uhf_module.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. #include "uhf_module.h"
  2. #include "uhf_module_cmd.h"
  3. #define DELAY_MS 100
  4. #define WAIT_TICK 8000 // max wait time in between each byte
  5. volatile uint16_t tick = 0;
  6. void rx_callback(FuriHalSerialHandle* handle, FuriHalSerialRxEvent event, void* ctx) {
  7. UNUSED(event);
  8. Buffer* buffer = ctx;
  9. if(buffer->closed) return; // buffer closed
  10. if(event == FuriHalSerialRxEventData) {
  11. uint8_t data = furi_hal_serial_async_rx(handle);
  12. buffer_append_single(buffer, data); // append data
  13. if(data == FRAME_END) buffer_close(buffer); // end of frame
  14. tick = WAIT_TICK; // reset tick
  15. }
  16. }
  17. static M100ResponseType setup_and_send_rx(M100Module* module, uint8_t* cmd, size_t cmd_length) {
  18. buffer_reset(module->buf);
  19. tick = WAIT_TICK;
  20. furi_hal_serial_tx(module->serial_handle, cmd, cmd_length);
  21. while(--tick) {
  22. furi_delay_us(5);
  23. }
  24. buffer_close(module->buf);
  25. // Validation Checks
  26. uint8_t* data = buffer_get_data(module->buf);
  27. size_t length = buffer_get_size(module->buf);
  28. // check if size > 0
  29. if(!length) return M100EmptyResponse;
  30. // check if data is valid
  31. if(data[0] != FRAME_START || data[length - 1] != FRAME_END) return M100ValidationFail;
  32. // check if checksum is correct
  33. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ChecksumFail;
  34. return M100SuccessResponse;
  35. }
  36. M100ModuleInfo* m100_module_info_alloc() {
  37. M100ModuleInfo* module_info = (M100ModuleInfo*)malloc(sizeof(M100ModuleInfo));
  38. return module_info;
  39. }
  40. void m100_module_info_free(M100ModuleInfo* module_info) {
  41. free(module_info->hw_version);
  42. free(module_info->sw_version);
  43. free(module_info->manufacturer);
  44. free(module_info);
  45. }
  46. M100Module* m100_module_alloc() {
  47. M100Module* module = (M100Module*)malloc(sizeof(M100Module));
  48. module->info = m100_module_info_alloc();
  49. module->buf = buffer_alloc(MAX_BUFFER_SIZE);
  50. module->baudrate = DEFAULT_BAUDRATE;
  51. module->transmitting_power = DEFAULT_TRANSMITTING_POWER;
  52. module->region = DEFAULT_WORKING_REGION;
  53. module->serial_handle = furi_hal_serial_control_acquire(FuriHalSerialIdUsart);
  54. furi_check(module->serial_handle);
  55. furi_hal_serial_init(module->serial_handle, module->baudrate);
  56. furi_hal_serial_async_rx_start(module->serial_handle, rx_callback, module->buf, false);
  57. return module;
  58. }
  59. void m100_module_free(M100Module* module) {
  60. furi_hal_serial_deinit(module->serial_handle);
  61. furi_hal_serial_control_release(module->serial_handle);
  62. m100_module_info_free(module->info);
  63. buffer_free(module->buf);
  64. free(module);
  65. }
  66. uint8_t checksum(const uint8_t* data, size_t length) {
  67. // CheckSum8 Modulo 256
  68. // Sum of Bytes % 256
  69. uint64_t sum_val = 0x00;
  70. for(size_t i = 0; i < length; i++) {
  71. sum_val += data[i];
  72. }
  73. return (uint8_t)(sum_val % 0x100);
  74. }
  75. uint16_t crc16_genibus(const uint8_t* data, size_t length) {
  76. uint16_t crc = 0xFFFF; // Initial value
  77. uint16_t polynomial = 0x1021; // CRC-16/GENIBUS polynomial
  78. for(size_t i = 0; i < length; i++) {
  79. crc ^= (data[i] << 8); // Move byte into MSB of 16bit CRC
  80. for(int j = 0; j < 8; j++) {
  81. if(crc & 0x8000) {
  82. crc = (crc << 1) ^ polynomial;
  83. } else {
  84. crc <<= 1;
  85. }
  86. }
  87. }
  88. return crc ^ 0xFFFF; // Post-inversion
  89. }
  90. char* _m100_info_helper(M100Module* module, char** info) {
  91. if(!buffer_get_size(module->buf)) return NULL;
  92. uint8_t* data = buffer_get_data(module->buf);
  93. uint16_t payload_len = data[3];
  94. payload_len = (payload_len << 8) + data[4];
  95. FuriString* temp_str = furi_string_alloc();
  96. for(int i = 0; i < payload_len; i++) {
  97. furi_string_cat_printf(temp_str, "%c", data[6 + i]);
  98. }
  99. if(*info == NULL) {
  100. *info = (char*)malloc(sizeof(char) * payload_len);
  101. } else {
  102. for(size_t i = 0; i < strlen(*info); i++) {
  103. (*info)[i] = 0;
  104. }
  105. }
  106. memcpy(*info, furi_string_get_cstr(temp_str), payload_len);
  107. furi_string_free(temp_str);
  108. return *info;
  109. }
  110. char* m100_get_hardware_version(M100Module* module) {
  111. setup_and_send_rx(module, (uint8_t*)&CMD_HW_VERSION.cmd[0], CMD_HW_VERSION.length);
  112. return _m100_info_helper(module, &module->info->hw_version);
  113. }
  114. char* m100_get_software_version(M100Module* module) {
  115. setup_and_send_rx(module, (uint8_t*)&CMD_SW_VERSION.cmd[0], CMD_SW_VERSION.length);
  116. return _m100_info_helper(module, &module->info->sw_version);
  117. }
  118. char* m100_get_manufacturers(M100Module* module) {
  119. setup_and_send_rx(module, (uint8_t*)&CMD_MANUFACTURERS.cmd[0], CMD_MANUFACTURERS.length);
  120. return _m100_info_helper(module, &module->info->manufacturer);
  121. }
  122. M100ResponseType m100_single_poll(M100Module* module, UHFTag* uhf_tag) {
  123. M100ResponseType rp_type =
  124. setup_and_send_rx(module, (uint8_t*)&CMD_SINGLE_POLLING.cmd[0], CMD_SINGLE_POLLING.length);
  125. if(rp_type != M100SuccessResponse) return rp_type;
  126. uint8_t* data = buffer_get_data(module->buf);
  127. size_t length = buffer_get_size(module->buf);
  128. uint16_t pc = data[6];
  129. uint16_t crc = 0;
  130. // mask out epc length from protocol control
  131. size_t epc_len = pc;
  132. epc_len >>= 3;
  133. epc_len *= 2;
  134. // get protocol control
  135. pc <<= 8;
  136. pc += data[7];
  137. // get cyclic redundency check
  138. crc = data[8 + epc_len];
  139. crc <<= 8;
  140. crc += data[8 + epc_len + 1];
  141. // validate checksum
  142. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ValidationFail;
  143. // validate crc
  144. if(crc16_genibus(data + 6, epc_len + 2) != crc) return M100ValidationFail;
  145. uhf_tag_set_epc_pc(uhf_tag, pc);
  146. uhf_tag_set_epc_crc(uhf_tag, crc);
  147. uhf_tag_set_epc(uhf_tag, data + 8, epc_len);
  148. return M100SuccessResponse;
  149. }
  150. M100ResponseType m100_set_select(M100Module* module, UHFTag* uhf_tag) {
  151. // Set select
  152. uint8_t cmd[MAX_BUFFER_SIZE];
  153. size_t cmd_length = CMD_SET_SELECT_PARAMETER.length;
  154. size_t mask_length_bytes = uhf_tag->epc->size;
  155. size_t mask_length_bits = mask_length_bytes * 8;
  156. // payload len == sel param len + ptr len + mask len + epc len
  157. size_t payload_len = 7 + mask_length_bytes;
  158. memcpy(cmd, CMD_SET_SELECT_PARAMETER.cmd, cmd_length);
  159. // set new length
  160. cmd_length = 12 + mask_length_bytes + 2;
  161. // set payload length
  162. cmd[3] = (payload_len >> 8) & 0xFF;
  163. cmd[4] = payload_len & 0xFF;
  164. // set select param
  165. cmd[5] = 0x01; // 0x00=rfu, 0x01=epc, 0x10=tid, 0x11=user
  166. // set ptr
  167. cmd[9] = 0x20; // epc data begins after 0x20
  168. // set mask length
  169. cmd[10] = mask_length_bits;
  170. // truncate
  171. cmd[11] = false;
  172. // set mask
  173. memcpy((void*)&cmd[12], uhf_tag->epc->data, mask_length_bytes);
  174. // set checksum
  175. cmd[cmd_length - 2] = checksum(cmd + 1, 11 + mask_length_bytes);
  176. // end frame
  177. cmd[cmd_length - 1] = FRAME_END;
  178. setup_and_send_rx(module, cmd, 12 + mask_length_bytes + 3);
  179. uint8_t* data = buffer_get_data(module->buf);
  180. if(checksum(data + 1, 5) != data[6]) return M100ValidationFail; // error in rx
  181. if(data[5] != 0x00) return M100ValidationFail; // error if not 0
  182. return M100SuccessResponse;
  183. }
  184. UHFTag* m100_get_select_param(M100Module* module) {
  185. buffer_reset(module->buf);
  186. // furi_hal_uart_set_irq_cb(FuriHalUartIdLPUART1, rx_callback, module->buf);
  187. furi_hal_serial_tx(
  188. module->serial_handle,
  189. (uint8_t*)&CMD_GET_SELECT_PARAMETER.cmd,
  190. CMD_GET_SELECT_PARAMETER.length);
  191. furi_delay_ms(DELAY_MS);
  192. // UHFTag* uhf_tag = uhf_tag_alloc();
  193. // uint8_t* data = buffer_get_data(module->buf);
  194. // size_t mask_length =
  195. // uhf_tag_set_epc(uhf_tag, data + 12, )
  196. // TODO : implement
  197. return NULL;
  198. }
  199. M100ResponseType m100_read_label_data_storage(
  200. M100Module* module,
  201. UHFTag* uhf_tag,
  202. BankType bank,
  203. uint32_t access_pwd,
  204. uint16_t word_count) {
  205. /*
  206. Will probably remove UHFTag as param and get it from get selected tag
  207. */
  208. if(bank == EPCBank) return M100SuccessResponse;
  209. uint8_t cmd[MAX_BUFFER_SIZE];
  210. size_t cmd_length = CMD_READ_LABEL_DATA_STORAGE_AREA.length;
  211. memcpy(cmd, CMD_READ_LABEL_DATA_STORAGE_AREA.cmd, cmd_length);
  212. // set access password
  213. cmd[5] = (access_pwd >> 24) & 0xFF;
  214. cmd[6] = (access_pwd >> 16) & 0xFF;
  215. cmd[7] = (access_pwd >> 8) & 0xFF;
  216. cmd[8] = access_pwd & 0xFF;
  217. // set mem bank
  218. cmd[9] = (uint8_t)bank;
  219. // set word counter
  220. cmd[12] = (word_count >> 8) & 0xFF;
  221. cmd[13] = word_count & 0xFF;
  222. // calc checksum
  223. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  224. M100ResponseType rp_type = setup_and_send_rx(module, cmd, cmd_length);
  225. if(rp_type != M100SuccessResponse) return rp_type;
  226. uint8_t* data = buffer_get_data(module->buf);
  227. uint8_t rtn_command = data[2];
  228. uint16_t payload_len = data[3];
  229. payload_len = (payload_len << 8) + data[4];
  230. if(rtn_command == 0xFF) {
  231. if(payload_len == 0x01) return M100NoTagResponse;
  232. return M100MemoryOverrun;
  233. }
  234. size_t ptr_offset = 5 /*<-ptr offset*/ + uhf_tag_get_epc_size(uhf_tag) + 3 /*<-pc + ul*/;
  235. size_t bank_data_length = payload_len - (ptr_offset - 5 /*dont include the offset*/);
  236. if(bank == TIDBank) {
  237. uhf_tag_set_tid(uhf_tag, data + ptr_offset, bank_data_length);
  238. } else if(bank == UserBank) {
  239. uhf_tag_set_user(uhf_tag, data + ptr_offset, bank_data_length);
  240. }
  241. return M100SuccessResponse;
  242. }
  243. M100ResponseType m100_write_label_data_storage(
  244. M100Module* module,
  245. UHFTag* saved_tag,
  246. UHFTag* selected_tag,
  247. BankType bank,
  248. uint16_t source_address,
  249. uint32_t access_pwd) {
  250. uint8_t cmd[MAX_BUFFER_SIZE];
  251. size_t cmd_length = CMD_WRITE_LABEL_DATA_STORE.length;
  252. memcpy(cmd, CMD_WRITE_LABEL_DATA_STORE.cmd, cmd_length);
  253. uint16_t payload_len = 9;
  254. uint16_t data_length = 0;
  255. if(bank == ReservedBank) {
  256. // access pwd len + kill pwd len
  257. payload_len += 4;
  258. data_length = 4;
  259. } else if(bank == EPCBank) {
  260. // epc len + pc len
  261. payload_len += 4 + uhf_tag_get_epc_size(saved_tag);
  262. data_length = 4 + uhf_tag_get_epc_size(saved_tag);
  263. // set data
  264. uint8_t tmp_arr[4];
  265. tmp_arr[0] = (uint8_t)((uhf_tag_get_epc_crc(selected_tag) >> 8) & 0xFF);
  266. tmp_arr[1] = (uint8_t)(uhf_tag_get_epc_crc(selected_tag) & 0xFF);
  267. tmp_arr[2] = (uint8_t)((uhf_tag_get_epc_pc(saved_tag) >> 8) & 0xFF);
  268. tmp_arr[3] = (uint8_t)(uhf_tag_get_epc_pc(saved_tag) & 0xFF);
  269. memcpy(cmd + 14, tmp_arr, 4);
  270. memcpy(cmd + 18, uhf_tag_get_epc(saved_tag), uhf_tag_get_epc_size(saved_tag));
  271. } else if(bank == UserBank) {
  272. payload_len += uhf_tag_get_user_size(saved_tag);
  273. data_length = uhf_tag_get_user_size(saved_tag);
  274. // set data
  275. memcpy(cmd + 14, uhf_tag_get_user(saved_tag), uhf_tag_get_user_size(saved_tag));
  276. }
  277. // set payload length
  278. cmd[3] = (payload_len >> 8) & 0xFF;
  279. cmd[4] = payload_len & 0xFF;
  280. // set access password
  281. cmd[5] = (access_pwd >> 24) & 0xFF;
  282. cmd[6] = (access_pwd >> 16) & 0xFF;
  283. cmd[7] = (access_pwd >> 8) & 0xFF;
  284. cmd[8] = access_pwd & 0xFF;
  285. // set membank
  286. cmd[9] = (uint8_t)bank;
  287. // set source address
  288. cmd[10] = (source_address >> 8) & 0xFF;
  289. cmd[11] = source_address & 0xFF;
  290. // set data length
  291. size_t data_length_words = data_length / 2;
  292. cmd[12] = (data_length_words >> 8) & 0xFF;
  293. cmd[13] = data_length_words & 0xFF;
  294. // update cmd len
  295. cmd_length = 7 + payload_len;
  296. // calculate checksum
  297. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  298. cmd[cmd_length - 1] = FRAME_END;
  299. // send cmd
  300. // furi_hal_serial_async_rx_start(module->serial_handle, rx_callback, module->buf, false);
  301. // furi_hal_serial_tx(module->serial_handle, cmd, cmd_length);
  302. // unsigned int delay = DELAY_MS / 2;
  303. // unsigned int timeout = 15;
  304. // while(!buffer_get_size(module->buf)) {
  305. // furi_delay_ms(delay);
  306. // if(!timeout--) break;
  307. // }
  308. setup_and_send_rx(module, cmd, cmd_length);
  309. uint8_t* buff_data = buffer_get_data(module->buf);
  310. size_t buff_length = buffer_get_size(module->buf);
  311. if(buff_data[2] == 0xFF && buff_length == 8)
  312. return M100NoTagResponse;
  313. else if(buff_data[2] == 0xFF)
  314. return M100ValidationFail;
  315. return M100SuccessResponse;
  316. }
  317. void m100_set_baudrate(M100Module* module, uint32_t baudrate) {
  318. size_t length = CMD_SET_COMMUNICATION_BAUD_RATE.length;
  319. uint8_t cmd[length];
  320. memcpy(cmd, CMD_SET_COMMUNICATION_BAUD_RATE.cmd, length);
  321. uint16_t br_mod = baudrate / 100; // module format
  322. cmd[6] = 0xFF & br_mod; // pow LSB
  323. cmd[5] = 0xFF & (br_mod >> 8); // pow MSB
  324. cmd[length - 2] = checksum(cmd + 1, length - 3);
  325. furi_hal_serial_tx(module->serial_handle, cmd, length);
  326. furi_hal_serial_set_br(module->serial_handle, baudrate);
  327. module->baudrate = baudrate;
  328. }
  329. bool m100_set_working_region(M100Module* module, WorkingRegion region) {
  330. size_t length = CMD_SET_WORK_AREA.length;
  331. uint8_t cmd[length];
  332. memcpy(cmd, CMD_SET_WORK_AREA.cmd, length);
  333. cmd[5] = (uint8_t)region;
  334. cmd[length - 2] = checksum(cmd + 1, length - 3);
  335. setup_and_send_rx(module, cmd, length);
  336. module->region = region;
  337. return true;
  338. }
  339. bool m100_set_transmitting_power(M100Module* module, uint16_t power) {
  340. size_t length = CMD_SET_TRANSMITTING_POWER.length;
  341. uint8_t cmd[length];
  342. memcpy(cmd, CMD_SET_TRANSMITTING_POWER.cmd, length);
  343. cmd[5] = (power >> 8) & 0xFF;
  344. cmd[6] = power & 0xFF;
  345. cmd[length - 2] = checksum(cmd + 1, length - 3);
  346. setup_and_send_rx(module, cmd, length);
  347. module->transmitting_power = power;
  348. return true;
  349. }
  350. bool m100_set_freq_hopping(M100Module* module, bool hopping) {
  351. UNUSED(module);
  352. UNUSED(hopping);
  353. return true;
  354. }
  355. bool m100_set_power(M100Module* module, uint8_t* power) {
  356. UNUSED(module);
  357. UNUSED(power);
  358. return true;
  359. }
  360. uint32_t m100_get_baudrate(M100Module* module) {
  361. return module->baudrate;
  362. }