86. *info = (char*)malloc(sizeof(char) * payload_len);
  87. } else {
  88. for(size_t i = 0; i < strlen(*info); i++) {
  89. (*info)[i] = 0;
  90. }
  91. }
  92. memcpy(*info, furi_string_get_cstr(temp_str), payload_len);
  93. furi_string_free(temp_str);
  94. return *info;
  95. }
  96. char* m100_get_hardware_version(M100Module* module) {
  97. setup_and_send_rx(module, (uint8_t*)&CMD_HW_VERSION.cmd[0], CMD_HW_VERSION.length);
  98. return _m100_info_helper(module, &module->info->hw_version);
  99. }
  100. char* m100_get_software_version(M100Module* module) {
  101. setup_and_send_rx(module, (uint8_t*)&CMD_SW_VERSION.cmd[0], CMD_SW_VERSION.length);
  102. return _m100_info_helper(module, &module->info->sw_version);
  103. }
  104. char* m100_get_manufacturers(M100Module* module) {
  105. setup_and_send_rx(module, (uint8_t*)&CMD_MANUFACTURERS.cmd[0], CMD_MANUFACTURERS.length);
  106. return _m100_info_helper(module, &module->info->manufacturer);
  107. }
  108. M100ResponseType m100_single_poll(M100Module* module, UHFTag* uhf_tag) {
  109. M100ResponseType rp_type =
  110. setup_and_send_rx(module, (uint8_t*)&CMD_SINGLE_POLLING.cmd[0], CMD_SINGLE_POLLING.length);
  111. if(rp_type != M100SuccessResponse) return rp_type;
  112. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  113. uint16_t pc = data[6];
  114. uint16_t crc = 0;
  115. // mask out epc length from protocol control
  116. size_t epc_len = pc;
  117. epc_len >>= 3;
  118. epc_len *= 2;
  119. // get protocol control
  120. pc <<= 8;
  121. pc += data[7];
  122. // get cyclic redundency check
  123. crc = data[8 + epc_len];
  124. crc <<= 8;
  125. crc += data[8 + epc_len + 1];
  126. // validate crc
  127. if(crc16_genibus(data + 6, epc_len + 2) != crc) return M100ValidationFail;
  128. uhf_tag_set_epc_pc(uhf_tag, pc);
  129. uhf_tag_set_epc_crc(uhf_tag, crc);
  130. uhf_tag_set_epc(uhf_tag, data + 8, epc_len);
  131. return M100SuccessResponse;
  132. }
  133. M100ResponseType m100_set_select(M100Module* module, UHFTag* uhf_tag) {
  134. // Set select
  135. uint8_t cmd[MAX_BUFFER_SIZE];
  136. size_t cmd_length = CMD_SET_SELECT_PARAMETER.length;
  137. size_t mask_length_bytes = uhf_tag->epc->size;
  138. size_t mask_length_bits = mask_length_bytes * 8;
  139. // payload len == sel param len + ptr len + mask len + epc len
  140. size_t payload_len = 7 + mask_length_bytes;
  141. memcpy(cmd, CMD_SET_SELECT_PARAMETER.cmd, cmd_length);
  142. // set new length
  143. cmd_length = 12 + mask_length_bytes + 2;
  144. // set payload length
  145. cmd[3] = (payload_len >> 8) & 0xFF;
  146. cmd[4] = payload_len & 0xFF;
  147. // set select param
  148. cmd[5] = 0x01; // 0x00=rfu, 0x01=epc, 0x10=tid, 0x11=user
  149. // set ptr
  150. cmd[9] = 0x20; // epc data begins after 0x20
  151. // set mask length
  152. cmd[10] = mask_length_bits;
  153. // truncate
  154. cmd[11] = false;
  155. // set mask
  156. memcpy((void*)&cmd[12], uhf_tag->epc->data, mask_length_bytes);
  157. // set checksum
  158. cmd[cmd_length - 2] = checksum(cmd + 1, 11 + mask_length_bytes);
  159. // end frame
  160. cmd[cmd_length - 1] = FRAME_END;
  161. M100ResponseType rp_type = setup_and_send_rx(module, cmd, 12 + mask_length_bytes + 3);
  162. if(rp_type != M100SuccessResponse) return rp_type;
  163. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  164. if(data[5] != 0x00) return M100ValidationFail; // error if not 0
  165. return M100SuccessResponse;
  166. }
  167. void m100_enable_write_mask(M100Module* module, WriteMask mask) {
  168. module->write_mask |= mask;
  169. }
  170. void m100_disable_write_mask(M100Module* module, WriteMask mask) {
  171. module->write_mask &= ~mask;
  172. }
  173. bool m100_is_write_mask_enabled(M100Module* module, WriteMask mask) {
  174. return (module->write_mask & mask) == mask;
  175. }
  176. UHFTag* m100_get_select_param(M100Module* module) {
  177. uhf_buffer_reset(module->uart->buffer);
  178. // furi_hal_uart_set_irq_cb(FuriHalUartIdLPUART1, rx_callback, module->uart->buffer);
  179. // furi_hal_uart_tx(
  180. // FuriHalUartIdUSART1,
  181. // (uint8_t*)&CMD_GET_SELECT_PARAMETER.cmd,
  182. // CMD_GET_SELECT_PARAMETER.length);
  183. // furi_delay_ms(DELAY_MS);
  184. // UHFTag* uhf_tag = uhf_tag_alloc();
  185. // uint8_t* data = buffer_get_data(module->uart->buffer);
  186. // size_t mask_length =
  187. // uhf_tag_set_epc(uhf_tag, data + 12, )
  188. // TODO : implement
  189. return NULL;
  190. }
  191. M100ResponseType m100_read_label_data_storage(
  192. M100Module* module,
  193. UHFTag* uhf_tag,
  194. BankType bank,
  195. uint32_t access_pwd,
  196. uint16_t word_count) {
  197. /*
  198. Will probably remove UHFTag as param and get it from get selected tag
  199. */
  200. if(bank == EPCBank) return M100SuccessResponse;
  201. uint8_t cmd[MAX_BUFFER_SIZE];
  202. size_t cmd_length = CMD_READ_LABEL_DATA_STORAGE_AREA.length;
  203. memcpy(cmd, CMD_READ_LABEL_DATA_STORAGE_AREA.cmd, cmd_length);
  204. // set access password
  205. cmd[5] = (access_pwd >> 24) & 0xFF;
  206. cmd[6] = (access_pwd >> 16) & 0xFF;
  207. cmd[7] = (access_pwd >> 8) & 0xFF;
  208. cmd[8] = access_pwd & 0xFF;
  209. // set mem bank
  210. cmd[9] = (uint8_t)bank;
  211. // set word counter
  212. cmd[12] = (word_count >> 8) & 0xFF;
  213. cmd[13] = word_count & 0xFF;
  214. // calc checksum
  215. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  216. M100ResponseType rp_type = setup_and_send_rx(module, cmd, cmd_length);
  217. if(rp_type != M100SuccessResponse) return rp_type;
  218. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  219. uint8_t rtn_command = data[2];
  220. uint16_t payload_len = data[3];
  221. payload_len = (payload_len << 8) + data[4];
  222. if(rtn_command == 0xFF) {
  223. if(payload_len == 0x01) return M100NoTagResponse;
  224. return M100MemoryOverrun;
  225. }
  226. size_t ptr_offset = 5 /*<-ptr offset*/ + uhf_tag_get_epc_size(uhf_tag) + 3 /*<-pc + ul*/;
  227. size_t bank_data_length = payload_len - (ptr_offset - 5 /*dont include the offset*/);
  228. if(bank == TIDBank) {
  229. uhf_tag_set_tid(uhf_tag, data + ptr_offset, bank_data_length);
  230. } else if(bank == UserBank) {
  231. uhf_tag_set_user(uhf_tag, data + ptr_offset, bank_data_length);
  232. }
  233. return M100SuccessResponse;
  234. }
  235. M100ResponseType m100_write_label_data_storage(
  236. M100Module* module,
  237. UHFTag* saved_tag,
  238. UHFTag* selected_tag,
  239. BankType bank,
  240. uint16_t source_address,
  241. uint32_t access_pwd) {
  242. uint8_t cmd[MAX_BUFFER_SIZE];
  243. size_t cmd_length = CMD_WRITE_LABEL_DATA_STORE.length;
  244. memcpy(cmd, CMD_WRITE_LABEL_DATA_STORE.cmd, cmd_length);
  245. uint16_t payload_len = 9;
  246. uint16_t data_length = 0;
  247. if(bank == ReservedBank) {
  248. // access pwd len + kill pwd len
  249. payload_len += 4;
  250. data_length = 4;
  251. } else if(bank == EPCBank) {
  252. // epc len + pc len
  253. payload_len += 4 + uhf_tag_get_epc_size(saved_tag);
  254. data_length = 4 + uhf_tag_get_epc_size(saved_tag);
  255. // set data
  256. uint8_t tmp_arr[4];
  257. tmp_arr[0] = (uint8_t)((uhf_tag_get_epc_crc(selected_tag) >> 8) & 0xFF);
  258. tmp_arr[1] = (uint8_t)(uhf_tag_get_epc_crc(selected_tag) & 0xFF);
  259. tmp_arr[2] = (uint8_t)((uhf_tag_get_epc_pc(saved_tag) >> 8) & 0xFF);
  260. tmp_arr[3] = (uint8_t)(uhf_tag_get_epc_pc(saved_tag) & 0xFF);
  261. memcpy(cmd + 14, tmp_arr, 4);
  262. memcpy(cmd + 18, uhf_tag_get_epc(saved_tag), uhf_tag_get_epc_size(saved_tag));
  263. } else if(bank == UserBank) {
  264. payload_len += uhf_tag_get_user_size(saved_tag);
  265. data_length = uhf_tag_get_user_size(saved_tag);
  266. // set data
  267. memcpy(cmd + 14, uhf_tag_get_user(saved_tag), uhf_tag_get_user_size(saved_tag));
  268. }
  269. // set payload length
  270. cmd[3] = (payload_len >> 8) & 0xFF;
  271. cmd[4] = payload_len & 0xFF;
  272. // set access password
  273. cmd[5] = (access_pwd >> 24) & 0xFF;
  274. cmd[6] = (access_pwd >> 16) & 0xFF;
  275. cmd[7] = (access_pwd >> 8) & 0xFF;
  276. cmd[8] = access_pwd & 0xFF;
  277. // set membank
  278. cmd[9] = (uint8_t)bank;
  279. // set source address
  280. cmd[10] = (source_address >> 8) & 0xFF;
  281. cmd[11] = source_address & 0xFF;
  282. // set data length
  283. size_t data_length_words = data_length / 2;
  284. cmd[12] = (data_length_words >> 8) & 0xFF;
  285. cmd[13] = data_length_words & 0xFF;
  286. // update cmd len
  287. cmd_length = 7 + payload_len;
  288. // calculate checksum
  289. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  290. cmd[cmd_length - 1] = FRAME_END;
  291. // send cmd
  292. M100ResponseType rp_type = setup_and_send_rx(module, cmd, cmd_length);
  293. if(rp_type != M100SuccessResponse) return rp_type;
  294. uint8_t* buff_data = uhf_buffer_get_data(module->uart->buffer);
  295. size_t buff_length = uhf_buffer_get_size(module->uart->buffer);
  296. if(buff_data[2] == 0xFF && buff_length == 8)
  297. return M100NoTagResponse;
  298. else if(buff_data[2] == 0xFF)
  299. return M100ValidationFail;
  300. return M100SuccessResponse;
  301. }
  302. void m100_set_baudrate(M100Module* module, uint32_t baudrate) {
  303. size_t length = CMD_SET_COMMUNICATION_BAUD_RATE.length;
  304. uint8_t cmd[length];
  305. memcpy(cmd, CMD_SET_COMMUNICATION_BAUD_RATE.cmd, length);
  306. uint16_t br_mod = baudrate / 100; // module format
  307. cmd[6] = 0xFF & br_mod; // pow LSB
  308. cmd[5] = 0xFF & (br_mod >> 8); // pow MSB
  309. cmd[length - 2] = checksum(cmd + 1, length - 3);
  310. // setup_and_send_rx(module, cmd, length);
  311. uhf_uart_send_wait(module->uart, cmd, length);
  312. uhf_uart_set_baudrate(module->uart, baudrate);
  313. module->uart->baudrate = baudrate;
  314. }
  315. bool m100_set_working_region(M100Module* module, WorkingRegion region) {
  316. size_t length = CMD_SET_WORK_AREA.length;
  317. uint8_t cmd[length];
  318. memcpy(cmd, CMD_SET_WORK_AREA.cmd, length);
  319. cmd[5] = (uint8_t)region;
  320. cmd[length - 2] = checksum(cmd + 1, length - 3);
  321. setup_and_send_rx(module, cmd, length);
  322. module->region = region;
  323. return true;
  324. }
  325. bool m100_set_transmitting_power(M100Module* module, uint16_t power) {
  326. size_t length = CMD_SET_TRANSMITTING_POWER.length;
  327. uint8_t cmd[length];
  328. memcpy(cmd, CMD_SET_TRANSMITTING_POWER.cmd, length);
  329. cmd[5] = (power >> 8) & 0xFF;
  330. cmd[6] = power & 0xFF;
  331. cmd[length - 2] = checksum(cmd + 1, length - 3);
  332. setup_and_send_rx(module, cmd, length);
  333. module->transmitting_power = power;
  334. return true;
  335. }
  336. bool m100_set_freq_hopping(M100Module* module, bool hopping) {
  337. UNUSED(module);
  338. UNUSED(hopping);
  339. return true;
  340. }
  341. bool m100_set_power(M100Module* module, uint8_t* power) {
  342. UNUSED(module);
  343. UNUSED(power);
  344. return true;
  345. }
  346. uint32_t m100_get_baudrate(M100Module* module) {
  347. return module->uart->baudrate;
  348. }