BMP280.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222
  1. #include "SensorsDriver.h"
  2. #include "BMP280.h"
  3. const SensorType BMP280 = {
  4. .typename = "BMP280",
  5. .interface = &I2C,
  6. .pollingInterval = 500,
  7. .allocator = unitemp_BMP280_alloc,
  8. .mem_releaser = unitemp_BMP280_free,
  9. .initializer = unitemp_BMP280_init,
  10. .deinitializer = unitemp_BMP280_deinit,
  11. .updater = unitemp_BMP280_update};
  12. #define TEMP_CAL_START_ADDR 0x88
  13. //#define PRESS_CAL_START_ADDR 0x8E
  14. #define BMP280_ID 0x58
  15. #define BMP280_REG_STATUS 0xF3
  16. #define BMP280_REG_CTRL_MEAS 0xF4
  17. #define BMP280_REG_CONFIG 0xF5
  18. //Преддескретизация температуры
  19. #define BMP280_TEMP_OVERSAMPLING_SKIP 0b00000000
  20. #define BMP280_TEMP_OVERSAMPLING_1 0b00100000
  21. #define BMP280_TEMP_OVERSAMPLING_2 0b01000000
  22. #define BMP280_TEMP_OVERSAMPLING_4 0b01100000
  23. #define BMP280_TEMP_OVERSAMPLING_8 0b10000000
  24. #define BMP280_TEMP_OVERSAMPLING_16 0b10100000
  25. //Режимы работы датчика
  26. #define BMP280_MODE_SLEEP 0b00000000 //Спит и мало кушает
  27. #define BMP280_MODE_FORCED 0b00000001 //Обновляет значения 1 раз, после чего уходит в сон
  28. #define BMP280_MODE_NORMAL 0b00000011 //Регулярно обновляет значения
  29. //Период обновления в нормальном режиме
  30. #define BMP280_STANDBY_TIME_0_5 0b00000000
  31. #define BMP280_STANDBY_TIME_62_5 0b00100000
  32. #define BMP280_STANDBY_TIME_125 0b01000000
  33. #define BMP280_STANDBY_TIME_250 0b01100000
  34. #define BMP280_STANDBY_TIME_500 0b10000000
  35. #define BMP280_STANDBY_TIME_1000 0b10100000
  36. #define BMP280_STANDBY_TIME_2000 0b11000000
  37. #define BMP280_STANDBY_TIME_4000 0b11100000
  38. //Коэффициент фильтрации значений
  39. #define BMP280_FILTER_COEFF_1 0b00000000
  40. #define BMP280_FILTER_COEFF_2 0b00000100
  41. #define BMP280_FILTER_COEFF_4 0b00001000
  42. #define BMP280_FILTER_COEFF_8 0b00001100
  43. #define BMP280_FILTER_COEFF_16 0b00010000
  44. //Разрешить работу по SPI
  45. #define BMP280_SPI_3W_ENABLE 0b00000001
  46. #define BMP280_SPI_3W_DISABLE 0b00000000
  47. static double bmp280_compensate_T_double(I2CSensor* i2c_sensor, int32_t adc_T) {
  48. BMP280_instance* bmp280_instance = (BMP280_instance*)i2c_sensor->sensorInstance;
  49. double var1, var2, T;
  50. var1 = (((double)adc_T) / (double)16384.0 -
  51. ((double)bmp280_instance->temp_cal.dig_T1) / (double)1024.0) *
  52. ((double)bmp280_instance->temp_cal.dig_T2);
  53. var2 = ((((double)adc_T) / (double)131072.0 -
  54. ((double)bmp280_instance->temp_cal.dig_T1) / (double)8192.0) *
  55. (((double)adc_T) / (double)131072.0 -
  56. ((double)bmp280_instance->temp_cal.dig_T1) / (double)8192.0)) *
  57. ((double)bmp280_instance->temp_cal.dig_T3);
  58. T = (var1 + var2) / (double)5120.0;
  59. return T;
  60. }
  61. static bool bmp280_readCalValues(I2CSensor* i2c_sensor) {
  62. BMP280_instance* bmp280_instance = (BMP280_instance*)i2c_sensor->sensorInstance;
  63. if(!readRegArray(i2c_sensor, TEMP_CAL_START_ADDR, 6, (uint8_t*)&bmp280_instance->temp_cal))
  64. return false;
  65. FURI_LOG_D(
  66. APP_NAME,
  67. "Sensor BMP280 (0x%02X) calibration values: T1: %d, T2: %d, T3: %d",
  68. i2c_sensor->currentI2CAdr,
  69. bmp280_instance->temp_cal.dig_T1,
  70. bmp280_instance->temp_cal.dig_T2,
  71. bmp280_instance->temp_cal.dig_T3);
  72. // if(!readRegArray(i2c_sensor, PRESS_CAL_START_ADDR, 18, (uint8_t*)&bmp280_instance->press_cal))
  73. // return false;
  74. // FURI_LOG_D(
  75. // APP_NAME,
  76. // "Sensor BMP280 (0x%02X): T1-3: %d, %d, %d; P1-9: %d, %d, %d, %d, %d, %d, %d, %d, %d",
  77. // i2c_sensor->currentI2CAdr,
  78. // bmp280_instance->temp_cal.dig_T1,
  79. // bmp280_instance->temp_cal.dig_T2,
  80. // bmp280_instance->temp_cal.dig_T3,
  81. // bmp280_instance->press_cal.dig_P1,
  82. // bmp280_instance->press_cal.dig_P2,
  83. // bmp280_instance->press_cal.dig_P3,
  84. // bmp280_instance->press_cal.dig_P4,
  85. // bmp280_instance->press_cal.dig_P5,
  86. // bmp280_instance->press_cal.dig_P6,
  87. // bmp280_instance->press_cal.dig_P7,
  88. // bmp280_instance->press_cal.dig_P8,
  89. // bmp280_instance->press_cal.dig_P9);
  90. return true;
  91. }
  92. static bool bmp280_isMeasuring(Sensor* sensor) {
  93. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  94. return (bool)((readReg(i2c_sensor, BMP280_REG_STATUS) & 0x08) >> 3);
  95. }
  96. bool unitemp_BMP280_alloc(void* s, uint16_t* anotherValues) {
  97. UNUSED(anotherValues);
  98. Sensor* sensor = (Sensor*)s;
  99. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  100. BMP280_instance* bmp280_instance = malloc(sizeof(BMP280_instance));
  101. if(bmp280_instance == NULL) {
  102. FURI_LOG_E(APP_NAME, "Failed to allocation sensor %s instance", sensor->name);
  103. return false;
  104. }
  105. i2c_sensor->sensorInstance = bmp280_instance;
  106. i2c_sensor->minI2CAdr = 0x76;
  107. i2c_sensor->maxI2CAdr = 0x77;
  108. return true;
  109. }
  110. bool unitemp_BMP280_init(void* s) {
  111. Sensor* sensor = (Sensor*)s;
  112. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  113. //Перезагрузка
  114. writeReg(i2c_sensor, 0xE0, 0xB6);
  115. //Чтение ID датчика
  116. uint8_t id = readReg(i2c_sensor, 0xD0);
  117. if(id != BMP280_ID) {
  118. FURI_LOG_E(
  119. APP_NAME,
  120. "Sensor %s returned wrong ID 0x%02X, expected 0x%02X",
  121. sensor->name,
  122. id,
  123. BMP280_ID);
  124. return false;
  125. }
  126. //Чтение калибровочных значений
  127. if(!bmp280_readCalValues(i2c_sensor)) {
  128. FURI_LOG_E(APP_NAME, "Failed to read calibration values sensor %s", sensor->name);
  129. return false;
  130. }
  131. //Настройка режимов работы
  132. writeReg(i2c_sensor, BMP280_REG_CTRL_MEAS, BMP280_TEMP_OVERSAMPLING_2 | BMP280_MODE_NORMAL);
  133. //Настройка периода опроса и фильтрации значений
  134. writeReg(
  135. i2c_sensor,
  136. BMP280_REG_CONFIG,
  137. BMP280_STANDBY_TIME_500 | BMP280_FILTER_COEFF_16 | BMP280_SPI_3W_DISABLE);
  138. return true;
  139. }
  140. bool unitemp_BMP280_deinit(void* s) {
  141. Sensor* sensor = (Sensor*)s;
  142. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  143. //Перевод в сон
  144. writeReg(i2c_sensor, BMP280_REG_CTRL_MEAS, BMP280_MODE_SLEEP);
  145. return true;
  146. }
  147. UnitempStatus unitemp_BMP280_update(void* s) {
  148. Sensor* sensor = (Sensor*)s;
  149. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  150. uint32_t t = furi_get_tick();
  151. while(bmp280_isMeasuring(sensor)) {
  152. if(furi_get_tick() - t > 100) {
  153. return UT_TIMEOUT;
  154. }
  155. }
  156. uint8_t buff[3];
  157. if(!readRegArray(i2c_sensor, 0xFA, 3, buff)) return UT_TIMEOUT;
  158. int32_t adc_T = ((int32_t)buff[0] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4);
  159. sensor->temp = bmp280_compensate_T_double(i2c_sensor, adc_T);
  160. return UT_OK;
  161. }
  162. bool unitemp_BMP280_free(void* s) {
  163. Sensor* sensor = (Sensor*)s;
  164. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  165. free(i2c_sensor->sensorInstance);
  166. return true;
  167. }
  168. // bool BMP280_init(I2CSensor* i2c_sensor) {
  169. // //Перезагрузка
  170. // writeReg(i2c_sensor, 0xE0, 0xB6);
  171. // //Чтение ID датчика
  172. // if(readReg(i2c_sensor, 0xD0) != 0x58) {
  173. // return false;
  174. // }
  175. // i2c_sensor->sensorInstance = malloc(sizeof(BMP280_instance));
  176. // //Чтение калибровочных значений
  177. // if(!readCalValues(i2c_sensor)) {
  178. // return false;
  179. // }
  180. // writeReg(i2c_sensor, 0xF4, 0b01010111);
  181. // writeReg(i2c_sensor, 0xF5, 0b10110100);
  182. // return true;
  183. // }
  184. // bool BMP280_updateData(Sensor* sensor) {
  185. // I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  186. // // if(furi_get_tick() - i2c_sensor->lastPollingTime < 500) {
  187. // // sensor->status = UT_EARLYPOOL;
  188. // // return false;
  189. // // }
  190. // // i2c_sensor->lastPollingTime = furi_get_tick();
  191. // // while(readReg(i2c_sensor, 0xF3) & 0b00001001) {
  192. // // if(furi_get_tick() - i2c_sensor->lastPollingTime > 100) {
  193. // // sensor->status = UT_TIMEOUT;
  194. // // return false;
  195. // // }
  196. // // }
  197. // uint8_t buff[3];
  198. // if(!readRegArray(i2c_sensor, 0xFA, 3, buff)) return false;
  199. // int32_t adc_T = ((int32_t)buff[2] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4);
  200. // sensor->temp = bmp280_compensate_T_double(i2c_sensor, adc_T);
  201. // return true;
  202. // }