Procházet zdrojové kódy

IRDA: Use DMA for async TX (#608)

Albert Kharisov před 4 roky
rodič
revize
ba399abb5d

+ 6 - 5
applications/irda/cli/irda-cli.cpp

@@ -10,6 +10,7 @@
 #include <string>
 #include <m-string.h>
 #include <irda_transmit.h>
+#include <sys/types.h>
 
 static void signal_received_callback(void* context, IrdaWorkerSignal* received_signal) {
     furi_assert(received_signal);
@@ -47,7 +48,7 @@ static void signal_received_callback(void* context, IrdaWorkerSignal* received_s
 }
 
 static void irda_cli_start_ir_rx(Cli* cli, string_t args, void* context) {
-    if(api_hal_irda_rx_irq_is_busy()) {
+    if(api_hal_irda_is_busy()) {
         printf("IRDA is busy. Exit.");
         return;
     }
@@ -105,7 +106,7 @@ static bool parse_signal_raw(
     uint32_t* timings,
     uint32_t* timings_cnt,
     float* duty_cycle,
-    float* frequency) {
+    uint32_t* frequency) {
     char frequency_str[10];
     char duty_cycle_str[10];
     int parsed = sscanf(str, "RAW F:%9s DC:%9s", frequency_str, duty_cycle_str);
@@ -141,14 +142,14 @@ static bool parse_signal_raw(
 }
 
 static void irda_cli_start_ir_tx(Cli* cli, string_t args, void* context) {
-    if(api_hal_irda_rx_irq_is_busy()) {
+    if(api_hal_irda_is_busy()) {
         printf("IRDA is busy. Exit.");
         return;
     }
 
     IrdaMessage message;
     const char* str = string_get_cstr(args);
-    float frequency;
+    uint32_t frequency;
     float duty_cycle;
     uint32_t* timings = (uint32_t*)furi_alloc(sizeof(uint32_t) * 1000);
     uint32_t timings_cnt = 1000;
@@ -156,7 +157,7 @@ static void irda_cli_start_ir_tx(Cli* cli, string_t args, void* context) {
     if(parse_message(str, &message)) {
         irda_send(&message, 1);
     } else if(parse_signal_raw(str, timings, &timings_cnt, &duty_cycle, &frequency)) {
-        irda_send_raw_ext(timings, timings_cnt, true, duty_cycle, frequency);
+        irda_send_raw_ext(timings, timings_cnt, true, frequency, duty_cycle);
     } else {
         printf("Wrong arguments.\r\n");
         irda_cli_print_usage();

+ 53 - 17
firmware/targets/api-hal-include/api-hal-irda.h

@@ -1,11 +1,21 @@
 #pragma once
 #include <stdint.h>
 #include <stdbool.h>
+#include <stddef.h>
 
 #ifdef __cplusplus
 extern "C" {
 #endif
 
+typedef enum {
+    ApiHalIrdaTxGetDataStateError,      /* An error occured during transmission */
+    ApiHalIrdaTxGetDataStateOk,         /* New data obtained */
+    ApiHalIrdaTxGetDataStateDone,       /* New data obtained, and this is end of package */
+    ApiHalIrdaTxGetDataStateLastDone,   /* New data obtained, and this is end of package and no more data available */
+} ApiHalIrdaTxGetDataState;
+
+typedef ApiHalIrdaTxGetDataState (*ApiHalIrdaTxGetDataCallback) (void* context, uint32_t* duration, bool* level);
+
 /**
  * Signature of callback function for receiving continuous IRDA rx signal.
  *
@@ -13,26 +23,26 @@ extern "C" {
  * @param   level[in] - level of input IRDA rx signal
  * @param   duration[in] - duration of continuous rx signal level in us
  */
-typedef void (*ApiHalIrdaCaptureCallback)(void* ctx, bool level, uint32_t duration);
+typedef void (*ApiHalIrdaRxCaptureCallback)(void* ctx, bool level, uint32_t duration);
 
 /**
  * Signature of callback function for reaching silence timeout on IRDA port.
  *
  * @param   ctx[in] - context to pass to callback
  */
-typedef void (*ApiHalIrdaTimeoutCallback)(void* ctx);
+typedef void (*ApiHalIrdaRxTimeoutCallback)(void* ctx);
 
 /**
  * Initialize IRDA RX timer to receive interrupts.
  * It provides interrupts for every RX-signal edge changing
  * with its duration.
  */
-void api_hal_irda_rx_irq_init(void);
+void api_hal_irda_async_rx_start(void);
 
 /**
  * Deinitialize IRDA RX interrupt.
  */
-void api_hal_irda_rx_irq_deinit(void);
+void api_hal_irda_async_rx_stop(void);
 
 /** Setup api hal for receiving silence timeout.
  * Should be used with 'api_hal_irda_timeout_irq_set_callback()'.
@@ -40,7 +50,7 @@ void api_hal_irda_rx_irq_deinit(void);
  * @param[in]   timeout_ms - time to wait for silence on IRDA port
  *                           before generating IRQ.
  */
-void api_hal_irda_rx_timeout_irq_init(uint32_t timeout_ms);
+void api_hal_irda_async_rx_set_timeout(uint32_t timeout_ms);
 
 /**
  * Setup callback for previously initialized IRDA RX interrupt.
@@ -48,7 +58,7 @@ void api_hal_irda_rx_timeout_irq_init(uint32_t timeout_ms);
  * @param[in]   callback - callback to call when RX signal edge changing occurs
  * @param[in]   ctx - context for callback
  */
-void api_hal_irda_rx_irq_set_callback(ApiHalIrdaCaptureCallback callback, void *ctx);
+void api_hal_irda_async_rx_set_capture_isr_callback(ApiHalIrdaRxCaptureCallback callback, void *ctx);
 
 /**
  * Setup callback for reaching silence timeout on IRDA port.
@@ -57,27 +67,53 @@ void api_hal_irda_rx_irq_set_callback(ApiHalIrdaCaptureCallback callback, void *
  * @param[in]   callback - callback for silence timeout
  * @param[in]   ctx - context to pass to callback
  */
-void api_hal_irda_rx_timeout_irq_set_callback(ApiHalIrdaTimeoutCallback callback, void *ctx);
+void api_hal_irda_async_rx_set_timeout_isr_callback(ApiHalIrdaRxTimeoutCallback callback, void *ctx);
+
+/**
+ * Check if IRDA is in use now.
+ * @return  true - IRDA is busy, false otherwise.
+ */
+bool api_hal_irda_is_busy(void);
 
 /**
- * Start generating IRDA TX PWM. Provides PWM initialization on
- * defined frequency.
+ * Set callback providing new data. This function has to be called
+ * before api_hal_irda_async_tx_start().
  *
- * @param[in]   duty_cycle - duty cycle
- * @param[in]   freq - PWM frequency to generate
+ * @param[in]   callback - function to provide new data
+ * @param[in]   context - context for callback
  */
-void api_hal_irda_pwm_set(float duty_cycle, float freq);
+void api_hal_irda_async_tx_set_data_isr_callback(ApiHalIrdaTxGetDataCallback callback, void* context);
 
 /**
- * Stop generating IRDA PWM signal.
+ * Start IR asynchronous transmission. It can be stopped by 2 reasons:
+ * 1) implicit call for api_hal_irda_async_tx_stop()
+ * 2) callback can provide ApiHalIrdaTxGetDataStateLastDone response
+ *      which means no more data available for transmission.
+ *
+ * Any func (api_hal_irda_async_tx_stop() or
+ * api_hal_irda_async_tx_wait_termination()) has to be called to wait
+ * end of transmission and free resources.
+ *
+ * @param[in]   freq - frequency for PWM
+ * @param[in]   duty_cycle - duty cycle for PWM
+ * @return      true if transmission successfully started, false otherwise.
+ *              If start failed no need to free resources.
  */
-void api_hal_irda_pwm_stop();
+bool api_hal_irda_async_tx_start(uint32_t freq, float duty_cycle);
 
 /**
- * Check if IRDA is in use now.
- * @return  false - IRDA is busy, true otherwise.
+ * Stop IR asynchronous transmission and free resources.
+ * Transmission will stop as soon as transmission reaches end of
+ * package (ApiHalIrdaTxGetDataStateDone or ApiHalIrdaTxGetDataStateLastDone).
+ */
+void api_hal_irda_async_tx_stop(void);
+
+/**
+ * Wait for end of IR asynchronous transmission and free resources.
+ * Transmission will stop as soon as transmission reaches end of
+ * transmission (ApiHalIrdaTxGetDataStateLastDone).
  */
-bool api_hal_irda_rx_irq_is_busy(void);
+void api_hal_irda_async_tx_wait_termination(void);
 
 #ifdef __cplusplus
 }

+ 0 - 5
firmware/targets/f6/Src/stm32wbxx_it.c

@@ -32,11 +32,6 @@ void COMP_IRQHandler(void) {
     HAL_COMP_IRQHandler(&hcomp1);
 }
 
-void TIM1_UP_TIM16_IRQHandler(void) {
-    HAL_TIM_IRQHandler(&htim1);
-    HAL_TIM_IRQHandler(&htim16);
-}
-
 void TIM1_TRG_COM_TIM17_IRQHandler(void) {
     HAL_TIM_IRQHandler(&htim1);
 }

+ 18 - 1
firmware/targets/f6/api-hal/api-hal-interrupt.c

@@ -5,6 +5,7 @@
 #include <stm32wbxx_ll_tim.h>
 
 volatile ApiHalInterruptISR api_hal_tim_tim2_isr = NULL;
+volatile ApiHalInterruptISR api_hal_tim_tim1_isr = NULL;
 
 #define API_HAL_INTERRUPT_DMA_COUNT 2
 #define API_HAL_INTERRUPT_DMA_CHANNELS_COUNT 8
@@ -32,6 +33,13 @@ void api_hal_interrupt_set_timer_isr(TIM_TypeDef* timer, ApiHalInterruptISR isr)
             furi_assert(api_hal_tim_tim2_isr != NULL);
         }
         api_hal_tim_tim2_isr = isr;
+    } else if (timer == TIM1) {
+        if (isr) {
+            furi_assert(api_hal_tim_tim1_isr == NULL);
+        } else {
+            furi_assert(api_hal_tim_tim1_isr != NULL);
+        }
+        api_hal_tim_tim1_isr = isr;
     } else {
         furi_check(0);
     }
@@ -43,7 +51,7 @@ void api_hal_interrupt_set_dma_channel_isr(DMA_TypeDef* dma, uint32_t channel, A
     furi_check(channel < API_HAL_INTERRUPT_DMA_CHANNELS_COUNT);
     if (dma == DMA1) {
         api_hal_dma_channel_isr[0][channel] = isr;
-    } else if (dma == DMA1) {
+    } else if (dma == DMA2) {
         api_hal_dma_channel_isr[1][channel] = isr;
     } else {
         furi_check(0);
@@ -73,6 +81,15 @@ void TIM2_IRQHandler(void) {
     }
 }
 
+/* Timer 1 Update */
+void TIM1_UP_TIM16_IRQHandler(void) {
+    if (api_hal_tim_tim1_isr) {
+        api_hal_tim_tim1_isr();
+    } else {
+        HAL_TIM_IRQHandler(&htim1);
+    }
+}
+
 /* DMA 1 */
 void DMA1_Channel1_IRQHandler(void) {
     if (api_hal_dma_channel_isr[0][0]) api_hal_dma_channel_isr[0][0]();

+ 484 - 63
firmware/targets/f6/api-hal/api-hal-irda.c

@@ -1,4 +1,8 @@
 #include "api-hal-irda.h"
+#include "api-hal-delay.h"
+#include "furi/check.h"
+#include "stm32wbxx_ll_dma.h"
+#include "sys/_stdint.h"
 #include <cmsis_os2.h>
 #include <api-hal-interrupt.h>
 #include <api-hal-resources.h>
@@ -9,81 +13,115 @@
 
 #include <stdio.h>
 #include <furi.h>
+#include <math.h>
 #include <main.h>
 #include <api-hal-pwm.h>
 
-static struct{
-    ApiHalIrdaCaptureCallback capture_callback;
+#define IRDA_TIM_TX_DMA_BUFFER_SIZE         200
+#define IRDA_POLARITY_SHIFT                 1
+
+#define IRDA_TX_CCMR_HIGH    (TIM_CCMR2_OC3PE | LL_TIM_OCMODE_PWM2)              /* Mark time - enable PWM2 mode */
+#define IRDA_TX_CCMR_LOW     (TIM_CCMR2_OC3PE | LL_TIM_OCMODE_FORCED_INACTIVE)   /* Space time - force low */
+
+typedef struct{
+    ApiHalIrdaRxCaptureCallback capture_callback;
     void *capture_context;
-    ApiHalIrdaTimeoutCallback timeout_callback;
+    ApiHalIrdaRxTimeoutCallback timeout_callback;
     void *timeout_context;
-} timer_irda;
+} IrdaTimRx;
 
-typedef enum{
-    TimerIRQSourceCCI1,
-    TimerIRQSourceCCI2,
-} TimerIRQSource;
+typedef struct{
+    uint8_t* polarity;
+    uint16_t* data;
+    size_t size;
+    bool packet_end;
+    bool last_packet_end;
+} IrdaTxBuf;
 
-static void api_hal_irda_handle_timeout(void) {
-    /* Timers CNT register starts to counting from 0 to ARR, but it is
-     * reseted when Channel 1 catches interrupt. It is not reseted by
-     * channel 2, though, so we have to distract it's values (see TimerIRQSourceCCI1 ISR).
-     * This can cause false timeout: when time is over, but we started
-     * receiving new signal few microseconds ago, because CNT register
-     * is reseted once per period, not per sample. */
-    if (LL_GPIO_IsInputPinSet(gpio_irda_rx.port, gpio_irda_rx.pin) == 0)
-        return;
+typedef struct {
+    float cycle_duration;
+    ApiHalIrdaTxGetDataCallback data_callback;
+    void* data_context;
+    IrdaTxBuf buffer[2];
+    osSemaphoreId_t stop_semaphore;
+} IrdaTimTx;
 
-    if (timer_irda.timeout_callback)
-        timer_irda.timeout_callback(timer_irda.timeout_context);
-}
+typedef enum {
+    IrdaStateIdle,                  /** Api Hal Irda is ready to start RX or TX */
+    IrdaStateAsyncRx,               /** Async RX started */
+    IrdaStateAsyncTx,               /** Async TX started, DMA and timer is on */
+    IrdaStateAsyncTxStopReq,        /** Async TX started, async stop request received */
+    IrdaStateAsyncTxStopInProgress, /** Async TX started, stop request is processed and we wait for last data to be sent */
+    IrdaStateAsyncTxStopped,        /** Async TX complete, cleanup needed */
+    IrdaStateMAX,
+} IrdaState;
 
-/* High pin level is a Space state of IRDA signal. Invert level for further processing. */
-static void api_hal_irda_handle_capture(TimerIRQSource source) {
-    uint32_t duration = 0;
-    bool level = 0;
+static volatile IrdaState api_hal_irda_state = IrdaStateIdle;
+static IrdaTimTx irda_tim_tx;
+static IrdaTimRx irda_tim_rx;
 
-    switch (source) {
-    case TimerIRQSourceCCI1:
-        duration = LL_TIM_IC_GetCaptureCH1(TIM2) - LL_TIM_IC_GetCaptureCH2(TIM2);
-        level = 1;
-        break;
-    case TimerIRQSourceCCI2:
-        duration = LL_TIM_IC_GetCaptureCH2(TIM2);
-        level = 0;
-        break;
-    default:
-        furi_check(0);
-    }
+static bool api_hal_irda_tx_fill_buffer(uint8_t buf_num, uint8_t polarity_shift);
+static void api_hal_irda_async_tx_free_resources(void);
+static void api_hal_irda_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_shift);
+static void api_hal_irda_tx_dma_set_buffer(uint8_t buf_num);
+static void api_hal_irda_tx_fill_buffer_last(uint8_t buf_num);
+static uint8_t api_hal_irda_get_current_dma_tx_buffer(void);
+static void api_hal_irda_tx_dma_polarity_isr();
+static void api_hal_irda_tx_dma_isr();
 
-    if (timer_irda.capture_callback)
-        timer_irda.capture_callback(timer_irda.capture_context, level, duration);
-}
+static void api_hal_irda_tim_rx_isr() {
 
-static void api_hal_irda_isr() {
+    /* Timeout */
     if(LL_TIM_IsActiveFlag_CC3(TIM2)) {
         LL_TIM_ClearFlag_CC3(TIM2);
-        api_hal_irda_handle_timeout();
+        furi_assert(api_hal_irda_state == IrdaStateAsyncRx);
+
+        /* Timers CNT register starts to counting from 0 to ARR, but it is
+         * reseted when Channel 1 catches interrupt. It is not reseted by
+         * channel 2, though, so we have to distract it's values (see TimerIRQSourceCCI1 ISR).
+         * This can cause false timeout: when time is over, but we started
+         * receiving new signal few microseconds ago, because CNT register
+         * is reseted once per period, not per sample. */
+        if (LL_GPIO_IsInputPinSet(gpio_irda_rx.port, gpio_irda_rx.pin) != 0) {
+            if (irda_tim_rx.timeout_callback)
+                irda_tim_rx.timeout_callback(irda_tim_rx.timeout_context);
+        }
     }
+
+    /* Rising Edge */
     if(LL_TIM_IsActiveFlag_CC1(TIM2)) {
         LL_TIM_ClearFlag_CC1(TIM2);
+        furi_assert(api_hal_irda_state == IrdaStateAsyncRx);
 
         if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC1S)) {
-            // input capture
-            api_hal_irda_handle_capture(TimerIRQSourceCCI1);
+            /* Low pin level is a Mark state of IRDA signal. Invert level for further processing. */
+            uint32_t duration = LL_TIM_IC_GetCaptureCH1(TIM2) - LL_TIM_IC_GetCaptureCH2(TIM2);
+            if (irda_tim_rx.capture_callback)
+                irda_tim_rx.capture_callback(irda_tim_rx.capture_context, 1, duration);
+        } else {
+            furi_assert(0);
         }
     }
+
+    /* Falling Edge */
     if(LL_TIM_IsActiveFlag_CC2(TIM2)) {
         LL_TIM_ClearFlag_CC2(TIM2);
+        furi_assert(api_hal_irda_state == IrdaStateAsyncRx);
 
         if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC2S)) {
-            // input capture
-            api_hal_irda_handle_capture(TimerIRQSourceCCI2);
+            /* High pin level is a Space state of IRDA signal. Invert level for further processing. */
+            uint32_t duration = LL_TIM_IC_GetCaptureCH2(TIM2);
+            if (irda_tim_rx.capture_callback)
+                irda_tim_rx.capture_callback(irda_tim_rx.capture_context, 0, duration);
+        } else {
+            furi_assert(0);
         }
     }
 }
 
-void api_hal_irda_rx_irq_init(void) {
+void api_hal_irda_async_rx_start(void) {
+    furi_assert(api_hal_irda_state == IrdaStateIdle);
+
     LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2);
     LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA);
 
@@ -114,50 +152,433 @@ void api_hal_irda_rx_irq_init(void) {
     LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_INDIRECTTI);
     LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
 
+    api_hal_interrupt_set_timer_isr(TIM2, api_hal_irda_tim_rx_isr);
+    api_hal_irda_state = IrdaStateAsyncRx;
+
     LL_TIM_EnableIT_CC1(TIM2);
     LL_TIM_EnableIT_CC2(TIM2);
     LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
     LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
 
-    api_hal_interrupt_set_timer_isr(TIM2, api_hal_irda_isr);
-
     LL_TIM_SetCounter(TIM2, 0);
     LL_TIM_EnableCounter(TIM2);
 
-    NVIC_SetPriority(TIM2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),5, 0));
+    NVIC_SetPriority(TIM2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
     NVIC_EnableIRQ(TIM2_IRQn);
 }
 
-void api_hal_irda_rx_irq_deinit(void) {
+void api_hal_irda_async_rx_stop(void) {
+    furi_assert(api_hal_irda_state == IrdaStateAsyncRx);
     LL_TIM_DeInit(TIM2);
     api_hal_interrupt_set_timer_isr(TIM2, NULL);
+    LL_APB1_GRP1_DisableClock(LL_APB1_GRP1_PERIPH_TIM2);
+    api_hal_irda_state = IrdaStateIdle;
 }
 
-void api_hal_irda_rx_timeout_irq_init(uint32_t timeout_ms) {
+void api_hal_irda_async_rx_set_timeout(uint32_t timeout_ms) {
     LL_TIM_OC_SetCompareCH3(TIM2, timeout_ms * 1000);
     LL_TIM_OC_SetMode(TIM2, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_ACTIVE);
     LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH3);
     LL_TIM_EnableIT_CC3(TIM2);
 }
 
-bool api_hal_irda_rx_irq_is_busy(void) {
-    return (LL_TIM_IsEnabledIT_CC1(TIM2) || LL_TIM_IsEnabledIT_CC2(TIM2));
+bool api_hal_irda_is_busy(void) {
+    return api_hal_irda_state != IrdaStateIdle;
+}
+
+void api_hal_irda_async_rx_set_capture_isr_callback(ApiHalIrdaRxCaptureCallback callback, void *ctx) {
+    irda_tim_rx.capture_callback = callback;
+    irda_tim_rx.capture_context = ctx;
+}
+
+void api_hal_irda_async_rx_set_timeout_isr_callback(ApiHalIrdaRxTimeoutCallback callback, void *ctx) {
+    irda_tim_rx.timeout_callback = callback;
+    irda_tim_rx.timeout_context = ctx;
+}
+
+static void api_hal_irda_tx_dma_terminate(void) {
+    LL_DMA_DisableIT_TC(DMA1, LL_DMA_CHANNEL_1);
+    LL_DMA_DisableIT_HT(DMA1, LL_DMA_CHANNEL_2);
+    LL_DMA_DisableIT_TC(DMA1, LL_DMA_CHANNEL_2);
+
+    furi_assert(api_hal_irda_state == IrdaStateAsyncTxStopInProgress);
+
+    LL_DMA_DisableIT_TC(DMA1, LL_DMA_CHANNEL_1);
+    LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
+    LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
+    LL_TIM_DisableCounter(TIM1);
+    osStatus_t status = osSemaphoreRelease(irda_tim_tx.stop_semaphore);
+    furi_check(status == osOK);
+    api_hal_irda_state = IrdaStateAsyncTxStopped;
+}
+
+static uint8_t api_hal_irda_get_current_dma_tx_buffer(void) {
+    uint8_t buf_num = 0;
+    uint32_t buffer_adr = LL_DMA_GetMemoryAddress(DMA1, LL_DMA_CHANNEL_2);
+    if (buffer_adr == (uint32_t) irda_tim_tx.buffer[0].data) {
+        buf_num = 0;
+    } else if (buffer_adr == (uint32_t) irda_tim_tx.buffer[1].data) {
+        buf_num = 1;
+    } else {
+        furi_assert(0);
+    }
+    return buf_num;
+}
+
+static void api_hal_irda_tx_dma_polarity_isr() {
+    if (LL_DMA_IsActiveFlag_TE1(DMA1)) {
+        LL_DMA_ClearFlag_TE1(DMA1);
+        furi_check(0);
+    }
+    if (LL_DMA_IsActiveFlag_TC1(DMA1) && LL_DMA_IsEnabledIT_TC(DMA1, LL_DMA_CHANNEL_1)) {
+        LL_DMA_ClearFlag_TC1(DMA1);
+
+        furi_check((api_hal_irda_state == IrdaStateAsyncTx)
+                    || (api_hal_irda_state == IrdaStateAsyncTxStopReq)
+                    || (api_hal_irda_state == IrdaStateAsyncTxStopInProgress));
+        /* actually TC2 is processed and buffer is next buffer */
+        uint8_t next_buf_num = api_hal_irda_get_current_dma_tx_buffer();
+        api_hal_irda_tx_dma_set_polarity(next_buf_num, 0);
+    }
+}
+
+static void api_hal_irda_tx_dma_isr() {
+    if (LL_DMA_IsActiveFlag_TE2(DMA1)) {
+        LL_DMA_ClearFlag_TE2(DMA1);
+        furi_check(0);
+    }
+    if (LL_DMA_IsActiveFlag_HT2(DMA1) && LL_DMA_IsEnabledIT_HT(DMA1, LL_DMA_CHANNEL_2)) {
+        LL_DMA_ClearFlag_HT2(DMA1);
+        uint8_t buf_num = api_hal_irda_get_current_dma_tx_buffer();
+        uint8_t next_buf_num = !buf_num;
+        if (irda_tim_tx.buffer[buf_num].last_packet_end) {
+            LL_DMA_DisableIT_HT(DMA1, LL_DMA_CHANNEL_2);
+        } else if (!irda_tim_tx.buffer[buf_num].packet_end || (api_hal_irda_state == IrdaStateAsyncTx)) {
+            bool result = api_hal_irda_tx_fill_buffer(next_buf_num, 0);
+            if (irda_tim_tx.buffer[next_buf_num].last_packet_end) {
+                LL_DMA_DisableIT_HT(DMA1, LL_DMA_CHANNEL_2);
+            }
+            if (!result) {
+                furi_assert(0);
+                api_hal_irda_state = IrdaStateAsyncTxStopReq;
+            }
+        } else if (api_hal_irda_state == IrdaStateAsyncTxStopReq) {
+            /* fallthrough */
+        } else {
+            furi_check(0);
+        }
+    }
+    if (LL_DMA_IsActiveFlag_TC2(DMA1) && LL_DMA_IsEnabledIT_TC(DMA1, LL_DMA_CHANNEL_2)) {
+        LL_DMA_ClearFlag_TC2(DMA1);
+        furi_check((api_hal_irda_state == IrdaStateAsyncTxStopInProgress)
+                    || (api_hal_irda_state == IrdaStateAsyncTxStopReq)
+                    || (api_hal_irda_state == IrdaStateAsyncTx));
+
+        uint8_t buf_num = api_hal_irda_get_current_dma_tx_buffer();
+        uint8_t next_buf_num = !buf_num;
+        if (api_hal_irda_state == IrdaStateAsyncTxStopInProgress) {
+            api_hal_irda_tx_dma_terminate();
+        } else if (irda_tim_tx.buffer[buf_num].last_packet_end
+           || (irda_tim_tx.buffer[buf_num].packet_end && (api_hal_irda_state == IrdaStateAsyncTxStopReq))) {
+            api_hal_irda_state = IrdaStateAsyncTxStopInProgress;
+            api_hal_irda_tx_fill_buffer_last(next_buf_num);
+            api_hal_irda_tx_dma_set_buffer(next_buf_num);
+        } else {
+            /* if it's not end of the packet - continue receiving */
+            api_hal_irda_tx_dma_set_buffer(next_buf_num);
+        }
+    }
 }
 
-void api_hal_irda_rx_irq_set_callback(ApiHalIrdaCaptureCallback callback, void *ctx) {
-    timer_irda.capture_callback = callback;
-    timer_irda.capture_context = ctx;
+static void api_hal_irda_configure_tim_pwm_tx(uint32_t freq, float duty_cycle)
+{
+    LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_TIM1);
+/*    LL_DBGMCU_APB2_GRP1_FreezePeriph(LL_DBGMCU_APB2_GRP1_TIM1_STOP); */
+
+    LL_TIM_DisableCounter(TIM1);
+    LL_TIM_SetRepetitionCounter(TIM1, 0);
+    LL_TIM_SetCounter(TIM1, 0);
+    LL_TIM_SetPrescaler(TIM1, 0);
+    LL_TIM_SetCounterMode(TIM1, LL_TIM_COUNTERMODE_UP);
+    LL_TIM_EnableARRPreload(TIM1);
+    LL_TIM_SetAutoReload(TIM1, __LL_TIM_CALC_ARR(SystemCoreClock, LL_TIM_GetPrescaler(TIM1), freq));
+    LL_TIM_OC_SetCompareCH3(TIM1, ( (LL_TIM_GetAutoReload(TIM1) + 1 ) * (1 - duty_cycle)));
+    LL_TIM_OC_EnablePreload(TIM1, LL_TIM_CHANNEL_CH3);
+    /* LL_TIM_OCMODE_PWM2 set by DMA */
+    LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_FORCED_INACTIVE);
+    LL_TIM_OC_SetPolarity(TIM1, LL_TIM_CHANNEL_CH3N, LL_TIM_OCPOLARITY_HIGH);
+    LL_TIM_OC_DisableFast(TIM1, LL_TIM_CHANNEL_CH3);
+    LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH3N);
+    LL_TIM_DisableIT_CC3(TIM1);
+    LL_TIM_DisableMasterSlaveMode(TIM1);
+    LL_TIM_EnableAllOutputs(TIM1);
+    LL_TIM_DisableIT_UPDATE(TIM1);
+    LL_TIM_EnableDMAReq_UPDATE(TIM1);
+
+    NVIC_SetPriority(TIM1_UP_TIM16_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
+    NVIC_EnableIRQ(TIM1_UP_TIM16_IRQn);
 }
 
-void api_hal_irda_rx_timeout_irq_set_callback(ApiHalIrdaTimeoutCallback callback, void *ctx) {
-    timer_irda.timeout_callback = callback;
-    timer_irda.timeout_context = ctx;
+static void api_hal_irda_configure_tim_cmgr2_dma_tx(void) {
+    LL_C2_AHB1_GRP1_EnableClock(LL_C2_AHB1_GRP1_PERIPH_DMA1);
+
+    LL_DMA_InitTypeDef dma_config = {0};
+    dma_config.PeriphOrM2MSrcAddress = (uint32_t)&(TIM1->CCMR2);
+    dma_config.MemoryOrM2MDstAddress = (uint32_t) NULL;
+    dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
+    dma_config.Mode = LL_DMA_MODE_NORMAL;
+    dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
+    dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
+    /* fill word to have other bits set to 0 */
+    dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
+    dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_BYTE;
+    dma_config.NbData = 0;
+    dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM1_UP;
+    dma_config.Priority = LL_DMA_PRIORITY_VERYHIGH;
+    LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &dma_config);
+    api_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_1, api_hal_irda_tx_dma_polarity_isr);
+    LL_DMA_ClearFlag_TE1(DMA1);
+    LL_DMA_ClearFlag_TC1(DMA1);
+    LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_1);
+    LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1);
+
+    NVIC_SetPriority(DMA1_Channel1_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 4, 0));
+    NVIC_EnableIRQ(DMA1_Channel1_IRQn);
 }
 
-void api_hal_irda_pwm_set(float value, float freq) {
-    hal_pwmn_set(value, freq, &IRDA_TX_TIM, IRDA_TX_CH);
+static void api_hal_irda_configure_tim_rcr_dma_tx(void) {
+    LL_C2_AHB1_GRP1_EnableClock(LL_C2_AHB1_GRP1_PERIPH_DMA1);
+
+    LL_DMA_InitTypeDef dma_config = {0};
+    dma_config.PeriphOrM2MSrcAddress = (uint32_t)&(TIM1->RCR);
+    dma_config.MemoryOrM2MDstAddress = (uint32_t) NULL;
+    dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
+    dma_config.Mode = LL_DMA_MODE_NORMAL;
+    dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
+    dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
+    dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_HALFWORD;
+    dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_HALFWORD;
+    dma_config.NbData = 0;
+    dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM1_UP;
+    dma_config.Priority = LL_DMA_PRIORITY_MEDIUM;
+    LL_DMA_Init(DMA1, LL_DMA_CHANNEL_2, &dma_config);
+    api_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_2, api_hal_irda_tx_dma_isr);
+    LL_DMA_ClearFlag_TC2(DMA1);
+    LL_DMA_ClearFlag_HT2(DMA1);
+    LL_DMA_ClearFlag_TE2(DMA1);
+    LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_2);
+    LL_DMA_EnableIT_HT(DMA1, LL_DMA_CHANNEL_2);
+    LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_2);
+
+    NVIC_SetPriority(DMA1_Channel2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
+    NVIC_EnableIRQ(DMA1_Channel2_IRQn);
 }
 
-void api_hal_irda_pwm_stop() {
-    hal_pwmn_stop(&IRDA_TX_TIM, IRDA_TX_CH);
+static void api_hal_irda_tx_fill_buffer_last(uint8_t buf_num) {
+    furi_assert(buf_num < 2);
+    furi_assert(api_hal_irda_state != IrdaStateAsyncRx);
+    furi_assert(api_hal_irda_state < IrdaStateMAX);
+    furi_assert(irda_tim_tx.data_callback);
+    IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
+    furi_assert(buffer->data != NULL);
+    furi_assert(buffer->polarity != NULL);
+
+    irda_tim_tx.buffer[buf_num].data[0] = 0;       // 1 pulse
+    irda_tim_tx.buffer[buf_num].polarity[0] = IRDA_TX_CCMR_LOW;
+    irda_tim_tx.buffer[buf_num].data[1] = 0;       // 1 pulse
+    irda_tim_tx.buffer[buf_num].polarity[1] = IRDA_TX_CCMR_LOW;
+    irda_tim_tx.buffer[buf_num].size = 2;
+    irda_tim_tx.buffer[buf_num].last_packet_end = true;
+    irda_tim_tx.buffer[buf_num].packet_end = true;
 }
+
+static bool api_hal_irda_tx_fill_buffer(uint8_t buf_num, uint8_t polarity_shift) {
+    furi_assert(buf_num < 2);
+    furi_assert(api_hal_irda_state != IrdaStateAsyncRx);
+    furi_assert(api_hal_irda_state < IrdaStateMAX);
+    furi_assert(irda_tim_tx.data_callback);
+    IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
+    furi_assert(buffer->data != NULL);
+    furi_assert(buffer->polarity != NULL);
+
+    ApiHalIrdaTxGetDataState status = ApiHalIrdaTxGetDataStateOk;
+    uint32_t duration = 0;
+    bool level = 0;
+    size_t *size = &buffer->size;
+    size_t polarity_counter = 0;
+    while (polarity_shift--) {
+        buffer->polarity[polarity_counter++] = IRDA_TX_CCMR_LOW;
+    }
+
+    for (*size = 0; (*size < IRDA_TIM_TX_DMA_BUFFER_SIZE) && (status == ApiHalIrdaTxGetDataStateOk); ++(*size), ++polarity_counter) {
+        status = irda_tim_tx.data_callback(irda_tim_tx.data_context, &duration, &level);
+        if (status == ApiHalIrdaTxGetDataStateError) {
+            furi_assert(0);
+            break;
+        }
+
+        uint32_t num_of_impulses = roundf(duration / irda_tim_tx.cycle_duration);
+
+        if ((buffer->data[*size] + num_of_impulses - 1) > 0xFFFF) {
+            furi_assert(0);
+            status = ApiHalIrdaTxGetDataStateError;
+            break;
+        }
+
+        buffer->polarity[polarity_counter] = level ? IRDA_TX_CCMR_HIGH : IRDA_TX_CCMR_LOW;
+        buffer->data[*size] = num_of_impulses - 1;
+    }
+
+    buffer->last_packet_end = (status == ApiHalIrdaTxGetDataStateLastDone);
+    buffer->packet_end = buffer->last_packet_end || (status == ApiHalIrdaTxGetDataStateDone);
+
+    return status != ApiHalIrdaTxGetDataStateError;
+}
+
+static void api_hal_irda_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_shift) {
+    furi_assert(buf_num < 2);
+    furi_assert(api_hal_irda_state < IrdaStateMAX);
+    IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
+    furi_assert(buffer->polarity != NULL);
+
+    __disable_irq();
+    bool channel_enabled = LL_DMA_IsEnabledChannel(DMA1, LL_DMA_CHANNEL_1);
+    if (channel_enabled) {
+        LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
+    }
+    LL_DMA_SetMemoryAddress(DMA1, LL_DMA_CHANNEL_1, (uint32_t) buffer->polarity);
+    LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_1, buffer->size + polarity_shift);
+    if (channel_enabled) {
+        LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
+    }
+    __enable_irq();
+}
+
+static void api_hal_irda_tx_dma_set_buffer(uint8_t buf_num) {
+    furi_assert(buf_num < 2);
+    furi_assert(api_hal_irda_state < IrdaStateMAX);
+    IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
+    furi_assert(buffer->data != NULL);
+
+    /* non-circular mode requires disabled channel before setup */
+    __disable_irq();
+    bool channel_enabled = LL_DMA_IsEnabledChannel(DMA1, LL_DMA_CHANNEL_2);
+    if (channel_enabled) {
+        LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
+    }
+    LL_DMA_SetMemoryAddress(DMA1, LL_DMA_CHANNEL_2, (uint32_t)buffer->data);
+    LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_2, buffer->size);
+    if (channel_enabled) {
+        LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
+    }
+    __enable_irq();
+}
+
+static void api_hal_irda_async_tx_free_resources(void) {
+    furi_assert((api_hal_irda_state == IrdaStateIdle) || (api_hal_irda_state == IrdaStateAsyncTxStopped));
+    osStatus_t status;
+
+    hal_gpio_init_ex(&gpio_irda_tx, GpioModeOutputOpenDrain, GpioPullDown, GpioSpeedLow, 0);
+    api_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_1, NULL);
+    api_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_2, NULL);
+    LL_TIM_DeInit(TIM1);
+    LL_APB2_GRP1_DisableClock(LL_APB2_GRP1_PERIPH_TIM1);
+    LL_C2_AHB1_GRP1_DisableClock(LL_C2_AHB1_GRP1_PERIPH_DMA1);
+
+    status = osSemaphoreDelete(irda_tim_tx.stop_semaphore);
+    furi_check(status == osOK);
+    free(irda_tim_tx.buffer[0].data);
+    free(irda_tim_tx.buffer[1].data);
+    free(irda_tim_tx.buffer[0].polarity);
+    free(irda_tim_tx.buffer[1].polarity);
+
+    irda_tim_tx.buffer[0].data = NULL;
+    irda_tim_tx.buffer[1].data = NULL;
+    irda_tim_tx.buffer[0].polarity = NULL;
+    irda_tim_tx.buffer[1].polarity = NULL;
+}
+
+bool api_hal_irda_async_tx_start(uint32_t freq, float duty_cycle) {
+    if ((duty_cycle > 1) || (duty_cycle < 0) || (freq > 40000) || (freq < 10000) || (irda_tim_tx.data_callback == NULL)) {
+        furi_assert(0);
+        return false;
+    }
+
+    furi_assert(api_hal_irda_state == IrdaStateIdle);
+    furi_assert(irda_tim_tx.buffer[0].data == NULL);
+    furi_assert(irda_tim_tx.buffer[1].data == NULL);
+    furi_assert(irda_tim_tx.buffer[0].polarity == NULL);
+    furi_assert(irda_tim_tx.buffer[1].polarity == NULL);
+
+    size_t alloc_size_data = IRDA_TIM_TX_DMA_BUFFER_SIZE * sizeof(uint16_t);
+    irda_tim_tx.buffer[0].data = furi_alloc(alloc_size_data);
+    irda_tim_tx.buffer[1].data = furi_alloc(alloc_size_data);
+
+    size_t alloc_size_polarity = (IRDA_TIM_TX_DMA_BUFFER_SIZE + IRDA_POLARITY_SHIFT) * sizeof(uint8_t);
+    irda_tim_tx.buffer[0].polarity = furi_alloc(alloc_size_polarity);
+    irda_tim_tx.buffer[1].polarity = furi_alloc(alloc_size_polarity);
+
+    irda_tim_tx.stop_semaphore = osSemaphoreNew(1, 0, NULL);
+    irda_tim_tx.cycle_duration = 1000000.0 / freq;
+
+    bool result = api_hal_irda_tx_fill_buffer(0, IRDA_POLARITY_SHIFT);
+
+    if (result) {
+        api_hal_irda_configure_tim_pwm_tx(freq, duty_cycle);
+        api_hal_irda_configure_tim_cmgr2_dma_tx();
+        api_hal_irda_configure_tim_rcr_dma_tx();
+        api_hal_irda_tx_dma_set_polarity(0, IRDA_POLARITY_SHIFT);
+        api_hal_irda_tx_dma_set_buffer(0);
+
+        api_hal_irda_state = IrdaStateAsyncTx;
+
+        LL_TIM_ClearFlag_UPDATE(TIM1);
+        LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
+        LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
+        delay_us(5);
+        LL_TIM_GenerateEvent_UPDATE(TIM1);  /* DMA -> TIMx_RCR */
+        delay_us(5);
+        LL_GPIO_ResetOutputPin(gpio_irda_tx.port, gpio_irda_tx.pin);    /* when disable it prevents false pulse */
+        hal_gpio_init_ex(&gpio_irda_tx, GpioModeAltFunctionPushPull, GpioPullUp, GpioSpeedHigh, GpioAltFn1TIM1);
+
+        __disable_irq();
+        LL_TIM_GenerateEvent_UPDATE(TIM1);  /* TIMx_RCR -> Repetition counter */
+        LL_TIM_EnableCounter(TIM1);
+        __enable_irq();
+
+    } else {
+        api_hal_irda_async_tx_free_resources();
+    }
+
+    return result;
+}
+
+void api_hal_irda_async_tx_wait_termination(void) {
+    furi_assert(api_hal_irda_state >= IrdaStateAsyncTx);
+    furi_assert(api_hal_irda_state < IrdaStateMAX);
+
+    osStatus_t status;
+    status = osSemaphoreAcquire(irda_tim_tx.stop_semaphore, osWaitForever);
+    furi_check(status == osOK);
+    api_hal_irda_async_tx_free_resources();
+    api_hal_irda_state = IrdaStateIdle;
+}
+
+void api_hal_irda_async_tx_stop(void) {
+    furi_assert(api_hal_irda_state >= IrdaStateAsyncTx);
+    furi_assert(api_hal_irda_state < IrdaStateMAX);
+
+    __disable_irq();
+    if (api_hal_irda_state == IrdaStateAsyncTx)
+        api_hal_irda_state = IrdaStateAsyncTxStopReq;
+    __enable_irq();
+
+    api_hal_irda_async_tx_wait_termination();
+}
+
+void api_hal_irda_async_tx_set_data_isr_callback(ApiHalIrdaTxGetDataCallback callback, void* context) {
+    furi_assert(api_hal_irda_state == IrdaStateIdle);
+    irda_tim_tx.data_callback = callback;
+    irda_tim_tx.data_context = context;
+}
+

+ 6 - 6
lib/irda/encoder_decoder/irda.h

@@ -46,7 +46,7 @@ IrdaDecoderHandler* irda_alloc_decoder(void);
 /**
  * Provide to decoder next timing.
  *
- * \param[in]   handler     - handler to IRDA decoders. Should be aquired with \c irda_alloc_decoder().
+ * \param[in]   handler     - handler to IRDA decoders. Should be acquired with \c irda_alloc_decoder().
  * \param[in]   level       - high(true) or low(false) level of input signal to analyze.
  *                          it should alternate every call, otherwise it is an error case,
  *                          and decoder resets its state and start decoding from the start.
@@ -58,14 +58,14 @@ const IrdaMessage* irda_decode(IrdaDecoderHandler* handler, bool level, uint32_t
 /**
  * Deinitialize decoder and free allocated memory.
  *
- * \param[in]   handler     - handler to IRDA decoders. Should be aquired with \c irda_alloc_decoder().
+ * \param[in]   handler     - handler to IRDA decoders. Should be acquired with \c irda_alloc_decoder().
  */
 void irda_free_decoder(IrdaDecoderHandler* handler);
 
 /**
  * Reset IRDA decoder.
  *
- * \param[in]   handler     - handler to IRDA decoders. Should be aquired with \c irda_alloc_decoder().
+ * \param[in]   handler     - handler to IRDA decoders. Should be acquired with \c irda_alloc_decoder().
  */
 void irda_reset_decoder(IrdaDecoderHandler* handler);
 
@@ -119,7 +119,7 @@ IrdaEncoderHandler* irda_alloc_encoder(void);
 /**
  * Free encoder handler previously allocated with \c irda_alloc_encoder().
  *
- * \param[in]   handler     - handler to IRDA encoder. Should be aquired with \c irda_alloc_encoder().
+ * \param[in]   handler     - handler to IRDA encoder. Should be acquired with \c irda_alloc_encoder().
  */
 void irda_free_encoder(IrdaEncoderHandler* handler);
 
@@ -132,7 +132,7 @@ void irda_free_encoder(IrdaEncoderHandler* handler);
  *  4) when \c irda_encode() returns IrdaStatusDone, it means new message is fully encoded.
  *  5) to encode additional timings, just continue calling \c irda_encode().
  *
- * \param[in]   handler     - handler to IRDA encoder. Should be aquired with \c irda_alloc_encoder().
+ * \param[in]   handler     - handler to IRDA encoder. Should be acquired with \c irda_alloc_encoder().
  * \param[out]  duration    - encoded timing.
  * \param[out]  level       - encoded level.
  *
@@ -145,7 +145,7 @@ IrdaStatus irda_encode(IrdaEncoderHandler* handler, uint32_t* duration, bool* le
  * IrdaStatusDone in \c irda_encode(), encoder will encode repeat messages
  * till the end of time.
  *
- * \param[in]   handler     - handler to IRDA encoder. Should be aquired with \c irda_alloc_encoder().
+ * \param[in]   handler     - handler to IRDA encoder. Should be acquired with \c irda_alloc_encoder().
  * \param[in]   message     - message to encode.
  */
 void irda_reset_encoder(IrdaEncoderHandler* handler, const IrdaMessage* message);

+ 71 - 47
lib/irda/worker/irda_transmit.c

@@ -6,72 +6,96 @@
 #include <api-hal-irda.h>
 #include <api-hal-delay.h>
 
-#define IRDA_SET_TX_COMMON(d, l)        irda_set_tx((d), (l), IRDA_COMMON_DUTY_CYCLE, IRDA_COMMON_CARRIER_FREQUENCY)
+static uint32_t irda_tx_number_of_transmissions = 0;
+static uint32_t irda_tx_raw_timings_index = 0;
+static uint32_t irda_tx_raw_timings_number = 0;
+static uint32_t irda_tx_raw_start_from_mark = 0;
+static bool irda_tx_raw_add_silence = false;
 
-static void irda_set_tx(uint32_t duration, bool level, float duty_cycle, float frequency) {
-    if (level) {
-        api_hal_irda_pwm_set(duty_cycle, frequency);
-        delay_us(duration);
+ApiHalIrdaTxGetDataState irda_get_raw_data_callback (void* context, uint32_t* duration, bool* level) {
+    furi_assert(duration);
+    furi_assert(level);
+    furi_assert(context);
+
+    ApiHalIrdaTxGetDataState state = ApiHalIrdaTxGetDataStateOk;
+    const uint32_t* timings = context;
+
+    if (irda_tx_raw_add_silence && (irda_tx_raw_timings_index == 0)) {
+        irda_tx_raw_add_silence = false;
+        *level = false;
+        *duration = 180000;     // 180 ms delay between raw packets
     } else {
-        api_hal_irda_pwm_stop();
-        delay_us(duration);
+        *level = irda_tx_raw_start_from_mark ^ (irda_tx_raw_timings_index % 2);
+        *duration = timings[irda_tx_raw_timings_index++];
     }
-}
 
-void irda_send_raw_ext(const uint32_t timings[], uint32_t timings_cnt, bool start_from_mark, float duty_cycle, float frequency) {
-    __disable_irq();
-    for (uint32_t i = 0; i < timings_cnt; ++i) {
-        irda_set_tx(timings[i], (i % 2) ^ start_from_mark, duty_cycle, frequency);
+    if (irda_tx_raw_timings_number == irda_tx_raw_timings_index) {
+        state = ApiHalIrdaTxGetDataStateLastDone;
     }
-    IRDA_SET_TX_COMMON(0, false);
-    __enable_irq();
+
+    return state;
+}
+
+void irda_send_raw_ext(const uint32_t timings[], uint32_t timings_cnt, bool start_from_mark, uint32_t frequency, float duty_cycle) {
+    furi_assert(timings);
+    furi_assert(timings_cnt > 1);
+
+    irda_tx_raw_start_from_mark = start_from_mark;
+    irda_tx_raw_timings_index = 0;
+    irda_tx_raw_timings_number = timings_cnt;
+    irda_tx_raw_add_silence = start_from_mark;
+    api_hal_irda_async_tx_set_data_isr_callback(irda_get_raw_data_callback, (void*) timings);
+    api_hal_irda_async_tx_start(frequency, duty_cycle);
+    api_hal_irda_async_tx_wait_termination();
+
+    furi_assert(!api_hal_irda_is_busy());
 }
 
 void irda_send_raw(const uint32_t timings[], uint32_t timings_cnt, bool start_from_mark) {
-    __disable_irq();
-    for (uint32_t i = 0; i < timings_cnt; ++i) {
-        IRDA_SET_TX_COMMON(timings[i], (i % 2) ^ start_from_mark);
+    irda_send_raw_ext(timings, timings_cnt, start_from_mark, IRDA_COMMON_CARRIER_FREQUENCY, IRDA_COMMON_DUTY_CYCLE);
+}
+
+ApiHalIrdaTxGetDataState irda_get_data_callback (void* context, uint32_t* duration, bool* level) {
+    ApiHalIrdaTxGetDataState state = ApiHalIrdaTxGetDataStateError;
+    IrdaEncoderHandler* handler = context;
+    IrdaStatus status = IrdaStatusError;
+
+    if (irda_tx_number_of_transmissions > 0) {
+        status = irda_encode(handler, duration, level);
+    }
+
+    if (status == IrdaStatusError) {
+        state = ApiHalIrdaTxGetDataStateError;
+    } else if (status == IrdaStatusOk) {
+        state = ApiHalIrdaTxGetDataStateOk;
+    } else if (status == IrdaStatusDone) {
+        state = ApiHalIrdaTxGetDataStateDone;
+        if (--irda_tx_number_of_transmissions == 0) {
+            state = ApiHalIrdaTxGetDataStateLastDone;
+        }
+    } else {
+        furi_assert(0);
+        state = ApiHalIrdaTxGetDataStateError;
     }
-    IRDA_SET_TX_COMMON(0, false);
-    __enable_irq();
+
+    return state;
 }
 
 void irda_send(const IrdaMessage* message, int times) {
     furi_assert(message);
+    furi_assert(times);
     furi_assert(irda_is_protocol_valid(message->protocol));
 
-    IrdaStatus status;
-    uint32_t duration = 0;
-    bool level = false;
     IrdaEncoderHandler* handler = irda_alloc_encoder();
     irda_reset_encoder(handler, message);
+    irda_tx_number_of_transmissions = times;
 
-    /* Hotfix: first timings is space timing, so make delay instead of locking
-     * whole system for that long. Replace when async timing lib will be ready.
-     * This timing doesn't have to be precise.
-     */
-    status = irda_encode(handler, &duration, &level);
-    furi_assert(status != IrdaStatusError);
-    furi_assert(level == false);
-    delay_us(duration);
-
-    __disable_irq();
-
-    while (times) {
-        status = irda_encode(handler, &duration, &level);
-        if (status != IrdaStatusError) {
-            IRDA_SET_TX_COMMON(duration, level);
-        } else {
-            furi_assert(0);
-            break;
-        }
-        if (status == IrdaStatusDone)
-            --times;
-    }
-
-    IRDA_SET_TX_COMMON(0, false);
-    __enable_irq();
+    api_hal_irda_async_tx_set_data_isr_callback(irda_get_data_callback, handler);
+    api_hal_irda_async_tx_start(IRDA_COMMON_CARRIER_FREQUENCY, IRDA_COMMON_DUTY_CYCLE);
+    api_hal_irda_async_tx_wait_termination();
 
     irda_free_encoder(handler);
+
+    furi_assert(!api_hal_irda_is_busy());
 }
 

+ 2 - 1
lib/irda/worker/irda_transmit.h

@@ -1,5 +1,6 @@
 #include <api-hal-irda.h>
 #include <irda.h>
+#include <stdint.h>
 
 #ifdef __cplusplus
 extern "C" {
@@ -33,7 +34,7 @@ void irda_send_raw(const uint32_t timings[], uint32_t timings_cnt, bool start_fr
  * \param[in]   duty_cycle - duty cycle to generate on PWM
  * \param[in]   frequency - frequency to generate on PWM
  */
-void irda_send_raw_ext(const uint32_t timings[], uint32_t timings_cnt, bool start_from_mark, float duty_cycle, float frequency);
+void irda_send_raw_ext(const uint32_t timings[], uint32_t timings_cnt, bool start_from_mark, uint32_t frequency, float duty_cycle);
 
 #ifdef __cplusplus
 }

+ 7 - 7
lib/irda/worker/irda_worker.c

@@ -190,19 +190,19 @@ void irda_worker_start(IrdaWorker* instance) {
     furi_thread_start(instance->thread);
 
     instance->worker_handle = furi_thread_get_thread_id(instance->thread);
-    api_hal_irda_rx_irq_init();
-    api_hal_irda_rx_timeout_irq_init(IRDA_WORKER_RX_TIMEOUT);
-    api_hal_irda_rx_irq_set_callback(irda_worker_rx_callback, instance);
-    api_hal_irda_rx_timeout_irq_set_callback(irda_worker_rx_timeout_callback, instance);
+    api_hal_irda_async_rx_start();
+    api_hal_irda_async_rx_set_timeout(IRDA_WORKER_RX_TIMEOUT);
+    api_hal_irda_async_rx_set_capture_isr_callback(irda_worker_rx_callback, instance);
+    api_hal_irda_async_rx_set_timeout_isr_callback(irda_worker_rx_timeout_callback, instance);
 }
 
 void irda_worker_stop(IrdaWorker* instance) {
     furi_assert(instance);
     furi_assert(instance->worker_handle);
 
-    api_hal_irda_rx_timeout_irq_set_callback(NULL, NULL);
-    api_hal_irda_rx_irq_set_callback(NULL, NULL);
-    api_hal_irda_rx_irq_deinit();
+    api_hal_irda_async_rx_set_timeout_isr_callback(NULL, NULL);
+    api_hal_irda_async_rx_set_capture_isr_callback(NULL, NULL);
+    api_hal_irda_async_rx_stop();
 
     xTaskNotify(instance->worker_handle, IRDA_WORKER_EXIT, eSetBits);