uhf_worker.c 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141
  1. #include "uhf_worker.h"
  2. #include "uhf_tag.h"
  3. // yrm100 module commands
  4. UHFWorkerEvent verify_module_connected(UHFWorker* uhf_worker) {
  5. char* hw_version = m100_get_hardware_version(uhf_worker->module);
  6. char* sw_version = m100_get_software_version(uhf_worker->module);
  7. char* manufacturer = m100_get_manufacturers(uhf_worker->module);
  8. // verify all data exists
  9. if(hw_version == NULL || sw_version == NULL || manufacturer == NULL) return UHFWorkerEventFail;
  10. return UHFWorkerEventSuccess;
  11. }
  12. UHFTag* send_polling_command(UHFWorker* uhf_worker) {
  13. // read epc bank
  14. UHFTag* uhf_tag = uhf_tag_alloc();
  15. while(true) {
  16. M100ResponseType status = m100_send_single_poll(uhf_worker->module, uhf_tag);
  17. furi_delay_ms(100);
  18. if(uhf_worker->state == UHFWorkerStateStop) {
  19. uhf_tag_free(uhf_tag);
  20. return NULL;
  21. }
  22. if(status == M100Success) break;
  23. }
  24. return uhf_tag;
  25. }
  26. UHFWorkerEvent read_bank_till_max_length(UHFWorker* uhf_worker, UHFTag* uhf_tag, BankType bank) {
  27. unsigned int retry = 3, word_low = 5, word_high = 100;
  28. unsigned int word_size;
  29. M100ResponseType status;
  30. do {
  31. if(uhf_worker->state == UHFWorkerStateStop) return UHFWorkerEventAborted;
  32. if(word_low >= word_high) return UHFWorkerEventSuccess;
  33. word_size = (word_low + word_high) / 2;
  34. status = m100_read_label_data_storage(uhf_worker->module, uhf_tag, bank, 0, word_size);
  35. if(status == M100Success) {
  36. word_low = word_size + 1;
  37. } else if(status == M100MemoryOverrun) {
  38. word_high = word_size - 1;
  39. } else if(status == M100NoTagResponse) {
  40. retry--;
  41. }
  42. } while(retry);
  43. return UHFWorkerEventSuccess;
  44. }
  45. UHFWorkerEvent read_single_card(UHFWorker* uhf_worker) {
  46. UHFTag* uhf_tag = send_polling_command(uhf_worker);
  47. if(uhf_tag == NULL) return UHFWorkerEventAborted;
  48. uhf_tag_wrapper_set_tag(uhf_worker->uhf_tag_wrapper, uhf_tag);
  49. // set select
  50. if(m100_set_select(uhf_worker->module, uhf_tag) != M100Success) return UHFWorkerEventFail;
  51. // read tid
  52. UHFWorkerEvent event;
  53. event = read_bank_till_max_length(uhf_worker, uhf_tag, TIDBank);
  54. if(event != UHFWorkerEventSuccess) return event;
  55. // read user
  56. event = read_bank_till_max_length(uhf_worker, uhf_tag, UserBank);
  57. if(event != UHFWorkerEventSuccess) return event;
  58. return UHFWorkerEventSuccess;
  59. }
  60. UHFWorkerEvent write_single_card(UHFWorker* uhf_worker) {
  61. UHFTag* uhf_tag_des = send_polling_command(uhf_worker);
  62. if(uhf_tag_des == NULL) return UHFWorkerEventAborted;
  63. UHFTag* uhf_tag_from = uhf_worker->uhf_tag_wrapper->uhf_tag;
  64. if(m100_set_select(uhf_worker->module, uhf_tag_des) != M100Success) return UHFWorkerEventFail;
  65. do {
  66. M100ResponseType rp_type = m100_write_label_data_storage(
  67. uhf_worker->module, uhf_tag_from, uhf_tag_des, UserBank, 0, 0);
  68. if(uhf_worker->state == UHFWorkerStateStop) return UHFWorkerEventAborted;
  69. if(rp_type == M100Success) break;
  70. } while(true);
  71. do {
  72. M100ResponseType rp_type = m100_write_label_data_storage(
  73. uhf_worker->module, uhf_tag_from, uhf_tag_des, EPCBank, 0, 0);
  74. if(uhf_worker->state == UHFWorkerStateStop) return UHFWorkerEventAborted;
  75. if(rp_type == M100Success) break;
  76. } while(true);
  77. return UHFWorkerEventSuccess;
  78. }
  79. int32_t uhf_worker_task(void* ctx) {
  80. UHFWorker* uhf_worker = ctx;
  81. if(uhf_worker->state == UHFWorkerStateVerify) {
  82. UHFWorkerEvent event = verify_module_connected(uhf_worker);
  83. uhf_worker->callback(event, uhf_worker->ctx);
  84. } else if(uhf_worker->state == UHFWorkerStateDetectSingle) {
  85. UHFWorkerEvent event = read_single_card(uhf_worker);
  86. FURI_LOG_E("TAG", "read single card success");
  87. uhf_worker->callback(event, uhf_worker->ctx);
  88. FURI_LOG_E("TAG", "read single card callback success %d", event);
  89. } else if(uhf_worker->state == UHFWorkerStateWriteSingle) {
  90. UHFWorkerEvent event = write_single_card(uhf_worker);
  91. uhf_worker->callback(event, uhf_worker->ctx);
  92. }
  93. return 0;
  94. }
  95. UHFWorker* uhf_worker_alloc() {
  96. UHFWorker* uhf_worker = (UHFWorker*)malloc(sizeof(UHFWorker));
  97. uhf_worker->thread = furi_thread_alloc_ex("UHFWorker", 8 * 1024, uhf_worker_task, uhf_worker);
  98. uhf_worker->module = m100_module_alloc();
  99. uhf_worker->callback = NULL;
  100. uhf_worker->ctx = NULL;
  101. return uhf_worker;
  102. }
  103. void uhf_worker_change_state(UHFWorker* worker, UHFWorkerState state) {
  104. worker->state = state;
  105. }
  106. void uhf_worker_start(
  107. UHFWorker* uhf_worker,
  108. UHFWorkerState state,
  109. UHFWorkerCallback callback,
  110. void* ctx) {
  111. uhf_worker->state = state;
  112. uhf_worker->callback = callback;
  113. uhf_worker->ctx = ctx;
  114. furi_thread_start(uhf_worker->thread);
  115. }
  116. void uhf_worker_stop(UHFWorker* uhf_worker) {
  117. furi_assert(uhf_worker);
  118. furi_assert(uhf_worker->thread);
  119. if(furi_thread_get_state(uhf_worker->thread) != FuriThreadStateStopped) {
  120. uhf_worker_change_state(uhf_worker, UHFWorkerStateStop);
  121. furi_thread_join(uhf_worker->thread);
  122. }
  123. }
  124. void uhf_worker_free(UHFWorker* uhf_worker) {
  125. furi_assert(uhf_worker);
  126. furi_thread_free(uhf_worker->thread);
  127. m100_module_free(uhf_worker->module);
  128. free(uhf_worker);
  129. }