ccid.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. #include "seader_i.h"
  2. #define TAG "SeaderCCID"
  3. bool hasSAM = false;
  4. const uint8_t SAM_ATR[] =
  5. {0x3b, 0x95, 0x96, 0x80, 0xb1, 0xfe, 0x55, 0x1f, 0xc7, 0x47, 0x72, 0x61, 0x63, 0x65, 0x13};
  6. const uint8_t SAM_ATR2[] = {0x3b, 0x90, 0x96, 0x91, 0x81, 0xb1, 0xfe, 0x55, 0x1f, 0xc7, 0xd4};
  7. bool powered = false;
  8. uint8_t slot = 0;
  9. uint8_t sequence = 0;
  10. uint8_t retries = 3;
  11. uint8_t getSequence() {
  12. if(sequence > 254) {
  13. sequence = 0;
  14. }
  15. return sequence++;
  16. }
  17. size_t addLRC(uint8_t* data, size_t len) {
  18. uint8_t lrc = 0;
  19. for(size_t i = 0; i < len; i++) {
  20. lrc ^= data[i];
  21. }
  22. data[len] = lrc;
  23. return len + 1;
  24. }
  25. void PC_to_RDR_IccPowerOn(SeaderUartBridge* seader_uart) {
  26. if(powered) {
  27. return;
  28. }
  29. powered = true;
  30. FURI_LOG_D(TAG, "Sending Power On");
  31. memset(seader_uart->tx_buf, 0, SEADER_UART_RX_BUF_SIZE);
  32. seader_uart->tx_buf[0] = SYNC;
  33. seader_uart->tx_buf[1] = CTRL;
  34. seader_uart->tx_buf[2 + 0] = CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOn;
  35. seader_uart->tx_buf[2 + 5] = slot;
  36. seader_uart->tx_buf[2 + 6] = getSequence();
  37. seader_uart->tx_buf[2 + 7] = 2; //power
  38. seader_uart->tx_len = addLRC(seader_uart->tx_buf, 2 + 10);
  39. furi_thread_flags_set(furi_thread_get_id(seader_uart->tx_thread), WorkerEvtSamRx);
  40. }
  41. void check_for_sam(SeaderUartBridge* seader_uart) {
  42. hasSAM = false; // If someone is calling this, reset sam state
  43. powered = false;
  44. PC_to_RDR_GetSlotStatus(seader_uart);
  45. }
  46. void PC_to_RDR_GetSlotStatus(SeaderUartBridge* seader_uart) {
  47. FURI_LOG_D(TAG, "PC_to_RDR_GetSlotStatus");
  48. memset(seader_uart->tx_buf, 0, SEADER_UART_RX_BUF_SIZE);
  49. seader_uart->tx_buf[0] = SYNC;
  50. seader_uart->tx_buf[1] = CTRL;
  51. seader_uart->tx_buf[2 + 0] = CCID_MESSAGE_TYPE_PC_to_RDR_GetSlotStatus;
  52. seader_uart->tx_buf[2 + 5] = slot;
  53. seader_uart->tx_buf[2 + 6] = getSequence();
  54. seader_uart->tx_len = addLRC(seader_uart->tx_buf, 2 + 10);
  55. furi_thread_flags_set(furi_thread_get_id(seader_uart->tx_thread), WorkerEvtSamRx);
  56. }
  57. void PC_to_RDR_SetParameters(SeaderUartBridge* seader_uart) {
  58. uint8_t T1 = 1;
  59. memset(seader_uart->tx_buf, 0, SEADER_UART_RX_BUF_SIZE);
  60. seader_uart->tx_buf[0] = SYNC;
  61. seader_uart->tx_buf[1] = CTRL;
  62. seader_uart->tx_buf[2 + 0] = CCID_MESSAGE_TYPE_PC_to_RDR_SetParameters;
  63. seader_uart->tx_buf[2 + 1] = 0;
  64. seader_uart->tx_buf[2 + 5] = slot;
  65. seader_uart->tx_buf[2 + 6] = getSequence();
  66. seader_uart->tx_buf[2 + 7] = T1;
  67. seader_uart->tx_buf[2 + 8] = 0;
  68. seader_uart->tx_buf[2 + 9] = 0;
  69. seader_uart->tx_len = addLRC(seader_uart->tx_buf, 2 + 10);
  70. furi_thread_flags_set(furi_thread_get_id(seader_uart->tx_thread), WorkerEvtSamRx);
  71. }
  72. void PC_to_RDR_GetParameters(SeaderUartBridge* seader_uart) {
  73. memset(seader_uart->tx_buf, 0, SEADER_UART_RX_BUF_SIZE);
  74. seader_uart->tx_buf[0] = SYNC;
  75. seader_uart->tx_buf[1] = CTRL;
  76. seader_uart->tx_buf[2 + 0] = CCID_MESSAGE_TYPE_PC_to_RDR_GetParameters;
  77. seader_uart->tx_buf[2 + 1] = 0;
  78. seader_uart->tx_buf[2 + 5] = slot;
  79. seader_uart->tx_buf[2 + 6] = getSequence();
  80. seader_uart->tx_buf[2 + 7] = 0;
  81. seader_uart->tx_buf[2 + 8] = 0;
  82. seader_uart->tx_buf[2 + 9] = 0;
  83. seader_uart->tx_len = addLRC(seader_uart->tx_buf, 2 + 10);
  84. furi_thread_flags_set(furi_thread_get_id(seader_uart->tx_thread), WorkerEvtSamRx);
  85. }
  86. void PC_to_RDR_XfrBlock(SeaderUartBridge* seader_uart, uint8_t* data, size_t len) {
  87. memset(seader_uart->tx_buf, 0, SEADER_UART_RX_BUF_SIZE);
  88. seader_uart->tx_buf[0] = SYNC;
  89. seader_uart->tx_buf[1] = CTRL;
  90. seader_uart->tx_buf[2 + 0] = CCID_MESSAGE_TYPE_PC_to_RDR_XfrBlock;
  91. seader_uart->tx_buf[2 + 1] = len;
  92. seader_uart->tx_buf[2 + 5] = slot;
  93. seader_uart->tx_buf[2 + 6] = getSequence();
  94. seader_uart->tx_buf[2 + 7] = 5;
  95. seader_uart->tx_buf[2 + 8] = 0;
  96. seader_uart->tx_buf[2 + 9] = 0;
  97. memcpy(seader_uart->tx_buf + 2 + 10, data, len);
  98. seader_uart->tx_len = addLRC(seader_uart->tx_buf, 2 + 10 + len);
  99. // FURI_LOG_I(TAG, "PC_to_RDR_XfrBlock %d bytes", seader_uart->tx_len);
  100. furi_thread_flags_set(furi_thread_get_id(seader_uart->tx_thread), WorkerEvtSamRx);
  101. }
  102. size_t processCCID(SeaderWorker* seader_worker, uint8_t* cmd, size_t cmd_len) {
  103. SeaderUartBridge* seader_uart = seader_worker->uart;
  104. CCID_Message message;
  105. message.consumed = 0;
  106. char display[SEADER_UART_RX_BUF_SIZE * 2 + 1] = {0};
  107. for(uint8_t i = 0; i < cmd_len; i++) {
  108. snprintf(display + (i * 2), sizeof(display), "%02x", cmd[i]);
  109. }
  110. FURI_LOG_D(TAG, "CCID %d: %s", cmd_len, display);
  111. if(cmd_len == 2) {
  112. if(cmd[0] == CCID_MESSAGE_TYPE_RDR_to_PC_NotifySlotChange) {
  113. switch(cmd[1]) {
  114. case CARD_OUT:
  115. FURI_LOG_D(TAG, "Card removed");
  116. powered = false;
  117. hasSAM = false;
  118. retries = 3;
  119. break;
  120. case CARD_IN_1:
  121. FURI_LOG_D(TAG, "Card Inserted (1)");
  122. retries = 0;
  123. slot = 0;
  124. sequence = 0;
  125. PC_to_RDR_IccPowerOn(seader_uart);
  126. break;
  127. case CARD_IN_2:
  128. FURI_LOG_D(TAG, "Card Inserted (2)");
  129. retries = 0;
  130. slot = 1;
  131. sequence = 0;
  132. PC_to_RDR_IccPowerOn(seader_uart);
  133. break;
  134. case CARD_IN_BOTH:
  135. FURI_LOG_W(TAG, "Loading 2 cards not supported");
  136. break;
  137. };
  138. return 2;
  139. }
  140. }
  141. while(cmd_len >= 3 && cmd[0] == SYNC && cmd[1] == NAK) {
  142. // 031516
  143. FURI_LOG_W(TAG, "NAK");
  144. cmd += 3;
  145. cmd_len -= 3;
  146. message.consumed += 3;
  147. }
  148. while(cmd_len > 2 && (cmd[0] != SYNC || cmd[1] != CTRL)) {
  149. FURI_LOG_W(TAG, "invalid start: %02x", cmd[0]);
  150. cmd += 1;
  151. cmd_len -= 1;
  152. message.consumed += 1;
  153. }
  154. if(cmd_len > 12 && cmd[0] == SYNC && cmd[1] == CTRL) {
  155. uint8_t* ccid = cmd + 2;
  156. message.bMessageType = ccid[0];
  157. message.dwLength = *((uint32_t*)(ccid + 1));
  158. message.bStatus = ccid[7];
  159. message.bError = ccid[8];
  160. message.payload = ccid + 10;
  161. if(cmd_len < 2 + 10 + message.dwLength + 1) {
  162. return message.consumed;
  163. }
  164. message.consumed += 2 + 10 + message.dwLength + 1;
  165. //0306 81 00000000 0000 0200 01 87
  166. //0306 81 00000000 0000 0100 01 84
  167. if(message.bMessageType == CCID_MESSAGE_TYPE_RDR_to_PC_SlotStatus) {
  168. uint8_t status = (message.bStatus & BMICCSTATUS_MASK);
  169. if(status == 0 || status == 1) {
  170. PC_to_RDR_IccPowerOn(seader_uart);
  171. return message.consumed;
  172. } else if(status == 2) {
  173. FURI_LOG_W(TAG, "No ICC is present [retries %d]", retries);
  174. if(retries-- > 1 && hasSAM == false) {
  175. furi_delay_ms(100);
  176. PC_to_RDR_GetSlotStatus(seader_uart);
  177. } else {
  178. if(seader_worker->callback) {
  179. seader_worker->callback(
  180. SeaderWorkerEventSamMissing, seader_worker->context);
  181. }
  182. }
  183. return message.consumed;
  184. }
  185. }
  186. //0306 80 00000000 0001 42fe 00 38
  187. if(message.bStatus == 0x41 && message.bError == 0xfe) {
  188. FURI_LOG_W(TAG, "card probably upside down");
  189. if(seader_worker->callback) {
  190. seader_worker->callback(SeaderWorkerEventSamMissing, seader_worker->context);
  191. }
  192. return message.consumed;
  193. }
  194. if(message.bStatus == 0x42 && message.bError == 0xfe) {
  195. FURI_LOG_W(TAG, "No card");
  196. if(seader_worker->callback) {
  197. seader_worker->callback(SeaderWorkerEventSamMissing, seader_worker->context);
  198. }
  199. return message.consumed;
  200. }
  201. if(message.bError != 0) {
  202. FURI_LOG_W(TAG, "CCID error");
  203. message.consumed = cmd_len;
  204. if(seader_worker->callback) {
  205. seader_worker->callback(SeaderWorkerEventSamMissing, seader_worker->context);
  206. }
  207. return message.consumed;
  208. }
  209. if(message.bMessageType == CCID_MESSAGE_TYPE_RDR_to_PC_DataBlock) {
  210. if(hasSAM) {
  211. seader_worker_process_message(seader_worker, &message);
  212. } else {
  213. if(memcmp(SAM_ATR, message.payload, sizeof(SAM_ATR)) == 0) {
  214. FURI_LOG_I(TAG, "SAM ATR!");
  215. hasSAM = true;
  216. seader_worker_send_version(seader_worker);
  217. if(seader_worker->callback) {
  218. seader_worker->callback(
  219. SeaderWorkerEventSamPresent, seader_worker->context);
  220. }
  221. } else if(memcmp(SAM_ATR2, message.payload, sizeof(SAM_ATR2)) == 0) {
  222. FURI_LOG_I(TAG, "SAM ATR2!");
  223. hasSAM = true;
  224. seader_worker_send_version(seader_worker);
  225. if(seader_worker->callback) {
  226. seader_worker->callback(
  227. SeaderWorkerEventSamPresent, seader_worker->context);
  228. }
  229. } else {
  230. FURI_LOG_W(TAG, "Unknown ATR");
  231. if(seader_worker->callback) {
  232. seader_worker->callback(SeaderWorkerEventSamWrong, seader_worker->context);
  233. }
  234. }
  235. }
  236. } else {
  237. FURI_LOG_W(TAG, "Unhandled CCID message type %d", message.bMessageType);
  238. }
  239. }
  240. return message.consumed;
  241. }