SCD30.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387
  1. /*
  2. Unitemp - Universal temperature reader
  3. Copyright (C) 2022-2023 Victor Nikitchuk (https://github.com/quen0n)
  4. Contributed by divinebird (https://github.com/divinebird)
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <https://www.gnu.org/licenses/>.
  15. */
  16. // Some information may be seen on https://github.com/sparkfun/SparkFun_SCD30_Arduino_Library
  17. #include "SCD30.h"
  18. #include "../interfaces/I2CSensor.h"
  19. #include "../interfaces/endianness.h"
  20. //#include <3rdparty/everest/include/everest/kremlin/c_endianness.h>
  21. typedef union {
  22. uint16_t array16[2];
  23. uint8_t array8[4];
  24. float value;
  25. } ByteToFl;
  26. bool unitemp_SCD30_alloc(Sensor* sensor, char* args);
  27. bool unitemp_SCD30_init(Sensor* sensor);
  28. bool unitemp_SCD30_deinit(Sensor* sensor);
  29. UnitempStatus unitemp_SCD30_update(Sensor* sensor);
  30. bool unitemp_SCD30_free(Sensor* sensor);
  31. const SensorType SCD30 = {
  32. .typename = "SCD30",
  33. .interface = &I2C,
  34. .datatype = UT_DATA_TYPE_TEMP_HUM_CO2,
  35. .pollingInterval = 2000,
  36. .allocator = unitemp_SCD30_alloc,
  37. .mem_releaser = unitemp_SCD30_free,
  38. .initializer = unitemp_SCD30_init,
  39. .deinitializer = unitemp_SCD30_deinit,
  40. .updater = unitemp_SCD30_update};
  41. #define SCD30_ID 0x61
  42. #define COMMAND_CONTINUOUS_MEASUREMENT 0x0010
  43. #define COMMAND_SET_MEASUREMENT_INTERVAL 0x4600
  44. #define COMMAND_GET_DATA_READY 0x0202
  45. #define COMMAND_READ_MEASUREMENT 0x0300
  46. #define COMMAND_AUTOMATIC_SELF_CALIBRATION 0x5306
  47. #define COMMAND_SET_FORCED_RECALIBRATION_FACTOR 0x5204
  48. #define COMMAND_SET_TEMPERATURE_OFFSET 0x5403
  49. #define COMMAND_SET_ALTITUDE_COMPENSATION 0x5102
  50. #define COMMAND_RESET 0xD304 // Soft reset
  51. #define COMMAND_STOP_MEAS 0x0104
  52. #define COMMAND_READ_FW_VER 0xD100
  53. static bool dataAvailable(Sensor* sensor) __attribute__((unused));
  54. static bool readMeasurement(Sensor* sensor) __attribute__((unused));
  55. static void reset(Sensor* sensor) __attribute__((unused));
  56. static bool setAutoSelfCalibration(Sensor* sensor, bool enable) __attribute__((unused));
  57. static bool getAutoSelfCalibration(Sensor* sensor) __attribute__((unused));
  58. static bool getFirmwareVersion(Sensor* sensor, uint16_t* val) __attribute__((unused));
  59. static bool setForcedRecalibrationFactor(Sensor* sensor, uint16_t concentration)
  60. __attribute__((unused));
  61. static uint16_t getAltitudeCompensation(Sensor* sensor) __attribute__((unused));
  62. static bool setAltitudeCompensation(Sensor* sensor, uint16_t altitude) __attribute__((unused));
  63. static bool setAmbientPressure(Sensor* sensor, uint16_t pressure_mbar) __attribute__((unused));
  64. static float getTemperatureOffset(Sensor* sensor) __attribute__((unused));
  65. static bool setTemperatureOffset(Sensor* sensor, float tempOffset) __attribute__((unused));
  66. static bool beginMeasuringWithSettings(Sensor* sensor, uint16_t pressureOffset)
  67. __attribute__((unused));
  68. static bool beginMeasuring(Sensor* sensor) __attribute__((unused));
  69. static bool stopMeasurement(Sensor* sensor) __attribute__((unused));
  70. static bool setMeasurementInterval(Sensor* sensor, uint16_t interval) __attribute__((unused));
  71. static uint16_t getMeasurementInterval(Sensor* sensor) __attribute__((unused));
  72. bool unitemp_SCD30_alloc(Sensor* sensor, char* args) {
  73. UNUSED(args);
  74. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  75. i2c_sensor->minI2CAdr = SCD30_ID << 1;
  76. i2c_sensor->maxI2CAdr = SCD30_ID << 1;
  77. return true;
  78. }
  79. bool unitemp_SCD30_free(Sensor* sensor) {
  80. //Нечего высвобождать, так как ничего не было выделено
  81. UNUSED(sensor);
  82. return true;
  83. }
  84. bool unitemp_SCD30_init(Sensor* sensor) {
  85. if(beginMeasuring(sensor) == true) { // Start continuous measurements
  86. setMeasurementInterval(sensor, SCD30.pollingInterval / 1000);
  87. setAutoSelfCalibration(sensor, true);
  88. setAmbientPressure(sensor, 0);
  89. } else
  90. return false;
  91. return true;
  92. }
  93. bool unitemp_SCD30_deinit(Sensor* sensor) {
  94. return stopMeasurement(sensor);
  95. }
  96. UnitempStatus unitemp_SCD30_update(Sensor* sensor) {
  97. readMeasurement(sensor);
  98. return UT_SENSORSTATUS_OK;
  99. }
  100. static uint8_t computeCRC8(uint8_t* message, uint8_t len) {
  101. uint8_t crc = 0xFF; // Init with 0xFF
  102. for(uint8_t x = 0; x < len; x++) {
  103. crc ^= message[x]; // XOR-in the next input byte
  104. for(uint8_t i = 0; i < 8; i++) {
  105. if((crc & 0x80) != 0)
  106. crc = (uint8_t)((crc << 1) ^ 0x31);
  107. else
  108. crc <<= 1;
  109. }
  110. }
  111. return crc; // No output reflection
  112. }
  113. // Sends a command along with arguments and CRC
  114. static bool sendCommandWithCRC(Sensor* sensor, uint16_t command, uint16_t arguments) {
  115. static const uint8_t cmdSize = 5;
  116. uint8_t bytes[cmdSize];
  117. uint8_t* pointer = bytes;
  118. store16_be(pointer, command);
  119. pointer += 2;
  120. uint8_t* argPos = pointer;
  121. store16_be(pointer, arguments);
  122. pointer += 2;
  123. *pointer = computeCRC8(argPos, pointer - argPos);
  124. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  125. return unitemp_i2c_writeArray(i2c_sensor, cmdSize, bytes);
  126. }
  127. // Sends just a command, no arguments, no CRC
  128. static bool sendCommand(Sensor* sensor, uint16_t command) {
  129. static const uint8_t cmdSize = 2;
  130. uint8_t bytes[cmdSize];
  131. store16_be(bytes, command);
  132. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  133. return unitemp_i2c_writeArray(i2c_sensor, cmdSize, bytes);
  134. }
  135. static uint16_t readRegister(Sensor* sensor, uint16_t registerAddress) {
  136. static const uint8_t regSize = 2;
  137. if(!sendCommand(sensor, registerAddress)) return 0; // Sensor did not ACK
  138. furi_delay_ms(3);
  139. uint8_t bytes[regSize];
  140. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  141. if(!unitemp_i2c_readArray(i2c_sensor, regSize, bytes)) return 0;
  142. return load16_be(bytes);
  143. }
  144. static bool loadWord(uint8_t* buff, uint16_t* val) {
  145. uint16_t tmp = load16_be(buff);
  146. uint8_t expectedCRC = computeCRC8(buff, 2);
  147. if(buff[2] != expectedCRC) return false;
  148. *val = tmp;
  149. return true;
  150. }
  151. static bool getSettingValue(Sensor* sensor, uint16_t registerAddress, uint16_t* val) {
  152. static const uint8_t respSize = 3;
  153. if(!sendCommand(sensor, registerAddress)) return false; // Sensor did not ACK
  154. furi_delay_ms(3);
  155. uint8_t bytes[respSize];
  156. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  157. if(!unitemp_i2c_readArray(i2c_sensor, respSize, bytes)) return false;
  158. return loadWord(bytes, val);
  159. }
  160. static bool loadFloat(uint8_t* buff, float* val) {
  161. // ByteToFl tmp;
  162. size_t cntr = 0;
  163. uint8_t floatBuff[4];
  164. for(size_t i = 0; i < 2; i++) {
  165. floatBuff[cntr++] = buff[0];
  166. floatBuff[cntr++] = buff[1];
  167. uint8_t expectedCRC = computeCRC8(buff, 2);
  168. if(buff[2] != expectedCRC) return false;
  169. buff += 3;
  170. }
  171. uint32_t tmpVal = load32_be(floatBuff);
  172. memcpy(val, &tmpVal, sizeof(float));
  173. return true;
  174. }
  175. // Get 18 bytes from SCD30
  176. // Updates global variables with floats
  177. // Returns true if success
  178. static bool readMeasurement(Sensor* sensor) {
  179. // Verify we have data from the sensor
  180. if(!dataAvailable(sensor)) {
  181. return false;
  182. }
  183. if(!sendCommand(sensor, COMMAND_READ_MEASUREMENT)) {
  184. FURI_LOG_E(APP_NAME, "Sensor did not ACK");
  185. return false; // Sensor did not ACK
  186. }
  187. float tempCO2 = 0;
  188. float tempHumidity = 0;
  189. float tempTemperature = 0;
  190. furi_delay_ms(3);
  191. static const uint8_t respSize = 18;
  192. uint8_t buff[respSize];
  193. uint8_t* bytes = buff;
  194. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  195. if(!unitemp_i2c_readArray(i2c_sensor, respSize, bytes)) {
  196. FURI_LOG_E(APP_NAME, "Error while read measures");
  197. return false;
  198. }
  199. bool error = false;
  200. if(loadFloat(bytes, &tempCO2)) {
  201. sensor->co2 = tempCO2;
  202. } else {
  203. FURI_LOG_E(APP_NAME, "Error while parsing CO2");
  204. error = true;
  205. }
  206. bytes += 6;
  207. if(loadFloat(bytes, &tempTemperature)) {
  208. sensor->temp = tempTemperature;
  209. } else {
  210. FURI_LOG_E(APP_NAME, "Error while parsing temp");
  211. error = true;
  212. }
  213. bytes += 6;
  214. if(loadFloat(bytes, &tempHumidity)) {
  215. sensor->hum = tempHumidity;
  216. } else {
  217. FURI_LOG_E(APP_NAME, "Error while parsing humidity");
  218. error = true;
  219. }
  220. return !error;
  221. }
  222. static void reset(Sensor* sensor) {
  223. sendCommand(sensor, COMMAND_RESET);
  224. }
  225. static bool setAutoSelfCalibration(Sensor* sensor, bool enable) {
  226. return sendCommandWithCRC(
  227. sensor, COMMAND_AUTOMATIC_SELF_CALIBRATION, enable); // Activate continuous ASC
  228. }
  229. // Get the current ASC setting
  230. static bool getAutoSelfCalibration(Sensor* sensor) {
  231. return 1 == readRegister(sensor, COMMAND_AUTOMATIC_SELF_CALIBRATION);
  232. }
  233. static bool getFirmwareVersion(Sensor* sensor, uint16_t* val) {
  234. return getSettingValue(sensor, COMMAND_READ_FW_VER, val);
  235. }
  236. // Set the forced recalibration factor. See 1.3.7.
  237. // The reference CO2 concentration has to be within the range 400 ppm ≤ cref(CO2) ≤ 2000 ppm.
  238. static bool setForcedRecalibrationFactor(Sensor* sensor, uint16_t concentration) {
  239. if(concentration < 400 || concentration > 2000) {
  240. return false; // Error check.
  241. }
  242. return sendCommandWithCRC(sensor, COMMAND_SET_FORCED_RECALIBRATION_FACTOR, concentration);
  243. }
  244. // Get the temperature offset. See 1.3.8.
  245. static float getTemperatureOffset(Sensor* sensor) {
  246. union {
  247. int16_t signed16;
  248. uint16_t unsigned16;
  249. } signedUnsigned; // Avoid any ambiguity casting int16_t to uint16_t
  250. signedUnsigned.unsigned16 = readRegister(sensor, COMMAND_SET_TEMPERATURE_OFFSET);
  251. return ((float)signedUnsigned.signed16) / 100.0;
  252. }
  253. static bool setTemperatureOffset(Sensor* sensor, float tempOffset) {
  254. // Temp offset is only positive. See: https://github.com/sparkfun/SparkFun_SCD30_Arduino_Library/issues/27#issuecomment-971986826
  255. //"The SCD30 offset temperature is obtained by subtracting the reference temperature from the SCD30 output temperature"
  256. // https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/9.5_CO2/Sensirion_CO2_Sensors_SCD30_Low_Power_Mode.pdf
  257. if(tempOffset < 0.0) return false;
  258. uint16_t value = tempOffset * 100;
  259. return sendCommandWithCRC(sensor, COMMAND_SET_TEMPERATURE_OFFSET, value);
  260. }
  261. // Get the altitude compenstation. See 1.3.9.
  262. static uint16_t getAltitudeCompensation(Sensor* sensor) {
  263. return readRegister(sensor, COMMAND_SET_ALTITUDE_COMPENSATION);
  264. }
  265. // Set the altitude compenstation. See 1.3.9.
  266. static bool setAltitudeCompensation(Sensor* sensor, uint16_t altitude) {
  267. return sendCommandWithCRC(sensor, COMMAND_SET_ALTITUDE_COMPENSATION, altitude);
  268. }
  269. // Set the pressure compenstation. This is passed during measurement startup.
  270. // mbar can be 700 to 1200
  271. static bool setAmbientPressure(Sensor* sensor, uint16_t pressure_mbar) {
  272. if(pressure_mbar != 0 || pressure_mbar < 700 || pressure_mbar > 1200) {
  273. return false;
  274. }
  275. return sendCommandWithCRC(sensor, COMMAND_CONTINUOUS_MEASUREMENT, pressure_mbar);
  276. }
  277. // Begins continuous measurements
  278. // Continuous measurement status is saved in non-volatile memory. When the sensor
  279. // is powered down while continuous measurement mode is active SCD30 will measure
  280. // continuously after repowering without sending the measurement command.
  281. // Returns true if successful
  282. static bool beginMeasuringWithSettings(Sensor* sensor, uint16_t pressureOffset) {
  283. return sendCommandWithCRC(sensor, COMMAND_CONTINUOUS_MEASUREMENT, pressureOffset);
  284. }
  285. // Overload - no pressureOffset
  286. static bool beginMeasuring(Sensor* sensor) {
  287. return beginMeasuringWithSettings(sensor, 0);
  288. }
  289. // Stop continuous measurement
  290. static bool stopMeasurement(Sensor* sensor) {
  291. return sendCommand(sensor, COMMAND_STOP_MEAS);
  292. }
  293. // Sets interval between measurements
  294. // 2 seconds to 1800 seconds (30 minutes)
  295. static bool setMeasurementInterval(Sensor* sensor, uint16_t interval) {
  296. if(interval < 2 || interval > 1800) return false;
  297. if(!sendCommandWithCRC(sensor, COMMAND_SET_MEASUREMENT_INTERVAL, interval)) return false;
  298. uint16_t verInterval = readRegister(sensor, COMMAND_SET_MEASUREMENT_INTERVAL);
  299. if(verInterval != interval) {
  300. FURI_LOG_E(APP_NAME, "Measure interval wrong! Val: %02x", verInterval);
  301. return false;
  302. }
  303. return true;
  304. }
  305. // Gets interval between measurements
  306. // 2 seconds to 1800 seconds (30 minutes)
  307. static uint16_t getMeasurementInterval(Sensor* sensor) {
  308. uint16_t interval = 0;
  309. getSettingValue(sensor, COMMAND_SET_MEASUREMENT_INTERVAL, &interval);
  310. return interval;
  311. }
  312. // Returns true when data is available
  313. static bool dataAvailable(Sensor* sensor) {
  314. return 1 == readRegister(sensor, COMMAND_GET_DATA_READY);
  315. }