#include "uhf_module.h" #include "uhf_module_cmd.h" #define DELAY_MS 100 #define WAIT_TICK 4000 // max wait time in between each byte static M100ResponseType setup_and_send_rx(M100Module* module, uint8_t* cmd, size_t cmd_length) { UHFUart* uart = module->uart; Buffer* buffer = uart->buffer; // clear buffer uhf_buffer_reset(buffer); // send cmd uhf_uart_send_wait(uart, cmd, cmd_length); // wait for response by polling while(!uhf_is_buffer_closed(buffer) && !uhf_uart_tick(uart)) { } // reset tick uhf_uart_tick_reset(uart); // Validation Checks uint8_t* data = uhf_buffer_get_data(buffer); size_t length = uhf_buffer_get_size(buffer); // check if size > 0 if(!length) return M100EmptyResponse; // check if data is valid if(data[0] != FRAME_START || data[length - 1] != FRAME_END) return M100ValidationFail; // check if checksum is correct if(checksum(data + 1, length - 3) != data[length - 2]) return M100ChecksumFail; return M100SuccessResponse; } M100ModuleInfo* m100_module_info_alloc() { M100ModuleInfo* module_info = (M100ModuleInfo*)malloc(sizeof(M100ModuleInfo)); return module_info; } void m100_module_info_free(M100ModuleInfo* module_info) { if(module_info->hw_version != NULL) free(module_info->hw_version); if(module_info->sw_version != NULL) free(module_info->sw_version); if(module_info->manufacturer != NULL) free(module_info->manufacturer); free(module_info); } M100Module* m100_module_alloc() { M100Module* module = (M100Module*)malloc(sizeof(M100Module)); module->transmitting_power = DEFAULT_TRANSMITTING_POWER; module->region = DEFAULT_WORKING_REGION; module->info = m100_module_info_alloc(); module->uart = uhf_uart_alloc(); module->write_mask = WRITE_EPC; // default to write epc only return module; } void m100_module_free(M100Module* module) { m100_module_info_free(module->info); uhf_uart_free(module->uart); free(module); } uint8_t checksum(const uint8_t* data, size_t length) { // CheckSum8 Modulo 256 // Sum of Bytes % 256 uint64_t sum_val = 0x00; for(size_t i = 0; i < length; i++) { sum_val += data[i]; } return (uint8_t)(sum_val % 0x100); } uint16_t crc16_genibus(const uint8_t* data, size_t length) { uint16_t crc = 0xFFFF; // Initial value uint16_t polynomial = 0x1021; // CRC-16/GENIBUS polynomial for(size_t i = 0; i < length; i++) { crc ^= (data[i] << 8); // Move byte into MSB of 16bit CRC for(int j = 0; j < 8; j++) { if(crc & 0x8000) { crc = (crc << 1) ^ polynomial; } else { crc <<= 1; } } } return crc ^ 0xFFFF; // Post-inversion } char* _m100_info_helper(M100Module* module, char** info) { if(!uhf_buffer_get_size(module->uart->buffer)) return NULL; uint8_t* data = uhf_buffer_get_data(module->uart->buffer); uint16_t payload_len = data[3]; payload_len = (payload_len << 8) + data[4]; FuriString* temp_str = furi_string_alloc(); for(int i = 0; i < payload_len; i++) { furi_string_cat_printf(temp_str, "%c", data[6 + i]); } if(*info == NULL) { *info = (char*)malloc(sizeof(char) * payload_len); } else { for(size_t i = 0; i < strlen(*info); i++) { (*info)[i] = 0; } } memcpy(*info, furi_string_get_cstr(temp_str), payload_len); furi_string_free(temp_str); return *info; } char* m100_get_hardware_version(M100Module* module) { setup_and_send_rx(module, (uint8_t*)&CMD_HW_VERSION.cmd[0], CMD_HW_VERSION.length); return _m100_info_helper(module, &module->info->hw_version); } char* m100_get_software_version(M100Module* module) { setup_and_send_rx(module, (uint8_t*)&CMD_SW_VERSION.cmd[0], CMD_SW_VERSION.length); return _m100_info_helper(module, &module->info->sw_version); } char* m100_get_manufacturers(M100Module* module) { setup_and_send_rx(module, (uint8_t*)&CMD_MANUFACTURERS.cmd[0], CMD_MANUFACTURERS.length); return _m100_info_helper(module, &module->info->manufacturer); } M100ResponseType m100_single_poll(M100Module* module, UHFTag* uhf_tag) { M100ResponseType rp_type = setup_and_send_rx(module, (uint8_t*)&CMD_SINGLE_POLLING.cmd[0], CMD_SINGLE_POLLING.length); if(rp_type != M100SuccessResponse) return rp_type; uint8_t* data = uhf_buffer_get_data(module->uart->buffer); uint16_t pc = data[6]; uint16_t crc = 0; // mask out epc length from protocol control size_t epc_len = pc; epc_len >>= 3; epc_len *= 2; // get protocol control pc <<= 8; pc += data[7]; // get cyclic redundency check crc = data[8 + epc_len]; crc <<= 8; crc += data[8 + epc_len + 1]; // validate crc if(crc16_genibus(data + 6, epc_len + 2) != crc) return M100ValidationFail; uhf_tag_set_epc_pc(uhf_tag, pc); uhf_tag_set_epc_crc(uhf_tag, crc); uhf_tag_set_epc(uhf_tag, data + 8, epc_len); return M100SuccessResponse; } M100ResponseType m100_set_select(M100Module* module, UHFTag* uhf_tag) { // Set select uint8_t cmd[MAX_BUFFER_SIZE]; size_t cmd_length = CMD_SET_SELECT_PARAMETER.length; size_t mask_length_bytes = uhf_tag->epc->size; size_t mask_length_bits = mask_length_bytes * 8; // payload len == sel param len + ptr len + mask len + epc len size_t payload_len = 7 + mask_length_bytes; memcpy(cmd, CMD_SET_SELECT_PARAMETER.cmd, cmd_length); // set new length cmd_length = 12 + mask_length_bytes + 2; // set payload length cmd[3] = (payload_len >> 8) & 0xFF; cmd[4] = payload_len & 0xFF; // set select param cmd[5] = 0x01; // 0x00=rfu, 0x01=epc, 0x10=tid, 0x11=user // set ptr cmd[9] = 0x20; // epc data begins after 0x20 // set mask length cmd[10] = mask_length_bits; // truncate cmd[11] = false; // set mask memcpy((void*)&cmd[12], uhf_tag->epc->data, mask_length_bytes); // set checksum cmd[cmd_length - 2] = checksum(cmd + 1, 11 + mask_length_bytes); // end frame cmd[cmd_length - 1] = FRAME_END; M100ResponseType rp_type = setup_and_send_rx(module, cmd, 12 + mask_length_bytes + 3); if(rp_type != M100SuccessResponse) return rp_type; uint8_t* data = uhf_buffer_get_data(module->uart->buffer); if(data[5] != 0x00) return M100ValidationFail; // error if not 0 return M100SuccessResponse; } void m100_enable_write_mask(M100Module* module, WriteMask mask) { module->write_mask |= mask; } void m100_disable_write_mask(M100Module* module, WriteMask mask) { module->write_mask &= ~mask; } bool m100_is_write_mask_enabled(M100Module* module, WriteMask mask) { return (module->write_mask & mask) == mask; } UHFTag* m100_get_select_param(M100Module* module) { uhf_buffer_reset(module->uart->buffer); // furi_hal_uart_set_irq_cb(FuriHalUartIdLPUART1, rx_callback, module->uart->buffer); // furi_hal_uart_tx( // FuriHalUartIdUSART1, // (uint8_t*)&CMD_GET_SELECT_PARAMETER.cmd, // CMD_GET_SELECT_PARAMETER.length); // furi_delay_ms(DELAY_MS); // UHFTag* uhf_tag = uhf_tag_alloc(); // uint8_t* data = buffer_get_data(module->uart->buffer); // size_t mask_length = // uhf_tag_set_epc(uhf_tag, data + 12, ) // TODO : implement return NULL; } M100ResponseType m100_read_label_data_storage( M100Module* module, UHFTag* uhf_tag, BankType bank, uint32_t access_pwd, uint16_t word_count) { /* Will probably remove UHFTag as param and get it from get selected tag */ if(bank == EPCBank) return M100SuccessResponse; uint8_t cmd[MAX_BUFFER_SIZE]; size_t cmd_length = CMD_READ_LABEL_DATA_STORAGE_AREA.length; memcpy(cmd, CMD_READ_LABEL_DATA_STORAGE_AREA.cmd, cmd_length); // set access password cmd[5] = (access_pwd >> 24) & 0xFF; cmd[6] = (access_pwd >> 16) & 0xFF; cmd[7] = (access_pwd >> 8) & 0xFF; cmd[8] = access_pwd & 0xFF; // set mem bank cmd[9] = (uint8_t)bank; // set word counter cmd[12] = (word_count >> 8) & 0xFF; cmd[13] = word_count & 0xFF; // calc checksum cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3); M100ResponseType rp_type = setup_and_send_rx(module, cmd, cmd_length); if(rp_type != M100SuccessResponse) return rp_type; uint8_t* data = uhf_buffer_get_data(module->uart->buffer); uint8_t rtn_command = data[2]; uint16_t payload_len = data[3]; payload_len = (payload_len << 8) + data[4]; if(rtn_command == 0xFF) { if(payload_len == 0x01) return M100NoTagResponse; return M100MemoryOverrun; } size_t ptr_offset = 5 /*<-ptr offset*/ + uhf_tag_get_epc_size(uhf_tag) + 3 /*<-pc + ul*/; size_t bank_data_length = payload_len - (ptr_offset - 5 /*dont include the offset*/); if(bank == TIDBank) { uhf_tag_set_tid(uhf_tag, data + ptr_offset, bank_data_length); } else if(bank == UserBank) { uhf_tag_set_user(uhf_tag, data + ptr_offset, bank_data_length); } return M100SuccessResponse; } M100ResponseType m100_write_label_data_storage( M100Module* module, UHFTag* saved_tag, UHFTag* selected_tag, BankType bank, uint16_t source_address, uint32_t access_pwd) { uint8_t cmd[MAX_BUFFER_SIZE]; size_t cmd_length = CMD_WRITE_LABEL_DATA_STORE.length; memcpy(cmd, CMD_WRITE_LABEL_DATA_STORE.cmd, cmd_length); uint16_t payload_len = 9; uint16_t data_length = 0; if(bank == ReservedBank) { // access pwd len + kill pwd len payload_len += 4; data_length = 4; } else if(bank == EPCBank) { // epc len + pc len payload_len += 4 + uhf_tag_get_epc_size(saved_tag); data_length = 4 + uhf_tag_get_epc_size(saved_tag); // set data uint8_t tmp_arr[4]; tmp_arr[0] = (uint8_t)((uhf_tag_get_epc_crc(selected_tag) >> 8) & 0xFF); tmp_arr[1] = (uint8_t)(uhf_tag_get_epc_crc(selected_tag) & 0xFF); tmp_arr[2] = (uint8_t)((uhf_tag_get_epc_pc(saved_tag) >> 8) & 0xFF); tmp_arr[3] = (uint8_t)(uhf_tag_get_epc_pc(saved_tag) & 0xFF); memcpy(cmd + 14, tmp_arr, 4); memcpy(cmd + 18, uhf_tag_get_epc(saved_tag), uhf_tag_get_epc_size(saved_tag)); } else if(bank == UserBank) { payload_len += uhf_tag_get_user_size(saved_tag); data_length = uhf_tag_get_user_size(saved_tag); // set data memcpy(cmd + 14, uhf_tag_get_user(saved_tag), uhf_tag_get_user_size(saved_tag)); } // set payload length cmd[3] = (payload_len >> 8) & 0xFF; cmd[4] = payload_len & 0xFF; // set access password cmd[5] = (access_pwd >> 24) & 0xFF; cmd[6] = (access_pwd >> 16) & 0xFF; cmd[7] = (access_pwd >> 8) & 0xFF; cmd[8] = access_pwd & 0xFF; // set membank cmd[9] = (uint8_t)bank; // set source address cmd[10] = (source_address >> 8) & 0xFF; cmd[11] = source_address & 0xFF; // set data length size_t data_length_words = data_length / 2; cmd[12] = (data_length_words >> 8) & 0xFF; cmd[13] = data_length_words & 0xFF; // update cmd len cmd_length = 7 + payload_len; // calculate checksum cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3); cmd[cmd_length - 1] = FRAME_END; // send cmd M100ResponseType rp_type = setup_and_send_rx(module, cmd, cmd_length); if(rp_type != M100SuccessResponse) return rp_type; uint8_t* buff_data = uhf_buffer_get_data(module->uart->buffer); size_t buff_length = uhf_buffer_get_size(module->uart->buffer); if(buff_data[2] == 0xFF && buff_length == 8) return M100NoTagResponse; else if(buff_data[2] == 0xFF) return M100ValidationFail; return M100SuccessResponse; } void m100_set_baudrate(M100Module* module, uint32_t baudrate) { size_t length = CMD_SET_COMMUNICATION_BAUD_RATE.length; uint8_t cmd[length]; memcpy(cmd, CMD_SET_COMMUNICATION_BAUD_RATE.cmd, length); uint16_t br_mod = baudrate / 100; // module format cmd[6] = 0xFF & br_mod; // pow LSB cmd[5] = 0xFF & (br_mod >> 8); // pow MSB cmd[length - 2] = checksum(cmd + 1, length - 3); // setup_and_send_rx(module, cmd, length); uhf_uart_send_wait(module->uart, cmd, length); uhf_uart_set_baudrate(module->uart, baudrate); module->uart->baudrate = baudrate; } bool m100_set_working_region(M100Module* module, WorkingRegion region) { size_t length = CMD_SET_WORK_AREA.length; uint8_t cmd[length]; memcpy(cmd, CMD_SET_WORK_AREA.cmd, length); cmd[5] = (uint8_t)region; cmd[length - 2] = checksum(cmd + 1, length - 3); setup_and_send_rx(module, cmd, length); module->region = region; return true; } bool m100_set_transmitting_power(M100Module* module, uint16_t power) { size_t length = CMD_SET_TRANSMITTING_POWER.length; uint8_t cmd[length]; memcpy(cmd, CMD_SET_TRANSMITTING_POWER.cmd, length); cmd[5] = (power >> 8) & 0xFF; cmd[6] = power & 0xFF; cmd[length - 2] = checksum(cmd + 1, length - 3); setup_and_send_rx(module, cmd, length); module->transmitting_power = power; return true; } bool m100_set_freq_hopping(M100Module* module, bool hopping) { UNUSED(module); UNUSED(hopping); return true; } bool m100_set_power(M100Module* module, uint8_t* power) { UNUSED(module); UNUSED(power); return true; } uint32_t m100_get_baudrate(M100Module* module) { return module->uart->baudrate; }