scope.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367
  1. #include <furi.h>
  2. #include <furi_hal.h>
  3. #include <furi_hal_resources.h>
  4. #include <gui/gui.h>
  5. #include <input/input.h>
  6. #include "stm32wbxx_hal.h"
  7. #include "stm32wbxx_hal_tim.h"
  8. #include "stm32wbxx_nucleo.h"
  9. #include "stm32wbxx_hal_adc.h"
  10. #include "scope_icons.h"
  11. #define DIGITAL_SCALE_12BITS ((uint32_t) 0xFFF)
  12. #define ADC_CONVERTED_DATA_BUFFER_SIZE ((uint32_t) 64)
  13. #define VAR_CONVERTED_DATA_INIT_VALUE (DIGITAL_SCALE_12BITS + 1)
  14. #define VAR_CONVERTED_DATA_INIT_VALUE_16BITS (0xFFFF + 1U)
  15. #define __ADC_CALC_DATA_VOLTAGE(__VREFANALOG_VOLTAGE__, __ADC_DATA__) \
  16. ((__ADC_DATA__) * (__VREFANALOG_VOLTAGE__) / DIGITAL_SCALE_12BITS)
  17. #define VDDA_APPLI ((uint32_t)3300)
  18. #include <stdlib.h>
  19. #include <string.h>
  20. void Error_Handler()
  21. {
  22. while (1) {
  23. }
  24. }
  25. uint16_t i = 0;
  26. static ADC_HandleTypeDef hadc1;
  27. static DMA_HandleTypeDef hdma_adc1;
  28. static TIM_HandleTypeDef htim2;
  29. __IO uint16_t aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data (array of data) */
  30. __IO uint16_t aADCxConvertedData_Voltage_mVolt[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* Value of voltage calculated from ADC conversion data (unit: mV) (array of data) */
  31. __IO uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */
  32. void HAL_MspInit(void)
  33. {
  34. }
  35. void HAL_ADC_MspInit(ADC_HandleTypeDef * hadc)
  36. {
  37. GPIO_InitTypeDef GPIO_InitStruct = { 0 };
  38. if (hadc->Instance == ADC1) {
  39. __HAL_RCC_ADC_CLK_ENABLE();
  40. __HAL_RCC_GPIOC_CLK_ENABLE();
  41. GPIO_InitStruct.Pin = GPIO_PIN_0;
  42. GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  43. GPIO_InitStruct.Pull = GPIO_NOPULL;
  44. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  45. hdma_adc1.Instance = DMA1_Channel1;
  46. hdma_adc1.Init.Request = DMA_REQUEST_ADC1;
  47. hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
  48. hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
  49. hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
  50. hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
  51. hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
  52. hdma_adc1.Init.Mode = DMA_CIRCULAR;
  53. hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
  54. if (HAL_DMA_Init(&hdma_adc1) != HAL_OK) {
  55. Error_Handler();
  56. }
  57. __HAL_LINKDMA(hadc, DMA_Handle, hdma_adc1);
  58. HAL_NVIC_SetPriority(ADC1_IRQn, 15, 0);
  59. HAL_NVIC_EnableIRQ(ADC1_IRQn);
  60. }
  61. }
  62. void HAL_ADC_MspDeInit(ADC_HandleTypeDef * hadc)
  63. {
  64. if (hadc->Instance == ADC1) {
  65. __HAL_RCC_ADC_CLK_DISABLE();
  66. HAL_GPIO_DeInit(GPIOC, GPIO_PIN_0);
  67. HAL_DMA_DeInit(hadc->DMA_Handle);
  68. HAL_NVIC_DisableIRQ(ADC1_IRQn);
  69. }
  70. }
  71. void HAL_TIM_Base_MspInit(TIM_HandleTypeDef * htim_base)
  72. {
  73. if (htim_base->Instance == TIM2) {
  74. __HAL_RCC_TIM2_CLK_ENABLE();
  75. HAL_NVIC_SetPriority(TIM2_IRQn, 15, 0);
  76. HAL_NVIC_EnableIRQ(TIM2_IRQn);
  77. }
  78. }
  79. void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef * htim_base)
  80. {
  81. if (htim_base->Instance == TIM2) {
  82. __HAL_RCC_TIM2_CLK_DISABLE();
  83. HAL_NVIC_DisableIRQ(TIM2_IRQn);
  84. }
  85. }
  86. void DMA1_Channel1_IRQHandler(void)
  87. {
  88. HAL_DMA_IRQHandler(&hdma_adc1);
  89. }
  90. void ADC1_IRQHandler(void)
  91. {
  92. HAL_ADC_IRQHandler(&hadc1);
  93. }
  94. void TIM2_IRQHandler(void)
  95. {
  96. HAL_TIM_IRQHandler(&htim2);
  97. }
  98. static void MX_ADC1_Init(void)
  99. {
  100. ADC_ChannelConfTypeDef sConfig = { 0 };
  101. hadc1.Instance = ADC1;
  102. hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  103. hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  104. hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  105. hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  106. hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  107. hadc1.Init.LowPowerAutoWait = DISABLE;
  108. hadc1.Init.ContinuousConvMode = DISABLE;
  109. hadc1.Init.NbrOfConversion = 1;
  110. hadc1.Init.DiscontinuousConvMode = DISABLE;
  111. hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T2_TRGO;
  112. hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  113. hadc1.Init.DMAContinuousRequests = ENABLE;
  114. hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  115. hadc1.Init.OversamplingMode = DISABLE;
  116. if (HAL_ADC_Init(&hadc1) != HAL_OK) {
  117. Error_Handler();
  118. }
  119. sConfig.Channel = ADC_CHANNEL_1;
  120. sConfig.Rank = ADC_REGULAR_RANK_1;
  121. sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLE_5; ////ADC_SAMPLETIME_640CYCLES_5;
  122. sConfig.SingleDiff = ADC_SINGLE_ENDED;
  123. sConfig.OffsetNumber = ADC_OFFSET_NONE;
  124. sConfig.Offset = 0;
  125. if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
  126. Error_Handler();
  127. }
  128. }
  129. static void MX_TIM2_Init(void)
  130. {
  131. TIM_ClockConfigTypeDef sClockSourceConfig = { 0 };
  132. TIM_MasterConfigTypeDef sMasterConfig = { 0 };
  133. htim2.Instance = TIM2;
  134. htim2.Init.Prescaler = 1;
  135. htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  136. htim2.Init.Period = 39999;
  137. htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  138. htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  139. if (HAL_TIM_Base_Init(&htim2) != HAL_OK) {
  140. Error_Handler();
  141. }
  142. sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  143. if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) {
  144. Error_Handler();
  145. }
  146. sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  147. sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  148. if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) !=
  149. HAL_OK) {
  150. Error_Handler();
  151. }
  152. }
  153. static void MX_DMA_Init(void)
  154. {
  155. __HAL_RCC_DMAMUX1_CLK_ENABLE();
  156. __HAL_RCC_DMA1_CLK_ENABLE();
  157. HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 15, 0);
  158. HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  159. }
  160. static void MX_GPIO_Init(void)
  161. {
  162. __HAL_RCC_GPIOC_CLK_ENABLE();
  163. }
  164. void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef * hadc)
  165. {
  166. UNUSED(hadc);
  167. uint32_t tmp_index = 0;
  168. for (tmp_index = (ADC_CONVERTED_DATA_BUFFER_SIZE / 2);
  169. tmp_index < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index++) {
  170. aADCxConvertedData_Voltage_mVolt[tmp_index] =
  171. __ADC_CALC_DATA_VOLTAGE(VDDA_APPLI,
  172. aADCxConvertedData[tmp_index]);
  173. }
  174. ubDmaTransferStatus = 1;
  175. }
  176. void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef * hadc)
  177. {
  178. UNUSED(hadc);
  179. uint32_t tmp_index = 0;
  180. for (tmp_index = 0; tmp_index < (ADC_CONVERTED_DATA_BUFFER_SIZE / 2);
  181. tmp_index++) {
  182. aADCxConvertedData_Voltage_mVolt[tmp_index] =
  183. __ADC_CALC_DATA_VOLTAGE(VDDA_APPLI,
  184. aADCxConvertedData[tmp_index]);
  185. }
  186. ubDmaTransferStatus = 0;
  187. }
  188. void HAL_ADC_ErrorCallback(ADC_HandleTypeDef * hadc)
  189. {
  190. UNUSED(hadc);
  191. Error_Handler();
  192. }
  193. typedef struct {
  194. uint8_t x, y;
  195. } ImagePosition;
  196. uint16_t val1;
  197. static ImagePosition image_position = {.x = 0,.y = 0 };
  198. void assert_failed(uint8_t * file, uint32_t line)
  199. {
  200. UNUSED(file);
  201. UNUSED(line);
  202. while (1) {
  203. }
  204. }
  205. // Screen is 128x64 px
  206. static void app_draw_callback(Canvas * canvas, void *ctx)
  207. {
  208. UNUSED(ctx);
  209. char buf[50];
  210. snprintf(buf, 50, "%d", val1);
  211. canvas_draw_str(canvas, 10, 10, buf);
  212. //canvas_draw_dot(canvas, image_position.x % 128, image_position.y % 64);
  213. canvas_draw_line(canvas, 0, 0, 0, 63);
  214. canvas_draw_line(canvas, 0, 63, 128, 63);
  215. }
  216. static void app_input_callback(InputEvent * input_event, void *ctx)
  217. {
  218. furi_assert(ctx);
  219. FuriMessageQueue *event_queue = ctx;
  220. furi_message_queue_put(event_queue, input_event, FuriWaitForever);
  221. }
  222. // ramVector found from - https://community.nxp.com/t5/i-MX-Processors/Relocate-vector-table-to-ITCM/m-p/1302304
  223. // the aligned aspect is key!
  224. #define TABLE_SIZE 79
  225. uint32_t ramVector[TABLE_SIZE+1] __attribute__((aligned(512)));
  226. int32_t scope_main(void *p)
  227. {
  228. __disable_irq();
  229. memcpy(ramVector, (uint32_t*)(FLASH_BASE | SCB->VTOR), sizeof(uint32_t) * TABLE_SIZE);
  230. SCB->VTOR = (uint32_t)ramVector;
  231. ramVector[27] = (uint32_t)DMA1_Channel1_IRQHandler;
  232. ramVector[34] = (uint32_t)ADC1_IRQHandler;
  233. ramVector[44] = (uint32_t)TIM2_IRQHandler;
  234. __enable_irq();
  235. UNUSED(p);
  236. HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
  237. FuriMessageQueue *event_queue =
  238. furi_message_queue_alloc(8, sizeof(InputEvent));
  239. uint32_t tmp_index_adc_converted_data = 0;
  240. MX_GPIO_Init();
  241. MX_DMA_Init();
  242. MX_TIM2_Init();
  243. VREFBUF->CSR |= VREFBUF_CSR_ENVR;
  244. VREFBUF->CSR &= ~VREFBUF_CSR_HIZ;
  245. VREFBUF->CSR |= VREFBUF_CSR_VRS;
  246. while (!(VREFBUF->CSR & VREFBUF_CSR_VRR)) {
  247. };
  248. MX_ADC1_Init();
  249. for (tmp_index_adc_converted_data = 0;
  250. tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE;
  251. tmp_index_adc_converted_data++) {
  252. aADCxConvertedData[tmp_index_adc_converted_data] =
  253. VAR_CONVERTED_DATA_INIT_VALUE;
  254. }
  255. if (HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED) != HAL_OK) {
  256. Error_Handler();
  257. }
  258. if (HAL_TIM_Base_Start(&htim2) != HAL_OK) {
  259. Error_Handler();
  260. }
  261. if (HAL_ADC_Start_DMA(&hadc1,
  262. (uint32_t *) aADCxConvertedData,
  263. ADC_CONVERTED_DATA_BUFFER_SIZE) != HAL_OK) {
  264. Error_Handler();
  265. }
  266. ViewPort *view_port = view_port_alloc();
  267. view_port_draw_callback_set(view_port, app_draw_callback, view_port);
  268. view_port_input_callback_set(view_port, app_input_callback,
  269. event_queue);
  270. // Register view port in GUI
  271. Gui *gui = furi_record_open(RECORD_GUI);
  272. gui_add_view_port(gui, view_port, GuiLayerFullscreen);
  273. InputEvent event;
  274. bool running = true;
  275. while (running) {
  276. if (furi_message_queue_get(event_queue, &event, 102) ==
  277. FuriStatusOk) {
  278. if ((event.type == InputTypePress)
  279. || (event.type == InputTypeRepeat)) {
  280. switch (event.key) {
  281. case InputKeyLeft:
  282. image_position.x -= 2;
  283. break;
  284. case InputKeyRight:
  285. image_position.x += 2;
  286. break;
  287. case InputKeyUp:
  288. image_position.y -= 2;
  289. break;
  290. case InputKeyDown:
  291. image_position.y += 2;
  292. break;
  293. default:
  294. running = false;
  295. break;
  296. }
  297. }
  298. }
  299. val1 = aADCxConvertedData_Voltage_mVolt[0];
  300. view_port_update(view_port);
  301. }
  302. view_port_enabled_set(view_port, false);
  303. gui_remove_view_port(gui, view_port);
  304. view_port_free(view_port);
  305. furi_message_queue_free(event_queue);
  306. furi_record_close(RECORD_GUI);
  307. return 0;
  308. }