mag_helpers.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488
  1. #include "mag_helpers.h"
  2. #define TAG "MagHelpers"
  3. #define ZERO_PREFIX 25 // n zeros prefix
  4. #define ZERO_BETWEEN 53 // n zeros between tracks
  5. #define ZERO_SUFFIX 25 // n zeros suffix
  6. // bits per char on a given track
  7. const uint8_t bitlen[] = {7, 5, 5};
  8. // char offset by track
  9. const int sublen[] = {32, 48, 48};
  10. uint8_t last_value = 2;
  11. void play_halfbit(bool value, MagState* state) {
  12. switch(state->tx) {
  13. case MagTxStateRFID:
  14. furi_hal_gpio_write(&gpio_rfid_carrier_out, value);
  15. /*furi_hal_gpio_write(RFID_PIN_OUT, !value);
  16. furi_hal_gpio_write(RFID_PIN_OUT, value);
  17. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  18. furi_hal_gpio_write(RFID_PIN_OUT, value);*/
  19. break;
  20. case MagTxStateGPIO:
  21. furi_hal_gpio_write(mag_state_enum_to_pin(state->pin_input), value);
  22. furi_hal_gpio_write(mag_state_enum_to_pin(state->pin_output), !value);
  23. break;
  24. case MagTxStatePiezo:
  25. furi_hal_gpio_write(&gpio_speaker, value);
  26. /*furi_hal_gpio_write(&gpio_speaker, !value);
  27. furi_hal_gpio_write(&gpio_speaker, value);
  28. furi_hal_gpio_write(&gpio_speaker, !value);
  29. furi_hal_gpio_write(&gpio_speaker, value);*/
  30. break;
  31. case MagTxStateLF_P:
  32. furi_hal_gpio_write(&gpio_rfid_carrier_out, value);
  33. furi_hal_gpio_write(&gpio_speaker, value);
  34. /* // Weaker but cleaner signal
  35. if(value) {
  36. furi_hal_gpio_write(RFID_PIN_OUT, value);
  37. furi_hal_gpio_write(&gpio_speaker, value);
  38. furi_delay_us(10);
  39. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  40. furi_hal_gpio_write(&gpio_speaker, !value);
  41. } else {
  42. furi_delay_us(10);
  43. }*/
  44. /*furi_hal_gpio_write(RFID_PIN_OUT, value);
  45. furi_hal_gpio_write(&gpio_speaker, value);
  46. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  47. furi_hal_gpio_write(&gpio_speaker, !value);
  48. furi_hal_gpio_write(RFID_PIN_OUT, value);
  49. furi_hal_gpio_write(&gpio_speaker, value);*/
  50. break;
  51. case MagTxStateNFC:
  52. // turn on for duration of half-bit? or "blip" the field on / off?
  53. // getting nothing from the mag reader either way
  54. //(value) ? furi_hal_nfc_ll_txrx_on() : furi_hal_nfc_ll_txrx_off();
  55. if(last_value == 2 || value != (bool)last_value) {
  56. //furi_hal_nfc_ll_txrx_on();
  57. furi_delay_us(64);
  58. //furi_hal_nfc_ll_txrx_off();
  59. }
  60. break;
  61. case MagTxCC1101_434:
  62. case MagTxCC1101_868:
  63. if(last_value == 2 || value != (bool)last_value) {
  64. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  65. furi_delay_us(64);
  66. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  67. }
  68. break;
  69. default:
  70. break;
  71. }
  72. last_value = value;
  73. }
  74. void play_track(uint8_t* bits_manchester, uint16_t n_bits, MagState* state, bool reverse) {
  75. for(uint16_t i = 0; i < n_bits; i++) {
  76. uint16_t j = (reverse) ? (n_bits - i - 1) : i;
  77. uint8_t byte = j / 8;
  78. uint8_t bitmask = 1 << (7 - (j % 8));
  79. /* Bits are stored in their arrays like on a card (LSB first). This is not how usually bits are stored in a
  80. * byte, with the MSB first. the var bitmask creates the pattern to iterate through each bit, LSB first, like so
  81. * 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x80... masking bits one by one from the current byte
  82. *
  83. * I've chosen this LSB approach since bits and bytes are hard enough to visualize with the 5/8 and 7/8 encoding
  84. * MSR uses. It's a biiit more complicated to process, but visualizing it with printf or a debugger is
  85. * infinitely easier
  86. *
  87. * Encoding the following pairs of 5 bits as 5/8: A1234 B1234 C1234 D1234
  88. * using this LSB format looks like: A1234B12 34C1234D 12340000
  89. * using the MSB format, looks like: 21B4321A D4321C43 00004321
  90. * this means reading each byte backwards when printing/debugging, and the jumping 16 bits ahead, reading 8 more
  91. * bits backward, jumping 16 more bits ahead.
  92. *
  93. * I find this much more convenient for debugging, with the tiny incovenience of reading the bits in reverse
  94. * order. Thus, the reason for the bitmask above
  95. */
  96. bool bit = !!(bits_manchester[byte] & bitmask);
  97. // TODO: reimplement timing delays. Replace fixed furi_hal_cortex_delay_us to wait instead to a specific value
  98. // for DWT->CYCCNT. Note timer is aliased to 64us as per
  99. // #define FURI_HAL_CORTEX_INSTRUCTIONS_PER_MICROSECOND (SystemCoreClock / 1000000) | furi_hal_cortex.c
  100. play_halfbit(bit, state);
  101. furi_delay_us(state->us_clock);
  102. // if (i % 2 == 1) furi_delay_us(state->us_interpacket);
  103. }
  104. }
  105. void tx_init_rfid() {
  106. // initialize RFID system for TX
  107. furi_hal_ibutton_pin_configure();
  108. // furi_hal_ibutton_start_drive();
  109. furi_hal_ibutton_pin_write(false);
  110. // Initializing at GpioSpeedLow seems sufficient for our needs; no improvements seen by increasing speed state
  111. // this doesn't seem to make a difference, leaving it in
  112. furi_hal_gpio_init(&gpio_rfid_data_in, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  113. furi_hal_gpio_write(&gpio_rfid_data_in, false);
  114. // false->ground RFID antenna; true->don't ground
  115. // skotopes (RFID dev) say normally you'd want RFID_PULL in high for signal forming, while modulating RFID_OUT
  116. // dunaevai135 had it low in their old code. Leaving low, as it doesn't seem to make a difference on my janky antenna
  117. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  118. furi_hal_gpio_write(&gpio_nfc_irq_rfid_pull, false);
  119. furi_hal_gpio_init(&gpio_rfid_carrier_out, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  120. furi_delay_ms(300);
  121. }
  122. void tx_deinit_rfid() {
  123. // reset RFID system
  124. furi_hal_gpio_write(&gpio_rfid_carrier_out, 0);
  125. furi_hal_rfid_pins_reset();
  126. }
  127. void tx_init_rf(int hz) {
  128. // presets and frequency will need some experimenting
  129. furi_hal_subghz_reset();
  130. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetOok650Async);
  131. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetGFSK9_99KbAsync);
  132. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetMSK99_97KbAsync);
  133. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev238Async);
  134. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev476Async);
  135. furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  136. furi_hal_subghz_set_frequency_and_path(hz);
  137. furi_hal_subghz_tx();
  138. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  139. }
  140. void tx_init_piezo() {
  141. // TODO: some special mutex acquire procedure? c.f. furi_hal_speaker.c
  142. furi_hal_gpio_init(&gpio_speaker, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  143. }
  144. void tx_deinit_piezo() {
  145. // TODO: some special mutex release procedure?
  146. furi_hal_gpio_init(&gpio_speaker, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  147. }
  148. bool tx_init(MagState* state) {
  149. // Initialize configured TX method
  150. switch(state->tx) {
  151. case MagTxStateRFID:
  152. tx_init_rfid();
  153. break;
  154. case MagTxStateGPIO:
  155. // gpio_item_configure_all_pins(GpioModeOutputPushPull);
  156. furi_hal_gpio_init(
  157. mag_state_enum_to_pin(state->pin_input),
  158. GpioModeOutputPushPull,
  159. GpioPullNo,
  160. GpioSpeedLow);
  161. furi_hal_gpio_init(
  162. mag_state_enum_to_pin(state->pin_output),
  163. GpioModeOutputPushPull,
  164. GpioPullNo,
  165. GpioSpeedLow);
  166. furi_hal_gpio_init(
  167. mag_state_enum_to_pin(state->pin_enable),
  168. GpioModeOutputPushPull,
  169. GpioPullNo,
  170. GpioSpeedLow);
  171. furi_hal_gpio_write(mag_state_enum_to_pin(state->pin_enable), 1);
  172. // had some issues with ~300; bumped higher temporarily
  173. furi_delay_ms(500);
  174. break;
  175. case MagTxStatePiezo:
  176. tx_init_piezo();
  177. break;
  178. case MagTxStateLF_P:
  179. tx_init_piezo();
  180. tx_init_rfid();
  181. break;
  182. case MagTxStateNFC:
  183. //furi_hal_nfc_exit_sleep();
  184. break;
  185. case MagTxCC1101_434:
  186. tx_init_rf(434000000);
  187. break;
  188. case MagTxCC1101_868:
  189. tx_init_rf(868000000);
  190. break;
  191. default:
  192. return false;
  193. }
  194. return true;
  195. }
  196. bool tx_deinit(MagState* state) {
  197. // Reset configured TX method
  198. switch(state->tx) {
  199. case MagTxStateRFID:
  200. tx_deinit_rfid();
  201. break;
  202. case MagTxStateGPIO:
  203. furi_hal_gpio_write(mag_state_enum_to_pin(state->pin_input), 0);
  204. furi_hal_gpio_write(mag_state_enum_to_pin(state->pin_output), 0);
  205. furi_hal_gpio_write(mag_state_enum_to_pin(state->pin_enable), 0);
  206. // set back to analog output mode? - YES
  207. furi_hal_gpio_init(
  208. mag_state_enum_to_pin(state->pin_input), GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  209. furi_hal_gpio_init(
  210. mag_state_enum_to_pin(state->pin_output), GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  211. furi_hal_gpio_init(
  212. mag_state_enum_to_pin(state->pin_enable), GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  213. //gpio_item_configure_all_pins(GpioModeAnalog);
  214. break;
  215. case MagTxStatePiezo:
  216. tx_deinit_piezo();
  217. break;
  218. case MagTxStateLF_P:
  219. tx_deinit_piezo();
  220. tx_deinit_rfid();
  221. break;
  222. case MagTxStateNFC:
  223. //furi_hal_nfc_ll_txrx_off();
  224. //furi_hal_nfc_start_sleep();
  225. break;
  226. case MagTxCC1101_434:
  227. case MagTxCC1101_868:
  228. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  229. furi_hal_subghz_reset();
  230. furi_hal_subghz_idle();
  231. break;
  232. default:
  233. return false;
  234. }
  235. return true;
  236. }
  237. void mag_spoof(Mag* mag) {
  238. MagState* state = &mag->state;
  239. // TODO: cleanup this section. Possibly move precompute + tx_init to emulate_on_enter?
  240. FuriString* ft1 = mag->mag_dev->dev_data.track[0].str;
  241. FuriString* ft2 = mag->mag_dev->dev_data.track[1].str;
  242. FuriString* ft3 = mag->mag_dev->dev_data.track[2].str;
  243. char *data1, *data2, *data3;
  244. data1 = malloc(furi_string_size(ft1) + 1);
  245. data2 = malloc(furi_string_size(ft2) + 1);
  246. data3 = malloc(furi_string_size(ft3) + 1);
  247. strncpy(data1, furi_string_get_cstr(ft1), furi_string_size(ft1));
  248. strncpy(data2, furi_string_get_cstr(ft2), furi_string_size(ft2));
  249. strncpy(data3, furi_string_get_cstr(ft3), furi_string_size(ft3));
  250. if(furi_log_get_level() >= FuriLogLevelDebug) {
  251. debug_mag_string(data1, bitlen[0], sublen[0]);
  252. debug_mag_string(data2, bitlen[1], sublen[1]);
  253. debug_mag_string(data3, bitlen[2], sublen[2]);
  254. }
  255. uint8_t bits_t1_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  256. uint8_t bits_t1_manchester[128] = {0x00}; // twice the above
  257. uint16_t bits_t1_count = mag_encode(
  258. data1, (uint8_t*)bits_t1_manchester, (uint8_t*)bits_t1_raw, bitlen[0], sublen[0]);
  259. uint8_t bits_t2_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  260. uint8_t bits_t2_manchester[128] = {0x00}; // twice the above
  261. uint16_t bits_t2_count = mag_encode(
  262. data2, (uint8_t*)bits_t2_manchester, (uint8_t*)bits_t2_raw, bitlen[1], sublen[1]);
  263. uint8_t bits_t3_raw[64] = {0x00};
  264. uint8_t bits_t3_manchester[128] = {0x00};
  265. uint16_t bits_t3_count = mag_encode(
  266. data3, (uint8_t*)bits_t3_manchester, (uint8_t*)bits_t3_raw, bitlen[2], sublen[2]);
  267. if(furi_log_get_level() >= FuriLogLevelDebug) {
  268. printf(
  269. "Manchester bitcount: T1: %d, T2: %d, T3: %d\r\n",
  270. bits_t1_count,
  271. bits_t2_count,
  272. bits_t3_count);
  273. printf("T1 raw: ");
  274. for(int i = 0; i < bits_t1_count / 16; i++) printf("%02x ", bits_t1_raw[i]);
  275. printf("\r\nT1 manchester: ");
  276. for(int i = 0; i < bits_t1_count / 8; i++) printf("%02x ", bits_t1_manchester[i]);
  277. printf("\r\nT2 raw: ");
  278. for(int i = 0; i < bits_t2_count / 16; i++) printf("%02x ", bits_t2_raw[i]);
  279. printf("\r\nT2 manchester: ");
  280. for(int i = 0; i < bits_t2_count / 8; i++) printf("%02x ", bits_t2_manchester[i]);
  281. printf("\r\nT3 raw: ");
  282. for(int i = 0; i < bits_t3_count / 16; i++) printf("%02x ", bits_t3_raw[i]);
  283. printf("\r\nT3 manchester: ");
  284. for(int i = 0; i < bits_t3_count / 8; i++) printf("%02x ", bits_t3_manchester[i]);
  285. printf("\r\nBitwise emulation done\r\n\r\n");
  286. }
  287. last_value = 2;
  288. bool bit = false;
  289. if(!tx_init(state)) return;
  290. FURI_CRITICAL_ENTER();
  291. for(uint16_t i = 0; i < (ZERO_PREFIX * 2); i++) {
  292. // is this right?
  293. if(!!(i % 2)) bit ^= 1;
  294. play_halfbit(bit, state);
  295. furi_delay_us(state->us_clock);
  296. }
  297. if((state->track == MagTrackStateOneAndTwo) || (state->track == MagTrackStateOne))
  298. play_track((uint8_t*)bits_t1_manchester, bits_t1_count, state, false);
  299. if((state->track == MagTrackStateOneAndTwo))
  300. for(uint16_t i = 0; i < (ZERO_BETWEEN * 2); i++) {
  301. if(!!(i % 2)) bit ^= 1;
  302. play_halfbit(bit, state);
  303. furi_delay_us(state->us_clock);
  304. }
  305. if((state->track == MagTrackStateOneAndTwo) || (state->track == MagTrackStateTwo))
  306. play_track(
  307. (uint8_t*)bits_t2_manchester,
  308. bits_t2_count,
  309. state,
  310. (state->reverse == MagReverseStateOn));
  311. if((state->track == MagTrackStateThree))
  312. play_track((uint8_t*)bits_t3_manchester, bits_t3_count, state, false);
  313. for(uint16_t i = 0; i < (ZERO_SUFFIX * 2); i++) {
  314. if(!!(i % 2)) bit ^= 1;
  315. play_halfbit(bit, state);
  316. furi_delay_us(state->us_clock);
  317. }
  318. FURI_CRITICAL_EXIT();
  319. free(data1);
  320. free(data2);
  321. free(data3);
  322. tx_deinit(state);
  323. }
  324. uint16_t add_bit(bool value, uint8_t* out, uint16_t count) {
  325. uint8_t bit = count % 8;
  326. uint8_t byte = count / 8;
  327. if(value) {
  328. out[byte] |= 0x01;
  329. }
  330. if(bit < 7) out[byte] <<= 1;
  331. return count + 1;
  332. }
  333. uint16_t add_bit_manchester(bool value, uint8_t* out, uint16_t count) {
  334. static bool toggle = 0;
  335. toggle ^= 0x01;
  336. count = add_bit(toggle, out, count);
  337. if(value) toggle ^= 0x01;
  338. count = add_bit(toggle, out, count);
  339. return count;
  340. }
  341. uint16_t mag_encode(
  342. char* data,
  343. uint8_t* out_manchester,
  344. uint8_t* out_raw,
  345. uint8_t track_bits,
  346. uint8_t track_ascii_offset) {
  347. /*
  348. * track_bits - the number of raw (data) bits on the track. on ISO cards, that's 7 for track 1, or 5 for 2/3 - this is samy's bitlen
  349. * - this count includes the parity bit
  350. * track_ascii_offset - how much the ascii values are offset. track 1 makes space (ascii 32) become data 0x00,
  351. * - tracks 2/3 make ascii "0" become data 0x00 - this is samy's sublen
  352. *
  353. */
  354. uint16_t raw_bits_count = 0;
  355. uint16_t output_count = 0;
  356. int tmp, crc, lrc = 0;
  357. /* // why are we adding zeros to the encoded string if we're also doing it while playing?
  358. for(int i = 0; i < ZERO_PREFIX; i++) {
  359. output_count = add_bit_manchester(0, out_manchester, output_count);
  360. raw_bits_count = add_bit(0, out_raw, raw_bits_count);
  361. }*/
  362. for(int i = 0; *(data + i) != 0; i++) {
  363. crc = 1;
  364. tmp = *(data + i) - track_ascii_offset;
  365. for(int j = 0; j < track_bits - 1; j++) {
  366. crc ^= tmp & 1;
  367. lrc ^= (tmp & 1) << j;
  368. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  369. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  370. tmp >>= 1;
  371. }
  372. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  373. output_count = add_bit_manchester(crc, out_manchester, output_count);
  374. }
  375. // LRC byte
  376. tmp = lrc;
  377. crc = 1;
  378. for(int j = 0; j < track_bits - 1; j++) {
  379. crc ^= tmp & 0x01;
  380. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  381. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  382. tmp >>= 1;
  383. }
  384. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  385. output_count = add_bit_manchester(crc, out_manchester, output_count);
  386. return output_count;
  387. }
  388. void debug_mag_string(char* data, uint8_t track_bits, uint8_t track_ascii_offset) {
  389. uint8_t bits_raw[64] = {0}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  390. uint8_t bits_manchester[128] = {0}; // twice the above
  391. int numbits = 0;
  392. printf("Encoding [%s] with %d bits\r\n", data, track_bits);
  393. numbits = mag_encode(
  394. data, (uint8_t*)bits_manchester, (uint8_t*)bits_raw, track_bits, track_ascii_offset);
  395. printf("Got %d bits\r\n", numbits);
  396. printf("Raw byte stream: ");
  397. for(int i = 0; i < numbits / 8 / 2; i++) {
  398. printf("%02x", bits_raw[i]);
  399. if(i % 4 == 3) printf(" ");
  400. }
  401. printf("\r\n");
  402. printf("Bits ");
  403. int space_counter = 0;
  404. for(int i = 0; i < numbits / 2; i++) {
  405. /*if(i < ZERO_PREFIX) {
  406. printf("X");
  407. continue;
  408. } else if(i == ZERO_PREFIX) {
  409. printf(" ");
  410. space_counter = 0;
  411. }*/
  412. printf("%01x", (bits_raw[i / 8] & (1 << (7 - (i % 8)))) != 0);
  413. if((space_counter) % track_bits == track_bits - 1) printf(" ");
  414. space_counter++;
  415. }
  416. printf("\r\n");
  417. printf("Manchester encoded, byte stream: ");
  418. for(int i = 0; i < numbits / 8; i++) {
  419. printf("%02x", bits_manchester[i]);
  420. if(i % 4 == 3) printf(" ");
  421. }
  422. printf("\r\n\r\n");
  423. }