uhf_module.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388
  1. #include "uhf_module.h"
  2. #include "uhf_module_cmd.h"
  3. #define DELAY_MS 100
  4. #define WAIT_TICK 8000 // max wait time in between each byte
  5. volatile uint16_t tick = 0;
  6. void rx_callback(UartIrqEvent event, uint8_t data, void* ctx) {
  7. UNUSED(event);
  8. Buffer* buffer = ctx;
  9. if(buffer->closed) return; // buffer closed
  10. buffer_append_single(buffer, data); // append data
  11. if(data == FRAME_END) buffer_close(buffer); // end of frame
  12. tick = WAIT_TICK; // reset tick
  13. }
  14. static M100ResponseType setup_and_send_rx(M100Module* module, uint8_t* cmd, size_t cmd_length) {
  15. buffer_reset(module->buf);
  16. tick = WAIT_TICK;
  17. furi_hal_uart_tx(FuriHalUartIdUSART1, cmd, cmd_length);
  18. while(--tick) {
  19. furi_delay_us(5);
  20. }
  21. buffer_close(module->buf);
  22. // Validation Checks
  23. uint8_t* data = buffer_get_data(module->buf);
  24. size_t length = buffer_get_size(module->buf);
  25. // check if size > 0
  26. if(!length) return M100EmptyResponse;
  27. // check if data is valid
  28. if(data[0] != FRAME_START || data[length - 1] != FRAME_END) return M100ValidationFail;
  29. // check if checksum is correct
  30. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ChecksumFail;
  31. return M100SuccessResponse;
  32. }
  33. M100ModuleInfo* m100_module_info_alloc() {
  34. M100ModuleInfo* module_info = (M100ModuleInfo*)malloc(sizeof(M100ModuleInfo));
  35. return module_info;
  36. }
  37. void m100_module_info_free(M100ModuleInfo* module_info) {
  38. free(module_info->hw_version);
  39. free(module_info->sw_version);
  40. free(module_info->manufacturer);
  41. free(module_info);
  42. }
  43. M100Module* m100_module_alloc() {
  44. M100Module* module = (M100Module*)malloc(sizeof(M100Module));
  45. module->info = m100_module_info_alloc();
  46. module->buf = buffer_alloc(MAX_BUFFER_SIZE);
  47. module->baudrate = DEFAULT_BAUDRATE;
  48. module->transmitting_power = DEFAULT_TRANSMITTING_POWER;
  49. module->region = DEFAULT_WORKING_REGION;
  50. furi_hal_uart_set_irq_cb(FuriHalUartIdUSART1, rx_callback, module->buf);
  51. return module;
  52. }
  53. void m100_module_free(M100Module* module) {
  54. m100_module_info_free(module->info);
  55. buffer_free(module->buf);
  56. free(module);
  57. }
  58. uint8_t checksum(const uint8_t* data, size_t length) {
  59. // CheckSum8 Modulo 256
  60. // Sum of Bytes % 256
  61. uint64_t sum_val = 0x00;
  62. for(size_t i = 0; i < length; i++) {
  63. sum_val += data[i];
  64. }
  65. return (uint8_t)(sum_val % 0x100);
  66. }
  67. uint16_t crc16_genibus(const uint8_t* data, size_t length) {
  68. uint16_t crc = 0xFFFF; // Initial value
  69. uint16_t polynomial = 0x1021; // CRC-16/GENIBUS polynomial
  70. for(size_t i = 0; i < length; i++) {
  71. crc ^= (data[i] << 8); // Move byte into MSB of 16bit CRC
  72. for(int j = 0; j < 8; j++) {
  73. if(crc & 0x8000) {
  74. crc = (crc << 1) ^ polynomial;
  75. } else {
  76. crc <<= 1;
  77. }
  78. }
  79. }
  80. return crc ^ 0xFFFF; // Post-inversion
  81. }
  82. char* _m100_info_helper(M100Module* module, char** info) {
  83. if(!buffer_get_size(module->buf)) return NULL;
  84. uint8_t* data = buffer_get_data(module->buf);
  85. uint16_t payload_len = data[3];
  86. payload_len = (payload_len << 8) + data[4];
  87. FuriString* temp_str = furi_string_alloc();
  88. for(int i = 0; i < payload_len; i++) {
  89. furi_string_cat_printf(temp_str, "%c", data[6 + i]);
  90. }
  91. if(*info == NULL) {
  92. *info = (char*)malloc(sizeof(char) * payload_len);
  93. } else {
  94. for(size_t i = 0; i < strlen(*info); i++) {
  95. (*info)[i] = 0;
  96. }
  97. }
  98. memcpy(*info, furi_string_get_cstr(temp_str), payload_len);
  99. furi_string_free(temp_str);
  100. return *info;
  101. }
  102. char* m100_get_hardware_version(M100Module* module) {
  103. setup_and_send_rx(module, (uint8_t*)&CMD_HW_VERSION.cmd[0], CMD_HW_VERSION.length);
  104. return _m100_info_helper(module, &module->info->hw_version);
  105. }
  106. char* m100_get_software_version(M100Module* module) {
  107. setup_and_send_rx(module, (uint8_t*)&CMD_SW_VERSION.cmd[0], CMD_SW_VERSION.length);
  108. return _m100_info_helper(module, &module->info->sw_version);
  109. }
  110. char* m100_get_manufacturers(M100Module* module) {
  111. setup_and_send_rx(module, (uint8_t*)&CMD_MANUFACTURERS.cmd[0], CMD_MANUFACTURERS.length);
  112. return _m100_info_helper(module, &module->info->manufacturer);
  113. }
  114. M100ResponseType m100_single_poll(M100Module* module, UHFTag* uhf_tag) {
  115. M100ResponseType rp_type =
  116. setup_and_send_rx(module, (uint8_t*)&CMD_SINGLE_POLLING.cmd[0], CMD_SINGLE_POLLING.length);
  117. if(rp_type != M100SuccessResponse) return rp_type;
  118. uint8_t* data = buffer_get_data(module->buf);
  119. size_t length = buffer_get_size(module->buf);
  120. uint16_t pc = data[6];
  121. uint16_t crc = 0;
  122. // mask out epc length from protocol control
  123. size_t epc_len = pc;
  124. epc_len >>= 3;
  125. epc_len *= 2;
  126. // get protocol control
  127. pc <<= 8;
  128. pc += data[7];
  129. // get cyclic redundency check
  130. crc = data[8 + epc_len];
  131. crc <<= 8;
  132. crc += data[8 + epc_len + 1];
  133. // validate checksum
  134. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ValidationFail;
  135. // validate crc
  136. if(crc16_genibus(data + 6, epc_len + 2) != crc) return M100ValidationFail;
  137. uhf_tag_set_epc_pc(uhf_tag, pc);
  138. uhf_tag_set_epc_crc(uhf_tag, crc);
  139. uhf_tag_set_epc(uhf_tag, data + 8, epc_len);
  140. return M100SuccessResponse;
  141. }
  142. M100ResponseType m100_set_select(M100Module* module, UHFTag* uhf_tag) {
  143. // Set select
  144. uint8_t cmd[MAX_BUFFER_SIZE];
  145. size_t cmd_length = CMD_SET_SELECT_PARAMETER.length;
  146. size_t mask_length_bytes = uhf_tag->epc->size;
  147. size_t mask_length_bits = mask_length_bytes * 8;
  148. // payload len == sel param len + ptr len + mask len + epc len
  149. size_t payload_len = 7 + mask_length_bytes;
  150. memcpy(cmd, CMD_SET_SELECT_PARAMETER.cmd, cmd_length);
  151. // set new length
  152. cmd_length = 12 + mask_length_bytes + 2;
  153. // set payload length
  154. cmd[3] = (payload_len >> 8) & 0xFF;
  155. cmd[4] = payload_len & 0xFF;
  156. // set select param
  157. cmd[5] = 0x01; // 0x00=rfu, 0x01=epc, 0x10=tid, 0x11=user
  158. // set ptr
  159. cmd[9] = 0x20; // epc data begins after 0x20
  160. // set mask length
  161. cmd[10] = mask_length_bits;
  162. // truncate
  163. cmd[11] = false;
  164. // set mask
  165. memcpy((void*)&cmd[12], uhf_tag->epc->data, mask_length_bytes);
  166. // set checksum
  167. cmd[cmd_length - 2] = checksum(cmd + 1, 11 + mask_length_bytes);
  168. // end frame
  169. cmd[cmd_length - 1] = FRAME_END;
  170. setup_and_send_rx(module, cmd, 12 + mask_length_bytes + 3);
  171. uint8_t* data = buffer_get_data(module->buf);
  172. if(checksum(data + 1, 5) != data[6]) return M100ValidationFail; // error in rx
  173. if(data[5] != 0x00) return M100ValidationFail; // error if not 0
  174. return M100SuccessResponse;
  175. }
  176. UHFTag* m100_get_select_param(M100Module* module) {
  177. buffer_reset(module->buf);
  178. furi_hal_uart_set_irq_cb(FuriHalUartIdLPUART1, rx_callback, module->buf);
  179. furi_hal_uart_tx(
  180. FuriHalUartIdUSART1,
  181. (uint8_t*)&CMD_GET_SELECT_PARAMETER.cmd,
  182. CMD_GET_SELECT_PARAMETER.length);
  183. furi_delay_ms(DELAY_MS);
  184. // UHFTag* uhf_tag = uhf_tag_alloc();
  185. // uint8_t* data = buffer_get_data(module->buf);
  186. // size_t mask_length =
  187. // uhf_tag_set_epc(uhf_tag, data + 12, )
  188. // TODO : implement
  189. return NULL;
  190. }
  191. M100ResponseType m100_read_label_data_storage(
  192. M100Module* module,
  193. UHFTag* uhf_tag,
  194. BankType bank,
  195. uint32_t access_pwd,
  196. uint16_t word_count) {
  197. /*
  198. Will probably remove UHFTag as param and get it from get selected tag
  199. */
  200. if(bank == EPCBank) return M100SuccessResponse;
  201. uint8_t cmd[MAX_BUFFER_SIZE];
  202. size_t cmd_length = CMD_READ_LABEL_DATA_STORAGE_AREA.length;
  203. memcpy(cmd, CMD_READ_LABEL_DATA_STORAGE_AREA.cmd, cmd_length);
  204. // set access password
  205. cmd[5] = (access_pwd >> 24) & 0xFF;
  206. cmd[6] = (access_pwd >> 16) & 0xFF;
  207. cmd[7] = (access_pwd >> 8) & 0xFF;
  208. cmd[8] = access_pwd & 0xFF;
  209. // set mem bank
  210. cmd[9] = (uint8_t)bank;
  211. // set word counter
  212. cmd[12] = (word_count >> 8) & 0xFF;
  213. cmd[13] = word_count & 0xFF;
  214. // calc checksum
  215. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  216. M100ResponseType rp_type = setup_and_send_rx(module, cmd, cmd_length);
  217. if(rp_type != M100SuccessResponse) return rp_type;
  218. uint8_t* data = buffer_get_data(module->buf);
  219. uint8_t rtn_command = data[2];
  220. uint16_t payload_len = data[3];
  221. payload_len = (payload_len << 8) + data[4];
  222. if(rtn_command == 0xFF) {
  223. if(payload_len == 0x01) return M100NoTagResponse;
  224. return M100MemoryOverrun;
  225. }
  226. size_t ptr_offset = 5 /*<-ptr offset*/ + uhf_tag_get_epc_size(uhf_tag) + 3 /*<-pc + ul*/;
  227. size_t bank_data_length = payload_len - (ptr_offset - 5 /*dont include the offset*/);
  228. if(bank == TIDBank) {
  229. uhf_tag_set_tid(uhf_tag, data + ptr_offset, bank_data_length);
  230. } else if(bank == UserBank) {
  231. uhf_tag_set_user(uhf_tag, data + ptr_offset, bank_data_length);
  232. }
  233. return M100SuccessResponse;
  234. }
  235. M100ResponseType m100_write_label_data_storage(
  236. M100Module* module,
  237. UHFTag* saved_tag,
  238. UHFTag* selected_tag,
  239. BankType bank,
  240. uint16_t source_address,
  241. uint32_t access_pwd) {
  242. uint8_t cmd[MAX_BUFFER_SIZE];
  243. size_t cmd_length = CMD_WRITE_LABEL_DATA_STORE.length;
  244. memcpy(cmd, CMD_WRITE_LABEL_DATA_STORE.cmd, cmd_length);
  245. uint16_t payload_len = 9;
  246. uint16_t data_length = 0;
  247. if(bank == ReservedBank) {
  248. // access pwd len + kill pwd len
  249. payload_len += 4;
  250. data_length = 4;
  251. } else if(bank == EPCBank) {
  252. // epc len + pc len
  253. payload_len += 4 + uhf_tag_get_epc_size(saved_tag);
  254. data_length = 4 + uhf_tag_get_epc_size(saved_tag);
  255. // set data
  256. uint8_t tmp_arr[4];
  257. tmp_arr[0] = (uint8_t)((uhf_tag_get_epc_crc(selected_tag) >> 8) & 0xFF);
  258. tmp_arr[1] = (uint8_t)(uhf_tag_get_epc_crc(selected_tag) & 0xFF);
  259. tmp_arr[2] = (uint8_t)((uhf_tag_get_epc_pc(saved_tag) >> 8) & 0xFF);
  260. tmp_arr[3] = (uint8_t)(uhf_tag_get_epc_pc(saved_tag) & 0xFF);
  261. memcpy(cmd + 14, tmp_arr, 4);
  262. memcpy(cmd + 18, uhf_tag_get_epc(saved_tag), uhf_tag_get_epc_size(saved_tag));
  263. } else if(bank == UserBank) {
  264. payload_len += uhf_tag_get_user_size(saved_tag);
  265. data_length = uhf_tag_get_user_size(saved_tag);
  266. // set data
  267. memcpy(cmd + 14, uhf_tag_get_user(saved_tag), uhf_tag_get_user_size(saved_tag));
  268. }
  269. // set payload length
  270. cmd[3] = (payload_len >> 8) & 0xFF;
  271. cmd[4] = payload_len & 0xFF;
  272. // set access password
  273. cmd[5] = (access_pwd >> 24) & 0xFF;
  274. cmd[6] = (access_pwd >> 16) & 0xFF;
  275. cmd[7] = (access_pwd >> 8) & 0xFF;
  276. cmd[8] = access_pwd & 0xFF;
  277. // set membank
  278. cmd[9] = (uint8_t)bank;
  279. // set source address
  280. cmd[10] = (source_address >> 8) & 0xFF;
  281. cmd[11] = source_address & 0xFF;
  282. // set data length
  283. size_t data_length_words = data_length / 2;
  284. cmd[12] = (data_length_words >> 8) & 0xFF;
  285. cmd[13] = data_length_words & 0xFF;
  286. // update cmd len
  287. cmd_length = 7 + payload_len;
  288. // calculate checksum
  289. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  290. cmd[cmd_length - 1] = FRAME_END;
  291. // send cmd
  292. // furi_hal_uart_set_irq_cb(FuriHalUartIdUSART1, rx_callback, module->buf);
  293. // furi_hal_uart_tx(FuriHalUartIdUSART1, cmd, cmd_length);
  294. // unsigned int delay = DELAY_MS / 2;
  295. // unsigned int timeout = 15;
  296. // while(!buffer_get_size(module->buf)) {
  297. // furi_delay_ms(delay);
  298. // if(!timeout--) break;
  299. // }
  300. setup_and_send_rx(module, cmd, cmd_length);
  301. uint8_t* buff_data = buffer_get_data(module->buf);
  302. size_t buff_length = buffer_get_size(module->buf);
  303. if(buff_data[2] == 0xFF && buff_length == 8)
  304. return M100NoTagResponse;
  305. else if(buff_data[2] == 0xFF)
  306. return M100ValidationFail;
  307. return M100SuccessResponse;
  308. }
  309. void m100_set_baudrate(M100Module* module, uint32_t baudrate) {
  310. size_t length = CMD_SET_COMMUNICATION_BAUD_RATE.length;
  311. uint8_t cmd[length];
  312. memcpy(cmd, CMD_SET_COMMUNICATION_BAUD_RATE.cmd, length);
  313. uint16_t br_mod = baudrate / 100; // module format
  314. cmd[6] = 0xFF & br_mod; // pow LSB
  315. cmd[5] = 0xFF & (br_mod >> 8); // pow MSB
  316. cmd[length - 2] = checksum(cmd + 1, length - 3);
  317. furi_hal_uart_tx(FuriHalUartIdUSART1, cmd, length);
  318. furi_hal_uart_set_br(FuriHalUartIdUSART1, baudrate);
  319. module->baudrate = baudrate;
  320. }
  321. bool m100_set_working_region(M100Module* module, WorkingRegion region) {
  322. size_t length = CMD_SET_WORK_AREA.length;
  323. uint8_t cmd[length];
  324. memcpy(cmd, CMD_SET_WORK_AREA.cmd, length);
  325. cmd[5] = (uint8_t)region;
  326. cmd[length - 2] = checksum(cmd + 1, length - 3);
  327. setup_and_send_rx(module, cmd, length);
  328. module->region = region;
  329. return true;
  330. }
  331. bool m100_set_transmitting_power(M100Module* module, uint16_t power) {
  332. size_t length = CMD_SET_TRANSMITTING_POWER.length;
  333. uint8_t cmd[length];
  334. memcpy(cmd, CMD_SET_TRANSMITTING_POWER.cmd, length);
  335. cmd[5] = (power >> 8) & 0xFF;
  336. cmd[6] = power & 0xFF;
  337. cmd[length - 2] = checksum(cmd + 1, length - 3);
  338. setup_and_send_rx(module, cmd, length);
  339. module->transmitting_power = power;
  340. return true;
  341. }
  342. bool m100_set_freq_hopping(M100Module* module, bool hopping) {
  343. UNUSED(module);
  344. UNUSED(hopping);
  345. return true;
  346. }
  347. bool m100_set_power(M100Module* module, uint8_t* power) {
  348. UNUSED(module);
  349. UNUSED(power);
  350. return true;
  351. }
  352. uint32_t m100_get_baudrate(M100Module* module) {
  353. return module->baudrate;
  354. }