irda.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. #include "flipper.h"
  2. #include "flipper_v2.h"
  3. #include "irda_nec.h"
  4. #include "irda_samsung.h"
  5. #include "irda_protocols.h"
  6. typedef enum {
  7. EventTypeTick,
  8. EventTypeKey,
  9. EventTypeLed,
  10. } EventType;
  11. typedef struct {
  12. union {
  13. InputEvent input;
  14. } value;
  15. EventType type;
  16. } AppEvent;
  17. typedef struct {
  18. uint8_t mode_id;
  19. uint16_t carrier_freq;
  20. uint8_t carrier_duty_cycle_id;
  21. uint8_t nec_packet_id;
  22. uint8_t samsung_packet_id;
  23. } State;
  24. typedef void (*ModeInput)(AppEvent*, State*);
  25. typedef void (*ModeRender)(CanvasApi*, State*);
  26. void input_carrier(AppEvent* event, State* state);
  27. void render_carrier(CanvasApi* canvas, State* state);
  28. void input_nec(AppEvent* event, State* state);
  29. void render_nec(CanvasApi* canvas, State* state);
  30. void render_carrier(CanvasApi* canvas, State* state);
  31. void input_samsung(AppEvent* event, State* state);
  32. void render_samsung(CanvasApi* canvas, State* state);
  33. typedef struct {
  34. ModeRender render;
  35. ModeInput input;
  36. } Mode;
  37. typedef struct {
  38. uint8_t addr;
  39. uint8_t data;
  40. } NecPacket;
  41. typedef struct {
  42. uint16_t addr;
  43. uint16_t data;
  44. } SamsungPacket;
  45. const Mode modes[] = {
  46. {.render = render_carrier, .input = input_carrier},
  47. {.render = render_nec, .input = input_nec},
  48. {.render = render_samsung, .input = input_samsung},
  49. };
  50. const NecPacket nec_packets[] = {
  51. {.addr = 0xFF, .data = 0x11},
  52. {.addr = 0xF7, .data = 0x59},
  53. {.addr = 0xFF, .data = 0x01},
  54. {.addr = 0xFF, .data = 0x10},
  55. {.addr = 0xFF, .data = 0x15},
  56. {.addr = 0xFF, .data = 0x25},
  57. {.addr = 0xFF, .data = 0xF0},
  58. };
  59. const SamsungPacket samsung_packets[] = {
  60. {.addr = 0xE0E, .data = 0xF30C},
  61. {.addr = 0xE0E, .data = 0xF40D},
  62. {.addr = 0xE0E, .data = 0xF50E},
  63. };
  64. const float duty_cycles[] = {0.1, 0.25, 0.333, 0.5, 1.0};
  65. void render_carrier(CanvasApi* canvas, State* state) {
  66. canvas->set_font(canvas, FontSecondary);
  67. canvas->draw_str(canvas, 2, 25, "carrier mode >");
  68. canvas->draw_str(canvas, 2, 37, "? /\\ freq | \\/ duty cycle");
  69. {
  70. char buf[24];
  71. sprintf(buf, "frequency: %u Hz", state->carrier_freq);
  72. canvas->draw_str(canvas, 2, 50, buf);
  73. sprintf(
  74. buf, "duty cycle: %d/1000", (int)(duty_cycles[state->carrier_duty_cycle_id] * 1000));
  75. canvas->draw_str(canvas, 2, 62, buf);
  76. }
  77. }
  78. void render_nec(CanvasApi* canvas, State* state) {
  79. canvas->set_font(canvas, FontSecondary);
  80. canvas->draw_str(canvas, 2, 25, "< nec mode >");
  81. canvas->draw_str(canvas, 2, 37, "? /\\ \\/ packet");
  82. {
  83. char buf[24];
  84. sprintf(
  85. buf,
  86. "packet: %02X %02X",
  87. nec_packets[state->nec_packet_id].addr,
  88. nec_packets[state->nec_packet_id].data);
  89. canvas->draw_str(canvas, 2, 50, buf);
  90. }
  91. }
  92. void render_samsung(CanvasApi* canvas, State* state) {
  93. canvas->set_font(canvas, FontSecondary);
  94. canvas->draw_str(canvas, 2, 25, "< samsung32 mode");
  95. canvas->draw_str(canvas, 2, 37, "? /\\ \\/ packet");
  96. {
  97. char buf[24];
  98. sprintf(
  99. buf,
  100. "packet: %02X %02X",
  101. samsung_packets[state->samsung_packet_id].addr,
  102. samsung_packets[state->samsung_packet_id].data);
  103. canvas->draw_str(canvas, 2, 50, buf);
  104. }
  105. }
  106. void input_carrier(AppEvent* event, State* state) {
  107. if(event->value.input.input == InputOk) {
  108. if(event->value.input.state) {
  109. irda_pwm_set(duty_cycles[state->carrier_duty_cycle_id], state->carrier_freq);
  110. } else {
  111. irda_pwm_stop();
  112. }
  113. }
  114. if(event->value.input.state && event->value.input.input == InputUp) {
  115. if(state->carrier_freq < 45000) {
  116. state->carrier_freq += 1000;
  117. } else {
  118. state->carrier_freq = 33000;
  119. }
  120. }
  121. if(event->value.input.state && event->value.input.input == InputDown) {
  122. uint8_t duty_cycles_count = sizeof(duty_cycles) / sizeof(duty_cycles[0]);
  123. if(state->carrier_duty_cycle_id < (duty_cycles_count - 1)) {
  124. state->carrier_duty_cycle_id++;
  125. } else {
  126. state->carrier_duty_cycle_id = 0;
  127. }
  128. }
  129. }
  130. void input_nec(AppEvent* event, State* state) {
  131. uint8_t packets_count = sizeof(nec_packets) / sizeof(nec_packets[0]);
  132. if(event->value.input.input == InputOk) {
  133. if(event->value.input.state) {
  134. vTaskSuspendAll();
  135. ir_nec_send(
  136. nec_packets[state->nec_packet_id].addr, nec_packets[state->nec_packet_id].data);
  137. xTaskResumeAll();
  138. }
  139. }
  140. if(event->value.input.state && event->value.input.input == InputUp) {
  141. if(state->nec_packet_id < (packets_count - 1)) {
  142. state->nec_packet_id++;
  143. } else {
  144. state->nec_packet_id = 0;
  145. }
  146. }
  147. if(event->value.input.state && event->value.input.input == InputDown) {
  148. if(state->nec_packet_id > 0) {
  149. state->nec_packet_id--;
  150. } else {
  151. state->nec_packet_id = packets_count - 1;
  152. }
  153. }
  154. }
  155. void input_samsung(AppEvent* event, State* state) {
  156. uint8_t packets_count = sizeof(samsung_packets) / sizeof(samsung_packets[0]);
  157. if(event->value.input.input == InputOk) {
  158. if(event->value.input.state) {
  159. vTaskSuspendAll();
  160. ir_samsung_send(
  161. samsung_packets[state->samsung_packet_id].addr,
  162. samsung_packets[state->samsung_packet_id].data);
  163. xTaskResumeAll();
  164. }
  165. }
  166. if(event->value.input.state && event->value.input.input == InputUp) {
  167. if(state->samsung_packet_id < (packets_count - 1)) {
  168. state->samsung_packet_id++;
  169. } else {
  170. state->samsung_packet_id = 0;
  171. }
  172. }
  173. if(event->value.input.state && event->value.input.input == InputDown) {
  174. if(state->samsung_packet_id > 0) {
  175. state->samsung_packet_id--;
  176. } else {
  177. state->samsung_packet_id = packets_count - 1;
  178. }
  179. }
  180. }
  181. static void render_callback(CanvasApi* canvas, void* ctx) {
  182. State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25);
  183. canvas->clear(canvas);
  184. canvas->set_color(canvas, ColorBlack);
  185. canvas->set_font(canvas, FontPrimary);
  186. canvas->draw_str(canvas, 2, 12, "irda test");
  187. modes[state->mode_id].render(canvas, state);
  188. release_mutex((ValueMutex*)ctx, state);
  189. }
  190. static void input_callback(InputEvent* input_event, void* ctx) {
  191. osMessageQueueId_t event_queue = (QueueHandle_t)ctx;
  192. AppEvent event;
  193. event.type = EventTypeKey;
  194. event.value.input = *input_event;
  195. osMessageQueuePut(event_queue, &event, 0, 0);
  196. }
  197. void irda(void* p) {
  198. osMessageQueueId_t event_queue = osMessageQueueNew(1, sizeof(AppEvent), NULL);
  199. State _state;
  200. uint8_t mode_count = sizeof(modes) / sizeof(modes[0]);
  201. uint8_t duty_cycles_count = sizeof(duty_cycles) / sizeof(duty_cycles[0]);
  202. _state.carrier_duty_cycle_id = duty_cycles_count - 2;
  203. _state.carrier_freq = 36000;
  204. _state.mode_id = 0;
  205. _state.nec_packet_id = 0;
  206. _state.samsung_packet_id = 0;
  207. ValueMutex state_mutex;
  208. if(!init_mutex(&state_mutex, &_state, sizeof(State))) {
  209. printf("cannot create mutex\n");
  210. furiac_exit(NULL);
  211. }
  212. Widget* widget = widget_alloc();
  213. widget_draw_callback_set(widget, render_callback, &state_mutex);
  214. widget_input_callback_set(widget, input_callback, event_queue);
  215. // Open GUI and register widget
  216. GuiApi* gui = (GuiApi*)furi_open("gui");
  217. if(gui == NULL) {
  218. printf("gui is not available\n");
  219. furiac_exit(NULL);
  220. }
  221. gui->add_widget(gui, widget, GuiLayerFullscreen);
  222. AppEvent event;
  223. while(1) {
  224. osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, osWaitForever);
  225. State* state = (State*)acquire_mutex_block(&state_mutex);
  226. if(event_status == osOK) {
  227. if(event.type == EventTypeKey) {
  228. // press events
  229. if(event.value.input.state && event.value.input.input == InputBack) {
  230. printf("[irda] bye!\n");
  231. // TODO remove all widgets create by app
  232. widget_enabled_set(widget, false);
  233. furiac_exit(NULL);
  234. }
  235. if(event.value.input.state && event.value.input.input == InputLeft) {
  236. if(state->mode_id > 0) {
  237. state->mode_id--;
  238. }
  239. }
  240. if(event.value.input.state && event.value.input.input == InputRight) {
  241. if(state->mode_id < (mode_count - 1)) {
  242. state->mode_id++;
  243. }
  244. }
  245. modes[state->mode_id].input(&event, state);
  246. }
  247. } else {
  248. // event timeout
  249. }
  250. release_mutex(&state_mutex, state);
  251. widget_update(widget);
  252. }
  253. }