furi_hal_nfc.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802
  1. #include <limits.h>
  2. #include "furi_hal_nfc.h"
  3. #include <st25r3916.h>
  4. #include <st25r3916_irq.h>
  5. #include <rfal_rf.h>
  6. #include <furi.h>
  7. #include <lib/digital_signal/digital_signal.h>
  8. #include <furi_hal_spi.h>
  9. #include <furi_hal_gpio.h>
  10. #include <furi_hal_cortex.h>
  11. #include <furi_hal_resources.h>
  12. #define TAG "FuriHalNfc"
  13. static const uint32_t clocks_in_ms = 64 * 1000;
  14. FuriEventFlag* event = NULL;
  15. #define EVENT_FLAG_INTERRUPT (1UL << 0)
  16. #define EVENT_FLAG_STATE_CHANGED (1UL << 1)
  17. #define EVENT_FLAG_STOP (1UL << 2)
  18. #define EVENT_FLAG_ALL (EVENT_FLAG_INTERRUPT | EVENT_FLAG_STATE_CHANGED | EVENT_FLAG_STOP)
  19. #define FURI_HAL_NFC_UID_INCOMPLETE (0x04)
  20. void furi_hal_nfc_init() {
  21. ReturnCode ret = rfalNfcInitialize();
  22. if(ret == ERR_NONE) {
  23. furi_hal_nfc_start_sleep();
  24. event = furi_event_flag_alloc();
  25. FURI_LOG_I(TAG, "Init OK");
  26. } else {
  27. FURI_LOG_W(TAG, "Initialization failed, RFAL returned: %d", ret);
  28. }
  29. }
  30. bool furi_hal_nfc_is_busy() {
  31. return rfalNfcGetState() != RFAL_NFC_STATE_IDLE;
  32. }
  33. bool furi_hal_nfc_is_init() {
  34. return rfalNfcGetState() != RFAL_NFC_STATE_NOTINIT;
  35. }
  36. void furi_hal_nfc_field_on() {
  37. furi_hal_nfc_exit_sleep();
  38. st25r3916TxRxOn();
  39. }
  40. void furi_hal_nfc_field_off() {
  41. st25r3916TxRxOff();
  42. furi_hal_nfc_start_sleep();
  43. }
  44. void furi_hal_nfc_start_sleep() {
  45. rfalLowPowerModeStart();
  46. }
  47. void furi_hal_nfc_exit_sleep() {
  48. rfalLowPowerModeStop();
  49. }
  50. bool furi_hal_nfc_detect(FuriHalNfcDevData* nfc_data, uint32_t timeout) {
  51. furi_assert(nfc_data);
  52. rfalNfcDevice* dev_list = NULL;
  53. uint8_t dev_cnt = 0;
  54. bool detected = false;
  55. rfalLowPowerModeStop();
  56. rfalNfcState state = rfalNfcGetState();
  57. rfalNfcState state_old = 0;
  58. if(state == RFAL_NFC_STATE_NOTINIT) {
  59. rfalNfcInitialize();
  60. }
  61. rfalNfcDiscoverParam params;
  62. params.compMode = RFAL_COMPLIANCE_MODE_EMV;
  63. params.techs2Find = RFAL_NFC_POLL_TECH_A | RFAL_NFC_POLL_TECH_B | RFAL_NFC_POLL_TECH_F |
  64. RFAL_NFC_POLL_TECH_V | RFAL_NFC_POLL_TECH_AP2P | RFAL_NFC_POLL_TECH_ST25TB;
  65. params.totalDuration = 1000;
  66. params.devLimit = 3;
  67. params.wakeupEnabled = false;
  68. params.wakeupConfigDefault = true;
  69. params.nfcfBR = RFAL_BR_212;
  70. params.ap2pBR = RFAL_BR_424;
  71. params.maxBR = RFAL_BR_KEEP;
  72. params.GBLen = RFAL_NFCDEP_GB_MAX_LEN;
  73. params.notifyCb = NULL;
  74. uint32_t start = DWT->CYCCNT;
  75. rfalNfcDiscover(&params);
  76. while(true) {
  77. rfalNfcWorker();
  78. state = rfalNfcGetState();
  79. if(state != state_old) {
  80. FURI_LOG_T(TAG, "State change %d -> %d", state_old, state);
  81. }
  82. state_old = state;
  83. if(state == RFAL_NFC_STATE_ACTIVATED) {
  84. detected = true;
  85. break;
  86. }
  87. if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
  88. start = DWT->CYCCNT;
  89. continue;
  90. }
  91. if(state == RFAL_NFC_STATE_POLL_SELECT) {
  92. rfalNfcSelect(0);
  93. }
  94. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  95. rfalNfcDeactivate(true);
  96. FURI_LOG_T(TAG, "Timeout");
  97. break;
  98. }
  99. furi_delay_tick(1);
  100. }
  101. rfalNfcGetDevicesFound(&dev_list, &dev_cnt);
  102. if(detected) {
  103. if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCA) {
  104. nfc_data->type = FuriHalNfcTypeA;
  105. nfc_data->atqa[0] = dev_list[0].dev.nfca.sensRes.anticollisionInfo;
  106. nfc_data->atqa[1] = dev_list[0].dev.nfca.sensRes.platformInfo;
  107. nfc_data->sak = dev_list[0].dev.nfca.selRes.sak;
  108. uint8_t* cuid_start = dev_list[0].nfcid;
  109. if(dev_list[0].nfcidLen == 7) {
  110. cuid_start = &dev_list[0].nfcid[3];
  111. }
  112. nfc_data->cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
  113. (cuid_start[3]);
  114. } else if(
  115. dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCB ||
  116. dev_list[0].type == RFAL_NFC_LISTEN_TYPE_ST25TB) {
  117. nfc_data->type = FuriHalNfcTypeB;
  118. } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCF) {
  119. nfc_data->type = FuriHalNfcTypeF;
  120. } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCV) {
  121. nfc_data->type = FuriHalNfcTypeV;
  122. }
  123. if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_RF) {
  124. nfc_data->interface = FuriHalNfcInterfaceRf;
  125. } else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_ISODEP) {
  126. nfc_data->interface = FuriHalNfcInterfaceIsoDep;
  127. } else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_NFCDEP) {
  128. nfc_data->interface = FuriHalNfcInterfaceNfcDep;
  129. }
  130. nfc_data->uid_len = dev_list[0].nfcidLen;
  131. memcpy(nfc_data->uid, dev_list[0].nfcid, nfc_data->uid_len);
  132. }
  133. return detected;
  134. }
  135. bool furi_hal_nfc_activate_nfca(uint32_t timeout, uint32_t* cuid) {
  136. rfalNfcDevice* dev_list;
  137. uint8_t dev_cnt = 0;
  138. rfalLowPowerModeStop();
  139. rfalNfcState state = rfalNfcGetState();
  140. if(state == RFAL_NFC_STATE_NOTINIT) {
  141. rfalNfcInitialize();
  142. }
  143. rfalNfcDiscoverParam params = {
  144. .compMode = RFAL_COMPLIANCE_MODE_NFC,
  145. .techs2Find = RFAL_NFC_POLL_TECH_A,
  146. .totalDuration = 1000,
  147. .devLimit = 3,
  148. .wakeupEnabled = false,
  149. .wakeupConfigDefault = true,
  150. .nfcfBR = RFAL_BR_212,
  151. .ap2pBR = RFAL_BR_424,
  152. .maxBR = RFAL_BR_KEEP,
  153. .GBLen = RFAL_NFCDEP_GB_MAX_LEN,
  154. .notifyCb = NULL,
  155. };
  156. uint32_t start = DWT->CYCCNT;
  157. rfalNfcDiscover(&params);
  158. while(state != RFAL_NFC_STATE_ACTIVATED) {
  159. rfalNfcWorker();
  160. state = rfalNfcGetState();
  161. FURI_LOG_T(TAG, "Current state %d", state);
  162. if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
  163. start = DWT->CYCCNT;
  164. continue;
  165. }
  166. if(state == RFAL_NFC_STATE_POLL_SELECT) {
  167. rfalNfcSelect(0);
  168. }
  169. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  170. rfalNfcDeactivate(true);
  171. FURI_LOG_T(TAG, "Timeout");
  172. return false;
  173. }
  174. furi_thread_yield();
  175. }
  176. rfalNfcGetDevicesFound(&dev_list, &dev_cnt);
  177. // Take first device and set cuid
  178. if(cuid) {
  179. uint8_t* cuid_start = dev_list[0].nfcid;
  180. if(dev_list[0].nfcidLen == 7) {
  181. cuid_start = &dev_list[0].nfcid[3];
  182. }
  183. *cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
  184. (cuid_start[3]);
  185. FURI_LOG_T(TAG, "Activated tag with cuid: %lX", *cuid);
  186. }
  187. return true;
  188. }
  189. bool furi_hal_nfc_listen(
  190. uint8_t* uid,
  191. uint8_t uid_len,
  192. uint8_t* atqa,
  193. uint8_t sak,
  194. bool activate_after_sak,
  195. uint32_t timeout) {
  196. rfalNfcState state = rfalNfcGetState();
  197. if(state == RFAL_NFC_STATE_NOTINIT) {
  198. rfalNfcInitialize();
  199. } else if(state >= RFAL_NFC_STATE_ACTIVATED) {
  200. rfalNfcDeactivate(false);
  201. }
  202. rfalLowPowerModeStop();
  203. rfalNfcDiscoverParam params = {
  204. .techs2Find = RFAL_NFC_LISTEN_TECH_A,
  205. .totalDuration = 1000,
  206. .devLimit = 1,
  207. .wakeupEnabled = false,
  208. .wakeupConfigDefault = true,
  209. .nfcfBR = RFAL_BR_212,
  210. .ap2pBR = RFAL_BR_424,
  211. .maxBR = RFAL_BR_KEEP,
  212. .GBLen = RFAL_NFCDEP_GB_MAX_LEN,
  213. .notifyCb = NULL,
  214. .activate_after_sak = activate_after_sak,
  215. };
  216. if(FURI_BIT(sak, 5)) {
  217. params.compMode = RFAL_COMPLIANCE_MODE_EMV;
  218. } else {
  219. params.compMode = RFAL_COMPLIANCE_MODE_NFC;
  220. }
  221. params.lmConfigPA.nfcidLen = uid_len;
  222. memcpy(params.lmConfigPA.nfcid, uid, uid_len);
  223. params.lmConfigPA.SENS_RES[0] = atqa[0];
  224. params.lmConfigPA.SENS_RES[1] = atqa[1];
  225. params.lmConfigPA.SEL_RES = sak;
  226. rfalNfcDiscover(&params);
  227. uint32_t start = DWT->CYCCNT;
  228. while(state != RFAL_NFC_STATE_ACTIVATED) {
  229. rfalNfcWorker();
  230. state = rfalNfcGetState();
  231. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  232. rfalNfcDeactivate(true);
  233. return false;
  234. }
  235. furi_delay_tick(1);
  236. }
  237. return true;
  238. }
  239. static void furi_hal_nfc_read_fifo(uint8_t* data, uint16_t* bits) {
  240. uint8_t fifo_status[2];
  241. uint8_t rx_buff[64];
  242. st25r3916ReadMultipleRegisters(
  243. ST25R3916_REG_FIFO_STATUS1, fifo_status, ST25R3916_FIFO_STATUS_LEN);
  244. uint16_t rx_bytes =
  245. ((((uint16_t)fifo_status[1] & ST25R3916_REG_FIFO_STATUS2_fifo_b_mask) >>
  246. ST25R3916_REG_FIFO_STATUS2_fifo_b_shift)
  247. << 8);
  248. rx_bytes |= (((uint16_t)fifo_status[0]) & 0x00FFU);
  249. st25r3916ReadFifo(rx_buff, rx_bytes);
  250. memcpy(data, rx_buff, rx_bytes);
  251. *bits = rx_bytes * 8;
  252. }
  253. void furi_hal_nfc_listen_sleep() {
  254. st25r3916ExecuteCommand(ST25R3916_CMD_GOTO_SLEEP);
  255. }
  256. void furi_hal_nfc_stop_cmd() {
  257. st25r3916ExecuteCommand(ST25R3916_CMD_STOP);
  258. }
  259. bool furi_hal_nfc_listen_rx(FuriHalNfcTxRxContext* tx_rx, uint32_t timeout_ms) {
  260. furi_assert(tx_rx);
  261. // Wait for interrupts
  262. uint32_t start = furi_get_tick();
  263. bool data_received = false;
  264. while(true) {
  265. if(furi_hal_gpio_read(&gpio_nfc_irq_rfid_pull) == true) {
  266. st25r3916CheckForReceivedInterrupts();
  267. if(st25r3916GetInterrupt(ST25R3916_IRQ_MASK_RXE)) {
  268. furi_hal_nfc_read_fifo(tx_rx->rx_data, &tx_rx->rx_bits);
  269. data_received = true;
  270. if(tx_rx->sniff_rx) {
  271. tx_rx->sniff_rx(tx_rx->rx_data, tx_rx->rx_bits, false, tx_rx->sniff_context);
  272. }
  273. break;
  274. }
  275. continue;
  276. }
  277. if(furi_get_tick() - start > timeout_ms) {
  278. FURI_LOG_T(TAG, "Interrupt waiting timeout");
  279. furi_delay_tick(1);
  280. break;
  281. }
  282. }
  283. return data_received;
  284. }
  285. void furi_hal_nfc_listen_start(FuriHalNfcDevData* nfc_data) {
  286. furi_assert(nfc_data);
  287. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeInput, GpioPullDown, GpioSpeedVeryHigh);
  288. // Clear interrupts
  289. st25r3916ClearInterrupts();
  290. // Mask all interrupts
  291. st25r3916DisableInterrupts(ST25R3916_IRQ_MASK_ALL);
  292. // RESET
  293. st25r3916ExecuteCommand(ST25R3916_CMD_STOP);
  294. // Setup registers
  295. st25r3916WriteRegister(
  296. ST25R3916_REG_OP_CONTROL,
  297. ST25R3916_REG_OP_CONTROL_en | ST25R3916_REG_OP_CONTROL_rx_en |
  298. ST25R3916_REG_OP_CONTROL_en_fd_auto_efd);
  299. st25r3916WriteRegister(
  300. ST25R3916_REG_MODE,
  301. ST25R3916_REG_MODE_targ_targ | ST25R3916_REG_MODE_om3 | ST25R3916_REG_MODE_om0);
  302. st25r3916WriteRegister(
  303. ST25R3916_REG_PASSIVE_TARGET,
  304. ST25R3916_REG_PASSIVE_TARGET_fdel_2 | ST25R3916_REG_PASSIVE_TARGET_fdel_0 |
  305. ST25R3916_REG_PASSIVE_TARGET_d_ac_ap2p | ST25R3916_REG_PASSIVE_TARGET_d_212_424_1r);
  306. st25r3916WriteRegister(ST25R3916_REG_MASK_RX_TIMER, 0x02);
  307. // Mask interrupts
  308. uint32_t clear_irq_mask =
  309. (ST25R3916_IRQ_MASK_RXE | ST25R3916_IRQ_MASK_RXE_PTA | ST25R3916_IRQ_MASK_WU_A_X |
  310. ST25R3916_IRQ_MASK_WU_A);
  311. st25r3916EnableInterrupts(clear_irq_mask);
  312. // Set 4 or 7 bytes UID
  313. if(nfc_data->uid_len == 4) {
  314. st25r3916ChangeRegisterBits(
  315. ST25R3916_REG_AUX, ST25R3916_REG_AUX_nfc_id_mask, ST25R3916_REG_AUX_nfc_id_4bytes);
  316. } else {
  317. st25r3916ChangeRegisterBits(
  318. ST25R3916_REG_AUX, ST25R3916_REG_AUX_nfc_id_mask, ST25R3916_REG_AUX_nfc_id_7bytes);
  319. }
  320. // Write PT Memory
  321. uint8_t pt_memory[15] = {};
  322. memcpy(pt_memory, nfc_data->uid, nfc_data->uid_len);
  323. pt_memory[10] = nfc_data->atqa[0];
  324. pt_memory[11] = nfc_data->atqa[1];
  325. if(nfc_data->uid_len == 4) {
  326. pt_memory[12] = nfc_data->sak & ~FURI_HAL_NFC_UID_INCOMPLETE;
  327. } else {
  328. pt_memory[12] = FURI_HAL_NFC_UID_INCOMPLETE;
  329. }
  330. pt_memory[13] = nfc_data->sak & ~FURI_HAL_NFC_UID_INCOMPLETE;
  331. pt_memory[14] = nfc_data->sak & ~FURI_HAL_NFC_UID_INCOMPLETE;
  332. st25r3916WritePTMem(pt_memory, sizeof(pt_memory));
  333. // Go to sense
  334. st25r3916ExecuteCommand(ST25R3916_CMD_GOTO_SENSE);
  335. }
  336. void rfal_interrupt_callback_handler() {
  337. furi_event_flag_set(event, EVENT_FLAG_INTERRUPT);
  338. }
  339. void rfal_state_changed_callback(void* context) {
  340. UNUSED(context);
  341. furi_event_flag_set(event, EVENT_FLAG_STATE_CHANGED);
  342. }
  343. void furi_hal_nfc_stop() {
  344. if(event) {
  345. furi_event_flag_set(event, EVENT_FLAG_STOP);
  346. }
  347. }
  348. bool furi_hal_nfc_emulate_nfca(
  349. uint8_t* uid,
  350. uint8_t uid_len,
  351. uint8_t* atqa,
  352. uint8_t sak,
  353. FuriHalNfcEmulateCallback callback,
  354. void* context,
  355. uint32_t timeout) {
  356. rfalSetUpperLayerCallback(rfal_interrupt_callback_handler);
  357. rfal_set_state_changed_callback(rfal_state_changed_callback);
  358. rfalLmConfPA config;
  359. config.nfcidLen = uid_len;
  360. memcpy(config.nfcid, uid, uid_len);
  361. memcpy(config.SENS_RES, atqa, RFAL_LM_SENS_RES_LEN);
  362. config.SEL_RES = sak;
  363. uint8_t buff_rx[256];
  364. uint16_t buff_rx_size = 256;
  365. uint16_t buff_rx_len = 0;
  366. uint8_t buff_tx[1040];
  367. uint16_t buff_tx_len = 0;
  368. uint32_t data_type = FURI_HAL_NFC_TXRX_DEFAULT;
  369. rfalLowPowerModeStop();
  370. if(rfalListenStart(
  371. RFAL_LM_MASK_NFCA,
  372. &config,
  373. NULL,
  374. NULL,
  375. buff_rx,
  376. rfalConvBytesToBits(buff_rx_size),
  377. &buff_rx_len)) {
  378. rfalListenStop();
  379. FURI_LOG_E(TAG, "Failed to start listen mode");
  380. return false;
  381. }
  382. while(true) {
  383. buff_rx_len = 0;
  384. buff_tx_len = 0;
  385. uint32_t flag = furi_event_flag_wait(event, EVENT_FLAG_ALL, FuriFlagWaitAny, timeout);
  386. if(flag == FuriFlagErrorTimeout || flag == EVENT_FLAG_STOP) {
  387. break;
  388. }
  389. bool data_received = false;
  390. buff_rx_len = 0;
  391. rfalWorker();
  392. rfalLmState state = rfalListenGetState(&data_received, NULL);
  393. if(data_received) {
  394. rfalTransceiveBlockingRx();
  395. if(nfca_emulation_handler(buff_rx, buff_rx_len, buff_tx, &buff_tx_len)) {
  396. if(rfalListenSleepStart(
  397. RFAL_LM_STATE_SLEEP_A,
  398. buff_rx,
  399. rfalConvBytesToBits(buff_rx_size),
  400. &buff_rx_len)) {
  401. FURI_LOG_E(TAG, "Failed to enter sleep mode");
  402. break;
  403. } else {
  404. continue;
  405. }
  406. }
  407. if(buff_tx_len) {
  408. ReturnCode ret = rfalTransceiveBitsBlockingTx(
  409. buff_tx,
  410. buff_tx_len,
  411. buff_rx,
  412. sizeof(buff_rx),
  413. &buff_rx_len,
  414. data_type,
  415. RFAL_FWT_NONE);
  416. if(ret) {
  417. FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
  418. break;
  419. }
  420. continue;
  421. }
  422. if((state == RFAL_LM_STATE_ACTIVE_A || state == RFAL_LM_STATE_ACTIVE_Ax)) {
  423. if(callback) {
  424. callback(buff_rx, buff_rx_len, buff_tx, &buff_tx_len, &data_type, context);
  425. }
  426. if(!rfalIsExtFieldOn()) {
  427. break;
  428. }
  429. if(buff_tx_len) {
  430. if(buff_tx_len == UINT16_MAX) buff_tx_len = 0;
  431. ReturnCode ret = rfalTransceiveBitsBlockingTx(
  432. buff_tx,
  433. buff_tx_len,
  434. buff_rx,
  435. sizeof(buff_rx),
  436. &buff_rx_len,
  437. data_type,
  438. RFAL_FWT_NONE);
  439. if(ret) {
  440. FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
  441. continue;
  442. }
  443. } else {
  444. break;
  445. }
  446. }
  447. }
  448. }
  449. rfalListenStop();
  450. return true;
  451. }
  452. static bool furi_hal_nfc_transparent_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
  453. furi_assert(tx_rx->nfca_signal);
  454. bool ret = false;
  455. // Start transparent mode
  456. st25r3916ExecuteCommand(ST25R3916_CMD_TRANSPARENT_MODE);
  457. // Reconfigure gpio for Transparent mode
  458. furi_hal_spi_bus_handle_deinit(&furi_hal_spi_bus_handle_nfc);
  459. // Send signal
  460. FURI_CRITICAL_ENTER();
  461. nfca_signal_encode(tx_rx->nfca_signal, tx_rx->tx_data, tx_rx->tx_bits, tx_rx->tx_parity);
  462. digital_signal_send(tx_rx->nfca_signal->tx_signal, &gpio_spi_r_mosi);
  463. FURI_CRITICAL_EXIT();
  464. furi_hal_gpio_write(&gpio_spi_r_mosi, false);
  465. // Configure gpio back to SPI and exit transparent
  466. furi_hal_spi_bus_handle_init(&furi_hal_spi_bus_handle_nfc);
  467. st25r3916ExecuteCommand(ST25R3916_CMD_UNMASK_RECEIVE_DATA);
  468. // Manually wait for interrupt
  469. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeInput, GpioPullDown, GpioSpeedVeryHigh);
  470. st25r3916ClearAndEnableInterrupts(ST25R3916_IRQ_MASK_RXE);
  471. if(tx_rx->sniff_tx) {
  472. tx_rx->sniff_tx(tx_rx->tx_data, tx_rx->tx_bits, false, tx_rx->sniff_context);
  473. }
  474. uint32_t irq = 0;
  475. uint8_t rxe = 0;
  476. uint32_t start = DWT->CYCCNT;
  477. while(true) {
  478. if(!rfalIsExtFieldOn()) {
  479. return false;
  480. }
  481. if(furi_hal_gpio_read(&gpio_nfc_irq_rfid_pull) == true) {
  482. st25r3916ReadRegister(ST25R3916_REG_IRQ_MAIN, &rxe);
  483. if(rxe & (1 << 4)) {
  484. irq = 1;
  485. break;
  486. }
  487. }
  488. uint32_t timeout = DWT->CYCCNT - start;
  489. if(timeout / furi_hal_cortex_instructions_per_microsecond() > timeout_ms * 1000) {
  490. FURI_LOG_D(TAG, "Interrupt waiting timeout");
  491. break;
  492. }
  493. }
  494. if(irq) {
  495. uint8_t fifo_stat[2];
  496. st25r3916ReadMultipleRegisters(
  497. ST25R3916_REG_FIFO_STATUS1, fifo_stat, ST25R3916_FIFO_STATUS_LEN);
  498. uint16_t len =
  499. ((((uint16_t)fifo_stat[1] & ST25R3916_REG_FIFO_STATUS2_fifo_b_mask) >>
  500. ST25R3916_REG_FIFO_STATUS2_fifo_b_shift)
  501. << RFAL_BITS_IN_BYTE);
  502. len |= (((uint16_t)fifo_stat[0]) & 0x00FFU);
  503. uint8_t rx[100];
  504. st25r3916ReadFifo(rx, len);
  505. tx_rx->rx_bits = len * 8;
  506. memcpy(tx_rx->rx_data, rx, len);
  507. if(tx_rx->sniff_rx) {
  508. tx_rx->sniff_rx(tx_rx->rx_data, tx_rx->rx_bits, false, tx_rx->sniff_context);
  509. }
  510. ret = true;
  511. } else {
  512. FURI_LOG_E(TAG, "Timeout error");
  513. ret = false;
  514. }
  515. st25r3916ClearInterrupts();
  516. return ret;
  517. }
  518. static uint32_t furi_hal_nfc_tx_rx_get_flag(FuriHalNfcTxRxType type) {
  519. uint32_t flags = 0;
  520. if(type == FuriHalNfcTxRxTypeRxNoCrc) {
  521. flags = RFAL_TXRX_FLAGS_CRC_RX_KEEP;
  522. } else if(type == FuriHalNfcTxRxTypeRxKeepPar) {
  523. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  524. RFAL_TXRX_FLAGS_PAR_RX_KEEP;
  525. } else if(type == FuriHalNfcTxRxTypeRaw) {
  526. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  527. RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE;
  528. } else if(type == FuriHalNfcTxRxTypeRxRaw) {
  529. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  530. RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE;
  531. }
  532. return flags;
  533. }
  534. static uint16_t furi_hal_nfc_data_and_parity_to_bitstream(
  535. uint8_t* data,
  536. uint16_t len,
  537. uint8_t* parity,
  538. uint8_t* out) {
  539. furi_assert(data);
  540. furi_assert(out);
  541. uint8_t next_par_bit = 0;
  542. uint16_t curr_bit_pos = 0;
  543. for(uint16_t i = 0; i < len; i++) {
  544. next_par_bit = FURI_BIT(parity[i / 8], 7 - (i % 8));
  545. if(curr_bit_pos % 8 == 0) {
  546. out[curr_bit_pos / 8] = data[i];
  547. curr_bit_pos += 8;
  548. out[curr_bit_pos / 8] = next_par_bit;
  549. curr_bit_pos++;
  550. } else {
  551. out[curr_bit_pos / 8] |= data[i] << curr_bit_pos % 8;
  552. out[curr_bit_pos / 8 + 1] = data[i] >> (8 - curr_bit_pos % 8);
  553. out[curr_bit_pos / 8 + 1] |= next_par_bit << curr_bit_pos % 8;
  554. curr_bit_pos += 9;
  555. }
  556. }
  557. return curr_bit_pos;
  558. }
  559. uint16_t furi_hal_nfc_bitstream_to_data_and_parity(
  560. uint8_t* in_buff,
  561. uint16_t in_buff_bits,
  562. uint8_t* out_data,
  563. uint8_t* out_parity) {
  564. if(in_buff_bits < 8) {
  565. out_data[0] = in_buff[0];
  566. return in_buff_bits;
  567. }
  568. if(in_buff_bits % 9 != 0) {
  569. return 0;
  570. }
  571. uint8_t curr_byte = 0;
  572. uint16_t bit_processed = 0;
  573. memset(out_parity, 0, in_buff_bits / 9);
  574. while(bit_processed < in_buff_bits) {
  575. out_data[curr_byte] = in_buff[bit_processed / 8] >> bit_processed % 8;
  576. out_data[curr_byte] |= in_buff[bit_processed / 8 + 1] << (8 - bit_processed % 8);
  577. out_parity[curr_byte / 8] |= FURI_BIT(in_buff[bit_processed / 8 + 1], bit_processed % 8)
  578. << (7 - curr_byte % 8);
  579. bit_processed += 9;
  580. curr_byte++;
  581. }
  582. return curr_byte * 8;
  583. }
  584. bool furi_hal_nfc_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
  585. furi_assert(tx_rx);
  586. ReturnCode ret;
  587. rfalNfcState state = RFAL_NFC_STATE_ACTIVATED;
  588. uint8_t temp_tx_buff[FURI_HAL_NFC_DATA_BUFF_SIZE] = {};
  589. uint16_t temp_tx_bits = 0;
  590. uint8_t* temp_rx_buff = NULL;
  591. uint16_t* temp_rx_bits = NULL;
  592. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTransparent) {
  593. return furi_hal_nfc_transparent_tx_rx(tx_rx, timeout_ms);
  594. }
  595. // Prepare data for FIFO if necessary
  596. uint32_t flags = furi_hal_nfc_tx_rx_get_flag(tx_rx->tx_rx_type);
  597. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw) {
  598. temp_tx_bits = furi_hal_nfc_data_and_parity_to_bitstream(
  599. tx_rx->tx_data, tx_rx->tx_bits / 8, tx_rx->tx_parity, temp_tx_buff);
  600. ret = rfalNfcDataExchangeCustomStart(
  601. temp_tx_buff, temp_tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags);
  602. } else {
  603. ret = rfalNfcDataExchangeCustomStart(
  604. tx_rx->tx_data, tx_rx->tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags);
  605. }
  606. if(ret != ERR_NONE) {
  607. FURI_LOG_E(TAG, "Failed to start data exchange");
  608. return false;
  609. }
  610. if(tx_rx->sniff_tx) {
  611. bool crc_dropped = !(flags & RFAL_TXRX_FLAGS_CRC_TX_MANUAL);
  612. tx_rx->sniff_tx(tx_rx->tx_data, tx_rx->tx_bits, crc_dropped, tx_rx->sniff_context);
  613. }
  614. uint32_t start = DWT->CYCCNT;
  615. while(state != RFAL_NFC_STATE_DATAEXCHANGE_DONE) {
  616. rfalNfcWorker();
  617. state = rfalNfcGetState();
  618. ret = rfalNfcDataExchangeGetStatus();
  619. if(ret == ERR_BUSY) {
  620. if(DWT->CYCCNT - start > timeout_ms * clocks_in_ms) {
  621. FURI_LOG_D(TAG, "Timeout during data exchange");
  622. return false;
  623. }
  624. continue;
  625. } else {
  626. start = DWT->CYCCNT;
  627. }
  628. furi_delay_tick(1);
  629. }
  630. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw ||
  631. tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRxRaw) {
  632. tx_rx->rx_bits = furi_hal_nfc_bitstream_to_data_and_parity(
  633. temp_rx_buff, *temp_rx_bits, tx_rx->rx_data, tx_rx->rx_parity);
  634. } else {
  635. memcpy(tx_rx->rx_data, temp_rx_buff, MIN(*temp_rx_bits / 8, FURI_HAL_NFC_DATA_BUFF_SIZE));
  636. tx_rx->rx_bits = *temp_rx_bits;
  637. }
  638. if(tx_rx->sniff_rx) {
  639. bool crc_dropped = !(flags & RFAL_TXRX_FLAGS_CRC_RX_KEEP);
  640. tx_rx->sniff_rx(tx_rx->rx_data, tx_rx->rx_bits, crc_dropped, tx_rx->sniff_context);
  641. }
  642. return true;
  643. }
  644. bool furi_hal_nfc_tx_rx_full(FuriHalNfcTxRxContext* tx_rx) {
  645. uint16_t part_len_bytes;
  646. if(!furi_hal_nfc_tx_rx(tx_rx, 1000)) {
  647. return false;
  648. }
  649. while(tx_rx->rx_bits && tx_rx->rx_data[0] == 0xAF) {
  650. FuriHalNfcTxRxContext tmp = *tx_rx;
  651. tmp.tx_data[0] = 0xAF;
  652. tmp.tx_bits = 8;
  653. if(!furi_hal_nfc_tx_rx(&tmp, 1000)) {
  654. return false;
  655. }
  656. part_len_bytes = tmp.rx_bits / 8;
  657. if(part_len_bytes > FURI_HAL_NFC_DATA_BUFF_SIZE - tx_rx->rx_bits / 8) {
  658. FURI_LOG_W(TAG, "Overrun rx buf");
  659. return false;
  660. }
  661. if(part_len_bytes == 0) {
  662. FURI_LOG_W(TAG, "Empty 0xAF response");
  663. return false;
  664. }
  665. memcpy(tx_rx->rx_data + tx_rx->rx_bits / 8, tmp.rx_data + 1, part_len_bytes - 1);
  666. tx_rx->rx_data[0] = tmp.rx_data[0];
  667. tx_rx->rx_bits += 8 * (part_len_bytes - 1);
  668. }
  669. return true;
  670. }
  671. void furi_hal_nfc_sleep() {
  672. rfalNfcDeactivate(false);
  673. rfalLowPowerModeStart();
  674. }
  675. FuriHalNfcReturn
  676. furi_hal_nfc_ll_set_mode(FuriHalNfcMode mode, FuriHalNfcBitrate txBR, FuriHalNfcBitrate rxBR) {
  677. return rfalSetMode((rfalMode)mode, (rfalBitRate)txBR, (rfalBitRate)rxBR);
  678. }
  679. void furi_hal_nfc_ll_set_error_handling(FuriHalNfcErrorHandling eHandling) {
  680. rfalSetErrorHandling((rfalEHandling)eHandling);
  681. }
  682. void furi_hal_nfc_ll_set_guard_time(uint32_t cycles) {
  683. rfalSetGT(cycles);
  684. }
  685. void furi_hal_nfc_ll_set_fdt_listen(uint32_t cycles) {
  686. rfalSetFDTListen(cycles);
  687. }
  688. void furi_hal_nfc_ll_set_fdt_poll(uint32_t FDTPoll) {
  689. rfalSetFDTPoll(FDTPoll);
  690. }
  691. void furi_hal_nfc_ll_txrx_on() {
  692. st25r3916TxRxOn();
  693. }
  694. void furi_hal_nfc_ll_txrx_off() {
  695. st25r3916TxRxOff();
  696. }
  697. FuriHalNfcReturn furi_hal_nfc_ll_txrx(
  698. uint8_t* txBuf,
  699. uint16_t txBufLen,
  700. uint8_t* rxBuf,
  701. uint16_t rxBufLen,
  702. uint16_t* actLen,
  703. uint32_t flags,
  704. uint32_t fwt) {
  705. return rfalTransceiveBlockingTxRx(txBuf, txBufLen, rxBuf, rxBufLen, actLen, flags, fwt);
  706. }
  707. FuriHalNfcReturn furi_hal_nfc_ll_txrx_bits(
  708. uint8_t* txBuf,
  709. uint16_t txBufLen,
  710. uint8_t* rxBuf,
  711. uint16_t rxBufLen,
  712. uint16_t* actLen,
  713. uint32_t flags,
  714. uint32_t fwt) {
  715. return rfalTransceiveBitsBlockingTxRx(txBuf, txBufLen, rxBuf, rxBufLen, actLen, flags, fwt);
  716. }
  717. void furi_hal_nfc_ll_poll() {
  718. rfalWorker();
  719. }