| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338 |
- /*
- * Implementation of the hazardous parts of the SSS library
- *
- * Copyright (c) 2017 Daan Sprenkels <hello@dsprenkels.com>
- * Copyright (c) 2019 SatoshiLabs
- *
- * Permission is hereby granted, free of charge, to any person obtaining
- * a copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
- * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
- * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
- * OTHER DEALINGS IN THE SOFTWARE.
- *
- * This code contains the actual Shamir secret sharing functionality. The
- * implementation of this code is based on the idea that the user likes to
- * generate/combine 32 shares (in GF(2^8)) at the same time, because a 256 bit
- * key will be exactly 32 bytes. Therefore we bitslice all the input and
- * unbitslice the output right before returning.
- *
- * This bitslice approach optimizes natively on all architectures that are 32
- * bit or more. Care is taken to use not too many registers, to ensure that no
- * values have to be leaked to the stack.
- *
- * All functions in this module are implemented constant time and constant
- * lookup operations, as all proper crypto code must be.
- */
- #include "shamir.h"
- #include <string.h>
- #include "memzero.h"
- static void bitslice(uint32_t r[8], const uint8_t* x, size_t len) {
- size_t bit_idx = 0, arr_idx = 0;
- uint32_t cur = 0;
- memset(r, 0, sizeof(uint32_t[8]));
- for(arr_idx = 0; arr_idx < len; arr_idx++) {
- cur = (uint32_t)x[arr_idx];
- for(bit_idx = 0; bit_idx < 8; bit_idx++) {
- r[bit_idx] |= ((cur >> bit_idx) & 1) << arr_idx;
- }
- }
- }
- static void unbitslice(uint8_t* r, const uint32_t x[8], size_t len) {
- size_t bit_idx = 0, arr_idx = 0;
- uint32_t cur = 0;
- memset(r, 0, sizeof(uint8_t) * len);
- for(bit_idx = 0; bit_idx < 8; bit_idx++) {
- cur = (uint32_t)x[bit_idx];
- for(arr_idx = 0; arr_idx < len; arr_idx++) {
- r[arr_idx] |= ((cur >> arr_idx) & 1) << bit_idx;
- }
- }
- }
- static void bitslice_setall(uint32_t r[8], const uint8_t x) {
- size_t idx = 0;
- for(idx = 0; idx < 8; idx++) {
- r[idx] = -((x >> idx) & 1);
- }
- }
- /*
- * Add (XOR) `r` with `x` and store the result in `r`.
- */
- static void gf256_add(uint32_t r[8], const uint32_t x[8]) {
- size_t idx = 0;
- for(idx = 0; idx < 8; idx++) r[idx] ^= x[idx];
- }
- /*
- * Safely multiply two bitsliced polynomials in GF(2^8) reduced by
- * x^8 + x^4 + x^3 + x + 1. `r` and `a` may overlap, but overlapping of `r`
- * and `b` will produce an incorrect result! If you need to square a polynomial
- * use `gf256_square` instead.
- */
- static void gf256_mul(uint32_t r[8], const uint32_t a[8], const uint32_t b[8]) {
- /* This function implements Russian Peasant multiplication on two
- * bitsliced polynomials.
- *
- * I personally think that these kinds of long lists of operations
- * are often a bit ugly. A double for loop would be nicer and would
- * take up a lot less lines of code.
- * However, some compilers seem to fail in optimizing these kinds of
- * loops. So we will just have to do this by hand.
- */
- uint32_t a2[8] = {0};
- memcpy(a2, a, sizeof(uint32_t[8]));
- r[0] = a2[0] & b[0]; /* add (assignment, because r is 0) */
- r[1] = a2[1] & b[0];
- r[2] = a2[2] & b[0];
- r[3] = a2[3] & b[0];
- r[4] = a2[4] & b[0];
- r[5] = a2[5] & b[0];
- r[6] = a2[6] & b[0];
- r[7] = a2[7] & b[0];
- a2[0] ^= a2[7]; /* reduce */
- a2[2] ^= a2[7];
- a2[3] ^= a2[7];
- r[0] ^= a2[7] & b[1]; /* add */
- r[1] ^= a2[0] & b[1];
- r[2] ^= a2[1] & b[1];
- r[3] ^= a2[2] & b[1];
- r[4] ^= a2[3] & b[1];
- r[5] ^= a2[4] & b[1];
- r[6] ^= a2[5] & b[1];
- r[7] ^= a2[6] & b[1];
- a2[7] ^= a2[6]; /* reduce */
- a2[1] ^= a2[6];
- a2[2] ^= a2[6];
- r[0] ^= a2[6] & b[2]; /* add */
- r[1] ^= a2[7] & b[2];
- r[2] ^= a2[0] & b[2];
- r[3] ^= a2[1] & b[2];
- r[4] ^= a2[2] & b[2];
- r[5] ^= a2[3] & b[2];
- r[6] ^= a2[4] & b[2];
- r[7] ^= a2[5] & b[2];
- a2[6] ^= a2[5]; /* reduce */
- a2[0] ^= a2[5];
- a2[1] ^= a2[5];
- r[0] ^= a2[5] & b[3]; /* add */
- r[1] ^= a2[6] & b[3];
- r[2] ^= a2[7] & b[3];
- r[3] ^= a2[0] & b[3];
- r[4] ^= a2[1] & b[3];
- r[5] ^= a2[2] & b[3];
- r[6] ^= a2[3] & b[3];
- r[7] ^= a2[4] & b[3];
- a2[5] ^= a2[4]; /* reduce */
- a2[7] ^= a2[4];
- a2[0] ^= a2[4];
- r[0] ^= a2[4] & b[4]; /* add */
- r[1] ^= a2[5] & b[4];
- r[2] ^= a2[6] & b[4];
- r[3] ^= a2[7] & b[4];
- r[4] ^= a2[0] & b[4];
- r[5] ^= a2[1] & b[4];
- r[6] ^= a2[2] & b[4];
- r[7] ^= a2[3] & b[4];
- a2[4] ^= a2[3]; /* reduce */
- a2[6] ^= a2[3];
- a2[7] ^= a2[3];
- r[0] ^= a2[3] & b[5]; /* add */
- r[1] ^= a2[4] & b[5];
- r[2] ^= a2[5] & b[5];
- r[3] ^= a2[6] & b[5];
- r[4] ^= a2[7] & b[5];
- r[5] ^= a2[0] & b[5];
- r[6] ^= a2[1] & b[5];
- r[7] ^= a2[2] & b[5];
- a2[3] ^= a2[2]; /* reduce */
- a2[5] ^= a2[2];
- a2[6] ^= a2[2];
- r[0] ^= a2[2] & b[6]; /* add */
- r[1] ^= a2[3] & b[6];
- r[2] ^= a2[4] & b[6];
- r[3] ^= a2[5] & b[6];
- r[4] ^= a2[6] & b[6];
- r[5] ^= a2[7] & b[6];
- r[6] ^= a2[0] & b[6];
- r[7] ^= a2[1] & b[6];
- a2[2] ^= a2[1]; /* reduce */
- a2[4] ^= a2[1];
- a2[5] ^= a2[1];
- r[0] ^= a2[1] & b[7]; /* add */
- r[1] ^= a2[2] & b[7];
- r[2] ^= a2[3] & b[7];
- r[3] ^= a2[4] & b[7];
- r[4] ^= a2[5] & b[7];
- r[5] ^= a2[6] & b[7];
- r[6] ^= a2[7] & b[7];
- r[7] ^= a2[0] & b[7];
- memzero(a2, sizeof(a2));
- }
- /*
- * Square `x` in GF(2^8) and write the result to `r`. `r` and `x` may overlap.
- */
- static void gf256_square(uint32_t r[8], const uint32_t x[8]) {
- uint32_t r8 = 0, r10 = 0, r12 = 0, r14 = 0;
- /* Use the Freshman's Dream rule to square the polynomial
- * Assignments are done from 7 downto 0, because this allows the user
- * to execute this function in-place (e.g. `gf256_square(r, r);`).
- */
- r14 = x[7];
- r12 = x[6];
- r10 = x[5];
- r8 = x[4];
- r[6] = x[3];
- r[4] = x[2];
- r[2] = x[1];
- r[0] = x[0];
- /* Reduce with x^8 + x^4 + x^3 + x + 1 until order is less than 8 */
- r[7] = r14; /* r[7] was 0 */
- r[6] ^= r14;
- r10 ^= r14;
- /* Skip, because r13 is always 0 */
- r[4] ^= r12;
- r[5] = r12; /* r[5] was 0 */
- r[7] ^= r12;
- r8 ^= r12;
- /* Skip, because r11 is always 0 */
- r[2] ^= r10;
- r[3] = r10; /* r[3] was 0 */
- r[5] ^= r10;
- r[6] ^= r10;
- r[1] = r14; /* r[1] was 0 */
- r[2] ^= r14; /* Substitute r9 by r14 because they will always be equal*/
- r[4] ^= r14;
- r[5] ^= r14;
- r[0] ^= r8;
- r[1] ^= r8;
- r[3] ^= r8;
- r[4] ^= r8;
- }
- /*
- * Invert `x` in GF(2^8) and write the result to `r`
- */
- static void gf256_inv(uint32_t r[8], uint32_t x[8]) {
- uint32_t y[8] = {0}, z[8] = {0};
- gf256_square(y, x); // y = x^2
- gf256_square(y, y); // y = x^4
- gf256_square(r, y); // r = x^8
- gf256_mul(z, r, x); // z = x^9
- gf256_square(r, r); // r = x^16
- gf256_mul(r, r, z); // r = x^25
- gf256_square(r, r); // r = x^50
- gf256_square(z, r); // z = x^100
- gf256_square(z, z); // z = x^200
- gf256_mul(r, r, z); // r = x^250
- gf256_mul(r, r, y); // r = x^254
- memzero(y, sizeof(y));
- memzero(z, sizeof(z));
- }
- bool shamir_interpolate(
- uint8_t* result,
- uint8_t result_index,
- const uint8_t* share_indices,
- const uint8_t** share_values,
- uint8_t share_count,
- size_t len) {
- size_t i = 0, j = 0;
- uint32_t x[8] = {0};
- uint32_t xs[share_count][8];
- memset(xs, 0, sizeof(xs));
- uint32_t ys[share_count][8];
- memset(ys, 0, sizeof(ys));
- uint32_t num[8] = {~0}; /* num is the numerator (=1) */
- uint32_t denom[8] = {0};
- uint32_t tmp[8] = {0};
- uint32_t secret[8] = {0};
- bool ret = true;
- if(len > SHAMIR_MAX_LEN) return false;
- /* Collect the x and y values */
- for(i = 0; i < share_count; i++) {
- bitslice_setall(xs[i], share_indices[i]);
- bitslice(ys[i], share_values[i], len);
- }
- bitslice_setall(x, result_index);
- for(i = 0; i < share_count; i++) {
- memcpy(tmp, x, sizeof(uint32_t[8]));
- gf256_add(tmp, xs[i]);
- gf256_mul(num, num, tmp);
- }
- /* Use Lagrange basis polynomials to calculate the secret coefficient */
- for(i = 0; i < share_count; i++) {
- /* The code below assumes that none of the share_indices are equal to
- * result_index. We need to treat that as a special case. */
- if(share_indices[i] != result_index) {
- memcpy(denom, x, sizeof(denom));
- gf256_add(denom, xs[i]);
- } else {
- bitslice_setall(denom, 1);
- gf256_add(secret, ys[i]);
- }
- for(j = 0; j < share_count; j++) {
- if(i == j) continue;
- memcpy(tmp, xs[i], sizeof(uint32_t[8]));
- gf256_add(tmp, xs[j]);
- gf256_mul(denom, denom, tmp);
- }
- if((denom[0] | denom[1] | denom[2] | denom[3] | denom[4] | denom[5] | denom[6] |
- denom[7]) == 0) {
- /* The share_indices are not unique. */
- ret = false;
- break;
- }
- gf256_inv(tmp, denom); /* inverted denominator */
- gf256_mul(tmp, tmp, num); /* basis polynomial */
- gf256_mul(tmp, tmp, ys[i]); /* scaled coefficient */
- gf256_add(secret, tmp);
- }
- if(ret == true) {
- unbitslice(result, secret, len);
- }
- memzero(x, sizeof(x));
- memzero(xs, sizeof(xs));
- memzero(ys, sizeof(ys));
- memzero(num, sizeof(num));
- memzero(denom, sizeof(denom));
- memzero(tmp, sizeof(tmp));
- memzero(secret, sizeof(secret));
- return ret;
- }
|