subghz_protocol_princeton.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367
  1. #include "subghz_protocol_princeton.h"
  2. /*
  3. * Help
  4. * https://phreakerclub.com/447
  5. *
  6. */
  7. #define SUBGHZ_PT_SHORT 300
  8. #define SUBGHZ_PT_LONG (SUBGHZ_PT_SHORT * 3)
  9. #define SUBGHZ_PT_GUARD (SUBGHZ_PT_SHORT * 30)
  10. #define SUBGHZ_PT_COUNT_KEY_433 9
  11. #define SUBGHZ_PT_TIMEOUT_433 900
  12. #define SUBGHZ_PT_COUNT_KEY_868 9
  13. #define SUBGHZ_PT_TIMEOUT_868 14000
  14. #define TAG "SubghzPrinceton"
  15. struct SubGhzEncoderPrinceton {
  16. uint32_t key;
  17. uint16_t te;
  18. size_t repeat;
  19. size_t front;
  20. size_t count_key;
  21. size_t count_key_package;
  22. uint32_t time_high;
  23. uint32_t time_low;
  24. uint32_t timeout;
  25. uint32_t time_stop;
  26. };
  27. typedef enum {
  28. PrincetonDecoderStepReset = 0,
  29. PrincetonDecoderStepSaveDuration,
  30. PrincetonDecoderStepCheckDuration,
  31. } PrincetonDecoderStep;
  32. SubGhzEncoderPrinceton* subghz_encoder_princeton_alloc() {
  33. SubGhzEncoderPrinceton* instance = furi_alloc(sizeof(SubGhzEncoderPrinceton));
  34. return instance;
  35. }
  36. void subghz_encoder_princeton_free(SubGhzEncoderPrinceton* instance) {
  37. furi_assert(instance);
  38. free(instance);
  39. }
  40. void subghz_encoder_princeton_set_te(SubGhzEncoderPrinceton* instance, void* decoder) {
  41. SubGhzDecoderPrinceton* pricenton = decoder;
  42. if((pricenton->te) != 0) {
  43. instance->te = pricenton->te;
  44. } else {
  45. instance->te = SUBGHZ_PT_SHORT;
  46. }
  47. }
  48. void subghz_encoder_princeton_stop(SubGhzEncoderPrinceton* instance, uint32_t time_stop) {
  49. instance->time_stop = time_stop;
  50. }
  51. void subghz_encoder_princeton_set(
  52. SubGhzEncoderPrinceton* instance,
  53. uint32_t key,
  54. size_t repeat,
  55. uint32_t frequency) {
  56. furi_assert(instance);
  57. instance->te = SUBGHZ_PT_SHORT;
  58. instance->key = key;
  59. instance->repeat = repeat + 1;
  60. instance->front = 48;
  61. instance->time_high = 0;
  62. instance->time_low = 0;
  63. if(frequency < 700000000) {
  64. instance->count_key_package = SUBGHZ_PT_COUNT_KEY_433;
  65. instance->timeout = SUBGHZ_PT_TIMEOUT_433;
  66. } else {
  67. instance->count_key_package = SUBGHZ_PT_COUNT_KEY_868;
  68. instance->timeout = SUBGHZ_PT_TIMEOUT_868;
  69. }
  70. instance->count_key = instance->count_key_package + 3;
  71. if((millis() - instance->time_stop) < instance->timeout) {
  72. instance->time_stop = (instance->timeout - (millis() - instance->time_stop)) * 1000;
  73. } else {
  74. instance->time_stop = 0;
  75. }
  76. }
  77. size_t subghz_encoder_princeton_get_repeat_left(SubGhzEncoderPrinceton* instance) {
  78. furi_assert(instance);
  79. return instance->repeat;
  80. }
  81. void subghz_encoder_princeton_print_log(void* context) {
  82. SubGhzEncoderPrinceton* instance = context;
  83. float duty_cycle =
  84. ((float)instance->time_high / (instance->time_high + instance->time_low)) * 100;
  85. FURI_LOG_I(
  86. TAG "Encoder",
  87. "Radio tx_time=%dus ON=%dus, OFF=%dus, DutyCycle=%d,%d%%",
  88. instance->time_high + instance->time_low,
  89. instance->time_high,
  90. instance->time_low,
  91. (uint32_t)duty_cycle,
  92. (uint32_t)((duty_cycle - (uint32_t)duty_cycle) * 100));
  93. }
  94. LevelDuration subghz_encoder_princeton_yield(void* context) {
  95. SubGhzEncoderPrinceton* instance = context;
  96. if(instance->repeat == 0) {
  97. subghz_encoder_princeton_print_log(instance);
  98. return level_duration_reset();
  99. }
  100. size_t bit = instance->front / 2;
  101. bool level = !(instance->front % 2);
  102. LevelDuration ret;
  103. if(bit < 24) {
  104. uint8_t byte = bit / 8;
  105. uint8_t bit_in_byte = bit % 8;
  106. bool value = (((uint8_t*)&instance->key)[2 - byte] >> (7 - bit_in_byte)) & 1;
  107. if(value) {
  108. ret = level_duration_make(level, level ? instance->te * 3 : instance->te);
  109. if(level)
  110. instance->time_high += instance->te * 3;
  111. else
  112. instance->time_low += instance->te;
  113. } else {
  114. ret = level_duration_make(level, level ? instance->te : instance->te * 3);
  115. if(level)
  116. instance->time_high += instance->te;
  117. else
  118. instance->time_low += instance->te * 3;
  119. }
  120. } else {
  121. if(instance->time_stop) {
  122. ret = level_duration_make(level, level ? instance->te : instance->time_stop);
  123. if(level)
  124. instance->time_high += instance->te;
  125. else {
  126. instance->time_low += instance->time_stop;
  127. instance->time_stop = 0;
  128. instance->front = 47;
  129. }
  130. } else {
  131. if(--instance->count_key != 0) {
  132. ret = level_duration_make(level, level ? instance->te : instance->te * 30);
  133. if(level)
  134. instance->time_high += instance->te;
  135. else
  136. instance->time_low += instance->te * 30;
  137. } else {
  138. instance->count_key = instance->count_key_package + 2;
  139. instance->front = 48;
  140. ret = level_duration_make(level, level ? instance->te : instance->timeout * 1000);
  141. if(level)
  142. instance->time_high += instance->te;
  143. else
  144. instance->time_low += instance->timeout * 1000;
  145. }
  146. }
  147. }
  148. instance->front++;
  149. if(instance->front == 50) {
  150. instance->repeat--;
  151. instance->front = 0;
  152. }
  153. return ret;
  154. }
  155. SubGhzDecoderPrinceton* subghz_decoder_princeton_alloc(void) {
  156. SubGhzDecoderPrinceton* instance = furi_alloc(sizeof(SubGhzDecoderPrinceton));
  157. instance->te = SUBGHZ_PT_SHORT;
  158. instance->common.name = "Princeton";
  159. instance->common.code_min_count_bit_for_found = 24;
  160. instance->common.te_short = 400; //150;
  161. instance->common.te_long = 1200; //450;
  162. instance->common.te_delta = 250; //50;
  163. instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
  164. instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_decoder_princeton_to_str;
  165. instance->common.to_save_file =
  166. (SubGhzProtocolCommonSaveFile)subghz_decoder_princeton_to_save_file;
  167. instance->common.to_load_protocol_from_file =
  168. (SubGhzProtocolCommonLoadFromFile)subghz_decoder_princeton_to_load_protocol_from_file;
  169. instance->common.to_load_protocol =
  170. (SubGhzProtocolCommonLoadFromRAW)subghz_decoder_princeton_to_load_protocol;
  171. instance->common.get_upload_protocol =
  172. (SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_princeton_send_key;
  173. return instance;
  174. }
  175. void subghz_decoder_princeton_free(SubGhzDecoderPrinceton* instance) {
  176. furi_assert(instance);
  177. free(instance);
  178. }
  179. uint16_t subghz_protocol_princeton_get_te(void* context) {
  180. SubGhzDecoderPrinceton* instance = context;
  181. return instance->te;
  182. }
  183. bool subghz_protocol_princeton_send_key(
  184. SubGhzDecoderPrinceton* instance,
  185. SubGhzProtocolCommonEncoder* encoder) {
  186. furi_assert(instance);
  187. furi_assert(encoder);
  188. size_t index = 0;
  189. encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2;
  190. if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
  191. //Send key data
  192. for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
  193. if(bit_read(instance->common.code_last_found, i - 1)) {
  194. //send bit 1
  195. encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te * 3);
  196. encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te);
  197. } else {
  198. //send bit 0
  199. encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te);
  200. encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 3);
  201. }
  202. }
  203. //Send Stop bit
  204. encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te);
  205. //Send PT_GUARD
  206. encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 30);
  207. return true;
  208. }
  209. void subghz_decoder_princeton_reset(SubGhzDecoderPrinceton* instance) {
  210. instance->common.parser_step = PrincetonDecoderStepReset;
  211. }
  212. void subghz_decoder_princeton_parse(
  213. SubGhzDecoderPrinceton* instance,
  214. bool level,
  215. uint32_t duration) {
  216. switch(instance->common.parser_step) {
  217. case PrincetonDecoderStepReset:
  218. if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 36) <
  219. instance->common.te_delta * 36)) {
  220. //Found Preambula
  221. instance->common.parser_step = PrincetonDecoderStepSaveDuration;
  222. instance->common.code_found = 0;
  223. instance->common.code_count_bit = 0;
  224. instance->te = 0;
  225. }
  226. break;
  227. case PrincetonDecoderStepSaveDuration:
  228. //save duration
  229. if(level) {
  230. instance->common.te_last = duration;
  231. instance->te += duration;
  232. instance->common.parser_step = PrincetonDecoderStepCheckDuration;
  233. }
  234. break;
  235. case PrincetonDecoderStepCheckDuration:
  236. if(!level) {
  237. if(duration >= (instance->common.te_short * 10 + instance->common.te_delta)) {
  238. instance->common.parser_step = PrincetonDecoderStepSaveDuration;
  239. if(instance->common.code_count_bit ==
  240. instance->common.code_min_count_bit_for_found) {
  241. instance->te /= (instance->common.code_count_bit * 4 + 1);
  242. instance->common.code_last_found = instance->common.code_found;
  243. instance->common.code_last_count_bit = instance->common.code_count_bit;
  244. instance->common.serial = instance->common.code_found >> 4;
  245. instance->common.btn = (uint8_t)instance->common.code_found & 0x00000F;
  246. if(instance->common.callback)
  247. instance->common.callback(
  248. (SubGhzProtocolCommon*)instance, instance->common.context);
  249. }
  250. instance->common.code_found = 0;
  251. instance->common.code_count_bit = 0;
  252. instance->te = 0;
  253. break;
  254. }
  255. instance->te += duration;
  256. if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
  257. instance->common.te_delta) &&
  258. (DURATION_DIFF(duration, instance->common.te_long) <
  259. instance->common.te_delta * 3)) {
  260. subghz_protocol_common_add_bit(&instance->common, 0);
  261. instance->common.parser_step = PrincetonDecoderStepSaveDuration;
  262. } else if(
  263. (DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
  264. instance->common.te_delta * 3) &&
  265. (DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
  266. subghz_protocol_common_add_bit(&instance->common, 1);
  267. instance->common.parser_step = PrincetonDecoderStepSaveDuration;
  268. } else {
  269. instance->common.parser_step = PrincetonDecoderStepReset;
  270. }
  271. } else {
  272. instance->common.parser_step = PrincetonDecoderStepReset;
  273. }
  274. break;
  275. }
  276. }
  277. void subghz_decoder_princeton_to_str(SubGhzDecoderPrinceton* instance, string_t output) {
  278. uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
  279. uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
  280. instance->common.code_last_found, instance->common.code_last_count_bit);
  281. uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
  282. string_cat_printf(
  283. output,
  284. "%s %dbit\r\n"
  285. "Key:0x%08lX\r\n"
  286. "Yek:0x%08lX\r\n"
  287. "Sn:0x%05lX BTN:%02X\r\n"
  288. "Te:%dus\r\n",
  289. instance->common.name,
  290. instance->common.code_last_count_bit,
  291. code_found_lo,
  292. code_found_reverse_lo,
  293. instance->common.serial,
  294. instance->common.btn,
  295. instance->te);
  296. }
  297. bool subghz_decoder_princeton_to_save_file(
  298. SubGhzDecoderPrinceton* instance,
  299. FlipperFile* flipper_file) {
  300. bool res = subghz_protocol_common_to_save_file((SubGhzProtocolCommon*)instance, flipper_file);
  301. if(res) {
  302. res = flipper_file_write_uint32(flipper_file, "TE", &instance->te, 1);
  303. if(!res) FURI_LOG_E(SUBGHZ_PARSER_TAG, "Unable to add Te");
  304. }
  305. return res;
  306. }
  307. bool subghz_decoder_princeton_to_load_protocol_from_file(
  308. FlipperFile* flipper_file,
  309. SubGhzDecoderPrinceton* instance,
  310. const char* file_path) {
  311. bool loaded = subghz_protocol_common_to_load_protocol_from_file(
  312. (SubGhzProtocolCommon*)instance, flipper_file);
  313. if(loaded) {
  314. loaded = flipper_file_read_uint32(flipper_file, "TE", (uint32_t*)&instance->te, 1);
  315. if(!loaded) FURI_LOG_E(SUBGHZ_PARSER_TAG, "Missing TE");
  316. }
  317. return loaded;
  318. }
  319. void subghz_decoder_princeton_to_load_protocol(SubGhzDecoderPrinceton* instance, void* context) {
  320. furi_assert(context);
  321. furi_assert(instance);
  322. SubGhzProtocolCommonLoad* data = context;
  323. instance->common.code_last_found = data->code_found;
  324. instance->common.code_last_count_bit = data->code_count_bit;
  325. instance->te = data->param1;
  326. instance->common.serial = instance->common.code_last_found >> 4;
  327. instance->common.btn = (uint8_t)instance->common.code_last_found & 0x00000F;
  328. }