api-hal-irda.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584
  1. #include "api-hal-irda.h"
  2. #include "api-hal-delay.h"
  3. #include "furi/check.h"
  4. #include "stm32wbxx_ll_dma.h"
  5. #include "sys/_stdint.h"
  6. #include <cmsis_os2.h>
  7. #include <api-hal-interrupt.h>
  8. #include <api-hal-resources.h>
  9. #include <stdint.h>
  10. #include <stm32wbxx_ll_tim.h>
  11. #include <stm32wbxx_ll_gpio.h>
  12. #include <stdio.h>
  13. #include <furi.h>
  14. #include <math.h>
  15. #include <main.h>
  16. #include <api-hal-pwm.h>
  17. #define IRDA_TIM_TX_DMA_BUFFER_SIZE 200
  18. #define IRDA_POLARITY_SHIFT 1
  19. #define IRDA_TX_CCMR_HIGH (TIM_CCMR2_OC3PE | LL_TIM_OCMODE_PWM2) /* Mark time - enable PWM2 mode */
  20. #define IRDA_TX_CCMR_LOW (TIM_CCMR2_OC3PE | LL_TIM_OCMODE_FORCED_INACTIVE) /* Space time - force low */
  21. typedef struct{
  22. ApiHalIrdaRxCaptureCallback capture_callback;
  23. void *capture_context;
  24. ApiHalIrdaRxTimeoutCallback timeout_callback;
  25. void *timeout_context;
  26. } IrdaTimRx;
  27. typedef struct{
  28. uint8_t* polarity;
  29. uint16_t* data;
  30. size_t size;
  31. bool packet_end;
  32. bool last_packet_end;
  33. } IrdaTxBuf;
  34. typedef struct {
  35. float cycle_duration;
  36. ApiHalIrdaTxGetDataCallback data_callback;
  37. void* data_context;
  38. IrdaTxBuf buffer[2];
  39. osSemaphoreId_t stop_semaphore;
  40. } IrdaTimTx;
  41. typedef enum {
  42. IrdaStateIdle, /** Api Hal Irda is ready to start RX or TX */
  43. IrdaStateAsyncRx, /** Async RX started */
  44. IrdaStateAsyncTx, /** Async TX started, DMA and timer is on */
  45. IrdaStateAsyncTxStopReq, /** Async TX started, async stop request received */
  46. IrdaStateAsyncTxStopInProgress, /** Async TX started, stop request is processed and we wait for last data to be sent */
  47. IrdaStateAsyncTxStopped, /** Async TX complete, cleanup needed */
  48. IrdaStateMAX,
  49. } IrdaState;
  50. static volatile IrdaState api_hal_irda_state = IrdaStateIdle;
  51. static IrdaTimTx irda_tim_tx;
  52. static IrdaTimRx irda_tim_rx;
  53. static bool api_hal_irda_tx_fill_buffer(uint8_t buf_num, uint8_t polarity_shift);
  54. static void api_hal_irda_async_tx_free_resources(void);
  55. static void api_hal_irda_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_shift);
  56. static void api_hal_irda_tx_dma_set_buffer(uint8_t buf_num);
  57. static void api_hal_irda_tx_fill_buffer_last(uint8_t buf_num);
  58. static uint8_t api_hal_irda_get_current_dma_tx_buffer(void);
  59. static void api_hal_irda_tx_dma_polarity_isr();
  60. static void api_hal_irda_tx_dma_isr();
  61. static void api_hal_irda_tim_rx_isr() {
  62. /* Timeout */
  63. if(LL_TIM_IsActiveFlag_CC3(TIM2)) {
  64. LL_TIM_ClearFlag_CC3(TIM2);
  65. furi_assert(api_hal_irda_state == IrdaStateAsyncRx);
  66. /* Timers CNT register starts to counting from 0 to ARR, but it is
  67. * reseted when Channel 1 catches interrupt. It is not reseted by
  68. * channel 2, though, so we have to distract it's values (see TimerIRQSourceCCI1 ISR).
  69. * This can cause false timeout: when time is over, but we started
  70. * receiving new signal few microseconds ago, because CNT register
  71. * is reseted once per period, not per sample. */
  72. if (LL_GPIO_IsInputPinSet(gpio_irda_rx.port, gpio_irda_rx.pin) != 0) {
  73. if (irda_tim_rx.timeout_callback)
  74. irda_tim_rx.timeout_callback(irda_tim_rx.timeout_context);
  75. }
  76. }
  77. /* Rising Edge */
  78. if(LL_TIM_IsActiveFlag_CC1(TIM2)) {
  79. LL_TIM_ClearFlag_CC1(TIM2);
  80. furi_assert(api_hal_irda_state == IrdaStateAsyncRx);
  81. if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC1S)) {
  82. /* Low pin level is a Mark state of IRDA signal. Invert level for further processing. */
  83. uint32_t duration = LL_TIM_IC_GetCaptureCH1(TIM2) - LL_TIM_IC_GetCaptureCH2(TIM2);
  84. if (irda_tim_rx.capture_callback)
  85. irda_tim_rx.capture_callback(irda_tim_rx.capture_context, 1, duration);
  86. } else {
  87. furi_assert(0);
  88. }
  89. }
  90. /* Falling Edge */
  91. if(LL_TIM_IsActiveFlag_CC2(TIM2)) {
  92. LL_TIM_ClearFlag_CC2(TIM2);
  93. furi_assert(api_hal_irda_state == IrdaStateAsyncRx);
  94. if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC2S)) {
  95. /* High pin level is a Space state of IRDA signal. Invert level for further processing. */
  96. uint32_t duration = LL_TIM_IC_GetCaptureCH2(TIM2);
  97. if (irda_tim_rx.capture_callback)
  98. irda_tim_rx.capture_callback(irda_tim_rx.capture_context, 0, duration);
  99. } else {
  100. furi_assert(0);
  101. }
  102. }
  103. }
  104. void api_hal_irda_async_rx_start(void) {
  105. furi_assert(api_hal_irda_state == IrdaStateIdle);
  106. LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2);
  107. LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA);
  108. hal_gpio_init_ex(&gpio_irda_rx, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2);
  109. LL_TIM_InitTypeDef TIM_InitStruct = {0};
  110. TIM_InitStruct.Prescaler = 64 - 1;
  111. TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
  112. TIM_InitStruct.Autoreload = 0x7FFFFFFE;
  113. TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
  114. LL_TIM_Init(TIM2, &TIM_InitStruct);
  115. LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
  116. LL_TIM_DisableARRPreload(TIM2);
  117. LL_TIM_SetTriggerInput(TIM2, LL_TIM_TS_TI1FP1);
  118. LL_TIM_SetSlaveMode(TIM2, LL_TIM_SLAVEMODE_RESET);
  119. LL_TIM_CC_DisableChannel(TIM2, LL_TIM_CHANNEL_CH2);
  120. LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV1);
  121. LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_FALLING);
  122. LL_TIM_DisableIT_TRIG(TIM2);
  123. LL_TIM_DisableDMAReq_TRIG(TIM2);
  124. LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
  125. LL_TIM_EnableMasterSlaveMode(TIM2);
  126. LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_DIRECTTI);
  127. LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
  128. LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
  129. LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_RISING);
  130. LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_INDIRECTTI);
  131. LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
  132. api_hal_interrupt_set_timer_isr(TIM2, api_hal_irda_tim_rx_isr);
  133. api_hal_irda_state = IrdaStateAsyncRx;
  134. LL_TIM_EnableIT_CC1(TIM2);
  135. LL_TIM_EnableIT_CC2(TIM2);
  136. LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
  137. LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
  138. LL_TIM_SetCounter(TIM2, 0);
  139. LL_TIM_EnableCounter(TIM2);
  140. NVIC_SetPriority(TIM2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
  141. NVIC_EnableIRQ(TIM2_IRQn);
  142. }
  143. void api_hal_irda_async_rx_stop(void) {
  144. furi_assert(api_hal_irda_state == IrdaStateAsyncRx);
  145. LL_TIM_DeInit(TIM2);
  146. api_hal_interrupt_set_timer_isr(TIM2, NULL);
  147. LL_APB1_GRP1_DisableClock(LL_APB1_GRP1_PERIPH_TIM2);
  148. api_hal_irda_state = IrdaStateIdle;
  149. }
  150. void api_hal_irda_async_rx_set_timeout(uint32_t timeout_ms) {
  151. LL_TIM_OC_SetCompareCH3(TIM2, timeout_ms * 1000);
  152. LL_TIM_OC_SetMode(TIM2, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_ACTIVE);
  153. LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH3);
  154. LL_TIM_EnableIT_CC3(TIM2);
  155. }
  156. bool api_hal_irda_is_busy(void) {
  157. return api_hal_irda_state != IrdaStateIdle;
  158. }
  159. void api_hal_irda_async_rx_set_capture_isr_callback(ApiHalIrdaRxCaptureCallback callback, void *ctx) {
  160. irda_tim_rx.capture_callback = callback;
  161. irda_tim_rx.capture_context = ctx;
  162. }
  163. void api_hal_irda_async_rx_set_timeout_isr_callback(ApiHalIrdaRxTimeoutCallback callback, void *ctx) {
  164. irda_tim_rx.timeout_callback = callback;
  165. irda_tim_rx.timeout_context = ctx;
  166. }
  167. static void api_hal_irda_tx_dma_terminate(void) {
  168. LL_DMA_DisableIT_TC(DMA1, LL_DMA_CHANNEL_1);
  169. LL_DMA_DisableIT_HT(DMA1, LL_DMA_CHANNEL_2);
  170. LL_DMA_DisableIT_TC(DMA1, LL_DMA_CHANNEL_2);
  171. furi_assert(api_hal_irda_state == IrdaStateAsyncTxStopInProgress);
  172. LL_DMA_DisableIT_TC(DMA1, LL_DMA_CHANNEL_1);
  173. LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
  174. LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
  175. LL_TIM_DisableCounter(TIM1);
  176. osStatus_t status = osSemaphoreRelease(irda_tim_tx.stop_semaphore);
  177. furi_check(status == osOK);
  178. api_hal_irda_state = IrdaStateAsyncTxStopped;
  179. }
  180. static uint8_t api_hal_irda_get_current_dma_tx_buffer(void) {
  181. uint8_t buf_num = 0;
  182. uint32_t buffer_adr = LL_DMA_GetMemoryAddress(DMA1, LL_DMA_CHANNEL_2);
  183. if (buffer_adr == (uint32_t) irda_tim_tx.buffer[0].data) {
  184. buf_num = 0;
  185. } else if (buffer_adr == (uint32_t) irda_tim_tx.buffer[1].data) {
  186. buf_num = 1;
  187. } else {
  188. furi_assert(0);
  189. }
  190. return buf_num;
  191. }
  192. static void api_hal_irda_tx_dma_polarity_isr() {
  193. if (LL_DMA_IsActiveFlag_TE1(DMA1)) {
  194. LL_DMA_ClearFlag_TE1(DMA1);
  195. furi_check(0);
  196. }
  197. if (LL_DMA_IsActiveFlag_TC1(DMA1) && LL_DMA_IsEnabledIT_TC(DMA1, LL_DMA_CHANNEL_1)) {
  198. LL_DMA_ClearFlag_TC1(DMA1);
  199. furi_check((api_hal_irda_state == IrdaStateAsyncTx)
  200. || (api_hal_irda_state == IrdaStateAsyncTxStopReq)
  201. || (api_hal_irda_state == IrdaStateAsyncTxStopInProgress));
  202. /* actually TC2 is processed and buffer is next buffer */
  203. uint8_t next_buf_num = api_hal_irda_get_current_dma_tx_buffer();
  204. api_hal_irda_tx_dma_set_polarity(next_buf_num, 0);
  205. }
  206. }
  207. static void api_hal_irda_tx_dma_isr() {
  208. if (LL_DMA_IsActiveFlag_TE2(DMA1)) {
  209. LL_DMA_ClearFlag_TE2(DMA1);
  210. furi_check(0);
  211. }
  212. if (LL_DMA_IsActiveFlag_HT2(DMA1) && LL_DMA_IsEnabledIT_HT(DMA1, LL_DMA_CHANNEL_2)) {
  213. LL_DMA_ClearFlag_HT2(DMA1);
  214. uint8_t buf_num = api_hal_irda_get_current_dma_tx_buffer();
  215. uint8_t next_buf_num = !buf_num;
  216. if (irda_tim_tx.buffer[buf_num].last_packet_end) {
  217. LL_DMA_DisableIT_HT(DMA1, LL_DMA_CHANNEL_2);
  218. } else if (!irda_tim_tx.buffer[buf_num].packet_end || (api_hal_irda_state == IrdaStateAsyncTx)) {
  219. bool result = api_hal_irda_tx_fill_buffer(next_buf_num, 0);
  220. if (irda_tim_tx.buffer[next_buf_num].last_packet_end) {
  221. LL_DMA_DisableIT_HT(DMA1, LL_DMA_CHANNEL_2);
  222. }
  223. if (!result) {
  224. furi_assert(0);
  225. api_hal_irda_state = IrdaStateAsyncTxStopReq;
  226. }
  227. } else if (api_hal_irda_state == IrdaStateAsyncTxStopReq) {
  228. /* fallthrough */
  229. } else {
  230. furi_check(0);
  231. }
  232. }
  233. if (LL_DMA_IsActiveFlag_TC2(DMA1) && LL_DMA_IsEnabledIT_TC(DMA1, LL_DMA_CHANNEL_2)) {
  234. LL_DMA_ClearFlag_TC2(DMA1);
  235. furi_check((api_hal_irda_state == IrdaStateAsyncTxStopInProgress)
  236. || (api_hal_irda_state == IrdaStateAsyncTxStopReq)
  237. || (api_hal_irda_state == IrdaStateAsyncTx));
  238. uint8_t buf_num = api_hal_irda_get_current_dma_tx_buffer();
  239. uint8_t next_buf_num = !buf_num;
  240. if (api_hal_irda_state == IrdaStateAsyncTxStopInProgress) {
  241. api_hal_irda_tx_dma_terminate();
  242. } else if (irda_tim_tx.buffer[buf_num].last_packet_end
  243. || (irda_tim_tx.buffer[buf_num].packet_end && (api_hal_irda_state == IrdaStateAsyncTxStopReq))) {
  244. api_hal_irda_state = IrdaStateAsyncTxStopInProgress;
  245. api_hal_irda_tx_fill_buffer_last(next_buf_num);
  246. api_hal_irda_tx_dma_set_buffer(next_buf_num);
  247. } else {
  248. /* if it's not end of the packet - continue receiving */
  249. api_hal_irda_tx_dma_set_buffer(next_buf_num);
  250. }
  251. }
  252. }
  253. static void api_hal_irda_configure_tim_pwm_tx(uint32_t freq, float duty_cycle)
  254. {
  255. LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_TIM1);
  256. /* LL_DBGMCU_APB2_GRP1_FreezePeriph(LL_DBGMCU_APB2_GRP1_TIM1_STOP); */
  257. LL_TIM_DisableCounter(TIM1);
  258. LL_TIM_SetRepetitionCounter(TIM1, 0);
  259. LL_TIM_SetCounter(TIM1, 0);
  260. LL_TIM_SetPrescaler(TIM1, 0);
  261. LL_TIM_SetCounterMode(TIM1, LL_TIM_COUNTERMODE_UP);
  262. LL_TIM_EnableARRPreload(TIM1);
  263. LL_TIM_SetAutoReload(TIM1, __LL_TIM_CALC_ARR(SystemCoreClock, LL_TIM_GetPrescaler(TIM1), freq));
  264. LL_TIM_OC_SetCompareCH3(TIM1, ( (LL_TIM_GetAutoReload(TIM1) + 1 ) * (1 - duty_cycle)));
  265. LL_TIM_OC_EnablePreload(TIM1, LL_TIM_CHANNEL_CH3);
  266. /* LL_TIM_OCMODE_PWM2 set by DMA */
  267. LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_FORCED_INACTIVE);
  268. LL_TIM_OC_SetPolarity(TIM1, LL_TIM_CHANNEL_CH3N, LL_TIM_OCPOLARITY_HIGH);
  269. LL_TIM_OC_DisableFast(TIM1, LL_TIM_CHANNEL_CH3);
  270. LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH3N);
  271. LL_TIM_DisableIT_CC3(TIM1);
  272. LL_TIM_DisableMasterSlaveMode(TIM1);
  273. LL_TIM_EnableAllOutputs(TIM1);
  274. LL_TIM_DisableIT_UPDATE(TIM1);
  275. LL_TIM_EnableDMAReq_UPDATE(TIM1);
  276. NVIC_SetPriority(TIM1_UP_TIM16_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
  277. NVIC_EnableIRQ(TIM1_UP_TIM16_IRQn);
  278. }
  279. static void api_hal_irda_configure_tim_cmgr2_dma_tx(void) {
  280. LL_C2_AHB1_GRP1_EnableClock(LL_C2_AHB1_GRP1_PERIPH_DMA1);
  281. LL_DMA_InitTypeDef dma_config = {0};
  282. dma_config.PeriphOrM2MSrcAddress = (uint32_t)&(TIM1->CCMR2);
  283. dma_config.MemoryOrM2MDstAddress = (uint32_t) NULL;
  284. dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
  285. dma_config.Mode = LL_DMA_MODE_NORMAL;
  286. dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
  287. dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
  288. /* fill word to have other bits set to 0 */
  289. dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
  290. dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_BYTE;
  291. dma_config.NbData = 0;
  292. dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM1_UP;
  293. dma_config.Priority = LL_DMA_PRIORITY_VERYHIGH;
  294. LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &dma_config);
  295. api_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_1, api_hal_irda_tx_dma_polarity_isr);
  296. LL_DMA_ClearFlag_TE1(DMA1);
  297. LL_DMA_ClearFlag_TC1(DMA1);
  298. LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_1);
  299. LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1);
  300. NVIC_SetPriority(DMA1_Channel1_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 4, 0));
  301. NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  302. }
  303. static void api_hal_irda_configure_tim_rcr_dma_tx(void) {
  304. LL_C2_AHB1_GRP1_EnableClock(LL_C2_AHB1_GRP1_PERIPH_DMA1);
  305. LL_DMA_InitTypeDef dma_config = {0};
  306. dma_config.PeriphOrM2MSrcAddress = (uint32_t)&(TIM1->RCR);
  307. dma_config.MemoryOrM2MDstAddress = (uint32_t) NULL;
  308. dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
  309. dma_config.Mode = LL_DMA_MODE_NORMAL;
  310. dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
  311. dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
  312. dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_HALFWORD;
  313. dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_HALFWORD;
  314. dma_config.NbData = 0;
  315. dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM1_UP;
  316. dma_config.Priority = LL_DMA_PRIORITY_MEDIUM;
  317. LL_DMA_Init(DMA1, LL_DMA_CHANNEL_2, &dma_config);
  318. api_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_2, api_hal_irda_tx_dma_isr);
  319. LL_DMA_ClearFlag_TC2(DMA1);
  320. LL_DMA_ClearFlag_HT2(DMA1);
  321. LL_DMA_ClearFlag_TE2(DMA1);
  322. LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_2);
  323. LL_DMA_EnableIT_HT(DMA1, LL_DMA_CHANNEL_2);
  324. LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_2);
  325. NVIC_SetPriority(DMA1_Channel2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
  326. NVIC_EnableIRQ(DMA1_Channel2_IRQn);
  327. }
  328. static void api_hal_irda_tx_fill_buffer_last(uint8_t buf_num) {
  329. furi_assert(buf_num < 2);
  330. furi_assert(api_hal_irda_state != IrdaStateAsyncRx);
  331. furi_assert(api_hal_irda_state < IrdaStateMAX);
  332. furi_assert(irda_tim_tx.data_callback);
  333. IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
  334. furi_assert(buffer->data != NULL);
  335. furi_assert(buffer->polarity != NULL);
  336. irda_tim_tx.buffer[buf_num].data[0] = 0; // 1 pulse
  337. irda_tim_tx.buffer[buf_num].polarity[0] = IRDA_TX_CCMR_LOW;
  338. irda_tim_tx.buffer[buf_num].data[1] = 0; // 1 pulse
  339. irda_tim_tx.buffer[buf_num].polarity[1] = IRDA_TX_CCMR_LOW;
  340. irda_tim_tx.buffer[buf_num].size = 2;
  341. irda_tim_tx.buffer[buf_num].last_packet_end = true;
  342. irda_tim_tx.buffer[buf_num].packet_end = true;
  343. }
  344. static bool api_hal_irda_tx_fill_buffer(uint8_t buf_num, uint8_t polarity_shift) {
  345. furi_assert(buf_num < 2);
  346. furi_assert(api_hal_irda_state != IrdaStateAsyncRx);
  347. furi_assert(api_hal_irda_state < IrdaStateMAX);
  348. furi_assert(irda_tim_tx.data_callback);
  349. IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
  350. furi_assert(buffer->data != NULL);
  351. furi_assert(buffer->polarity != NULL);
  352. ApiHalIrdaTxGetDataState status = ApiHalIrdaTxGetDataStateOk;
  353. uint32_t duration = 0;
  354. bool level = 0;
  355. size_t *size = &buffer->size;
  356. size_t polarity_counter = 0;
  357. while (polarity_shift--) {
  358. buffer->polarity[polarity_counter++] = IRDA_TX_CCMR_LOW;
  359. }
  360. for (*size = 0; (*size < IRDA_TIM_TX_DMA_BUFFER_SIZE) && (status == ApiHalIrdaTxGetDataStateOk); ++(*size), ++polarity_counter) {
  361. status = irda_tim_tx.data_callback(irda_tim_tx.data_context, &duration, &level);
  362. if (status == ApiHalIrdaTxGetDataStateError) {
  363. furi_assert(0);
  364. break;
  365. }
  366. uint32_t num_of_impulses = roundf(duration / irda_tim_tx.cycle_duration);
  367. if ((buffer->data[*size] + num_of_impulses - 1) > 0xFFFF) {
  368. furi_assert(0);
  369. status = ApiHalIrdaTxGetDataStateError;
  370. break;
  371. }
  372. buffer->polarity[polarity_counter] = level ? IRDA_TX_CCMR_HIGH : IRDA_TX_CCMR_LOW;
  373. buffer->data[*size] = num_of_impulses - 1;
  374. }
  375. buffer->last_packet_end = (status == ApiHalIrdaTxGetDataStateLastDone);
  376. buffer->packet_end = buffer->last_packet_end || (status == ApiHalIrdaTxGetDataStateDone);
  377. return status != ApiHalIrdaTxGetDataStateError;
  378. }
  379. static void api_hal_irda_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_shift) {
  380. furi_assert(buf_num < 2);
  381. furi_assert(api_hal_irda_state < IrdaStateMAX);
  382. IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
  383. furi_assert(buffer->polarity != NULL);
  384. __disable_irq();
  385. bool channel_enabled = LL_DMA_IsEnabledChannel(DMA1, LL_DMA_CHANNEL_1);
  386. if (channel_enabled) {
  387. LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
  388. }
  389. LL_DMA_SetMemoryAddress(DMA1, LL_DMA_CHANNEL_1, (uint32_t) buffer->polarity);
  390. LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_1, buffer->size + polarity_shift);
  391. if (channel_enabled) {
  392. LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
  393. }
  394. __enable_irq();
  395. }
  396. static void api_hal_irda_tx_dma_set_buffer(uint8_t buf_num) {
  397. furi_assert(buf_num < 2);
  398. furi_assert(api_hal_irda_state < IrdaStateMAX);
  399. IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
  400. furi_assert(buffer->data != NULL);
  401. /* non-circular mode requires disabled channel before setup */
  402. __disable_irq();
  403. bool channel_enabled = LL_DMA_IsEnabledChannel(DMA1, LL_DMA_CHANNEL_2);
  404. if (channel_enabled) {
  405. LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
  406. }
  407. LL_DMA_SetMemoryAddress(DMA1, LL_DMA_CHANNEL_2, (uint32_t)buffer->data);
  408. LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_2, buffer->size);
  409. if (channel_enabled) {
  410. LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
  411. }
  412. __enable_irq();
  413. }
  414. static void api_hal_irda_async_tx_free_resources(void) {
  415. furi_assert((api_hal_irda_state == IrdaStateIdle) || (api_hal_irda_state == IrdaStateAsyncTxStopped));
  416. osStatus_t status;
  417. hal_gpio_init_ex(&gpio_irda_tx, GpioModeOutputOpenDrain, GpioPullDown, GpioSpeedLow, 0);
  418. api_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_1, NULL);
  419. api_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_2, NULL);
  420. LL_TIM_DeInit(TIM1);
  421. LL_APB2_GRP1_DisableClock(LL_APB2_GRP1_PERIPH_TIM1);
  422. LL_C2_AHB1_GRP1_DisableClock(LL_C2_AHB1_GRP1_PERIPH_DMA1);
  423. status = osSemaphoreDelete(irda_tim_tx.stop_semaphore);
  424. furi_check(status == osOK);
  425. free(irda_tim_tx.buffer[0].data);
  426. free(irda_tim_tx.buffer[1].data);
  427. free(irda_tim_tx.buffer[0].polarity);
  428. free(irda_tim_tx.buffer[1].polarity);
  429. irda_tim_tx.buffer[0].data = NULL;
  430. irda_tim_tx.buffer[1].data = NULL;
  431. irda_tim_tx.buffer[0].polarity = NULL;
  432. irda_tim_tx.buffer[1].polarity = NULL;
  433. }
  434. bool api_hal_irda_async_tx_start(uint32_t freq, float duty_cycle) {
  435. if ((duty_cycle > 1) || (duty_cycle < 0) || (freq > 40000) || (freq < 10000) || (irda_tim_tx.data_callback == NULL)) {
  436. furi_assert(0);
  437. return false;
  438. }
  439. furi_assert(api_hal_irda_state == IrdaStateIdle);
  440. furi_assert(irda_tim_tx.buffer[0].data == NULL);
  441. furi_assert(irda_tim_tx.buffer[1].data == NULL);
  442. furi_assert(irda_tim_tx.buffer[0].polarity == NULL);
  443. furi_assert(irda_tim_tx.buffer[1].polarity == NULL);
  444. size_t alloc_size_data = IRDA_TIM_TX_DMA_BUFFER_SIZE * sizeof(uint16_t);
  445. irda_tim_tx.buffer[0].data = furi_alloc(alloc_size_data);
  446. irda_tim_tx.buffer[1].data = furi_alloc(alloc_size_data);
  447. size_t alloc_size_polarity = (IRDA_TIM_TX_DMA_BUFFER_SIZE + IRDA_POLARITY_SHIFT) * sizeof(uint8_t);
  448. irda_tim_tx.buffer[0].polarity = furi_alloc(alloc_size_polarity);
  449. irda_tim_tx.buffer[1].polarity = furi_alloc(alloc_size_polarity);
  450. irda_tim_tx.stop_semaphore = osSemaphoreNew(1, 0, NULL);
  451. irda_tim_tx.cycle_duration = 1000000.0 / freq;
  452. bool result = api_hal_irda_tx_fill_buffer(0, IRDA_POLARITY_SHIFT);
  453. if (result) {
  454. api_hal_irda_configure_tim_pwm_tx(freq, duty_cycle);
  455. api_hal_irda_configure_tim_cmgr2_dma_tx();
  456. api_hal_irda_configure_tim_rcr_dma_tx();
  457. api_hal_irda_tx_dma_set_polarity(0, IRDA_POLARITY_SHIFT);
  458. api_hal_irda_tx_dma_set_buffer(0);
  459. api_hal_irda_state = IrdaStateAsyncTx;
  460. LL_TIM_ClearFlag_UPDATE(TIM1);
  461. LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
  462. LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
  463. delay_us(5);
  464. LL_TIM_GenerateEvent_UPDATE(TIM1); /* DMA -> TIMx_RCR */
  465. delay_us(5);
  466. LL_GPIO_ResetOutputPin(gpio_irda_tx.port, gpio_irda_tx.pin); /* when disable it prevents false pulse */
  467. hal_gpio_init_ex(&gpio_irda_tx, GpioModeAltFunctionPushPull, GpioPullUp, GpioSpeedHigh, GpioAltFn1TIM1);
  468. __disable_irq();
  469. LL_TIM_GenerateEvent_UPDATE(TIM1); /* TIMx_RCR -> Repetition counter */
  470. LL_TIM_EnableCounter(TIM1);
  471. __enable_irq();
  472. } else {
  473. api_hal_irda_async_tx_free_resources();
  474. }
  475. return result;
  476. }
  477. void api_hal_irda_async_tx_wait_termination(void) {
  478. furi_assert(api_hal_irda_state >= IrdaStateAsyncTx);
  479. furi_assert(api_hal_irda_state < IrdaStateMAX);
  480. osStatus_t status;
  481. status = osSemaphoreAcquire(irda_tim_tx.stop_semaphore, osWaitForever);
  482. furi_check(status == osOK);
  483. api_hal_irda_async_tx_free_resources();
  484. api_hal_irda_state = IrdaStateIdle;
  485. }
  486. void api_hal_irda_async_tx_stop(void) {
  487. furi_assert(api_hal_irda_state >= IrdaStateAsyncTx);
  488. furi_assert(api_hal_irda_state < IrdaStateMAX);
  489. __disable_irq();
  490. if (api_hal_irda_state == IrdaStateAsyncTx)
  491. api_hal_irda_state = IrdaStateAsyncTxStopReq;
  492. __enable_irq();
  493. api_hal_irda_async_tx_wait_termination();
  494. }
  495. void api_hal_irda_async_tx_set_data_isr_callback(ApiHalIrdaTxGetDataCallback callback, void* context) {
  496. furi_assert(api_hal_irda_state == IrdaStateIdle);
  497. irda_tim_tx.data_callback = callback;
  498. irda_tim_tx.data_context = context;
  499. }