sha.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128
  1. /* sha.c
  2. *
  3. * Copyright (C) 2006-2023 wolfSSL Inc.
  4. *
  5. * This file is part of wolfSSL.
  6. *
  7. * wolfSSL is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * wolfSSL is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
  20. */
  21. #ifdef HAVE_CONFIG_H
  22. #include <config.h>
  23. #endif
  24. #include <wolfssl/wolfcrypt/settings.h>
  25. #ifdef DEBUG_WOLFSSL_VERBOSE
  26. #if defined(WOLFSSL_ESPIDF)
  27. #include <esp_log.h>
  28. #else
  29. #include <wolfssl/wolfcrypt/logging.h>
  30. #endif
  31. #endif
  32. #if !defined(NO_SHA)
  33. #if defined(HAVE_FIPS) && defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)
  34. /* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
  35. #define FIPS_NO_WRAPPERS
  36. #ifdef USE_WINDOWS_API
  37. #pragma code_seg(".fipsA$j")
  38. #pragma const_seg(".fipsB$j")
  39. #endif
  40. #endif
  41. #include <wolfssl/wolfcrypt/sha.h>
  42. #include <wolfssl/wolfcrypt/error-crypt.h>
  43. #include <wolfssl/wolfcrypt/hash.h>
  44. #ifdef WOLF_CRYPTO_CB
  45. #include <wolfssl/wolfcrypt/cryptocb.h>
  46. #endif
  47. #ifdef WOLFSSL_IMXRT1170_CAAM
  48. #include <wolfssl/wolfcrypt/port/caam/wolfcaam_fsl_nxp.h>
  49. #endif
  50. /* Assume no hash HW available until supporting HW found. */
  51. #undef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
  52. #if defined(WOLFSSL_ESP32_CRYPT) && \
  53. !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
  54. /* define a single keyword for simplicity & readability
  55. *
  56. * by default the HW acceleration is on for ESP32-WROOM32
  57. * but individual components can be turned off.
  58. */
  59. #define WOLFSSL_USE_ESP32_CRYPT_HASH_HW
  60. #include "wolfssl/wolfcrypt/port/Espressif/esp32-crypt.h"
  61. /* Although we have hardware acceleration,
  62. ** we may need to fall back to software */
  63. #define USE_SHA_SOFTWARE_IMPL
  64. #elif defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW)
  65. /* The ESP32C3 is different; HW crypto here. Not yet implemented.
  66. ** We'll be using software for RISC-V at this time */
  67. #else
  68. #undef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
  69. #endif
  70. #undef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
  71. #if defined(WOLFSSL_ESP32_CRYPT) && \
  72. !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
  73. /* define a single keyword for simplicity & readability
  74. *
  75. * by default the HW acceleration is on for ESP32-WROOM32
  76. * but individual components can be turned off.
  77. */
  78. #define WOLFSSL_USE_ESP32_CRYPT_HASH_HW
  79. #include "wolfssl/wolfcrypt/port/Espressif/esp32-crypt.h"
  80. /* Although we have hardware acceleration,
  81. ** we may need to fall back to software */
  82. #define USE_SHA_SOFTWARE_IMPL
  83. static const char* TAG = "wc_sha";
  84. #elif defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW)
  85. /* The ESP32C3 is different; HW crypto here. Not yet implemented.
  86. ** We'll be using software for RISC-V at this time */
  87. static const char* TAG = "wc_sha-c3";
  88. #else
  89. #undef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
  90. #endif
  91. #if defined(WOLFSSL_TI_HASH)
  92. /* #include <wolfcrypt/src/port/ti/ti-hash.c> included by wc_port.c */
  93. #else
  94. #include <wolfssl/wolfcrypt/logging.h>
  95. #ifdef NO_INLINE
  96. #include <wolfssl/wolfcrypt/misc.h>
  97. #else
  98. #define WOLFSSL_MISC_INCLUDED
  99. #include <wolfcrypt/src/misc.c>
  100. #endif
  101. /* Hardware Acceleration */
  102. #if defined(WOLFSSL_PIC32MZ_HASH)
  103. #include <wolfssl/wolfcrypt/port/pic32/pic32mz-crypt.h>
  104. #elif defined(STM32_HASH)
  105. /* Supports CubeMX HAL or Standard Peripheral Library */
  106. int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
  107. {
  108. if (sha == NULL) {
  109. return BAD_FUNC_ARG;
  110. }
  111. (void)devId;
  112. (void)heap;
  113. wc_Stm32_Hash_Init(&sha->stmCtx);
  114. return 0;
  115. }
  116. int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
  117. {
  118. int ret;
  119. if (sha == NULL || (data == NULL && len > 0)) {
  120. return BAD_FUNC_ARG;
  121. }
  122. ret = wolfSSL_CryptHwMutexLock();
  123. if (ret == 0) {
  124. ret = wc_Stm32_Hash_Update(&sha->stmCtx, HASH_AlgoSelection_SHA1,
  125. data, len, WC_SHA_BLOCK_SIZE);
  126. wolfSSL_CryptHwMutexUnLock();
  127. }
  128. return ret;
  129. }
  130. int wc_ShaFinal(wc_Sha* sha, byte* hash)
  131. {
  132. int ret;
  133. if (sha == NULL || hash == NULL) {
  134. return BAD_FUNC_ARG;
  135. }
  136. ret = wolfSSL_CryptHwMutexLock();
  137. if (ret == 0) {
  138. ret = wc_Stm32_Hash_Final(&sha->stmCtx, HASH_AlgoSelection_SHA1,
  139. hash, WC_SHA_DIGEST_SIZE);
  140. wolfSSL_CryptHwMutexUnLock();
  141. }
  142. (void)wc_InitSha(sha); /* reset state */
  143. return ret;
  144. }
  145. #elif defined(FREESCALE_LTC_SHA)
  146. #include "fsl_ltc.h"
  147. int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
  148. {
  149. if (sha == NULL) {
  150. return BAD_FUNC_ARG;
  151. }
  152. (void)devId;
  153. (void)heap;
  154. LTC_HASH_Init(LTC_BASE, &sha->ctx, kLTC_Sha1, NULL, 0);
  155. return 0;
  156. }
  157. int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
  158. {
  159. LTC_HASH_Update(&sha->ctx, data, len);
  160. return 0;
  161. }
  162. int wc_ShaFinal(wc_Sha* sha, byte* hash)
  163. {
  164. word32 hashlen = WC_SHA_DIGEST_SIZE;
  165. LTC_HASH_Finish(&sha->ctx, hash, &hashlen);
  166. return wc_InitSha(sha); /* reset state */
  167. }
  168. #elif defined(FREESCALE_MMCAU_SHA)
  169. #ifdef FREESCALE_MMCAU_CLASSIC_SHA
  170. #include "cau_api.h"
  171. #else
  172. #include "fsl_mmcau.h"
  173. #endif
  174. #define USE_SHA_SOFTWARE_IMPL /* Only for API's, actual transform is here */
  175. #define XTRANSFORM(S,B) Transform((S),(B))
  176. #define XTRANSFORM_LEN(S,B,L) Transform_Len((S),(B),(L))
  177. #ifndef WC_HASH_DATA_ALIGNMENT
  178. /* these hardware API's require 4 byte (word32) alignment */
  179. #define WC_HASH_DATA_ALIGNMENT 4
  180. #endif
  181. static int InitSha(wc_Sha* sha)
  182. {
  183. int ret = 0;
  184. ret = wolfSSL_CryptHwMutexLock();
  185. if (ret != 0) {
  186. return ret;
  187. }
  188. #ifdef FREESCALE_MMCAU_CLASSIC_SHA
  189. cau_sha1_initialize_output(sha->digest);
  190. #else
  191. MMCAU_SHA1_InitializeOutput((word32*)sha->digest);
  192. #endif
  193. wolfSSL_CryptHwMutexUnLock();
  194. sha->buffLen = 0;
  195. sha->loLen = 0;
  196. sha->hiLen = 0;
  197. return ret;
  198. }
  199. static int Transform(wc_Sha* sha, const byte* data)
  200. {
  201. int ret = wolfSSL_CryptHwMutexLock();
  202. if (ret == 0) {
  203. #ifdef FREESCALE_MMCAU_CLASSIC_SHA
  204. cau_sha1_hash_n((byte*)data, 1, sha->digest);
  205. #else
  206. MMCAU_SHA1_HashN((byte*)data, 1, (word32*)sha->digest);
  207. #endif
  208. wolfSSL_CryptHwMutexUnLock();
  209. }
  210. return ret;
  211. }
  212. static int Transform_Len(wc_Sha* sha, const byte* data, word32 len)
  213. {
  214. int ret = wolfSSL_CryptHwMutexLock();
  215. if (ret == 0) {
  216. #if defined(WC_HASH_DATA_ALIGNMENT) && WC_HASH_DATA_ALIGNMENT > 0
  217. if ((wc_ptr_t)data % WC_HASH_DATA_ALIGNMENT) {
  218. /* data pointer is NOT aligned,
  219. * so copy and perform one block at a time */
  220. byte* local = (byte*)sha->buffer;
  221. while (len >= WC_SHA_BLOCK_SIZE) {
  222. XMEMCPY(local, data, WC_SHA_BLOCK_SIZE);
  223. #ifdef FREESCALE_MMCAU_CLASSIC_SHA
  224. cau_sha1_hash_n(local, 1, sha->digest);
  225. #else
  226. MMCAU_SHA1_HashN(local, 1, sha->digest);
  227. #endif
  228. data += WC_SHA_BLOCK_SIZE;
  229. len -= WC_SHA_BLOCK_SIZE;
  230. }
  231. }
  232. else
  233. #endif
  234. {
  235. #ifdef FREESCALE_MMCAU_CLASSIC_SHA
  236. cau_sha1_hash_n((byte*)data, len/WC_SHA_BLOCK_SIZE, sha->digest);
  237. #else
  238. MMCAU_SHA1_HashN((byte*)data, len/WC_SHA_BLOCK_SIZE,
  239. (word32*)sha->digest);
  240. #endif
  241. }
  242. wolfSSL_CryptHwMutexUnLock();
  243. }
  244. return ret;
  245. }
  246. #elif defined(WOLFSSL_IMX6_CAAM) && !defined(NO_IMX6_CAAM_HASH) && \
  247. !defined(WOLFSSL_QNX_CAAM)
  248. /* wolfcrypt/src/port/caam/caam_sha.c */
  249. #elif defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW) || \
  250. defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW)
  251. /* This function initializes SHA.
  252. ** This is automatically called by wc_ShaHash */
  253. static int InitSha(wc_Sha* sha)
  254. {
  255. int ret = 0;
  256. sha->digest[0] = 0x67452301L;
  257. sha->digest[1] = 0xEFCDAB89L;
  258. sha->digest[2] = 0x98BADCFEL;
  259. sha->digest[3] = 0x10325476L;
  260. sha->digest[4] = 0xC3D2E1F0L;
  261. sha->buffLen = 0;
  262. sha->loLen = 0;
  263. sha->hiLen = 0;
  264. /* HW needs to be carefully initialized, taking into account soft copy.
  265. ** If already in use; copy may revert to SW as needed. */
  266. ret = esp_sha_init(&(sha->ctx), WC_HASH_TYPE_SHA);
  267. return ret;
  268. }
  269. #elif (defined(WOLFSSL_RENESAS_TSIP_TLS) || \
  270. defined(WOLFSSL_RENESAS_TSIP_CRYPTONLY)) && \
  271. !defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH)
  272. /* implemented in wolfcrypt/src/port/Renesas/renesas_tsip_sha.c */
  273. #elif defined(WOLFSSL_RENESAS_RSIP) && \
  274. !defined(NO_WOLFSSL_RENESAS_FSPSM_HASH)
  275. /* implemented in wolfcrypt/src/port/Renesas/renesas_fspsm_sha.c */
  276. #elif defined(WOLFSSL_IMXRT_DCP)
  277. #include <wolfssl/wolfcrypt/port/nxp/dcp_port.h>
  278. /* implemented in wolfcrypt/src/port/nxp/dcp_port.c */
  279. #elif defined(WOLFSSL_SILABS_SE_ACCEL)
  280. /* implemented in wolfcrypt/src/port/silabs/silabs_hash.c */
  281. #elif defined(WOLFSSL_RENESAS_RX64_HASH)
  282. /* implemented in wolfcrypt/src/port/Renesas/renesas_rx64_hw_sha.c */
  283. #elif defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_HASH)
  284. #include <wolfssl/wolfcrypt/port/nxp/se050_port.h>
  285. int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
  286. {
  287. if (sha == NULL) {
  288. return BAD_FUNC_ARG;
  289. }
  290. (void)devId;
  291. return se050_hash_init(&sha->se050Ctx, heap);
  292. }
  293. int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
  294. {
  295. return se050_hash_update(&sha->se050Ctx, data, len);
  296. }
  297. int wc_ShaFinal(wc_Sha* sha, byte* hash)
  298. {
  299. int ret = 0;
  300. ret = se050_hash_final(&sha->se050Ctx, hash, WC_SHA_DIGEST_SIZE,
  301. kAlgorithm_SSS_SHA1);
  302. return ret;
  303. }
  304. int wc_ShaFinalRaw(wc_Sha* sha, byte* hash)
  305. {
  306. int ret = 0;
  307. ret = se050_hash_final(&sha->se050Ctx, hash, WC_SHA_DIGEST_SIZE,
  308. kAlgorithm_SSS_SHA1);
  309. return ret;
  310. }
  311. #elif defined(WOLFSSL_HAVE_PSA) && !defined(WOLFSSL_PSA_NO_HASH)
  312. /* implemented in wolfcrypt/src/port/psa/psa_hash.c */
  313. #else
  314. /* Software implementation */
  315. #define USE_SHA_SOFTWARE_IMPL
  316. static int InitSha(wc_Sha* sha)
  317. {
  318. int ret = 0;
  319. sha->digest[0] = 0x67452301L;
  320. sha->digest[1] = 0xEFCDAB89L;
  321. sha->digest[2] = 0x98BADCFEL;
  322. sha->digest[3] = 0x10325476L;
  323. sha->digest[4] = 0xC3D2E1F0L;
  324. sha->buffLen = 0;
  325. sha->loLen = 0;
  326. sha->hiLen = 0;
  327. #ifdef WOLFSSL_HASH_FLAGS
  328. sha->flags = 0;
  329. #endif
  330. return ret;
  331. }
  332. #endif /* End Hardware Acceleration */
  333. /* Software implementation */
  334. #ifdef USE_SHA_SOFTWARE_IMPL
  335. static WC_INLINE void AddLength(wc_Sha* sha, word32 len)
  336. {
  337. word32 tmp = sha->loLen;
  338. if ((sha->loLen += len) < tmp)
  339. sha->hiLen++; /* carry low to high */
  340. }
  341. /* Check if custom wc_Sha transform is used */
  342. #ifndef XTRANSFORM
  343. #define XTRANSFORM(S,B) Transform((S),(B))
  344. #define blk0(i) (W[i] = *((word32*)&data[(i)*sizeof(word32)]))
  345. #define blk1(i) (W[(i)&15] = \
  346. rotlFixed(W[((i)+13)&15]^W[((i)+8)&15]^W[((i)+2)&15]^W[(i)&15],1))
  347. #define f1(x,y,z) ((z)^((x) &((y)^(z))))
  348. #define f2(x,y,z) ((x)^(y)^(z))
  349. #define f3(x,y,z) (((x)&(y))|((z)&((x)|(y))))
  350. #define f4(x,y,z) ((x)^(y)^(z))
  351. #ifdef WOLFSSL_NUCLEUS_1_2
  352. /* nucleus.h also defines R1-R4 */
  353. #undef R1
  354. #undef R2
  355. #undef R3
  356. #undef R4
  357. #endif
  358. /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
  359. #define R0(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk0((i)) + 0x5A827999+ \
  360. rotlFixed((v),5); (w) = rotlFixed((w),30);
  361. #define R1(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk1((i)) + 0x5A827999+ \
  362. rotlFixed((v),5); (w) = rotlFixed((w),30);
  363. #define R2(v,w,x,y,z,i) (z)+= f2((w),(x),(y)) + blk1((i)) + 0x6ED9EBA1+ \
  364. rotlFixed((v),5); (w) = rotlFixed((w),30);
  365. #define R3(v,w,x,y,z,i) (z)+= f3((w),(x),(y)) + blk1((i)) + 0x8F1BBCDC+ \
  366. rotlFixed((v),5); (w) = rotlFixed((w),30);
  367. #define R4(v,w,x,y,z,i) (z)+= f4((w),(x),(y)) + blk1((i)) + 0xCA62C1D6+ \
  368. rotlFixed((v),5); (w) = rotlFixed((w),30);
  369. static int Transform(wc_Sha* sha, const byte* data)
  370. {
  371. word32 W[WC_SHA_BLOCK_SIZE / sizeof(word32)];
  372. /* Copy context->state[] to working vars */
  373. word32 a = sha->digest[0];
  374. word32 b = sha->digest[1];
  375. word32 c = sha->digest[2];
  376. word32 d = sha->digest[3];
  377. word32 e = sha->digest[4];
  378. #ifdef USE_SLOW_SHA
  379. word32 t, i;
  380. for (i = 0; i < 16; i++) {
  381. R0(a, b, c, d, e, i);
  382. t = e; e = d; d = c; c = b; b = a; a = t;
  383. }
  384. for (; i < 20; i++) {
  385. R1(a, b, c, d, e, i);
  386. t = e; e = d; d = c; c = b; b = a; a = t;
  387. }
  388. for (; i < 40; i++) {
  389. R2(a, b, c, d, e, i);
  390. t = e; e = d; d = c; c = b; b = a; a = t;
  391. }
  392. for (; i < 60; i++) {
  393. R3(a, b, c, d, e, i);
  394. t = e; e = d; d = c; c = b; b = a; a = t;
  395. }
  396. for (; i < 80; i++) {
  397. R4(a, b, c, d, e, i);
  398. t = e; e = d; d = c; c = b; b = a; a = t;
  399. }
  400. #else
  401. /* nearly 1 K bigger in code size but 25% faster */
  402. /* 4 rounds of 20 operations each. Loop unrolled. */
  403. R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
  404. R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
  405. R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
  406. R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
  407. R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
  408. R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
  409. R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
  410. R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
  411. R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
  412. R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
  413. R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
  414. R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
  415. R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
  416. R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
  417. R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
  418. R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
  419. R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
  420. R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
  421. R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
  422. R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
  423. #endif
  424. /* Add the working vars back into digest state[] */
  425. sha->digest[0] += a;
  426. sha->digest[1] += b;
  427. sha->digest[2] += c;
  428. sha->digest[3] += d;
  429. sha->digest[4] += e;
  430. (void)data; /* Not used */
  431. return 0;
  432. }
  433. #endif /* XTRANSFORM when USE_SHA_SOFTWARE_IMPL is enabled */
  434. /*
  435. ** wolfCrypt InitSha external wrapper.
  436. **
  437. ** we'll assume this is ALWAYS for a new, uninitialized sha
  438. */
  439. int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
  440. {
  441. int ret = 0;
  442. if (sha == NULL) {
  443. return BAD_FUNC_ARG;
  444. }
  445. sha->heap = heap;
  446. #ifdef WOLF_CRYPTO_CB
  447. sha->devId = devId;
  448. sha->devCtx = NULL;
  449. #endif
  450. #ifdef WOLFSSL_USE_ESP32_CRYPT_HASH_HW
  451. if (sha->ctx.mode != ESP32_SHA_INIT) {
  452. /* it may be interesting to see old values during debugging */
  453. ESP_LOGV(TAG, "Set ctx mode from prior value: %d", sha->ctx.mode);
  454. }
  455. /* We know this is a fresh, uninitialized item, so set to INIT */
  456. sha->ctx.mode = ESP32_SHA_INIT;
  457. #endif
  458. ret = InitSha(sha);
  459. if (ret != 0) {
  460. return ret;
  461. }
  462. #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
  463. ret = wolfAsync_DevCtxInit(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA,
  464. sha->heap, devId);
  465. #else
  466. (void)devId;
  467. #endif /* WOLFSSL_ASYNC_CRYPT */
  468. #ifdef WOLFSSL_IMXRT1170_CAAM
  469. ret = wc_CAAM_HashInit(&sha->hndl, &sha->ctx, WC_HASH_TYPE_SHA);
  470. #endif
  471. return ret;
  472. } /* wc_InitSha_ex */
  473. /* do block size increments/updates */
  474. int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
  475. {
  476. int ret = 0;
  477. word32 blocksLen;
  478. byte* local;
  479. if (sha == NULL || (data == NULL && len > 0)) {
  480. return BAD_FUNC_ARG;
  481. }
  482. if (data == NULL && len == 0) {
  483. /* valid, but do nothing */
  484. return 0;
  485. }
  486. #ifdef WOLF_CRYPTO_CB
  487. if (sha->devId != INVALID_DEVID) {
  488. ret = wc_CryptoCb_ShaHash(sha, data, len, NULL);
  489. if (ret != CRYPTOCB_UNAVAILABLE)
  490. return ret;
  491. ret = 0; /* reset ret */
  492. /* fall-through when unavailable */
  493. }
  494. #endif
  495. #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
  496. if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
  497. #if defined(HAVE_INTEL_QA)
  498. return IntelQaSymSha(&sha->asyncDev, NULL, data, len);
  499. #endif
  500. }
  501. #endif /* WOLFSSL_ASYNC_CRYPT */
  502. /* check that internal buffLen is valid */
  503. if (sha->buffLen >= WC_SHA_BLOCK_SIZE) {
  504. return BUFFER_E;
  505. }
  506. /* add length for final */
  507. AddLength(sha, len);
  508. local = (byte*)sha->buffer;
  509. /* process any remainder from previous operation */
  510. if (sha->buffLen > 0) {
  511. blocksLen = min(len, WC_SHA_BLOCK_SIZE - sha->buffLen);
  512. XMEMCPY(&local[sha->buffLen], data, blocksLen);
  513. sha->buffLen += blocksLen;
  514. data += blocksLen;
  515. len -= blocksLen;
  516. if (sha->buffLen == WC_SHA_BLOCK_SIZE) {
  517. #if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
  518. if (sha->ctx.mode == ESP32_SHA_INIT) {
  519. #if defined(WOLFSSL_DEBUG_MUTEX)
  520. {
  521. ESP_LOGI(TAG, "wc_ShaUpdate try hardware");
  522. }
  523. #endif
  524. esp_sha_try_hw_lock(&sha->ctx);
  525. }
  526. #endif
  527. #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
  528. #if (defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32C6)) \
  529. && defined(WOLFSSL_ESP32_CRYPT) && \
  530. !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
  531. if (esp_sha_need_byte_reversal(&sha->ctx))
  532. #endif
  533. {
  534. ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
  535. }
  536. #endif
  537. #if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
  538. if (sha->ctx.mode == ESP32_SHA_SW) {
  539. #if defined(WOLFSSL_DEBUG_MUTEX)
  540. {
  541. ESP_LOGI(TAG, "wc_ShaUpdate process software");
  542. }
  543. #endif
  544. ret = XTRANSFORM(sha, (const byte*)local);
  545. }
  546. else {
  547. #if defined(WOLFSSL_DEBUG_MUTEX)
  548. {
  549. ESP_LOGI(TAG, "wc_ShaUpdate process hardware");
  550. }
  551. #endif
  552. esp_sha_process(sha, (const byte*)local);
  553. }
  554. #elif defined (WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW)
  555. ESP_LOGI(TAG, "wc_ShaUpdate not implemented for ESP32C3");
  556. ret = XTRANSFORM(sha, (const byte*)local);
  557. #else
  558. ret = XTRANSFORM(sha, (const byte*)local);
  559. #endif
  560. if (ret != 0) {
  561. return ret;
  562. }
  563. sha->buffLen = 0; /* Nothing left to do, so set to zero. */
  564. } /* (sha->buffLen == WC_SHA_BLOCK_SIZE) */
  565. } /* (sha->buffLen > 0) Process any remainder from previous operation. */
  566. /* process blocks */
  567. #ifdef XTRANSFORM_LEN
  568. /* get number of blocks */
  569. /* 64-1 = 0x3F (~ Inverted = 0xFFFFFFC0) */
  570. /* len (masked by 0xFFFFFFC0) returns block aligned length */
  571. blocksLen = len & ~(WC_SHA_BLOCK_SIZE-1);
  572. if (blocksLen > 0) {
  573. /* Byte reversal performed in function if required. */
  574. XTRANSFORM_LEN(sha, data, blocksLen);
  575. data += blocksLen;
  576. len -= blocksLen;
  577. }
  578. #else
  579. while (len >= WC_SHA_BLOCK_SIZE) {
  580. word32* local32 = sha->buffer;
  581. /* optimization to avoid memcpy if data pointer is properly aligned */
  582. /* Little Endian requires byte swap, so can't use data directly */
  583. #if defined(WC_HASH_DATA_ALIGNMENT) && !defined(LITTLE_ENDIAN_ORDER)
  584. if (((wc_ptr_t)data % WC_HASH_DATA_ALIGNMENT) == 0) {
  585. local32 = (word32*)data;
  586. }
  587. else
  588. #endif
  589. {
  590. XMEMCPY(local32, data, WC_SHA_BLOCK_SIZE);
  591. }
  592. data += WC_SHA_BLOCK_SIZE;
  593. len -= WC_SHA_BLOCK_SIZE;
  594. #if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
  595. if (sha->ctx.mode == ESP32_SHA_INIT){
  596. esp_sha_try_hw_lock(&sha->ctx);
  597. }
  598. #endif
  599. #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
  600. #if (defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32C6)) && \
  601. defined(WOLFSSL_ESP32_CRYPT) && \
  602. !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
  603. if (esp_sha_need_byte_reversal(&sha->ctx))
  604. #endif
  605. {
  606. ByteReverseWords(local32, local32, WC_SHA_BLOCK_SIZE);
  607. }
  608. #endif
  609. #if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
  610. if (sha->ctx.mode == ESP32_SHA_SW){
  611. ret = XTRANSFORM(sha, (const byte*)local32);
  612. }
  613. else {
  614. esp_sha_process(sha, (const byte*)local32);
  615. }
  616. #else
  617. ret = XTRANSFORM(sha, (const byte*)local32);
  618. #endif
  619. }
  620. #endif /* XTRANSFORM_LEN */
  621. /* save remainder */
  622. if (len > 0) {
  623. XMEMCPY(local, data, len);
  624. sha->buffLen = len;
  625. }
  626. return ret;
  627. }
  628. int wc_ShaFinalRaw(wc_Sha* sha, byte* hash)
  629. {
  630. #ifdef LITTLE_ENDIAN_ORDER
  631. word32 digest[WC_SHA_DIGEST_SIZE / sizeof(word32)];
  632. #endif
  633. if (sha == NULL || hash == NULL) {
  634. return BAD_FUNC_ARG;
  635. }
  636. #ifdef LITTLE_ENDIAN_ORDER
  637. #if (defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32C6)) && \
  638. defined(WOLFSSL_ESP32_CRYPT) && \
  639. !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
  640. if (esp_sha_need_byte_reversal(&sha->ctx))
  641. #endif
  642. {
  643. ByteReverseWords((word32*)digest, (word32*)sha->digest, WC_SHA_DIGEST_SIZE);
  644. }
  645. XMEMCPY(hash, (byte *)&digest[0], WC_SHA_DIGEST_SIZE);
  646. #else
  647. XMEMCPY(hash, sha->digest, WC_SHA_DIGEST_SIZE);
  648. #endif
  649. return 0;
  650. }
  651. /*
  652. ** Finalizes hashing of data. Result is placed into hash.
  653. ** Resets state of sha struct.
  654. */
  655. int wc_ShaFinal(wc_Sha* sha, byte* hash)
  656. {
  657. int ret;
  658. byte* local;
  659. if (sha == NULL || hash == NULL) {
  660. return BAD_FUNC_ARG;
  661. }
  662. local = (byte*)sha->buffer;
  663. #ifdef WOLF_CRYPTO_CB
  664. if (sha->devId != INVALID_DEVID) {
  665. ret = wc_CryptoCb_ShaHash(sha, NULL, 0, hash);
  666. if (ret != CRYPTOCB_UNAVAILABLE)
  667. return ret;
  668. /* fall-through when unavailable */
  669. }
  670. #endif
  671. #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
  672. if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
  673. #if defined(HAVE_INTEL_QA)
  674. return IntelQaSymSha(&sha->asyncDev, hash, NULL, WC_SHA_DIGEST_SIZE);
  675. #endif
  676. }
  677. #endif /* WOLFSSL_ASYNC_CRYPT */
  678. /* we'll add a 0x80 byte at the end,
  679. ** so make sure we have appropriate buffer length. */
  680. if (sha->buffLen > WC_SHA_BLOCK_SIZE - 1) {
  681. /* exit with error code if there's a bad buffer size in buffLen */
  682. return BAD_STATE_E;
  683. } /* buffLen check */
  684. local[sha->buffLen++] = 0x80; /* add 1 */
  685. /* pad with zeros */
  686. if (sha->buffLen > WC_SHA_PAD_SIZE) {
  687. XMEMSET(&local[sha->buffLen], 0, WC_SHA_BLOCK_SIZE - sha->buffLen);
  688. sha->buffLen += WC_SHA_BLOCK_SIZE - sha->buffLen;
  689. #if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
  690. /* For a fresh sha.ctx, try to use hardware acceleration */
  691. if (sha->ctx.mode == ESP32_SHA_INIT) {
  692. esp_sha_try_hw_lock(&sha->ctx);
  693. }
  694. #endif
  695. #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
  696. #if (defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32C6)) && \
  697. defined(WOLFSSL_ESP32_CRYPT) && \
  698. !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
  699. if (esp_sha_need_byte_reversal(&sha->ctx))
  700. #endif
  701. {
  702. ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
  703. }
  704. #endif
  705. #if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
  706. /* if HW was busy, we may need to fall back to SW. */
  707. if (sha->ctx.mode == ESP32_SHA_SW) {
  708. ret = XTRANSFORM(sha, (const byte*)local);
  709. }
  710. else {
  711. ret = esp_sha_process(sha, (const byte*)local);
  712. }
  713. #else
  714. /*
  715. ** The #if defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW) also falls
  716. ** though here to SW, as it's not yet implemented for HW.
  717. */
  718. ret = XTRANSFORM(sha, (const byte*)local);
  719. #endif
  720. if (ret != 0) {
  721. return ret;
  722. }
  723. sha->buffLen = 0;
  724. } /* (sha->buffLen > WC_SHA_PAD_SIZE) */
  725. XMEMSET(&local[sha->buffLen], 0, WC_SHA_PAD_SIZE - sha->buffLen);
  726. #if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
  727. if (sha->ctx.mode == ESP32_SHA_INIT) {
  728. esp_sha_try_hw_lock(&sha->ctx);
  729. }
  730. #endif
  731. #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
  732. #if (defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32C6)) && \
  733. defined(WOLFSSL_ESP32_CRYPT) && \
  734. !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
  735. if (esp_sha_need_byte_reversal(&sha->ctx))
  736. #endif
  737. { /* reminder local also points to sha->buffer */
  738. ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
  739. }
  740. #endif
  741. /* store lengths */
  742. /* put lengths in bits */
  743. sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) + (sha->hiLen << 3);
  744. sha->loLen = sha->loLen << 3;
  745. /* ! length ordering dependent on digest endian type ! */
  746. XMEMCPY(&local[WC_SHA_PAD_SIZE], &sha->hiLen, sizeof(word32));
  747. XMEMCPY(&local[WC_SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32));
  748. #if defined(FREESCALE_MMCAU_SHA)
  749. /* Kinetis requires only these bytes reversed */
  750. ByteReverseWords(&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)],
  751. &sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)],
  752. 2 * sizeof(word32));
  753. #endif
  754. #if (defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32C6)) && \
  755. defined(WOLFSSL_ESP32_CRYPT) && !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
  756. if (sha->ctx.mode == ESP32_SHA_HW) {
  757. #if defined(WOLFSSL_SUPER_VERBOSE_DEBUG)
  758. {
  759. ESP_LOGV(TAG, "Start: Reverse PAD SIZE Endianness.");
  760. }
  761. #endif
  762. ByteReverseWords(&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)], /* out */
  763. &sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)], /* in */
  764. 2 * sizeof(word32) /* byte count to reverse */
  765. );
  766. #if defined(WOLFSSL_SUPER_VERBOSE_DEBUG)
  767. {
  768. ESP_LOGV(TAG, "End: Reverse PAD SIZE Endianness.");
  769. }
  770. #endif
  771. } /* end if (sha->ctx.mode == ESP32_SHA_HW) */
  772. #endif
  773. #if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
  774. if (sha->ctx.mode == ESP32_SHA_SW) {
  775. ret = XTRANSFORM(sha, (const byte*)local);
  776. }
  777. else {
  778. ret = esp_sha_digest_process(sha, 1);
  779. }
  780. /*
  781. ** The #if defined(WOLFSSL_USE_ESP32C3_CRYPT_HASH_HW) also falls
  782. ** though here to SW, as it's not yet implemented for HW.
  783. */
  784. #else
  785. ret = XTRANSFORM(sha, (const byte*)local);
  786. #endif
  787. #ifdef LITTLE_ENDIAN_ORDER
  788. #if (defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32C6)) && \
  789. defined(WOLFSSL_ESP32_CRYPT) && \
  790. !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
  791. if (esp_sha_need_byte_reversal(&sha->ctx))
  792. #endif
  793. {
  794. ByteReverseWords(sha->digest, sha->digest, WC_SHA_DIGEST_SIZE);
  795. }
  796. #endif
  797. XMEMCPY(hash, (byte *)&sha->digest[0], WC_SHA_DIGEST_SIZE);
  798. /* we'll always reset state upon exit and return the error code from above,
  799. * which may cause fall back to SW if HW is busy. we do not return result
  800. * of initSha here */
  801. (void)InitSha(sha); /* reset state */
  802. return ret;
  803. }
  804. #if defined(OPENSSL_EXTRA) || defined(HAVE_CURL)
  805. /* Apply SHA1 transformation to the data */
  806. /* @param sha a pointer to wc_Sha structure */
  807. /* @param data data to be applied SHA1 transformation */
  808. /* @return 0 on successful, otherwise non-zero on failure */
  809. int wc_ShaTransform(wc_Sha* sha, const unsigned char* data)
  810. {
  811. /* sanity check */
  812. if (sha == NULL || data == NULL) {
  813. return BAD_FUNC_ARG;
  814. }
  815. return (Transform(sha, data));
  816. }
  817. #endif
  818. #endif /* USE_SHA_SOFTWARE_IMPL */
  819. /*
  820. ** This function initializes SHA. This is automatically called by wc_ShaHash.
  821. */
  822. int wc_InitSha(wc_Sha* sha)
  823. {
  824. return wc_InitSha_ex(sha, NULL, INVALID_DEVID);
  825. }
  826. #if !defined(WOLFSSL_HAVE_PSA) || defined(WOLFSSL_PSA_NO_HASH)
  827. void wc_ShaFree(wc_Sha* sha)
  828. {
  829. if (sha == NULL)
  830. return;
  831. #if defined(WOLFSSL_ESP32) && !defined(NO_WOLFSSL_ESP32_CRYPT_HASH)
  832. esp_sha_release_unfinished_lock(&sha->ctx);
  833. #endif
  834. #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
  835. wolfAsync_DevCtxFree(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA);
  836. #endif /* WOLFSSL_ASYNC_CRYPT */
  837. #ifdef WOLFSSL_PIC32MZ_HASH
  838. wc_ShaPic32Free(sha);
  839. #endif
  840. #if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_HASH)
  841. se050_hash_free(&sha->se050Ctx);
  842. #endif
  843. #if (defined(WOLFSSL_RENESAS_TSIP_TLS) || \
  844. defined(WOLFSSL_RENESAS_TSIP_CRYPTONLY)) && \
  845. !defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH) || \
  846. defined(WOLFSSL_RENESAS_RX64_HASH)
  847. if (sha->msg != NULL) {
  848. XFREE(sha->msg, sha->heap, DYNAMIC_TYPE_TMP_BUFFER);
  849. sha->msg = NULL;
  850. }
  851. #endif
  852. #ifdef WOLFSSL_IMXRT_DCP
  853. DCPShaFree(sha);
  854. #endif
  855. }
  856. #endif /* !defined(WOLFSSL_HAVE_PSA) || defined(WOLFSSL_PSA_NO_HASH) */
  857. #endif /* !WOLFSSL_TI_HASH */
  858. #if !defined(WOLFSSL_TI_HASH) && !defined(WOLFSSL_IMXRT_DCP)
  859. #if ((!defined(WOLFSSL_RENESAS_TSIP_TLS) && \
  860. !defined(WOLFSSL_RENESAS_TSIP_CRYPTONLY)) || \
  861. defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH)) && \
  862. (!defined(WOLFSSL_RENESAS_RSIP) || \
  863. defined(NO_WOLFSSL_RENESAS_FSPSM_HASH))
  864. #if !defined(WOLFSSL_RENESAS_RX64_HASH)
  865. #if !defined(WOLFSSL_HAVE_PSA) || defined(WOLFSSL_PSA_NO_HASH)
  866. /* wc_ShaGetHash get hash value */
  867. int wc_ShaGetHash(wc_Sha* sha, byte* hash)
  868. {
  869. int ret;
  870. #ifdef WOLFSSL_SMALL_STACK
  871. wc_Sha* tmpSha;
  872. #else
  873. wc_Sha tmpSha[1];
  874. #endif
  875. if (sha == NULL || hash == NULL) {
  876. return BAD_FUNC_ARG;
  877. }
  878. #ifdef WOLFSSL_SMALL_STACK
  879. tmpSha = (wc_Sha*)XMALLOC(sizeof(wc_Sha), NULL,
  880. DYNAMIC_TYPE_TMP_BUFFER);
  881. if (tmpSha == NULL) {
  882. return MEMORY_E;
  883. }
  884. #endif
  885. ret = wc_ShaCopy(sha, tmpSha);
  886. if (ret == 0) {
  887. ret = wc_ShaFinal(tmpSha, hash);
  888. }
  889. #ifdef WOLFSSL_SMALL_STACK
  890. XFREE(tmpSha, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  891. #endif
  892. return ret;
  893. }
  894. int wc_ShaCopy(wc_Sha* src, wc_Sha* dst)
  895. {
  896. int ret = 0;
  897. if (src == NULL || dst == NULL)
  898. return BAD_FUNC_ARG;
  899. XMEMCPY(dst, src, sizeof(wc_Sha));
  900. #if defined(WOLFSSL_SILABS_SE_ACCEL) && defined(WOLFSSL_SILABS_SE_ACCEL_3)
  901. dst->silabsCtx.hash_ctx.cmd_ctx = &dst->silabsCtx.cmd_ctx;
  902. dst->silabsCtx.hash_ctx.hash_type_ctx = &dst->silabsCtx.hash_type_ctx;
  903. #endif
  904. #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
  905. ret = wolfAsync_DevCopy(&src->asyncDev, &dst->asyncDev);
  906. #endif
  907. #ifdef WOLFSSL_PIC32MZ_HASH
  908. ret = wc_Pic32HashCopy(&src->cache, &dst->cache);
  909. #endif
  910. #if defined(WOLFSSL_SE050) && defined(WOLFSSL_SE050_HASH)
  911. ret = se050_hash_copy(&src->se050Ctx, &dst->se050Ctx);
  912. #endif
  913. #if defined(WOLFSSL_USE_ESP32_CRYPT_HASH_HW)
  914. esp_sha_ctx_copy(src, dst);
  915. #endif
  916. #ifdef WOLFSSL_HASH_FLAGS
  917. dst->flags |= WC_HASH_FLAG_ISCOPY;
  918. #endif
  919. return ret;
  920. }
  921. #endif /* WOLFSSL_RENESAS_RX64_HASH */
  922. #endif /* !defined(WOLFSSL_HAVE_PSA) || defined(WOLFSSL_PSA_NO_HASH) */
  923. #endif /* !defined(WOLFSSL_RENESAS_TSIP_TLS) && \
  924. !defined(WOLFSSL_RENESAS_TSIP_CRYPTONLY) ||
  925. defined(NO_WOLFSSL_RENESAS_TSIP_CRYPT_HASH) */
  926. #endif /* !defined(WOLFSSL_TI_HASH) && !defined(WOLFSSL_IMXRT_DCP) */
  927. #ifdef WOLFSSL_HASH_FLAGS
  928. int wc_ShaSetFlags(wc_Sha* sha, word32 flags)
  929. {
  930. if (sha) {
  931. sha->flags = flags;
  932. }
  933. return 0;
  934. }
  935. int wc_ShaGetFlags(wc_Sha* sha, word32* flags)
  936. {
  937. if (sha && flags) {
  938. *flags = sha->flags;
  939. }
  940. return 0;
  941. }
  942. #endif
  943. #endif /* !NO_SHA */