sound_engine.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. #include "sound_engine.h"
  2. #include "../flizzer_tracker.h"
  3. #include "../flizzer_tracker_hal.h"
  4. #include <furi_hal.h>
  5. #define PI 3.1415
  6. void sound_engine_init(SoundEngine* sound_engine, uint32_t sample_rate, bool external_audio_output, uint32_t audio_buffer_size)
  7. {
  8. sound_engine->audio_buffer = malloc(audio_buffer_size * sizeof(sound_engine->audio_buffer[0]));
  9. sound_engine->audio_buffer_size = audio_buffer_size;
  10. sound_engine->sample_rate = sample_rate;
  11. sound_engine->external_audio_output = external_audio_output;
  12. for(int i = 0; i < NUM_CHANNELS; ++i)
  13. {
  14. sound_engine->channel[i].lfsr = RANDOM_SEED;
  15. }
  16. for(int i = 0; i < SINE_LUT_SIZE; ++i)
  17. {
  18. sound_engine->sine_lut[i] = (uint8_t)((sinf(i / 64.0 * PI) + 1.0) * 127.0);
  19. }
  20. furi_hal_interrupt_set_isr_ex(FuriHalInterruptIdDma1Ch1, 15, sound_engine_dma_isr, sound_engine);
  21. sound_engine_init_hardware(sample_rate, external_audio_output, sound_engine->audio_buffer, audio_buffer_size);
  22. }
  23. void sound_engine_deinit(SoundEngine* sound_engine)
  24. {
  25. free(sound_engine->audio_buffer);
  26. if(!(sound_engine->external_audio_output))
  27. {
  28. furi_hal_speaker_release();
  29. }
  30. furi_hal_interrupt_set_isr_ex(FuriHalInterruptIdDma1Ch1, 13, NULL, NULL);
  31. sound_engine_stop();
  32. }
  33. void sound_engine_set_channel_frequency(SoundEngine* sound_engine, SoundEngineChannel* channel, uint32_t frequency)
  34. {
  35. if(frequency != 0)
  36. {
  37. channel->frequency = (uint64_t)(ACC_LENGTH) / (uint64_t)1024 * (uint64_t)(frequency) / (uint64_t)sound_engine->sample_rate;
  38. }
  39. else
  40. {
  41. channel->frequency = 0;
  42. }
  43. }
  44. static inline uint16_t sound_engine_pulse(uint32_t acc, uint32_t pw) //0-FFF pulse width range
  45. {
  46. return (((acc >> (((uint32_t)ACC_BITS - 17))) >= ((pw == 0xfff ? pw + 1 : pw) << 4) ? (WAVE_AMP - 1) : 0));
  47. }
  48. static inline uint16_t sound_engine_saw(uint32_t acc)
  49. {
  50. return (acc >> (ACC_BITS - OUTPUT_BITS - 1)) & (WAVE_AMP - 1);
  51. }
  52. static inline uint16_t sound_engine_triangle(uint32_t acc)
  53. {
  54. return ((((acc & (ACC_LENGTH / 2)) ? ~acc : acc) >> (ACC_BITS - OUTPUT_BITS - 2)) & (WAVE_AMP * 2 - 1));
  55. }
  56. static inline uint16_t sound_engine_sine(uint32_t acc, SoundEngine* sound_engine)
  57. {
  58. return (sound_engine->sine_lut[(acc >> (ACC_BITS - SINE_LUT_BITDEPTH))] << (OUTPUT_BITS - SINE_LUT_BITDEPTH));
  59. }
  60. inline static void shift_lfsr(uint32_t* v, uint32_t tap_0, uint32_t tap_1)
  61. {
  62. typedef uint32_t T;
  63. const T zero = (T)(0);
  64. const T lsb = zero + (T)(1);
  65. const T feedback = (
  66. (lsb << (tap_0)) ^
  67. (lsb << (tap_1))
  68. );
  69. *v = (*v >> 1) ^ ((zero - (*v & lsb)) & feedback);
  70. }
  71. uint16_t sound_engine_osc(SoundEngine* sound_engine, SoundEngineChannel* channel, uint32_t prev_acc)
  72. {
  73. switch(channel->waveform)
  74. {
  75. case SE_WAVEFORM_NOISE:
  76. {
  77. if((prev_acc & (ACC_LENGTH / 32)) != (channel->accumulator & (ACC_LENGTH / 32)))
  78. {
  79. shift_lfsr(&channel->lfsr, 22, 17);
  80. channel->lfsr &= (1 << (22 + 1)) - 1;
  81. }
  82. return (channel->lfsr) & (WAVE_AMP - 1);
  83. break;
  84. }
  85. case SE_WAVEFORM_PULSE:
  86. {
  87. return sound_engine_pulse(channel->accumulator, channel->pw);
  88. break;
  89. }
  90. case SE_WAVEFORM_TRIANGLE:
  91. {
  92. return sound_engine_triangle(channel->accumulator);
  93. break;
  94. }
  95. case SE_WAVEFORM_SAW:
  96. {
  97. return sound_engine_saw(channel->accumulator);
  98. break;
  99. }
  100. case SE_WAVEFORM_NOISE_METAL:
  101. {
  102. if((prev_acc & (ACC_LENGTH / 32)) != (channel->accumulator & (ACC_LENGTH / 32)))
  103. {
  104. shift_lfsr(&channel->lfsr, 14, 8);
  105. channel->lfsr &= (1 << (14 + 1)) - 1;
  106. }
  107. return (channel->lfsr) & (WAVE_AMP - 1);
  108. break;
  109. }
  110. case SE_WAVEFORM_SINE:
  111. {
  112. return sound_engine_sine(channel->accumulator, sound_engine);
  113. break;
  114. }
  115. }
  116. return 0;
  117. }
  118. void sound_engine_filter_set_coeff(SoundEngineFilter *flt, uint32_t frequency, uint16_t resonance)
  119. {
  120. flt->q = 2048 - frequency;
  121. flt->p = frequency + ((int32_t)(0.8f * 2048.0f) * frequency / 2048 * flt->q) / 2048;
  122. flt->f = flt->p + flt->p - 2048;
  123. flt->q = resonance;
  124. }
  125. void sound_engine_filter_cycle(SoundEngineFilter* flt, int32_t input)
  126. {
  127. input -= flt->q * flt->b4 / 2048; //feedback
  128. int32_t t1 = flt->b1;
  129. flt->b1 = (input + flt->b0) * flt->p / 2048 - flt->b1 * flt->f / 2048;
  130. int32_t t2 = flt->b2;
  131. flt->b2 = (flt->b1 + t1) * flt->p / 2048 - flt->b2 * flt->f / 2048;
  132. t1 = flt->b3;
  133. flt->b3 = (flt->b2 + t2) * flt->p / 2048 - flt->b3 * flt->f / 2048;
  134. flt->b4 = (flt->b3 + t1) * flt->p / 2048 - flt->b4 * flt->f / 2048;
  135. //flt->b4 = my_min(32767, my_max(-32768, flt->b4)); //clipping
  136. flt->b0 = input;
  137. }
  138. int32_t sound_engine_output_lowpass(SoundEngineFilter* flt)
  139. {
  140. return flt->b4;
  141. }
  142. int32_t sound_engine_output_highpass(SoundEngineFilter* flt)
  143. {
  144. return flt->b0 - flt->b4;
  145. }
  146. int32_t sound_engine_output_bandpass(SoundEngineFilter* flt)
  147. {
  148. return 3 * (flt->b3 - flt->b4);
  149. }
  150. void sound_engine_fill_buffer(SoundEngine* sound_engine, uint16_t* audio_buffer, uint32_t audio_buffer_size)
  151. {
  152. for(uint32_t i = 0; i < audio_buffer_size; ++i)
  153. {
  154. int32_t output = 0;
  155. for(uint32_t chan = 0; chan < NUM_CHANNELS; ++chan)
  156. {
  157. SoundEngineChannel* channel = &sound_engine->channel[chan];
  158. int32_t channel_output = 0;
  159. if(channel->frequency > 0)
  160. {
  161. uint32_t prev_acc = channel->accumulator;
  162. channel->accumulator += channel->frequency;
  163. channel->accumulator &= ACC_LENGTH - 1;
  164. channel_output += sound_engine_osc(sound_engine, channel, prev_acc) - WAVE_AMP / 2;
  165. if(channel->flags & SE_ENABLE_FILTER)
  166. {
  167. sound_engine_filter_cycle(&channel->filter, channel_output);
  168. switch(channel->filter_mode)
  169. {
  170. case FIL_OUTPUT_LOWPASS:
  171. {
  172. channel_output = sound_engine_output_lowpass(&channel->filter);
  173. break;
  174. }
  175. case FIL_OUTPUT_HIGHPASS:
  176. {
  177. channel_output = sound_engine_output_highpass(&channel->filter);
  178. break;
  179. }
  180. case FIL_OUTPUT_BANDPASS:
  181. {
  182. channel_output = sound_engine_output_bandpass(&channel->filter);
  183. break;
  184. }
  185. }
  186. }
  187. output += ((channel_output + WAVE_AMP / 2) >> (6 + 2)); //2 more bits so all channels fit
  188. }
  189. }
  190. audio_buffer[i] = output;
  191. }
  192. }