#include "SensorsDriver.h" #include "BMP280.h" const SensorType BMP280 = { .typename = "BMP280", .interface = &I2C, .pollingInterval = 500, .allocator = unitemp_BMP280_alloc, .mem_releaser = unitemp_BMP280_free, .initializer = unitemp_BMP280_init, .deinitializer = unitemp_BMP280_deinit, .updater = unitemp_BMP280_update}; #define TEMP_CAL_START_ADDR 0x88 //#define PRESS_CAL_START_ADDR 0x8E #define BMP280_ID 0x58 #define BMP280_REG_STATUS 0xF3 #define BMP280_REG_CTRL_MEAS 0xF4 #define BMP280_REG_CONFIG 0xF5 //Преддескретизация температуры #define BMP280_TEMP_OVERSAMPLING_SKIP 0b00000000 #define BMP280_TEMP_OVERSAMPLING_1 0b00100000 #define BMP280_TEMP_OVERSAMPLING_2 0b01000000 #define BMP280_TEMP_OVERSAMPLING_4 0b01100000 #define BMP280_TEMP_OVERSAMPLING_8 0b10000000 #define BMP280_TEMP_OVERSAMPLING_16 0b10100000 //Режимы работы датчика #define BMP280_MODE_SLEEP 0b00000000 //Спит и мало кушает #define BMP280_MODE_FORCED 0b00000001 //Обновляет значения 1 раз, после чего уходит в сон #define BMP280_MODE_NORMAL 0b00000011 //Регулярно обновляет значения //Период обновления в нормальном режиме #define BMP280_STANDBY_TIME_0_5 0b00000000 #define BMP280_STANDBY_TIME_62_5 0b00100000 #define BMP280_STANDBY_TIME_125 0b01000000 #define BMP280_STANDBY_TIME_250 0b01100000 #define BMP280_STANDBY_TIME_500 0b10000000 #define BMP280_STANDBY_TIME_1000 0b10100000 #define BMP280_STANDBY_TIME_2000 0b11000000 #define BMP280_STANDBY_TIME_4000 0b11100000 //Коэффициент фильтрации значений #define BMP280_FILTER_COEFF_1 0b00000000 #define BMP280_FILTER_COEFF_2 0b00000100 #define BMP280_FILTER_COEFF_4 0b00001000 #define BMP280_FILTER_COEFF_8 0b00001100 #define BMP280_FILTER_COEFF_16 0b00010000 //Разрешить работу по SPI #define BMP280_SPI_3W_ENABLE 0b00000001 #define BMP280_SPI_3W_DISABLE 0b00000000 static double bmp280_compensate_T_double(I2CSensor* i2c_sensor, int32_t adc_T) { BMP280_instance* bmp280_instance = (BMP280_instance*)i2c_sensor->sensorInstance; double var1, var2, T; var1 = (((double)adc_T) / (double)16384.0 - ((double)bmp280_instance->temp_cal.dig_T1) / (double)1024.0) * ((double)bmp280_instance->temp_cal.dig_T2); var2 = ((((double)adc_T) / (double)131072.0 - ((double)bmp280_instance->temp_cal.dig_T1) / (double)8192.0) * (((double)adc_T) / (double)131072.0 - ((double)bmp280_instance->temp_cal.dig_T1) / (double)8192.0)) * ((double)bmp280_instance->temp_cal.dig_T3); T = (var1 + var2) / (double)5120.0; return T; } static bool bmp280_readCalValues(I2CSensor* i2c_sensor) { BMP280_instance* bmp280_instance = (BMP280_instance*)i2c_sensor->sensorInstance; if(!readRegArray(i2c_sensor, TEMP_CAL_START_ADDR, 6, (uint8_t*)&bmp280_instance->temp_cal)) return false; FURI_LOG_D( APP_NAME, "Sensor BMP280 (0x%02X) calibration values: T1: %d, T2: %d, T3: %d", i2c_sensor->currentI2CAdr, bmp280_instance->temp_cal.dig_T1, bmp280_instance->temp_cal.dig_T2, bmp280_instance->temp_cal.dig_T3); // if(!readRegArray(i2c_sensor, PRESS_CAL_START_ADDR, 18, (uint8_t*)&bmp280_instance->press_cal)) // return false; // FURI_LOG_D( // APP_NAME, // "Sensor BMP280 (0x%02X): T1-3: %d, %d, %d; P1-9: %d, %d, %d, %d, %d, %d, %d, %d, %d", // i2c_sensor->currentI2CAdr, // bmp280_instance->temp_cal.dig_T1, // bmp280_instance->temp_cal.dig_T2, // bmp280_instance->temp_cal.dig_T3, // bmp280_instance->press_cal.dig_P1, // bmp280_instance->press_cal.dig_P2, // bmp280_instance->press_cal.dig_P3, // bmp280_instance->press_cal.dig_P4, // bmp280_instance->press_cal.dig_P5, // bmp280_instance->press_cal.dig_P6, // bmp280_instance->press_cal.dig_P7, // bmp280_instance->press_cal.dig_P8, // bmp280_instance->press_cal.dig_P9); return true; } static bool bmp280_isMeasuring(Sensor* sensor) { I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance; return (bool)((readReg(i2c_sensor, BMP280_REG_STATUS) & 0x08) >> 3); } bool unitemp_BMP280_alloc(void* s, uint16_t* anotherValues) { UNUSED(anotherValues); Sensor* sensor = (Sensor*)s; I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance; BMP280_instance* bmp280_instance = malloc(sizeof(BMP280_instance)); if(bmp280_instance == NULL) { FURI_LOG_E(APP_NAME, "Failed to allocation sensor %s instance", sensor->name); return false; } i2c_sensor->sensorInstance = bmp280_instance; i2c_sensor->minI2CAdr = 0x76; i2c_sensor->maxI2CAdr = 0x77; return true; } bool unitemp_BMP280_init(void* s) { Sensor* sensor = (Sensor*)s; I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance; //Перезагрузка writeReg(i2c_sensor, 0xE0, 0xB6); //Чтение ID датчика uint8_t id = readReg(i2c_sensor, 0xD0); if(id != BMP280_ID) { FURI_LOG_E( APP_NAME, "Sensor %s returned wrong ID 0x%02X, expected 0x%02X", sensor->name, id, BMP280_ID); return false; } //Чтение калибровочных значений if(!bmp280_readCalValues(i2c_sensor)) { FURI_LOG_E(APP_NAME, "Failed to read calibration values sensor %s", sensor->name); return false; } //Настройка режимов работы writeReg(i2c_sensor, BMP280_REG_CTRL_MEAS, BMP280_TEMP_OVERSAMPLING_2 | BMP280_MODE_NORMAL); //Настройка периода опроса и фильтрации значений writeReg( i2c_sensor, BMP280_REG_CONFIG, BMP280_STANDBY_TIME_500 | BMP280_FILTER_COEFF_16 | BMP280_SPI_3W_DISABLE); return true; } bool unitemp_BMP280_deinit(void* s) { Sensor* sensor = (Sensor*)s; I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance; //Перевод в сон writeReg(i2c_sensor, BMP280_REG_CTRL_MEAS, BMP280_MODE_SLEEP); return true; } UnitempStatus unitemp_BMP280_update(void* s) { Sensor* sensor = (Sensor*)s; I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance; uint32_t t = furi_get_tick(); while(bmp280_isMeasuring(sensor)) { if(furi_get_tick() - t > 100) { return UT_TIMEOUT; } } uint8_t buff[3]; if(!readRegArray(i2c_sensor, 0xFA, 3, buff)) return UT_TIMEOUT; int32_t adc_T = ((int32_t)buff[0] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4); sensor->temp = bmp280_compensate_T_double(i2c_sensor, adc_T); return UT_OK; } bool unitemp_BMP280_free(void* s) { Sensor* sensor = (Sensor*)s; I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance; free(i2c_sensor->sensorInstance); return true; } // bool BMP280_init(I2CSensor* i2c_sensor) { // //Перезагрузка // writeReg(i2c_sensor, 0xE0, 0xB6); // //Чтение ID датчика // if(readReg(i2c_sensor, 0xD0) != 0x58) { // return false; // } // i2c_sensor->sensorInstance = malloc(sizeof(BMP280_instance)); // //Чтение калибровочных значений // if(!readCalValues(i2c_sensor)) { // return false; // } // writeReg(i2c_sensor, 0xF4, 0b01010111); // writeReg(i2c_sensor, 0xF5, 0b10110100); // return true; // } // bool BMP280_updateData(Sensor* sensor) { // I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance; // // if(furi_get_tick() - i2c_sensor->lastPollingTime < 500) { // // sensor->status = UT_EARLYPOOL; // // return false; // // } // // i2c_sensor->lastPollingTime = furi_get_tick(); // // while(readReg(i2c_sensor, 0xF3) & 0b00001001) { // // if(furi_get_tick() - i2c_sensor->lastPollingTime > 100) { // // sensor->status = UT_TIMEOUT; // // return false; // // } // // } // uint8_t buff[3]; // if(!readRegArray(i2c_sensor, 0xFA, 3, buff)) return false; // int32_t adc_T = ((int32_t)buff[2] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4); // sensor->temp = bmp280_compensate_T_double(i2c_sensor, adc_T); // return true; // }