mifare_classic.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126
  1. #include "mifare_classic.h"
  2. #include "nfca.h"
  3. #include "nfc_util.h"
  4. #include <furi_hal_rtc.h>
  5. // Algorithm from https://github.com/RfidResearchGroup/proxmark3.git
  6. #define TAG "MfClassic"
  7. #define MF_CLASSIC_AUTH_KEY_A_CMD (0x60U)
  8. #define MF_CLASSIC_AUTH_KEY_B_CMD (0x61U)
  9. #define MF_CLASSIC_READ_BLOCK_CMD (0x30)
  10. #define MF_CLASSIC_WRITE_BLOCK_CMD (0xA0)
  11. const char* mf_classic_get_type_str(MfClassicType type) {
  12. if(type == MfClassicType1k) {
  13. return "MIFARE Classic 1K";
  14. } else if(type == MfClassicType4k) {
  15. return "MIFARE Classic 4K";
  16. } else {
  17. return "Unknown";
  18. }
  19. }
  20. static uint8_t mf_classic_get_first_block_num_of_sector(uint8_t sector) {
  21. furi_assert(sector < 40);
  22. if(sector < 32) {
  23. return sector * 4;
  24. } else {
  25. return 32 * 4 + (sector - 32) * 16;
  26. }
  27. }
  28. uint8_t mf_classic_get_sector_trailer_block_num_by_sector(uint8_t sector) {
  29. furi_assert(sector < 40);
  30. if(sector < 32) {
  31. return sector * 4 + 3;
  32. } else {
  33. return 32 * 4 + (sector - 32) * 16 + 15;
  34. }
  35. }
  36. uint8_t mf_classic_get_sector_by_block(uint8_t block) {
  37. if(block < 128) {
  38. return (block | 0x03) / 4;
  39. } else {
  40. return 32 + ((block | 0xf) - 32 * 4) / 16;
  41. }
  42. }
  43. static uint8_t mf_classic_get_blocks_num_in_sector(uint8_t sector) {
  44. furi_assert(sector < 40);
  45. return sector < 32 ? 4 : 16;
  46. }
  47. uint8_t mf_classic_get_sector_trailer_num_by_block(uint8_t block) {
  48. if(block < 128) {
  49. return block | 0x03;
  50. } else {
  51. return block | 0x0f;
  52. }
  53. }
  54. bool mf_classic_is_sector_trailer(uint8_t block) {
  55. return block == mf_classic_get_sector_trailer_num_by_block(block);
  56. }
  57. MfClassicSectorTrailer*
  58. mf_classic_get_sector_trailer_by_sector(MfClassicData* data, uint8_t sector) {
  59. furi_assert(data);
  60. uint8_t sec_tr_block_num = mf_classic_get_sector_trailer_block_num_by_sector(sector);
  61. return (MfClassicSectorTrailer*)data->block[sec_tr_block_num].value;
  62. }
  63. uint8_t mf_classic_get_total_sectors_num(MfClassicType type) {
  64. if(type == MfClassicType1k) {
  65. return MF_CLASSIC_1K_TOTAL_SECTORS_NUM;
  66. } else if(type == MfClassicType4k) {
  67. return MF_CLASSIC_4K_TOTAL_SECTORS_NUM;
  68. } else {
  69. return 0;
  70. }
  71. }
  72. static uint16_t mf_classic_get_total_block_num(MfClassicType type) {
  73. if(type == MfClassicType1k) {
  74. return 64;
  75. } else if(type == MfClassicType4k) {
  76. return 256;
  77. } else {
  78. return 0;
  79. }
  80. }
  81. bool mf_classic_is_block_read(MfClassicData* data, uint8_t block_num) {
  82. furi_assert(data);
  83. return (FURI_BIT(data->block_read_mask[block_num / 32], block_num % 32) == 1);
  84. }
  85. void mf_classic_set_block_read(MfClassicData* data, uint8_t block_num, MfClassicBlock* block_data) {
  86. furi_assert(data);
  87. if(mf_classic_is_sector_trailer(block_num)) {
  88. memcpy(&data->block[block_num].value[6], &block_data->value[6], 4);
  89. } else {
  90. memcpy(data->block[block_num].value, block_data->value, MF_CLASSIC_BLOCK_SIZE);
  91. }
  92. FURI_BIT_SET(data->block_read_mask[block_num / 32], block_num % 32);
  93. }
  94. bool mf_classic_is_sector_data_read(MfClassicData* data, uint8_t sector_num) {
  95. furi_assert(data);
  96. uint8_t first_block = mf_classic_get_first_block_num_of_sector(sector_num);
  97. uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sector_num);
  98. bool data_read = true;
  99. for(size_t i = first_block; i < first_block + total_blocks; i++) {
  100. data_read &= mf_classic_is_block_read(data, i);
  101. }
  102. return data_read;
  103. }
  104. void mf_classic_set_sector_data_not_read(MfClassicData* data) {
  105. furi_assert(data);
  106. memset(data->block_read_mask, 0, sizeof(data->block_read_mask));
  107. }
  108. bool mf_classic_is_key_found(MfClassicData* data, uint8_t sector_num, MfClassicKey key_type) {
  109. furi_assert(data);
  110. bool key_found = false;
  111. if(key_type == MfClassicKeyA) {
  112. key_found = (FURI_BIT(data->key_a_mask, sector_num) == 1);
  113. } else if(key_type == MfClassicKeyB) {
  114. key_found = (FURI_BIT(data->key_b_mask, sector_num) == 1);
  115. }
  116. return key_found;
  117. }
  118. void mf_classic_set_key_found(
  119. MfClassicData* data,
  120. uint8_t sector_num,
  121. MfClassicKey key_type,
  122. uint64_t key) {
  123. furi_assert(data);
  124. uint8_t key_arr[6] = {};
  125. MfClassicSectorTrailer* sec_trailer =
  126. mf_classic_get_sector_trailer_by_sector(data, sector_num);
  127. nfc_util_num2bytes(key, 6, key_arr);
  128. if(key_type == MfClassicKeyA) {
  129. memcpy(sec_trailer->key_a, key_arr, sizeof(sec_trailer->key_a));
  130. FURI_BIT_SET(data->key_a_mask, sector_num);
  131. } else if(key_type == MfClassicKeyB) {
  132. memcpy(sec_trailer->key_b, key_arr, sizeof(sec_trailer->key_b));
  133. FURI_BIT_SET(data->key_b_mask, sector_num);
  134. }
  135. }
  136. void mf_classic_set_key_not_found(MfClassicData* data, uint8_t sector_num, MfClassicKey key_type) {
  137. furi_assert(data);
  138. if(key_type == MfClassicKeyA) {
  139. FURI_BIT_CLEAR(data->key_a_mask, sector_num);
  140. } else if(key_type == MfClassicKeyB) {
  141. FURI_BIT_CLEAR(data->key_b_mask, sector_num);
  142. }
  143. }
  144. bool mf_classic_is_sector_read(MfClassicData* data, uint8_t sector_num) {
  145. furi_assert(data);
  146. bool sector_read = false;
  147. do {
  148. if(!mf_classic_is_key_found(data, sector_num, MfClassicKeyA)) break;
  149. if(!mf_classic_is_key_found(data, sector_num, MfClassicKeyB)) break;
  150. uint8_t start_block = mf_classic_get_first_block_num_of_sector(sector_num);
  151. uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sector_num);
  152. uint8_t block_read = true;
  153. for(size_t i = start_block; i < start_block + total_blocks; i++) {
  154. block_read = mf_classic_is_block_read(data, i);
  155. if(!block_read) break;
  156. }
  157. sector_read = block_read;
  158. } while(false);
  159. return sector_read;
  160. }
  161. void mf_classic_get_read_sectors_and_keys(
  162. MfClassicData* data,
  163. uint8_t* sectors_read,
  164. uint8_t* keys_found) {
  165. furi_assert(data);
  166. furi_assert(sectors_read);
  167. furi_assert(keys_found);
  168. *sectors_read = 0;
  169. *keys_found = 0;
  170. uint8_t sectors_total = mf_classic_get_total_sectors_num(data->type);
  171. for(size_t i = 0; i < sectors_total; i++) {
  172. if(mf_classic_is_key_found(data, i, MfClassicKeyA)) {
  173. *keys_found += 1;
  174. }
  175. if(mf_classic_is_key_found(data, i, MfClassicKeyB)) {
  176. *keys_found += 1;
  177. }
  178. uint8_t first_block = mf_classic_get_first_block_num_of_sector(i);
  179. uint8_t total_blocks_in_sec = mf_classic_get_blocks_num_in_sector(i);
  180. bool blocks_read = true;
  181. for(size_t i = first_block; i < first_block + total_blocks_in_sec; i++) {
  182. blocks_read = mf_classic_is_block_read(data, i);
  183. if(!blocks_read) break;
  184. }
  185. if(blocks_read) {
  186. *sectors_read += 1;
  187. }
  188. }
  189. }
  190. bool mf_classic_is_card_read(MfClassicData* data) {
  191. furi_assert(data);
  192. uint8_t sectors_total = mf_classic_get_total_sectors_num(data->type);
  193. uint8_t sectors_read = 0;
  194. uint8_t keys_found = 0;
  195. mf_classic_get_read_sectors_and_keys(data, &sectors_read, &keys_found);
  196. bool card_read = (sectors_read == sectors_total) && (keys_found == sectors_total * 2);
  197. return card_read;
  198. }
  199. bool mf_classic_is_allowed_access_sector_trailer(
  200. MfClassicData* data,
  201. uint8_t block_num,
  202. MfClassicKey key,
  203. MfClassicAction action) {
  204. uint8_t* sector_trailer = data->block[block_num].value;
  205. uint8_t AC = ((sector_trailer[7] >> 5) & 0x04) | ((sector_trailer[8] >> 2) & 0x02) |
  206. ((sector_trailer[8] >> 7) & 0x01);
  207. switch(action) {
  208. case MfClassicActionKeyARead: {
  209. return false;
  210. }
  211. case MfClassicActionKeyAWrite: {
  212. return (
  213. (key == MfClassicKeyA && (AC == 0x00 || AC == 0x01)) ||
  214. (key == MfClassicKeyB && (AC == 0x04 || AC == 0x03)));
  215. }
  216. case MfClassicActionKeyBRead: {
  217. return (key == MfClassicKeyA && (AC == 0x00 || AC == 0x02 || AC == 0x01));
  218. }
  219. case MfClassicActionKeyBWrite: {
  220. return (
  221. (key == MfClassicKeyA && (AC == 0x00 || AC == 0x01)) ||
  222. (key == MfClassicKeyB && (AC == 0x04 || AC == 0x03)));
  223. }
  224. case MfClassicActionACRead: {
  225. return (
  226. (key == MfClassicKeyA) ||
  227. (key == MfClassicKeyB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
  228. }
  229. case MfClassicActionACWrite: {
  230. return (
  231. (key == MfClassicKeyA && (AC == 0x01)) ||
  232. (key == MfClassicKeyB && (AC == 0x03 || AC == 0x05)));
  233. }
  234. default:
  235. return false;
  236. }
  237. return true;
  238. }
  239. bool mf_classic_is_allowed_access_data_block(
  240. MfClassicData* data,
  241. uint8_t block_num,
  242. MfClassicKey key,
  243. MfClassicAction action) {
  244. uint8_t* sector_trailer =
  245. data->block[mf_classic_get_sector_trailer_num_by_block(block_num)].value;
  246. uint8_t sector_block;
  247. if(block_num <= 128) {
  248. sector_block = block_num & 0x03;
  249. } else {
  250. sector_block = (block_num & 0x0f) / 5;
  251. }
  252. uint8_t AC;
  253. switch(sector_block) {
  254. case 0x00: {
  255. AC = ((sector_trailer[7] >> 2) & 0x04) | ((sector_trailer[8] << 1) & 0x02) |
  256. ((sector_trailer[8] >> 4) & 0x01);
  257. break;
  258. }
  259. case 0x01: {
  260. AC = ((sector_trailer[7] >> 3) & 0x04) | ((sector_trailer[8] >> 0) & 0x02) |
  261. ((sector_trailer[8] >> 5) & 0x01);
  262. break;
  263. }
  264. case 0x02: {
  265. AC = ((sector_trailer[7] >> 4) & 0x04) | ((sector_trailer[8] >> 1) & 0x02) |
  266. ((sector_trailer[8] >> 6) & 0x01);
  267. break;
  268. }
  269. default:
  270. return false;
  271. }
  272. switch(action) {
  273. case MfClassicActionDataRead: {
  274. return (
  275. (key == MfClassicKeyA && !(AC == 0x03 || AC == 0x05 || AC == 0x07)) ||
  276. (key == MfClassicKeyB && !(AC == 0x07)));
  277. }
  278. case MfClassicActionDataWrite: {
  279. return (
  280. (key == MfClassicKeyA && (AC == 0x00)) ||
  281. (key == MfClassicKeyB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
  282. }
  283. case MfClassicActionDataInc: {
  284. return (
  285. (key == MfClassicKeyA && (AC == 0x00)) ||
  286. (key == MfClassicKeyB && (AC == 0x00 || AC == 0x06)));
  287. }
  288. case MfClassicActionDataDec: {
  289. return (
  290. (key == MfClassicKeyA && (AC == 0x00 || AC == 0x06 || AC == 0x01)) ||
  291. (key == MfClassicKeyB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
  292. }
  293. default:
  294. return false;
  295. }
  296. return false;
  297. }
  298. static bool mf_classic_is_allowed_access(
  299. MfClassicEmulator* emulator,
  300. uint8_t block_num,
  301. MfClassicKey key,
  302. MfClassicAction action) {
  303. if(mf_classic_is_sector_trailer(block_num)) {
  304. return mf_classic_is_allowed_access_sector_trailer(
  305. &emulator->data, block_num, key, action);
  306. } else {
  307. return mf_classic_is_allowed_access_data_block(&emulator->data, block_num, key, action);
  308. }
  309. }
  310. bool mf_classic_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
  311. UNUSED(ATQA1);
  312. if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08 || SAK == 0x88 || SAK == 0x09)) {
  313. return true;
  314. } else if((ATQA0 == 0x01) && (ATQA1 == 0x0F) && (SAK == 0x01)) {
  315. //skylanders support
  316. return true;
  317. } else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
  318. return true;
  319. } else {
  320. return false;
  321. }
  322. }
  323. MfClassicType mf_classic_get_classic_type(int8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
  324. UNUSED(ATQA1);
  325. if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08 || SAK == 0x88 || SAK == 0x09)) {
  326. return MfClassicType1k;
  327. } else if((ATQA0 == 0x01) && (ATQA1 == 0x0F) && (SAK == 0x01)) {
  328. //skylanders support
  329. return MfClassicType1k;
  330. } else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
  331. return MfClassicType4k;
  332. }
  333. return MfClassicType1k;
  334. }
  335. void mf_classic_reader_add_sector(
  336. MfClassicReader* reader,
  337. uint8_t sector,
  338. uint64_t key_a,
  339. uint64_t key_b) {
  340. furi_assert(reader);
  341. furi_assert(sector < MF_CLASSIC_SECTORS_MAX);
  342. furi_assert((key_a != MF_CLASSIC_NO_KEY) || (key_b != MF_CLASSIC_NO_KEY));
  343. if(reader->sectors_to_read < MF_CLASSIC_SECTORS_MAX) {
  344. reader->sector_reader[reader->sectors_to_read].key_a = key_a;
  345. reader->sector_reader[reader->sectors_to_read].key_b = key_b;
  346. reader->sector_reader[reader->sectors_to_read].sector_num = sector;
  347. reader->sectors_to_read++;
  348. }
  349. }
  350. void mf_classic_auth_init_context(MfClassicAuthContext* auth_ctx, uint8_t sector) {
  351. furi_assert(auth_ctx);
  352. auth_ctx->sector = sector;
  353. auth_ctx->key_a = MF_CLASSIC_NO_KEY;
  354. auth_ctx->key_b = MF_CLASSIC_NO_KEY;
  355. }
  356. static bool mf_classic_auth(
  357. FuriHalNfcTxRxContext* tx_rx,
  358. uint32_t block,
  359. uint64_t key,
  360. MfClassicKey key_type,
  361. Crypto1* crypto) {
  362. bool auth_success = false;
  363. uint32_t cuid = 0;
  364. memset(tx_rx->tx_data, 0, sizeof(tx_rx->tx_data));
  365. memset(tx_rx->tx_parity, 0, sizeof(tx_rx->tx_parity));
  366. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
  367. do {
  368. if(!furi_hal_nfc_activate_nfca(200, &cuid)) break;
  369. if(key_type == MfClassicKeyA) {
  370. tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_A_CMD;
  371. } else {
  372. tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_B_CMD;
  373. }
  374. tx_rx->tx_data[1] = block;
  375. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRxNoCrc;
  376. tx_rx->tx_bits = 2 * 8;
  377. if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;
  378. uint32_t nt = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
  379. crypto1_init(crypto, key);
  380. crypto1_word(crypto, nt ^ cuid, 0);
  381. uint8_t nr[4] = {};
  382. nfc_util_num2bytes(prng_successor(DWT->CYCCNT, 32), 4, nr);
  383. for(uint8_t i = 0; i < 4; i++) {
  384. tx_rx->tx_data[i] = crypto1_byte(crypto, nr[i], 0) ^ nr[i];
  385. tx_rx->tx_parity[0] |=
  386. (((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nr[i])) & 0x01) << (7 - i));
  387. }
  388. nt = prng_successor(nt, 32);
  389. for(uint8_t i = 4; i < 8; i++) {
  390. nt = prng_successor(nt, 8);
  391. tx_rx->tx_data[i] = crypto1_byte(crypto, 0x00, 0) ^ (nt & 0xff);
  392. tx_rx->tx_parity[0] |=
  393. (((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nt & 0xff)) & 0x01)
  394. << (7 - i));
  395. }
  396. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  397. tx_rx->tx_bits = 8 * 8;
  398. if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;
  399. if(tx_rx->rx_bits == 32) {
  400. crypto1_word(crypto, 0, 0);
  401. auth_success = true;
  402. }
  403. } while(false);
  404. return auth_success;
  405. }
  406. bool mf_classic_authenticate(
  407. FuriHalNfcTxRxContext* tx_rx,
  408. uint8_t block_num,
  409. uint64_t key,
  410. MfClassicKey key_type) {
  411. furi_assert(tx_rx);
  412. Crypto1 crypto = {};
  413. bool key_found = mf_classic_auth(tx_rx, block_num, key, key_type, &crypto);
  414. furi_hal_nfc_sleep();
  415. return key_found;
  416. }
  417. bool mf_classic_auth_attempt(
  418. FuriHalNfcTxRxContext* tx_rx,
  419. MfClassicAuthContext* auth_ctx,
  420. uint64_t key) {
  421. furi_assert(tx_rx);
  422. furi_assert(auth_ctx);
  423. bool found_key = false;
  424. bool need_halt = (auth_ctx->key_a == MF_CLASSIC_NO_KEY) &&
  425. (auth_ctx->key_b == MF_CLASSIC_NO_KEY);
  426. Crypto1 crypto;
  427. if(auth_ctx->key_a == MF_CLASSIC_NO_KEY) {
  428. // Try AUTH with key A
  429. if(mf_classic_auth(
  430. tx_rx,
  431. mf_classic_get_first_block_num_of_sector(auth_ctx->sector),
  432. key,
  433. MfClassicKeyA,
  434. &crypto)) {
  435. auth_ctx->key_a = key;
  436. found_key = true;
  437. }
  438. }
  439. if(need_halt) {
  440. furi_hal_nfc_sleep();
  441. }
  442. if(auth_ctx->key_b == MF_CLASSIC_NO_KEY) {
  443. // Try AUTH with key B
  444. if(mf_classic_auth(
  445. tx_rx,
  446. mf_classic_get_first_block_num_of_sector(auth_ctx->sector),
  447. key,
  448. MfClassicKeyB,
  449. &crypto)) {
  450. auth_ctx->key_b = key;
  451. found_key = true;
  452. }
  453. }
  454. return found_key;
  455. }
  456. bool mf_classic_read_block(
  457. FuriHalNfcTxRxContext* tx_rx,
  458. Crypto1* crypto,
  459. uint8_t block_num,
  460. MfClassicBlock* block) {
  461. furi_assert(tx_rx);
  462. furi_assert(crypto);
  463. furi_assert(block);
  464. bool read_block_success = false;
  465. uint8_t plain_cmd[4] = {MF_CLASSIC_READ_BLOCK_CMD, block_num, 0x00, 0x00};
  466. nfca_append_crc16(plain_cmd, 2);
  467. crypto1_encrypt(crypto, NULL, plain_cmd, 4 * 8, tx_rx->tx_data, tx_rx->tx_parity);
  468. tx_rx->tx_bits = 4 * 9;
  469. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  470. if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
  471. if(tx_rx->rx_bits == 8 * (MF_CLASSIC_BLOCK_SIZE + 2)) {
  472. uint8_t block_received[MF_CLASSIC_BLOCK_SIZE + 2];
  473. crypto1_decrypt(crypto, tx_rx->rx_data, tx_rx->rx_bits, block_received);
  474. uint16_t crc_calc = nfca_get_crc16(block_received, MF_CLASSIC_BLOCK_SIZE);
  475. uint16_t crc_received = (block_received[MF_CLASSIC_BLOCK_SIZE + 1] << 8) |
  476. block_received[MF_CLASSIC_BLOCK_SIZE];
  477. if(crc_received != crc_calc) {
  478. FURI_LOG_E(
  479. TAG,
  480. "Incorrect CRC while reading block %d. Expected %04X, Received %04X",
  481. block_num,
  482. crc_received,
  483. crc_calc);
  484. } else {
  485. memcpy(block->value, block_received, MF_CLASSIC_BLOCK_SIZE);
  486. read_block_success = true;
  487. }
  488. }
  489. }
  490. return read_block_success;
  491. }
  492. void mf_classic_read_sector(FuriHalNfcTxRxContext* tx_rx, MfClassicData* data, uint8_t sec_num) {
  493. furi_assert(tx_rx);
  494. furi_assert(data);
  495. furi_hal_nfc_sleep();
  496. bool key_a_found = mf_classic_is_key_found(data, sec_num, MfClassicKeyA);
  497. bool key_b_found = mf_classic_is_key_found(data, sec_num, MfClassicKeyB);
  498. uint8_t start_block = mf_classic_get_first_block_num_of_sector(sec_num);
  499. uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sec_num);
  500. MfClassicBlock block_tmp = {};
  501. uint64_t key = 0;
  502. MfClassicSectorTrailer* sec_tr = mf_classic_get_sector_trailer_by_sector(data, sec_num);
  503. Crypto1 crypto = {};
  504. uint8_t blocks_read = 0;
  505. do {
  506. if(!key_a_found) break;
  507. FURI_LOG_D(TAG, "Try to read blocks with key A");
  508. key = nfc_util_bytes2num(sec_tr->key_a, sizeof(sec_tr->key_a));
  509. if(!mf_classic_auth(tx_rx, start_block, key, MfClassicKeyA, &crypto)) break;
  510. for(size_t i = start_block; i < start_block + total_blocks; i++) {
  511. if(!mf_classic_is_block_read(data, i)) {
  512. if(mf_classic_read_block(tx_rx, &crypto, i, &block_tmp)) {
  513. mf_classic_set_block_read(data, i, &block_tmp);
  514. blocks_read++;
  515. }
  516. } else {
  517. blocks_read++;
  518. }
  519. }
  520. FURI_LOG_D(TAG, "Read %d blocks out of %d", blocks_read, total_blocks);
  521. } while(false);
  522. do {
  523. if(blocks_read == total_blocks) break;
  524. if(!key_b_found) break;
  525. FURI_LOG_D(TAG, "Try to read blocks with key B");
  526. key = nfc_util_bytes2num(sec_tr->key_b, sizeof(sec_tr->key_b));
  527. furi_hal_nfc_sleep();
  528. if(!mf_classic_auth(tx_rx, start_block, key, MfClassicKeyB, &crypto)) break;
  529. for(size_t i = start_block; i < start_block + total_blocks; i++) {
  530. if(!mf_classic_is_block_read(data, i)) {
  531. if(mf_classic_read_block(tx_rx, &crypto, i, &block_tmp)) {
  532. mf_classic_set_block_read(data, i, &block_tmp);
  533. blocks_read++;
  534. }
  535. } else {
  536. blocks_read++;
  537. }
  538. }
  539. FURI_LOG_D(TAG, "Read %d blocks out of %d", blocks_read, total_blocks);
  540. } while(false);
  541. }
  542. static bool mf_classic_read_sector_with_reader(
  543. FuriHalNfcTxRxContext* tx_rx,
  544. Crypto1* crypto,
  545. MfClassicSectorReader* sector_reader,
  546. MfClassicSector* sector) {
  547. furi_assert(tx_rx);
  548. furi_assert(sector_reader);
  549. furi_assert(sector);
  550. uint64_t key;
  551. MfClassicKey key_type;
  552. uint8_t first_block;
  553. bool sector_read = false;
  554. furi_hal_nfc_sleep();
  555. do {
  556. // Activate card
  557. first_block = mf_classic_get_first_block_num_of_sector(sector_reader->sector_num);
  558. if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
  559. key = sector_reader->key_a;
  560. key_type = MfClassicKeyA;
  561. } else if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
  562. key = sector_reader->key_b;
  563. key_type = MfClassicKeyB;
  564. } else {
  565. break;
  566. }
  567. // Auth to first block in sector
  568. if(!mf_classic_auth(tx_rx, first_block, key, key_type, crypto)) {
  569. // Set key to MF_CLASSIC_NO_KEY to prevent further attempts
  570. if(key_type == MfClassicKeyA) {
  571. sector_reader->key_a = MF_CLASSIC_NO_KEY;
  572. } else {
  573. sector_reader->key_b = MF_CLASSIC_NO_KEY;
  574. }
  575. break;
  576. }
  577. sector->total_blocks = mf_classic_get_blocks_num_in_sector(sector_reader->sector_num);
  578. // Read blocks
  579. for(uint8_t i = 0; i < sector->total_blocks; i++) {
  580. mf_classic_read_block(tx_rx, crypto, first_block + i, &sector->block[i]);
  581. }
  582. // Save sector keys in last block
  583. if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
  584. nfc_util_num2bytes(
  585. sector_reader->key_a, 6, &sector->block[sector->total_blocks - 1].value[0]);
  586. }
  587. if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
  588. nfc_util_num2bytes(
  589. sector_reader->key_b, 6, &sector->block[sector->total_blocks - 1].value[10]);
  590. }
  591. sector_read = true;
  592. } while(false);
  593. return sector_read;
  594. }
  595. uint8_t mf_classic_read_card(
  596. FuriHalNfcTxRxContext* tx_rx,
  597. MfClassicReader* reader,
  598. MfClassicData* data) {
  599. furi_assert(tx_rx);
  600. furi_assert(reader);
  601. furi_assert(data);
  602. uint8_t sectors_read = 0;
  603. data->type = reader->type;
  604. data->key_a_mask = 0;
  605. data->key_b_mask = 0;
  606. MfClassicSector temp_sector = {};
  607. for(uint8_t i = 0; i < reader->sectors_to_read; i++) {
  608. if(mf_classic_read_sector_with_reader(
  609. tx_rx, &reader->crypto, &reader->sector_reader[i], &temp_sector)) {
  610. uint8_t first_block =
  611. mf_classic_get_first_block_num_of_sector(reader->sector_reader[i].sector_num);
  612. for(uint8_t j = 0; j < temp_sector.total_blocks; j++) {
  613. mf_classic_set_block_read(data, first_block + j, &temp_sector.block[j]);
  614. }
  615. if(reader->sector_reader[i].key_a != MF_CLASSIC_NO_KEY) {
  616. mf_classic_set_key_found(
  617. data,
  618. reader->sector_reader[i].sector_num,
  619. MfClassicKeyA,
  620. reader->sector_reader[i].key_a);
  621. }
  622. if(reader->sector_reader[i].key_b != MF_CLASSIC_NO_KEY) {
  623. mf_classic_set_key_found(
  624. data,
  625. reader->sector_reader[i].sector_num,
  626. MfClassicKeyB,
  627. reader->sector_reader[i].key_b);
  628. }
  629. sectors_read++;
  630. }
  631. }
  632. return sectors_read;
  633. }
  634. uint8_t mf_classic_update_card(FuriHalNfcTxRxContext* tx_rx, MfClassicData* data) {
  635. furi_assert(tx_rx);
  636. furi_assert(data);
  637. uint8_t sectors_read = 0;
  638. Crypto1 crypto = {};
  639. uint8_t total_sectors = mf_classic_get_total_sectors_num(data->type);
  640. uint64_t key_a = 0;
  641. uint64_t key_b = 0;
  642. MfClassicSectorReader sec_reader = {};
  643. MfClassicSector temp_sector = {};
  644. for(size_t i = 0; i < total_sectors; i++) {
  645. MfClassicSectorTrailer* sec_tr = mf_classic_get_sector_trailer_by_sector(data, i);
  646. // Load key A
  647. if(mf_classic_is_key_found(data, i, MfClassicKeyA)) {
  648. sec_reader.key_a = nfc_util_bytes2num(sec_tr->key_a, 6);
  649. } else {
  650. sec_reader.key_a = MF_CLASSIC_NO_KEY;
  651. }
  652. // Load key B
  653. if(mf_classic_is_key_found(data, i, MfClassicKeyB)) {
  654. sec_reader.key_b = nfc_util_bytes2num(sec_tr->key_b, 6);
  655. } else {
  656. sec_reader.key_b = MF_CLASSIC_NO_KEY;
  657. }
  658. if((key_a != MF_CLASSIC_NO_KEY) || (key_b != MF_CLASSIC_NO_KEY)) {
  659. sec_reader.sector_num = i;
  660. if(mf_classic_read_sector_with_reader(tx_rx, &crypto, &sec_reader, &temp_sector)) {
  661. uint8_t first_block = mf_classic_get_first_block_num_of_sector(i);
  662. for(uint8_t j = 0; j < temp_sector.total_blocks; j++) {
  663. mf_classic_set_block_read(data, first_block + j, &temp_sector.block[j]);
  664. }
  665. sectors_read++;
  666. } else {
  667. // Invalid key, set it to not found
  668. if(key_a != MF_CLASSIC_NO_KEY) {
  669. mf_classic_set_key_not_found(data, i, MfClassicKeyA);
  670. } else {
  671. mf_classic_set_key_not_found(data, i, MfClassicKeyB);
  672. }
  673. }
  674. }
  675. }
  676. return sectors_read;
  677. }
  678. bool mf_classic_emulator(MfClassicEmulator* emulator, FuriHalNfcTxRxContext* tx_rx) {
  679. furi_assert(emulator);
  680. furi_assert(tx_rx);
  681. bool command_processed = false;
  682. bool is_encrypted = false;
  683. uint8_t plain_data[MF_CLASSIC_MAX_DATA_SIZE];
  684. MfClassicKey access_key = MfClassicKeyA;
  685. // Read command
  686. while(!command_processed) {
  687. if(!is_encrypted) {
  688. crypto1_reset(&emulator->crypto);
  689. memcpy(plain_data, tx_rx->rx_data, tx_rx->rx_bits / 8);
  690. } else {
  691. if(!furi_hal_nfc_tx_rx(tx_rx, 300)) {
  692. FURI_LOG_D(
  693. TAG,
  694. "Error in tx rx. Tx :%d bits, Rx: %d bits",
  695. tx_rx->tx_bits,
  696. tx_rx->rx_bits);
  697. break;
  698. }
  699. crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
  700. }
  701. if(plain_data[0] == 0x50 && plain_data[1] == 0x00) {
  702. FURI_LOG_T(TAG, "Halt received");
  703. furi_hal_nfc_listen_sleep();
  704. command_processed = true;
  705. break;
  706. } else if(plain_data[0] == 0x60 || plain_data[0] == 0x61) {
  707. uint8_t block = plain_data[1];
  708. uint64_t key = 0;
  709. uint8_t sector_trailer_block = mf_classic_get_sector_trailer_num_by_block(block);
  710. MfClassicSectorTrailer* sector_trailer =
  711. (MfClassicSectorTrailer*)emulator->data.block[sector_trailer_block].value;
  712. if(plain_data[0] == 0x60) {
  713. key = nfc_util_bytes2num(sector_trailer->key_a, 6);
  714. access_key = MfClassicKeyA;
  715. } else {
  716. key = nfc_util_bytes2num(sector_trailer->key_b, 6);
  717. access_key = MfClassicKeyB;
  718. }
  719. uint32_t nonce = prng_successor(DWT->CYCCNT, 32) ^ 0xAA;
  720. uint8_t nt[4];
  721. uint8_t nt_keystream[4];
  722. nfc_util_num2bytes(nonce, 4, nt);
  723. nfc_util_num2bytes(nonce ^ emulator->cuid, 4, nt_keystream);
  724. crypto1_init(&emulator->crypto, key);
  725. if(!is_encrypted) {
  726. crypto1_word(&emulator->crypto, emulator->cuid ^ nonce, 0);
  727. memcpy(tx_rx->tx_data, nt, sizeof(nt));
  728. tx_rx->tx_parity[0] = 0;
  729. for(size_t i = 0; i < sizeof(nt); i++) {
  730. tx_rx->tx_parity[0] |= nfc_util_odd_parity8(nt[i]) << (7 - i);
  731. }
  732. tx_rx->tx_bits = sizeof(nt) * 8;
  733. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  734. } else {
  735. crypto1_encrypt(
  736. &emulator->crypto,
  737. nt_keystream,
  738. nt,
  739. sizeof(nt) * 8,
  740. tx_rx->tx_data,
  741. tx_rx->tx_parity);
  742. tx_rx->tx_bits = sizeof(nt) * 8;
  743. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  744. }
  745. if(!furi_hal_nfc_tx_rx(tx_rx, 500)) {
  746. FURI_LOG_E(TAG, "Error in NT exchange");
  747. command_processed = true;
  748. break;
  749. }
  750. if(tx_rx->rx_bits != 64) {
  751. FURI_LOG_W(TAG, "Incorrect nr + ar");
  752. command_processed = true;
  753. break;
  754. }
  755. uint32_t nr = nfc_util_bytes2num(tx_rx->rx_data, 4);
  756. uint32_t ar = nfc_util_bytes2num(&tx_rx->rx_data[4], 4);
  757. FURI_LOG_D(
  758. TAG,
  759. "%08lx key%c block %d nt/nr/ar: %08lx %08lx %08lx",
  760. emulator->cuid,
  761. access_key == MfClassicKeyA ? 'A' : 'B',
  762. sector_trailer_block,
  763. nonce,
  764. nr,
  765. ar);
  766. crypto1_word(&emulator->crypto, nr, 1);
  767. uint32_t cardRr = ar ^ crypto1_word(&emulator->crypto, 0, 0);
  768. if(cardRr != prng_successor(nonce, 64)) {
  769. FURI_LOG_T(TAG, "Wrong AUTH! %08lX != %08lX", cardRr, prng_successor(nonce, 64));
  770. // Don't send NACK, as the tag doesn't send it
  771. command_processed = true;
  772. break;
  773. }
  774. uint32_t ans = prng_successor(nonce, 96);
  775. uint8_t responce[4] = {};
  776. nfc_util_num2bytes(ans, 4, responce);
  777. crypto1_encrypt(
  778. &emulator->crypto,
  779. NULL,
  780. responce,
  781. sizeof(responce) * 8,
  782. tx_rx->tx_data,
  783. tx_rx->tx_parity);
  784. tx_rx->tx_bits = sizeof(responce) * 8;
  785. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  786. is_encrypted = true;
  787. } else if(is_encrypted && plain_data[0] == 0x30) {
  788. uint8_t block = plain_data[1];
  789. uint8_t block_data[18] = {};
  790. memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
  791. if(mf_classic_is_sector_trailer(block)) {
  792. if(!mf_classic_is_allowed_access(
  793. emulator, block, access_key, MfClassicActionKeyARead)) {
  794. memset(block_data, 0, 6);
  795. }
  796. if(!mf_classic_is_allowed_access(
  797. emulator, block, access_key, MfClassicActionKeyBRead)) {
  798. memset(&block_data[10], 0, 6);
  799. }
  800. if(!mf_classic_is_allowed_access(
  801. emulator, block, access_key, MfClassicActionACRead)) {
  802. memset(&block_data[6], 0, 4);
  803. }
  804. } else {
  805. if(!mf_classic_is_allowed_access(
  806. emulator, block, access_key, MfClassicActionDataRead)) {
  807. // Send NACK
  808. uint8_t nack = 0x04;
  809. if(is_encrypted) {
  810. crypto1_encrypt(
  811. &emulator->crypto, NULL, &nack, 4, tx_rx->tx_data, tx_rx->tx_parity);
  812. } else {
  813. tx_rx->tx_data[0] = nack;
  814. }
  815. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  816. tx_rx->tx_bits = 4;
  817. furi_hal_nfc_tx_rx(tx_rx, 300);
  818. break;
  819. }
  820. }
  821. nfca_append_crc16(block_data, 16);
  822. crypto1_encrypt(
  823. &emulator->crypto,
  824. NULL,
  825. block_data,
  826. sizeof(block_data) * 8,
  827. tx_rx->tx_data,
  828. tx_rx->tx_parity);
  829. tx_rx->tx_bits = 18 * 8;
  830. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  831. } else if(is_encrypted && plain_data[0] == 0xA0) {
  832. uint8_t block = plain_data[1];
  833. if(block > mf_classic_get_total_block_num(emulator->data.type)) {
  834. break;
  835. }
  836. // Send ACK
  837. uint8_t ack = 0x0A;
  838. crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
  839. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  840. tx_rx->tx_bits = 4;
  841. if(!furi_hal_nfc_tx_rx(tx_rx, 300)) break;
  842. if(tx_rx->rx_bits != 18 * 8) break;
  843. crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
  844. uint8_t block_data[16] = {};
  845. memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
  846. if(mf_classic_is_sector_trailer(block)) {
  847. if(mf_classic_is_allowed_access(
  848. emulator, block, access_key, MfClassicActionKeyAWrite)) {
  849. memcpy(block_data, plain_data, 6);
  850. }
  851. if(mf_classic_is_allowed_access(
  852. emulator, block, access_key, MfClassicActionKeyBWrite)) {
  853. memcpy(&block_data[10], &plain_data[10], 6);
  854. }
  855. if(mf_classic_is_allowed_access(
  856. emulator, block, access_key, MfClassicActionACWrite)) {
  857. memcpy(&block_data[6], &plain_data[6], 4);
  858. }
  859. } else {
  860. if(mf_classic_is_allowed_access(
  861. emulator, block, access_key, MfClassicActionDataWrite)) {
  862. memcpy(block_data, plain_data, MF_CLASSIC_BLOCK_SIZE);
  863. }
  864. }
  865. if(memcmp(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE)) {
  866. memcpy(emulator->data.block[block].value, block_data, MF_CLASSIC_BLOCK_SIZE);
  867. emulator->data_changed = true;
  868. }
  869. // Send ACK
  870. ack = 0x0A;
  871. crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
  872. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  873. tx_rx->tx_bits = 4;
  874. } else {
  875. // Unknown command
  876. break;
  877. }
  878. }
  879. if(!command_processed) {
  880. // Send NACK
  881. uint8_t nack = 0x04;
  882. if(is_encrypted) {
  883. crypto1_encrypt(&emulator->crypto, NULL, &nack, 4, tx_rx->tx_data, tx_rx->tx_parity);
  884. } else {
  885. tx_rx->tx_data[0] = nack;
  886. }
  887. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  888. tx_rx->tx_bits = 4;
  889. furi_hal_nfc_tx_rx(tx_rx, 300);
  890. }
  891. return true;
  892. }
  893. bool mf_classic_write_block(
  894. FuriHalNfcTxRxContext* tx_rx,
  895. MfClassicBlock* src_block,
  896. uint8_t block_num,
  897. MfClassicKey key_type,
  898. uint64_t key) {
  899. furi_assert(tx_rx);
  900. furi_assert(src_block);
  901. Crypto1 crypto = {};
  902. uint8_t plain_data[18] = {};
  903. uint8_t resp = 0;
  904. bool write_success = false;
  905. do {
  906. furi_hal_nfc_sleep();
  907. if(!mf_classic_auth(tx_rx, block_num, key, key_type, &crypto)) {
  908. FURI_LOG_D(TAG, "Auth fail");
  909. break;
  910. }
  911. // Send write command
  912. plain_data[0] = MF_CLASSIC_WRITE_BLOCK_CMD;
  913. plain_data[1] = block_num;
  914. nfca_append_crc16(plain_data, 2);
  915. crypto1_encrypt(&crypto, NULL, plain_data, 4 * 8, tx_rx->tx_data, tx_rx->tx_parity);
  916. tx_rx->tx_bits = 4 * 8;
  917. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  918. if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
  919. if(tx_rx->rx_bits == 4) {
  920. crypto1_decrypt(&crypto, tx_rx->rx_data, 4, &resp);
  921. if(resp != 0x0A) {
  922. FURI_LOG_D(TAG, "NACK received on write cmd: %02X", resp);
  923. break;
  924. }
  925. } else {
  926. FURI_LOG_D(TAG, "Not ACK received");
  927. break;
  928. }
  929. } else {
  930. FURI_LOG_D(TAG, "Failed to send write cmd");
  931. break;
  932. }
  933. // Send data
  934. memcpy(plain_data, src_block->value, MF_CLASSIC_BLOCK_SIZE);
  935. nfca_append_crc16(plain_data, MF_CLASSIC_BLOCK_SIZE);
  936. crypto1_encrypt(
  937. &crypto,
  938. NULL,
  939. plain_data,
  940. (MF_CLASSIC_BLOCK_SIZE + 2) * 8,
  941. tx_rx->tx_data,
  942. tx_rx->tx_parity);
  943. tx_rx->tx_bits = (MF_CLASSIC_BLOCK_SIZE + 2) * 8;
  944. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  945. if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
  946. if(tx_rx->rx_bits == 4) {
  947. crypto1_decrypt(&crypto, tx_rx->rx_data, 4, &resp);
  948. if(resp != 0x0A) {
  949. FURI_LOG_D(TAG, "NACK received on sending data");
  950. break;
  951. }
  952. } else {
  953. FURI_LOG_D(TAG, "Not ACK received");
  954. break;
  955. }
  956. } else {
  957. FURI_LOG_D(TAG, "Failed to send data");
  958. break;
  959. }
  960. write_success = true;
  961. // Send Halt
  962. plain_data[0] = 0x50;
  963. plain_data[1] = 0x00;
  964. nfca_append_crc16(plain_data, 2);
  965. crypto1_encrypt(&crypto, NULL, plain_data, 2 * 8, tx_rx->tx_data, tx_rx->tx_parity);
  966. tx_rx->tx_bits = 2 * 8;
  967. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  968. // No response is expected
  969. furi_hal_nfc_tx_rx(tx_rx, 50);
  970. } while(false);
  971. return write_success;
  972. }
  973. bool mf_classic_write_sector(
  974. FuriHalNfcTxRxContext* tx_rx,
  975. MfClassicData* dest_data,
  976. MfClassicData* src_data,
  977. uint8_t sec_num) {
  978. furi_assert(tx_rx);
  979. furi_assert(dest_data);
  980. furi_assert(src_data);
  981. uint8_t first_block = mf_classic_get_first_block_num_of_sector(sec_num);
  982. uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sec_num);
  983. MfClassicSectorTrailer* sec_tr = mf_classic_get_sector_trailer_by_sector(dest_data, sec_num);
  984. bool key_a_found = mf_classic_is_key_found(dest_data, sec_num, MfClassicKeyA);
  985. bool key_b_found = mf_classic_is_key_found(dest_data, sec_num, MfClassicKeyB);
  986. bool write_success = true;
  987. for(size_t i = first_block; i < first_block + total_blocks; i++) {
  988. // Compare blocks
  989. if(memcmp(dest_data->block[i].value, src_data->block[i].value, MF_CLASSIC_BLOCK_SIZE)) {
  990. bool key_a_write_allowed = mf_classic_is_allowed_access_data_block(
  991. dest_data, i, MfClassicKeyA, MfClassicActionDataWrite);
  992. bool key_b_write_allowed = mf_classic_is_allowed_access_data_block(
  993. dest_data, i, MfClassicKeyB, MfClassicActionDataWrite);
  994. if(key_a_found && key_a_write_allowed) {
  995. FURI_LOG_I(TAG, "Writing block %d with key A", i);
  996. uint64_t key = nfc_util_bytes2num(sec_tr->key_a, 6);
  997. if(!mf_classic_write_block(tx_rx, &src_data->block[i], i, MfClassicKeyA, key)) {
  998. FURI_LOG_E(TAG, "Failed to write block %d", i);
  999. write_success = false;
  1000. break;
  1001. }
  1002. } else if(key_b_found && key_b_write_allowed) {
  1003. FURI_LOG_I(TAG, "Writing block %d with key A", i);
  1004. uint64_t key = nfc_util_bytes2num(sec_tr->key_b, 6);
  1005. if(!mf_classic_write_block(tx_rx, &src_data->block[i], i, MfClassicKeyB, key)) {
  1006. FURI_LOG_E(TAG, "Failed to write block %d", i);
  1007. write_success = false;
  1008. break;
  1009. }
  1010. } else {
  1011. FURI_LOG_E(TAG, "Failed to find key with write access");
  1012. write_success = false;
  1013. break;
  1014. }
  1015. } else {
  1016. FURI_LOG_D(TAG, "Blocks %d are equal", i);
  1017. }
  1018. }
  1019. return write_success;
  1020. }