sp_c32.c 1.9 MB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172231732317423175231762317723178231792318023181231822318323184231852318623187231882318923190231912319223193231942319523196231972319823199232002320123202232032320423205232062320723208232092321023211232122321323214232152321623217232182321923220232212322223223232242322523226232272322823229232302323123232232332323423235232362323723238232392324023241232422324323244232452324623247232482324923250232512325223253232542325523256232572325823259232602326123262232632326423265232662326723268232692327023271232722327323274232752327623277232782327923280232812328223283232842328523286232872328823289232902329123292232932329423295232962329723298232992330023301233022330323304233052330623307233082330923310233112331223313233142331523316233172331823319233202332123322233232332423325233262332723328233292333023331233322333323334233352333623337233382333923340233412334223343233442334523346233472334823349233502335123352233532335423355233562335723358233592336023361233622336323364233652336623367233682336923370233712337223373233742337523376233772337823379233802338123382233832338423385233862338723388233892339023391233922339323394233952339623397233982339923400234012340223403234042340523406234072340823409234102341123412234132341423415234162341723418234192342023421234222342323424234252342623427234282342923430234312343223433234342343523436234372343823439234402344123442234432344423445234462344723448234492345023451234522345323454234552345623457234582345923460234612346223463234642346523466234672346823469234702347123472234732347423475234762347723478234792348023481234822348323484234852348623487234882348923490234912349223493234942349523496234972349823499235002350123502235032350423505235062350723508235092351023511235122351323514235152351623517235182351923520235212352223523235242352523526235272352823529235302353123532235332353423535235362353723538235392354023541235422354323544235452354623547235482354923550235512355223553235542355523556235572355823559235602356123562235632356423565235662356723568235692357023571235722357323574235752357623577235782357923580235812358223583235842358523586235872358823589235902359123592235932359423595235962359723598235992360023601236022360323604236052360623607236082360923610236112361223613236142361523616236172361823619236202362123622236232362423625236262362723628236292363023631236322363323634236352363623637236382363923640236412364223643236442364523646236472364823649236502365123652236532365423655236562365723658236592366023661236622366323664236652366623667236682366923670236712367223673236742367523676236772367823679236802368123682236832368423685236862368723688236892369023691236922369323694236952369623697236982369923700237012370223703237042370523706237072370823709237102371123712237132371423715237162371723718237192372023721237222372323724237252372623727237282372923730237312373223733237342373523736237372373823739237402374123742237432374423745237462374723748237492375023751237522375323754237552375623757237582375923760237612376223763237642376523766237672376823769237702377123772237732377423775237762377723778237792378023781237822378323784237852378623787237882378923790237912379223793237942379523796237972379823799238002380123802238032380423805238062380723808238092381023811238122381323814238152381623817238182381923820238212382223823238242382523826238272382823829238302383123832238332383423835238362383723838238392384023841238422384323844238452384623847238482384923850238512385223853238542385523856238572385823859238602386123862238632386423865238662386723868238692387023871238722387323874238752387623877238782387923880238812388223883238842388523886238872388823889238902389123892238932389423895238962389723898238992390023901239022390323904239052390623907239082390923910239112391223913239142391523916239172391823919239202392123922239232392423925239262392723928239292393023931239322393323934239352393623937239382393923940239412394223943239442394523946239472394823949239502395123952239532395423955239562395723958239592396023961239622396323964239652396623967239682396923970239712397223973239742397523976239772397823979239802398123982239832398423985239862398723988239892399023991239922399323994239952399623997239982399924000240012400224003240042400524006240072400824009240102401124012240132401424015240162401724018240192402024021240222402324024240252402624027240282402924030240312403224033240342403524036240372403824039240402404124042240432404424045240462404724048240492405024051240522405324054240552405624057240582405924060240612406224063240642406524066240672406824069240702407124072240732407424075240762407724078240792408024081240822408324084240852408624087240882408924090240912409224093240942409524096240972409824099241002410124102241032410424105241062410724108241092411024111241122411324114241152411624117241182411924120241212412224123241242412524126241272412824129241302413124132241332413424135241362413724138241392414024141241422414324144241452414624147241482414924150241512415224153241542415524156241572415824159241602416124162241632416424165241662416724168241692417024171241722417324174241752417624177241782417924180241812418224183241842418524186241872418824189241902419124192241932419424195241962419724198241992420024201242022420324204242052420624207242082420924210242112421224213242142421524216242172421824219242202422124222242232422424225242262422724228242292423024231242322423324234242352423624237242382423924240242412424224243242442424524246242472424824249242502425124252242532425424255242562425724258242592426024261242622426324264242652426624267242682426924270242712427224273242742427524276242772427824279242802428124282242832428424285242862428724288242892429024291242922429324294242952429624297242982429924300243012430224303243042430524306243072430824309243102431124312243132431424315243162431724318243192432024321243222432324324243252432624327243282432924330243312433224333243342433524336243372433824339243402434124342243432434424345243462434724348243492435024351243522435324354243552435624357243582435924360243612436224363243642436524366243672436824369243702437124372243732437424375243762437724378243792438024381243822438324384243852438624387243882438924390243912439224393243942439524396243972439824399244002440124402244032440424405244062440724408244092441024411244122441324414244152441624417244182441924420244212442224423244242442524426244272442824429244302443124432244332443424435244362443724438244392444024441244422444324444244452444624447244482444924450244512445224453244542445524456244572445824459244602446124462244632446424465244662446724468244692447024471244722447324474244752447624477244782447924480244812448224483244842448524486244872448824489244902449124492244932449424495244962449724498244992450024501245022450324504245052450624507245082450924510245112451224513245142451524516245172451824519245202452124522245232452424525245262452724528245292453024531245322453324534245352453624537245382453924540245412454224543245442454524546245472454824549245502455124552245532455424555245562455724558245592456024561245622456324564245652456624567245682456924570245712457224573245742457524576245772457824579245802458124582245832458424585245862458724588245892459024591245922459324594245952459624597245982459924600246012460224603246042460524606246072460824609246102461124612246132461424615246162461724618246192462024621246222462324624246252462624627246282462924630246312463224633246342463524636246372463824639246402464124642246432464424645246462464724648246492465024651246522465324654246552465624657246582465924660246612466224663246642466524666246672466824669246702467124672246732467424675246762467724678246792468024681246822468324684246852468624687246882468924690246912469224693246942469524696246972469824699247002470124702247032470424705247062470724708247092471024711247122471324714247152471624717247182471924720247212472224723247242472524726247272472824729247302473124732247332473424735247362473724738247392474024741247422474324744247452474624747247482474924750247512475224753247542475524756247572475824759247602476124762247632476424765247662476724768247692477024771247722477324774247752477624777247782477924780247812478224783247842478524786247872478824789247902479124792247932479424795247962479724798247992480024801248022480324804248052480624807248082480924810248112481224813248142481524816248172481824819248202482124822248232482424825248262482724828248292483024831248322483324834248352483624837248382483924840248412484224843248442484524846248472484824849248502485124852248532485424855248562485724858248592486024861248622486324864248652486624867248682486924870248712487224873248742487524876248772487824879248802488124882248832488424885248862488724888248892489024891248922489324894248952489624897248982489924900249012490224903249042490524906249072490824909249102491124912249132491424915249162491724918249192492024921249222492324924249252492624927249282492924930249312493224933249342493524936249372493824939249402494124942249432494424945249462494724948249492495024951249522495324954249552495624957249582495924960249612496224963249642496524966249672496824969249702497124972249732497424975249762497724978249792498024981249822498324984249852498624987249882498924990249912499224993249942499524996249972499824999250002500125002250032500425005250062500725008250092501025011250122501325014250152501625017250182501925020250212502225023250242502525026250272502825029250302503125032250332503425035250362503725038250392504025041250422504325044250452504625047250482504925050250512505225053250542505525056250572505825059250602506125062250632506425065250662506725068250692507025071250722507325074250752507625077250782507925080250812508225083250842508525086250872508825089250902509125092250932509425095250962509725098250992510025101251022510325104251052510625107251082510925110251112511225113251142511525116251172511825119251202512125122251232512425125251262512725128251292513025131251322513325134251352513625137251382513925140251412514225143251442514525146251472514825149251502515125152251532515425155251562515725158251592516025161251622516325164251652516625167251682516925170251712517225173251742517525176251772517825179251802518125182251832518425185251862518725188251892519025191251922519325194251952519625197251982519925200252012520225203252042520525206252072520825209252102521125212252132521425215252162521725218252192522025221252222522325224252252522625227252282522925230252312523225233252342523525236252372523825239252402524125242252432524425245252462524725248252492525025251252522525325254252552525625257252582525925260252612526225263252642526525266252672526825269252702527125272252732527425275252762527725278252792528025281252822528325284252852528625287252882528925290252912529225293252942529525296252972529825299253002530125302253032530425305253062530725308253092531025311253122531325314253152531625317253182531925320253212532225323253242532525326253272532825329253302533125332253332533425335253362533725338253392534025341253422534325344253452534625347253482534925350253512535225353253542535525356253572535825359253602536125362253632536425365253662536725368253692537025371253722537325374253752537625377253782537925380253812538225383253842538525386253872538825389253902539125392253932539425395253962539725398253992540025401254022540325404254052540625407254082540925410254112541225413254142541525416254172541825419254202542125422254232542425425254262542725428254292543025431254322543325434254352543625437254382543925440254412544225443254442544525446254472544825449254502545125452254532545425455254562545725458254592546025461254622546325464254652546625467254682546925470254712547225473254742547525476254772547825479254802548125482254832548425485254862548725488254892549025491254922549325494254952549625497254982549925500255012550225503255042550525506255072550825509255102551125512255132551425515255162551725518255192552025521255222552325524255252552625527255282552925530255312553225533255342553525536255372553825539255402554125542255432554425545255462554725548255492555025551255522555325554255552555625557255582555925560255612556225563255642556525566255672556825569255702557125572255732557425575255762557725578255792558025581255822558325584255852558625587255882558925590255912559225593255942559525596255972559825599256002560125602256032560425605256062560725608256092561025611256122561325614256152561625617256182561925620256212562225623256242562525626256272562825629256302563125632256332563425635256362563725638256392564025641256422564325644256452564625647256482564925650256512565225653256542565525656256572565825659256602566125662256632566425665256662566725668256692567025671256722567325674256752567625677256782567925680256812568225683256842568525686256872568825689256902569125692256932569425695256962569725698256992570025701257022570325704257052570625707257082570925710257112571225713257142571525716257172571825719257202572125722257232572425725257262572725728257292573025731257322573325734257352573625737257382573925740257412574225743257442574525746257472574825749257502575125752257532575425755257562575725758257592576025761257622576325764257652576625767257682576925770257712577225773257742577525776257772577825779257802578125782257832578425785257862578725788257892579025791257922579325794257952579625797257982579925800258012580225803258042580525806258072580825809258102581125812258132581425815258162581725818258192582025821258222582325824258252582625827258282582925830258312583225833258342583525836258372583825839258402584125842258432584425845258462584725848258492585025851258522585325854258552585625857258582585925860258612586225863258642586525866258672586825869258702587125872258732587425875258762587725878258792588025881258822588325884258852588625887258882588925890258912589225893258942589525896258972589825899259002590125902259032590425905259062590725908259092591025911259122591325914259152591625917259182591925920259212592225923259242592525926259272592825929259302593125932259332593425935259362593725938259392594025941259422594325944259452594625947259482594925950259512595225953259542595525956259572595825959259602596125962259632596425965259662596725968259692597025971259722597325974259752597625977259782597925980259812598225983259842598525986259872598825989259902599125992259932599425995259962599725998259992600026001260022600326004260052600626007260082600926010260112601226013260142601526016260172601826019260202602126022260232602426025260262602726028260292603026031260322603326034260352603626037260382603926040260412604226043260442604526046260472604826049260502605126052260532605426055260562605726058260592606026061260622606326064260652606626067260682606926070260712607226073260742607526076260772607826079260802608126082260832608426085260862608726088260892609026091260922609326094260952609626097260982609926100261012610226103261042610526106261072610826109261102611126112261132611426115261162611726118261192612026121261222612326124261252612626127261282612926130261312613226133261342613526136261372613826139261402614126142261432614426145261462614726148261492615026151261522615326154261552615626157261582615926160261612616226163261642616526166261672616826169261702617126172261732617426175261762617726178261792618026181261822618326184261852618626187261882618926190261912619226193261942619526196261972619826199262002620126202262032620426205262062620726208262092621026211262122621326214262152621626217262182621926220262212622226223262242622526226262272622826229262302623126232262332623426235262362623726238262392624026241262422624326244262452624626247262482624926250262512625226253262542625526256262572625826259262602626126262262632626426265262662626726268262692627026271262722627326274262752627626277262782627926280262812628226283262842628526286262872628826289262902629126292262932629426295262962629726298262992630026301263022630326304263052630626307263082630926310263112631226313263142631526316263172631826319263202632126322263232632426325263262632726328263292633026331263322633326334263352633626337263382633926340263412634226343263442634526346263472634826349263502635126352263532635426355263562635726358263592636026361263622636326364263652636626367263682636926370263712637226373263742637526376263772637826379263802638126382263832638426385263862638726388263892639026391263922639326394263952639626397263982639926400264012640226403264042640526406264072640826409264102641126412264132641426415264162641726418264192642026421264222642326424264252642626427264282642926430264312643226433264342643526436264372643826439264402644126442264432644426445264462644726448264492645026451264522645326454264552645626457264582645926460264612646226463264642646526466264672646826469264702647126472264732647426475264762647726478264792648026481264822648326484264852648626487264882648926490264912649226493264942649526496264972649826499265002650126502265032650426505265062650726508265092651026511265122651326514265152651626517265182651926520265212652226523265242652526526265272652826529265302653126532265332653426535265362653726538265392654026541265422654326544265452654626547265482654926550265512655226553265542655526556265572655826559265602656126562265632656426565265662656726568265692657026571265722657326574265752657626577265782657926580265812658226583265842658526586265872658826589265902659126592265932659426595265962659726598265992660026601266022660326604266052660626607266082660926610266112661226613266142661526616266172661826619266202662126622266232662426625266262662726628266292663026631266322663326634266352663626637266382663926640266412664226643266442664526646266472664826649266502665126652266532665426655266562665726658266592666026661266622666326664266652666626667266682666926670266712667226673266742667526676266772667826679266802668126682266832668426685266862668726688266892669026691266922669326694266952669626697266982669926700267012670226703267042670526706267072670826709267102671126712267132671426715267162671726718267192672026721267222672326724267252672626727267282672926730267312673226733267342673526736267372673826739267402674126742267432674426745267462674726748267492675026751267522675326754267552675626757267582675926760267612676226763267642676526766267672676826769267702677126772267732677426775267762677726778267792678026781267822678326784267852678626787267882678926790267912679226793267942679526796267972679826799268002680126802268032680426805268062680726808268092681026811268122681326814268152681626817268182681926820268212682226823268242682526826268272682826829268302683126832268332683426835268362683726838268392684026841268422684326844268452684626847268482684926850268512685226853268542685526856268572685826859268602686126862268632686426865268662686726868268692687026871268722687326874268752687626877268782687926880268812688226883268842688526886268872688826889268902689126892268932689426895268962689726898268992690026901269022690326904269052690626907269082690926910269112691226913269142691526916269172691826919269202692126922269232692426925269262692726928269292693026931269322693326934269352693626937269382693926940269412694226943269442694526946269472694826949269502695126952269532695426955269562695726958269592696026961269622696326964269652696626967269682696926970269712697226973269742697526976269772697826979269802698126982269832698426985269862698726988269892699026991269922699326994269952699626997269982699927000270012700227003270042700527006270072700827009270102701127012270132701427015270162701727018270192702027021270222702327024270252702627027270282702927030270312703227033270342703527036270372703827039270402704127042270432704427045270462704727048270492705027051270522705327054270552705627057270582705927060270612706227063270642706527066270672706827069270702707127072270732707427075270762707727078270792708027081270822708327084270852708627087270882708927090270912709227093270942709527096270972709827099271002710127102271032710427105271062710727108271092711027111271122711327114271152711627117271182711927120271212712227123271242712527126271272712827129271302713127132271332713427135271362713727138271392714027141271422714327144271452714627147271482714927150271512715227153271542715527156271572715827159271602716127162271632716427165271662716727168271692717027171271722717327174271752717627177271782717927180271812718227183271842718527186271872718827189271902719127192271932719427195271962719727198271992720027201272022720327204272052720627207272082720927210272112721227213272142721527216272172721827219272202722127222272232722427225272262722727228272292723027231272322723327234272352723627237272382723927240272412724227243272442724527246272472724827249272502725127252272532725427255272562725727258272592726027261272622726327264272652726627267272682726927270272712727227273272742727527276272772727827279272802728127282272832728427285272862728727288272892729027291272922729327294272952729627297272982729927300273012730227303273042730527306273072730827309273102731127312273132731427315273162731727318273192732027321273222732327324273252732627327273282732927330273312733227333273342733527336273372733827339273402734127342273432734427345273462734727348273492735027351273522735327354273552735627357273582735927360273612736227363273642736527366273672736827369273702737127372273732737427375273762737727378273792738027381273822738327384273852738627387273882738927390273912739227393273942739527396273972739827399274002740127402274032740427405274062740727408274092741027411274122741327414274152741627417274182741927420274212742227423274242742527426274272742827429274302743127432274332743427435274362743727438274392744027441274422744327444274452744627447274482744927450274512745227453274542745527456274572745827459274602746127462274632746427465274662746727468274692747027471274722747327474274752747627477274782747927480274812748227483274842748527486274872748827489274902749127492274932749427495274962749727498274992750027501275022750327504275052750627507275082750927510275112751227513275142751527516275172751827519275202752127522275232752427525275262752727528275292753027531275322753327534275352753627537275382753927540275412754227543275442754527546275472754827549275502755127552275532755427555275562755727558275592756027561275622756327564275652756627567275682756927570275712757227573275742757527576275772757827579275802758127582275832758427585275862758727588275892759027591275922759327594275952759627597275982759927600276012760227603276042760527606276072760827609276102761127612276132761427615276162761727618276192762027621276222762327624276252762627627276282762927630276312763227633276342763527636276372763827639276402764127642276432764427645276462764727648276492765027651276522765327654276552765627657276582765927660276612766227663276642766527666276672766827669276702767127672276732767427675276762767727678276792768027681276822768327684276852768627687276882768927690276912769227693276942769527696276972769827699277002770127702277032770427705277062770727708277092771027711277122771327714277152771627717277182771927720277212772227723277242772527726277272772827729277302773127732277332773427735277362773727738277392774027741277422774327744277452774627747277482774927750277512775227753277542775527756277572775827759277602776127762277632776427765277662776727768277692777027771277722777327774277752777627777277782777927780277812778227783277842778527786277872778827789277902779127792277932779427795277962779727798277992780027801278022780327804278052780627807278082780927810278112781227813278142781527816278172781827819278202782127822278232782427825278262782727828278292783027831278322783327834278352783627837278382783927840278412784227843278442784527846278472784827849278502785127852278532785427855278562785727858278592786027861278622786327864278652786627867278682786927870278712787227873278742787527876278772787827879278802788127882278832788427885278862788727888278892789027891278922789327894278952789627897278982789927900279012790227903279042790527906279072790827909279102791127912279132791427915279162791727918279192792027921279222792327924279252792627927279282792927930279312793227933279342793527936279372793827939279402794127942279432794427945279462794727948279492795027951279522795327954279552795627957279582795927960279612796227963279642796527966279672796827969279702797127972279732797427975279762797727978279792798027981279822798327984279852798627987279882798927990279912799227993279942799527996279972799827999280002800128002280032800428005280062800728008280092801028011280122801328014280152801628017280182801928020280212802228023280242802528026280272802828029280302803128032280332803428035280362803728038280392804028041280422804328044280452804628047280482804928050280512805228053280542805528056280572805828059280602806128062280632806428065280662806728068280692807028071280722807328074280752807628077280782807928080280812808228083280842808528086280872808828089280902809128092280932809428095280962809728098280992810028101281022810328104281052810628107281082810928110281112811228113281142811528116281172811828119281202812128122281232812428125281262812728128281292813028131281322813328134281352813628137281382813928140281412814228143281442814528146281472814828149281502815128152281532815428155281562815728158281592816028161281622816328164281652816628167281682816928170281712817228173281742817528176281772817828179281802818128182281832818428185281862818728188281892819028191281922819328194281952819628197281982819928200282012820228203282042820528206282072820828209282102821128212282132821428215282162821728218282192822028221282222822328224282252822628227282282822928230282312823228233282342823528236282372823828239282402824128242282432824428245282462824728248282492825028251282522825328254282552825628257282582825928260282612826228263282642826528266282672826828269282702827128272282732827428275282762827728278282792828028281282822828328284282852828628287282882828928290282912829228293282942829528296282972829828299283002830128302283032830428305283062830728308283092831028311283122831328314283152831628317283182831928320283212832228323283242832528326283272832828329283302833128332283332833428335283362833728338283392834028341283422834328344283452834628347283482834928350283512835228353283542835528356283572835828359283602836128362283632836428365283662836728368283692837028371283722837328374283752837628377283782837928380283812838228383283842838528386283872838828389283902839128392283932839428395283962839728398283992840028401284022840328404284052840628407284082840928410284112841228413284142841528416284172841828419284202842128422284232842428425284262842728428284292843028431284322843328434284352843628437284382843928440284412844228443284442844528446284472844828449284502845128452284532845428455284562845728458284592846028461284622846328464284652846628467284682846928470284712847228473284742847528476284772847828479284802848128482284832848428485284862848728488284892849028491284922849328494284952849628497284982849928500285012850228503285042850528506285072850828509285102851128512285132851428515285162851728518285192852028521285222852328524285252852628527285282852928530285312853228533285342853528536285372853828539285402854128542285432854428545285462854728548285492855028551285522855328554285552855628557285582855928560285612856228563285642856528566285672856828569285702857128572285732857428575285762857728578285792858028581285822858328584285852858628587285882858928590285912859228593285942859528596285972859828599286002860128602286032860428605286062860728608286092861028611286122861328614286152861628617286182861928620286212862228623286242862528626286272862828629286302863128632286332863428635286362863728638286392864028641286422864328644286452864628647286482864928650286512865228653286542865528656286572865828659286602866128662286632866428665286662866728668286692867028671286722867328674286752867628677286782867928680286812868228683286842868528686286872868828689286902869128692286932869428695286962869728698286992870028701287022870328704287052870628707287082870928710287112871228713287142871528716287172871828719287202872128722287232872428725287262872728728287292873028731287322873328734287352873628737287382873928740287412874228743287442874528746287472874828749287502875128752287532875428755287562875728758287592876028761287622876328764287652876628767287682876928770287712877228773287742877528776287772877828779287802878128782287832878428785287862878728788287892879028791287922879328794287952879628797287982879928800288012880228803288042880528806288072880828809288102881128812288132881428815288162881728818288192882028821288222882328824288252882628827288282882928830288312883228833288342883528836288372883828839288402884128842288432884428845288462884728848288492885028851288522885328854288552885628857288582885928860288612886228863288642886528866288672886828869288702887128872288732887428875288762887728878288792888028881288822888328884288852888628887288882888928890288912889228893288942889528896288972889828899289002890128902289032890428905289062890728908289092891028911289122891328914289152891628917289182891928920289212892228923289242892528926289272892828929289302893128932289332893428935289362893728938289392894028941289422894328944289452894628947289482894928950289512895228953289542895528956289572895828959289602896128962289632896428965289662896728968289692897028971289722897328974289752897628977289782897928980289812898228983289842898528986289872898828989289902899128992289932899428995289962899728998289992900029001290022900329004290052900629007290082900929010290112901229013290142901529016290172901829019290202902129022290232902429025290262902729028290292903029031290322903329034290352903629037290382903929040290412904229043290442904529046290472904829049290502905129052290532905429055290562905729058290592906029061290622906329064290652906629067290682906929070290712907229073290742907529076290772907829079290802908129082290832908429085290862908729088290892909029091290922909329094290952909629097290982909929100291012910229103291042910529106291072910829109291102911129112291132911429115291162911729118291192912029121291222912329124291252912629127291282912929130291312913229133291342913529136291372913829139291402914129142291432914429145291462914729148291492915029151291522915329154291552915629157291582915929160291612916229163291642916529166291672916829169291702917129172291732917429175291762917729178291792918029181291822918329184291852918629187291882918929190291912919229193291942919529196291972919829199292002920129202292032920429205292062920729208292092921029211292122921329214292152921629217292182921929220292212922229223292242922529226292272922829229292302923129232292332923429235292362923729238292392924029241292422924329244292452924629247292482924929250292512925229253292542925529256292572925829259292602926129262292632926429265292662926729268292692927029271292722927329274292752927629277292782927929280292812928229283292842928529286292872928829289292902929129292292932929429295292962929729298292992930029301293022930329304293052930629307293082930929310293112931229313293142931529316293172931829319293202932129322293232932429325293262932729328293292933029331293322933329334293352933629337293382933929340293412934229343293442934529346293472934829349293502935129352293532935429355293562935729358293592936029361293622936329364293652936629367293682936929370293712937229373293742937529376293772937829379293802938129382293832938429385293862938729388293892939029391293922939329394293952939629397293982939929400294012940229403294042940529406294072940829409294102941129412294132941429415294162941729418294192942029421294222942329424294252942629427294282942929430294312943229433294342943529436294372943829439294402944129442294432944429445294462944729448294492945029451294522945329454294552945629457294582945929460294612946229463294642946529466294672946829469294702947129472294732947429475294762947729478294792948029481294822948329484294852948629487294882948929490294912949229493294942949529496294972949829499295002950129502295032950429505295062950729508295092951029511295122951329514295152951629517295182951929520295212952229523295242952529526295272952829529295302953129532295332953429535295362953729538295392954029541295422954329544295452954629547295482954929550295512955229553295542955529556295572955829559295602956129562295632956429565295662956729568295692957029571295722957329574295752957629577295782957929580295812958229583295842958529586295872958829589295902959129592295932959429595295962959729598295992960029601296022960329604296052960629607296082960929610296112961229613296142961529616296172961829619296202962129622296232962429625296262962729628296292963029631296322963329634296352963629637296382963929640296412964229643296442964529646296472964829649296502965129652296532965429655296562965729658296592966029661296622966329664296652966629667296682966929670296712967229673296742967529676296772967829679296802968129682296832968429685296862968729688296892969029691296922969329694296952969629697296982969929700297012970229703297042970529706297072970829709297102971129712297132971429715297162971729718297192972029721297222972329724297252972629727297282972929730297312973229733297342973529736297372973829739297402974129742297432974429745297462974729748297492975029751297522975329754297552975629757297582975929760297612976229763297642976529766297672976829769297702977129772297732977429775297762977729778297792978029781297822978329784297852978629787297882978929790297912979229793297942979529796297972979829799298002980129802298032980429805298062980729808298092981029811298122981329814298152981629817298182981929820298212982229823298242982529826298272982829829298302983129832298332983429835298362983729838298392984029841298422984329844298452984629847298482984929850298512985229853298542985529856298572985829859298602986129862298632986429865298662986729868298692987029871298722987329874298752987629877298782987929880298812988229883298842988529886298872988829889298902989129892298932989429895298962989729898298992990029901299022990329904299052990629907299082990929910299112991229913299142991529916299172991829919299202992129922299232992429925299262992729928299292993029931299322993329934299352993629937299382993929940299412994229943299442994529946299472994829949299502995129952299532995429955299562995729958299592996029961299622996329964299652996629967299682996929970299712997229973299742997529976299772997829979299802998129982299832998429985299862998729988299892999029991299922999329994299952999629997299982999930000300013000230003300043000530006300073000830009300103001130012300133001430015300163001730018300193002030021300223002330024300253002630027300283002930030300313003230033300343003530036300373003830039300403004130042300433004430045300463004730048300493005030051300523005330054300553005630057300583005930060300613006230063300643006530066300673006830069300703007130072300733007430075300763007730078300793008030081300823008330084300853008630087300883008930090300913009230093300943009530096300973009830099301003010130102301033010430105301063010730108301093011030111301123011330114301153011630117301183011930120301213012230123301243012530126301273012830129301303013130132301333013430135301363013730138301393014030141301423014330144301453014630147301483014930150301513015230153301543015530156301573015830159301603016130162301633016430165301663016730168301693017030171301723017330174301753017630177301783017930180301813018230183301843018530186301873018830189301903019130192301933019430195301963019730198301993020030201302023020330204302053020630207302083020930210302113021230213302143021530216302173021830219302203022130222302233022430225302263022730228302293023030231302323023330234302353023630237302383023930240302413024230243302443024530246302473024830249302503025130252302533025430255302563025730258302593026030261302623026330264302653026630267302683026930270302713027230273302743027530276302773027830279302803028130282302833028430285302863028730288302893029030291302923029330294302953029630297302983029930300303013030230303303043030530306303073030830309303103031130312303133031430315303163031730318303193032030321303223032330324303253032630327303283032930330303313033230333303343033530336303373033830339303403034130342303433034430345303463034730348303493035030351303523035330354303553035630357303583035930360303613036230363303643036530366303673036830369303703037130372303733037430375303763037730378303793038030381303823038330384303853038630387303883038930390303913039230393303943039530396303973039830399304003040130402304033040430405304063040730408304093041030411304123041330414304153041630417304183041930420304213042230423304243042530426304273042830429304303043130432304333043430435304363043730438304393044030441304423044330444304453044630447304483044930450304513045230453304543045530456304573045830459304603046130462304633046430465304663046730468304693047030471304723047330474304753047630477304783047930480304813048230483304843048530486304873048830489304903049130492304933049430495304963049730498304993050030501305023050330504305053050630507305083050930510305113051230513305143051530516305173051830519305203052130522305233052430525305263052730528305293053030531305323053330534305353053630537305383053930540305413054230543305443054530546305473054830549305503055130552305533055430555305563055730558305593056030561305623056330564305653056630567305683056930570305713057230573305743057530576305773057830579305803058130582305833058430585305863058730588305893059030591305923059330594305953059630597305983059930600306013060230603306043060530606306073060830609306103061130612306133061430615306163061730618306193062030621306223062330624306253062630627306283062930630306313063230633306343063530636306373063830639306403064130642306433064430645306463064730648306493065030651306523065330654306553065630657306583065930660306613066230663306643066530666306673066830669306703067130672306733067430675306763067730678306793068030681306823068330684306853068630687306883068930690306913069230693306943069530696306973069830699307003070130702307033070430705307063070730708307093071030711307123071330714307153071630717307183071930720307213072230723307243072530726307273072830729307303073130732307333073430735307363073730738307393074030741307423074330744307453074630747307483074930750307513075230753307543075530756307573075830759307603076130762307633076430765307663076730768307693077030771307723077330774307753077630777307783077930780307813078230783307843078530786307873078830789307903079130792307933079430795307963079730798307993080030801308023080330804308053080630807308083080930810308113081230813308143081530816308173081830819308203082130822308233082430825308263082730828308293083030831308323083330834308353083630837308383083930840308413084230843308443084530846308473084830849308503085130852308533085430855308563085730858308593086030861308623086330864308653086630867308683086930870308713087230873308743087530876308773087830879308803088130882308833088430885308863088730888308893089030891308923089330894308953089630897308983089930900309013090230903309043090530906309073090830909309103091130912309133091430915309163091730918309193092030921309223092330924309253092630927309283092930930309313093230933309343093530936309373093830939309403094130942309433094430945309463094730948309493095030951309523095330954309553095630957309583095930960309613096230963309643096530966309673096830969309703097130972309733097430975309763097730978309793098030981309823098330984309853098630987309883098930990309913099230993309943099530996309973099830999310003100131002310033100431005310063100731008310093101031011310123101331014310153101631017310183101931020310213102231023310243102531026310273102831029310303103131032310333103431035310363103731038310393104031041310423104331044310453104631047310483104931050310513105231053310543105531056310573105831059310603106131062310633106431065310663106731068310693107031071310723107331074310753107631077310783107931080310813108231083310843108531086310873108831089310903109131092310933109431095310963109731098310993110031101311023110331104311053110631107311083110931110311113111231113311143111531116311173111831119311203112131122311233112431125311263112731128311293113031131311323113331134311353113631137311383113931140311413114231143311443114531146311473114831149311503115131152311533115431155311563115731158311593116031161311623116331164311653116631167311683116931170311713117231173311743117531176311773117831179311803118131182311833118431185311863118731188311893119031191311923119331194311953119631197311983119931200312013120231203312043120531206312073120831209312103121131212312133121431215312163121731218312193122031221312223122331224312253122631227312283122931230312313123231233312343123531236312373123831239312403124131242312433124431245312463124731248312493125031251312523125331254312553125631257312583125931260312613126231263312643126531266312673126831269312703127131272312733127431275312763127731278312793128031281312823128331284312853128631287312883128931290312913129231293312943129531296312973129831299313003130131302313033130431305313063130731308313093131031311313123131331314313153131631317313183131931320313213132231323313243132531326313273132831329313303133131332313333133431335313363133731338313393134031341313423134331344313453134631347313483134931350313513135231353313543135531356313573135831359313603136131362313633136431365313663136731368313693137031371313723137331374313753137631377313783137931380313813138231383313843138531386313873138831389313903139131392313933139431395313963139731398313993140031401314023140331404314053140631407314083140931410314113141231413314143141531416314173141831419314203142131422314233142431425314263142731428314293143031431314323143331434314353143631437314383143931440314413144231443314443144531446314473144831449314503145131452314533145431455314563145731458314593146031461314623146331464314653146631467314683146931470314713147231473314743147531476314773147831479314803148131482314833148431485314863148731488314893149031491314923149331494314953149631497314983149931500315013150231503315043150531506315073150831509315103151131512315133151431515315163151731518315193152031521315223152331524315253152631527315283152931530315313153231533315343153531536315373153831539315403154131542315433154431545315463154731548315493155031551315523155331554315553155631557315583155931560315613156231563315643156531566315673156831569315703157131572315733157431575315763157731578315793158031581315823158331584315853158631587315883158931590315913159231593315943159531596315973159831599316003160131602316033160431605316063160731608316093161031611316123161331614316153161631617316183161931620316213162231623316243162531626316273162831629316303163131632316333163431635316363163731638316393164031641316423164331644316453164631647316483164931650316513165231653316543165531656316573165831659316603166131662316633166431665316663166731668316693167031671316723167331674316753167631677316783167931680316813168231683316843168531686316873168831689316903169131692316933169431695316963169731698316993170031701317023170331704317053170631707317083170931710317113171231713317143171531716317173171831719317203172131722317233172431725317263172731728317293173031731317323173331734317353173631737317383173931740317413174231743317443174531746317473174831749317503175131752317533175431755317563175731758317593176031761317623176331764317653176631767317683176931770317713177231773317743177531776317773177831779317803178131782317833178431785317863178731788317893179031791317923179331794317953179631797317983179931800318013180231803318043180531806318073180831809318103181131812318133181431815318163181731818318193182031821318223182331824318253182631827318283182931830318313183231833318343183531836318373183831839318403184131842318433184431845318463184731848318493185031851318523185331854318553185631857318583185931860318613186231863318643186531866318673186831869318703187131872318733187431875318763187731878318793188031881318823188331884318853188631887318883188931890318913189231893318943189531896318973189831899319003190131902319033190431905319063190731908319093191031911319123191331914319153191631917319183191931920319213192231923319243192531926319273192831929319303193131932319333193431935319363193731938319393194031941319423194331944319453194631947319483194931950319513195231953319543195531956319573195831959319603196131962319633196431965319663196731968319693197031971319723197331974319753197631977319783197931980319813198231983319843198531986319873198831989319903199131992319933199431995319963199731998319993200032001320023200332004320053200632007320083200932010320113201232013320143201532016320173201832019320203202132022320233202432025320263202732028320293203032031320323203332034320353203632037320383203932040320413204232043320443204532046320473204832049320503205132052320533205432055320563205732058320593206032061320623206332064320653206632067320683206932070320713207232073320743207532076320773207832079320803208132082320833208432085320863208732088320893209032091320923209332094320953209632097320983209932100321013210232103321043210532106321073210832109321103211132112321133211432115321163211732118321193212032121321223212332124321253212632127321283212932130321313213232133321343213532136321373213832139321403214132142321433214432145321463214732148321493215032151321523215332154321553215632157321583215932160321613216232163321643216532166321673216832169321703217132172321733217432175321763217732178321793218032181321823218332184321853218632187321883218932190321913219232193321943219532196321973219832199322003220132202322033220432205322063220732208322093221032211322123221332214322153221632217322183221932220322213222232223322243222532226322273222832229322303223132232322333223432235322363223732238322393224032241322423224332244322453224632247322483224932250322513225232253322543225532256322573225832259322603226132262322633226432265322663226732268322693227032271322723227332274322753227632277322783227932280322813228232283322843228532286322873228832289322903229132292322933229432295322963229732298322993230032301323023230332304323053230632307323083230932310323113231232313323143231532316323173231832319323203232132322323233232432325323263232732328323293233032331323323233332334323353233632337323383233932340323413234232343323443234532346323473234832349323503235132352323533235432355323563235732358323593236032361323623236332364323653236632367323683236932370323713237232373323743237532376323773237832379323803238132382323833238432385323863238732388323893239032391323923239332394323953239632397323983239932400324013240232403324043240532406324073240832409324103241132412324133241432415324163241732418324193242032421324223242332424324253242632427324283242932430324313243232433324343243532436324373243832439324403244132442324433244432445324463244732448324493245032451324523245332454324553245632457324583245932460324613246232463324643246532466324673246832469324703247132472324733247432475324763247732478324793248032481324823248332484324853248632487324883248932490324913249232493324943249532496324973249832499325003250132502325033250432505325063250732508325093251032511325123251332514325153251632517325183251932520325213252232523325243252532526325273252832529325303253132532325333253432535325363253732538325393254032541325423254332544325453254632547325483254932550325513255232553325543255532556325573255832559325603256132562325633256432565325663256732568325693257032571325723257332574325753257632577325783257932580325813258232583325843258532586325873258832589325903259132592325933259432595325963259732598325993260032601326023260332604326053260632607326083260932610326113261232613326143261532616326173261832619326203262132622326233262432625326263262732628326293263032631326323263332634326353263632637326383263932640326413264232643326443264532646326473264832649326503265132652326533265432655326563265732658326593266032661326623266332664326653266632667326683266932670326713267232673326743267532676326773267832679326803268132682326833268432685326863268732688326893269032691326923269332694326953269632697326983269932700327013270232703327043270532706327073270832709327103271132712327133271432715327163271732718327193272032721327223272332724327253272632727327283272932730327313273232733327343273532736327373273832739327403274132742327433274432745327463274732748327493275032751327523275332754327553275632757327583275932760327613276232763327643276532766327673276832769327703277132772327733277432775327763277732778327793278032781327823278332784327853278632787327883278932790327913279232793327943279532796327973279832799328003280132802328033280432805328063280732808328093281032811328123281332814328153281632817328183281932820328213282232823328243282532826328273282832829328303283132832328333283432835328363283732838328393284032841328423284332844328453284632847328483284932850328513285232853328543285532856328573285832859328603286132862328633286432865328663286732868328693287032871328723287332874328753287632877328783287932880328813288232883328843288532886328873288832889328903289132892328933289432895328963289732898328993290032901329023290332904329053290632907329083290932910329113291232913329143291532916329173291832919329203292132922329233292432925329263292732928329293293032931329323293332934329353293632937329383293932940329413294232943329443294532946329473294832949329503295132952329533295432955329563295732958329593296032961329623296332964329653296632967329683296932970329713297232973329743297532976329773297832979329803298132982329833298432985329863298732988329893299032991329923299332994329953299632997329983299933000330013300233003330043300533006330073300833009330103301133012330133301433015330163301733018330193302033021330223302333024330253302633027330283302933030330313303233033330343303533036330373303833039330403304133042330433304433045330463304733048330493305033051330523305333054330553305633057330583305933060330613306233063330643306533066330673306833069330703307133072330733307433075330763307733078330793308033081330823308333084330853308633087330883308933090330913309233093330943309533096330973309833099331003310133102331033310433105331063310733108331093311033111331123311333114331153311633117331183311933120331213312233123331243312533126331273312833129331303313133132331333313433135331363313733138331393314033141331423314333144331453314633147331483314933150331513315233153331543315533156331573315833159331603316133162331633316433165331663316733168331693317033171331723317333174331753317633177331783317933180331813318233183331843318533186331873318833189331903319133192331933319433195331963319733198331993320033201332023320333204332053320633207332083320933210332113321233213332143321533216332173321833219332203322133222332233322433225332263322733228332293323033231332323323333234332353323633237332383323933240332413324233243332443324533246332473324833249332503325133252332533325433255332563325733258332593326033261332623326333264332653326633267332683326933270332713327233273332743327533276332773327833279332803328133282332833328433285332863328733288332893329033291332923329333294332953329633297332983329933300333013330233303333043330533306333073330833309333103331133312333133331433315333163331733318333193332033321333223332333324333253332633327333283332933330333313333233333333343333533336333373333833339333403334133342333433334433345333463334733348333493335033351333523335333354333553335633357333583335933360333613336233363333643336533366333673336833369333703337133372333733337433375333763337733378333793338033381333823338333384333853338633387333883338933390333913339233393333943339533396333973339833399334003340133402334033340433405334063340733408334093341033411334123341333414334153341633417334183341933420334213342233423334243342533426334273342833429334303343133432334333343433435334363343733438334393344033441334423344333444334453344633447334483344933450334513345233453334543345533456334573345833459334603346133462334633346433465334663346733468334693347033471334723347333474334753347633477334783347933480334813348233483334843348533486334873348833489334903349133492334933349433495334963349733498334993350033501335023350333504335053350633507335083350933510335113351233513335143351533516335173351833519335203352133522335233352433525335263352733528335293353033531335323353333534335353353633537335383353933540335413354233543335443354533546335473354833549335503355133552335533355433555335563355733558335593356033561335623356333564335653356633567335683356933570335713357233573335743357533576335773357833579335803358133582335833358433585335863358733588335893359033591335923359333594335953359633597335983359933600336013360233603336043360533606336073360833609336103361133612336133361433615336163361733618336193362033621336223362333624336253362633627336283362933630336313363233633336343363533636336373363833639336403364133642336433364433645336463364733648336493365033651336523365333654336553365633657336583365933660336613366233663336643366533666336673366833669336703367133672336733367433675336763367733678336793368033681336823368333684336853368633687336883368933690336913369233693336943369533696336973369833699337003370133702337033370433705337063370733708337093371033711337123371333714337153371633717337183371933720337213372233723337243372533726337273372833729337303373133732337333373433735337363373733738337393374033741337423374333744337453374633747337483374933750337513375233753337543375533756337573375833759337603376133762337633376433765337663376733768337693377033771337723377333774337753377633777337783377933780337813378233783337843378533786337873378833789337903379133792337933379433795337963379733798337993380033801338023380333804338053380633807338083380933810338113381233813338143381533816338173381833819338203382133822338233382433825338263382733828338293383033831338323383333834338353383633837338383383933840338413384233843338443384533846338473384833849338503385133852338533385433855338563385733858338593386033861338623386333864338653386633867338683386933870338713387233873338743387533876338773387833879338803388133882338833388433885338863388733888338893389033891338923389333894338953389633897338983389933900339013390233903339043390533906339073390833909339103391133912339133391433915339163391733918339193392033921339223392333924339253392633927339283392933930339313393233933339343393533936339373393833939339403394133942339433394433945339463394733948339493395033951339523395333954339553395633957339583395933960339613396233963339643396533966339673396833969339703397133972339733397433975339763397733978339793398033981339823398333984339853398633987339883398933990339913399233993339943399533996339973399833999340003400134002340033400434005340063400734008340093401034011340123401334014340153401634017340183401934020340213402234023340243402534026340273402834029340303403134032340333403434035340363403734038340393404034041340423404334044340453404634047340483404934050340513405234053340543405534056340573405834059340603406134062340633406434065340663406734068340693407034071340723407334074340753407634077340783407934080340813408234083340843408534086340873408834089340903409134092340933409434095340963409734098340993410034101341023410334104341053410634107341083410934110341113411234113341143411534116341173411834119341203412134122341233412434125341263412734128341293413034131341323413334134341353413634137341383413934140341413414234143341443414534146341473414834149341503415134152341533415434155341563415734158341593416034161341623416334164341653416634167341683416934170341713417234173341743417534176341773417834179341803418134182341833418434185341863418734188341893419034191341923419334194341953419634197341983419934200342013420234203342043420534206342073420834209342103421134212342133421434215342163421734218342193422034221342223422334224342253422634227342283422934230342313423234233342343423534236342373423834239342403424134242342433424434245342463424734248342493425034251342523425334254342553425634257342583425934260342613426234263342643426534266342673426834269342703427134272342733427434275342763427734278342793428034281342823428334284342853428634287342883428934290342913429234293342943429534296342973429834299343003430134302343033430434305343063430734308343093431034311343123431334314343153431634317343183431934320343213432234323343243432534326343273432834329343303433134332343333433434335343363433734338343393434034341343423434334344343453434634347343483434934350343513435234353343543435534356343573435834359343603436134362343633436434365343663436734368343693437034371343723437334374343753437634377343783437934380343813438234383343843438534386343873438834389343903439134392343933439434395343963439734398343993440034401344023440334404344053440634407344083440934410344113441234413344143441534416344173441834419344203442134422344233442434425344263442734428344293443034431344323443334434344353443634437344383443934440344413444234443344443444534446344473444834449344503445134452344533445434455344563445734458344593446034461344623446334464344653446634467344683446934470344713447234473344743447534476344773447834479344803448134482344833448434485344863448734488344893449034491344923449334494344953449634497344983449934500345013450234503345043450534506345073450834509345103451134512345133451434515345163451734518345193452034521345223452334524345253452634527345283452934530345313453234533345343453534536345373453834539345403454134542345433454434545345463454734548345493455034551345523455334554345553455634557345583455934560345613456234563345643456534566345673456834569345703457134572345733457434575345763457734578345793458034581345823458334584345853458634587345883458934590345913459234593345943459534596345973459834599346003460134602346033460434605346063460734608346093461034611346123461334614346153461634617346183461934620346213462234623346243462534626346273462834629346303463134632346333463434635346363463734638346393464034641346423464334644346453464634647346483464934650346513465234653346543465534656346573465834659346603466134662346633466434665346663466734668346693467034671346723467334674346753467634677346783467934680346813468234683346843468534686346873468834689346903469134692346933469434695346963469734698346993470034701347023470334704347053470634707347083470934710347113471234713347143471534716347173471834719347203472134722347233472434725347263472734728347293473034731347323473334734347353473634737347383473934740347413474234743347443474534746347473474834749347503475134752347533475434755347563475734758347593476034761347623476334764347653476634767347683476934770347713477234773347743477534776347773477834779347803478134782347833478434785347863478734788347893479034791347923479334794347953479634797347983479934800348013480234803348043480534806348073480834809348103481134812348133481434815348163481734818348193482034821348223482334824348253482634827348283482934830348313483234833348343483534836348373483834839348403484134842348433484434845348463484734848348493485034851348523485334854348553485634857348583485934860348613486234863348643486534866348673486834869348703487134872348733487434875348763487734878348793488034881348823488334884348853488634887348883488934890348913489234893348943489534896348973489834899349003490134902349033490434905349063490734908349093491034911349123491334914349153491634917349183491934920349213492234923349243492534926349273492834929349303493134932349333493434935349363493734938349393494034941349423494334944349453494634947349483494934950349513495234953349543495534956349573495834959349603496134962349633496434965349663496734968349693497034971349723497334974349753497634977349783497934980349813498234983349843498534986349873498834989349903499134992349933499434995349963499734998349993500035001350023500335004350053500635007350083500935010350113501235013350143501535016350173501835019350203502135022350233502435025350263502735028350293503035031350323503335034350353503635037350383503935040350413504235043350443504535046350473504835049350503505135052350533505435055350563505735058350593506035061350623506335064350653506635067350683506935070350713507235073350743507535076350773507835079350803508135082350833508435085350863508735088350893509035091350923509335094350953509635097350983509935100351013510235103351043510535106351073510835109351103511135112351133511435115351163511735118351193512035121351223512335124351253512635127351283512935130351313513235133351343513535136351373513835139351403514135142351433514435145351463514735148351493515035151351523515335154351553515635157351583515935160351613516235163351643516535166351673516835169351703517135172351733517435175351763517735178351793518035181351823518335184351853518635187351883518935190351913519235193351943519535196351973519835199352003520135202352033520435205352063520735208352093521035211352123521335214352153521635217352183521935220352213522235223352243522535226352273522835229352303523135232352333523435235352363523735238352393524035241352423524335244352453524635247352483524935250352513525235253352543525535256352573525835259352603526135262352633526435265352663526735268352693527035271352723527335274352753527635277352783527935280352813528235283352843528535286352873528835289352903529135292352933529435295352963529735298352993530035301353023530335304353053530635307353083530935310353113531235313353143531535316353173531835319353203532135322353233532435325353263532735328353293533035331353323533335334353353533635337353383533935340353413534235343353443534535346353473534835349353503535135352353533535435355353563535735358353593536035361353623536335364353653536635367353683536935370353713537235373353743537535376353773537835379353803538135382353833538435385353863538735388353893539035391353923539335394353953539635397353983539935400354013540235403354043540535406354073540835409354103541135412354133541435415354163541735418354193542035421354223542335424354253542635427354283542935430354313543235433354343543535436354373543835439354403544135442354433544435445354463544735448354493545035451354523545335454354553545635457354583545935460354613546235463354643546535466354673546835469354703547135472354733547435475354763547735478354793548035481354823548335484354853548635487354883548935490354913549235493354943549535496354973549835499355003550135502355033550435505355063550735508355093551035511355123551335514355153551635517355183551935520355213552235523355243552535526355273552835529355303553135532355333553435535355363553735538355393554035541355423554335544355453554635547355483554935550355513555235553355543555535556355573555835559355603556135562355633556435565355663556735568355693557035571355723557335574355753557635577355783557935580355813558235583355843558535586355873558835589355903559135592355933559435595355963559735598355993560035601356023560335604356053560635607356083560935610356113561235613356143561535616356173561835619356203562135622356233562435625356263562735628356293563035631356323563335634356353563635637356383563935640356413564235643356443564535646356473564835649356503565135652356533565435655356563565735658356593566035661356623566335664356653566635667356683566935670356713567235673356743567535676356773567835679356803568135682356833568435685356863568735688356893569035691356923569335694356953569635697356983569935700357013570235703357043570535706357073570835709357103571135712357133571435715357163571735718357193572035721357223572335724357253572635727357283572935730357313573235733357343573535736357373573835739357403574135742357433574435745357463574735748357493575035751357523575335754357553575635757357583575935760357613576235763357643576535766357673576835769357703577135772357733577435775357763577735778357793578035781357823578335784357853578635787357883578935790357913579235793357943579535796357973579835799358003580135802358033580435805358063580735808358093581035811358123581335814358153581635817358183581935820358213582235823358243582535826358273582835829358303583135832358333583435835358363583735838358393584035841358423584335844358453584635847358483584935850358513585235853358543585535856358573585835859358603586135862358633586435865358663586735868358693587035871358723587335874358753587635877358783587935880358813588235883358843588535886358873588835889358903589135892358933589435895358963589735898358993590035901359023590335904359053590635907359083590935910359113591235913359143591535916359173591835919359203592135922359233592435925359263592735928359293593035931359323593335934359353593635937359383593935940359413594235943359443594535946359473594835949359503595135952359533595435955359563595735958359593596035961359623596335964359653596635967359683596935970359713597235973359743597535976359773597835979359803598135982359833598435985359863598735988359893599035991359923599335994359953599635997359983599936000360013600236003360043600536006360073600836009360103601136012360133601436015360163601736018360193602036021360223602336024360253602636027360283602936030360313603236033360343603536036360373603836039360403604136042360433604436045360463604736048360493605036051360523605336054360553605636057360583605936060360613606236063360643606536066360673606836069360703607136072360733607436075360763607736078360793608036081360823608336084360853608636087360883608936090360913609236093360943609536096360973609836099361003610136102361033610436105361063610736108361093611036111361123611336114361153611636117361183611936120361213612236123361243612536126361273612836129361303613136132361333613436135361363613736138361393614036141361423614336144361453614636147361483614936150361513615236153361543615536156361573615836159361603616136162361633616436165361663616736168361693617036171361723617336174361753617636177361783617936180361813618236183361843618536186361873618836189361903619136192361933619436195361963619736198361993620036201362023620336204362053620636207362083620936210362113621236213362143621536216362173621836219362203622136222362233622436225362263622736228362293623036231362323623336234362353623636237362383623936240362413624236243362443624536246362473624836249362503625136252362533625436255362563625736258362593626036261362623626336264362653626636267362683626936270362713627236273362743627536276362773627836279362803628136282362833628436285362863628736288362893629036291362923629336294362953629636297362983629936300363013630236303363043630536306363073630836309363103631136312363133631436315363163631736318363193632036321363223632336324363253632636327363283632936330363313633236333363343633536336363373633836339363403634136342363433634436345363463634736348363493635036351363523635336354363553635636357363583635936360363613636236363363643636536366363673636836369363703637136372363733637436375363763637736378363793638036381363823638336384363853638636387363883638936390363913639236393363943639536396363973639836399364003640136402364033640436405364063640736408364093641036411364123641336414364153641636417364183641936420364213642236423364243642536426364273642836429364303643136432364333643436435364363643736438364393644036441364423644336444364453644636447364483644936450364513645236453364543645536456364573645836459364603646136462364633646436465364663646736468364693647036471364723647336474364753647636477364783647936480364813648236483364843648536486364873648836489364903649136492364933649436495364963649736498364993650036501365023650336504365053650636507365083650936510365113651236513365143651536516365173651836519365203652136522365233652436525365263652736528365293653036531365323653336534365353653636537365383653936540365413654236543365443654536546365473654836549365503655136552365533655436555365563655736558365593656036561365623656336564365653656636567365683656936570365713657236573365743657536576365773657836579365803658136582365833658436585365863658736588365893659036591365923659336594365953659636597365983659936600366013660236603366043660536606366073660836609366103661136612366133661436615366163661736618366193662036621366223662336624366253662636627366283662936630366313663236633366343663536636366373663836639366403664136642366433664436645366463664736648366493665036651366523665336654366553665636657366583665936660366613666236663366643666536666366673666836669366703667136672366733667436675366763667736678366793668036681366823668336684366853668636687366883668936690366913669236693366943669536696366973669836699367003670136702367033670436705367063670736708367093671036711367123671336714367153671636717367183671936720367213672236723367243672536726367273672836729367303673136732367333673436735367363673736738367393674036741367423674336744367453674636747367483674936750367513675236753367543675536756367573675836759367603676136762367633676436765367663676736768367693677036771367723677336774367753677636777367783677936780367813678236783367843678536786367873678836789367903679136792367933679436795367963679736798367993680036801368023680336804368053680636807368083680936810368113681236813368143681536816368173681836819368203682136822368233682436825368263682736828368293683036831368323683336834368353683636837368383683936840368413684236843368443684536846368473684836849368503685136852368533685436855368563685736858368593686036861368623686336864368653686636867368683686936870368713687236873368743687536876368773687836879368803688136882368833688436885368863688736888368893689036891368923689336894368953689636897368983689936900369013690236903369043690536906369073690836909369103691136912369133691436915369163691736918369193692036921369223692336924369253692636927369283692936930369313693236933369343693536936369373693836939369403694136942369433694436945369463694736948369493695036951369523695336954369553695636957369583695936960369613696236963369643696536966369673696836969369703697136972369733697436975369763697736978369793698036981369823698336984369853698636987369883698936990369913699236993369943699536996369973699836999370003700137002370033700437005370063700737008370093701037011370123701337014370153701637017370183701937020370213702237023370243702537026370273702837029370303703137032370333703437035370363703737038370393704037041370423704337044370453704637047370483704937050370513705237053370543705537056370573705837059370603706137062370633706437065370663706737068370693707037071370723707337074370753707637077370783707937080370813708237083370843708537086370873708837089370903709137092370933709437095370963709737098370993710037101371023710337104371053710637107371083710937110371113711237113371143711537116371173711837119371203712137122371233712437125371263712737128371293713037131371323713337134371353713637137371383713937140371413714237143371443714537146371473714837149371503715137152371533715437155371563715737158371593716037161371623716337164371653716637167371683716937170371713717237173371743717537176371773717837179371803718137182371833718437185371863718737188371893719037191371923719337194371953719637197371983719937200372013720237203372043720537206372073720837209372103721137212372133721437215372163721737218372193722037221372223722337224372253722637227372283722937230372313723237233372343723537236372373723837239372403724137242372433724437245372463724737248372493725037251372523725337254372553725637257372583725937260372613726237263372643726537266372673726837269372703727137272372733727437275372763727737278372793728037281372823728337284372853728637287372883728937290372913729237293372943729537296372973729837299373003730137302373033730437305373063730737308373093731037311373123731337314373153731637317373183731937320373213732237323373243732537326373273732837329373303733137332373333733437335373363733737338373393734037341373423734337344373453734637347373483734937350373513735237353373543735537356373573735837359373603736137362373633736437365373663736737368373693737037371373723737337374373753737637377373783737937380373813738237383373843738537386373873738837389373903739137392373933739437395373963739737398373993740037401374023740337404374053740637407374083740937410374113741237413374143741537416374173741837419374203742137422374233742437425374263742737428374293743037431374323743337434374353743637437374383743937440374413744237443374443744537446374473744837449374503745137452374533745437455374563745737458374593746037461374623746337464374653746637467374683746937470374713747237473374743747537476374773747837479374803748137482374833748437485374863748737488374893749037491374923749337494374953749637497374983749937500375013750237503375043750537506375073750837509375103751137512375133751437515375163751737518375193752037521375223752337524375253752637527375283752937530375313753237533375343753537536375373753837539375403754137542375433754437545375463754737548375493755037551375523755337554375553755637557375583755937560375613756237563375643756537566375673756837569375703757137572375733757437575375763757737578375793758037581375823758337584375853758637587375883758937590375913759237593375943759537596375973759837599376003760137602376033760437605376063760737608376093761037611376123761337614376153761637617376183761937620376213762237623376243762537626376273762837629376303763137632376333763437635376363763737638376393764037641376423764337644376453764637647376483764937650376513765237653376543765537656376573765837659376603766137662376633766437665376663766737668376693767037671376723767337674376753767637677376783767937680376813768237683376843768537686376873768837689376903769137692376933769437695376963769737698376993770037701377023770337704377053770637707377083770937710377113771237713377143771537716377173771837719377203772137722377233772437725377263772737728377293773037731377323773337734377353773637737377383773937740377413774237743377443774537746377473774837749377503775137752377533775437755377563775737758377593776037761377623776337764377653776637767377683776937770377713777237773377743777537776377773777837779377803778137782377833778437785377863778737788377893779037791377923779337794377953779637797377983779937800378013780237803378043780537806378073780837809378103781137812378133781437815378163781737818378193782037821378223782337824378253782637827378283782937830378313783237833378343783537836378373783837839378403784137842378433784437845378463784737848378493785037851378523785337854378553785637857378583785937860378613786237863378643786537866378673786837869378703787137872378733787437875378763787737878378793788037881378823788337884378853788637887378883788937890378913789237893378943789537896378973789837899379003790137902379033790437905379063790737908379093791037911379123791337914379153791637917379183791937920379213792237923379243792537926379273792837929379303793137932379333793437935379363793737938379393794037941379423794337944379453794637947379483794937950379513795237953379543795537956379573795837959379603796137962379633796437965379663796737968379693797037971379723797337974379753797637977379783797937980379813798237983379843798537986379873798837989379903799137992379933799437995379963799737998379993800038001380023800338004380053800638007380083800938010380113801238013380143801538016380173801838019380203802138022380233802438025380263802738028380293803038031380323803338034380353803638037380383803938040380413804238043380443804538046380473804838049380503805138052380533805438055380563805738058380593806038061380623806338064380653806638067380683806938070380713807238073380743807538076380773807838079380803808138082380833808438085380863808738088380893809038091380923809338094380953809638097380983809938100381013810238103381043810538106381073810838109381103811138112381133811438115381163811738118381193812038121381223812338124381253812638127381283812938130381313813238133381343813538136381373813838139381403814138142381433814438145381463814738148381493815038151381523815338154381553815638157381583815938160381613816238163381643816538166381673816838169381703817138172381733817438175381763817738178381793818038181381823818338184381853818638187381883818938190381913819238193381943819538196381973819838199382003820138202382033820438205382063820738208382093821038211382123821338214382153821638217382183821938220382213822238223382243822538226382273822838229382303823138232382333823438235382363823738238382393824038241382423824338244382453824638247382483824938250382513825238253382543825538256382573825838259382603826138262382633826438265382663826738268382693827038271382723827338274382753827638277382783827938280382813828238283382843828538286382873828838289382903829138292382933829438295382963829738298382993830038301383023830338304383053830638307383083830938310383113831238313383143831538316383173831838319383203832138322383233832438325383263832738328383293833038331383323833338334383353833638337383383833938340383413834238343383443834538346383473834838349383503835138352383533835438355383563835738358383593836038361383623836338364383653836638367383683836938370383713837238373383743837538376383773837838379383803838138382383833838438385383863838738388383893839038391383923839338394383953839638397383983839938400384013840238403384043840538406384073840838409384103841138412384133841438415384163841738418384193842038421384223842338424384253842638427384283842938430384313843238433384343843538436384373843838439384403844138442384433844438445384463844738448384493845038451384523845338454384553845638457384583845938460384613846238463384643846538466384673846838469384703847138472384733847438475384763847738478384793848038481384823848338484384853848638487384883848938490384913849238493384943849538496384973849838499385003850138502385033850438505385063850738508385093851038511385123851338514385153851638517385183851938520385213852238523385243852538526385273852838529385303853138532385333853438535385363853738538385393854038541385423854338544385453854638547385483854938550385513855238553385543855538556385573855838559385603856138562385633856438565385663856738568385693857038571385723857338574385753857638577385783857938580385813858238583385843858538586385873858838589385903859138592385933859438595385963859738598385993860038601386023860338604386053860638607386083860938610386113861238613386143861538616386173861838619386203862138622386233862438625386263862738628386293863038631386323863338634386353863638637386383863938640386413864238643386443864538646386473864838649386503865138652386533865438655386563865738658386593866038661386623866338664386653866638667386683866938670386713867238673386743867538676386773867838679386803868138682386833868438685386863868738688386893869038691386923869338694386953869638697386983869938700387013870238703387043870538706387073870838709387103871138712387133871438715387163871738718387193872038721387223872338724387253872638727387283872938730387313873238733387343873538736387373873838739387403874138742387433874438745387463874738748387493875038751387523875338754387553875638757387583875938760387613876238763387643876538766387673876838769387703877138772387733877438775387763877738778387793878038781387823878338784387853878638787387883878938790387913879238793387943879538796387973879838799388003880138802388033880438805388063880738808388093881038811388123881338814388153881638817388183881938820388213882238823388243882538826388273882838829388303883138832388333883438835388363883738838388393884038841388423884338844388453884638847388483884938850388513885238853388543885538856388573885838859388603886138862388633886438865388663886738868388693887038871388723887338874388753887638877388783887938880388813888238883388843888538886388873888838889388903889138892388933889438895388963889738898388993890038901389023890338904389053890638907389083890938910389113891238913389143891538916389173891838919389203892138922389233892438925389263892738928389293893038931389323893338934389353893638937389383893938940389413894238943389443894538946389473894838949389503895138952389533895438955389563895738958389593896038961389623896338964389653896638967389683896938970389713897238973389743897538976389773897838979389803898138982389833898438985389863898738988389893899038991389923899338994389953899638997389983899939000390013900239003390043900539006390073900839009390103901139012390133901439015390163901739018390193902039021390223902339024390253902639027390283902939030390313903239033390343903539036390373903839039390403904139042390433904439045390463904739048390493905039051390523905339054390553905639057390583905939060390613906239063390643906539066390673906839069390703907139072390733907439075390763907739078390793908039081390823908339084390853908639087390883908939090390913909239093390943909539096390973909839099391003910139102391033910439105391063910739108391093911039111391123911339114391153911639117391183911939120391213912239123391243912539126391273912839129391303913139132391333913439135391363913739138391393914039141391423914339144391453914639147391483914939150391513915239153391543915539156391573915839159391603916139162391633916439165391663916739168391693917039171391723917339174391753917639177391783917939180391813918239183391843918539186391873918839189391903919139192391933919439195391963919739198391993920039201392023920339204392053920639207392083920939210392113921239213392143921539216392173921839219392203922139222392233922439225392263922739228392293923039231392323923339234392353923639237392383923939240392413924239243392443924539246392473924839249392503925139252392533925439255392563925739258392593926039261392623926339264392653926639267392683926939270392713927239273392743927539276392773927839279392803928139282392833928439285392863928739288392893929039291392923929339294392953929639297392983929939300393013930239303393043930539306393073930839309393103931139312393133931439315393163931739318393193932039321393223932339324393253932639327393283932939330393313933239333393343933539336393373933839339393403934139342393433934439345393463934739348393493935039351393523935339354393553935639357393583935939360393613936239363393643936539366393673936839369393703937139372393733937439375393763937739378393793938039381393823938339384393853938639387393883938939390393913939239393393943939539396393973939839399394003940139402394033940439405394063940739408394093941039411394123941339414394153941639417394183941939420394213942239423394243942539426394273942839429394303943139432394333943439435394363943739438394393944039441394423944339444394453944639447394483944939450394513945239453394543945539456394573945839459394603946139462394633946439465394663946739468394693947039471394723947339474394753947639477394783947939480394813948239483394843948539486394873948839489394903949139492394933949439495394963949739498394993950039501395023950339504395053950639507395083950939510395113951239513395143951539516395173951839519395203952139522395233952439525395263952739528395293953039531395323953339534395353953639537395383953939540395413954239543395443954539546395473954839549395503955139552395533955439555395563955739558395593956039561395623956339564395653956639567395683956939570395713957239573395743957539576395773957839579395803958139582395833958439585395863958739588395893959039591395923959339594395953959639597395983959939600396013960239603396043960539606396073960839609396103961139612396133961439615396163961739618396193962039621396223962339624396253962639627396283962939630396313963239633396343963539636396373963839639396403964139642396433964439645396463964739648396493965039651396523965339654396553965639657396583965939660396613966239663396643966539666396673966839669396703967139672396733967439675396763967739678396793968039681396823968339684396853968639687396883968939690396913969239693396943969539696396973969839699397003970139702397033970439705397063970739708397093971039711397123971339714397153971639717397183971939720397213972239723397243972539726397273972839729397303973139732397333973439735397363973739738397393974039741397423974339744397453974639747397483974939750397513975239753397543975539756397573975839759397603976139762397633976439765397663976739768397693977039771397723977339774397753977639777397783977939780397813978239783397843978539786397873978839789397903979139792397933979439795397963979739798397993980039801398023980339804398053980639807398083980939810398113981239813398143981539816398173981839819398203982139822398233982439825398263982739828398293983039831398323983339834398353983639837398383983939840398413984239843398443984539846398473984839849398503985139852398533985439855398563985739858398593986039861398623986339864398653986639867398683986939870398713987239873398743987539876398773987839879398803988139882398833988439885398863988739888398893989039891398923989339894398953989639897398983989939900399013990239903399043990539906399073990839909399103991139912399133991439915399163991739918399193992039921399223992339924399253992639927399283992939930399313993239933399343993539936399373993839939399403994139942399433994439945399463994739948399493995039951399523995339954399553995639957399583995939960399613996239963399643996539966399673996839969399703997139972399733997439975399763997739978399793998039981399823998339984399853998639987399883998939990399913999239993399943999539996399973999839999400004000140002400034000440005400064000740008400094001040011400124001340014400154001640017400184001940020400214002240023400244002540026400274002840029400304003140032400334003440035400364003740038400394004040041400424004340044400454004640047400484004940050400514005240053400544005540056400574005840059400604006140062400634006440065400664006740068400694007040071400724007340074400754007640077400784007940080400814008240083400844008540086400874008840089400904009140092400934009440095400964009740098400994010040101401024010340104401054010640107401084010940110401114011240113401144011540116401174011840119401204012140122401234012440125401264012740128401294013040131401324013340134401354013640137401384013940140401414014240143401444014540146401474014840149401504015140152401534015440155401564015740158401594016040161401624016340164401654016640167401684016940170401714017240173401744017540176401774017840179401804018140182401834018440185401864018740188401894019040191401924019340194401954019640197401984019940200402014020240203402044020540206402074020840209402104021140212402134021440215402164021740218402194022040221402224022340224402254022640227402284022940230402314023240233402344023540236402374023840239402404024140242402434024440245402464024740248402494025040251402524025340254402554025640257402584025940260402614026240263402644026540266402674026840269402704027140272402734027440275402764027740278402794028040281402824028340284402854028640287402884028940290402914029240293402944029540296402974029840299403004030140302403034030440305403064030740308403094031040311403124031340314403154031640317403184031940320403214032240323403244032540326403274032840329403304033140332403334033440335403364033740338403394034040341403424034340344403454034640347403484034940350403514035240353403544035540356403574035840359403604036140362403634036440365403664036740368403694037040371403724037340374403754037640377403784037940380403814038240383403844038540386403874038840389403904039140392403934039440395403964039740398403994040040401404024040340404404054040640407404084040940410404114041240413404144041540416404174041840419404204042140422404234042440425404264042740428404294043040431404324043340434404354043640437404384043940440404414044240443404444044540446404474044840449404504045140452404534045440455404564045740458404594046040461404624046340464404654046640467404684046940470404714047240473404744047540476404774047840479404804048140482404834048440485404864048740488404894049040491404924049340494404954049640497404984049940500405014050240503405044050540506405074050840509405104051140512405134051440515405164051740518405194052040521405224052340524405254052640527405284052940530405314053240533405344053540536405374053840539405404054140542405434054440545405464054740548405494055040551405524055340554405554055640557405584055940560405614056240563405644056540566405674056840569405704057140572405734057440575405764057740578405794058040581405824058340584405854058640587405884058940590405914059240593405944059540596405974059840599406004060140602406034060440605406064060740608406094061040611406124061340614406154061640617406184061940620406214062240623406244062540626406274062840629406304063140632406334063440635406364063740638406394064040641406424064340644406454064640647406484064940650406514065240653406544065540656406574065840659406604066140662406634066440665406664066740668406694067040671406724067340674406754067640677406784067940680406814068240683406844068540686406874068840689406904069140692406934069440695406964069740698406994070040701407024070340704407054070640707407084070940710407114071240713407144071540716407174071840719407204072140722407234072440725407264072740728407294073040731407324073340734407354073640737407384073940740407414074240743407444074540746407474074840749407504075140752407534075440755407564075740758407594076040761407624076340764407654076640767407684076940770407714077240773407744077540776407774077840779407804078140782407834078440785407864078740788407894079040791407924079340794407954079640797407984079940800408014080240803408044080540806408074080840809408104081140812408134081440815408164081740818408194082040821408224082340824408254082640827408284082940830408314083240833408344083540836408374083840839408404084140842408434084440845408464084740848408494085040851408524085340854408554085640857408584085940860408614086240863408644086540866408674086840869408704087140872408734087440875408764087740878408794088040881408824088340884408854088640887408884088940890408914089240893408944089540896408974089840899409004090140902409034090440905409064090740908409094091040911409124091340914409154091640917409184091940920409214092240923409244092540926409274092840929409304093140932409334093440935409364093740938409394094040941409424094340944409454094640947409484094940950409514095240953409544095540956409574095840959409604096140962409634096440965409664096740968409694097040971409724097340974409754097640977409784097940980409814098240983409844098540986409874098840989409904099140992409934099440995409964099740998409994100041001410024100341004410054100641007410084100941010410114101241013410144101541016410174101841019410204102141022410234102441025410264102741028410294103041031410324103341034410354103641037410384103941040410414104241043410444104541046410474104841049410504105141052410534105441055410564105741058410594106041061410624106341064410654106641067410684106941070410714107241073410744107541076410774107841079410804108141082410834108441085410864108741088410894109041091410924109341094410954109641097410984109941100411014110241103411044110541106411074110841109411104111141112411134111441115411164111741118411194112041121411224112341124411254112641127411284112941130411314113241133411344113541136411374113841139411404114141142411434114441145411464114741148411494115041151411524115341154411554115641157411584115941160411614116241163411644116541166411674116841169411704117141172411734117441175411764117741178411794118041181411824118341184411854118641187411884118941190411914119241193411944119541196411974119841199412004120141202412034120441205412064120741208412094121041211412124121341214412154121641217412184121941220412214122241223412244122541226412274122841229412304123141232412334123441235412364123741238412394124041241412424124341244412454124641247412484124941250412514125241253412544125541256412574125841259412604126141262412634126441265412664126741268412694127041271412724127341274412754127641277412784127941280412814128241283412844128541286412874128841289412904129141292412934129441295412964129741298412994130041301413024130341304413054130641307413084130941310413114131241313413144131541316413174131841319413204132141322413234132441325413264132741328413294133041331413324133341334413354133641337413384133941340413414134241343413444134541346413474134841349413504135141352413534135441355413564135741358413594136041361413624136341364413654136641367413684136941370413714137241373413744137541376413774137841379413804138141382413834138441385413864138741388413894139041391413924139341394413954139641397413984139941400414014140241403414044140541406414074140841409414104141141412414134141441415414164141741418414194142041421414224142341424414254142641427414284142941430414314143241433414344143541436414374143841439414404144141442414434144441445414464144741448414494145041451414524145341454414554145641457414584145941460414614146241463414644146541466414674146841469414704147141472414734147441475414764147741478414794148041481414824148341484414854148641487414884148941490414914149241493414944149541496414974149841499415004150141502415034150441505415064150741508415094151041511415124151341514415154151641517415184151941520415214152241523415244152541526415274152841529415304153141532415334153441535415364153741538415394154041541415424154341544415454154641547415484154941550415514155241553415544155541556415574155841559415604156141562415634156441565415664156741568415694157041571415724157341574415754157641577415784157941580415814158241583415844158541586415874158841589415904159141592415934159441595415964159741598415994160041601416024160341604416054160641607416084160941610416114161241613416144161541616416174161841619416204162141622416234162441625416264162741628416294163041631416324163341634416354163641637416384163941640416414164241643416444164541646416474164841649416504165141652416534165441655416564165741658416594166041661416624166341664416654166641667416684166941670416714167241673416744167541676416774167841679416804168141682416834168441685416864168741688416894169041691416924169341694416954169641697416984169941700417014170241703417044170541706417074170841709417104171141712417134171441715417164171741718417194172041721417224172341724417254172641727417284172941730417314173241733417344173541736417374173841739417404174141742417434174441745417464174741748417494175041751417524175341754417554175641757417584175941760417614176241763417644176541766417674176841769417704177141772417734177441775417764177741778417794178041781417824178341784417854178641787417884178941790417914179241793417944179541796417974179841799418004180141802418034180441805418064180741808418094181041811418124181341814418154181641817418184181941820418214182241823418244182541826418274182841829418304183141832418334183441835418364183741838418394184041841418424184341844418454184641847418484184941850418514185241853418544185541856418574185841859418604186141862418634186441865418664186741868418694187041871418724187341874418754187641877418784187941880418814188241883418844188541886418874188841889418904189141892418934189441895418964189741898418994190041901419024190341904419054190641907419084190941910419114191241913419144191541916419174191841919419204192141922419234192441925419264192741928419294193041931419324193341934419354193641937419384193941940419414194241943419444194541946419474194841949419504195141952419534195441955419564195741958419594196041961419624196341964419654196641967419684196941970419714197241973419744197541976419774197841979419804198141982419834198441985419864198741988419894199041991419924199341994419954199641997419984199942000420014200242003420044200542006420074200842009420104201142012420134201442015420164201742018420194202042021420224202342024420254202642027420284202942030420314203242033420344203542036420374203842039420404204142042420434204442045420464204742048420494205042051420524205342054420554205642057420584205942060420614206242063420644206542066420674206842069420704207142072420734207442075420764207742078420794208042081420824208342084420854208642087420884208942090420914209242093420944209542096420974209842099421004210142102421034210442105421064210742108421094211042111421124211342114421154211642117421184211942120421214212242123421244212542126421274212842129421304213142132421334213442135421364213742138421394214042141421424214342144421454214642147421484214942150421514215242153421544215542156421574215842159421604216142162421634216442165421664216742168421694217042171421724217342174421754217642177421784217942180421814218242183421844218542186421874218842189421904219142192421934219442195421964219742198421994220042201422024220342204422054220642207422084220942210422114221242213422144221542216422174221842219422204222142222422234222442225422264222742228422294223042231422324223342234422354223642237422384223942240422414224242243422444224542246422474224842249422504225142252422534225442255422564225742258422594226042261422624226342264422654226642267422684226942270422714227242273422744227542276422774227842279422804228142282422834228442285422864228742288422894229042291422924229342294422954229642297422984229942300423014230242303423044230542306423074230842309423104231142312423134231442315423164231742318423194232042321423224232342324423254232642327423284232942330423314233242333423344233542336423374233842339423404234142342423434234442345423464234742348423494235042351423524235342354423554235642357423584235942360423614236242363423644236542366423674236842369423704237142372423734237442375423764237742378423794238042381423824238342384423854238642387423884238942390423914239242393423944239542396423974239842399424004240142402424034240442405424064240742408424094241042411424124241342414424154241642417424184241942420424214242242423424244242542426424274242842429424304243142432424334243442435424364243742438424394244042441424424244342444424454244642447424484244942450424514245242453424544245542456424574245842459424604246142462424634246442465424664246742468424694247042471424724247342474424754247642477424784247942480424814248242483424844248542486424874248842489424904249142492424934249442495424964249742498424994250042501425024250342504425054250642507425084250942510425114251242513425144251542516425174251842519425204252142522425234252442525425264252742528425294253042531425324253342534425354253642537425384253942540425414254242543425444254542546425474254842549425504255142552425534255442555425564255742558425594256042561425624256342564425654256642567425684256942570425714257242573425744257542576425774257842579425804258142582425834258442585425864258742588425894259042591425924259342594425954259642597425984259942600426014260242603426044260542606426074260842609426104261142612426134261442615426164261742618426194262042621426224262342624426254262642627426284262942630426314263242633426344263542636426374263842639426404264142642426434264442645426464264742648426494265042651426524265342654426554265642657426584265942660426614266242663426644266542666426674266842669426704267142672426734267442675426764267742678426794268042681426824268342684426854268642687426884268942690426914269242693426944269542696426974269842699427004270142702427034270442705427064270742708427094271042711427124271342714427154271642717427184271942720427214272242723427244272542726427274272842729427304273142732427334273442735427364273742738427394274042741427424274342744427454274642747427484274942750427514275242753427544275542756427574275842759427604276142762427634276442765427664276742768427694277042771427724277342774427754277642777427784277942780427814278242783427844278542786427874278842789427904279142792427934279442795427964279742798427994280042801428024280342804428054280642807428084280942810428114281242813428144281542816428174281842819428204282142822428234282442825428264282742828428294283042831428324283342834428354283642837428384283942840428414284242843428444284542846428474284842849428504285142852428534285442855428564285742858428594286042861428624286342864428654286642867428684286942870428714287242873428744287542876428774287842879428804288142882428834288442885428864288742888428894289042891428924289342894428954289642897428984289942900429014290242903429044290542906429074290842909429104291142912429134291442915429164291742918429194292042921429224292342924429254292642927429284292942930429314293242933429344293542936429374293842939429404294142942429434294442945429464294742948429494295042951429524295342954429554295642957429584295942960429614296242963429644296542966429674296842969429704297142972429734297442975429764297742978429794298042981429824298342984429854298642987429884298942990429914299242993429944299542996429974299842999430004300143002430034300443005430064300743008430094301043011430124301343014430154301643017430184301943020430214302243023430244302543026430274302843029430304303143032430334303443035430364303743038430394304043041430424304343044430454304643047430484304943050430514305243053430544305543056430574305843059430604306143062430634306443065430664306743068430694307043071430724307343074430754307643077430784307943080430814308243083430844308543086430874308843089430904309143092430934309443095430964309743098430994310043101431024310343104431054310643107431084310943110431114311243113431144311543116431174311843119431204312143122431234312443125431264312743128431294313043131431324313343134431354313643137431384313943140431414314243143431444314543146431474314843149431504315143152431534315443155431564315743158431594316043161431624316343164431654316643167431684316943170431714317243173431744317543176431774317843179431804318143182431834318443185431864318743188431894319043191431924319343194431954319643197431984319943200432014320243203432044320543206432074320843209432104321143212432134321443215432164321743218432194322043221432224322343224432254322643227432284322943230432314323243233432344323543236432374323843239432404324143242432434324443245432464324743248432494325043251432524325343254432554325643257432584325943260432614326243263432644326543266432674326843269432704327143272432734327443275432764327743278432794328043281432824328343284432854328643287432884328943290432914329243293432944329543296432974329843299433004330143302433034330443305433064330743308433094331043311433124331343314433154331643317433184331943320433214332243323433244332543326433274332843329433304333143332433334333443335433364333743338433394334043341433424334343344433454334643347433484334943350433514335243353433544335543356433574335843359433604336143362433634336443365433664336743368433694337043371433724337343374433754337643377433784337943380433814338243383433844338543386433874338843389433904339143392433934339443395433964339743398433994340043401434024340343404434054340643407434084340943410434114341243413434144341543416434174341843419434204342143422434234342443425434264342743428434294343043431434324343343434434354343643437434384343943440434414344243443434444344543446434474344843449434504345143452434534345443455434564345743458434594346043461434624346343464434654346643467434684346943470434714347243473434744347543476434774347843479434804348143482434834348443485434864348743488434894349043491434924349343494434954349643497434984349943500435014350243503435044350543506435074350843509435104351143512435134351443515435164351743518435194352043521435224352343524435254352643527435284352943530435314353243533435344353543536435374353843539435404354143542435434354443545435464354743548435494355043551435524355343554435554355643557435584355943560435614356243563435644356543566435674356843569435704357143572435734357443575435764357743578435794358043581435824358343584435854358643587435884358943590435914359243593435944359543596435974359843599436004360143602436034360443605436064360743608436094361043611436124361343614436154361643617436184361943620436214362243623436244362543626436274362843629436304363143632436334363443635436364363743638436394364043641436424364343644436454364643647436484364943650436514365243653436544365543656436574365843659436604366143662436634366443665436664366743668436694367043671436724367343674436754367643677436784367943680436814368243683436844368543686436874368843689436904369143692436934369443695436964369743698436994370043701437024370343704437054370643707437084370943710437114371243713437144371543716437174371843719437204372143722437234372443725437264372743728437294373043731437324373343734437354373643737437384373943740437414374243743437444374543746437474374843749437504375143752437534375443755437564375743758437594376043761437624376343764437654376643767437684376943770437714377243773437744377543776437774377843779437804378143782437834378443785437864378743788437894379043791437924379343794437954379643797437984379943800438014380243803438044380543806438074380843809438104381143812438134381443815438164381743818438194382043821438224382343824438254382643827438284382943830438314383243833438344383543836438374383843839438404384143842438434384443845438464384743848438494385043851438524385343854438554385643857438584385943860438614386243863438644386543866438674386843869438704387143872438734387443875438764387743878438794388043881438824388343884438854388643887438884388943890438914389243893438944389543896438974389843899439004390143902439034390443905439064390743908439094391043911439124391343914439154391643917439184391943920439214392243923439244392543926439274392843929439304393143932439334393443935439364393743938439394394043941439424394343944439454394643947439484394943950439514395243953439544395543956439574395843959439604396143962439634396443965439664396743968439694397043971439724397343974439754397643977439784397943980439814398243983439844398543986439874398843989439904399143992439934399443995439964399743998439994400044001440024400344004440054400644007440084400944010440114401244013440144401544016440174401844019440204402144022440234402444025440264402744028440294403044031440324403344034440354403644037440384403944040440414404244043440444404544046440474404844049440504405144052440534405444055440564405744058440594406044061440624406344064440654406644067440684406944070440714407244073440744407544076440774407844079440804408144082440834408444085440864408744088440894409044091440924409344094440954409644097440984409944100441014410244103441044410544106441074410844109441104411144112441134411444115441164411744118441194412044121441224412344124441254412644127441284412944130441314413244133441344413544136441374413844139441404414144142441434414444145441464414744148441494415044151441524415344154441554415644157441584415944160441614416244163441644416544166441674416844169441704417144172441734417444175441764417744178441794418044181441824418344184441854418644187441884418944190441914419244193441944419544196441974419844199442004420144202442034420444205442064420744208442094421044211442124421344214442154421644217442184421944220442214422244223442244422544226442274422844229442304423144232442334423444235442364423744238442394424044241442424424344244442454424644247442484424944250442514425244253442544425544256442574425844259442604426144262442634426444265442664426744268442694427044271442724427344274442754427644277442784427944280442814428244283442844428544286442874428844289442904429144292442934429444295442964429744298442994430044301443024430344304443054430644307443084430944310443114431244313443144431544316443174431844319443204432144322443234432444325443264432744328443294433044331443324433344334443354433644337443384433944340443414434244343443444434544346443474434844349443504435144352443534435444355443564435744358443594436044361443624436344364443654436644367443684436944370443714437244373443744437544376443774437844379443804438144382443834438444385443864438744388443894439044391443924439344394443954439644397443984439944400444014440244403444044440544406444074440844409444104441144412444134441444415444164441744418444194442044421444224442344424444254442644427444284442944430444314443244433444344443544436444374443844439444404444144442444434444444445444464444744448444494445044451444524445344454444554445644457444584445944460444614446244463444644446544466444674446844469444704447144472444734447444475444764447744478444794448044481444824448344484444854448644487444884448944490444914449244493444944449544496444974449844499445004450144502445034450444505445064450744508445094451044511445124451344514445154451644517445184451944520445214452244523445244452544526445274452844529445304453144532445334453444535445364453744538445394454044541445424454344544445454454644547445484454944550445514455244553445544455544556445574455844559445604456144562445634456444565445664456744568445694457044571445724457344574445754457644577445784457944580445814458244583445844458544586445874458844589445904459144592445934459444595445964459744598445994460044601446024460344604446054460644607446084460944610446114461244613446144461544616446174461844619446204462144622446234462444625446264462744628446294463044631446324463344634446354463644637446384463944640446414464244643446444464544646446474464844649446504465144652446534465444655446564465744658446594466044661446624466344664446654466644667446684466944670446714467244673446744467544676446774467844679446804468144682446834468444685446864468744688446894469044691446924469344694446954469644697446984469944700447014470244703447044470544706447074470844709447104471144712447134471444715447164471744718447194472044721447224472344724447254472644727447284472944730447314473244733447344473544736447374473844739447404474144742447434474444745447464474744748447494475044751447524475344754447554475644757447584475944760447614476244763447644476544766447674476844769447704477144772447734477444775447764477744778447794478044781447824478344784447854478644787447884478944790447914479244793447944479544796447974479844799448004480144802448034480444805448064480744808448094481044811448124481344814448154481644817448184481944820448214482244823448244482544826448274482844829448304483144832448334483444835448364483744838448394484044841448424484344844448454484644847448484484944850448514485244853448544485544856448574485844859448604486144862448634486444865448664486744868448694487044871448724487344874448754487644877448784487944880448814488244883448844488544886448874488844889448904489144892448934489444895448964489744898448994490044901449024490344904449054490644907449084490944910449114491244913449144491544916449174491844919449204492144922449234492444925449264492744928449294493044931449324493344934449354493644937449384493944940449414494244943449444494544946449474494844949449504495144952449534495444955449564495744958449594496044961449624496344964449654496644967449684496944970449714497244973449744497544976449774497844979449804498144982449834498444985449864498744988449894499044991449924499344994449954499644997449984499945000450014500245003450044500545006450074500845009450104501145012450134501445015450164501745018450194502045021450224502345024450254502645027450284502945030450314503245033450344503545036450374503845039450404504145042450434504445045450464504745048450494505045051450524505345054450554505645057450584505945060450614506245063450644506545066450674506845069450704507145072450734507445075450764507745078450794508045081450824508345084450854508645087450884508945090450914509245093450944509545096450974509845099451004510145102451034510445105451064510745108451094511045111451124511345114451154511645117451184511945120451214512245123451244512545126451274512845129451304513145132451334513445135451364513745138451394514045141451424514345144451454514645147451484514945150451514515245153451544515545156451574515845159451604516145162451634516445165451664516745168451694517045171451724517345174451754517645177451784517945180451814518245183451844518545186451874518845189451904519145192451934519445195451964519745198451994520045201452024520345204452054520645207452084520945210452114521245213452144521545216452174521845219452204522145222452234522445225452264522745228452294523045231452324523345234452354523645237452384523945240452414524245243452444524545246452474524845249452504525145252452534525445255452564525745258452594526045261452624526345264452654526645267452684526945270452714527245273452744527545276452774527845279452804528145282452834528445285452864528745288452894529045291452924529345294452954529645297452984529945300453014530245303453044530545306453074530845309453104531145312453134531445315453164531745318453194532045321453224532345324453254532645327453284532945330453314533245333453344533545336453374533845339453404534145342453434534445345453464534745348453494535045351453524535345354453554535645357453584535945360453614536245363453644536545366453674536845369453704537145372453734537445375453764537745378453794538045381453824538345384453854538645387453884538945390453914539245393453944539545396453974539845399454004540145402454034540445405454064540745408454094541045411454124541345414454154541645417454184541945420454214542245423454244542545426454274542845429454304543145432454334543445435454364543745438454394544045441454424544345444454454544645447454484544945450454514545245453454544545545456454574545845459454604546145462454634546445465454664546745468454694547045471454724547345474454754547645477454784547945480454814548245483454844548545486454874548845489454904549145492454934549445495454964549745498454994550045501455024550345504455054550645507455084550945510455114551245513455144551545516455174551845519455204552145522455234552445525455264552745528455294553045531455324553345534455354553645537455384553945540455414554245543455444554545546455474554845549455504555145552455534555445555455564555745558455594556045561455624556345564455654556645567455684556945570455714557245573455744557545576455774557845579455804558145582455834558445585455864558745588455894559045591455924559345594455954559645597455984559945600456014560245603456044560545606456074560845609456104561145612456134561445615456164561745618456194562045621456224562345624456254562645627456284562945630456314563245633456344563545636456374563845639456404564145642456434564445645456464564745648456494565045651456524565345654456554565645657456584565945660456614566245663456644566545666456674566845669456704567145672456734567445675456764567745678456794568045681456824568345684456854568645687456884568945690456914569245693456944569545696456974569845699457004570145702457034570445705457064570745708457094571045711457124571345714457154571645717457184571945720457214572245723457244572545726457274572845729457304573145732457334573445735457364573745738457394574045741457424574345744457454574645747457484574945750457514575245753457544575545756457574575845759457604576145762457634576445765457664576745768457694577045771457724577345774457754577645777457784577945780457814578245783457844578545786457874578845789457904579145792457934579445795457964579745798457994580045801458024580345804458054580645807458084580945810458114581245813458144581545816458174581845819458204582145822458234582445825458264582745828458294583045831458324583345834458354583645837458384583945840458414584245843458444584545846458474584845849458504585145852458534585445855458564585745858458594586045861458624586345864458654586645867458684586945870458714587245873458744587545876458774587845879458804588145882458834588445885458864588745888458894589045891458924589345894458954589645897458984589945900459014590245903459044590545906459074590845909459104591145912459134591445915459164591745918459194592045921459224592345924459254592645927459284592945930459314593245933459344593545936459374593845939459404594145942459434594445945459464594745948459494595045951459524595345954459554595645957459584595945960459614596245963459644596545966459674596845969459704597145972459734597445975459764597745978459794598045981459824598345984459854598645987459884598945990459914599245993459944599545996459974599845999460004600146002460034600446005460064600746008460094601046011460124601346014460154601646017460184601946020460214602246023460244602546026460274602846029460304603146032460334603446035460364603746038460394604046041460424604346044460454604646047460484604946050460514605246053460544605546056460574605846059460604606146062460634606446065460664606746068460694607046071460724607346074460754607646077460784607946080460814608246083460844608546086460874608846089460904609146092460934609446095460964609746098460994610046101461024610346104461054610646107461084610946110461114611246113461144611546116461174611846119461204612146122461234612446125461264612746128461294613046131461324613346134461354613646137461384613946140461414614246143461444614546146461474614846149461504615146152461534615446155461564615746158461594616046161461624616346164461654616646167461684616946170461714617246173461744617546176461774617846179461804618146182461834618446185461864618746188461894619046191461924619346194461954619646197461984619946200462014620246203462044620546206462074620846209462104621146212462134621446215462164621746218462194622046221462224622346224462254622646227462284622946230462314623246233462344623546236462374623846239462404624146242462434624446245462464624746248462494625046251462524625346254462554625646257462584625946260462614626246263462644626546266462674626846269462704627146272462734627446275462764627746278462794628046281462824628346284462854628646287462884628946290462914629246293462944629546296462974629846299463004630146302463034630446305463064630746308463094631046311463124631346314463154631646317463184631946320463214632246323463244632546326463274632846329463304633146332463334633446335463364633746338463394634046341463424634346344463454634646347463484634946350463514635246353463544635546356463574635846359463604636146362463634636446365463664636746368463694637046371463724637346374463754637646377463784637946380463814638246383463844638546386463874638846389463904639146392463934639446395463964639746398463994640046401464024640346404464054640646407464084640946410464114641246413464144641546416464174641846419464204642146422464234642446425464264642746428464294643046431464324643346434464354643646437464384643946440464414644246443464444644546446464474644846449464504645146452464534645446455464564645746458464594646046461464624646346464464654646646467464684646946470464714647246473464744647546476464774647846479464804648146482464834648446485464864648746488464894649046491464924649346494464954649646497464984649946500465014650246503465044650546506465074650846509465104651146512465134651446515465164651746518465194652046521465224652346524465254652646527465284652946530465314653246533465344653546536465374653846539465404654146542465434654446545465464654746548465494655046551465524655346554465554655646557465584655946560465614656246563465644656546566465674656846569465704657146572465734657446575465764657746578465794658046581465824658346584465854658646587465884658946590465914659246593465944659546596465974659846599466004660146602466034660446605466064660746608466094661046611466124661346614466154661646617466184661946620466214662246623466244662546626466274662846629466304663146632466334663446635466364663746638466394664046641466424664346644466454664646647466484664946650466514665246653466544665546656466574665846659466604666146662466634666446665466664666746668466694667046671466724667346674466754667646677466784667946680466814668246683466844668546686466874668846689466904669146692466934669446695466964669746698466994670046701467024670346704467054670646707467084670946710467114671246713467144671546716467174671846719467204672146722467234672446725467264672746728467294673046731467324673346734467354673646737467384673946740467414674246743467444674546746467474674846749467504675146752467534675446755467564675746758467594676046761467624676346764467654676646767467684676946770467714677246773467744677546776467774677846779467804678146782467834678446785467864678746788467894679046791467924679346794467954679646797467984679946800468014680246803468044680546806468074680846809468104681146812468134681446815468164681746818468194682046821468224682346824468254682646827468284682946830468314683246833468344683546836468374683846839468404684146842468434684446845468464684746848468494685046851468524685346854468554685646857468584685946860468614686246863468644686546866468674686846869468704687146872468734687446875468764687746878468794688046881468824688346884468854688646887468884688946890468914689246893468944689546896468974689846899469004690146902469034690446905469064690746908469094691046911469124691346914469154691646917469184691946920469214692246923469244692546926469274692846929469304693146932469334693446935469364693746938469394694046941469424694346944469454694646947469484694946950469514695246953469544695546956469574695846959469604696146962469634696446965469664696746968469694697046971469724697346974469754697646977469784697946980469814698246983469844698546986469874698846989469904699146992469934699446995469964699746998469994700047001470024700347004470054700647007470084700947010470114701247013470144701547016470174701847019470204702147022470234702447025470264702747028470294703047031470324703347034470354703647037470384703947040470414704247043470444704547046470474704847049470504705147052470534705447055470564705747058470594706047061470624706347064470654706647067470684706947070470714707247073470744707547076470774707847079470804708147082470834708447085470864708747088470894709047091470924709347094470954709647097470984709947100471014710247103471044710547106471074710847109471104711147112471134711447115471164711747118471194712047121471224712347124471254712647127471284712947130471314713247133471344713547136471374713847139471404714147142471434714447145471464714747148471494715047151471524715347154471554715647157471584715947160471614716247163471644716547166471674716847169471704717147172471734717447175471764717747178471794718047181471824718347184471854718647187471884718947190471914719247193471944719547196471974719847199472004720147202472034720447205472064720747208472094721047211472124721347214472154721647217472184721947220472214722247223472244722547226472274722847229472304723147232472334723447235472364723747238472394724047241472424724347244472454724647247472484724947250472514725247253472544725547256472574725847259472604726147262472634726447265472664726747268472694727047271472724727347274472754727647277472784727947280472814728247283472844728547286472874728847289472904729147292472934729447295472964729747298472994730047301473024730347304473054730647307473084730947310473114731247313473144731547316473174731847319473204732147322473234732447325473264732747328473294733047331473324733347334473354733647337473384733947340473414734247343473444734547346473474734847349473504735147352473534735447355473564735747358473594736047361473624736347364473654736647367473684736947370473714737247373473744737547376473774737847379473804738147382473834738447385473864738747388473894739047391473924739347394473954739647397473984739947400474014740247403474044740547406474074740847409474104741147412474134741447415474164741747418474194742047421474224742347424474254742647427474284742947430474314743247433474344743547436474374743847439474404744147442474434744447445474464744747448474494745047451474524745347454474554745647457474584745947460474614746247463474644746547466474674746847469474704747147472474734747447475474764747747478474794748047481474824748347484474854748647487474884748947490474914749247493474944749547496474974749847499475004750147502475034750447505475064750747508475094751047511475124751347514475154751647517475184751947520475214752247523475244752547526475274752847529475304753147532475334753447535475364753747538475394754047541475424754347544475454754647547475484754947550475514755247553475544755547556475574755847559475604756147562475634756447565475664756747568475694757047571475724757347574475754757647577475784757947580475814758247583475844758547586475874758847589475904759147592475934759447595475964759747598475994760047601476024760347604476054760647607476084760947610476114761247613476144761547616476174761847619476204762147622476234762447625476264762747628476294763047631476324763347634476354763647637476384763947640476414764247643476444764547646476474764847649476504765147652476534765447655476564765747658476594766047661476624766347664476654766647667476684766947670476714767247673476744767547676476774767847679476804768147682476834768447685476864768747688476894769047691476924769347694476954769647697476984769947700477014770247703477044770547706477074770847709477104771147712477134771447715477164771747718477194772047721477224772347724477254772647727477284772947730477314773247733477344773547736477374773847739477404774147742477434774447745477464774747748477494775047751477524775347754477554775647757477584775947760477614776247763477644776547766477674776847769477704777147772477734777447775477764777747778477794778047781477824778347784477854778647787477884778947790477914779247793477944779547796477974779847799478004780147802478034780447805478064780747808478094781047811478124781347814478154781647817478184781947820478214782247823478244782547826478274782847829478304783147832478334783447835478364783747838478394784047841478424784347844478454784647847478484784947850478514785247853478544785547856478574785847859478604786147862478634786447865478664786747868478694787047871478724787347874478754787647877478784787947880478814788247883478844788547886478874788847889478904789147892478934789447895478964789747898478994790047901479024790347904479054790647907479084790947910479114791247913479144791547916479174791847919479204792147922479234792447925479264792747928479294793047931479324793347934479354793647937479384793947940479414794247943479444794547946479474794847949479504795147952479534795447955479564795747958479594796047961479624796347964479654796647967479684796947970479714797247973479744797547976479774797847979479804798147982479834798447985479864798747988479894799047991479924799347994479954799647997479984799948000480014800248003480044800548006480074800848009480104801148012480134801448015480164801748018480194802048021480224802348024480254802648027480284802948030480314803248033480344803548036480374803848039480404804148042480434804448045480464804748048480494805048051480524805348054480554805648057480584805948060480614806248063480644806548066480674806848069480704807148072480734807448075480764807748078480794808048081480824808348084480854808648087480884808948090480914809248093480944809548096480974809848099481004810148102481034810448105481064810748108481094811048111481124811348114481154811648117481184811948120481214812248123481244812548126481274812848129481304813148132481334813448135481364813748138481394814048141481424814348144481454814648147481484814948150481514815248153481544815548156481574815848159481604816148162481634816448165481664816748168481694817048171481724817348174481754817648177481784817948180481814818248183481844818548186481874818848189481904819148192481934819448195481964819748198481994820048201482024820348204482054820648207482084820948210482114821248213482144821548216482174821848219482204822148222482234822448225482264822748228482294823048231482324823348234482354823648237482384823948240482414824248243482444824548246482474824848249482504825148252482534825448255482564825748258482594826048261482624826348264482654826648267482684826948270482714827248273482744827548276482774827848279482804828148282482834828448285482864828748288482894829048291482924829348294482954829648297482984829948300483014830248303483044830548306483074830848309483104831148312483134831448315483164831748318483194832048321483224832348324483254832648327483284832948330483314833248333483344833548336483374833848339483404834148342483434834448345483464834748348483494835048351483524835348354483554835648357483584835948360483614836248363483644836548366483674836848369483704837148372483734837448375483764837748378483794838048381483824838348384483854838648387483884838948390483914839248393483944839548396483974839848399484004840148402484034840448405484064840748408484094841048411484124841348414484154841648417484184841948420484214842248423484244842548426484274842848429484304843148432484334843448435484364843748438484394844048441484424844348444484454844648447484484844948450484514845248453484544845548456484574845848459484604846148462484634846448465484664846748468484694847048471484724847348474484754847648477484784847948480484814848248483484844848548486484874848848489484904849148492484934849448495484964849748498484994850048501485024850348504485054850648507485084850948510485114851248513485144851548516485174851848519485204852148522485234852448525485264852748528485294853048531485324853348534485354853648537485384853948540485414854248543485444854548546485474854848549485504855148552485534855448555485564855748558485594856048561485624856348564485654856648567485684856948570485714857248573485744857548576485774857848579485804858148582485834858448585485864858748588485894859048591485924859348594485954859648597485984859948600486014860248603486044860548606486074860848609486104861148612486134861448615486164861748618486194862048621486224862348624486254862648627486284862948630486314863248633486344863548636486374863848639486404864148642486434864448645486464864748648486494865048651486524865348654486554865648657486584865948660486614866248663486644866548666486674866848669486704867148672486734867448675486764867748678486794868048681486824868348684486854868648687486884868948690486914869248693486944869548696486974869848699487004870148702487034870448705487064870748708487094871048711487124871348714487154871648717487184871948720487214872248723487244872548726487274872848729487304873148732487334873448735487364873748738487394874048741487424874348744487454874648747487484874948750487514875248753487544875548756487574875848759487604876148762487634876448765487664876748768487694877048771487724877348774487754877648777487784877948780487814878248783487844878548786487874878848789487904879148792487934879448795487964879748798487994880048801488024880348804488054880648807488084880948810488114881248813488144881548816488174881848819488204882148822488234882448825488264882748828488294883048831488324883348834488354883648837488384883948840488414884248843488444884548846488474884848849488504885148852488534885448855488564885748858488594886048861488624886348864488654886648867488684886948870488714887248873488744887548876488774887848879488804888148882488834888448885488864888748888488894889048891488924889348894488954889648897488984889948900489014890248903489044890548906489074890848909489104891148912489134891448915489164891748918489194892048921489224892348924489254892648927489284892948930489314893248933489344893548936489374893848939489404894148942489434894448945489464894748948489494895048951489524895348954489554895648957489584895948960489614896248963489644896548966489674896848969489704897148972489734897448975489764897748978489794898048981489824898348984489854898648987489884898948990489914899248993489944899548996489974899848999490004900149002490034900449005490064900749008490094901049011490124901349014490154901649017490184901949020490214902249023490244902549026490274902849029490304903149032490334903449035490364903749038490394904049041490424904349044490454904649047490484904949050490514905249053490544905549056490574905849059490604906149062490634906449065490664906749068490694907049071490724907349074490754907649077490784907949080490814908249083490844908549086490874908849089490904909149092490934909449095490964909749098490994910049101491024910349104491054910649107491084910949110491114911249113491144911549116491174911849119491204912149122491234912449125491264912749128491294913049131491324913349134491354913649137491384913949140491414914249143491444914549146491474914849149491504915149152491534915449155491564915749158491594916049161491624916349164491654916649167491684916949170491714917249173491744917549176491774917849179491804918149182491834918449185491864918749188491894919049191491924919349194491954919649197491984919949200492014920249203492044920549206492074920849209492104921149212492134921449215492164921749218492194922049221492224922349224492254922649227492284922949230492314923249233492344923549236492374923849239492404924149242492434924449245492464924749248492494925049251492524925349254492554925649257492584925949260492614926249263492644926549266492674926849269492704927149272492734927449275492764927749278492794928049281492824928349284492854928649287492884928949290492914929249293492944929549296492974929849299493004930149302493034930449305493064930749308493094931049311493124931349314493154931649317493184931949320493214932249323493244932549326493274932849329493304933149332493334933449335493364933749338493394934049341493424934349344493454934649347493484934949350493514935249353493544935549356493574935849359493604936149362493634936449365493664936749368493694937049371493724937349374493754937649377493784937949380493814938249383493844938549386493874938849389493904939149392493934939449395493964939749398493994940049401494024940349404494054940649407494084940949410494114941249413494144941549416494174941849419494204942149422494234942449425494264942749428494294943049431494324943349434494354943649437494384943949440494414944249443494444944549446494474944849449494504945149452494534945449455494564945749458494594946049461494624946349464494654946649467494684946949470494714947249473494744947549476494774947849479494804948149482494834948449485494864948749488494894949049491494924949349494494954949649497494984949949500495014950249503495044950549506495074950849509495104951149512495134951449515495164951749518495194952049521495224952349524495254952649527495284952949530495314953249533495344953549536495374953849539495404954149542495434954449545495464954749548495494955049551495524955349554495554955649557495584955949560495614956249563495644956549566495674956849569495704957149572495734957449575495764957749578495794958049581495824958349584495854958649587495884958949590495914959249593495944959549596495974959849599496004960149602496034960449605496064960749608496094961049611496124961349614496154961649617496184961949620496214962249623496244962549626496274962849629496304963149632496334963449635496364963749638496394964049641496424964349644496454964649647496484964949650496514965249653496544965549656496574965849659496604966149662496634966449665496664966749668496694967049671496724967349674496754967649677496784967949680496814968249683496844968549686496874968849689496904969149692496934969449695496964969749698496994970049701497024970349704497054970649707497084970949710497114971249713497144971549716497174971849719497204972149722497234972449725497264972749728497294973049731497324973349734497354973649737497384973949740497414974249743497444974549746497474974849749497504975149752497534975449755497564975749758497594976049761497624976349764497654976649767497684976949770497714977249773497744977549776497774977849779497804978149782497834978449785497864978749788497894979049791497924979349794497954979649797497984979949800498014980249803498044980549806498074980849809498104981149812498134981449815498164981749818498194982049821498224982349824498254982649827498284982949830498314983249833498344983549836498374983849839498404984149842498434984449845498464984749848498494985049851498524985349854498554985649857498584985949860498614986249863498644986549866498674986849869498704987149872498734987449875498764987749878498794988049881498824988349884498854988649887498884988949890498914989249893498944989549896498974989849899499004990149902499034990449905499064990749908499094991049911499124991349914499154991649917499184991949920499214992249923499244992549926499274992849929499304993149932499334993449935499364993749938499394994049941499424994349944499454994649947499484994949950499514995249953499544995549956499574995849959499604996149962499634996449965499664996749968499694997049971499724997349974499754997649977499784997949980499814998249983499844998549986499874998849989499904999149992499934999449995499964999749998499995000050001500025000350004500055000650007500085000950010500115001250013500145001550016500175001850019500205002150022500235002450025500265002750028500295003050031500325003350034500355003650037500385003950040500415004250043500445004550046500475004850049500505005150052500535005450055500565005750058500595006050061500625006350064500655006650067500685006950070500715007250073500745007550076500775007850079500805008150082500835008450085500865008750088500895009050091500925009350094500955009650097500985009950100501015010250103501045010550106501075010850109501105011150112501135011450115501165011750118501195012050121501225012350124501255012650127501285012950130501315013250133501345013550136501375013850139501405014150142501435014450145501465014750148501495015050151501525015350154501555015650157501585015950160501615016250163501645016550166501675016850169501705017150172501735017450175501765017750178501795018050181501825018350184501855018650187501885018950190501915019250193501945019550196501975019850199502005020150202502035020450205502065020750208502095021050211502125021350214502155021650217502185021950220502215022250223502245022550226502275022850229502305023150232502335023450235502365023750238502395024050241502425024350244502455024650247502485024950250502515025250253502545025550256502575025850259502605026150262502635026450265502665026750268502695027050271502725027350274502755027650277502785027950280502815028250283502845028550286502875028850289502905029150292502935029450295502965029750298502995030050301503025030350304503055030650307503085030950310503115031250313503145031550316503175031850319503205032150322503235032450325503265032750328503295033050331503325033350334503355033650337503385033950340503415034250343503445034550346503475034850349503505035150352503535035450355503565035750358503595036050361503625036350364503655036650367503685036950370503715037250373503745037550376503775037850379503805038150382503835038450385503865038750388503895039050391503925039350394503955039650397503985039950400504015040250403504045040550406504075040850409504105041150412504135041450415504165041750418504195042050421504225042350424504255042650427504285042950430504315043250433504345043550436504375043850439504405044150442504435044450445504465044750448504495045050451504525045350454504555045650457504585045950460504615046250463504645046550466504675046850469504705047150472504735047450475504765047750478504795048050481504825048350484504855048650487504885048950490504915049250493504945049550496504975049850499505005050150502505035050450505505065050750508505095051050511505125051350514505155051650517505185051950520505215052250523505245052550526505275052850529505305053150532505335053450535505365053750538505395054050541505425054350544505455054650547505485054950550505515055250553505545055550556505575055850559505605056150562505635056450565505665056750568505695057050571505725057350574505755057650577505785057950580505815058250583505845058550586505875058850589505905059150592505935059450595505965059750598505995060050601506025060350604506055060650607506085060950610506115061250613506145061550616506175061850619506205062150622506235062450625506265062750628506295063050631506325063350634506355063650637506385063950640506415064250643506445064550646506475064850649506505065150652506535065450655506565065750658506595066050661506625066350664506655066650667506685066950670506715067250673506745067550676506775067850679506805068150682506835068450685506865068750688506895069050691506925069350694506955069650697506985069950700507015070250703507045070550706507075070850709507105071150712507135071450715507165071750718507195072050721507225072350724507255072650727507285072950730507315073250733507345073550736507375073850739507405074150742507435074450745507465074750748507495075050751507525075350754507555075650757507585075950760507615076250763507645076550766507675076850769507705077150772507735077450775507765077750778507795078050781507825078350784507855078650787507885078950790507915079250793507945079550796507975079850799508005080150802508035080450805508065080750808508095081050811508125081350814508155081650817508185081950820508215082250823508245082550826508275082850829508305083150832508335083450835508365083750838508395084050841508425084350844508455084650847508485084950850508515085250853508545085550856508575085850859508605086150862508635086450865508665086750868508695087050871508725087350874508755087650877508785087950880508815088250883508845088550886508875088850889508905089150892508935089450895508965089750898508995090050901509025090350904509055090650907509085090950910509115091250913509145091550916509175091850919509205092150922509235092450925509265092750928509295093050931509325093350934509355093650937509385093950940509415094250943509445094550946509475094850949509505095150952509535095450955509565095750958509595096050961509625096350964509655096650967509685096950970509715097250973509745097550976509775097850979509805098150982509835098450985509865098750988509895099050991509925099350994509955099650997509985099951000510015100251003510045100551006510075100851009510105101151012510135101451015510165101751018510195102051021510225102351024510255102651027510285102951030510315103251033510345103551036510375103851039510405104151042510435104451045510465104751048510495105051051510525105351054510555105651057510585105951060510615106251063510645106551066510675106851069510705107151072510735107451075510765107751078510795108051081510825108351084510855108651087510885108951090510915109251093510945109551096510975109851099511005110151102511035110451105511065110751108511095111051111511125111351114511155111651117511185111951120511215112251123511245112551126511275112851129511305113151132511335113451135511365113751138511395114051141511425114351144511455114651147511485114951150511515115251153511545115551156511575115851159511605116151162511635116451165511665116751168511695117051171511725117351174511755117651177511785117951180511815118251183511845118551186511875118851189511905119151192511935119451195511965119751198511995120051201512025120351204512055120651207512085120951210512115121251213512145121551216512175121851219512205122151222512235122451225512265122751228512295123051231512325123351234512355123651237512385123951240512415124251243512445124551246512475124851249512505125151252512535125451255512565125751258512595126051261512625126351264512655126651267512685126951270512715127251273512745127551276512775127851279512805128151282512835128451285512865128751288512895129051291512925129351294512955129651297512985129951300513015130251303513045130551306513075130851309513105131151312513135131451315513165131751318513195132051321513225132351324513255132651327513285132951330513315133251333513345133551336513375133851339513405134151342513435134451345513465134751348513495135051351513525135351354513555135651357513585135951360513615136251363513645136551366513675136851369513705137151372513735137451375513765137751378513795138051381513825138351384513855138651387513885138951390513915139251393513945139551396513975139851399514005140151402514035140451405514065140751408514095141051411514125141351414514155141651417514185141951420514215142251423514245142551426514275142851429514305143151432514335143451435514365143751438514395144051441514425144351444514455144651447514485144951450514515145251453514545145551456514575145851459514605146151462514635146451465514665146751468514695147051471514725147351474514755147651477514785147951480514815148251483514845148551486514875148851489514905149151492514935149451495514965149751498514995150051501515025150351504515055150651507515085150951510515115151251513515145151551516515175151851519515205152151522515235152451525515265152751528515295153051531515325153351534515355153651537515385153951540515415154251543515445154551546515475154851549515505155151552515535155451555515565155751558515595156051561515625156351564515655156651567515685156951570515715157251573515745157551576515775157851579515805158151582515835158451585515865158751588515895159051591515925159351594515955159651597515985159951600516015160251603516045160551606516075160851609516105161151612516135161451615516165161751618516195162051621516225162351624516255162651627516285162951630516315163251633516345163551636516375163851639516405164151642516435164451645516465164751648516495165051651516525165351654516555165651657516585165951660516615166251663516645166551666516675166851669516705167151672516735167451675516765167751678516795168051681516825168351684516855168651687516885168951690516915169251693516945169551696516975169851699517005170151702517035170451705517065170751708517095171051711517125171351714517155171651717517185171951720517215172251723517245172551726517275172851729517305173151732517335173451735517365173751738517395174051741517425174351744517455174651747517485174951750517515175251753517545175551756517575175851759517605176151762517635176451765517665176751768517695177051771517725177351774517755177651777517785177951780517815178251783517845178551786517875178851789517905179151792517935179451795517965179751798517995180051801518025180351804518055180651807518085180951810518115181251813518145181551816518175181851819518205182151822518235182451825518265182751828518295183051831518325183351834518355183651837518385183951840518415184251843518445184551846518475184851849518505185151852518535185451855518565185751858518595186051861518625186351864518655186651867518685186951870518715187251873518745187551876518775187851879518805188151882518835188451885518865188751888518895189051891518925189351894518955189651897518985189951900519015190251903519045190551906519075190851909519105191151912519135191451915519165191751918519195192051921519225192351924519255192651927519285192951930519315193251933519345193551936519375193851939519405194151942519435194451945519465194751948519495195051951519525195351954519555195651957519585195951960519615196251963519645196551966519675196851969519705197151972519735197451975519765197751978519795198051981519825198351984519855198651987519885198951990519915199251993519945199551996519975199851999520005200152002520035200452005520065200752008520095201052011520125201352014520155201652017520185201952020520215202252023520245202552026520275202852029520305203152032520335203452035520365203752038520395204052041520425204352044520455204652047520485204952050520515205252053520545205552056520575205852059520605206152062520635206452065520665206752068520695207052071520725207352074520755207652077520785207952080520815208252083520845208552086520875208852089520905209152092520935209452095520965209752098520995210052101521025210352104521055210652107521085210952110521115211252113521145211552116521175211852119521205212152122521235212452125521265212752128521295213052131521325213352134521355213652137521385213952140521415214252143521445214552146521475214852149521505215152152521535215452155521565215752158521595216052161521625216352164521655216652167521685216952170521715217252173521745217552176521775217852179521805218152182521835218452185521865218752188521895219052191521925219352194521955219652197521985219952200522015220252203522045220552206522075220852209522105221152212522135221452215522165221752218522195222052221522225222352224522255222652227522285222952230522315223252233522345223552236522375223852239522405224152242522435224452245522465224752248522495225052251522525225352254522555225652257522585225952260522615226252263522645226552266522675226852269522705227152272522735227452275522765227752278522795228052281522825228352284522855228652287522885228952290522915229252293522945229552296522975229852299523005230152302523035230452305523065230752308523095231052311523125231352314523155231652317523185231952320523215232252323523245232552326523275232852329523305233152332523335233452335523365233752338523395234052341523425234352344523455234652347523485234952350523515235252353523545235552356523575235852359523605236152362523635236452365523665236752368523695237052371523725237352374523755237652377523785237952380523815238252383523845238552386523875238852389523905239152392523935239452395523965239752398523995240052401524025240352404524055240652407524085240952410524115241252413524145241552416524175241852419524205242152422524235242452425524265242752428524295243052431524325243352434524355243652437524385243952440524415244252443524445244552446524475244852449524505245152452524535245452455524565245752458524595246052461524625246352464524655246652467524685246952470524715247252473524745247552476524775247852479524805248152482524835248452485524865248752488524895249052491524925249352494524955249652497524985249952500525015250252503525045250552506525075250852509525105251152512525135251452515525165251752518525195252052521525225252352524525255252652527525285252952530525315253252533525345253552536525375253852539525405254152542525435254452545525465254752548525495255052551525525255352554525555255652557525585255952560525615256252563525645256552566525675256852569525705257152572525735257452575525765257752578525795258052581525825258352584525855258652587525885258952590525915259252593525945259552596525975259852599526005260152602526035260452605526065260752608526095261052611526125261352614526155261652617526185261952620526215262252623526245262552626526275262852629526305263152632526335263452635526365263752638526395264052641526425264352644526455264652647526485264952650526515265252653526545265552656526575265852659526605266152662526635266452665526665266752668526695267052671526725267352674526755267652677526785267952680526815268252683526845268552686526875268852689526905269152692526935269452695526965269752698526995270052701527025270352704527055270652707527085270952710527115271252713527145271552716527175271852719527205272152722527235272452725527265272752728527295273052731527325273352734527355273652737527385273952740527415274252743527445274552746527475274852749527505275152752527535275452755527565275752758527595276052761527625276352764527655276652767527685276952770527715277252773527745277552776527775277852779527805278152782527835278452785527865278752788527895279052791527925279352794527955279652797527985279952800528015280252803528045280552806528075280852809528105281152812528135281452815528165281752818528195282052821528225282352824528255282652827528285282952830528315283252833528345283552836528375283852839528405284152842528435284452845528465284752848528495285052851528525285352854528555285652857528585285952860528615286252863528645286552866528675286852869528705287152872528735287452875528765287752878528795288052881528825288352884528855288652887528885288952890528915289252893528945289552896528975289852899529005290152902529035290452905529065290752908529095291052911529125291352914529155291652917529185291952920529215292252923529245292552926529275292852929529305293152932529335293452935529365293752938529395294052941529425294352944529455294652947529485294952950529515295252953529545295552956529575295852959529605296152962529635296452965529665296752968529695297052971529725297352974529755297652977529785297952980529815298252983529845298552986529875298852989529905299152992529935299452995529965299752998529995300053001530025300353004530055300653007530085300953010530115301253013530145301553016530175301853019530205302153022530235302453025530265302753028530295303053031530325303353034530355303653037530385303953040530415304253043530445304553046530475304853049530505305153052530535305453055530565305753058530595306053061530625306353064530655306653067530685306953070530715307253073530745307553076530775307853079530805308153082530835308453085530865308753088530895309053091530925309353094530955309653097530985309953100531015310253103531045310553106531075310853109531105311153112531135311453115531165311753118531195312053121531225312353124531255312653127531285312953130531315313253133531345313553136531375313853139531405314153142531435314453145531465314753148531495315053151531525315353154531555315653157531585315953160531615316253163531645316553166531675316853169531705317153172531735317453175531765317753178531795318053181531825318353184531855318653187531885318953190531915319253193531945319553196531975319853199532005320153202532035320453205532065320753208532095321053211532125321353214532155321653217532185321953220532215322253223532245322553226532275322853229532305323153232532335323453235532365323753238532395324053241532425324353244532455324653247532485324953250532515325253253532545325553256532575325853259532605326153262532635326453265532665326753268532695327053271532725327353274532755327653277532785327953280532815328253283532845328553286532875328853289532905329153292532935329453295532965329753298532995330053301533025330353304533055330653307533085330953310533115331253313533145331553316533175331853319533205332153322533235332453325533265332753328533295333053331533325333353334533355333653337533385333953340533415334253343533445334553346533475334853349533505335153352533535335453355533565335753358533595336053361533625336353364533655336653367533685336953370533715337253373533745337553376533775337853379533805338153382533835338453385533865338753388533895339053391533925339353394533955339653397533985339953400534015340253403534045340553406534075340853409534105341153412534135341453415534165341753418534195342053421534225342353424534255342653427534285342953430534315343253433534345343553436534375343853439534405344153442534435344453445534465344753448534495345053451534525345353454534555345653457534585345953460534615346253463534645346553466534675346853469534705347153472534735347453475534765347753478534795348053481534825348353484534855348653487534885348953490534915349253493534945349553496534975349853499535005350153502535035350453505535065350753508535095351053511535125351353514535155351653517535185351953520535215352253523535245352553526535275352853529535305353153532535335353453535535365353753538535395354053541535425354353544535455354653547535485354953550535515355253553535545355553556535575355853559535605356153562535635356453565535665356753568535695357053571535725357353574535755357653577535785357953580535815358253583535845358553586535875358853589535905359153592535935359453595535965359753598535995360053601536025360353604536055360653607536085360953610536115361253613536145361553616536175361853619536205362153622536235362453625536265362753628536295363053631536325363353634536355363653637536385363953640536415364253643536445364553646536475364853649536505365153652536535365453655536565365753658536595366053661536625366353664536655366653667536685366953670536715367253673536745367553676536775367853679536805368153682536835368453685536865368753688536895369053691536925369353694536955369653697536985369953700537015370253703537045370553706537075370853709537105371153712537135371453715537165371753718537195372053721537225372353724537255372653727537285372953730537315373253733537345373553736537375373853739537405374153742537435374453745537465374753748537495375053751537525375353754537555375653757537585375953760537615376253763537645376553766537675376853769537705377153772537735377453775537765377753778537795378053781537825378353784537855378653787537885378953790537915379253793537945379553796537975379853799538005380153802538035380453805538065380753808538095381053811538125381353814538155381653817538185381953820538215382253823538245382553826538275382853829538305383153832538335383453835538365383753838538395384053841538425384353844538455384653847538485384953850538515385253853538545385553856538575385853859538605386153862538635386453865538665386753868538695387053871538725387353874538755387653877538785387953880538815388253883538845388553886538875388853889538905389153892538935389453895538965389753898538995390053901539025390353904539055390653907539085390953910539115391253913539145391553916539175391853919539205392153922539235392453925539265392753928539295393053931539325393353934539355393653937539385393953940539415394253943539445394553946539475394853949539505395153952539535395453955539565395753958539595396053961539625396353964539655396653967539685396953970539715397253973539745397553976539775397853979539805398153982539835398453985539865398753988539895399053991539925399353994539955399653997539985399954000540015400254003540045400554006540075400854009540105401154012540135401454015540165401754018540195402054021540225402354024540255402654027540285402954030540315403254033540345403554036540375403854039540405404154042540435404454045540465404754048540495405054051540525405354054540555405654057540585405954060540615406254063540645406554066540675406854069540705407154072540735407454075540765407754078540795408054081540825408354084540855408654087540885408954090540915409254093540945409554096540975409854099541005410154102541035410454105541065410754108541095411054111541125411354114541155411654117541185411954120541215412254123541245412554126541275412854129541305413154132541335413454135541365413754138541395414054141541425414354144541455414654147541485414954150541515415254153541545415554156541575415854159541605416154162541635416454165541665416754168541695417054171541725417354174541755417654177541785417954180541815418254183541845418554186541875418854189541905419154192541935419454195541965419754198541995420054201542025420354204542055420654207542085420954210542115421254213542145421554216542175421854219542205422154222542235422454225542265422754228542295423054231542325423354234542355423654237542385423954240542415424254243542445424554246542475424854249542505425154252542535425454255542565425754258542595426054261542625426354264542655426654267542685426954270542715427254273542745427554276542775427854279542805428154282542835428454285542865428754288542895429054291542925429354294542955429654297542985429954300543015430254303543045430554306543075430854309543105431154312543135431454315543165431754318543195432054321543225432354324543255432654327543285432954330543315433254333543345433554336543375433854339543405434154342543435434454345543465434754348543495435054351543525435354354543555435654357543585435954360543615436254363543645436554366543675436854369543705437154372543735437454375543765437754378543795438054381543825438354384543855438654387543885438954390543915439254393543945439554396543975439854399544005440154402544035440454405544065440754408544095441054411544125441354414544155441654417544185441954420544215442254423544245442554426544275442854429544305443154432544335443454435544365443754438544395444054441544425444354444544455444654447544485444954450544515445254453544545445554456544575445854459544605446154462544635446454465544665446754468544695447054471544725447354474544755447654477544785447954480544815448254483544845448554486544875448854489544905449154492544935449454495544965449754498544995450054501545025450354504545055450654507545085450954510545115451254513545145451554516545175451854519545205452154522545235452454525545265452754528545295453054531545325453354534545355453654537545385453954540545415454254543545445454554546545475454854549545505455154552545535455454555545565455754558545595456054561545625456354564545655456654567545685456954570545715457254573545745457554576545775457854579545805458154582545835458454585545865458754588545895459054591545925459354594545955459654597545985459954600546015460254603546045460554606546075460854609546105461154612546135461454615546165461754618546195462054621546225462354624546255462654627546285462954630546315463254633546345463554636546375463854639546405464154642546435464454645546465464754648546495465054651546525465354654546555465654657546585465954660546615466254663546645466554666546675466854669546705467154672546735467454675546765467754678546795468054681546825468354684546855468654687546885468954690546915469254693546945469554696546975469854699547005470154702547035470454705547065470754708547095471054711547125471354714547155471654717547185471954720547215472254723547245472554726547275472854729547305473154732547335473454735547365473754738547395474054741547425474354744547455474654747547485474954750547515475254753547545475554756547575475854759547605476154762547635476454765547665476754768547695477054771547725477354774547755477654777547785477954780547815478254783547845478554786547875478854789547905479154792547935479454795547965479754798547995480054801548025480354804548055480654807548085480954810548115481254813548145481554816548175481854819548205482154822548235482454825548265482754828548295483054831548325483354834548355483654837548385483954840548415484254843548445484554846548475484854849548505485154852548535485454855548565485754858548595486054861548625486354864548655486654867548685486954870548715487254873548745487554876548775487854879548805488154882548835488454885548865488754888548895489054891548925489354894548955489654897548985489954900549015490254903
  1. /* sp.c
  2. *
  3. * Copyright (C) 2006-2023 wolfSSL Inc.
  4. *
  5. * This file is part of wolfSSL.
  6. *
  7. * wolfSSL is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * wolfSSL is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
  20. */
  21. /* Implementation by Sean Parkinson. */
  22. #ifdef HAVE_CONFIG_H
  23. #include <config.h>
  24. #endif
  25. #include <wolfssl/wolfcrypt/settings.h>
  26. #if defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH) || \
  27. defined(WOLFSSL_HAVE_SP_ECC)
  28. #include <wolfssl/wolfcrypt/error-crypt.h>
  29. #include <wolfssl/wolfcrypt/cpuid.h>
  30. #ifdef NO_INLINE
  31. #include <wolfssl/wolfcrypt/misc.h>
  32. #else
  33. #define WOLFSSL_MISC_INCLUDED
  34. #include <wolfcrypt/src/misc.c>
  35. #endif
  36. #ifdef RSA_LOW_MEM
  37. #ifndef SP_RSA_PRIVATE_EXP_D
  38. #define SP_RSA_PRIVATE_EXP_D
  39. #endif
  40. #ifndef WOLFSSL_SP_SMALL
  41. #define WOLFSSL_SP_SMALL
  42. #endif
  43. #endif
  44. #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
  45. #undef WOLFSSL_SP_SMALL_STACK
  46. #define WOLFSSL_SP_SMALL_STACK
  47. #endif
  48. #include <wolfssl/wolfcrypt/sp.h>
  49. #ifdef __IAR_SYSTEMS_ICC__
  50. #define __asm__ asm
  51. #define __volatile__ volatile
  52. #endif /* __IAR_SYSTEMS_ICC__ */
  53. #ifdef __KEIL__
  54. #define __asm__ __asm
  55. #define __volatile__ volatile
  56. #endif
  57. #ifndef WOLFSSL_SP_ASM
  58. #if SP_WORD_SIZE == 32
  59. #define SP_PRINT_NUM(var, name, total, words, bits) \
  60. do { \
  61. int ii; \
  62. byte nb[(bits + 7) / 8]; \
  63. sp_digit _s[words]; \
  64. XMEMCPY(_s, var, sizeof(_s)); \
  65. sp_##total##_norm_##words(_s); \
  66. sp_##total##_to_bin_##words(_s, nb); \
  67. fprintf(stderr, name "=0x"); \
  68. for (ii=0; ii<(bits + 7) / 8; ii++) \
  69. fprintf(stderr, "%02x", nb[ii]); \
  70. fprintf(stderr, "\n"); \
  71. } while (0)
  72. #define SP_PRINT_VAL(var, name) \
  73. fprintf(stderr, name "=0x" SP_PRINT_FMT "\n", var)
  74. #define SP_PRINT_INT(var, name) \
  75. fprintf(stderr, name "=%d\n", var)
  76. #if ((defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)) && \
  77. ((!defined(WC_NO_CACHE_RESISTANT) && \
  78. (defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH))) || \
  79. (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP))) && \
  80. !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || (defined(WOLFSSL_SP_SMALL) && \
  81. defined(WOLFSSL_HAVE_SP_ECC) && (!defined(WOLFSSL_SP_NO_256) || \
  82. defined(WOLFSSL_SP_384) || defined(WOLFSSL_SP_521) || \
  83. defined(WOLFSSL_SP_1024)))
  84. /* Mask for address to obfuscate which of the two address will be used. */
  85. static const size_t addr_mask[2] = { 0, (size_t)-1 };
  86. #endif
  87. #if defined(WOLFSSL_SP_NONBLOCK) && (!defined(WOLFSSL_SP_NO_MALLOC) || \
  88. !defined(WOLFSSL_SP_SMALL))
  89. #error SP non-blocking requires small and no-malloc (WOLFSSL_SP_SMALL and WOLFSSL_SP_NO_MALLOC)
  90. #endif
  91. #if defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)
  92. #ifndef WOLFSSL_SP_NO_2048
  93. /* Read big endian unsigned byte array into r.
  94. *
  95. * r A single precision integer.
  96. * size Maximum number of bytes to convert
  97. * a Byte array.
  98. * n Number of bytes in array to read.
  99. */
  100. static void sp_2048_from_bin(sp_digit* r, int size, const byte* a, int n)
  101. {
  102. int i;
  103. int j = 0;
  104. word32 s = 0;
  105. r[0] = 0;
  106. for (i = n-1; i >= 0; i--) {
  107. r[j] |= (((sp_digit)a[i]) << s);
  108. if (s >= 21U) {
  109. r[j] &= 0x1fffffff;
  110. s = 29U - s;
  111. if (j + 1 >= size) {
  112. break;
  113. }
  114. r[++j] = (sp_digit)a[i] >> s;
  115. s = 8U - s;
  116. }
  117. else {
  118. s += 8U;
  119. }
  120. }
  121. for (j++; j < size; j++) {
  122. r[j] = 0;
  123. }
  124. }
  125. /* Convert an mp_int to an array of sp_digit.
  126. *
  127. * r A single precision integer.
  128. * size Maximum number of bytes to convert
  129. * a A multi-precision integer.
  130. */
  131. static void sp_2048_from_mp(sp_digit* r, int size, const mp_int* a)
  132. {
  133. #if DIGIT_BIT == 29
  134. int i;
  135. sp_digit j = (sp_digit)0 - (sp_digit)a->used;
  136. int o = 0;
  137. for (i = 0; i < size; i++) {
  138. sp_digit mask = (sp_digit)0 - (j >> 28);
  139. r[i] = a->dp[o] & mask;
  140. j++;
  141. o += (int)(j >> 28);
  142. }
  143. #elif DIGIT_BIT > 29
  144. unsigned int i;
  145. int j = 0;
  146. word32 s = 0;
  147. r[0] = 0;
  148. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  149. r[j] |= ((sp_digit)a->dp[i] << s);
  150. r[j] &= 0x1fffffff;
  151. s = 29U - s;
  152. if (j + 1 >= size) {
  153. break;
  154. }
  155. /* lint allow cast of mismatch word32 and mp_digit */
  156. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  157. while ((s + 29U) <= (word32)DIGIT_BIT) {
  158. s += 29U;
  159. r[j] &= 0x1fffffff;
  160. if (j + 1 >= size) {
  161. break;
  162. }
  163. if (s < (word32)DIGIT_BIT) {
  164. /* lint allow cast of mismatch word32 and mp_digit */
  165. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  166. }
  167. else {
  168. r[++j] = (sp_digit)0;
  169. }
  170. }
  171. s = (word32)DIGIT_BIT - s;
  172. }
  173. for (j++; j < size; j++) {
  174. r[j] = 0;
  175. }
  176. #else
  177. unsigned int i;
  178. int j = 0;
  179. int s = 0;
  180. r[0] = 0;
  181. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  182. r[j] |= ((sp_digit)a->dp[i]) << s;
  183. if (s + DIGIT_BIT >= 29) {
  184. r[j] &= 0x1fffffff;
  185. if (j + 1 >= size) {
  186. break;
  187. }
  188. s = 29 - s;
  189. if (s == DIGIT_BIT) {
  190. r[++j] = 0;
  191. s = 0;
  192. }
  193. else {
  194. r[++j] = a->dp[i] >> s;
  195. s = DIGIT_BIT - s;
  196. }
  197. }
  198. else {
  199. s += DIGIT_BIT;
  200. }
  201. }
  202. for (j++; j < size; j++) {
  203. r[j] = 0;
  204. }
  205. #endif
  206. }
  207. /* Write r as big endian to byte array.
  208. * Fixed length number of bytes written: 256
  209. *
  210. * r A single precision integer.
  211. * a Byte array.
  212. */
  213. static void sp_2048_to_bin_72(sp_digit* r, byte* a)
  214. {
  215. int i;
  216. int j;
  217. int s = 0;
  218. int b;
  219. for (i=0; i<71; i++) {
  220. r[i+1] += r[i] >> 29;
  221. r[i] &= 0x1fffffff;
  222. }
  223. j = 2055 / 8 - 1;
  224. a[j] = 0;
  225. for (i=0; i<71 && j>=0; i++) {
  226. b = 0;
  227. /* lint allow cast of mismatch sp_digit and int */
  228. a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
  229. b += 8 - s;
  230. if (j < 0) {
  231. break;
  232. }
  233. while (b < 29) {
  234. a[j--] = (byte)(r[i] >> b);
  235. b += 8;
  236. if (j < 0) {
  237. break;
  238. }
  239. }
  240. s = 8 - (b - 29);
  241. if (j >= 0) {
  242. a[j] = 0;
  243. }
  244. if (s != 0) {
  245. j++;
  246. }
  247. }
  248. }
  249. #if (defined(WOLFSSL_HAVE_SP_RSA) && (!defined(WOLFSSL_RSA_PUBLIC_ONLY) || !defined(WOLFSSL_SP_SMALL))) || defined(WOLFSSL_HAVE_SP_DH)
  250. /* Normalize the values in each word to 29 bits.
  251. *
  252. * a Array of sp_digit to normalize.
  253. */
  254. static void sp_2048_norm_36(sp_digit* a)
  255. {
  256. #ifdef WOLFSSL_SP_SMALL
  257. int i;
  258. for (i = 0; i < 35; i++) {
  259. a[i+1] += a[i] >> 29;
  260. a[i] &= 0x1fffffff;
  261. }
  262. #else
  263. int i;
  264. for (i = 0; i < 32; i += 8) {
  265. a[i+1] += a[i+0] >> 29; a[i+0] &= 0x1fffffff;
  266. a[i+2] += a[i+1] >> 29; a[i+1] &= 0x1fffffff;
  267. a[i+3] += a[i+2] >> 29; a[i+2] &= 0x1fffffff;
  268. a[i+4] += a[i+3] >> 29; a[i+3] &= 0x1fffffff;
  269. a[i+5] += a[i+4] >> 29; a[i+4] &= 0x1fffffff;
  270. a[i+6] += a[i+5] >> 29; a[i+5] &= 0x1fffffff;
  271. a[i+7] += a[i+6] >> 29; a[i+6] &= 0x1fffffff;
  272. a[i+8] += a[i+7] >> 29; a[i+7] &= 0x1fffffff;
  273. }
  274. a[33] += a[32] >> 29; a[32] &= 0x1fffffff;
  275. a[34] += a[33] >> 29; a[33] &= 0x1fffffff;
  276. a[35] += a[34] >> 29; a[34] &= 0x1fffffff;
  277. #endif /* WOLFSSL_SP_SMALL */
  278. }
  279. #endif /* (WOLFSSL_HAVE_SP_RSA && (!WOLFSSL_RSA_PUBLIC_ONLY || !WOLFSSL_SP_SMALL)) || WOLFSSL_HAVE_SP_DH */
  280. /* Normalize the values in each word to 29 bits.
  281. *
  282. * a Array of sp_digit to normalize.
  283. */
  284. static void sp_2048_norm_72(sp_digit* a)
  285. {
  286. #ifdef WOLFSSL_SP_SMALL
  287. int i;
  288. for (i = 0; i < 71; i++) {
  289. a[i+1] += a[i] >> 29;
  290. a[i] &= 0x1fffffff;
  291. }
  292. #else
  293. int i;
  294. for (i = 0; i < 64; i += 8) {
  295. a[i+1] += a[i+0] >> 29; a[i+0] &= 0x1fffffff;
  296. a[i+2] += a[i+1] >> 29; a[i+1] &= 0x1fffffff;
  297. a[i+3] += a[i+2] >> 29; a[i+2] &= 0x1fffffff;
  298. a[i+4] += a[i+3] >> 29; a[i+3] &= 0x1fffffff;
  299. a[i+5] += a[i+4] >> 29; a[i+4] &= 0x1fffffff;
  300. a[i+6] += a[i+5] >> 29; a[i+5] &= 0x1fffffff;
  301. a[i+7] += a[i+6] >> 29; a[i+6] &= 0x1fffffff;
  302. a[i+8] += a[i+7] >> 29; a[i+7] &= 0x1fffffff;
  303. }
  304. a[65] += a[64] >> 29; a[64] &= 0x1fffffff;
  305. a[66] += a[65] >> 29; a[65] &= 0x1fffffff;
  306. a[67] += a[66] >> 29; a[66] &= 0x1fffffff;
  307. a[68] += a[67] >> 29; a[67] &= 0x1fffffff;
  308. a[69] += a[68] >> 29; a[68] &= 0x1fffffff;
  309. a[70] += a[69] >> 29; a[69] &= 0x1fffffff;
  310. a[71] += a[70] >> 29; a[70] &= 0x1fffffff;
  311. #endif /* WOLFSSL_SP_SMALL */
  312. }
  313. #ifndef WOLFSSL_SP_SMALL
  314. /* Multiply a and b into r. (r = a * b)
  315. *
  316. * r A single precision integer.
  317. * a A single precision integer.
  318. * b A single precision integer.
  319. */
  320. SP_NOINLINE static void sp_2048_mul_12(sp_digit* r, const sp_digit* a,
  321. const sp_digit* b)
  322. {
  323. sp_uint64 t0;
  324. sp_uint64 t1;
  325. sp_digit t[12];
  326. t0 = ((sp_uint64)a[ 0]) * b[ 0];
  327. t1 = ((sp_uint64)a[ 0]) * b[ 1]
  328. + ((sp_uint64)a[ 1]) * b[ 0];
  329. t[ 0] = t0 & 0x1fffffff; t1 += t0 >> 29;
  330. t0 = ((sp_uint64)a[ 0]) * b[ 2]
  331. + ((sp_uint64)a[ 1]) * b[ 1]
  332. + ((sp_uint64)a[ 2]) * b[ 0];
  333. t[ 1] = t1 & 0x1fffffff; t0 += t1 >> 29;
  334. t1 = ((sp_uint64)a[ 0]) * b[ 3]
  335. + ((sp_uint64)a[ 1]) * b[ 2]
  336. + ((sp_uint64)a[ 2]) * b[ 1]
  337. + ((sp_uint64)a[ 3]) * b[ 0];
  338. t[ 2] = t0 & 0x1fffffff; t1 += t0 >> 29;
  339. t0 = ((sp_uint64)a[ 0]) * b[ 4]
  340. + ((sp_uint64)a[ 1]) * b[ 3]
  341. + ((sp_uint64)a[ 2]) * b[ 2]
  342. + ((sp_uint64)a[ 3]) * b[ 1]
  343. + ((sp_uint64)a[ 4]) * b[ 0];
  344. t[ 3] = t1 & 0x1fffffff; t0 += t1 >> 29;
  345. t1 = ((sp_uint64)a[ 0]) * b[ 5]
  346. + ((sp_uint64)a[ 1]) * b[ 4]
  347. + ((sp_uint64)a[ 2]) * b[ 3]
  348. + ((sp_uint64)a[ 3]) * b[ 2]
  349. + ((sp_uint64)a[ 4]) * b[ 1]
  350. + ((sp_uint64)a[ 5]) * b[ 0];
  351. t[ 4] = t0 & 0x1fffffff; t1 += t0 >> 29;
  352. t0 = ((sp_uint64)a[ 0]) * b[ 6]
  353. + ((sp_uint64)a[ 1]) * b[ 5]
  354. + ((sp_uint64)a[ 2]) * b[ 4]
  355. + ((sp_uint64)a[ 3]) * b[ 3]
  356. + ((sp_uint64)a[ 4]) * b[ 2]
  357. + ((sp_uint64)a[ 5]) * b[ 1]
  358. + ((sp_uint64)a[ 6]) * b[ 0];
  359. t[ 5] = t1 & 0x1fffffff; t0 += t1 >> 29;
  360. t1 = ((sp_uint64)a[ 0]) * b[ 7]
  361. + ((sp_uint64)a[ 1]) * b[ 6]
  362. + ((sp_uint64)a[ 2]) * b[ 5]
  363. + ((sp_uint64)a[ 3]) * b[ 4]
  364. + ((sp_uint64)a[ 4]) * b[ 3]
  365. + ((sp_uint64)a[ 5]) * b[ 2]
  366. + ((sp_uint64)a[ 6]) * b[ 1]
  367. + ((sp_uint64)a[ 7]) * b[ 0];
  368. t[ 6] = t0 & 0x1fffffff; t1 += t0 >> 29;
  369. t0 = ((sp_uint64)a[ 0]) * b[ 8]
  370. + ((sp_uint64)a[ 1]) * b[ 7]
  371. + ((sp_uint64)a[ 2]) * b[ 6]
  372. + ((sp_uint64)a[ 3]) * b[ 5]
  373. + ((sp_uint64)a[ 4]) * b[ 4]
  374. + ((sp_uint64)a[ 5]) * b[ 3]
  375. + ((sp_uint64)a[ 6]) * b[ 2]
  376. + ((sp_uint64)a[ 7]) * b[ 1]
  377. + ((sp_uint64)a[ 8]) * b[ 0];
  378. t[ 7] = t1 & 0x1fffffff; t0 += t1 >> 29;
  379. t1 = ((sp_uint64)a[ 0]) * b[ 9]
  380. + ((sp_uint64)a[ 1]) * b[ 8]
  381. + ((sp_uint64)a[ 2]) * b[ 7]
  382. + ((sp_uint64)a[ 3]) * b[ 6]
  383. + ((sp_uint64)a[ 4]) * b[ 5]
  384. + ((sp_uint64)a[ 5]) * b[ 4]
  385. + ((sp_uint64)a[ 6]) * b[ 3]
  386. + ((sp_uint64)a[ 7]) * b[ 2]
  387. + ((sp_uint64)a[ 8]) * b[ 1]
  388. + ((sp_uint64)a[ 9]) * b[ 0];
  389. t[ 8] = t0 & 0x1fffffff; t1 += t0 >> 29;
  390. t0 = ((sp_uint64)a[ 0]) * b[10]
  391. + ((sp_uint64)a[ 1]) * b[ 9]
  392. + ((sp_uint64)a[ 2]) * b[ 8]
  393. + ((sp_uint64)a[ 3]) * b[ 7]
  394. + ((sp_uint64)a[ 4]) * b[ 6]
  395. + ((sp_uint64)a[ 5]) * b[ 5]
  396. + ((sp_uint64)a[ 6]) * b[ 4]
  397. + ((sp_uint64)a[ 7]) * b[ 3]
  398. + ((sp_uint64)a[ 8]) * b[ 2]
  399. + ((sp_uint64)a[ 9]) * b[ 1]
  400. + ((sp_uint64)a[10]) * b[ 0];
  401. t[ 9] = t1 & 0x1fffffff; t0 += t1 >> 29;
  402. t1 = ((sp_uint64)a[ 0]) * b[11]
  403. + ((sp_uint64)a[ 1]) * b[10]
  404. + ((sp_uint64)a[ 2]) * b[ 9]
  405. + ((sp_uint64)a[ 3]) * b[ 8]
  406. + ((sp_uint64)a[ 4]) * b[ 7]
  407. + ((sp_uint64)a[ 5]) * b[ 6]
  408. + ((sp_uint64)a[ 6]) * b[ 5]
  409. + ((sp_uint64)a[ 7]) * b[ 4]
  410. + ((sp_uint64)a[ 8]) * b[ 3]
  411. + ((sp_uint64)a[ 9]) * b[ 2]
  412. + ((sp_uint64)a[10]) * b[ 1]
  413. + ((sp_uint64)a[11]) * b[ 0];
  414. t[10] = t0 & 0x1fffffff; t1 += t0 >> 29;
  415. t0 = ((sp_uint64)a[ 1]) * b[11]
  416. + ((sp_uint64)a[ 2]) * b[10]
  417. + ((sp_uint64)a[ 3]) * b[ 9]
  418. + ((sp_uint64)a[ 4]) * b[ 8]
  419. + ((sp_uint64)a[ 5]) * b[ 7]
  420. + ((sp_uint64)a[ 6]) * b[ 6]
  421. + ((sp_uint64)a[ 7]) * b[ 5]
  422. + ((sp_uint64)a[ 8]) * b[ 4]
  423. + ((sp_uint64)a[ 9]) * b[ 3]
  424. + ((sp_uint64)a[10]) * b[ 2]
  425. + ((sp_uint64)a[11]) * b[ 1];
  426. t[11] = t1 & 0x1fffffff; t0 += t1 >> 29;
  427. t1 = ((sp_uint64)a[ 2]) * b[11]
  428. + ((sp_uint64)a[ 3]) * b[10]
  429. + ((sp_uint64)a[ 4]) * b[ 9]
  430. + ((sp_uint64)a[ 5]) * b[ 8]
  431. + ((sp_uint64)a[ 6]) * b[ 7]
  432. + ((sp_uint64)a[ 7]) * b[ 6]
  433. + ((sp_uint64)a[ 8]) * b[ 5]
  434. + ((sp_uint64)a[ 9]) * b[ 4]
  435. + ((sp_uint64)a[10]) * b[ 3]
  436. + ((sp_uint64)a[11]) * b[ 2];
  437. r[12] = t0 & 0x1fffffff; t1 += t0 >> 29;
  438. t0 = ((sp_uint64)a[ 3]) * b[11]
  439. + ((sp_uint64)a[ 4]) * b[10]
  440. + ((sp_uint64)a[ 5]) * b[ 9]
  441. + ((sp_uint64)a[ 6]) * b[ 8]
  442. + ((sp_uint64)a[ 7]) * b[ 7]
  443. + ((sp_uint64)a[ 8]) * b[ 6]
  444. + ((sp_uint64)a[ 9]) * b[ 5]
  445. + ((sp_uint64)a[10]) * b[ 4]
  446. + ((sp_uint64)a[11]) * b[ 3];
  447. r[13] = t1 & 0x1fffffff; t0 += t1 >> 29;
  448. t1 = ((sp_uint64)a[ 4]) * b[11]
  449. + ((sp_uint64)a[ 5]) * b[10]
  450. + ((sp_uint64)a[ 6]) * b[ 9]
  451. + ((sp_uint64)a[ 7]) * b[ 8]
  452. + ((sp_uint64)a[ 8]) * b[ 7]
  453. + ((sp_uint64)a[ 9]) * b[ 6]
  454. + ((sp_uint64)a[10]) * b[ 5]
  455. + ((sp_uint64)a[11]) * b[ 4];
  456. r[14] = t0 & 0x1fffffff; t1 += t0 >> 29;
  457. t0 = ((sp_uint64)a[ 5]) * b[11]
  458. + ((sp_uint64)a[ 6]) * b[10]
  459. + ((sp_uint64)a[ 7]) * b[ 9]
  460. + ((sp_uint64)a[ 8]) * b[ 8]
  461. + ((sp_uint64)a[ 9]) * b[ 7]
  462. + ((sp_uint64)a[10]) * b[ 6]
  463. + ((sp_uint64)a[11]) * b[ 5];
  464. r[15] = t1 & 0x1fffffff; t0 += t1 >> 29;
  465. t1 = ((sp_uint64)a[ 6]) * b[11]
  466. + ((sp_uint64)a[ 7]) * b[10]
  467. + ((sp_uint64)a[ 8]) * b[ 9]
  468. + ((sp_uint64)a[ 9]) * b[ 8]
  469. + ((sp_uint64)a[10]) * b[ 7]
  470. + ((sp_uint64)a[11]) * b[ 6];
  471. r[16] = t0 & 0x1fffffff; t1 += t0 >> 29;
  472. t0 = ((sp_uint64)a[ 7]) * b[11]
  473. + ((sp_uint64)a[ 8]) * b[10]
  474. + ((sp_uint64)a[ 9]) * b[ 9]
  475. + ((sp_uint64)a[10]) * b[ 8]
  476. + ((sp_uint64)a[11]) * b[ 7];
  477. r[17] = t1 & 0x1fffffff; t0 += t1 >> 29;
  478. t1 = ((sp_uint64)a[ 8]) * b[11]
  479. + ((sp_uint64)a[ 9]) * b[10]
  480. + ((sp_uint64)a[10]) * b[ 9]
  481. + ((sp_uint64)a[11]) * b[ 8];
  482. r[18] = t0 & 0x1fffffff; t1 += t0 >> 29;
  483. t0 = ((sp_uint64)a[ 9]) * b[11]
  484. + ((sp_uint64)a[10]) * b[10]
  485. + ((sp_uint64)a[11]) * b[ 9];
  486. r[19] = t1 & 0x1fffffff; t0 += t1 >> 29;
  487. t1 = ((sp_uint64)a[10]) * b[11]
  488. + ((sp_uint64)a[11]) * b[10];
  489. r[20] = t0 & 0x1fffffff; t1 += t0 >> 29;
  490. t0 = ((sp_uint64)a[11]) * b[11];
  491. r[21] = t1 & 0x1fffffff; t0 += t1 >> 29;
  492. r[22] = t0 & 0x1fffffff;
  493. r[23] = (sp_digit)(t0 >> 29);
  494. XMEMCPY(r, t, sizeof(t));
  495. }
  496. /* Add b to a into r. (r = a + b)
  497. *
  498. * r A single precision integer.
  499. * a A single precision integer.
  500. * b A single precision integer.
  501. */
  502. SP_NOINLINE static int sp_2048_add_12(sp_digit* r, const sp_digit* a,
  503. const sp_digit* b)
  504. {
  505. r[ 0] = a[ 0] + b[ 0];
  506. r[ 1] = a[ 1] + b[ 1];
  507. r[ 2] = a[ 2] + b[ 2];
  508. r[ 3] = a[ 3] + b[ 3];
  509. r[ 4] = a[ 4] + b[ 4];
  510. r[ 5] = a[ 5] + b[ 5];
  511. r[ 6] = a[ 6] + b[ 6];
  512. r[ 7] = a[ 7] + b[ 7];
  513. r[ 8] = a[ 8] + b[ 8];
  514. r[ 9] = a[ 9] + b[ 9];
  515. r[10] = a[10] + b[10];
  516. r[11] = a[11] + b[11];
  517. return 0;
  518. }
  519. /* Sub b from a into r. (r = a - b)
  520. *
  521. * r A single precision integer.
  522. * a A single precision integer.
  523. * b A single precision integer.
  524. */
  525. SP_NOINLINE static int sp_2048_sub_24(sp_digit* r, const sp_digit* a,
  526. const sp_digit* b)
  527. {
  528. int i;
  529. for (i = 0; i < 24; i += 8) {
  530. r[i + 0] = a[i + 0] - b[i + 0];
  531. r[i + 1] = a[i + 1] - b[i + 1];
  532. r[i + 2] = a[i + 2] - b[i + 2];
  533. r[i + 3] = a[i + 3] - b[i + 3];
  534. r[i + 4] = a[i + 4] - b[i + 4];
  535. r[i + 5] = a[i + 5] - b[i + 5];
  536. r[i + 6] = a[i + 6] - b[i + 6];
  537. r[i + 7] = a[i + 7] - b[i + 7];
  538. }
  539. return 0;
  540. }
  541. /* Add b to a into r. (r = a + b)
  542. *
  543. * r A single precision integer.
  544. * a A single precision integer.
  545. * b A single precision integer.
  546. */
  547. SP_NOINLINE static int sp_2048_add_24(sp_digit* r, const sp_digit* a,
  548. const sp_digit* b)
  549. {
  550. int i;
  551. for (i = 0; i < 24; i += 8) {
  552. r[i + 0] = a[i + 0] + b[i + 0];
  553. r[i + 1] = a[i + 1] + b[i + 1];
  554. r[i + 2] = a[i + 2] + b[i + 2];
  555. r[i + 3] = a[i + 3] + b[i + 3];
  556. r[i + 4] = a[i + 4] + b[i + 4];
  557. r[i + 5] = a[i + 5] + b[i + 5];
  558. r[i + 6] = a[i + 6] + b[i + 6];
  559. r[i + 7] = a[i + 7] + b[i + 7];
  560. }
  561. return 0;
  562. }
  563. /* Normalize the values in each word to 29 bits.
  564. *
  565. * a Array of sp_digit to normalize.
  566. */
  567. static void sp_2048_norm_12(sp_digit* a)
  568. {
  569. #ifdef WOLFSSL_SP_SMALL
  570. int i;
  571. for (i = 0; i < 11; i++) {
  572. a[i+1] += a[i] >> 29;
  573. a[i] &= 0x1fffffff;
  574. }
  575. #else
  576. a[1] += a[0] >> 29; a[0] &= 0x1fffffff;
  577. a[2] += a[1] >> 29; a[1] &= 0x1fffffff;
  578. a[3] += a[2] >> 29; a[2] &= 0x1fffffff;
  579. a[4] += a[3] >> 29; a[3] &= 0x1fffffff;
  580. a[5] += a[4] >> 29; a[4] &= 0x1fffffff;
  581. a[6] += a[5] >> 29; a[5] &= 0x1fffffff;
  582. a[7] += a[6] >> 29; a[6] &= 0x1fffffff;
  583. a[8] += a[7] >> 29; a[7] &= 0x1fffffff;
  584. a[9] += a[8] >> 29; a[8] &= 0x1fffffff;
  585. a[10] += a[9] >> 29; a[9] &= 0x1fffffff;
  586. a[11] += a[10] >> 29; a[10] &= 0x1fffffff;
  587. #endif /* WOLFSSL_SP_SMALL */
  588. }
  589. /* Normalize the values in each word to 29 bits.
  590. *
  591. * a Array of sp_digit to normalize.
  592. */
  593. static void sp_2048_norm_24(sp_digit* a)
  594. {
  595. #ifdef WOLFSSL_SP_SMALL
  596. int i;
  597. for (i = 0; i < 23; i++) {
  598. a[i+1] += a[i] >> 29;
  599. a[i] &= 0x1fffffff;
  600. }
  601. #else
  602. int i;
  603. for (i = 0; i < 16; i += 8) {
  604. a[i+1] += a[i+0] >> 29; a[i+0] &= 0x1fffffff;
  605. a[i+2] += a[i+1] >> 29; a[i+1] &= 0x1fffffff;
  606. a[i+3] += a[i+2] >> 29; a[i+2] &= 0x1fffffff;
  607. a[i+4] += a[i+3] >> 29; a[i+3] &= 0x1fffffff;
  608. a[i+5] += a[i+4] >> 29; a[i+4] &= 0x1fffffff;
  609. a[i+6] += a[i+5] >> 29; a[i+5] &= 0x1fffffff;
  610. a[i+7] += a[i+6] >> 29; a[i+6] &= 0x1fffffff;
  611. a[i+8] += a[i+7] >> 29; a[i+7] &= 0x1fffffff;
  612. }
  613. a[17] += a[16] >> 29; a[16] &= 0x1fffffff;
  614. a[18] += a[17] >> 29; a[17] &= 0x1fffffff;
  615. a[19] += a[18] >> 29; a[18] &= 0x1fffffff;
  616. a[20] += a[19] >> 29; a[19] &= 0x1fffffff;
  617. a[21] += a[20] >> 29; a[20] &= 0x1fffffff;
  618. a[22] += a[21] >> 29; a[21] &= 0x1fffffff;
  619. a[23] += a[22] >> 29; a[22] &= 0x1fffffff;
  620. #endif /* WOLFSSL_SP_SMALL */
  621. }
  622. /* Multiply a and b into r. (r = a * b)
  623. *
  624. * r A single precision integer.
  625. * a A single precision integer.
  626. * b A single precision integer.
  627. */
  628. SP_NOINLINE static void sp_2048_mul_36(sp_digit* r, const sp_digit* a,
  629. const sp_digit* b)
  630. {
  631. sp_digit p0[24];
  632. sp_digit p1[24];
  633. sp_digit p2[24];
  634. sp_digit p3[24];
  635. sp_digit p4[24];
  636. sp_digit p5[24];
  637. sp_digit t0[24];
  638. sp_digit t1[24];
  639. sp_digit t2[24];
  640. sp_digit a0[12];
  641. sp_digit a1[12];
  642. sp_digit a2[12];
  643. sp_digit b0[12];
  644. sp_digit b1[12];
  645. sp_digit b2[12];
  646. (void)sp_2048_add_12(a0, a, &a[12]);
  647. sp_2048_norm_12(a0);
  648. (void)sp_2048_add_12(b0, b, &b[12]);
  649. sp_2048_norm_12(b0);
  650. (void)sp_2048_add_12(a1, &a[12], &a[24]);
  651. sp_2048_norm_12(a1);
  652. (void)sp_2048_add_12(b1, &b[12], &b[24]);
  653. sp_2048_norm_12(b1);
  654. (void)sp_2048_add_12(a2, a0, &a[24]);
  655. sp_2048_norm_12(a1);
  656. (void)sp_2048_add_12(b2, b0, &b[24]);
  657. sp_2048_norm_12(b2);
  658. sp_2048_mul_12(p0, a, b);
  659. sp_2048_mul_12(p2, &a[12], &b[12]);
  660. sp_2048_mul_12(p4, &a[24], &b[24]);
  661. sp_2048_mul_12(p1, a0, b0);
  662. sp_2048_mul_12(p3, a1, b1);
  663. sp_2048_mul_12(p5, a2, b2);
  664. XMEMSET(r, 0, sizeof(*r)*2U*36U);
  665. (void)sp_2048_sub_24(t0, p3, p2);
  666. (void)sp_2048_sub_24(t1, p1, p2);
  667. (void)sp_2048_sub_24(t2, p5, t0);
  668. (void)sp_2048_sub_24(t2, t2, t1);
  669. sp_2048_norm_24(t2);
  670. (void)sp_2048_sub_24(t0, t0, p4);
  671. sp_2048_norm_24(t0);
  672. (void)sp_2048_sub_24(t1, t1, p0);
  673. sp_2048_norm_24(t1);
  674. (void)sp_2048_add_24(r, r, p0);
  675. (void)sp_2048_add_24(&r[12], &r[12], t1);
  676. (void)sp_2048_add_24(&r[24], &r[24], t2);
  677. (void)sp_2048_add_24(&r[36], &r[36], t0);
  678. (void)sp_2048_add_24(&r[48], &r[48], p4);
  679. sp_2048_norm_72(r);
  680. }
  681. /* Add b to a into r. (r = a + b)
  682. *
  683. * r A single precision integer.
  684. * a A single precision integer.
  685. * b A single precision integer.
  686. */
  687. SP_NOINLINE static int sp_2048_add_36(sp_digit* r, const sp_digit* a,
  688. const sp_digit* b)
  689. {
  690. int i;
  691. for (i = 0; i < 32; i += 8) {
  692. r[i + 0] = a[i + 0] + b[i + 0];
  693. r[i + 1] = a[i + 1] + b[i + 1];
  694. r[i + 2] = a[i + 2] + b[i + 2];
  695. r[i + 3] = a[i + 3] + b[i + 3];
  696. r[i + 4] = a[i + 4] + b[i + 4];
  697. r[i + 5] = a[i + 5] + b[i + 5];
  698. r[i + 6] = a[i + 6] + b[i + 6];
  699. r[i + 7] = a[i + 7] + b[i + 7];
  700. }
  701. r[32] = a[32] + b[32];
  702. r[33] = a[33] + b[33];
  703. r[34] = a[34] + b[34];
  704. r[35] = a[35] + b[35];
  705. return 0;
  706. }
  707. /* Add b to a into r. (r = a + b)
  708. *
  709. * r A single precision integer.
  710. * a A single precision integer.
  711. * b A single precision integer.
  712. */
  713. SP_NOINLINE static int sp_2048_add_72(sp_digit* r, const sp_digit* a,
  714. const sp_digit* b)
  715. {
  716. int i;
  717. for (i = 0; i < 72; i += 8) {
  718. r[i + 0] = a[i + 0] + b[i + 0];
  719. r[i + 1] = a[i + 1] + b[i + 1];
  720. r[i + 2] = a[i + 2] + b[i + 2];
  721. r[i + 3] = a[i + 3] + b[i + 3];
  722. r[i + 4] = a[i + 4] + b[i + 4];
  723. r[i + 5] = a[i + 5] + b[i + 5];
  724. r[i + 6] = a[i + 6] + b[i + 6];
  725. r[i + 7] = a[i + 7] + b[i + 7];
  726. }
  727. return 0;
  728. }
  729. /* Sub b from a into r. (r = a - b)
  730. *
  731. * r A single precision integer.
  732. * a A single precision integer.
  733. * b A single precision integer.
  734. */
  735. SP_NOINLINE static int sp_2048_sub_72(sp_digit* r, const sp_digit* a,
  736. const sp_digit* b)
  737. {
  738. int i;
  739. for (i = 0; i < 72; i += 8) {
  740. r[i + 0] = a[i + 0] - b[i + 0];
  741. r[i + 1] = a[i + 1] - b[i + 1];
  742. r[i + 2] = a[i + 2] - b[i + 2];
  743. r[i + 3] = a[i + 3] - b[i + 3];
  744. r[i + 4] = a[i + 4] - b[i + 4];
  745. r[i + 5] = a[i + 5] - b[i + 5];
  746. r[i + 6] = a[i + 6] - b[i + 6];
  747. r[i + 7] = a[i + 7] - b[i + 7];
  748. }
  749. return 0;
  750. }
  751. /* Normalize the values in each word to 29 bits.
  752. *
  753. * a Array of sp_digit to normalize.
  754. */
  755. static void sp_2048_norm_144(sp_digit* a)
  756. {
  757. #ifdef WOLFSSL_SP_SMALL
  758. int i;
  759. for (i = 0; i < 143; i++) {
  760. a[i+1] += a[i] >> 29;
  761. a[i] &= 0x1fffffff;
  762. }
  763. #else
  764. int i;
  765. for (i = 0; i < 136; i += 8) {
  766. a[i+1] += a[i+0] >> 29; a[i+0] &= 0x1fffffff;
  767. a[i+2] += a[i+1] >> 29; a[i+1] &= 0x1fffffff;
  768. a[i+3] += a[i+2] >> 29; a[i+2] &= 0x1fffffff;
  769. a[i+4] += a[i+3] >> 29; a[i+3] &= 0x1fffffff;
  770. a[i+5] += a[i+4] >> 29; a[i+4] &= 0x1fffffff;
  771. a[i+6] += a[i+5] >> 29; a[i+5] &= 0x1fffffff;
  772. a[i+7] += a[i+6] >> 29; a[i+6] &= 0x1fffffff;
  773. a[i+8] += a[i+7] >> 29; a[i+7] &= 0x1fffffff;
  774. }
  775. a[137] += a[136] >> 29; a[136] &= 0x1fffffff;
  776. a[138] += a[137] >> 29; a[137] &= 0x1fffffff;
  777. a[139] += a[138] >> 29; a[138] &= 0x1fffffff;
  778. a[140] += a[139] >> 29; a[139] &= 0x1fffffff;
  779. a[141] += a[140] >> 29; a[140] &= 0x1fffffff;
  780. a[142] += a[141] >> 29; a[141] &= 0x1fffffff;
  781. a[143] += a[142] >> 29; a[142] &= 0x1fffffff;
  782. #endif /* WOLFSSL_SP_SMALL */
  783. }
  784. /* Multiply a and b into r. (r = a * b)
  785. *
  786. * r A single precision integer.
  787. * a A single precision integer.
  788. * b A single precision integer.
  789. */
  790. SP_NOINLINE static void sp_2048_mul_72(sp_digit* r, const sp_digit* a,
  791. const sp_digit* b)
  792. {
  793. sp_digit* z0 = r;
  794. sp_digit z1[72];
  795. sp_digit* a1 = z1;
  796. sp_digit b1[36];
  797. sp_digit* z2 = r + 72;
  798. (void)sp_2048_add_36(a1, a, &a[36]);
  799. sp_2048_norm_36(a1);
  800. (void)sp_2048_add_36(b1, b, &b[36]);
  801. sp_2048_norm_36(b1);
  802. sp_2048_mul_36(z2, &a[36], &b[36]);
  803. sp_2048_mul_36(z0, a, b);
  804. sp_2048_mul_36(z1, a1, b1);
  805. (void)sp_2048_sub_72(z1, z1, z2);
  806. (void)sp_2048_sub_72(z1, z1, z0);
  807. (void)sp_2048_add_72(r + 36, r + 36, z1);
  808. sp_2048_norm_144(r);
  809. }
  810. /* Square a and put result in r. (r = a * a)
  811. *
  812. * r A single precision integer.
  813. * a A single precision integer.
  814. */
  815. SP_NOINLINE static void sp_2048_sqr_12(sp_digit* r, const sp_digit* a)
  816. {
  817. sp_uint64 t0;
  818. sp_uint64 t1;
  819. sp_digit t[12];
  820. t0 = ((sp_uint64)a[ 0]) * a[ 0];
  821. t1 = (((sp_uint64)a[ 0]) * a[ 1]) * 2;
  822. t[ 0] = t0 & 0x1fffffff; t1 += t0 >> 29;
  823. t0 = (((sp_uint64)a[ 0]) * a[ 2]) * 2
  824. + ((sp_uint64)a[ 1]) * a[ 1];
  825. t[ 1] = t1 & 0x1fffffff; t0 += t1 >> 29;
  826. t1 = (((sp_uint64)a[ 0]) * a[ 3]
  827. + ((sp_uint64)a[ 1]) * a[ 2]) * 2;
  828. t[ 2] = t0 & 0x1fffffff; t1 += t0 >> 29;
  829. t0 = (((sp_uint64)a[ 0]) * a[ 4]
  830. + ((sp_uint64)a[ 1]) * a[ 3]) * 2
  831. + ((sp_uint64)a[ 2]) * a[ 2];
  832. t[ 3] = t1 & 0x1fffffff; t0 += t1 >> 29;
  833. t1 = (((sp_uint64)a[ 0]) * a[ 5]
  834. + ((sp_uint64)a[ 1]) * a[ 4]
  835. + ((sp_uint64)a[ 2]) * a[ 3]) * 2;
  836. t[ 4] = t0 & 0x1fffffff; t1 += t0 >> 29;
  837. t0 = (((sp_uint64)a[ 0]) * a[ 6]
  838. + ((sp_uint64)a[ 1]) * a[ 5]
  839. + ((sp_uint64)a[ 2]) * a[ 4]) * 2
  840. + ((sp_uint64)a[ 3]) * a[ 3];
  841. t[ 5] = t1 & 0x1fffffff; t0 += t1 >> 29;
  842. t1 = (((sp_uint64)a[ 0]) * a[ 7]
  843. + ((sp_uint64)a[ 1]) * a[ 6]
  844. + ((sp_uint64)a[ 2]) * a[ 5]
  845. + ((sp_uint64)a[ 3]) * a[ 4]) * 2;
  846. t[ 6] = t0 & 0x1fffffff; t1 += t0 >> 29;
  847. t0 = (((sp_uint64)a[ 0]) * a[ 8]
  848. + ((sp_uint64)a[ 1]) * a[ 7]
  849. + ((sp_uint64)a[ 2]) * a[ 6]
  850. + ((sp_uint64)a[ 3]) * a[ 5]) * 2
  851. + ((sp_uint64)a[ 4]) * a[ 4];
  852. t[ 7] = t1 & 0x1fffffff; t0 += t1 >> 29;
  853. t1 = (((sp_uint64)a[ 0]) * a[ 9]
  854. + ((sp_uint64)a[ 1]) * a[ 8]
  855. + ((sp_uint64)a[ 2]) * a[ 7]
  856. + ((sp_uint64)a[ 3]) * a[ 6]
  857. + ((sp_uint64)a[ 4]) * a[ 5]) * 2;
  858. t[ 8] = t0 & 0x1fffffff; t1 += t0 >> 29;
  859. t0 = (((sp_uint64)a[ 0]) * a[10]
  860. + ((sp_uint64)a[ 1]) * a[ 9]
  861. + ((sp_uint64)a[ 2]) * a[ 8]
  862. + ((sp_uint64)a[ 3]) * a[ 7]
  863. + ((sp_uint64)a[ 4]) * a[ 6]) * 2
  864. + ((sp_uint64)a[ 5]) * a[ 5];
  865. t[ 9] = t1 & 0x1fffffff; t0 += t1 >> 29;
  866. t1 = (((sp_uint64)a[ 0]) * a[11]
  867. + ((sp_uint64)a[ 1]) * a[10]
  868. + ((sp_uint64)a[ 2]) * a[ 9]
  869. + ((sp_uint64)a[ 3]) * a[ 8]
  870. + ((sp_uint64)a[ 4]) * a[ 7]
  871. + ((sp_uint64)a[ 5]) * a[ 6]) * 2;
  872. t[10] = t0 & 0x1fffffff; t1 += t0 >> 29;
  873. t0 = (((sp_uint64)a[ 1]) * a[11]
  874. + ((sp_uint64)a[ 2]) * a[10]
  875. + ((sp_uint64)a[ 3]) * a[ 9]
  876. + ((sp_uint64)a[ 4]) * a[ 8]
  877. + ((sp_uint64)a[ 5]) * a[ 7]) * 2
  878. + ((sp_uint64)a[ 6]) * a[ 6];
  879. t[11] = t1 & 0x1fffffff; t0 += t1 >> 29;
  880. t1 = (((sp_uint64)a[ 2]) * a[11]
  881. + ((sp_uint64)a[ 3]) * a[10]
  882. + ((sp_uint64)a[ 4]) * a[ 9]
  883. + ((sp_uint64)a[ 5]) * a[ 8]
  884. + ((sp_uint64)a[ 6]) * a[ 7]) * 2;
  885. r[12] = t0 & 0x1fffffff; t1 += t0 >> 29;
  886. t0 = (((sp_uint64)a[ 3]) * a[11]
  887. + ((sp_uint64)a[ 4]) * a[10]
  888. + ((sp_uint64)a[ 5]) * a[ 9]
  889. + ((sp_uint64)a[ 6]) * a[ 8]) * 2
  890. + ((sp_uint64)a[ 7]) * a[ 7];
  891. r[13] = t1 & 0x1fffffff; t0 += t1 >> 29;
  892. t1 = (((sp_uint64)a[ 4]) * a[11]
  893. + ((sp_uint64)a[ 5]) * a[10]
  894. + ((sp_uint64)a[ 6]) * a[ 9]
  895. + ((sp_uint64)a[ 7]) * a[ 8]) * 2;
  896. r[14] = t0 & 0x1fffffff; t1 += t0 >> 29;
  897. t0 = (((sp_uint64)a[ 5]) * a[11]
  898. + ((sp_uint64)a[ 6]) * a[10]
  899. + ((sp_uint64)a[ 7]) * a[ 9]) * 2
  900. + ((sp_uint64)a[ 8]) * a[ 8];
  901. r[15] = t1 & 0x1fffffff; t0 += t1 >> 29;
  902. t1 = (((sp_uint64)a[ 6]) * a[11]
  903. + ((sp_uint64)a[ 7]) * a[10]
  904. + ((sp_uint64)a[ 8]) * a[ 9]) * 2;
  905. r[16] = t0 & 0x1fffffff; t1 += t0 >> 29;
  906. t0 = (((sp_uint64)a[ 7]) * a[11]
  907. + ((sp_uint64)a[ 8]) * a[10]) * 2
  908. + ((sp_uint64)a[ 9]) * a[ 9];
  909. r[17] = t1 & 0x1fffffff; t0 += t1 >> 29;
  910. t1 = (((sp_uint64)a[ 8]) * a[11]
  911. + ((sp_uint64)a[ 9]) * a[10]) * 2;
  912. r[18] = t0 & 0x1fffffff; t1 += t0 >> 29;
  913. t0 = (((sp_uint64)a[ 9]) * a[11]) * 2
  914. + ((sp_uint64)a[10]) * a[10];
  915. r[19] = t1 & 0x1fffffff; t0 += t1 >> 29;
  916. t1 = (((sp_uint64)a[10]) * a[11]) * 2;
  917. r[20] = t0 & 0x1fffffff; t1 += t0 >> 29;
  918. t0 = ((sp_uint64)a[11]) * a[11];
  919. r[21] = t1 & 0x1fffffff; t0 += t1 >> 29;
  920. r[22] = t0 & 0x1fffffff;
  921. r[23] = (sp_digit)(t0 >> 29);
  922. XMEMCPY(r, t, sizeof(t));
  923. }
  924. /* Square a into r. (r = a * a)
  925. *
  926. * r A single precision integer.
  927. * a A single precision integer.
  928. */
  929. SP_NOINLINE static void sp_2048_sqr_36(sp_digit* r, const sp_digit* a)
  930. {
  931. sp_digit p0[24];
  932. sp_digit p1[24];
  933. sp_digit p2[24];
  934. sp_digit p3[24];
  935. sp_digit p4[24];
  936. sp_digit p5[24];
  937. sp_digit t0[24];
  938. sp_digit t1[24];
  939. sp_digit t2[24];
  940. sp_digit a0[12];
  941. sp_digit a1[12];
  942. sp_digit a2[12];
  943. (void)sp_2048_add_12(a0, a, &a[12]);
  944. sp_2048_norm_12(a0);
  945. (void)sp_2048_add_12(a1, &a[12], &a[24]);
  946. sp_2048_norm_12(a1);
  947. (void)sp_2048_add_12(a2, a0, &a[24]);
  948. sp_2048_norm_12(a2);
  949. sp_2048_sqr_12(p0, a);
  950. sp_2048_sqr_12(p2, &a[12]);
  951. sp_2048_sqr_12(p4, &a[24]);
  952. sp_2048_sqr_12(p1, a0);
  953. sp_2048_sqr_12(p3, a1);
  954. sp_2048_sqr_12(p5, a2);
  955. XMEMSET(r, 0, sizeof(*r)*2U*36U);
  956. (void)sp_2048_sub_24(t0, p3, p2);
  957. (void)sp_2048_sub_24(t1, p1, p2);
  958. (void)sp_2048_sub_24(t2, p5, t0);
  959. (void)sp_2048_sub_24(t2, t2, t1);
  960. sp_2048_norm_24(t2);
  961. (void)sp_2048_sub_24(t0, t0, p4);
  962. sp_2048_norm_24(t0);
  963. (void)sp_2048_sub_24(t1, t1, p0);
  964. sp_2048_norm_24(t1);
  965. (void)sp_2048_add_24(r, r, p0);
  966. (void)sp_2048_add_24(&r[12], &r[12], t1);
  967. (void)sp_2048_add_24(&r[24], &r[24], t2);
  968. (void)sp_2048_add_24(&r[36], &r[36], t0);
  969. (void)sp_2048_add_24(&r[48], &r[48], p4);
  970. sp_2048_norm_72(r);
  971. }
  972. /* Square a and put result in r. (r = a * a)
  973. *
  974. * r A single precision integer.
  975. * a A single precision integer.
  976. */
  977. SP_NOINLINE static void sp_2048_sqr_72(sp_digit* r, const sp_digit* a)
  978. {
  979. sp_digit* z0 = r;
  980. sp_digit z1[72];
  981. sp_digit* a1 = z1;
  982. sp_digit* z2 = r + 72;
  983. (void)sp_2048_add_36(a1, a, &a[36]);
  984. sp_2048_norm_36(a1);
  985. sp_2048_sqr_36(z2, &a[36]);
  986. sp_2048_sqr_36(z0, a);
  987. sp_2048_sqr_36(z1, a1);
  988. (void)sp_2048_sub_72(z1, z1, z2);
  989. (void)sp_2048_sub_72(z1, z1, z0);
  990. (void)sp_2048_add_72(r + 36, r + 36, z1);
  991. sp_2048_norm_144(r);
  992. }
  993. #endif /* !WOLFSSL_SP_SMALL */
  994. #ifdef WOLFSSL_SP_SMALL
  995. /* Add b to a into r. (r = a + b)
  996. *
  997. * r A single precision integer.
  998. * a A single precision integer.
  999. * b A single precision integer.
  1000. */
  1001. SP_NOINLINE static int sp_2048_add_72(sp_digit* r, const sp_digit* a,
  1002. const sp_digit* b)
  1003. {
  1004. int i;
  1005. for (i = 0; i < 72; i++) {
  1006. r[i] = a[i] + b[i];
  1007. }
  1008. return 0;
  1009. }
  1010. #endif /* WOLFSSL_SP_SMALL */
  1011. #ifdef WOLFSSL_SP_SMALL
  1012. /* Sub b from a into r. (r = a - b)
  1013. *
  1014. * r A single precision integer.
  1015. * a A single precision integer.
  1016. * b A single precision integer.
  1017. */
  1018. SP_NOINLINE static int sp_2048_sub_72(sp_digit* r, const sp_digit* a,
  1019. const sp_digit* b)
  1020. {
  1021. int i;
  1022. for (i = 0; i < 72; i++) {
  1023. r[i] = a[i] - b[i];
  1024. }
  1025. return 0;
  1026. }
  1027. #endif /* WOLFSSL_SP_SMALL */
  1028. #ifdef WOLFSSL_SP_SMALL
  1029. /* Multiply a and b into r. (r = a * b)
  1030. *
  1031. * r A single precision integer.
  1032. * a A single precision integer.
  1033. * b A single precision integer.
  1034. */
  1035. SP_NOINLINE static void sp_2048_mul_72(sp_digit* r, const sp_digit* a,
  1036. const sp_digit* b)
  1037. {
  1038. int i;
  1039. int imax;
  1040. int k;
  1041. sp_uint64 c;
  1042. sp_uint64 lo;
  1043. c = ((sp_uint64)a[71]) * b[71];
  1044. r[143] = (sp_digit)(c >> 29);
  1045. c &= 0x1fffffff;
  1046. for (k = 141; k >= 0; k--) {
  1047. if (k >= 72) {
  1048. i = k - 71;
  1049. imax = 71;
  1050. }
  1051. else {
  1052. i = 0;
  1053. imax = k;
  1054. }
  1055. if (imax - i > 15) {
  1056. int imaxlo;
  1057. lo = 0;
  1058. for (imaxlo = i; imaxlo <= imax; imaxlo += 15) {
  1059. for (; i <= imax && i < imaxlo + 15; i++) {
  1060. lo += ((sp_uint64)a[i]) * b[k - i];
  1061. }
  1062. c += lo >> 29;
  1063. lo &= 0x1fffffff;
  1064. }
  1065. r[k + 2] += (sp_digit)(c >> 29);
  1066. r[k + 1] = (sp_digit)(c & 0x1fffffff);
  1067. c = lo & 0x1fffffff;
  1068. }
  1069. else {
  1070. lo = 0;
  1071. for (; i <= imax; i++) {
  1072. lo += ((sp_uint64)a[i]) * b[k - i];
  1073. }
  1074. c += lo >> 29;
  1075. r[k + 2] += (sp_digit)(c >> 29);
  1076. r[k + 1] = (sp_digit)(c & 0x1fffffff);
  1077. c = lo & 0x1fffffff;
  1078. }
  1079. }
  1080. r[0] = (sp_digit)c;
  1081. }
  1082. /* Square a and put result in r. (r = a * a)
  1083. *
  1084. * r A single precision integer.
  1085. * a A single precision integer.
  1086. */
  1087. SP_NOINLINE static void sp_2048_sqr_72(sp_digit* r, const sp_digit* a)
  1088. {
  1089. int i;
  1090. int imax;
  1091. int k;
  1092. sp_uint64 c;
  1093. sp_uint64 t;
  1094. c = ((sp_uint64)a[71]) * a[71];
  1095. r[143] = (sp_digit)(c >> 29);
  1096. c = (c & 0x1fffffff) << 29;
  1097. for (k = 141; k >= 0; k--) {
  1098. i = (k + 1) / 2;
  1099. if ((k & 1) == 0) {
  1100. c += ((sp_uint64)a[i]) * a[i];
  1101. i++;
  1102. }
  1103. if (k < 71) {
  1104. imax = k;
  1105. }
  1106. else {
  1107. imax = 71;
  1108. }
  1109. if (imax - i >= 14) {
  1110. int imaxlo;
  1111. sp_uint64 hi;
  1112. hi = c >> 29;
  1113. c &= 0x1fffffff;
  1114. for (imaxlo = i; imaxlo <= imax; imaxlo += 14) {
  1115. t = 0;
  1116. for (; i <= imax && i < imaxlo + 14; i++) {
  1117. t += ((sp_uint64)a[i]) * a[k - i];
  1118. }
  1119. c += t * 2;
  1120. hi += c >> 29;
  1121. c &= 0x1fffffff;
  1122. }
  1123. r[k + 2] += (sp_digit)(hi >> 29);
  1124. r[k + 1] = (sp_digit)(hi & 0x1fffffff);
  1125. c <<= 29;
  1126. }
  1127. else
  1128. {
  1129. t = 0;
  1130. for (; i <= imax; i++) {
  1131. t += ((sp_uint64)a[i]) * a[k - i];
  1132. }
  1133. c += t * 2;
  1134. r[k + 2] += (sp_digit) (c >> 58);
  1135. r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
  1136. c = (c & 0x1fffffff) << 29;
  1137. }
  1138. }
  1139. r[0] = (sp_digit)(c >> 29);
  1140. }
  1141. #endif /* WOLFSSL_SP_SMALL */
  1142. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
  1143. #ifdef WOLFSSL_SP_SMALL
  1144. /* Add b to a into r. (r = a + b)
  1145. *
  1146. * r A single precision integer.
  1147. * a A single precision integer.
  1148. * b A single precision integer.
  1149. */
  1150. SP_NOINLINE static int sp_2048_add_36(sp_digit* r, const sp_digit* a,
  1151. const sp_digit* b)
  1152. {
  1153. int i;
  1154. for (i = 0; i < 36; i++) {
  1155. r[i] = a[i] + b[i];
  1156. }
  1157. return 0;
  1158. }
  1159. #endif /* WOLFSSL_SP_SMALL */
  1160. #ifdef WOLFSSL_SP_SMALL
  1161. /* Sub b from a into r. (r = a - b)
  1162. *
  1163. * r A single precision integer.
  1164. * a A single precision integer.
  1165. * b A single precision integer.
  1166. */
  1167. SP_NOINLINE static int sp_2048_sub_36(sp_digit* r, const sp_digit* a,
  1168. const sp_digit* b)
  1169. {
  1170. int i;
  1171. for (i = 0; i < 36; i++) {
  1172. r[i] = a[i] - b[i];
  1173. }
  1174. return 0;
  1175. }
  1176. #else
  1177. /* Sub b from a into r. (r = a - b)
  1178. *
  1179. * r A single precision integer.
  1180. * a A single precision integer.
  1181. * b A single precision integer.
  1182. */
  1183. SP_NOINLINE static int sp_2048_sub_36(sp_digit* r, const sp_digit* a,
  1184. const sp_digit* b)
  1185. {
  1186. int i;
  1187. for (i = 0; i < 32; i += 8) {
  1188. r[i + 0] = a[i + 0] - b[i + 0];
  1189. r[i + 1] = a[i + 1] - b[i + 1];
  1190. r[i + 2] = a[i + 2] - b[i + 2];
  1191. r[i + 3] = a[i + 3] - b[i + 3];
  1192. r[i + 4] = a[i + 4] - b[i + 4];
  1193. r[i + 5] = a[i + 5] - b[i + 5];
  1194. r[i + 6] = a[i + 6] - b[i + 6];
  1195. r[i + 7] = a[i + 7] - b[i + 7];
  1196. }
  1197. r[32] = a[32] - b[32];
  1198. r[33] = a[33] - b[33];
  1199. r[34] = a[34] - b[34];
  1200. r[35] = a[35] - b[35];
  1201. return 0;
  1202. }
  1203. #endif /* WOLFSSL_SP_SMALL */
  1204. #ifdef WOLFSSL_SP_SMALL
  1205. /* Multiply a and b into r. (r = a * b)
  1206. *
  1207. * r A single precision integer.
  1208. * a A single precision integer.
  1209. * b A single precision integer.
  1210. */
  1211. SP_NOINLINE static void sp_2048_mul_36(sp_digit* r, const sp_digit* a,
  1212. const sp_digit* b)
  1213. {
  1214. int i;
  1215. int imax;
  1216. int k;
  1217. sp_uint64 c;
  1218. sp_uint64 lo;
  1219. c = ((sp_uint64)a[35]) * b[35];
  1220. r[71] = (sp_digit)(c >> 29);
  1221. c &= 0x1fffffff;
  1222. for (k = 69; k >= 0; k--) {
  1223. if (k >= 36) {
  1224. i = k - 35;
  1225. imax = 35;
  1226. }
  1227. else {
  1228. i = 0;
  1229. imax = k;
  1230. }
  1231. if (imax - i > 15) {
  1232. int imaxlo;
  1233. lo = 0;
  1234. for (imaxlo = i; imaxlo <= imax; imaxlo += 15) {
  1235. for (; i <= imax && i < imaxlo + 15; i++) {
  1236. lo += ((sp_uint64)a[i]) * b[k - i];
  1237. }
  1238. c += lo >> 29;
  1239. lo &= 0x1fffffff;
  1240. }
  1241. r[k + 2] += (sp_digit)(c >> 29);
  1242. r[k + 1] = (sp_digit)(c & 0x1fffffff);
  1243. c = lo & 0x1fffffff;
  1244. }
  1245. else {
  1246. lo = 0;
  1247. for (; i <= imax; i++) {
  1248. lo += ((sp_uint64)a[i]) * b[k - i];
  1249. }
  1250. c += lo >> 29;
  1251. r[k + 2] += (sp_digit)(c >> 29);
  1252. r[k + 1] = (sp_digit)(c & 0x1fffffff);
  1253. c = lo & 0x1fffffff;
  1254. }
  1255. }
  1256. r[0] = (sp_digit)c;
  1257. }
  1258. /* Square a and put result in r. (r = a * a)
  1259. *
  1260. * r A single precision integer.
  1261. * a A single precision integer.
  1262. */
  1263. SP_NOINLINE static void sp_2048_sqr_36(sp_digit* r, const sp_digit* a)
  1264. {
  1265. int i;
  1266. int imax;
  1267. int k;
  1268. sp_uint64 c;
  1269. sp_uint64 t;
  1270. c = ((sp_uint64)a[35]) * a[35];
  1271. r[71] = (sp_digit)(c >> 29);
  1272. c = (c & 0x1fffffff) << 29;
  1273. for (k = 69; k >= 0; k--) {
  1274. i = (k + 1) / 2;
  1275. if ((k & 1) == 0) {
  1276. c += ((sp_uint64)a[i]) * a[i];
  1277. i++;
  1278. }
  1279. if (k < 35) {
  1280. imax = k;
  1281. }
  1282. else {
  1283. imax = 35;
  1284. }
  1285. if (imax - i >= 14) {
  1286. int imaxlo;
  1287. sp_uint64 hi;
  1288. hi = c >> 29;
  1289. c &= 0x1fffffff;
  1290. for (imaxlo = i; imaxlo <= imax; imaxlo += 14) {
  1291. t = 0;
  1292. for (; i <= imax && i < imaxlo + 14; i++) {
  1293. t += ((sp_uint64)a[i]) * a[k - i];
  1294. }
  1295. c += t * 2;
  1296. hi += c >> 29;
  1297. c &= 0x1fffffff;
  1298. }
  1299. r[k + 2] += (sp_digit)(hi >> 29);
  1300. r[k + 1] = (sp_digit)(hi & 0x1fffffff);
  1301. c <<= 29;
  1302. }
  1303. else
  1304. {
  1305. t = 0;
  1306. for (; i <= imax; i++) {
  1307. t += ((sp_uint64)a[i]) * a[k - i];
  1308. }
  1309. c += t * 2;
  1310. r[k + 2] += (sp_digit) (c >> 58);
  1311. r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
  1312. c = (c & 0x1fffffff) << 29;
  1313. }
  1314. }
  1315. r[0] = (sp_digit)(c >> 29);
  1316. }
  1317. #endif /* WOLFSSL_SP_SMALL */
  1318. #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) | WOLFSSL_HAVE_SP_DH */
  1319. /* Calculate the bottom digit of -1/a mod 2^n.
  1320. *
  1321. * a A single precision number.
  1322. * rho Bottom word of inverse.
  1323. */
  1324. static void sp_2048_mont_setup(const sp_digit* a, sp_digit* rho)
  1325. {
  1326. sp_digit x;
  1327. sp_digit b;
  1328. b = a[0];
  1329. x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
  1330. x *= 2 - b * x; /* here x*a==1 mod 2**8 */
  1331. x *= 2 - b * x; /* here x*a==1 mod 2**16 */
  1332. x *= 2 - b * x; /* here x*a==1 mod 2**32 */
  1333. x &= 0x1fffffff;
  1334. /* rho = -1/m mod b */
  1335. *rho = ((sp_digit)1 << 29) - x;
  1336. }
  1337. /* Multiply a by scalar b into r. (r = a * b)
  1338. *
  1339. * r A single precision integer.
  1340. * a A single precision integer.
  1341. * b A scalar.
  1342. */
  1343. SP_NOINLINE static void sp_2048_mul_d_72(sp_digit* r, const sp_digit* a,
  1344. sp_digit b)
  1345. {
  1346. #ifdef WOLFSSL_SP_SMALL
  1347. sp_int64 tb = b;
  1348. sp_int64 t = 0;
  1349. int i;
  1350. for (i = 0; i < 72; i++) {
  1351. t += tb * a[i];
  1352. r[i] = (sp_digit)(t & 0x1fffffff);
  1353. t >>= 29;
  1354. }
  1355. r[72] = (sp_digit)t;
  1356. #else
  1357. sp_int64 tb = b;
  1358. sp_int64 t = 0;
  1359. sp_digit t2;
  1360. sp_int64 p[4];
  1361. int i;
  1362. for (i = 0; i < 72; i += 4) {
  1363. p[0] = tb * a[i + 0];
  1364. p[1] = tb * a[i + 1];
  1365. p[2] = tb * a[i + 2];
  1366. p[3] = tb * a[i + 3];
  1367. t += p[0];
  1368. t2 = (sp_digit)(t & 0x1fffffff);
  1369. t >>= 29;
  1370. r[i + 0] = (sp_digit)t2;
  1371. t += p[1];
  1372. t2 = (sp_digit)(t & 0x1fffffff);
  1373. t >>= 29;
  1374. r[i + 1] = (sp_digit)t2;
  1375. t += p[2];
  1376. t2 = (sp_digit)(t & 0x1fffffff);
  1377. t >>= 29;
  1378. r[i + 2] = (sp_digit)t2;
  1379. t += p[3];
  1380. t2 = (sp_digit)(t & 0x1fffffff);
  1381. t >>= 29;
  1382. r[i + 3] = (sp_digit)t2;
  1383. }
  1384. r[72] = (sp_digit)(t & 0x1fffffff);
  1385. #endif /* WOLFSSL_SP_SMALL */
  1386. }
  1387. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
  1388. /* r = 2^n mod m where n is the number of bits to reduce by.
  1389. * Given m must be 2048 bits, just need to subtract.
  1390. *
  1391. * r A single precision number.
  1392. * m A single precision number.
  1393. */
  1394. static void sp_2048_mont_norm_36(sp_digit* r, const sp_digit* m)
  1395. {
  1396. /* Set r = 2^n - 1. */
  1397. #ifdef WOLFSSL_SP_SMALL
  1398. int i;
  1399. for (i=0; i<35; i++) {
  1400. r[i] = 0x1fffffff;
  1401. }
  1402. #else
  1403. int i;
  1404. for (i = 0; i < 32; i += 8) {
  1405. r[i + 0] = 0x1fffffff;
  1406. r[i + 1] = 0x1fffffff;
  1407. r[i + 2] = 0x1fffffff;
  1408. r[i + 3] = 0x1fffffff;
  1409. r[i + 4] = 0x1fffffff;
  1410. r[i + 5] = 0x1fffffff;
  1411. r[i + 6] = 0x1fffffff;
  1412. r[i + 7] = 0x1fffffff;
  1413. }
  1414. r[32] = 0x1fffffff;
  1415. r[33] = 0x1fffffff;
  1416. r[34] = 0x1fffffff;
  1417. #endif /* WOLFSSL_SP_SMALL */
  1418. r[35] = 0x1ffL;
  1419. /* r = (2^n - 1) mod n */
  1420. (void)sp_2048_sub_36(r, r, m);
  1421. /* Add one so r = 2^n mod m */
  1422. r[0] += 1;
  1423. }
  1424. /* Compare a with b in constant time.
  1425. *
  1426. * a A single precision integer.
  1427. * b A single precision integer.
  1428. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  1429. * respectively.
  1430. */
  1431. static sp_digit sp_2048_cmp_36(const sp_digit* a, const sp_digit* b)
  1432. {
  1433. sp_digit r = 0;
  1434. #ifdef WOLFSSL_SP_SMALL
  1435. int i;
  1436. for (i=35; i>=0; i--) {
  1437. r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
  1438. }
  1439. #else
  1440. int i;
  1441. r |= (a[35] - b[35]) & (0 - (sp_digit)1);
  1442. r |= (a[34] - b[34]) & ~(((sp_digit)0 - r) >> 28);
  1443. r |= (a[33] - b[33]) & ~(((sp_digit)0 - r) >> 28);
  1444. r |= (a[32] - b[32]) & ~(((sp_digit)0 - r) >> 28);
  1445. for (i = 24; i >= 0; i -= 8) {
  1446. r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 28);
  1447. r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 28);
  1448. r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 28);
  1449. r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 28);
  1450. r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 28);
  1451. r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 28);
  1452. r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 28);
  1453. r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 28);
  1454. }
  1455. #endif /* WOLFSSL_SP_SMALL */
  1456. return r;
  1457. }
  1458. /* Conditionally subtract b from a using the mask m.
  1459. * m is -1 to subtract and 0 when not.
  1460. *
  1461. * r A single precision number representing condition subtract result.
  1462. * a A single precision number to subtract from.
  1463. * b A single precision number to subtract.
  1464. * m Mask value to apply.
  1465. */
  1466. static void sp_2048_cond_sub_36(sp_digit* r, const sp_digit* a,
  1467. const sp_digit* b, const sp_digit m)
  1468. {
  1469. #ifdef WOLFSSL_SP_SMALL
  1470. int i;
  1471. for (i = 0; i < 36; i++) {
  1472. r[i] = a[i] - (b[i] & m);
  1473. }
  1474. #else
  1475. int i;
  1476. for (i = 0; i < 32; i += 8) {
  1477. r[i + 0] = a[i + 0] - (b[i + 0] & m);
  1478. r[i + 1] = a[i + 1] - (b[i + 1] & m);
  1479. r[i + 2] = a[i + 2] - (b[i + 2] & m);
  1480. r[i + 3] = a[i + 3] - (b[i + 3] & m);
  1481. r[i + 4] = a[i + 4] - (b[i + 4] & m);
  1482. r[i + 5] = a[i + 5] - (b[i + 5] & m);
  1483. r[i + 6] = a[i + 6] - (b[i + 6] & m);
  1484. r[i + 7] = a[i + 7] - (b[i + 7] & m);
  1485. }
  1486. r[32] = a[32] - (b[32] & m);
  1487. r[33] = a[33] - (b[33] & m);
  1488. r[34] = a[34] - (b[34] & m);
  1489. r[35] = a[35] - (b[35] & m);
  1490. #endif /* WOLFSSL_SP_SMALL */
  1491. }
  1492. /* Mul a by scalar b and add into r. (r += a * b)
  1493. *
  1494. * r A single precision integer.
  1495. * a A single precision integer.
  1496. * b A scalar.
  1497. */
  1498. SP_NOINLINE static void sp_2048_mul_add_36(sp_digit* r, const sp_digit* a,
  1499. const sp_digit b)
  1500. {
  1501. #ifndef WOLFSSL_SP_LARGE_CODE
  1502. sp_int64 tb = b;
  1503. sp_int64 t = 0;
  1504. int i;
  1505. for (i = 0; i < 36; i++) {
  1506. t += r[i];
  1507. t += tb * a[i];
  1508. r[i] = ((sp_digit)t) & 0x1fffffff;
  1509. t >>= 29;
  1510. }
  1511. r[36] += (sp_digit)t;
  1512. #else
  1513. #ifdef WOLFSSL_SP_SMALL
  1514. sp_int64 tb = b;
  1515. sp_int64 t[4];
  1516. int i;
  1517. t[0] = 0;
  1518. for (i = 0; i < 32; i += 4) {
  1519. t[0] += (tb * a[i+0]) + r[i+0];
  1520. t[1] = (tb * a[i+1]) + r[i+1];
  1521. t[2] = (tb * a[i+2]) + r[i+2];
  1522. t[3] = (tb * a[i+3]) + r[i+3];
  1523. r[i+0] = t[0] & 0x1fffffff;
  1524. t[1] += t[0] >> 29;
  1525. r[i+1] = t[1] & 0x1fffffff;
  1526. t[2] += t[1] >> 29;
  1527. r[i+2] = t[2] & 0x1fffffff;
  1528. t[3] += t[2] >> 29;
  1529. r[i+3] = t[3] & 0x1fffffff;
  1530. t[0] = t[3] >> 29;
  1531. }
  1532. t[0] += (tb * a[32]) + r[32];
  1533. t[1] = (tb * a[33]) + r[33];
  1534. t[2] = (tb * a[34]) + r[34];
  1535. t[3] = (tb * a[35]) + r[35];
  1536. r[32] = t[0] & 0x1fffffff;
  1537. t[1] += t[0] >> 29;
  1538. r[33] = t[1] & 0x1fffffff;
  1539. t[2] += t[1] >> 29;
  1540. r[34] = t[2] & 0x1fffffff;
  1541. t[3] += t[2] >> 29;
  1542. r[35] = t[3] & 0x1fffffff;
  1543. r[36] += (sp_digit)(t[3] >> 29);
  1544. #else
  1545. sp_int64 tb = b;
  1546. sp_int64 t[8];
  1547. int i;
  1548. t[0] = 0;
  1549. for (i = 0; i < 32; i += 8) {
  1550. t[0] += (tb * a[i+0]) + r[i+0];
  1551. t[1] = (tb * a[i+1]) + r[i+1];
  1552. t[2] = (tb * a[i+2]) + r[i+2];
  1553. t[3] = (tb * a[i+3]) + r[i+3];
  1554. t[4] = (tb * a[i+4]) + r[i+4];
  1555. t[5] = (tb * a[i+5]) + r[i+5];
  1556. t[6] = (tb * a[i+6]) + r[i+6];
  1557. t[7] = (tb * a[i+7]) + r[i+7];
  1558. r[i+0] = t[0] & 0x1fffffff;
  1559. t[1] += t[0] >> 29;
  1560. r[i+1] = t[1] & 0x1fffffff;
  1561. t[2] += t[1] >> 29;
  1562. r[i+2] = t[2] & 0x1fffffff;
  1563. t[3] += t[2] >> 29;
  1564. r[i+3] = t[3] & 0x1fffffff;
  1565. t[4] += t[3] >> 29;
  1566. r[i+4] = t[4] & 0x1fffffff;
  1567. t[5] += t[4] >> 29;
  1568. r[i+5] = t[5] & 0x1fffffff;
  1569. t[6] += t[5] >> 29;
  1570. r[i+6] = t[6] & 0x1fffffff;
  1571. t[7] += t[6] >> 29;
  1572. r[i+7] = t[7] & 0x1fffffff;
  1573. t[0] = t[7] >> 29;
  1574. }
  1575. t[0] += (tb * a[32]) + r[32];
  1576. t[1] = (tb * a[33]) + r[33];
  1577. t[2] = (tb * a[34]) + r[34];
  1578. t[3] = (tb * a[35]) + r[35];
  1579. r[32] = t[0] & 0x1fffffff;
  1580. t[1] += t[0] >> 29;
  1581. r[33] = t[1] & 0x1fffffff;
  1582. t[2] += t[1] >> 29;
  1583. r[34] = t[2] & 0x1fffffff;
  1584. t[3] += t[2] >> 29;
  1585. r[35] = t[3] & 0x1fffffff;
  1586. r[36] += (sp_digit)(t[3] >> 29);
  1587. #endif /* WOLFSSL_SP_SMALL */
  1588. #endif /* !WOLFSSL_SP_LARGE_CODE */
  1589. }
  1590. /* Shift the result in the high 1024 bits down to the bottom.
  1591. *
  1592. * r A single precision number.
  1593. * a A single precision number.
  1594. */
  1595. static void sp_2048_mont_shift_36(sp_digit* r, const sp_digit* a)
  1596. {
  1597. #ifdef WOLFSSL_SP_SMALL
  1598. int i;
  1599. sp_int64 n = a[35] >> 9;
  1600. n += ((sp_int64)a[36]) << 20;
  1601. for (i = 0; i < 35; i++) {
  1602. r[i] = n & 0x1fffffff;
  1603. n >>= 29;
  1604. n += ((sp_int64)a[37 + i]) << 20;
  1605. }
  1606. r[35] = (sp_digit)n;
  1607. #else
  1608. int i;
  1609. sp_int64 n = a[35] >> 9;
  1610. n += ((sp_int64)a[36]) << 20;
  1611. for (i = 0; i < 32; i += 8) {
  1612. r[i + 0] = n & 0x1fffffff;
  1613. n >>= 29; n += ((sp_int64)a[i + 37]) << 20;
  1614. r[i + 1] = n & 0x1fffffff;
  1615. n >>= 29; n += ((sp_int64)a[i + 38]) << 20;
  1616. r[i + 2] = n & 0x1fffffff;
  1617. n >>= 29; n += ((sp_int64)a[i + 39]) << 20;
  1618. r[i + 3] = n & 0x1fffffff;
  1619. n >>= 29; n += ((sp_int64)a[i + 40]) << 20;
  1620. r[i + 4] = n & 0x1fffffff;
  1621. n >>= 29; n += ((sp_int64)a[i + 41]) << 20;
  1622. r[i + 5] = n & 0x1fffffff;
  1623. n >>= 29; n += ((sp_int64)a[i + 42]) << 20;
  1624. r[i + 6] = n & 0x1fffffff;
  1625. n >>= 29; n += ((sp_int64)a[i + 43]) << 20;
  1626. r[i + 7] = n & 0x1fffffff;
  1627. n >>= 29; n += ((sp_int64)a[i + 44]) << 20;
  1628. }
  1629. r[32] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[69]) << 20;
  1630. r[33] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[70]) << 20;
  1631. r[34] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[71]) << 20;
  1632. r[35] = (sp_digit)n;
  1633. #endif /* WOLFSSL_SP_SMALL */
  1634. XMEMSET(&r[36], 0, sizeof(*r) * 36U);
  1635. }
  1636. /* Reduce the number back to 2048 bits using Montgomery reduction.
  1637. *
  1638. * a A single precision number to reduce in place.
  1639. * m The single precision number representing the modulus.
  1640. * mp The digit representing the negative inverse of m mod 2^n.
  1641. */
  1642. static void sp_2048_mont_reduce_36(sp_digit* a, const sp_digit* m, sp_digit mp)
  1643. {
  1644. int i;
  1645. sp_digit mu;
  1646. sp_digit over;
  1647. sp_2048_norm_36(a + 36);
  1648. for (i=0; i<35; i++) {
  1649. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
  1650. sp_2048_mul_add_36(a+i, m, mu);
  1651. a[i+1] += a[i] >> 29;
  1652. }
  1653. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1ffL;
  1654. sp_2048_mul_add_36(a+i, m, mu);
  1655. a[i+1] += a[i] >> 29;
  1656. a[i] &= 0x1fffffff;
  1657. sp_2048_mont_shift_36(a, a);
  1658. over = a[35] - m[35];
  1659. sp_2048_cond_sub_36(a, a, m, ~((over - 1) >> 31));
  1660. sp_2048_norm_36(a);
  1661. }
  1662. /* Multiply two Montgomery form numbers mod the modulus (prime).
  1663. * (r = a * b mod m)
  1664. *
  1665. * r Result of multiplication.
  1666. * a First number to multiply in Montgomery form.
  1667. * b Second number to multiply in Montgomery form.
  1668. * m Modulus (prime).
  1669. * mp Montgomery multiplier.
  1670. */
  1671. SP_NOINLINE static void sp_2048_mont_mul_36(sp_digit* r, const sp_digit* a,
  1672. const sp_digit* b, const sp_digit* m, sp_digit mp)
  1673. {
  1674. sp_2048_mul_36(r, a, b);
  1675. sp_2048_mont_reduce_36(r, m, mp);
  1676. }
  1677. /* Square the Montgomery form number. (r = a * a mod m)
  1678. *
  1679. * r Result of squaring.
  1680. * a Number to square in Montgomery form.
  1681. * m Modulus (prime).
  1682. * mp Montgomery multiplier.
  1683. */
  1684. SP_NOINLINE static void sp_2048_mont_sqr_36(sp_digit* r, const sp_digit* a,
  1685. const sp_digit* m, sp_digit mp)
  1686. {
  1687. sp_2048_sqr_36(r, a);
  1688. sp_2048_mont_reduce_36(r, m, mp);
  1689. }
  1690. /* Multiply a by scalar b into r. (r = a * b)
  1691. *
  1692. * r A single precision integer.
  1693. * a A single precision integer.
  1694. * b A scalar.
  1695. */
  1696. SP_NOINLINE static void sp_2048_mul_d_36(sp_digit* r, const sp_digit* a,
  1697. sp_digit b)
  1698. {
  1699. #ifdef WOLFSSL_SP_SMALL
  1700. sp_int64 tb = b;
  1701. sp_int64 t = 0;
  1702. int i;
  1703. for (i = 0; i < 36; i++) {
  1704. t += tb * a[i];
  1705. r[i] = (sp_digit)(t & 0x1fffffff);
  1706. t >>= 29;
  1707. }
  1708. r[36] = (sp_digit)t;
  1709. #else
  1710. sp_int64 tb = b;
  1711. sp_int64 t = 0;
  1712. sp_digit t2;
  1713. sp_int64 p[4];
  1714. int i;
  1715. for (i = 0; i < 36; i += 4) {
  1716. p[0] = tb * a[i + 0];
  1717. p[1] = tb * a[i + 1];
  1718. p[2] = tb * a[i + 2];
  1719. p[3] = tb * a[i + 3];
  1720. t += p[0];
  1721. t2 = (sp_digit)(t & 0x1fffffff);
  1722. t >>= 29;
  1723. r[i + 0] = (sp_digit)t2;
  1724. t += p[1];
  1725. t2 = (sp_digit)(t & 0x1fffffff);
  1726. t >>= 29;
  1727. r[i + 1] = (sp_digit)t2;
  1728. t += p[2];
  1729. t2 = (sp_digit)(t & 0x1fffffff);
  1730. t >>= 29;
  1731. r[i + 2] = (sp_digit)t2;
  1732. t += p[3];
  1733. t2 = (sp_digit)(t & 0x1fffffff);
  1734. t >>= 29;
  1735. r[i + 3] = (sp_digit)t2;
  1736. }
  1737. r[36] = (sp_digit)(t & 0x1fffffff);
  1738. #endif /* WOLFSSL_SP_SMALL */
  1739. }
  1740. #ifdef WOLFSSL_SP_SMALL
  1741. /* Conditionally add a and b using the mask m.
  1742. * m is -1 to add and 0 when not.
  1743. *
  1744. * r A single precision number representing conditional add result.
  1745. * a A single precision number to add with.
  1746. * b A single precision number to add.
  1747. * m Mask value to apply.
  1748. */
  1749. static void sp_2048_cond_add_36(sp_digit* r, const sp_digit* a,
  1750. const sp_digit* b, const sp_digit m)
  1751. {
  1752. int i;
  1753. for (i = 0; i < 36; i++) {
  1754. r[i] = a[i] + (b[i] & m);
  1755. }
  1756. }
  1757. #endif /* WOLFSSL_SP_SMALL */
  1758. #ifndef WOLFSSL_SP_SMALL
  1759. /* Conditionally add a and b using the mask m.
  1760. * m is -1 to add and 0 when not.
  1761. *
  1762. * r A single precision number representing conditional add result.
  1763. * a A single precision number to add with.
  1764. * b A single precision number to add.
  1765. * m Mask value to apply.
  1766. */
  1767. static void sp_2048_cond_add_36(sp_digit* r, const sp_digit* a,
  1768. const sp_digit* b, const sp_digit m)
  1769. {
  1770. int i;
  1771. for (i = 0; i < 32; i += 8) {
  1772. r[i + 0] = a[i + 0] + (b[i + 0] & m);
  1773. r[i + 1] = a[i + 1] + (b[i + 1] & m);
  1774. r[i + 2] = a[i + 2] + (b[i + 2] & m);
  1775. r[i + 3] = a[i + 3] + (b[i + 3] & m);
  1776. r[i + 4] = a[i + 4] + (b[i + 4] & m);
  1777. r[i + 5] = a[i + 5] + (b[i + 5] & m);
  1778. r[i + 6] = a[i + 6] + (b[i + 6] & m);
  1779. r[i + 7] = a[i + 7] + (b[i + 7] & m);
  1780. }
  1781. r[32] = a[32] + (b[32] & m);
  1782. r[33] = a[33] + (b[33] & m);
  1783. r[34] = a[34] + (b[34] & m);
  1784. r[35] = a[35] + (b[35] & m);
  1785. }
  1786. #endif /* !WOLFSSL_SP_SMALL */
  1787. SP_NOINLINE static void sp_2048_rshift_36(sp_digit* r, const sp_digit* a,
  1788. byte n)
  1789. {
  1790. int i;
  1791. #ifdef WOLFSSL_SP_SMALL
  1792. for (i=0; i<35; i++) {
  1793. r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
  1794. }
  1795. #else
  1796. for (i=0; i<32; i += 8) {
  1797. r[i+0] = (a[i+0] >> n) | ((a[i+1] << (29 - n)) & 0x1fffffff);
  1798. r[i+1] = (a[i+1] >> n) | ((a[i+2] << (29 - n)) & 0x1fffffff);
  1799. r[i+2] = (a[i+2] >> n) | ((a[i+3] << (29 - n)) & 0x1fffffff);
  1800. r[i+3] = (a[i+3] >> n) | ((a[i+4] << (29 - n)) & 0x1fffffff);
  1801. r[i+4] = (a[i+4] >> n) | ((a[i+5] << (29 - n)) & 0x1fffffff);
  1802. r[i+5] = (a[i+5] >> n) | ((a[i+6] << (29 - n)) & 0x1fffffff);
  1803. r[i+6] = (a[i+6] >> n) | ((a[i+7] << (29 - n)) & 0x1fffffff);
  1804. r[i+7] = (a[i+7] >> n) | ((a[i+8] << (29 - n)) & 0x1fffffff);
  1805. }
  1806. r[32] = (a[32] >> n) | ((a[33] << (29 - n)) & 0x1fffffff);
  1807. r[33] = (a[33] >> n) | ((a[34] << (29 - n)) & 0x1fffffff);
  1808. r[34] = (a[34] >> n) | ((a[35] << (29 - n)) & 0x1fffffff);
  1809. #endif /* WOLFSSL_SP_SMALL */
  1810. r[35] = a[35] >> n;
  1811. }
  1812. static WC_INLINE sp_digit sp_2048_div_word_36(sp_digit d1, sp_digit d0,
  1813. sp_digit div)
  1814. {
  1815. #ifdef SP_USE_DIVTI3
  1816. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  1817. return d / div;
  1818. #elif defined(__x86_64__) || defined(__i386__)
  1819. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  1820. sp_uint32 lo = (sp_uint32)d;
  1821. sp_digit hi = (sp_digit)(d >> 32);
  1822. __asm__ __volatile__ (
  1823. "idiv %2"
  1824. : "+a" (lo)
  1825. : "d" (hi), "r" (div)
  1826. : "cc"
  1827. );
  1828. return (sp_digit)lo;
  1829. #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
  1830. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  1831. sp_digit dv = (div >> 1) + 1;
  1832. sp_digit t1 = (sp_digit)(d >> 29);
  1833. sp_digit t0 = (sp_digit)(d & 0x1fffffff);
  1834. sp_digit t2;
  1835. sp_digit sign;
  1836. sp_digit r;
  1837. int i;
  1838. sp_int64 m;
  1839. r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  1840. t1 -= dv & (0 - r);
  1841. for (i = 27; i >= 1; i--) {
  1842. t1 += t1 + (((sp_uint32)t0 >> 28) & 1);
  1843. t0 <<= 1;
  1844. t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  1845. r += r + t2;
  1846. t1 -= dv & (0 - t2);
  1847. t1 += t2;
  1848. }
  1849. r += r + 1;
  1850. m = d - ((sp_int64)r * div);
  1851. r += (sp_digit)(m >> 29);
  1852. m = d - ((sp_int64)r * div);
  1853. r += (sp_digit)(m >> 58) - (sp_digit)(d >> 58);
  1854. m = d - ((sp_int64)r * div);
  1855. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  1856. m *= sign;
  1857. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  1858. r += sign * t2;
  1859. m = d - ((sp_int64)r * div);
  1860. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  1861. m *= sign;
  1862. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  1863. r += sign * t2;
  1864. return r;
  1865. #else
  1866. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  1867. sp_digit r = 0;
  1868. sp_digit t;
  1869. sp_digit dv = (div >> 14) + 1;
  1870. t = (sp_digit)(d >> 28);
  1871. t = (t / dv) << 14;
  1872. r += t;
  1873. d -= (sp_int64)t * div;
  1874. t = (sp_digit)(d >> 13);
  1875. t = t / (dv << 1);
  1876. r += t;
  1877. d -= (sp_int64)t * div;
  1878. t = (sp_digit)d;
  1879. t = t / div;
  1880. r += t;
  1881. d -= (sp_int64)t * div;
  1882. return r;
  1883. #endif
  1884. }
  1885. static WC_INLINE sp_digit sp_2048_word_div_word_36(sp_digit d, sp_digit div)
  1886. {
  1887. #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
  1888. defined(SP_DIV_WORD_USE_DIV)
  1889. return d / div;
  1890. #else
  1891. return (sp_digit)((sp_uint32)(div - d) >> 31);
  1892. #endif
  1893. }
  1894. /* Divide d in a and put remainder into r (m*d + r = a)
  1895. * m is not calculated as it is not needed at this time.
  1896. *
  1897. * Full implementation.
  1898. *
  1899. * a Number to be divided.
  1900. * d Number to divide with.
  1901. * m Multiplier result.
  1902. * r Remainder from the division.
  1903. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  1904. */
  1905. static int sp_2048_div_36(const sp_digit* a, const sp_digit* d,
  1906. const sp_digit* m, sp_digit* r)
  1907. {
  1908. int i;
  1909. #ifndef WOLFSSL_SP_DIV_32
  1910. #endif
  1911. sp_digit dv;
  1912. sp_digit r1;
  1913. #ifdef WOLFSSL_SP_SMALL_STACK
  1914. sp_digit* t1 = NULL;
  1915. #else
  1916. sp_digit t1[4 * 36 + 3];
  1917. #endif
  1918. sp_digit* t2 = NULL;
  1919. sp_digit* sd = NULL;
  1920. int err = MP_OKAY;
  1921. (void)m;
  1922. #ifdef WOLFSSL_SP_SMALL_STACK
  1923. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 36 + 3), NULL,
  1924. DYNAMIC_TYPE_TMP_BUFFER);
  1925. if (t1 == NULL)
  1926. err = MEMORY_E;
  1927. #endif
  1928. (void)m;
  1929. if (err == MP_OKAY) {
  1930. t2 = t1 + 72 + 1;
  1931. sd = t2 + 36 + 1;
  1932. sp_2048_mul_d_36(sd, d, (sp_digit)1 << 20);
  1933. sp_2048_mul_d_72(t1, a, (sp_digit)1 << 20);
  1934. dv = sd[35];
  1935. t1[36 + 36] += t1[36 + 36 - 1] >> 29;
  1936. t1[36 + 36 - 1] &= 0x1fffffff;
  1937. for (i=36; i>=0; i--) {
  1938. r1 = sp_2048_div_word_36(t1[36 + i], t1[36 + i - 1], dv);
  1939. sp_2048_mul_d_36(t2, sd, r1);
  1940. (void)sp_2048_sub_36(&t1[i], &t1[i], t2);
  1941. sp_2048_norm_36(&t1[i]);
  1942. t1[36 + i] -= t2[36];
  1943. t1[36 + i] += t1[36 + i - 1] >> 29;
  1944. t1[36 + i - 1] &= 0x1fffffff;
  1945. r1 = sp_2048_div_word_36(-t1[36 + i], -t1[36 + i - 1], dv);
  1946. r1 -= t1[36 + i];
  1947. sp_2048_mul_d_36(t2, sd, r1);
  1948. (void)sp_2048_add_36(&t1[i], &t1[i], t2);
  1949. t1[36 + i] += t1[36 + i - 1] >> 29;
  1950. t1[36 + i - 1] &= 0x1fffffff;
  1951. }
  1952. t1[36 - 1] += t1[36 - 2] >> 29;
  1953. t1[36 - 2] &= 0x1fffffff;
  1954. r1 = sp_2048_word_div_word_36(t1[36 - 1], dv);
  1955. sp_2048_mul_d_36(t2, sd, r1);
  1956. sp_2048_sub_36(t1, t1, t2);
  1957. XMEMCPY(r, t1, sizeof(*r) * 72U);
  1958. for (i=0; i<35; i++) {
  1959. r[i+1] += r[i] >> 29;
  1960. r[i] &= 0x1fffffff;
  1961. }
  1962. sp_2048_cond_add_36(r, r, sd, r[35] >> 31);
  1963. sp_2048_norm_36(r);
  1964. sp_2048_rshift_36(r, r, 20);
  1965. }
  1966. #ifdef WOLFSSL_SP_SMALL_STACK
  1967. if (t1 != NULL)
  1968. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  1969. #endif
  1970. return err;
  1971. }
  1972. /* Reduce a modulo m into r. (r = a mod m)
  1973. *
  1974. * r A single precision number that is the reduced result.
  1975. * a A single precision number that is to be reduced.
  1976. * m A single precision number that is the modulus to reduce with.
  1977. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  1978. */
  1979. static int sp_2048_mod_36(sp_digit* r, const sp_digit* a, const sp_digit* m)
  1980. {
  1981. return sp_2048_div_36(a, m, NULL, r);
  1982. }
  1983. /* Modular exponentiate a to the e mod m. (r = a^e mod m)
  1984. *
  1985. * r A single precision number that is the result of the operation.
  1986. * a A single precision number being exponentiated.
  1987. * e A single precision number that is the exponent.
  1988. * bits The number of bits in the exponent.
  1989. * m A single precision number that is the modulus.
  1990. * returns 0 on success.
  1991. * returns MEMORY_E on dynamic memory allocation failure.
  1992. * returns MP_VAL when base is even or exponent is 0.
  1993. */
  1994. static int sp_2048_mod_exp_36(sp_digit* r, const sp_digit* a, const sp_digit* e,
  1995. int bits, const sp_digit* m, int reduceA)
  1996. {
  1997. #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
  1998. #ifdef WOLFSSL_SP_SMALL_STACK
  1999. sp_digit* td = NULL;
  2000. #else
  2001. sp_digit td[3 * 72];
  2002. #endif
  2003. sp_digit* t[3] = {0, 0, 0};
  2004. sp_digit* norm = NULL;
  2005. sp_digit mp = 1;
  2006. sp_digit n;
  2007. int i;
  2008. int c;
  2009. byte y;
  2010. int err = MP_OKAY;
  2011. if (bits == 0) {
  2012. err = MP_VAL;
  2013. }
  2014. #ifdef WOLFSSL_SP_SMALL_STACK
  2015. if (err == MP_OKAY) {
  2016. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 36 * 2, NULL,
  2017. DYNAMIC_TYPE_TMP_BUFFER);
  2018. if (td == NULL)
  2019. err = MEMORY_E;
  2020. }
  2021. #endif
  2022. if (err == MP_OKAY) {
  2023. norm = td;
  2024. for (i=0; i<3; i++) {
  2025. t[i] = td + (i * 36 * 2);
  2026. XMEMSET(t[i], 0, sizeof(sp_digit) * 36U * 2U);
  2027. }
  2028. sp_2048_mont_setup(m, &mp);
  2029. sp_2048_mont_norm_36(norm, m);
  2030. if (reduceA != 0) {
  2031. err = sp_2048_mod_36(t[1], a, m);
  2032. }
  2033. else {
  2034. XMEMCPY(t[1], a, sizeof(sp_digit) * 36U);
  2035. }
  2036. }
  2037. if (err == MP_OKAY) {
  2038. sp_2048_mul_36(t[1], t[1], norm);
  2039. err = sp_2048_mod_36(t[1], t[1], m);
  2040. }
  2041. if (err == MP_OKAY) {
  2042. i = bits / 29;
  2043. c = bits % 29;
  2044. n = e[i--] << (29 - c);
  2045. for (; ; c--) {
  2046. if (c == 0) {
  2047. if (i == -1) {
  2048. break;
  2049. }
  2050. n = e[i--];
  2051. c = 29;
  2052. }
  2053. y = (int)((n >> 28) & 1);
  2054. n <<= 1;
  2055. sp_2048_mont_mul_36(t[y^1], t[0], t[1], m, mp);
  2056. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  2057. ((size_t)t[1] & addr_mask[y])),
  2058. sizeof(*t[2]) * 36 * 2);
  2059. sp_2048_mont_sqr_36(t[2], t[2], m, mp);
  2060. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  2061. ((size_t)t[1] & addr_mask[y])), t[2],
  2062. sizeof(*t[2]) * 36 * 2);
  2063. }
  2064. sp_2048_mont_reduce_36(t[0], m, mp);
  2065. n = sp_2048_cmp_36(t[0], m);
  2066. sp_2048_cond_sub_36(t[0], t[0], m, ~(n >> 31));
  2067. XMEMCPY(r, t[0], sizeof(*r) * 36 * 2);
  2068. }
  2069. #ifdef WOLFSSL_SP_SMALL_STACK
  2070. if (td != NULL)
  2071. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  2072. #endif
  2073. return err;
  2074. #elif !defined(WC_NO_CACHE_RESISTANT)
  2075. #ifdef WOLFSSL_SP_SMALL_STACK
  2076. sp_digit* td = NULL;
  2077. #else
  2078. sp_digit td[3 * 72];
  2079. #endif
  2080. sp_digit* t[3] = {0, 0, 0};
  2081. sp_digit* norm = NULL;
  2082. sp_digit mp = 1;
  2083. sp_digit n;
  2084. int i;
  2085. int c;
  2086. byte y;
  2087. int err = MP_OKAY;
  2088. if (bits == 0) {
  2089. err = MP_VAL;
  2090. }
  2091. #ifdef WOLFSSL_SP_SMALL_STACK
  2092. if (err == MP_OKAY) {
  2093. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 36 * 2, NULL,
  2094. DYNAMIC_TYPE_TMP_BUFFER);
  2095. if (td == NULL)
  2096. err = MEMORY_E;
  2097. }
  2098. #endif
  2099. if (err == MP_OKAY) {
  2100. norm = td;
  2101. for (i=0; i<3; i++) {
  2102. t[i] = td + (i * 36 * 2);
  2103. }
  2104. sp_2048_mont_setup(m, &mp);
  2105. sp_2048_mont_norm_36(norm, m);
  2106. if (reduceA != 0) {
  2107. err = sp_2048_mod_36(t[1], a, m);
  2108. if (err == MP_OKAY) {
  2109. sp_2048_mul_36(t[1], t[1], norm);
  2110. err = sp_2048_mod_36(t[1], t[1], m);
  2111. }
  2112. }
  2113. else {
  2114. sp_2048_mul_36(t[1], a, norm);
  2115. err = sp_2048_mod_36(t[1], t[1], m);
  2116. }
  2117. }
  2118. if (err == MP_OKAY) {
  2119. i = bits / 29;
  2120. c = bits % 29;
  2121. n = e[i--] << (29 - c);
  2122. for (; ; c--) {
  2123. if (c == 0) {
  2124. if (i == -1) {
  2125. break;
  2126. }
  2127. n = e[i--];
  2128. c = 29;
  2129. }
  2130. y = (int)((n >> 28) & 1);
  2131. n <<= 1;
  2132. sp_2048_mont_mul_36(t[y^1], t[0], t[1], m, mp);
  2133. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  2134. ((size_t)t[1] & addr_mask[y])),
  2135. sizeof(*t[2]) * 36 * 2);
  2136. sp_2048_mont_sqr_36(t[2], t[2], m, mp);
  2137. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  2138. ((size_t)t[1] & addr_mask[y])), t[2],
  2139. sizeof(*t[2]) * 36 * 2);
  2140. }
  2141. sp_2048_mont_reduce_36(t[0], m, mp);
  2142. n = sp_2048_cmp_36(t[0], m);
  2143. sp_2048_cond_sub_36(t[0], t[0], m, ~(n >> 31));
  2144. XMEMCPY(r, t[0], sizeof(*r) * 36 * 2);
  2145. }
  2146. #ifdef WOLFSSL_SP_SMALL_STACK
  2147. if (td != NULL)
  2148. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  2149. #endif
  2150. return err;
  2151. #else
  2152. #ifdef WOLFSSL_SP_SMALL_STACK
  2153. sp_digit* td = NULL;
  2154. #else
  2155. sp_digit td[(32 * 72) + 72];
  2156. #endif
  2157. sp_digit* t[32];
  2158. sp_digit* rt = NULL;
  2159. sp_digit* norm = NULL;
  2160. sp_digit mp = 1;
  2161. sp_digit n;
  2162. int i;
  2163. int c;
  2164. byte y;
  2165. int err = MP_OKAY;
  2166. if (bits == 0) {
  2167. err = MP_VAL;
  2168. }
  2169. #ifdef WOLFSSL_SP_SMALL_STACK
  2170. if (err == MP_OKAY) {
  2171. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((32 * 72) + 72), NULL,
  2172. DYNAMIC_TYPE_TMP_BUFFER);
  2173. if (td == NULL)
  2174. err = MEMORY_E;
  2175. }
  2176. #endif
  2177. if (err == MP_OKAY) {
  2178. norm = td;
  2179. for (i=0; i<32; i++)
  2180. t[i] = td + i * 72;
  2181. rt = td + 2304;
  2182. sp_2048_mont_setup(m, &mp);
  2183. sp_2048_mont_norm_36(norm, m);
  2184. if (reduceA != 0) {
  2185. err = sp_2048_mod_36(t[1], a, m);
  2186. if (err == MP_OKAY) {
  2187. sp_2048_mul_36(t[1], t[1], norm);
  2188. err = sp_2048_mod_36(t[1], t[1], m);
  2189. }
  2190. }
  2191. else {
  2192. sp_2048_mul_36(t[1], a, norm);
  2193. err = sp_2048_mod_36(t[1], t[1], m);
  2194. }
  2195. }
  2196. if (err == MP_OKAY) {
  2197. sp_2048_mont_sqr_36(t[ 2], t[ 1], m, mp);
  2198. sp_2048_mont_mul_36(t[ 3], t[ 2], t[ 1], m, mp);
  2199. sp_2048_mont_sqr_36(t[ 4], t[ 2], m, mp);
  2200. sp_2048_mont_mul_36(t[ 5], t[ 3], t[ 2], m, mp);
  2201. sp_2048_mont_sqr_36(t[ 6], t[ 3], m, mp);
  2202. sp_2048_mont_mul_36(t[ 7], t[ 4], t[ 3], m, mp);
  2203. sp_2048_mont_sqr_36(t[ 8], t[ 4], m, mp);
  2204. sp_2048_mont_mul_36(t[ 9], t[ 5], t[ 4], m, mp);
  2205. sp_2048_mont_sqr_36(t[10], t[ 5], m, mp);
  2206. sp_2048_mont_mul_36(t[11], t[ 6], t[ 5], m, mp);
  2207. sp_2048_mont_sqr_36(t[12], t[ 6], m, mp);
  2208. sp_2048_mont_mul_36(t[13], t[ 7], t[ 6], m, mp);
  2209. sp_2048_mont_sqr_36(t[14], t[ 7], m, mp);
  2210. sp_2048_mont_mul_36(t[15], t[ 8], t[ 7], m, mp);
  2211. sp_2048_mont_sqr_36(t[16], t[ 8], m, mp);
  2212. sp_2048_mont_mul_36(t[17], t[ 9], t[ 8], m, mp);
  2213. sp_2048_mont_sqr_36(t[18], t[ 9], m, mp);
  2214. sp_2048_mont_mul_36(t[19], t[10], t[ 9], m, mp);
  2215. sp_2048_mont_sqr_36(t[20], t[10], m, mp);
  2216. sp_2048_mont_mul_36(t[21], t[11], t[10], m, mp);
  2217. sp_2048_mont_sqr_36(t[22], t[11], m, mp);
  2218. sp_2048_mont_mul_36(t[23], t[12], t[11], m, mp);
  2219. sp_2048_mont_sqr_36(t[24], t[12], m, mp);
  2220. sp_2048_mont_mul_36(t[25], t[13], t[12], m, mp);
  2221. sp_2048_mont_sqr_36(t[26], t[13], m, mp);
  2222. sp_2048_mont_mul_36(t[27], t[14], t[13], m, mp);
  2223. sp_2048_mont_sqr_36(t[28], t[14], m, mp);
  2224. sp_2048_mont_mul_36(t[29], t[15], t[14], m, mp);
  2225. sp_2048_mont_sqr_36(t[30], t[15], m, mp);
  2226. sp_2048_mont_mul_36(t[31], t[16], t[15], m, mp);
  2227. bits = ((bits + 4) / 5) * 5;
  2228. i = ((bits + 28) / 29) - 1;
  2229. c = bits % 29;
  2230. if (c == 0) {
  2231. c = 29;
  2232. }
  2233. if (i < 36) {
  2234. n = e[i--] << (32 - c);
  2235. }
  2236. else {
  2237. n = 0;
  2238. i--;
  2239. }
  2240. if (c < 5) {
  2241. n |= e[i--] << (3 - c);
  2242. c += 29;
  2243. }
  2244. y = (int)((n >> 27) & 0x1f);
  2245. n <<= 5;
  2246. c -= 5;
  2247. XMEMCPY(rt, t[y], sizeof(sp_digit) * 72);
  2248. while ((i >= 0) || (c >= 5)) {
  2249. if (c >= 5) {
  2250. y = (byte)((n >> 27) & 0x1f);
  2251. n <<= 5;
  2252. c -= 5;
  2253. }
  2254. else if (c == 0) {
  2255. n = e[i--] << 3;
  2256. y = (byte)((n >> 27) & 0x1f);
  2257. n <<= 5;
  2258. c = 24;
  2259. }
  2260. else {
  2261. y = (byte)((n >> 27) & 0x1f);
  2262. n = e[i--] << 3;
  2263. c = 5 - c;
  2264. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  2265. n <<= c;
  2266. c = 29 - c;
  2267. }
  2268. sp_2048_mont_sqr_36(rt, rt, m, mp);
  2269. sp_2048_mont_sqr_36(rt, rt, m, mp);
  2270. sp_2048_mont_sqr_36(rt, rt, m, mp);
  2271. sp_2048_mont_sqr_36(rt, rt, m, mp);
  2272. sp_2048_mont_sqr_36(rt, rt, m, mp);
  2273. sp_2048_mont_mul_36(rt, rt, t[y], m, mp);
  2274. }
  2275. sp_2048_mont_reduce_36(rt, m, mp);
  2276. n = sp_2048_cmp_36(rt, m);
  2277. sp_2048_cond_sub_36(rt, rt, m, ~(n >> 31));
  2278. XMEMCPY(r, rt, sizeof(sp_digit) * 72);
  2279. }
  2280. #ifdef WOLFSSL_SP_SMALL_STACK
  2281. if (td != NULL)
  2282. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  2283. #endif
  2284. return err;
  2285. #endif
  2286. }
  2287. #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) | WOLFSSL_HAVE_SP_DH */
  2288. /* r = 2^n mod m where n is the number of bits to reduce by.
  2289. * Given m must be 2048 bits, just need to subtract.
  2290. *
  2291. * r A single precision number.
  2292. * m A single precision number.
  2293. */
  2294. static void sp_2048_mont_norm_72(sp_digit* r, const sp_digit* m)
  2295. {
  2296. /* Set r = 2^n - 1. */
  2297. #ifdef WOLFSSL_SP_SMALL
  2298. int i;
  2299. for (i=0; i<70; i++) {
  2300. r[i] = 0x1fffffff;
  2301. }
  2302. #else
  2303. int i;
  2304. for (i = 0; i < 64; i += 8) {
  2305. r[i + 0] = 0x1fffffff;
  2306. r[i + 1] = 0x1fffffff;
  2307. r[i + 2] = 0x1fffffff;
  2308. r[i + 3] = 0x1fffffff;
  2309. r[i + 4] = 0x1fffffff;
  2310. r[i + 5] = 0x1fffffff;
  2311. r[i + 6] = 0x1fffffff;
  2312. r[i + 7] = 0x1fffffff;
  2313. }
  2314. r[64] = 0x1fffffff;
  2315. r[65] = 0x1fffffff;
  2316. r[66] = 0x1fffffff;
  2317. r[67] = 0x1fffffff;
  2318. r[68] = 0x1fffffff;
  2319. r[69] = 0x1fffffff;
  2320. #endif /* WOLFSSL_SP_SMALL */
  2321. r[70] = 0x3ffffL;
  2322. r[71] = 0;
  2323. /* r = (2^n - 1) mod n */
  2324. (void)sp_2048_sub_72(r, r, m);
  2325. /* Add one so r = 2^n mod m */
  2326. r[0] += 1;
  2327. }
  2328. /* Compare a with b in constant time.
  2329. *
  2330. * a A single precision integer.
  2331. * b A single precision integer.
  2332. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  2333. * respectively.
  2334. */
  2335. static sp_digit sp_2048_cmp_72(const sp_digit* a, const sp_digit* b)
  2336. {
  2337. sp_digit r = 0;
  2338. #ifdef WOLFSSL_SP_SMALL
  2339. int i;
  2340. for (i=71; i>=0; i--) {
  2341. r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
  2342. }
  2343. #else
  2344. int i;
  2345. for (i = 64; i >= 0; i -= 8) {
  2346. r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 28);
  2347. r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 28);
  2348. r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 28);
  2349. r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 28);
  2350. r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 28);
  2351. r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 28);
  2352. r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 28);
  2353. r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 28);
  2354. }
  2355. #endif /* WOLFSSL_SP_SMALL */
  2356. return r;
  2357. }
  2358. /* Conditionally subtract b from a using the mask m.
  2359. * m is -1 to subtract and 0 when not.
  2360. *
  2361. * r A single precision number representing condition subtract result.
  2362. * a A single precision number to subtract from.
  2363. * b A single precision number to subtract.
  2364. * m Mask value to apply.
  2365. */
  2366. static void sp_2048_cond_sub_72(sp_digit* r, const sp_digit* a,
  2367. const sp_digit* b, const sp_digit m)
  2368. {
  2369. #ifdef WOLFSSL_SP_SMALL
  2370. int i;
  2371. for (i = 0; i < 72; i++) {
  2372. r[i] = a[i] - (b[i] & m);
  2373. }
  2374. #else
  2375. int i;
  2376. for (i = 0; i < 72; i += 8) {
  2377. r[i + 0] = a[i + 0] - (b[i + 0] & m);
  2378. r[i + 1] = a[i + 1] - (b[i + 1] & m);
  2379. r[i + 2] = a[i + 2] - (b[i + 2] & m);
  2380. r[i + 3] = a[i + 3] - (b[i + 3] & m);
  2381. r[i + 4] = a[i + 4] - (b[i + 4] & m);
  2382. r[i + 5] = a[i + 5] - (b[i + 5] & m);
  2383. r[i + 6] = a[i + 6] - (b[i + 6] & m);
  2384. r[i + 7] = a[i + 7] - (b[i + 7] & m);
  2385. }
  2386. #endif /* WOLFSSL_SP_SMALL */
  2387. }
  2388. /* Mul a by scalar b and add into r. (r += a * b)
  2389. *
  2390. * r A single precision integer.
  2391. * a A single precision integer.
  2392. * b A scalar.
  2393. */
  2394. SP_NOINLINE static void sp_2048_mul_add_72(sp_digit* r, const sp_digit* a,
  2395. const sp_digit b)
  2396. {
  2397. #ifndef WOLFSSL_SP_LARGE_CODE
  2398. sp_int64 tb = b;
  2399. sp_int64 t = 0;
  2400. int i;
  2401. for (i = 0; i < 72; i++) {
  2402. t += r[i];
  2403. t += tb * a[i];
  2404. r[i] = ((sp_digit)t) & 0x1fffffff;
  2405. t >>= 29;
  2406. }
  2407. r[72] += (sp_digit)t;
  2408. #else
  2409. #ifdef WOLFSSL_SP_SMALL
  2410. sp_int64 tb = b;
  2411. sp_int64 t[4];
  2412. int i;
  2413. t[0] = 0;
  2414. for (i = 0; i < 68; i += 4) {
  2415. t[0] += (tb * a[i+0]) + r[i+0];
  2416. t[1] = (tb * a[i+1]) + r[i+1];
  2417. t[2] = (tb * a[i+2]) + r[i+2];
  2418. t[3] = (tb * a[i+3]) + r[i+3];
  2419. r[i+0] = t[0] & 0x1fffffff;
  2420. t[1] += t[0] >> 29;
  2421. r[i+1] = t[1] & 0x1fffffff;
  2422. t[2] += t[1] >> 29;
  2423. r[i+2] = t[2] & 0x1fffffff;
  2424. t[3] += t[2] >> 29;
  2425. r[i+3] = t[3] & 0x1fffffff;
  2426. t[0] = t[3] >> 29;
  2427. }
  2428. t[0] += (tb * a[68]) + r[68];
  2429. t[1] = (tb * a[69]) + r[69];
  2430. t[2] = (tb * a[70]) + r[70];
  2431. t[3] = (tb * a[71]) + r[71];
  2432. r[68] = t[0] & 0x1fffffff;
  2433. t[1] += t[0] >> 29;
  2434. r[69] = t[1] & 0x1fffffff;
  2435. t[2] += t[1] >> 29;
  2436. r[70] = t[2] & 0x1fffffff;
  2437. t[3] += t[2] >> 29;
  2438. r[71] = t[3] & 0x1fffffff;
  2439. r[72] += (sp_digit)(t[3] >> 29);
  2440. #else
  2441. sp_int64 tb = b;
  2442. sp_int64 t[8];
  2443. int i;
  2444. t[0] = 0;
  2445. for (i = 0; i < 64; i += 8) {
  2446. t[0] += (tb * a[i+0]) + r[i+0];
  2447. t[1] = (tb * a[i+1]) + r[i+1];
  2448. t[2] = (tb * a[i+2]) + r[i+2];
  2449. t[3] = (tb * a[i+3]) + r[i+3];
  2450. t[4] = (tb * a[i+4]) + r[i+4];
  2451. t[5] = (tb * a[i+5]) + r[i+5];
  2452. t[6] = (tb * a[i+6]) + r[i+6];
  2453. t[7] = (tb * a[i+7]) + r[i+7];
  2454. r[i+0] = t[0] & 0x1fffffff;
  2455. t[1] += t[0] >> 29;
  2456. r[i+1] = t[1] & 0x1fffffff;
  2457. t[2] += t[1] >> 29;
  2458. r[i+2] = t[2] & 0x1fffffff;
  2459. t[3] += t[2] >> 29;
  2460. r[i+3] = t[3] & 0x1fffffff;
  2461. t[4] += t[3] >> 29;
  2462. r[i+4] = t[4] & 0x1fffffff;
  2463. t[5] += t[4] >> 29;
  2464. r[i+5] = t[5] & 0x1fffffff;
  2465. t[6] += t[5] >> 29;
  2466. r[i+6] = t[6] & 0x1fffffff;
  2467. t[7] += t[6] >> 29;
  2468. r[i+7] = t[7] & 0x1fffffff;
  2469. t[0] = t[7] >> 29;
  2470. }
  2471. t[0] += (tb * a[64]) + r[64];
  2472. t[1] = (tb * a[65]) + r[65];
  2473. t[2] = (tb * a[66]) + r[66];
  2474. t[3] = (tb * a[67]) + r[67];
  2475. t[4] = (tb * a[68]) + r[68];
  2476. t[5] = (tb * a[69]) + r[69];
  2477. t[6] = (tb * a[70]) + r[70];
  2478. t[7] = (tb * a[71]) + r[71];
  2479. r[64] = t[0] & 0x1fffffff;
  2480. t[1] += t[0] >> 29;
  2481. r[65] = t[1] & 0x1fffffff;
  2482. t[2] += t[1] >> 29;
  2483. r[66] = t[2] & 0x1fffffff;
  2484. t[3] += t[2] >> 29;
  2485. r[67] = t[3] & 0x1fffffff;
  2486. t[4] += t[3] >> 29;
  2487. r[68] = t[4] & 0x1fffffff;
  2488. t[5] += t[4] >> 29;
  2489. r[69] = t[5] & 0x1fffffff;
  2490. t[6] += t[5] >> 29;
  2491. r[70] = t[6] & 0x1fffffff;
  2492. t[7] += t[6] >> 29;
  2493. r[71] = t[7] & 0x1fffffff;
  2494. r[72] += (sp_digit)(t[7] >> 29);
  2495. #endif /* WOLFSSL_SP_SMALL */
  2496. #endif /* !WOLFSSL_SP_LARGE_CODE */
  2497. }
  2498. /* Shift the result in the high 2048 bits down to the bottom.
  2499. *
  2500. * r A single precision number.
  2501. * a A single precision number.
  2502. */
  2503. static void sp_2048_mont_shift_72(sp_digit* r, const sp_digit* a)
  2504. {
  2505. #ifdef WOLFSSL_SP_SMALL
  2506. int i;
  2507. sp_int64 n = a[70] >> 18;
  2508. n += ((sp_int64)a[71]) << 11;
  2509. for (i = 0; i < 70; i++) {
  2510. r[i] = n & 0x1fffffff;
  2511. n >>= 29;
  2512. n += ((sp_int64)a[72 + i]) << 11;
  2513. }
  2514. r[70] = (sp_digit)n;
  2515. #else
  2516. int i;
  2517. sp_int64 n = a[70] >> 18;
  2518. n += ((sp_int64)a[71]) << 11;
  2519. for (i = 0; i < 64; i += 8) {
  2520. r[i + 0] = n & 0x1fffffff;
  2521. n >>= 29; n += ((sp_int64)a[i + 72]) << 11;
  2522. r[i + 1] = n & 0x1fffffff;
  2523. n >>= 29; n += ((sp_int64)a[i + 73]) << 11;
  2524. r[i + 2] = n & 0x1fffffff;
  2525. n >>= 29; n += ((sp_int64)a[i + 74]) << 11;
  2526. r[i + 3] = n & 0x1fffffff;
  2527. n >>= 29; n += ((sp_int64)a[i + 75]) << 11;
  2528. r[i + 4] = n & 0x1fffffff;
  2529. n >>= 29; n += ((sp_int64)a[i + 76]) << 11;
  2530. r[i + 5] = n & 0x1fffffff;
  2531. n >>= 29; n += ((sp_int64)a[i + 77]) << 11;
  2532. r[i + 6] = n & 0x1fffffff;
  2533. n >>= 29; n += ((sp_int64)a[i + 78]) << 11;
  2534. r[i + 7] = n & 0x1fffffff;
  2535. n >>= 29; n += ((sp_int64)a[i + 79]) << 11;
  2536. }
  2537. r[64] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[136]) << 11;
  2538. r[65] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[137]) << 11;
  2539. r[66] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[138]) << 11;
  2540. r[67] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[139]) << 11;
  2541. r[68] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[140]) << 11;
  2542. r[69] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[141]) << 11;
  2543. r[70] = (sp_digit)n;
  2544. #endif /* WOLFSSL_SP_SMALL */
  2545. XMEMSET(&r[71], 0, sizeof(*r) * 71U);
  2546. }
  2547. /* Reduce the number back to 2048 bits using Montgomery reduction.
  2548. *
  2549. * a A single precision number to reduce in place.
  2550. * m The single precision number representing the modulus.
  2551. * mp The digit representing the negative inverse of m mod 2^n.
  2552. */
  2553. static void sp_2048_mont_reduce_72(sp_digit* a, const sp_digit* m, sp_digit mp)
  2554. {
  2555. int i;
  2556. sp_digit mu;
  2557. sp_digit over;
  2558. sp_2048_norm_72(a + 71);
  2559. #ifdef WOLFSSL_SP_DH
  2560. if (mp != 1) {
  2561. for (i=0; i<70; i++) {
  2562. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
  2563. sp_2048_mul_add_72(a+i, m, mu);
  2564. a[i+1] += a[i] >> 29;
  2565. }
  2566. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffL;
  2567. sp_2048_mul_add_72(a+i, m, mu);
  2568. a[i+1] += a[i] >> 29;
  2569. a[i] &= 0x1fffffff;
  2570. }
  2571. else {
  2572. for (i=0; i<70; i++) {
  2573. mu = a[i] & 0x1fffffff;
  2574. sp_2048_mul_add_72(a+i, m, mu);
  2575. a[i+1] += a[i] >> 29;
  2576. }
  2577. mu = a[i] & 0x3ffffL;
  2578. sp_2048_mul_add_72(a+i, m, mu);
  2579. a[i+1] += a[i] >> 29;
  2580. a[i] &= 0x1fffffff;
  2581. }
  2582. #else
  2583. for (i=0; i<70; i++) {
  2584. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
  2585. sp_2048_mul_add_72(a+i, m, mu);
  2586. a[i+1] += a[i] >> 29;
  2587. }
  2588. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffL;
  2589. sp_2048_mul_add_72(a+i, m, mu);
  2590. a[i+1] += a[i] >> 29;
  2591. a[i] &= 0x1fffffff;
  2592. #endif
  2593. sp_2048_mont_shift_72(a, a);
  2594. over = a[70] - m[70];
  2595. sp_2048_cond_sub_72(a, a, m, ~((over - 1) >> 31));
  2596. sp_2048_norm_72(a);
  2597. }
  2598. /* Multiply two Montgomery form numbers mod the modulus (prime).
  2599. * (r = a * b mod m)
  2600. *
  2601. * r Result of multiplication.
  2602. * a First number to multiply in Montgomery form.
  2603. * b Second number to multiply in Montgomery form.
  2604. * m Modulus (prime).
  2605. * mp Montgomery multiplier.
  2606. */
  2607. SP_NOINLINE static void sp_2048_mont_mul_72(sp_digit* r, const sp_digit* a,
  2608. const sp_digit* b, const sp_digit* m, sp_digit mp)
  2609. {
  2610. sp_2048_mul_72(r, a, b);
  2611. sp_2048_mont_reduce_72(r, m, mp);
  2612. }
  2613. /* Square the Montgomery form number. (r = a * a mod m)
  2614. *
  2615. * r Result of squaring.
  2616. * a Number to square in Montgomery form.
  2617. * m Modulus (prime).
  2618. * mp Montgomery multiplier.
  2619. */
  2620. SP_NOINLINE static void sp_2048_mont_sqr_72(sp_digit* r, const sp_digit* a,
  2621. const sp_digit* m, sp_digit mp)
  2622. {
  2623. sp_2048_sqr_72(r, a);
  2624. sp_2048_mont_reduce_72(r, m, mp);
  2625. }
  2626. /* Normalize the values in each word to 29 bits.
  2627. *
  2628. * a Array of sp_digit to normalize.
  2629. */
  2630. static void sp_2048_norm_71(sp_digit* a)
  2631. {
  2632. #ifdef WOLFSSL_SP_SMALL
  2633. int i;
  2634. for (i = 0; i < 70; i++) {
  2635. a[i+1] += a[i] >> 29;
  2636. a[i] &= 0x1fffffff;
  2637. }
  2638. #else
  2639. int i;
  2640. for (i = 0; i < 64; i += 8) {
  2641. a[i+1] += a[i+0] >> 29; a[i+0] &= 0x1fffffff;
  2642. a[i+2] += a[i+1] >> 29; a[i+1] &= 0x1fffffff;
  2643. a[i+3] += a[i+2] >> 29; a[i+2] &= 0x1fffffff;
  2644. a[i+4] += a[i+3] >> 29; a[i+3] &= 0x1fffffff;
  2645. a[i+5] += a[i+4] >> 29; a[i+4] &= 0x1fffffff;
  2646. a[i+6] += a[i+5] >> 29; a[i+5] &= 0x1fffffff;
  2647. a[i+7] += a[i+6] >> 29; a[i+6] &= 0x1fffffff;
  2648. a[i+8] += a[i+7] >> 29; a[i+7] &= 0x1fffffff;
  2649. }
  2650. a[65] += a[64] >> 29; a[64] &= 0x1fffffff;
  2651. a[66] += a[65] >> 29; a[65] &= 0x1fffffff;
  2652. a[67] += a[66] >> 29; a[66] &= 0x1fffffff;
  2653. a[68] += a[67] >> 29; a[67] &= 0x1fffffff;
  2654. a[69] += a[68] >> 29; a[68] &= 0x1fffffff;
  2655. a[70] += a[69] >> 29; a[69] &= 0x1fffffff;
  2656. #endif /* WOLFSSL_SP_SMALL */
  2657. }
  2658. /* Multiply a by scalar b into r. (r = a * b)
  2659. *
  2660. * r A single precision integer.
  2661. * a A single precision integer.
  2662. * b A scalar.
  2663. */
  2664. SP_NOINLINE static void sp_2048_mul_d_144(sp_digit* r, const sp_digit* a,
  2665. sp_digit b)
  2666. {
  2667. #ifdef WOLFSSL_SP_SMALL
  2668. sp_int64 tb = b;
  2669. sp_int64 t = 0;
  2670. int i;
  2671. for (i = 0; i < 144; i++) {
  2672. t += tb * a[i];
  2673. r[i] = (sp_digit)(t & 0x1fffffff);
  2674. t >>= 29;
  2675. }
  2676. r[144] = (sp_digit)t;
  2677. #else
  2678. sp_int64 tb = b;
  2679. sp_int64 t = 0;
  2680. sp_digit t2;
  2681. sp_int64 p[4];
  2682. int i;
  2683. for (i = 0; i < 144; i += 4) {
  2684. p[0] = tb * a[i + 0];
  2685. p[1] = tb * a[i + 1];
  2686. p[2] = tb * a[i + 2];
  2687. p[3] = tb * a[i + 3];
  2688. t += p[0];
  2689. t2 = (sp_digit)(t & 0x1fffffff);
  2690. t >>= 29;
  2691. r[i + 0] = (sp_digit)t2;
  2692. t += p[1];
  2693. t2 = (sp_digit)(t & 0x1fffffff);
  2694. t >>= 29;
  2695. r[i + 1] = (sp_digit)t2;
  2696. t += p[2];
  2697. t2 = (sp_digit)(t & 0x1fffffff);
  2698. t >>= 29;
  2699. r[i + 2] = (sp_digit)t2;
  2700. t += p[3];
  2701. t2 = (sp_digit)(t & 0x1fffffff);
  2702. t >>= 29;
  2703. r[i + 3] = (sp_digit)t2;
  2704. }
  2705. r[144] = (sp_digit)(t & 0x1fffffff);
  2706. #endif /* WOLFSSL_SP_SMALL */
  2707. }
  2708. #ifdef WOLFSSL_SP_SMALL
  2709. /* Conditionally add a and b using the mask m.
  2710. * m is -1 to add and 0 when not.
  2711. *
  2712. * r A single precision number representing conditional add result.
  2713. * a A single precision number to add with.
  2714. * b A single precision number to add.
  2715. * m Mask value to apply.
  2716. */
  2717. static void sp_2048_cond_add_72(sp_digit* r, const sp_digit* a,
  2718. const sp_digit* b, const sp_digit m)
  2719. {
  2720. int i;
  2721. for (i = 0; i < 72; i++) {
  2722. r[i] = a[i] + (b[i] & m);
  2723. }
  2724. }
  2725. #endif /* WOLFSSL_SP_SMALL */
  2726. #ifndef WOLFSSL_SP_SMALL
  2727. /* Conditionally add a and b using the mask m.
  2728. * m is -1 to add and 0 when not.
  2729. *
  2730. * r A single precision number representing conditional add result.
  2731. * a A single precision number to add with.
  2732. * b A single precision number to add.
  2733. * m Mask value to apply.
  2734. */
  2735. static void sp_2048_cond_add_72(sp_digit* r, const sp_digit* a,
  2736. const sp_digit* b, const sp_digit m)
  2737. {
  2738. int i;
  2739. for (i = 0; i < 72; i += 8) {
  2740. r[i + 0] = a[i + 0] + (b[i + 0] & m);
  2741. r[i + 1] = a[i + 1] + (b[i + 1] & m);
  2742. r[i + 2] = a[i + 2] + (b[i + 2] & m);
  2743. r[i + 3] = a[i + 3] + (b[i + 3] & m);
  2744. r[i + 4] = a[i + 4] + (b[i + 4] & m);
  2745. r[i + 5] = a[i + 5] + (b[i + 5] & m);
  2746. r[i + 6] = a[i + 6] + (b[i + 6] & m);
  2747. r[i + 7] = a[i + 7] + (b[i + 7] & m);
  2748. }
  2749. }
  2750. #endif /* !WOLFSSL_SP_SMALL */
  2751. SP_NOINLINE static void sp_2048_rshift_72(sp_digit* r, const sp_digit* a,
  2752. byte n)
  2753. {
  2754. int i;
  2755. #ifdef WOLFSSL_SP_SMALL
  2756. for (i=0; i<71; i++) {
  2757. r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
  2758. }
  2759. #else
  2760. for (i=0; i<64; i += 8) {
  2761. r[i+0] = (a[i+0] >> n) | ((a[i+1] << (29 - n)) & 0x1fffffff);
  2762. r[i+1] = (a[i+1] >> n) | ((a[i+2] << (29 - n)) & 0x1fffffff);
  2763. r[i+2] = (a[i+2] >> n) | ((a[i+3] << (29 - n)) & 0x1fffffff);
  2764. r[i+3] = (a[i+3] >> n) | ((a[i+4] << (29 - n)) & 0x1fffffff);
  2765. r[i+4] = (a[i+4] >> n) | ((a[i+5] << (29 - n)) & 0x1fffffff);
  2766. r[i+5] = (a[i+5] >> n) | ((a[i+6] << (29 - n)) & 0x1fffffff);
  2767. r[i+6] = (a[i+6] >> n) | ((a[i+7] << (29 - n)) & 0x1fffffff);
  2768. r[i+7] = (a[i+7] >> n) | ((a[i+8] << (29 - n)) & 0x1fffffff);
  2769. }
  2770. r[64] = (a[64] >> n) | ((a[65] << (29 - n)) & 0x1fffffff);
  2771. r[65] = (a[65] >> n) | ((a[66] << (29 - n)) & 0x1fffffff);
  2772. r[66] = (a[66] >> n) | ((a[67] << (29 - n)) & 0x1fffffff);
  2773. r[67] = (a[67] >> n) | ((a[68] << (29 - n)) & 0x1fffffff);
  2774. r[68] = (a[68] >> n) | ((a[69] << (29 - n)) & 0x1fffffff);
  2775. r[69] = (a[69] >> n) | ((a[70] << (29 - n)) & 0x1fffffff);
  2776. r[70] = (a[70] >> n) | ((a[71] << (29 - n)) & 0x1fffffff);
  2777. #endif /* WOLFSSL_SP_SMALL */
  2778. r[71] = a[71] >> n;
  2779. }
  2780. static WC_INLINE sp_digit sp_2048_div_word_72(sp_digit d1, sp_digit d0,
  2781. sp_digit div)
  2782. {
  2783. #ifdef SP_USE_DIVTI3
  2784. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  2785. return d / div;
  2786. #elif defined(__x86_64__) || defined(__i386__)
  2787. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  2788. sp_uint32 lo = (sp_uint32)d;
  2789. sp_digit hi = (sp_digit)(d >> 32);
  2790. __asm__ __volatile__ (
  2791. "idiv %2"
  2792. : "+a" (lo)
  2793. : "d" (hi), "r" (div)
  2794. : "cc"
  2795. );
  2796. return (sp_digit)lo;
  2797. #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
  2798. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  2799. sp_digit dv = (div >> 1) + 1;
  2800. sp_digit t1 = (sp_digit)(d >> 29);
  2801. sp_digit t0 = (sp_digit)(d & 0x1fffffff);
  2802. sp_digit t2;
  2803. sp_digit sign;
  2804. sp_digit r;
  2805. int i;
  2806. sp_int64 m;
  2807. r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  2808. t1 -= dv & (0 - r);
  2809. for (i = 27; i >= 1; i--) {
  2810. t1 += t1 + (((sp_uint32)t0 >> 28) & 1);
  2811. t0 <<= 1;
  2812. t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  2813. r += r + t2;
  2814. t1 -= dv & (0 - t2);
  2815. t1 += t2;
  2816. }
  2817. r += r + 1;
  2818. m = d - ((sp_int64)r * div);
  2819. r += (sp_digit)(m >> 29);
  2820. m = d - ((sp_int64)r * div);
  2821. r += (sp_digit)(m >> 58) - (sp_digit)(d >> 58);
  2822. m = d - ((sp_int64)r * div);
  2823. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  2824. m *= sign;
  2825. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  2826. r += sign * t2;
  2827. m = d - ((sp_int64)r * div);
  2828. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  2829. m *= sign;
  2830. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  2831. r += sign * t2;
  2832. return r;
  2833. #else
  2834. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  2835. sp_digit r = 0;
  2836. sp_digit t;
  2837. sp_digit dv = (div >> 14) + 1;
  2838. t = (sp_digit)(d >> 28);
  2839. t = (t / dv) << 14;
  2840. r += t;
  2841. d -= (sp_int64)t * div;
  2842. t = (sp_digit)(d >> 13);
  2843. t = t / (dv << 1);
  2844. r += t;
  2845. d -= (sp_int64)t * div;
  2846. t = (sp_digit)d;
  2847. t = t / div;
  2848. r += t;
  2849. d -= (sp_int64)t * div;
  2850. return r;
  2851. #endif
  2852. }
  2853. static WC_INLINE sp_digit sp_2048_word_div_word_72(sp_digit d, sp_digit div)
  2854. {
  2855. #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
  2856. defined(SP_DIV_WORD_USE_DIV)
  2857. return d / div;
  2858. #else
  2859. return (sp_digit)((sp_uint32)(div - d) >> 31);
  2860. #endif
  2861. }
  2862. /* Divide d in a and put remainder into r (m*d + r = a)
  2863. * m is not calculated as it is not needed at this time.
  2864. *
  2865. * Full implementation.
  2866. *
  2867. * a Number to be divided.
  2868. * d Number to divide with.
  2869. * m Multiplier result.
  2870. * r Remainder from the division.
  2871. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  2872. */
  2873. static int sp_2048_div_72(const sp_digit* a, const sp_digit* d,
  2874. const sp_digit* m, sp_digit* r)
  2875. {
  2876. int i;
  2877. #ifndef WOLFSSL_SP_DIV_32
  2878. #endif
  2879. sp_digit dv;
  2880. sp_digit r1;
  2881. #ifdef WOLFSSL_SP_SMALL_STACK
  2882. sp_digit* t1 = NULL;
  2883. #else
  2884. sp_digit t1[4 * 72 + 3];
  2885. #endif
  2886. sp_digit* t2 = NULL;
  2887. sp_digit* sd = NULL;
  2888. int err = MP_OKAY;
  2889. (void)m;
  2890. #ifdef WOLFSSL_SP_SMALL_STACK
  2891. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 72 + 3), NULL,
  2892. DYNAMIC_TYPE_TMP_BUFFER);
  2893. if (t1 == NULL)
  2894. err = MEMORY_E;
  2895. #endif
  2896. (void)m;
  2897. if (err == MP_OKAY) {
  2898. t2 = t1 + 144 + 1;
  2899. sd = t2 + 72 + 1;
  2900. sp_2048_mul_d_72(sd, d, (sp_digit)1 << 11);
  2901. sp_2048_mul_d_144(t1, a, (sp_digit)1 << 11);
  2902. dv = sd[70];
  2903. t1[71 + 71] += t1[71 + 71 - 1] >> 29;
  2904. t1[71 + 71 - 1] &= 0x1fffffff;
  2905. for (i=71; i>=0; i--) {
  2906. r1 = sp_2048_div_word_72(t1[71 + i], t1[71 + i - 1], dv);
  2907. sp_2048_mul_d_72(t2, sd, r1);
  2908. (void)sp_2048_sub_72(&t1[i], &t1[i], t2);
  2909. sp_2048_norm_71(&t1[i]);
  2910. t1[71 + i] += t1[71 + i - 1] >> 29;
  2911. t1[71 + i - 1] &= 0x1fffffff;
  2912. r1 = sp_2048_div_word_72(-t1[71 + i], -t1[71 + i - 1], dv);
  2913. r1 -= t1[71 + i];
  2914. sp_2048_mul_d_72(t2, sd, r1);
  2915. (void)sp_2048_add_72(&t1[i], &t1[i], t2);
  2916. t1[71 + i] += t1[71 + i - 1] >> 29;
  2917. t1[71 + i - 1] &= 0x1fffffff;
  2918. }
  2919. t1[71 - 1] += t1[71 - 2] >> 29;
  2920. t1[71 - 2] &= 0x1fffffff;
  2921. r1 = sp_2048_word_div_word_72(t1[71 - 1], dv);
  2922. sp_2048_mul_d_72(t2, sd, r1);
  2923. sp_2048_sub_72(t1, t1, t2);
  2924. XMEMCPY(r, t1, sizeof(*r) * 144U);
  2925. for (i=0; i<70; i++) {
  2926. r[i+1] += r[i] >> 29;
  2927. r[i] &= 0x1fffffff;
  2928. }
  2929. sp_2048_cond_add_72(r, r, sd, r[70] >> 31);
  2930. sp_2048_norm_71(r);
  2931. sp_2048_rshift_72(r, r, 11);
  2932. r[71] = 0;
  2933. }
  2934. #ifdef WOLFSSL_SP_SMALL_STACK
  2935. if (t1 != NULL)
  2936. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  2937. #endif
  2938. return err;
  2939. }
  2940. /* Reduce a modulo m into r. (r = a mod m)
  2941. *
  2942. * r A single precision number that is the reduced result.
  2943. * a A single precision number that is to be reduced.
  2944. * m A single precision number that is the modulus to reduce with.
  2945. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  2946. */
  2947. static int sp_2048_mod_72(sp_digit* r, const sp_digit* a, const sp_digit* m)
  2948. {
  2949. return sp_2048_div_72(a, m, NULL, r);
  2950. }
  2951. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
  2952. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || \
  2953. defined(WOLFSSL_HAVE_SP_DH)
  2954. /* Modular exponentiate a to the e mod m. (r = a^e mod m)
  2955. *
  2956. * r A single precision number that is the result of the operation.
  2957. * a A single precision number being exponentiated.
  2958. * e A single precision number that is the exponent.
  2959. * bits The number of bits in the exponent.
  2960. * m A single precision number that is the modulus.
  2961. * returns 0 on success.
  2962. * returns MEMORY_E on dynamic memory allocation failure.
  2963. * returns MP_VAL when base is even or exponent is 0.
  2964. */
  2965. static int sp_2048_mod_exp_72(sp_digit* r, const sp_digit* a, const sp_digit* e,
  2966. int bits, const sp_digit* m, int reduceA)
  2967. {
  2968. #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
  2969. #ifdef WOLFSSL_SP_SMALL_STACK
  2970. sp_digit* td = NULL;
  2971. #else
  2972. sp_digit td[3 * 144];
  2973. #endif
  2974. sp_digit* t[3] = {0, 0, 0};
  2975. sp_digit* norm = NULL;
  2976. sp_digit mp = 1;
  2977. sp_digit n;
  2978. int i;
  2979. int c;
  2980. byte y;
  2981. int err = MP_OKAY;
  2982. if (bits == 0) {
  2983. err = MP_VAL;
  2984. }
  2985. #ifdef WOLFSSL_SP_SMALL_STACK
  2986. if (err == MP_OKAY) {
  2987. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 72 * 2, NULL,
  2988. DYNAMIC_TYPE_TMP_BUFFER);
  2989. if (td == NULL)
  2990. err = MEMORY_E;
  2991. }
  2992. #endif
  2993. if (err == MP_OKAY) {
  2994. norm = td;
  2995. for (i=0; i<3; i++) {
  2996. t[i] = td + (i * 72 * 2);
  2997. XMEMSET(t[i], 0, sizeof(sp_digit) * 72U * 2U);
  2998. }
  2999. sp_2048_mont_setup(m, &mp);
  3000. sp_2048_mont_norm_72(norm, m);
  3001. if (reduceA != 0) {
  3002. err = sp_2048_mod_72(t[1], a, m);
  3003. }
  3004. else {
  3005. XMEMCPY(t[1], a, sizeof(sp_digit) * 72U);
  3006. }
  3007. }
  3008. if (err == MP_OKAY) {
  3009. sp_2048_mul_72(t[1], t[1], norm);
  3010. err = sp_2048_mod_72(t[1], t[1], m);
  3011. }
  3012. if (err == MP_OKAY) {
  3013. i = bits / 29;
  3014. c = bits % 29;
  3015. n = e[i--] << (29 - c);
  3016. for (; ; c--) {
  3017. if (c == 0) {
  3018. if (i == -1) {
  3019. break;
  3020. }
  3021. n = e[i--];
  3022. c = 29;
  3023. }
  3024. y = (int)((n >> 28) & 1);
  3025. n <<= 1;
  3026. sp_2048_mont_mul_72(t[y^1], t[0], t[1], m, mp);
  3027. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  3028. ((size_t)t[1] & addr_mask[y])),
  3029. sizeof(*t[2]) * 72 * 2);
  3030. sp_2048_mont_sqr_72(t[2], t[2], m, mp);
  3031. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  3032. ((size_t)t[1] & addr_mask[y])), t[2],
  3033. sizeof(*t[2]) * 72 * 2);
  3034. }
  3035. sp_2048_mont_reduce_72(t[0], m, mp);
  3036. n = sp_2048_cmp_72(t[0], m);
  3037. sp_2048_cond_sub_72(t[0], t[0], m, ~(n >> 31));
  3038. XMEMCPY(r, t[0], sizeof(*r) * 72 * 2);
  3039. }
  3040. #ifdef WOLFSSL_SP_SMALL_STACK
  3041. if (td != NULL)
  3042. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  3043. #endif
  3044. return err;
  3045. #elif !defined(WC_NO_CACHE_RESISTANT)
  3046. #ifdef WOLFSSL_SP_SMALL_STACK
  3047. sp_digit* td = NULL;
  3048. #else
  3049. sp_digit td[3 * 144];
  3050. #endif
  3051. sp_digit* t[3] = {0, 0, 0};
  3052. sp_digit* norm = NULL;
  3053. sp_digit mp = 1;
  3054. sp_digit n;
  3055. int i;
  3056. int c;
  3057. byte y;
  3058. int err = MP_OKAY;
  3059. if (bits == 0) {
  3060. err = MP_VAL;
  3061. }
  3062. #ifdef WOLFSSL_SP_SMALL_STACK
  3063. if (err == MP_OKAY) {
  3064. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 72 * 2, NULL,
  3065. DYNAMIC_TYPE_TMP_BUFFER);
  3066. if (td == NULL)
  3067. err = MEMORY_E;
  3068. }
  3069. #endif
  3070. if (err == MP_OKAY) {
  3071. norm = td;
  3072. for (i=0; i<3; i++) {
  3073. t[i] = td + (i * 72 * 2);
  3074. }
  3075. sp_2048_mont_setup(m, &mp);
  3076. sp_2048_mont_norm_72(norm, m);
  3077. if (reduceA != 0) {
  3078. err = sp_2048_mod_72(t[1], a, m);
  3079. if (err == MP_OKAY) {
  3080. sp_2048_mul_72(t[1], t[1], norm);
  3081. err = sp_2048_mod_72(t[1], t[1], m);
  3082. }
  3083. }
  3084. else {
  3085. sp_2048_mul_72(t[1], a, norm);
  3086. err = sp_2048_mod_72(t[1], t[1], m);
  3087. }
  3088. }
  3089. if (err == MP_OKAY) {
  3090. i = bits / 29;
  3091. c = bits % 29;
  3092. n = e[i--] << (29 - c);
  3093. for (; ; c--) {
  3094. if (c == 0) {
  3095. if (i == -1) {
  3096. break;
  3097. }
  3098. n = e[i--];
  3099. c = 29;
  3100. }
  3101. y = (int)((n >> 28) & 1);
  3102. n <<= 1;
  3103. sp_2048_mont_mul_72(t[y^1], t[0], t[1], m, mp);
  3104. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  3105. ((size_t)t[1] & addr_mask[y])),
  3106. sizeof(*t[2]) * 72 * 2);
  3107. sp_2048_mont_sqr_72(t[2], t[2], m, mp);
  3108. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  3109. ((size_t)t[1] & addr_mask[y])), t[2],
  3110. sizeof(*t[2]) * 72 * 2);
  3111. }
  3112. sp_2048_mont_reduce_72(t[0], m, mp);
  3113. n = sp_2048_cmp_72(t[0], m);
  3114. sp_2048_cond_sub_72(t[0], t[0], m, ~(n >> 31));
  3115. XMEMCPY(r, t[0], sizeof(*r) * 72 * 2);
  3116. }
  3117. #ifdef WOLFSSL_SP_SMALL_STACK
  3118. if (td != NULL)
  3119. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  3120. #endif
  3121. return err;
  3122. #else
  3123. #ifdef WOLFSSL_SP_SMALL_STACK
  3124. sp_digit* td = NULL;
  3125. #else
  3126. sp_digit td[(16 * 144) + 144];
  3127. #endif
  3128. sp_digit* t[16];
  3129. sp_digit* rt = NULL;
  3130. sp_digit* norm = NULL;
  3131. sp_digit mp = 1;
  3132. sp_digit n;
  3133. int i;
  3134. int c;
  3135. byte y;
  3136. int err = MP_OKAY;
  3137. if (bits == 0) {
  3138. err = MP_VAL;
  3139. }
  3140. #ifdef WOLFSSL_SP_SMALL_STACK
  3141. if (err == MP_OKAY) {
  3142. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((16 * 144) + 144), NULL,
  3143. DYNAMIC_TYPE_TMP_BUFFER);
  3144. if (td == NULL)
  3145. err = MEMORY_E;
  3146. }
  3147. #endif
  3148. if (err == MP_OKAY) {
  3149. norm = td;
  3150. for (i=0; i<16; i++)
  3151. t[i] = td + i * 144;
  3152. rt = td + 2304;
  3153. sp_2048_mont_setup(m, &mp);
  3154. sp_2048_mont_norm_72(norm, m);
  3155. if (reduceA != 0) {
  3156. err = sp_2048_mod_72(t[1], a, m);
  3157. if (err == MP_OKAY) {
  3158. sp_2048_mul_72(t[1], t[1], norm);
  3159. err = sp_2048_mod_72(t[1], t[1], m);
  3160. }
  3161. }
  3162. else {
  3163. sp_2048_mul_72(t[1], a, norm);
  3164. err = sp_2048_mod_72(t[1], t[1], m);
  3165. }
  3166. }
  3167. if (err == MP_OKAY) {
  3168. sp_2048_mont_sqr_72(t[ 2], t[ 1], m, mp);
  3169. sp_2048_mont_mul_72(t[ 3], t[ 2], t[ 1], m, mp);
  3170. sp_2048_mont_sqr_72(t[ 4], t[ 2], m, mp);
  3171. sp_2048_mont_mul_72(t[ 5], t[ 3], t[ 2], m, mp);
  3172. sp_2048_mont_sqr_72(t[ 6], t[ 3], m, mp);
  3173. sp_2048_mont_mul_72(t[ 7], t[ 4], t[ 3], m, mp);
  3174. sp_2048_mont_sqr_72(t[ 8], t[ 4], m, mp);
  3175. sp_2048_mont_mul_72(t[ 9], t[ 5], t[ 4], m, mp);
  3176. sp_2048_mont_sqr_72(t[10], t[ 5], m, mp);
  3177. sp_2048_mont_mul_72(t[11], t[ 6], t[ 5], m, mp);
  3178. sp_2048_mont_sqr_72(t[12], t[ 6], m, mp);
  3179. sp_2048_mont_mul_72(t[13], t[ 7], t[ 6], m, mp);
  3180. sp_2048_mont_sqr_72(t[14], t[ 7], m, mp);
  3181. sp_2048_mont_mul_72(t[15], t[ 8], t[ 7], m, mp);
  3182. bits = ((bits + 3) / 4) * 4;
  3183. i = ((bits + 28) / 29) - 1;
  3184. c = bits % 29;
  3185. if (c == 0) {
  3186. c = 29;
  3187. }
  3188. if (i < 72) {
  3189. n = e[i--] << (32 - c);
  3190. }
  3191. else {
  3192. n = 0;
  3193. i--;
  3194. }
  3195. if (c < 4) {
  3196. n |= e[i--] << (3 - c);
  3197. c += 29;
  3198. }
  3199. y = (int)((n >> 28) & 0xf);
  3200. n <<= 4;
  3201. c -= 4;
  3202. XMEMCPY(rt, t[y], sizeof(sp_digit) * 144);
  3203. while ((i >= 0) || (c >= 4)) {
  3204. if (c >= 4) {
  3205. y = (byte)((n >> 28) & 0xf);
  3206. n <<= 4;
  3207. c -= 4;
  3208. }
  3209. else if (c == 0) {
  3210. n = e[i--] << 3;
  3211. y = (byte)((n >> 28) & 0xf);
  3212. n <<= 4;
  3213. c = 25;
  3214. }
  3215. else {
  3216. y = (byte)((n >> 28) & 0xf);
  3217. n = e[i--] << 3;
  3218. c = 4 - c;
  3219. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  3220. n <<= c;
  3221. c = 29 - c;
  3222. }
  3223. sp_2048_mont_sqr_72(rt, rt, m, mp);
  3224. sp_2048_mont_sqr_72(rt, rt, m, mp);
  3225. sp_2048_mont_sqr_72(rt, rt, m, mp);
  3226. sp_2048_mont_sqr_72(rt, rt, m, mp);
  3227. sp_2048_mont_mul_72(rt, rt, t[y], m, mp);
  3228. }
  3229. sp_2048_mont_reduce_72(rt, m, mp);
  3230. n = sp_2048_cmp_72(rt, m);
  3231. sp_2048_cond_sub_72(rt, rt, m, ~(n >> 31));
  3232. XMEMCPY(r, rt, sizeof(sp_digit) * 144);
  3233. }
  3234. #ifdef WOLFSSL_SP_SMALL_STACK
  3235. if (td != NULL)
  3236. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  3237. #endif
  3238. return err;
  3239. #endif
  3240. }
  3241. #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) || */
  3242. /* WOLFSSL_HAVE_SP_DH */
  3243. #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
  3244. #ifdef WOLFSSL_HAVE_SP_RSA
  3245. /* RSA public key operation.
  3246. *
  3247. * in Array of bytes representing the number to exponentiate, base.
  3248. * inLen Number of bytes in base.
  3249. * em Public exponent.
  3250. * mm Modulus.
  3251. * out Buffer to hold big-endian bytes of exponentiation result.
  3252. * Must be at least 256 bytes long.
  3253. * outLen Number of bytes in result.
  3254. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
  3255. * an array is too long and MEMORY_E when dynamic memory allocation fails.
  3256. */
  3257. int sp_RsaPublic_2048(const byte* in, word32 inLen, const mp_int* em,
  3258. const mp_int* mm, byte* out, word32* outLen)
  3259. {
  3260. #ifdef WOLFSSL_SP_SMALL
  3261. #ifdef WOLFSSL_SP_SMALL_STACK
  3262. sp_digit* a = NULL;
  3263. #else
  3264. sp_digit a[72 * 5];
  3265. #endif
  3266. sp_digit* m = NULL;
  3267. sp_digit* r = NULL;
  3268. sp_digit* norm = NULL;
  3269. sp_digit e[1] = {0};
  3270. sp_digit mp = 0;
  3271. int i;
  3272. int err = MP_OKAY;
  3273. if (*outLen < 256U) {
  3274. err = MP_TO_E;
  3275. }
  3276. if (err == MP_OKAY) {
  3277. if (mp_count_bits(em) > 29) {
  3278. err = MP_READ_E;
  3279. }
  3280. else if (inLen > 256U) {
  3281. err = MP_READ_E;
  3282. }
  3283. else if (mp_count_bits(mm) != 2048) {
  3284. err = MP_READ_E;
  3285. }
  3286. else if (mp_iseven(mm)) {
  3287. err = MP_VAL;
  3288. }
  3289. }
  3290. #ifdef WOLFSSL_SP_SMALL_STACK
  3291. if (err == MP_OKAY) {
  3292. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 5, NULL,
  3293. DYNAMIC_TYPE_RSA);
  3294. if (a == NULL)
  3295. err = MEMORY_E;
  3296. }
  3297. #endif
  3298. if (err == MP_OKAY) {
  3299. r = a + 72 * 2;
  3300. m = r + 72 * 2;
  3301. norm = r;
  3302. sp_2048_from_bin(a, 72, in, inLen);
  3303. #if DIGIT_BIT >= 29
  3304. e[0] = (sp_digit)em->dp[0];
  3305. #else
  3306. e[0] = (sp_digit)em->dp[0];
  3307. if (em->used > 1) {
  3308. e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT;
  3309. }
  3310. #endif
  3311. if (e[0] == 0) {
  3312. err = MP_EXPTMOD_E;
  3313. }
  3314. }
  3315. if (err == MP_OKAY) {
  3316. sp_2048_from_mp(m, 72, mm);
  3317. sp_2048_mont_setup(m, &mp);
  3318. sp_2048_mont_norm_72(norm, m);
  3319. }
  3320. if (err == MP_OKAY) {
  3321. sp_2048_mul_72(a, a, norm);
  3322. err = sp_2048_mod_72(a, a, m);
  3323. }
  3324. if (err == MP_OKAY) {
  3325. for (i=28; i>=0; i--) {
  3326. if ((e[0] >> i) != 0) {
  3327. break;
  3328. }
  3329. }
  3330. XMEMCPY(r, a, sizeof(sp_digit) * 72 * 2);
  3331. for (i--; i>=0; i--) {
  3332. sp_2048_mont_sqr_72(r, r, m, mp);
  3333. if (((e[0] >> i) & 1) == 1) {
  3334. sp_2048_mont_mul_72(r, r, a, m, mp);
  3335. }
  3336. }
  3337. sp_2048_mont_reduce_72(r, m, mp);
  3338. mp = sp_2048_cmp_72(r, m);
  3339. sp_2048_cond_sub_72(r, r, m, ~(mp >> 31));
  3340. sp_2048_to_bin_72(r, out);
  3341. *outLen = 256;
  3342. }
  3343. #ifdef WOLFSSL_SP_SMALL_STACK
  3344. if (a != NULL)
  3345. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  3346. #endif
  3347. return err;
  3348. #else
  3349. #ifdef WOLFSSL_SP_SMALL_STACK
  3350. sp_digit* d = NULL;
  3351. #else
  3352. sp_digit d[72 * 5];
  3353. #endif
  3354. sp_digit* a = NULL;
  3355. sp_digit* m = NULL;
  3356. sp_digit* r = NULL;
  3357. sp_digit e[1] = {0};
  3358. int err = MP_OKAY;
  3359. if (*outLen < 256U) {
  3360. err = MP_TO_E;
  3361. }
  3362. if (err == MP_OKAY) {
  3363. if (mp_count_bits(em) > 29) {
  3364. err = MP_READ_E;
  3365. }
  3366. else if (inLen > 256U) {
  3367. err = MP_READ_E;
  3368. }
  3369. else if (mp_count_bits(mm) != 2048) {
  3370. err = MP_READ_E;
  3371. }
  3372. else if (mp_iseven(mm)) {
  3373. err = MP_VAL;
  3374. }
  3375. }
  3376. #ifdef WOLFSSL_SP_SMALL_STACK
  3377. if (err == MP_OKAY) {
  3378. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 5, NULL,
  3379. DYNAMIC_TYPE_RSA);
  3380. if (d == NULL)
  3381. err = MEMORY_E;
  3382. }
  3383. #endif
  3384. if (err == MP_OKAY) {
  3385. a = d;
  3386. r = a + 72 * 2;
  3387. m = r + 72 * 2;
  3388. sp_2048_from_bin(a, 72, in, inLen);
  3389. #if DIGIT_BIT >= 29
  3390. e[0] = (sp_digit)em->dp[0];
  3391. #else
  3392. e[0] = (sp_digit)em->dp[0];
  3393. if (em->used > 1) {
  3394. e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT;
  3395. }
  3396. #endif
  3397. if (e[0] == 0) {
  3398. err = MP_EXPTMOD_E;
  3399. }
  3400. }
  3401. if (err == MP_OKAY) {
  3402. sp_2048_from_mp(m, 72, mm);
  3403. if (e[0] == 0x3) {
  3404. sp_2048_sqr_72(r, a);
  3405. err = sp_2048_mod_72(r, r, m);
  3406. if (err == MP_OKAY) {
  3407. sp_2048_mul_72(r, a, r);
  3408. err = sp_2048_mod_72(r, r, m);
  3409. }
  3410. }
  3411. else {
  3412. sp_digit* norm = r;
  3413. int i;
  3414. sp_digit mp;
  3415. sp_2048_mont_setup(m, &mp);
  3416. sp_2048_mont_norm_72(norm, m);
  3417. sp_2048_mul_72(a, a, norm);
  3418. err = sp_2048_mod_72(a, a, m);
  3419. if (err == MP_OKAY) {
  3420. for (i=28; i>=0; i--) {
  3421. if ((e[0] >> i) != 0) {
  3422. break;
  3423. }
  3424. }
  3425. XMEMCPY(r, a, sizeof(sp_digit) * 144U);
  3426. for (i--; i>=0; i--) {
  3427. sp_2048_mont_sqr_72(r, r, m, mp);
  3428. if (((e[0] >> i) & 1) == 1) {
  3429. sp_2048_mont_mul_72(r, r, a, m, mp);
  3430. }
  3431. }
  3432. sp_2048_mont_reduce_72(r, m, mp);
  3433. mp = sp_2048_cmp_72(r, m);
  3434. sp_2048_cond_sub_72(r, r, m, ~(mp >> 31));
  3435. }
  3436. }
  3437. }
  3438. if (err == MP_OKAY) {
  3439. sp_2048_to_bin_72(r, out);
  3440. *outLen = 256;
  3441. }
  3442. #ifdef WOLFSSL_SP_SMALL_STACK
  3443. if (d != NULL)
  3444. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  3445. #endif
  3446. return err;
  3447. #endif /* WOLFSSL_SP_SMALL */
  3448. }
  3449. #ifndef WOLFSSL_RSA_PUBLIC_ONLY
  3450. #if !defined(SP_RSA_PRIVATE_EXP_D) && !defined(RSA_LOW_MEM)
  3451. #endif /* !SP_RSA_PRIVATE_EXP_D & !RSA_LOW_MEM */
  3452. /* RSA private key operation.
  3453. *
  3454. * in Array of bytes representing the number to exponentiate, base.
  3455. * inLen Number of bytes in base.
  3456. * dm Private exponent.
  3457. * pm First prime.
  3458. * qm Second prime.
  3459. * dpm First prime's CRT exponent.
  3460. * dqm Second prime's CRT exponent.
  3461. * qim Inverse of second prime mod p.
  3462. * mm Modulus.
  3463. * out Buffer to hold big-endian bytes of exponentiation result.
  3464. * Must be at least 256 bytes long.
  3465. * outLen Number of bytes in result.
  3466. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
  3467. * an array is too long and MEMORY_E when dynamic memory allocation fails.
  3468. */
  3469. int sp_RsaPrivate_2048(const byte* in, word32 inLen, const mp_int* dm,
  3470. const mp_int* pm, const mp_int* qm, const mp_int* dpm, const mp_int* dqm,
  3471. const mp_int* qim, const mp_int* mm, byte* out, word32* outLen)
  3472. {
  3473. #if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM)
  3474. #if defined(WOLFSSL_SP_SMALL)
  3475. #ifdef WOLFSSL_SP_SMALL_STACK
  3476. sp_digit* d = NULL;
  3477. #else
  3478. sp_digit d[72 * 4];
  3479. #endif
  3480. sp_digit* a = NULL;
  3481. sp_digit* m = NULL;
  3482. sp_digit* r = NULL;
  3483. int err = MP_OKAY;
  3484. (void)pm;
  3485. (void)qm;
  3486. (void)dpm;
  3487. (void)dqm;
  3488. (void)qim;
  3489. if (*outLen < 256U) {
  3490. err = MP_TO_E;
  3491. }
  3492. if (err == MP_OKAY) {
  3493. if (mp_count_bits(dm) > 2048) {
  3494. err = MP_READ_E;
  3495. }
  3496. else if (inLen > 256) {
  3497. err = MP_READ_E;
  3498. }
  3499. else if (mp_count_bits(mm) != 2048) {
  3500. err = MP_READ_E;
  3501. }
  3502. else if (mp_iseven(mm)) {
  3503. err = MP_VAL;
  3504. }
  3505. }
  3506. #ifdef WOLFSSL_SP_SMALL_STACK
  3507. if (err == MP_OKAY) {
  3508. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 4, NULL,
  3509. DYNAMIC_TYPE_RSA);
  3510. if (d == NULL)
  3511. err = MEMORY_E;
  3512. }
  3513. #endif
  3514. if (err == MP_OKAY) {
  3515. a = d + 72;
  3516. m = a + 144;
  3517. r = a;
  3518. sp_2048_from_bin(a, 72, in, inLen);
  3519. sp_2048_from_mp(d, 72, dm);
  3520. sp_2048_from_mp(m, 72, mm);
  3521. err = sp_2048_mod_exp_72(r, a, d, 2048, m, 0);
  3522. }
  3523. if (err == MP_OKAY) {
  3524. sp_2048_to_bin_72(r, out);
  3525. *outLen = 256;
  3526. }
  3527. #ifdef WOLFSSL_SP_SMALL_STACK
  3528. if (d != NULL)
  3529. #endif
  3530. {
  3531. /* only "a" and "r" are sensitive and need zeroized (same pointer) */
  3532. if (a != NULL)
  3533. ForceZero(a, sizeof(sp_digit) * 72);
  3534. #ifdef WOLFSSL_SP_SMALL_STACK
  3535. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  3536. #endif
  3537. }
  3538. return err;
  3539. #else
  3540. #ifdef WOLFSSL_SP_SMALL_STACK
  3541. sp_digit* d = NULL;
  3542. #else
  3543. sp_digit d[72 * 4];
  3544. #endif
  3545. sp_digit* a = NULL;
  3546. sp_digit* m = NULL;
  3547. sp_digit* r = NULL;
  3548. int err = MP_OKAY;
  3549. (void)pm;
  3550. (void)qm;
  3551. (void)dpm;
  3552. (void)dqm;
  3553. (void)qim;
  3554. if (*outLen < 256U) {
  3555. err = MP_TO_E;
  3556. }
  3557. if (err == MP_OKAY) {
  3558. if (mp_count_bits(dm) > 2048) {
  3559. err = MP_READ_E;
  3560. }
  3561. else if (inLen > 256U) {
  3562. err = MP_READ_E;
  3563. }
  3564. else if (mp_count_bits(mm) != 2048) {
  3565. err = MP_READ_E;
  3566. }
  3567. else if (mp_iseven(mm)) {
  3568. err = MP_VAL;
  3569. }
  3570. }
  3571. #ifdef WOLFSSL_SP_SMALL_STACK
  3572. if (err == MP_OKAY) {
  3573. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 4, NULL,
  3574. DYNAMIC_TYPE_RSA);
  3575. if (d == NULL)
  3576. err = MEMORY_E;
  3577. }
  3578. #endif
  3579. if (err == MP_OKAY) {
  3580. a = d + 72;
  3581. m = a + 144;
  3582. r = a;
  3583. sp_2048_from_bin(a, 72, in, inLen);
  3584. sp_2048_from_mp(d, 72, dm);
  3585. sp_2048_from_mp(m, 72, mm);
  3586. err = sp_2048_mod_exp_72(r, a, d, 2048, m, 0);
  3587. }
  3588. if (err == MP_OKAY) {
  3589. sp_2048_to_bin_72(r, out);
  3590. *outLen = 256;
  3591. }
  3592. #ifdef WOLFSSL_SP_SMALL_STACK
  3593. if (d != NULL)
  3594. #endif
  3595. {
  3596. /* only "a" and "r" are sensitive and need zeroized (same pointer) */
  3597. if (a != NULL)
  3598. ForceZero(a, sizeof(sp_digit) * 72);
  3599. #ifdef WOLFSSL_SP_SMALL_STACK
  3600. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  3601. #endif
  3602. }
  3603. return err;
  3604. #endif /* WOLFSSL_SP_SMALL */
  3605. #else
  3606. #if defined(WOLFSSL_SP_SMALL)
  3607. #ifdef WOLFSSL_SP_SMALL_STACK
  3608. sp_digit* a = NULL;
  3609. #else
  3610. sp_digit a[36 * 8];
  3611. #endif
  3612. sp_digit* p = NULL;
  3613. sp_digit* dp = NULL;
  3614. sp_digit* dq = NULL;
  3615. sp_digit* qi = NULL;
  3616. sp_digit* tmpa = NULL;
  3617. sp_digit* tmpb = NULL;
  3618. sp_digit* r = NULL;
  3619. int err = MP_OKAY;
  3620. (void)dm;
  3621. (void)mm;
  3622. if (*outLen < 256U) {
  3623. err = MP_TO_E;
  3624. }
  3625. if (err == MP_OKAY) {
  3626. if (inLen > 256) {
  3627. err = MP_READ_E;
  3628. }
  3629. else if (mp_count_bits(mm) != 2048) {
  3630. err = MP_READ_E;
  3631. }
  3632. else if (mp_iseven(mm)) {
  3633. err = MP_VAL;
  3634. }
  3635. else if (mp_iseven(pm)) {
  3636. err = MP_VAL;
  3637. }
  3638. else if (mp_iseven(qm)) {
  3639. err = MP_VAL;
  3640. }
  3641. }
  3642. #ifdef WOLFSSL_SP_SMALL_STACK
  3643. if (err == MP_OKAY) {
  3644. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 36 * 8, NULL,
  3645. DYNAMIC_TYPE_RSA);
  3646. if (a == NULL)
  3647. err = MEMORY_E;
  3648. }
  3649. #endif
  3650. if (err == MP_OKAY) {
  3651. p = a + 72;
  3652. qi = dq = dp = p + 36;
  3653. tmpa = qi + 36;
  3654. tmpb = tmpa + 72;
  3655. r = a;
  3656. sp_2048_from_bin(a, 72, in, inLen);
  3657. sp_2048_from_mp(p, 36, pm);
  3658. sp_2048_from_mp(dp, 36, dpm);
  3659. err = sp_2048_mod_exp_36(tmpa, a, dp, 1024, p, 1);
  3660. }
  3661. if (err == MP_OKAY) {
  3662. sp_2048_from_mp(p, 36, qm);
  3663. sp_2048_from_mp(dq, 36, dqm);
  3664. err = sp_2048_mod_exp_36(tmpb, a, dq, 1024, p, 1);
  3665. }
  3666. if (err == MP_OKAY) {
  3667. sp_2048_from_mp(p, 36, pm);
  3668. (void)sp_2048_sub_36(tmpa, tmpa, tmpb);
  3669. sp_2048_norm_36(tmpa);
  3670. sp_2048_cond_add_36(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[35] >> 31));
  3671. sp_2048_cond_add_36(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[35] >> 31));
  3672. sp_2048_norm_36(tmpa);
  3673. sp_2048_from_mp(qi, 36, qim);
  3674. sp_2048_mul_36(tmpa, tmpa, qi);
  3675. err = sp_2048_mod_36(tmpa, tmpa, p);
  3676. }
  3677. if (err == MP_OKAY) {
  3678. sp_2048_from_mp(p, 36, qm);
  3679. sp_2048_mul_36(tmpa, p, tmpa);
  3680. (void)sp_2048_add_72(r, tmpb, tmpa);
  3681. sp_2048_norm_72(r);
  3682. sp_2048_to_bin_72(r, out);
  3683. *outLen = 256;
  3684. }
  3685. #ifdef WOLFSSL_SP_SMALL_STACK
  3686. if (a != NULL)
  3687. #endif
  3688. {
  3689. ForceZero(a, sizeof(sp_digit) * 36 * 8);
  3690. #ifdef WOLFSSL_SP_SMALL_STACK
  3691. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  3692. #endif
  3693. }
  3694. return err;
  3695. #else
  3696. #ifdef WOLFSSL_SP_SMALL_STACK
  3697. sp_digit* a = NULL;
  3698. #else
  3699. sp_digit a[36 * 13];
  3700. #endif
  3701. sp_digit* p = NULL;
  3702. sp_digit* q = NULL;
  3703. sp_digit* dp = NULL;
  3704. sp_digit* dq = NULL;
  3705. sp_digit* qi = NULL;
  3706. sp_digit* tmpa = NULL;
  3707. sp_digit* tmpb = NULL;
  3708. sp_digit* r = NULL;
  3709. int err = MP_OKAY;
  3710. (void)dm;
  3711. (void)mm;
  3712. if (*outLen < 256U) {
  3713. err = MP_TO_E;
  3714. }
  3715. if (err == MP_OKAY) {
  3716. if (inLen > 256U) {
  3717. err = MP_READ_E;
  3718. }
  3719. else if (mp_count_bits(mm) != 2048) {
  3720. err = MP_READ_E;
  3721. }
  3722. else if (mp_iseven(mm)) {
  3723. err = MP_VAL;
  3724. }
  3725. else if (mp_iseven(pm)) {
  3726. err = MP_VAL;
  3727. }
  3728. else if (mp_iseven(qm)) {
  3729. err = MP_VAL;
  3730. }
  3731. }
  3732. #ifdef WOLFSSL_SP_SMALL_STACK
  3733. if (err == MP_OKAY) {
  3734. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 36 * 13, NULL,
  3735. DYNAMIC_TYPE_RSA);
  3736. if (a == NULL)
  3737. err = MEMORY_E;
  3738. }
  3739. #endif
  3740. if (err == MP_OKAY) {
  3741. p = a + 72 * 2;
  3742. q = p + 36;
  3743. dp = q + 36;
  3744. dq = dp + 36;
  3745. qi = dq + 36;
  3746. tmpa = qi + 36;
  3747. tmpb = tmpa + 72;
  3748. r = a;
  3749. sp_2048_from_bin(a, 72, in, inLen);
  3750. sp_2048_from_mp(p, 36, pm);
  3751. sp_2048_from_mp(q, 36, qm);
  3752. sp_2048_from_mp(dp, 36, dpm);
  3753. sp_2048_from_mp(dq, 36, dqm);
  3754. sp_2048_from_mp(qi, 36, qim);
  3755. err = sp_2048_mod_exp_36(tmpa, a, dp, 1024, p, 1);
  3756. }
  3757. if (err == MP_OKAY) {
  3758. err = sp_2048_mod_exp_36(tmpb, a, dq, 1024, q, 1);
  3759. }
  3760. if (err == MP_OKAY) {
  3761. (void)sp_2048_sub_36(tmpa, tmpa, tmpb);
  3762. sp_2048_norm_36(tmpa);
  3763. sp_2048_cond_add_36(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[35] >> 31));
  3764. sp_2048_cond_add_36(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[35] >> 31));
  3765. sp_2048_norm_36(tmpa);
  3766. sp_2048_mul_36(tmpa, tmpa, qi);
  3767. err = sp_2048_mod_36(tmpa, tmpa, p);
  3768. }
  3769. if (err == MP_OKAY) {
  3770. sp_2048_mul_36(tmpa, tmpa, q);
  3771. (void)sp_2048_add_72(r, tmpb, tmpa);
  3772. sp_2048_norm_72(r);
  3773. sp_2048_to_bin_72(r, out);
  3774. *outLen = 256;
  3775. }
  3776. #ifdef WOLFSSL_SP_SMALL_STACK
  3777. if (a != NULL)
  3778. #endif
  3779. {
  3780. ForceZero(a, sizeof(sp_digit) * 36 * 13);
  3781. #ifdef WOLFSSL_SP_SMALL_STACK
  3782. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  3783. #endif
  3784. }
  3785. return err;
  3786. #endif /* WOLFSSL_SP_SMALL */
  3787. #endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */
  3788. }
  3789. #endif /* !WOLFSSL_RSA_PUBLIC_ONLY */
  3790. #endif /* WOLFSSL_HAVE_SP_RSA */
  3791. #if defined(WOLFSSL_HAVE_SP_DH) || (defined(WOLFSSL_HAVE_SP_RSA) && \
  3792. !defined(WOLFSSL_RSA_PUBLIC_ONLY))
  3793. /* Convert an array of sp_digit to an mp_int.
  3794. *
  3795. * a A single precision integer.
  3796. * r A multi-precision integer.
  3797. */
  3798. static int sp_2048_to_mp(const sp_digit* a, mp_int* r)
  3799. {
  3800. int err;
  3801. err = mp_grow(r, (2048 + DIGIT_BIT - 1) / DIGIT_BIT);
  3802. if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
  3803. #if DIGIT_BIT == 29
  3804. XMEMCPY(r->dp, a, sizeof(sp_digit) * 71);
  3805. r->used = 71;
  3806. mp_clamp(r);
  3807. #elif DIGIT_BIT < 29
  3808. int i;
  3809. int j = 0;
  3810. int s = 0;
  3811. r->dp[0] = 0;
  3812. for (i = 0; i < 71; i++) {
  3813. r->dp[j] |= (mp_digit)(a[i] << s);
  3814. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  3815. s = DIGIT_BIT - s;
  3816. r->dp[++j] = (mp_digit)(a[i] >> s);
  3817. while (s + DIGIT_BIT <= 29) {
  3818. s += DIGIT_BIT;
  3819. r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  3820. if (s == SP_WORD_SIZE) {
  3821. r->dp[j] = 0;
  3822. }
  3823. else {
  3824. r->dp[j] = (mp_digit)(a[i] >> s);
  3825. }
  3826. }
  3827. s = 29 - s;
  3828. }
  3829. r->used = (2048 + DIGIT_BIT - 1) / DIGIT_BIT;
  3830. mp_clamp(r);
  3831. #else
  3832. int i;
  3833. int j = 0;
  3834. int s = 0;
  3835. r->dp[0] = 0;
  3836. for (i = 0; i < 71; i++) {
  3837. r->dp[j] |= ((mp_digit)a[i]) << s;
  3838. if (s + 29 >= DIGIT_BIT) {
  3839. #if DIGIT_BIT != 32 && DIGIT_BIT != 64
  3840. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  3841. #endif
  3842. s = DIGIT_BIT - s;
  3843. r->dp[++j] = a[i] >> s;
  3844. s = 29 - s;
  3845. }
  3846. else {
  3847. s += 29;
  3848. }
  3849. }
  3850. r->used = (2048 + DIGIT_BIT - 1) / DIGIT_BIT;
  3851. mp_clamp(r);
  3852. #endif
  3853. }
  3854. return err;
  3855. }
  3856. /* Perform the modular exponentiation for Diffie-Hellman.
  3857. *
  3858. * base Base. MP integer.
  3859. * exp Exponent. MP integer.
  3860. * mod Modulus. MP integer.
  3861. * res Result. MP integer.
  3862. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  3863. * and MEMORY_E if memory allocation fails.
  3864. */
  3865. int sp_ModExp_2048(const mp_int* base, const mp_int* exp, const mp_int* mod,
  3866. mp_int* res)
  3867. {
  3868. #ifdef WOLFSSL_SP_SMALL
  3869. int err = MP_OKAY;
  3870. #ifdef WOLFSSL_SP_SMALL_STACK
  3871. sp_digit* b = NULL;
  3872. #else
  3873. sp_digit b[72 * 4];
  3874. #endif
  3875. sp_digit* e = NULL;
  3876. sp_digit* m = NULL;
  3877. sp_digit* r = NULL;
  3878. int expBits = mp_count_bits(exp);
  3879. if (mp_count_bits(base) > 2048) {
  3880. err = MP_READ_E;
  3881. }
  3882. else if (expBits > 2048) {
  3883. err = MP_READ_E;
  3884. }
  3885. else if (mp_count_bits(mod) != 2048) {
  3886. err = MP_READ_E;
  3887. }
  3888. else if (mp_iseven(mod)) {
  3889. err = MP_VAL;
  3890. }
  3891. #ifdef WOLFSSL_SP_SMALL_STACK
  3892. if (err == MP_OKAY) {
  3893. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 4, NULL,
  3894. DYNAMIC_TYPE_DH);
  3895. if (b == NULL)
  3896. err = MEMORY_E;
  3897. }
  3898. #endif
  3899. if (err == MP_OKAY) {
  3900. e = b + 72 * 2;
  3901. m = e + 72;
  3902. r = b;
  3903. sp_2048_from_mp(b, 72, base);
  3904. sp_2048_from_mp(e, 72, exp);
  3905. sp_2048_from_mp(m, 72, mod);
  3906. err = sp_2048_mod_exp_72(r, b, e, mp_count_bits(exp), m, 0);
  3907. }
  3908. if (err == MP_OKAY) {
  3909. err = sp_2048_to_mp(r, res);
  3910. }
  3911. #ifdef WOLFSSL_SP_SMALL_STACK
  3912. if (b != NULL)
  3913. #endif
  3914. {
  3915. /* only "e" is sensitive and needs zeroized */
  3916. if (e != NULL)
  3917. ForceZero(e, sizeof(sp_digit) * 72U);
  3918. #ifdef WOLFSSL_SP_SMALL_STACK
  3919. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  3920. #endif
  3921. }
  3922. return err;
  3923. #else
  3924. #ifdef WOLFSSL_SP_SMALL_STACK
  3925. sp_digit* b = NULL;
  3926. #else
  3927. sp_digit b[72 * 4];
  3928. #endif
  3929. sp_digit* e = NULL;
  3930. sp_digit* m = NULL;
  3931. sp_digit* r = NULL;
  3932. int err = MP_OKAY;
  3933. int expBits = mp_count_bits(exp);
  3934. if (mp_count_bits(base) > 2048) {
  3935. err = MP_READ_E;
  3936. }
  3937. else if (expBits > 2048) {
  3938. err = MP_READ_E;
  3939. }
  3940. else if (mp_count_bits(mod) != 2048) {
  3941. err = MP_READ_E;
  3942. }
  3943. else if (mp_iseven(mod)) {
  3944. err = MP_VAL;
  3945. }
  3946. #ifdef WOLFSSL_SP_SMALL_STACK
  3947. if (err == MP_OKAY) {
  3948. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 4, NULL, DYNAMIC_TYPE_DH);
  3949. if (b == NULL)
  3950. err = MEMORY_E;
  3951. }
  3952. #endif
  3953. if (err == MP_OKAY) {
  3954. e = b + 72 * 2;
  3955. m = e + 72;
  3956. r = b;
  3957. sp_2048_from_mp(b, 72, base);
  3958. sp_2048_from_mp(e, 72, exp);
  3959. sp_2048_from_mp(m, 72, mod);
  3960. err = sp_2048_mod_exp_72(r, b, e, expBits, m, 0);
  3961. }
  3962. if (err == MP_OKAY) {
  3963. err = sp_2048_to_mp(r, res);
  3964. }
  3965. #ifdef WOLFSSL_SP_SMALL_STACK
  3966. if (b != NULL)
  3967. #endif
  3968. {
  3969. /* only "e" is sensitive and needs zeroized */
  3970. if (e != NULL)
  3971. ForceZero(e, sizeof(sp_digit) * 72U);
  3972. #ifdef WOLFSSL_SP_SMALL_STACK
  3973. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  3974. #endif
  3975. }
  3976. return err;
  3977. #endif
  3978. }
  3979. #ifdef WOLFSSL_HAVE_SP_DH
  3980. #ifdef HAVE_FFDHE_2048
  3981. SP_NOINLINE static void sp_2048_lshift_72(sp_digit* r, const sp_digit* a,
  3982. byte n)
  3983. {
  3984. #ifdef WOLFSSL_SP_SMALL
  3985. int i;
  3986. r[72] = a[71] >> (29 - n);
  3987. for (i=71; i>0; i--) {
  3988. r[i] = ((a[i] << n) | (a[i-1] >> (29 - n))) & 0x1fffffff;
  3989. }
  3990. #else
  3991. sp_int_digit s;
  3992. sp_int_digit t;
  3993. s = (sp_int_digit)a[71];
  3994. r[72] = s >> (29U - n);
  3995. s = (sp_int_digit)(a[71]); t = (sp_int_digit)(a[70]);
  3996. r[71] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  3997. s = (sp_int_digit)(a[70]); t = (sp_int_digit)(a[69]);
  3998. r[70] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  3999. s = (sp_int_digit)(a[69]); t = (sp_int_digit)(a[68]);
  4000. r[69] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4001. s = (sp_int_digit)(a[68]); t = (sp_int_digit)(a[67]);
  4002. r[68] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4003. s = (sp_int_digit)(a[67]); t = (sp_int_digit)(a[66]);
  4004. r[67] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4005. s = (sp_int_digit)(a[66]); t = (sp_int_digit)(a[65]);
  4006. r[66] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4007. s = (sp_int_digit)(a[65]); t = (sp_int_digit)(a[64]);
  4008. r[65] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4009. s = (sp_int_digit)(a[64]); t = (sp_int_digit)(a[63]);
  4010. r[64] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4011. s = (sp_int_digit)(a[63]); t = (sp_int_digit)(a[62]);
  4012. r[63] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4013. s = (sp_int_digit)(a[62]); t = (sp_int_digit)(a[61]);
  4014. r[62] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4015. s = (sp_int_digit)(a[61]); t = (sp_int_digit)(a[60]);
  4016. r[61] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4017. s = (sp_int_digit)(a[60]); t = (sp_int_digit)(a[59]);
  4018. r[60] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4019. s = (sp_int_digit)(a[59]); t = (sp_int_digit)(a[58]);
  4020. r[59] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4021. s = (sp_int_digit)(a[58]); t = (sp_int_digit)(a[57]);
  4022. r[58] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4023. s = (sp_int_digit)(a[57]); t = (sp_int_digit)(a[56]);
  4024. r[57] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4025. s = (sp_int_digit)(a[56]); t = (sp_int_digit)(a[55]);
  4026. r[56] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4027. s = (sp_int_digit)(a[55]); t = (sp_int_digit)(a[54]);
  4028. r[55] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4029. s = (sp_int_digit)(a[54]); t = (sp_int_digit)(a[53]);
  4030. r[54] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4031. s = (sp_int_digit)(a[53]); t = (sp_int_digit)(a[52]);
  4032. r[53] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4033. s = (sp_int_digit)(a[52]); t = (sp_int_digit)(a[51]);
  4034. r[52] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4035. s = (sp_int_digit)(a[51]); t = (sp_int_digit)(a[50]);
  4036. r[51] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4037. s = (sp_int_digit)(a[50]); t = (sp_int_digit)(a[49]);
  4038. r[50] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4039. s = (sp_int_digit)(a[49]); t = (sp_int_digit)(a[48]);
  4040. r[49] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4041. s = (sp_int_digit)(a[48]); t = (sp_int_digit)(a[47]);
  4042. r[48] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4043. s = (sp_int_digit)(a[47]); t = (sp_int_digit)(a[46]);
  4044. r[47] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4045. s = (sp_int_digit)(a[46]); t = (sp_int_digit)(a[45]);
  4046. r[46] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4047. s = (sp_int_digit)(a[45]); t = (sp_int_digit)(a[44]);
  4048. r[45] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4049. s = (sp_int_digit)(a[44]); t = (sp_int_digit)(a[43]);
  4050. r[44] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4051. s = (sp_int_digit)(a[43]); t = (sp_int_digit)(a[42]);
  4052. r[43] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4053. s = (sp_int_digit)(a[42]); t = (sp_int_digit)(a[41]);
  4054. r[42] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4055. s = (sp_int_digit)(a[41]); t = (sp_int_digit)(a[40]);
  4056. r[41] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4057. s = (sp_int_digit)(a[40]); t = (sp_int_digit)(a[39]);
  4058. r[40] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4059. s = (sp_int_digit)(a[39]); t = (sp_int_digit)(a[38]);
  4060. r[39] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4061. s = (sp_int_digit)(a[38]); t = (sp_int_digit)(a[37]);
  4062. r[38] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4063. s = (sp_int_digit)(a[37]); t = (sp_int_digit)(a[36]);
  4064. r[37] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4065. s = (sp_int_digit)(a[36]); t = (sp_int_digit)(a[35]);
  4066. r[36] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4067. s = (sp_int_digit)(a[35]); t = (sp_int_digit)(a[34]);
  4068. r[35] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4069. s = (sp_int_digit)(a[34]); t = (sp_int_digit)(a[33]);
  4070. r[34] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4071. s = (sp_int_digit)(a[33]); t = (sp_int_digit)(a[32]);
  4072. r[33] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4073. s = (sp_int_digit)(a[32]); t = (sp_int_digit)(a[31]);
  4074. r[32] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4075. s = (sp_int_digit)(a[31]); t = (sp_int_digit)(a[30]);
  4076. r[31] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4077. s = (sp_int_digit)(a[30]); t = (sp_int_digit)(a[29]);
  4078. r[30] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4079. s = (sp_int_digit)(a[29]); t = (sp_int_digit)(a[28]);
  4080. r[29] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4081. s = (sp_int_digit)(a[28]); t = (sp_int_digit)(a[27]);
  4082. r[28] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4083. s = (sp_int_digit)(a[27]); t = (sp_int_digit)(a[26]);
  4084. r[27] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4085. s = (sp_int_digit)(a[26]); t = (sp_int_digit)(a[25]);
  4086. r[26] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4087. s = (sp_int_digit)(a[25]); t = (sp_int_digit)(a[24]);
  4088. r[25] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4089. s = (sp_int_digit)(a[24]); t = (sp_int_digit)(a[23]);
  4090. r[24] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4091. s = (sp_int_digit)(a[23]); t = (sp_int_digit)(a[22]);
  4092. r[23] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4093. s = (sp_int_digit)(a[22]); t = (sp_int_digit)(a[21]);
  4094. r[22] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4095. s = (sp_int_digit)(a[21]); t = (sp_int_digit)(a[20]);
  4096. r[21] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4097. s = (sp_int_digit)(a[20]); t = (sp_int_digit)(a[19]);
  4098. r[20] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4099. s = (sp_int_digit)(a[19]); t = (sp_int_digit)(a[18]);
  4100. r[19] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4101. s = (sp_int_digit)(a[18]); t = (sp_int_digit)(a[17]);
  4102. r[18] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4103. s = (sp_int_digit)(a[17]); t = (sp_int_digit)(a[16]);
  4104. r[17] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4105. s = (sp_int_digit)(a[16]); t = (sp_int_digit)(a[15]);
  4106. r[16] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4107. s = (sp_int_digit)(a[15]); t = (sp_int_digit)(a[14]);
  4108. r[15] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4109. s = (sp_int_digit)(a[14]); t = (sp_int_digit)(a[13]);
  4110. r[14] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4111. s = (sp_int_digit)(a[13]); t = (sp_int_digit)(a[12]);
  4112. r[13] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4113. s = (sp_int_digit)(a[12]); t = (sp_int_digit)(a[11]);
  4114. r[12] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4115. s = (sp_int_digit)(a[11]); t = (sp_int_digit)(a[10]);
  4116. r[11] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4117. s = (sp_int_digit)(a[10]); t = (sp_int_digit)(a[9]);
  4118. r[10] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4119. s = (sp_int_digit)(a[9]); t = (sp_int_digit)(a[8]);
  4120. r[9] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4121. s = (sp_int_digit)(a[8]); t = (sp_int_digit)(a[7]);
  4122. r[8] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4123. s = (sp_int_digit)(a[7]); t = (sp_int_digit)(a[6]);
  4124. r[7] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4125. s = (sp_int_digit)(a[6]); t = (sp_int_digit)(a[5]);
  4126. r[6] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4127. s = (sp_int_digit)(a[5]); t = (sp_int_digit)(a[4]);
  4128. r[5] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4129. s = (sp_int_digit)(a[4]); t = (sp_int_digit)(a[3]);
  4130. r[4] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4131. s = (sp_int_digit)(a[3]); t = (sp_int_digit)(a[2]);
  4132. r[3] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4133. s = (sp_int_digit)(a[2]); t = (sp_int_digit)(a[1]);
  4134. r[2] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4135. s = (sp_int_digit)(a[1]); t = (sp_int_digit)(a[0]);
  4136. r[1] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  4137. #endif /* WOLFSSL_SP_SMALL */
  4138. r[0] = (a[0] << n) & 0x1fffffff;
  4139. }
  4140. /* Modular exponentiate 2 to the e mod m. (r = 2^e mod m)
  4141. *
  4142. * r A single precision number that is the result of the operation.
  4143. * e A single precision number that is the exponent.
  4144. * bits The number of bits in the exponent.
  4145. * m A single precision number that is the modulus.
  4146. * returns 0 on success.
  4147. * returns MEMORY_E on dynamic memory allocation failure.
  4148. * returns MP_VAL when base is even.
  4149. */
  4150. static int sp_2048_mod_exp_2_72(sp_digit* r, const sp_digit* e, int bits, const sp_digit* m)
  4151. {
  4152. #ifdef WOLFSSL_SP_SMALL_STACK
  4153. sp_digit* td = NULL;
  4154. #else
  4155. sp_digit td[217];
  4156. #endif
  4157. sp_digit* norm = NULL;
  4158. sp_digit* tmp = NULL;
  4159. sp_digit mp = 1;
  4160. sp_digit n;
  4161. sp_digit o;
  4162. int i;
  4163. int c;
  4164. byte y;
  4165. int err = MP_OKAY;
  4166. if (bits == 0) {
  4167. err = MP_VAL;
  4168. }
  4169. #ifdef WOLFSSL_SP_SMALL_STACK
  4170. if (err == MP_OKAY) {
  4171. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 217, NULL,
  4172. DYNAMIC_TYPE_TMP_BUFFER);
  4173. if (td == NULL)
  4174. err = MEMORY_E;
  4175. }
  4176. #endif
  4177. if (err == MP_OKAY) {
  4178. norm = td;
  4179. tmp = td + 144;
  4180. XMEMSET(td, 0, sizeof(sp_digit) * 217);
  4181. sp_2048_mont_setup(m, &mp);
  4182. sp_2048_mont_norm_72(norm, m);
  4183. bits = ((bits + 3) / 4) * 4;
  4184. i = ((bits + 28) / 29) - 1;
  4185. c = bits % 29;
  4186. if (c == 0) {
  4187. c = 29;
  4188. }
  4189. if (i < 72) {
  4190. n = e[i--] << (32 - c);
  4191. }
  4192. else {
  4193. n = 0;
  4194. i--;
  4195. }
  4196. if (c < 4) {
  4197. n |= e[i--] << (3 - c);
  4198. c += 29;
  4199. }
  4200. y = (int)((n >> 28) & 0xf);
  4201. n <<= 4;
  4202. c -= 4;
  4203. sp_2048_lshift_72(r, norm, (byte)y);
  4204. while ((i >= 0) || (c >= 4)) {
  4205. if (c >= 4) {
  4206. y = (byte)((n >> 28) & 0xf);
  4207. n <<= 4;
  4208. c -= 4;
  4209. }
  4210. else if (c == 0) {
  4211. n = e[i--] << 3;
  4212. y = (byte)((n >> 28) & 0xf);
  4213. n <<= 4;
  4214. c = 25;
  4215. }
  4216. else {
  4217. y = (byte)((n >> 28) & 0xf);
  4218. n = e[i--] << 3;
  4219. c = 4 - c;
  4220. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  4221. n <<= c;
  4222. c = 29 - c;
  4223. }
  4224. sp_2048_mont_sqr_72(r, r, m, mp);
  4225. sp_2048_mont_sqr_72(r, r, m, mp);
  4226. sp_2048_mont_sqr_72(r, r, m, mp);
  4227. sp_2048_mont_sqr_72(r, r, m, mp);
  4228. sp_2048_lshift_72(r, r, (byte)y);
  4229. sp_2048_mul_d_72(tmp, norm, (r[71] << 11) + (r[70] >> 18));
  4230. r[71] = 0;
  4231. r[70] &= 0x3ffffL;
  4232. (void)sp_2048_add_72(r, r, tmp);
  4233. sp_2048_norm_72(r);
  4234. o = sp_2048_cmp_72(r, m);
  4235. sp_2048_cond_sub_72(r, r, m, ~(o >> 31));
  4236. }
  4237. sp_2048_mont_reduce_72(r, m, mp);
  4238. n = sp_2048_cmp_72(r, m);
  4239. sp_2048_cond_sub_72(r, r, m, ~(n >> 31));
  4240. }
  4241. #ifdef WOLFSSL_SP_SMALL_STACK
  4242. if (td != NULL)
  4243. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  4244. #endif
  4245. return err;
  4246. }
  4247. #endif /* HAVE_FFDHE_2048 */
  4248. /* Perform the modular exponentiation for Diffie-Hellman.
  4249. *
  4250. * base Base.
  4251. * exp Array of bytes that is the exponent.
  4252. * expLen Length of data, in bytes, in exponent.
  4253. * mod Modulus.
  4254. * out Buffer to hold big-endian bytes of exponentiation result.
  4255. * Must be at least 256 bytes long.
  4256. * outLen Length, in bytes, of exponentiation result.
  4257. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  4258. * and MEMORY_E if memory allocation fails.
  4259. */
  4260. int sp_DhExp_2048(const mp_int* base, const byte* exp, word32 expLen,
  4261. const mp_int* mod, byte* out, word32* outLen)
  4262. {
  4263. #ifdef WOLFSSL_SP_SMALL_STACK
  4264. sp_digit* b = NULL;
  4265. #else
  4266. sp_digit b[72 * 4];
  4267. #endif
  4268. sp_digit* e = NULL;
  4269. sp_digit* m = NULL;
  4270. sp_digit* r = NULL;
  4271. word32 i;
  4272. int err = MP_OKAY;
  4273. if (mp_count_bits(base) > 2048) {
  4274. err = MP_READ_E;
  4275. }
  4276. else if (expLen > 256U) {
  4277. err = MP_READ_E;
  4278. }
  4279. else if (mp_count_bits(mod) != 2048) {
  4280. err = MP_READ_E;
  4281. }
  4282. else if (mp_iseven(mod)) {
  4283. err = MP_VAL;
  4284. }
  4285. #ifdef WOLFSSL_SP_SMALL_STACK
  4286. if (err == MP_OKAY) {
  4287. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 4, NULL,
  4288. DYNAMIC_TYPE_DH);
  4289. if (b == NULL)
  4290. err = MEMORY_E;
  4291. }
  4292. #endif
  4293. if (err == MP_OKAY) {
  4294. e = b + 72 * 2;
  4295. m = e + 72;
  4296. r = b;
  4297. sp_2048_from_mp(b, 72, base);
  4298. sp_2048_from_bin(e, 72, exp, expLen);
  4299. sp_2048_from_mp(m, 72, mod);
  4300. #ifdef HAVE_FFDHE_2048
  4301. if (base->used == 1 && base->dp[0] == 2U &&
  4302. (m[70] >> 2) == 0xffffL) {
  4303. err = sp_2048_mod_exp_2_72(r, e, expLen * 8U, m);
  4304. }
  4305. else {
  4306. #endif
  4307. err = sp_2048_mod_exp_72(r, b, e, expLen * 8U, m, 0);
  4308. #ifdef HAVE_FFDHE_2048
  4309. }
  4310. #endif
  4311. }
  4312. if (err == MP_OKAY) {
  4313. sp_2048_to_bin_72(r, out);
  4314. *outLen = 256;
  4315. for (i=0; i<256U && out[i] == 0U; i++) {
  4316. /* Search for first non-zero. */
  4317. }
  4318. *outLen -= i;
  4319. XMEMMOVE(out, out + i, *outLen);
  4320. }
  4321. #ifdef WOLFSSL_SP_SMALL_STACK
  4322. if (b != NULL)
  4323. #endif
  4324. {
  4325. /* only "e" is sensitive and needs zeroized */
  4326. if (e != NULL)
  4327. ForceZero(e, sizeof(sp_digit) * 72U);
  4328. #ifdef WOLFSSL_SP_SMALL_STACK
  4329. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  4330. #endif
  4331. }
  4332. return err;
  4333. }
  4334. #endif /* WOLFSSL_HAVE_SP_DH */
  4335. /* Perform the modular exponentiation for Diffie-Hellman.
  4336. *
  4337. * base Base. MP integer.
  4338. * exp Exponent. MP integer.
  4339. * mod Modulus. MP integer.
  4340. * res Result. MP integer.
  4341. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  4342. * and MEMORY_E if memory allocation fails.
  4343. */
  4344. int sp_ModExp_1024(const mp_int* base, const mp_int* exp, const mp_int* mod,
  4345. mp_int* res)
  4346. {
  4347. #ifdef WOLFSSL_SP_SMALL
  4348. int err = MP_OKAY;
  4349. #ifdef WOLFSSL_SP_SMALL_STACK
  4350. sp_digit* b = NULL;
  4351. #else
  4352. sp_digit b[36 * 4];
  4353. #endif
  4354. sp_digit* e = NULL;
  4355. sp_digit* m = NULL;
  4356. sp_digit* r = NULL;
  4357. int expBits = mp_count_bits(exp);
  4358. if (mp_count_bits(base) > 1024) {
  4359. err = MP_READ_E;
  4360. }
  4361. else if (expBits > 1024) {
  4362. err = MP_READ_E;
  4363. }
  4364. else if (mp_count_bits(mod) != 1024) {
  4365. err = MP_READ_E;
  4366. }
  4367. else if (mp_iseven(mod)) {
  4368. err = MP_VAL;
  4369. }
  4370. #ifdef WOLFSSL_SP_SMALL_STACK
  4371. if (err == MP_OKAY) {
  4372. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 36 * 4, NULL,
  4373. DYNAMIC_TYPE_DH);
  4374. if (b == NULL)
  4375. err = MEMORY_E;
  4376. }
  4377. #endif
  4378. if (err == MP_OKAY) {
  4379. e = b + 36 * 2;
  4380. m = e + 36;
  4381. r = b;
  4382. sp_2048_from_mp(b, 36, base);
  4383. sp_2048_from_mp(e, 36, exp);
  4384. sp_2048_from_mp(m, 36, mod);
  4385. err = sp_2048_mod_exp_36(r, b, e, mp_count_bits(exp), m, 0);
  4386. }
  4387. if (err == MP_OKAY) {
  4388. XMEMSET(r + 36, 0, sizeof(*r) * 36U);
  4389. err = sp_2048_to_mp(r, res);
  4390. }
  4391. #ifdef WOLFSSL_SP_SMALL_STACK
  4392. if (b != NULL)
  4393. #endif
  4394. {
  4395. /* only "e" is sensitive and needs zeroized */
  4396. if (e != NULL)
  4397. ForceZero(e, sizeof(sp_digit) * 72U);
  4398. #ifdef WOLFSSL_SP_SMALL_STACK
  4399. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  4400. #endif
  4401. }
  4402. return err;
  4403. #else
  4404. #ifdef WOLFSSL_SP_SMALL_STACK
  4405. sp_digit* b = NULL;
  4406. #else
  4407. sp_digit b[36 * 4];
  4408. #endif
  4409. sp_digit* e = NULL;
  4410. sp_digit* m = NULL;
  4411. sp_digit* r = NULL;
  4412. int err = MP_OKAY;
  4413. int expBits = mp_count_bits(exp);
  4414. if (mp_count_bits(base) > 1024) {
  4415. err = MP_READ_E;
  4416. }
  4417. else if (expBits > 1024) {
  4418. err = MP_READ_E;
  4419. }
  4420. else if (mp_count_bits(mod) != 1024) {
  4421. err = MP_READ_E;
  4422. }
  4423. else if (mp_iseven(mod)) {
  4424. err = MP_VAL;
  4425. }
  4426. #ifdef WOLFSSL_SP_SMALL_STACK
  4427. if (err == MP_OKAY) {
  4428. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 36 * 4, NULL, DYNAMIC_TYPE_DH);
  4429. if (b == NULL)
  4430. err = MEMORY_E;
  4431. }
  4432. #endif
  4433. if (err == MP_OKAY) {
  4434. e = b + 36 * 2;
  4435. m = e + 36;
  4436. r = b;
  4437. sp_2048_from_mp(b, 36, base);
  4438. sp_2048_from_mp(e, 36, exp);
  4439. sp_2048_from_mp(m, 36, mod);
  4440. err = sp_2048_mod_exp_36(r, b, e, expBits, m, 0);
  4441. }
  4442. if (err == MP_OKAY) {
  4443. XMEMSET(r + 36, 0, sizeof(*r) * 36U);
  4444. err = sp_2048_to_mp(r, res);
  4445. }
  4446. #ifdef WOLFSSL_SP_SMALL_STACK
  4447. if (b != NULL)
  4448. #endif
  4449. {
  4450. /* only "e" is sensitive and needs zeroized */
  4451. if (e != NULL)
  4452. ForceZero(e, sizeof(sp_digit) * 72U);
  4453. #ifdef WOLFSSL_SP_SMALL_STACK
  4454. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  4455. #endif
  4456. }
  4457. return err;
  4458. #endif
  4459. }
  4460. #endif /* WOLFSSL_HAVE_SP_DH | (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) */
  4461. #endif /* !WOLFSSL_SP_NO_2048 */
  4462. #ifndef WOLFSSL_SP_NO_3072
  4463. #ifdef WOLFSSL_SP_SMALL
  4464. /* Read big endian unsigned byte array into r.
  4465. *
  4466. * r A single precision integer.
  4467. * size Maximum number of bytes to convert
  4468. * a Byte array.
  4469. * n Number of bytes in array to read.
  4470. */
  4471. static void sp_3072_from_bin(sp_digit* r, int size, const byte* a, int n)
  4472. {
  4473. int i;
  4474. int j = 0;
  4475. word32 s = 0;
  4476. r[0] = 0;
  4477. for (i = n-1; i >= 0; i--) {
  4478. r[j] |= (((sp_digit)a[i]) << s);
  4479. if (s >= 21U) {
  4480. r[j] &= 0x1fffffff;
  4481. s = 29U - s;
  4482. if (j + 1 >= size) {
  4483. break;
  4484. }
  4485. r[++j] = (sp_digit)a[i] >> s;
  4486. s = 8U - s;
  4487. }
  4488. else {
  4489. s += 8U;
  4490. }
  4491. }
  4492. for (j++; j < size; j++) {
  4493. r[j] = 0;
  4494. }
  4495. }
  4496. /* Convert an mp_int to an array of sp_digit.
  4497. *
  4498. * r A single precision integer.
  4499. * size Maximum number of bytes to convert
  4500. * a A multi-precision integer.
  4501. */
  4502. static void sp_3072_from_mp(sp_digit* r, int size, const mp_int* a)
  4503. {
  4504. #if DIGIT_BIT == 29
  4505. int i;
  4506. sp_digit j = (sp_digit)0 - (sp_digit)a->used;
  4507. int o = 0;
  4508. for (i = 0; i < size; i++) {
  4509. sp_digit mask = (sp_digit)0 - (j >> 28);
  4510. r[i] = a->dp[o] & mask;
  4511. j++;
  4512. o += (int)(j >> 28);
  4513. }
  4514. #elif DIGIT_BIT > 29
  4515. unsigned int i;
  4516. int j = 0;
  4517. word32 s = 0;
  4518. r[0] = 0;
  4519. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  4520. r[j] |= ((sp_digit)a->dp[i] << s);
  4521. r[j] &= 0x1fffffff;
  4522. s = 29U - s;
  4523. if (j + 1 >= size) {
  4524. break;
  4525. }
  4526. /* lint allow cast of mismatch word32 and mp_digit */
  4527. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  4528. while ((s + 29U) <= (word32)DIGIT_BIT) {
  4529. s += 29U;
  4530. r[j] &= 0x1fffffff;
  4531. if (j + 1 >= size) {
  4532. break;
  4533. }
  4534. if (s < (word32)DIGIT_BIT) {
  4535. /* lint allow cast of mismatch word32 and mp_digit */
  4536. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  4537. }
  4538. else {
  4539. r[++j] = (sp_digit)0;
  4540. }
  4541. }
  4542. s = (word32)DIGIT_BIT - s;
  4543. }
  4544. for (j++; j < size; j++) {
  4545. r[j] = 0;
  4546. }
  4547. #else
  4548. unsigned int i;
  4549. int j = 0;
  4550. int s = 0;
  4551. r[0] = 0;
  4552. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  4553. r[j] |= ((sp_digit)a->dp[i]) << s;
  4554. if (s + DIGIT_BIT >= 29) {
  4555. r[j] &= 0x1fffffff;
  4556. if (j + 1 >= size) {
  4557. break;
  4558. }
  4559. s = 29 - s;
  4560. if (s == DIGIT_BIT) {
  4561. r[++j] = 0;
  4562. s = 0;
  4563. }
  4564. else {
  4565. r[++j] = a->dp[i] >> s;
  4566. s = DIGIT_BIT - s;
  4567. }
  4568. }
  4569. else {
  4570. s += DIGIT_BIT;
  4571. }
  4572. }
  4573. for (j++; j < size; j++) {
  4574. r[j] = 0;
  4575. }
  4576. #endif
  4577. }
  4578. /* Write r as big endian to byte array.
  4579. * Fixed length number of bytes written: 384
  4580. *
  4581. * r A single precision integer.
  4582. * a Byte array.
  4583. */
  4584. static void sp_3072_to_bin_106(sp_digit* r, byte* a)
  4585. {
  4586. int i;
  4587. int j;
  4588. int s = 0;
  4589. int b;
  4590. for (i=0; i<105; i++) {
  4591. r[i+1] += r[i] >> 29;
  4592. r[i] &= 0x1fffffff;
  4593. }
  4594. j = 3079 / 8 - 1;
  4595. a[j] = 0;
  4596. for (i=0; i<106 && j>=0; i++) {
  4597. b = 0;
  4598. /* lint allow cast of mismatch sp_digit and int */
  4599. a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
  4600. b += 8 - s;
  4601. if (j < 0) {
  4602. break;
  4603. }
  4604. while (b < 29) {
  4605. a[j--] = (byte)(r[i] >> b);
  4606. b += 8;
  4607. if (j < 0) {
  4608. break;
  4609. }
  4610. }
  4611. s = 8 - (b - 29);
  4612. if (j >= 0) {
  4613. a[j] = 0;
  4614. }
  4615. if (s != 0) {
  4616. j++;
  4617. }
  4618. }
  4619. }
  4620. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
  4621. /* Normalize the values in each word to 29 bits.
  4622. *
  4623. * a Array of sp_digit to normalize.
  4624. */
  4625. static void sp_3072_norm_53(sp_digit* a)
  4626. {
  4627. int i;
  4628. for (i = 0; i < 52; i++) {
  4629. a[i+1] += a[i] >> 29;
  4630. a[i] &= 0x1fffffff;
  4631. }
  4632. }
  4633. #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
  4634. /* Normalize the values in each word to 29 bits.
  4635. *
  4636. * a Array of sp_digit to normalize.
  4637. */
  4638. static void sp_3072_norm_106(sp_digit* a)
  4639. {
  4640. int i;
  4641. for (i = 0; i < 105; i++) {
  4642. a[i+1] += a[i] >> 29;
  4643. a[i] &= 0x1fffffff;
  4644. }
  4645. }
  4646. /* Multiply a and b into r. (r = a * b)
  4647. *
  4648. * r A single precision integer.
  4649. * a A single precision integer.
  4650. * b A single precision integer.
  4651. */
  4652. SP_NOINLINE static void sp_3072_mul_106(sp_digit* r, const sp_digit* a,
  4653. const sp_digit* b)
  4654. {
  4655. int i;
  4656. int imax;
  4657. int k;
  4658. sp_uint64 c;
  4659. sp_uint64 lo;
  4660. c = ((sp_uint64)a[105]) * b[105];
  4661. r[211] = (sp_digit)(c >> 29);
  4662. c &= 0x1fffffff;
  4663. for (k = 209; k >= 0; k--) {
  4664. if (k >= 106) {
  4665. i = k - 105;
  4666. imax = 105;
  4667. }
  4668. else {
  4669. i = 0;
  4670. imax = k;
  4671. }
  4672. if (imax - i > 15) {
  4673. int imaxlo;
  4674. lo = 0;
  4675. for (imaxlo = i; imaxlo <= imax; imaxlo += 15) {
  4676. for (; i <= imax && i < imaxlo + 15; i++) {
  4677. lo += ((sp_uint64)a[i]) * b[k - i];
  4678. }
  4679. c += lo >> 29;
  4680. lo &= 0x1fffffff;
  4681. }
  4682. r[k + 2] += (sp_digit)(c >> 29);
  4683. r[k + 1] = (sp_digit)(c & 0x1fffffff);
  4684. c = lo & 0x1fffffff;
  4685. }
  4686. else {
  4687. lo = 0;
  4688. for (; i <= imax; i++) {
  4689. lo += ((sp_uint64)a[i]) * b[k - i];
  4690. }
  4691. c += lo >> 29;
  4692. r[k + 2] += (sp_digit)(c >> 29);
  4693. r[k + 1] = (sp_digit)(c & 0x1fffffff);
  4694. c = lo & 0x1fffffff;
  4695. }
  4696. }
  4697. r[0] = (sp_digit)c;
  4698. }
  4699. /* Square a and put result in r. (r = a * a)
  4700. *
  4701. * r A single precision integer.
  4702. * a A single precision integer.
  4703. */
  4704. SP_NOINLINE static void sp_3072_sqr_106(sp_digit* r, const sp_digit* a)
  4705. {
  4706. int i;
  4707. int imax;
  4708. int k;
  4709. sp_uint64 c;
  4710. sp_uint64 t;
  4711. c = ((sp_uint64)a[105]) * a[105];
  4712. r[211] = (sp_digit)(c >> 29);
  4713. c = (c & 0x1fffffff) << 29;
  4714. for (k = 209; k >= 0; k--) {
  4715. i = (k + 1) / 2;
  4716. if ((k & 1) == 0) {
  4717. c += ((sp_uint64)a[i]) * a[i];
  4718. i++;
  4719. }
  4720. if (k < 105) {
  4721. imax = k;
  4722. }
  4723. else {
  4724. imax = 105;
  4725. }
  4726. if (imax - i >= 14) {
  4727. int imaxlo;
  4728. sp_uint64 hi;
  4729. hi = c >> 29;
  4730. c &= 0x1fffffff;
  4731. for (imaxlo = i; imaxlo <= imax; imaxlo += 14) {
  4732. t = 0;
  4733. for (; i <= imax && i < imaxlo + 14; i++) {
  4734. t += ((sp_uint64)a[i]) * a[k - i];
  4735. }
  4736. c += t * 2;
  4737. hi += c >> 29;
  4738. c &= 0x1fffffff;
  4739. }
  4740. r[k + 2] += (sp_digit)(hi >> 29);
  4741. r[k + 1] = (sp_digit)(hi & 0x1fffffff);
  4742. c <<= 29;
  4743. }
  4744. else
  4745. {
  4746. t = 0;
  4747. for (; i <= imax; i++) {
  4748. t += ((sp_uint64)a[i]) * a[k - i];
  4749. }
  4750. c += t * 2;
  4751. r[k + 2] += (sp_digit) (c >> 58);
  4752. r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
  4753. c = (c & 0x1fffffff) << 29;
  4754. }
  4755. }
  4756. r[0] = (sp_digit)(c >> 29);
  4757. }
  4758. /* Calculate the bottom digit of -1/a mod 2^n.
  4759. *
  4760. * a A single precision number.
  4761. * rho Bottom word of inverse.
  4762. */
  4763. static void sp_3072_mont_setup(const sp_digit* a, sp_digit* rho)
  4764. {
  4765. sp_digit x;
  4766. sp_digit b;
  4767. b = a[0];
  4768. x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
  4769. x *= 2 - b * x; /* here x*a==1 mod 2**8 */
  4770. x *= 2 - b * x; /* here x*a==1 mod 2**16 */
  4771. x *= 2 - b * x; /* here x*a==1 mod 2**32 */
  4772. x &= 0x1fffffff;
  4773. /* rho = -1/m mod b */
  4774. *rho = ((sp_digit)1 << 29) - x;
  4775. }
  4776. /* Multiply a by scalar b into r. (r = a * b)
  4777. *
  4778. * r A single precision integer.
  4779. * a A single precision integer.
  4780. * b A scalar.
  4781. */
  4782. SP_NOINLINE static void sp_3072_mul_d_106(sp_digit* r, const sp_digit* a,
  4783. sp_digit b)
  4784. {
  4785. sp_int64 tb = b;
  4786. sp_int64 t = 0;
  4787. int i;
  4788. for (i = 0; i < 106; i++) {
  4789. t += tb * a[i];
  4790. r[i] = (sp_digit)(t & 0x1fffffff);
  4791. t >>= 29;
  4792. }
  4793. r[106] = (sp_digit)t;
  4794. }
  4795. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
  4796. /* Sub b from a into r. (r = a - b)
  4797. *
  4798. * r A single precision integer.
  4799. * a A single precision integer.
  4800. * b A single precision integer.
  4801. */
  4802. SP_NOINLINE static int sp_3072_sub_53(sp_digit* r, const sp_digit* a,
  4803. const sp_digit* b)
  4804. {
  4805. int i;
  4806. for (i = 0; i < 53; i++) {
  4807. r[i] = a[i] - b[i];
  4808. }
  4809. return 0;
  4810. }
  4811. /* r = 2^n mod m where n is the number of bits to reduce by.
  4812. * Given m must be 3072 bits, just need to subtract.
  4813. *
  4814. * r A single precision number.
  4815. * m A single precision number.
  4816. */
  4817. static void sp_3072_mont_norm_53(sp_digit* r, const sp_digit* m)
  4818. {
  4819. /* Set r = 2^n - 1. */
  4820. int i;
  4821. for (i=0; i<52; i++) {
  4822. r[i] = 0x1fffffff;
  4823. }
  4824. r[52] = 0xfffffffL;
  4825. /* r = (2^n - 1) mod n */
  4826. (void)sp_3072_sub_53(r, r, m);
  4827. /* Add one so r = 2^n mod m */
  4828. r[0] += 1;
  4829. }
  4830. /* Compare a with b in constant time.
  4831. *
  4832. * a A single precision integer.
  4833. * b A single precision integer.
  4834. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  4835. * respectively.
  4836. */
  4837. static sp_digit sp_3072_cmp_53(const sp_digit* a, const sp_digit* b)
  4838. {
  4839. sp_digit r = 0;
  4840. int i;
  4841. for (i=52; i>=0; i--) {
  4842. r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
  4843. }
  4844. return r;
  4845. }
  4846. /* Conditionally subtract b from a using the mask m.
  4847. * m is -1 to subtract and 0 when not.
  4848. *
  4849. * r A single precision number representing condition subtract result.
  4850. * a A single precision number to subtract from.
  4851. * b A single precision number to subtract.
  4852. * m Mask value to apply.
  4853. */
  4854. static void sp_3072_cond_sub_53(sp_digit* r, const sp_digit* a,
  4855. const sp_digit* b, const sp_digit m)
  4856. {
  4857. int i;
  4858. for (i = 0; i < 53; i++) {
  4859. r[i] = a[i] - (b[i] & m);
  4860. }
  4861. }
  4862. /* Mul a by scalar b and add into r. (r += a * b)
  4863. *
  4864. * r A single precision integer.
  4865. * a A single precision integer.
  4866. * b A scalar.
  4867. */
  4868. SP_NOINLINE static void sp_3072_mul_add_53(sp_digit* r, const sp_digit* a,
  4869. const sp_digit b)
  4870. {
  4871. #ifndef WOLFSSL_SP_LARGE_CODE
  4872. sp_int64 tb = b;
  4873. sp_int64 t = 0;
  4874. int i;
  4875. for (i = 0; i < 53; i++) {
  4876. t += r[i];
  4877. t += tb * a[i];
  4878. r[i] = ((sp_digit)t) & 0x1fffffff;
  4879. t >>= 29;
  4880. }
  4881. r[53] += (sp_digit)t;
  4882. #else
  4883. sp_int64 tb = b;
  4884. sp_int64 t[4];
  4885. int i;
  4886. t[0] = 0;
  4887. for (i = 0; i < 52; i += 4) {
  4888. t[0] += (tb * a[i+0]) + r[i+0];
  4889. t[1] = (tb * a[i+1]) + r[i+1];
  4890. t[2] = (tb * a[i+2]) + r[i+2];
  4891. t[3] = (tb * a[i+3]) + r[i+3];
  4892. r[i+0] = t[0] & 0x1fffffff;
  4893. t[1] += t[0] >> 29;
  4894. r[i+1] = t[1] & 0x1fffffff;
  4895. t[2] += t[1] >> 29;
  4896. r[i+2] = t[2] & 0x1fffffff;
  4897. t[3] += t[2] >> 29;
  4898. r[i+3] = t[3] & 0x1fffffff;
  4899. t[0] = t[3] >> 29;
  4900. }
  4901. t[0] += (tb * a[52]) + r[52];
  4902. r[52] = t[0] & 0x1fffffff;
  4903. r[53] += (sp_digit)(t[0] >> 29);
  4904. #endif /* !WOLFSSL_SP_LARGE_CODE */
  4905. }
  4906. /* Shift the result in the high 1536 bits down to the bottom.
  4907. *
  4908. * r A single precision number.
  4909. * a A single precision number.
  4910. */
  4911. static void sp_3072_mont_shift_53(sp_digit* r, const sp_digit* a)
  4912. {
  4913. int i;
  4914. sp_int64 n = a[52] >> 28;
  4915. n += ((sp_int64)a[53]) << 1;
  4916. for (i = 0; i < 52; i++) {
  4917. r[i] = n & 0x1fffffff;
  4918. n >>= 29;
  4919. n += ((sp_int64)a[54 + i]) << 1;
  4920. }
  4921. r[52] = (sp_digit)n;
  4922. XMEMSET(&r[53], 0, sizeof(*r) * 53U);
  4923. }
  4924. /* Reduce the number back to 3072 bits using Montgomery reduction.
  4925. *
  4926. * a A single precision number to reduce in place.
  4927. * m The single precision number representing the modulus.
  4928. * mp The digit representing the negative inverse of m mod 2^n.
  4929. */
  4930. static void sp_3072_mont_reduce_53(sp_digit* a, const sp_digit* m, sp_digit mp)
  4931. {
  4932. int i;
  4933. sp_digit mu;
  4934. sp_digit over;
  4935. sp_3072_norm_53(a + 53);
  4936. for (i=0; i<52; i++) {
  4937. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
  4938. sp_3072_mul_add_53(a+i, m, mu);
  4939. a[i+1] += a[i] >> 29;
  4940. }
  4941. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffffL;
  4942. sp_3072_mul_add_53(a+i, m, mu);
  4943. a[i+1] += a[i] >> 29;
  4944. a[i] &= 0x1fffffff;
  4945. sp_3072_mont_shift_53(a, a);
  4946. over = a[52] - m[52];
  4947. sp_3072_cond_sub_53(a, a, m, ~((over - 1) >> 31));
  4948. sp_3072_norm_53(a);
  4949. }
  4950. /* Multiply a and b into r. (r = a * b)
  4951. *
  4952. * r A single precision integer.
  4953. * a A single precision integer.
  4954. * b A single precision integer.
  4955. */
  4956. SP_NOINLINE static void sp_3072_mul_53(sp_digit* r, const sp_digit* a,
  4957. const sp_digit* b)
  4958. {
  4959. int i;
  4960. int imax;
  4961. int k;
  4962. sp_uint64 c;
  4963. sp_uint64 lo;
  4964. c = ((sp_uint64)a[52]) * b[52];
  4965. r[105] = (sp_digit)(c >> 29);
  4966. c &= 0x1fffffff;
  4967. for (k = 103; k >= 0; k--) {
  4968. if (k >= 53) {
  4969. i = k - 52;
  4970. imax = 52;
  4971. }
  4972. else {
  4973. i = 0;
  4974. imax = k;
  4975. }
  4976. if (imax - i > 15) {
  4977. int imaxlo;
  4978. lo = 0;
  4979. for (imaxlo = i; imaxlo <= imax; imaxlo += 15) {
  4980. for (; i <= imax && i < imaxlo + 15; i++) {
  4981. lo += ((sp_uint64)a[i]) * b[k - i];
  4982. }
  4983. c += lo >> 29;
  4984. lo &= 0x1fffffff;
  4985. }
  4986. r[k + 2] += (sp_digit)(c >> 29);
  4987. r[k + 1] = (sp_digit)(c & 0x1fffffff);
  4988. c = lo & 0x1fffffff;
  4989. }
  4990. else {
  4991. lo = 0;
  4992. for (; i <= imax; i++) {
  4993. lo += ((sp_uint64)a[i]) * b[k - i];
  4994. }
  4995. c += lo >> 29;
  4996. r[k + 2] += (sp_digit)(c >> 29);
  4997. r[k + 1] = (sp_digit)(c & 0x1fffffff);
  4998. c = lo & 0x1fffffff;
  4999. }
  5000. }
  5001. r[0] = (sp_digit)c;
  5002. }
  5003. /* Multiply two Montgomery form numbers mod the modulus (prime).
  5004. * (r = a * b mod m)
  5005. *
  5006. * r Result of multiplication.
  5007. * a First number to multiply in Montgomery form.
  5008. * b Second number to multiply in Montgomery form.
  5009. * m Modulus (prime).
  5010. * mp Montgomery multiplier.
  5011. */
  5012. SP_NOINLINE static void sp_3072_mont_mul_53(sp_digit* r, const sp_digit* a,
  5013. const sp_digit* b, const sp_digit* m, sp_digit mp)
  5014. {
  5015. sp_3072_mul_53(r, a, b);
  5016. sp_3072_mont_reduce_53(r, m, mp);
  5017. }
  5018. /* Square a and put result in r. (r = a * a)
  5019. *
  5020. * r A single precision integer.
  5021. * a A single precision integer.
  5022. */
  5023. SP_NOINLINE static void sp_3072_sqr_53(sp_digit* r, const sp_digit* a)
  5024. {
  5025. int i;
  5026. int imax;
  5027. int k;
  5028. sp_uint64 c;
  5029. sp_uint64 t;
  5030. c = ((sp_uint64)a[52]) * a[52];
  5031. r[105] = (sp_digit)(c >> 29);
  5032. c = (c & 0x1fffffff) << 29;
  5033. for (k = 103; k >= 0; k--) {
  5034. i = (k + 1) / 2;
  5035. if ((k & 1) == 0) {
  5036. c += ((sp_uint64)a[i]) * a[i];
  5037. i++;
  5038. }
  5039. if (k < 52) {
  5040. imax = k;
  5041. }
  5042. else {
  5043. imax = 52;
  5044. }
  5045. if (imax - i >= 14) {
  5046. int imaxlo;
  5047. sp_uint64 hi;
  5048. hi = c >> 29;
  5049. c &= 0x1fffffff;
  5050. for (imaxlo = i; imaxlo <= imax; imaxlo += 14) {
  5051. t = 0;
  5052. for (; i <= imax && i < imaxlo + 14; i++) {
  5053. t += ((sp_uint64)a[i]) * a[k - i];
  5054. }
  5055. c += t * 2;
  5056. hi += c >> 29;
  5057. c &= 0x1fffffff;
  5058. }
  5059. r[k + 2] += (sp_digit)(hi >> 29);
  5060. r[k + 1] = (sp_digit)(hi & 0x1fffffff);
  5061. c <<= 29;
  5062. }
  5063. else
  5064. {
  5065. t = 0;
  5066. for (; i <= imax; i++) {
  5067. t += ((sp_uint64)a[i]) * a[k - i];
  5068. }
  5069. c += t * 2;
  5070. r[k + 2] += (sp_digit) (c >> 58);
  5071. r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
  5072. c = (c & 0x1fffffff) << 29;
  5073. }
  5074. }
  5075. r[0] = (sp_digit)(c >> 29);
  5076. }
  5077. /* Square the Montgomery form number. (r = a * a mod m)
  5078. *
  5079. * r Result of squaring.
  5080. * a Number to square in Montgomery form.
  5081. * m Modulus (prime).
  5082. * mp Montgomery multiplier.
  5083. */
  5084. SP_NOINLINE static void sp_3072_mont_sqr_53(sp_digit* r, const sp_digit* a,
  5085. const sp_digit* m, sp_digit mp)
  5086. {
  5087. sp_3072_sqr_53(r, a);
  5088. sp_3072_mont_reduce_53(r, m, mp);
  5089. }
  5090. /* Multiply a by scalar b into r. (r = a * b)
  5091. *
  5092. * r A single precision integer.
  5093. * a A single precision integer.
  5094. * b A scalar.
  5095. */
  5096. SP_NOINLINE static void sp_3072_mul_d_53(sp_digit* r, const sp_digit* a,
  5097. sp_digit b)
  5098. {
  5099. sp_int64 tb = b;
  5100. sp_int64 t = 0;
  5101. int i;
  5102. for (i = 0; i < 53; i++) {
  5103. t += tb * a[i];
  5104. r[i] = (sp_digit)(t & 0x1fffffff);
  5105. t >>= 29;
  5106. }
  5107. r[53] = (sp_digit)t;
  5108. }
  5109. #ifdef WOLFSSL_SP_SMALL
  5110. /* Conditionally add a and b using the mask m.
  5111. * m is -1 to add and 0 when not.
  5112. *
  5113. * r A single precision number representing conditional add result.
  5114. * a A single precision number to add with.
  5115. * b A single precision number to add.
  5116. * m Mask value to apply.
  5117. */
  5118. static void sp_3072_cond_add_53(sp_digit* r, const sp_digit* a,
  5119. const sp_digit* b, const sp_digit m)
  5120. {
  5121. int i;
  5122. for (i = 0; i < 53; i++) {
  5123. r[i] = a[i] + (b[i] & m);
  5124. }
  5125. }
  5126. #endif /* WOLFSSL_SP_SMALL */
  5127. /* Add b to a into r. (r = a + b)
  5128. *
  5129. * r A single precision integer.
  5130. * a A single precision integer.
  5131. * b A single precision integer.
  5132. */
  5133. SP_NOINLINE static int sp_3072_add_53(sp_digit* r, const sp_digit* a,
  5134. const sp_digit* b)
  5135. {
  5136. int i;
  5137. for (i = 0; i < 53; i++) {
  5138. r[i] = a[i] + b[i];
  5139. }
  5140. return 0;
  5141. }
  5142. SP_NOINLINE static void sp_3072_rshift_53(sp_digit* r, const sp_digit* a,
  5143. byte n)
  5144. {
  5145. int i;
  5146. for (i=0; i<52; i++) {
  5147. r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
  5148. }
  5149. r[52] = a[52] >> n;
  5150. }
  5151. static WC_INLINE sp_digit sp_3072_div_word_53(sp_digit d1, sp_digit d0,
  5152. sp_digit div)
  5153. {
  5154. #ifdef SP_USE_DIVTI3
  5155. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  5156. return d / div;
  5157. #elif defined(__x86_64__) || defined(__i386__)
  5158. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  5159. sp_uint32 lo = (sp_uint32)d;
  5160. sp_digit hi = (sp_digit)(d >> 32);
  5161. __asm__ __volatile__ (
  5162. "idiv %2"
  5163. : "+a" (lo)
  5164. : "d" (hi), "r" (div)
  5165. : "cc"
  5166. );
  5167. return (sp_digit)lo;
  5168. #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
  5169. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  5170. sp_digit dv = (div >> 1) + 1;
  5171. sp_digit t1 = (sp_digit)(d >> 29);
  5172. sp_digit t0 = (sp_digit)(d & 0x1fffffff);
  5173. sp_digit t2;
  5174. sp_digit sign;
  5175. sp_digit r;
  5176. int i;
  5177. sp_int64 m;
  5178. r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  5179. t1 -= dv & (0 - r);
  5180. for (i = 27; i >= 1; i--) {
  5181. t1 += t1 + (((sp_uint32)t0 >> 28) & 1);
  5182. t0 <<= 1;
  5183. t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  5184. r += r + t2;
  5185. t1 -= dv & (0 - t2);
  5186. t1 += t2;
  5187. }
  5188. r += r + 1;
  5189. m = d - ((sp_int64)r * div);
  5190. r += (sp_digit)(m >> 29);
  5191. m = d - ((sp_int64)r * div);
  5192. r += (sp_digit)(m >> 58) - (sp_digit)(d >> 58);
  5193. m = d - ((sp_int64)r * div);
  5194. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  5195. m *= sign;
  5196. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  5197. r += sign * t2;
  5198. m = d - ((sp_int64)r * div);
  5199. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  5200. m *= sign;
  5201. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  5202. r += sign * t2;
  5203. return r;
  5204. #else
  5205. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  5206. sp_digit r = 0;
  5207. sp_digit t;
  5208. sp_digit dv = (div >> 14) + 1;
  5209. t = (sp_digit)(d >> 28);
  5210. t = (t / dv) << 14;
  5211. r += t;
  5212. d -= (sp_int64)t * div;
  5213. t = (sp_digit)(d >> 13);
  5214. t = t / (dv << 1);
  5215. r += t;
  5216. d -= (sp_int64)t * div;
  5217. t = (sp_digit)d;
  5218. t = t / div;
  5219. r += t;
  5220. d -= (sp_int64)t * div;
  5221. return r;
  5222. #endif
  5223. }
  5224. static WC_INLINE sp_digit sp_3072_word_div_word_53(sp_digit d, sp_digit div)
  5225. {
  5226. #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
  5227. defined(SP_DIV_WORD_USE_DIV)
  5228. return d / div;
  5229. #else
  5230. return (sp_digit)((sp_uint32)(div - d) >> 31);
  5231. #endif
  5232. }
  5233. /* Divide d in a and put remainder into r (m*d + r = a)
  5234. * m is not calculated as it is not needed at this time.
  5235. *
  5236. * Full implementation.
  5237. *
  5238. * a Number to be divided.
  5239. * d Number to divide with.
  5240. * m Multiplier result.
  5241. * r Remainder from the division.
  5242. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  5243. */
  5244. static int sp_3072_div_53(const sp_digit* a, const sp_digit* d,
  5245. const sp_digit* m, sp_digit* r)
  5246. {
  5247. int i;
  5248. #ifndef WOLFSSL_SP_DIV_32
  5249. #endif
  5250. sp_digit dv;
  5251. sp_digit r1;
  5252. #ifdef WOLFSSL_SP_SMALL_STACK
  5253. sp_digit* t1 = NULL;
  5254. #else
  5255. sp_digit t1[4 * 53 + 3];
  5256. #endif
  5257. sp_digit* t2 = NULL;
  5258. sp_digit* sd = NULL;
  5259. int err = MP_OKAY;
  5260. (void)m;
  5261. #ifdef WOLFSSL_SP_SMALL_STACK
  5262. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 53 + 3), NULL,
  5263. DYNAMIC_TYPE_TMP_BUFFER);
  5264. if (t1 == NULL)
  5265. err = MEMORY_E;
  5266. #endif
  5267. (void)m;
  5268. if (err == MP_OKAY) {
  5269. t2 = t1 + 106 + 1;
  5270. sd = t2 + 53 + 1;
  5271. sp_3072_mul_d_53(sd, d, (sp_digit)1 << 1);
  5272. sp_3072_mul_d_106(t1, a, (sp_digit)1 << 1);
  5273. dv = sd[52];
  5274. t1[53 + 53] += t1[53 + 53 - 1] >> 29;
  5275. t1[53 + 53 - 1] &= 0x1fffffff;
  5276. for (i=53; i>=0; i--) {
  5277. r1 = sp_3072_div_word_53(t1[53 + i], t1[53 + i - 1], dv);
  5278. sp_3072_mul_d_53(t2, sd, r1);
  5279. (void)sp_3072_sub_53(&t1[i], &t1[i], t2);
  5280. sp_3072_norm_53(&t1[i]);
  5281. t1[53 + i] -= t2[53];
  5282. t1[53 + i] += t1[53 + i - 1] >> 29;
  5283. t1[53 + i - 1] &= 0x1fffffff;
  5284. r1 = sp_3072_div_word_53(-t1[53 + i], -t1[53 + i - 1], dv);
  5285. r1 -= t1[53 + i];
  5286. sp_3072_mul_d_53(t2, sd, r1);
  5287. (void)sp_3072_add_53(&t1[i], &t1[i], t2);
  5288. t1[53 + i] += t1[53 + i - 1] >> 29;
  5289. t1[53 + i - 1] &= 0x1fffffff;
  5290. }
  5291. t1[53 - 1] += t1[53 - 2] >> 29;
  5292. t1[53 - 2] &= 0x1fffffff;
  5293. r1 = sp_3072_word_div_word_53(t1[53 - 1], dv);
  5294. sp_3072_mul_d_53(t2, sd, r1);
  5295. sp_3072_sub_53(t1, t1, t2);
  5296. XMEMCPY(r, t1, sizeof(*r) * 106U);
  5297. for (i=0; i<52; i++) {
  5298. r[i+1] += r[i] >> 29;
  5299. r[i] &= 0x1fffffff;
  5300. }
  5301. sp_3072_cond_add_53(r, r, sd, r[52] >> 31);
  5302. sp_3072_norm_53(r);
  5303. sp_3072_rshift_53(r, r, 1);
  5304. }
  5305. #ifdef WOLFSSL_SP_SMALL_STACK
  5306. if (t1 != NULL)
  5307. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  5308. #endif
  5309. return err;
  5310. }
  5311. /* Reduce a modulo m into r. (r = a mod m)
  5312. *
  5313. * r A single precision number that is the reduced result.
  5314. * a A single precision number that is to be reduced.
  5315. * m A single precision number that is the modulus to reduce with.
  5316. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  5317. */
  5318. static int sp_3072_mod_53(sp_digit* r, const sp_digit* a, const sp_digit* m)
  5319. {
  5320. return sp_3072_div_53(a, m, NULL, r);
  5321. }
  5322. /* Modular exponentiate a to the e mod m. (r = a^e mod m)
  5323. *
  5324. * r A single precision number that is the result of the operation.
  5325. * a A single precision number being exponentiated.
  5326. * e A single precision number that is the exponent.
  5327. * bits The number of bits in the exponent.
  5328. * m A single precision number that is the modulus.
  5329. * returns 0 on success.
  5330. * returns MEMORY_E on dynamic memory allocation failure.
  5331. * returns MP_VAL when base is even or exponent is 0.
  5332. */
  5333. static int sp_3072_mod_exp_53(sp_digit* r, const sp_digit* a, const sp_digit* e,
  5334. int bits, const sp_digit* m, int reduceA)
  5335. {
  5336. #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
  5337. #ifdef WOLFSSL_SP_SMALL_STACK
  5338. sp_digit* td = NULL;
  5339. #else
  5340. sp_digit td[3 * 106];
  5341. #endif
  5342. sp_digit* t[3] = {0, 0, 0};
  5343. sp_digit* norm = NULL;
  5344. sp_digit mp = 1;
  5345. sp_digit n;
  5346. int i;
  5347. int c;
  5348. byte y;
  5349. int err = MP_OKAY;
  5350. if (bits == 0) {
  5351. err = MP_VAL;
  5352. }
  5353. #ifdef WOLFSSL_SP_SMALL_STACK
  5354. if (err == MP_OKAY) {
  5355. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 53 * 2, NULL,
  5356. DYNAMIC_TYPE_TMP_BUFFER);
  5357. if (td == NULL)
  5358. err = MEMORY_E;
  5359. }
  5360. #endif
  5361. if (err == MP_OKAY) {
  5362. norm = td;
  5363. for (i=0; i<3; i++) {
  5364. t[i] = td + (i * 53 * 2);
  5365. XMEMSET(t[i], 0, sizeof(sp_digit) * 53U * 2U);
  5366. }
  5367. sp_3072_mont_setup(m, &mp);
  5368. sp_3072_mont_norm_53(norm, m);
  5369. if (reduceA != 0) {
  5370. err = sp_3072_mod_53(t[1], a, m);
  5371. }
  5372. else {
  5373. XMEMCPY(t[1], a, sizeof(sp_digit) * 53U);
  5374. }
  5375. }
  5376. if (err == MP_OKAY) {
  5377. sp_3072_mul_53(t[1], t[1], norm);
  5378. err = sp_3072_mod_53(t[1], t[1], m);
  5379. }
  5380. if (err == MP_OKAY) {
  5381. i = bits / 29;
  5382. c = bits % 29;
  5383. n = e[i--] << (29 - c);
  5384. for (; ; c--) {
  5385. if (c == 0) {
  5386. if (i == -1) {
  5387. break;
  5388. }
  5389. n = e[i--];
  5390. c = 29;
  5391. }
  5392. y = (int)((n >> 28) & 1);
  5393. n <<= 1;
  5394. sp_3072_mont_mul_53(t[y^1], t[0], t[1], m, mp);
  5395. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  5396. ((size_t)t[1] & addr_mask[y])),
  5397. sizeof(*t[2]) * 53 * 2);
  5398. sp_3072_mont_sqr_53(t[2], t[2], m, mp);
  5399. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  5400. ((size_t)t[1] & addr_mask[y])), t[2],
  5401. sizeof(*t[2]) * 53 * 2);
  5402. }
  5403. sp_3072_mont_reduce_53(t[0], m, mp);
  5404. n = sp_3072_cmp_53(t[0], m);
  5405. sp_3072_cond_sub_53(t[0], t[0], m, ~(n >> 31));
  5406. XMEMCPY(r, t[0], sizeof(*r) * 53 * 2);
  5407. }
  5408. #ifdef WOLFSSL_SP_SMALL_STACK
  5409. if (td != NULL)
  5410. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  5411. #endif
  5412. return err;
  5413. #elif !defined(WC_NO_CACHE_RESISTANT)
  5414. #ifdef WOLFSSL_SP_SMALL_STACK
  5415. sp_digit* td = NULL;
  5416. #else
  5417. sp_digit td[3 * 106];
  5418. #endif
  5419. sp_digit* t[3] = {0, 0, 0};
  5420. sp_digit* norm = NULL;
  5421. sp_digit mp = 1;
  5422. sp_digit n;
  5423. int i;
  5424. int c;
  5425. byte y;
  5426. int err = MP_OKAY;
  5427. if (bits == 0) {
  5428. err = MP_VAL;
  5429. }
  5430. #ifdef WOLFSSL_SP_SMALL_STACK
  5431. if (err == MP_OKAY) {
  5432. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 53 * 2, NULL,
  5433. DYNAMIC_TYPE_TMP_BUFFER);
  5434. if (td == NULL)
  5435. err = MEMORY_E;
  5436. }
  5437. #endif
  5438. if (err == MP_OKAY) {
  5439. norm = td;
  5440. for (i=0; i<3; i++) {
  5441. t[i] = td + (i * 53 * 2);
  5442. }
  5443. sp_3072_mont_setup(m, &mp);
  5444. sp_3072_mont_norm_53(norm, m);
  5445. if (reduceA != 0) {
  5446. err = sp_3072_mod_53(t[1], a, m);
  5447. if (err == MP_OKAY) {
  5448. sp_3072_mul_53(t[1], t[1], norm);
  5449. err = sp_3072_mod_53(t[1], t[1], m);
  5450. }
  5451. }
  5452. else {
  5453. sp_3072_mul_53(t[1], a, norm);
  5454. err = sp_3072_mod_53(t[1], t[1], m);
  5455. }
  5456. }
  5457. if (err == MP_OKAY) {
  5458. i = bits / 29;
  5459. c = bits % 29;
  5460. n = e[i--] << (29 - c);
  5461. for (; ; c--) {
  5462. if (c == 0) {
  5463. if (i == -1) {
  5464. break;
  5465. }
  5466. n = e[i--];
  5467. c = 29;
  5468. }
  5469. y = (int)((n >> 28) & 1);
  5470. n <<= 1;
  5471. sp_3072_mont_mul_53(t[y^1], t[0], t[1], m, mp);
  5472. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  5473. ((size_t)t[1] & addr_mask[y])),
  5474. sizeof(*t[2]) * 53 * 2);
  5475. sp_3072_mont_sqr_53(t[2], t[2], m, mp);
  5476. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  5477. ((size_t)t[1] & addr_mask[y])), t[2],
  5478. sizeof(*t[2]) * 53 * 2);
  5479. }
  5480. sp_3072_mont_reduce_53(t[0], m, mp);
  5481. n = sp_3072_cmp_53(t[0], m);
  5482. sp_3072_cond_sub_53(t[0], t[0], m, ~(n >> 31));
  5483. XMEMCPY(r, t[0], sizeof(*r) * 53 * 2);
  5484. }
  5485. #ifdef WOLFSSL_SP_SMALL_STACK
  5486. if (td != NULL)
  5487. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  5488. #endif
  5489. return err;
  5490. #else
  5491. #ifdef WOLFSSL_SP_SMALL_STACK
  5492. sp_digit* td = NULL;
  5493. #else
  5494. sp_digit td[(32 * 106) + 106];
  5495. #endif
  5496. sp_digit* t[32];
  5497. sp_digit* rt = NULL;
  5498. sp_digit* norm = NULL;
  5499. sp_digit mp = 1;
  5500. sp_digit n;
  5501. int i;
  5502. int c;
  5503. byte y;
  5504. int err = MP_OKAY;
  5505. if (bits == 0) {
  5506. err = MP_VAL;
  5507. }
  5508. #ifdef WOLFSSL_SP_SMALL_STACK
  5509. if (err == MP_OKAY) {
  5510. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((32 * 106) + 106), NULL,
  5511. DYNAMIC_TYPE_TMP_BUFFER);
  5512. if (td == NULL)
  5513. err = MEMORY_E;
  5514. }
  5515. #endif
  5516. if (err == MP_OKAY) {
  5517. norm = td;
  5518. for (i=0; i<32; i++)
  5519. t[i] = td + i * 106;
  5520. rt = td + 3392;
  5521. sp_3072_mont_setup(m, &mp);
  5522. sp_3072_mont_norm_53(norm, m);
  5523. if (reduceA != 0) {
  5524. err = sp_3072_mod_53(t[1], a, m);
  5525. if (err == MP_OKAY) {
  5526. sp_3072_mul_53(t[1], t[1], norm);
  5527. err = sp_3072_mod_53(t[1], t[1], m);
  5528. }
  5529. }
  5530. else {
  5531. sp_3072_mul_53(t[1], a, norm);
  5532. err = sp_3072_mod_53(t[1], t[1], m);
  5533. }
  5534. }
  5535. if (err == MP_OKAY) {
  5536. sp_3072_mont_sqr_53(t[ 2], t[ 1], m, mp);
  5537. sp_3072_mont_mul_53(t[ 3], t[ 2], t[ 1], m, mp);
  5538. sp_3072_mont_sqr_53(t[ 4], t[ 2], m, mp);
  5539. sp_3072_mont_mul_53(t[ 5], t[ 3], t[ 2], m, mp);
  5540. sp_3072_mont_sqr_53(t[ 6], t[ 3], m, mp);
  5541. sp_3072_mont_mul_53(t[ 7], t[ 4], t[ 3], m, mp);
  5542. sp_3072_mont_sqr_53(t[ 8], t[ 4], m, mp);
  5543. sp_3072_mont_mul_53(t[ 9], t[ 5], t[ 4], m, mp);
  5544. sp_3072_mont_sqr_53(t[10], t[ 5], m, mp);
  5545. sp_3072_mont_mul_53(t[11], t[ 6], t[ 5], m, mp);
  5546. sp_3072_mont_sqr_53(t[12], t[ 6], m, mp);
  5547. sp_3072_mont_mul_53(t[13], t[ 7], t[ 6], m, mp);
  5548. sp_3072_mont_sqr_53(t[14], t[ 7], m, mp);
  5549. sp_3072_mont_mul_53(t[15], t[ 8], t[ 7], m, mp);
  5550. sp_3072_mont_sqr_53(t[16], t[ 8], m, mp);
  5551. sp_3072_mont_mul_53(t[17], t[ 9], t[ 8], m, mp);
  5552. sp_3072_mont_sqr_53(t[18], t[ 9], m, mp);
  5553. sp_3072_mont_mul_53(t[19], t[10], t[ 9], m, mp);
  5554. sp_3072_mont_sqr_53(t[20], t[10], m, mp);
  5555. sp_3072_mont_mul_53(t[21], t[11], t[10], m, mp);
  5556. sp_3072_mont_sqr_53(t[22], t[11], m, mp);
  5557. sp_3072_mont_mul_53(t[23], t[12], t[11], m, mp);
  5558. sp_3072_mont_sqr_53(t[24], t[12], m, mp);
  5559. sp_3072_mont_mul_53(t[25], t[13], t[12], m, mp);
  5560. sp_3072_mont_sqr_53(t[26], t[13], m, mp);
  5561. sp_3072_mont_mul_53(t[27], t[14], t[13], m, mp);
  5562. sp_3072_mont_sqr_53(t[28], t[14], m, mp);
  5563. sp_3072_mont_mul_53(t[29], t[15], t[14], m, mp);
  5564. sp_3072_mont_sqr_53(t[30], t[15], m, mp);
  5565. sp_3072_mont_mul_53(t[31], t[16], t[15], m, mp);
  5566. bits = ((bits + 4) / 5) * 5;
  5567. i = ((bits + 28) / 29) - 1;
  5568. c = bits % 29;
  5569. if (c == 0) {
  5570. c = 29;
  5571. }
  5572. if (i < 53) {
  5573. n = e[i--] << (32 - c);
  5574. }
  5575. else {
  5576. n = 0;
  5577. i--;
  5578. }
  5579. if (c < 5) {
  5580. n |= e[i--] << (3 - c);
  5581. c += 29;
  5582. }
  5583. y = (int)((n >> 27) & 0x1f);
  5584. n <<= 5;
  5585. c -= 5;
  5586. XMEMCPY(rt, t[y], sizeof(sp_digit) * 106);
  5587. while ((i >= 0) || (c >= 5)) {
  5588. if (c >= 5) {
  5589. y = (byte)((n >> 27) & 0x1f);
  5590. n <<= 5;
  5591. c -= 5;
  5592. }
  5593. else if (c == 0) {
  5594. n = e[i--] << 3;
  5595. y = (byte)((n >> 27) & 0x1f);
  5596. n <<= 5;
  5597. c = 24;
  5598. }
  5599. else {
  5600. y = (byte)((n >> 27) & 0x1f);
  5601. n = e[i--] << 3;
  5602. c = 5 - c;
  5603. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  5604. n <<= c;
  5605. c = 29 - c;
  5606. }
  5607. sp_3072_mont_sqr_53(rt, rt, m, mp);
  5608. sp_3072_mont_sqr_53(rt, rt, m, mp);
  5609. sp_3072_mont_sqr_53(rt, rt, m, mp);
  5610. sp_3072_mont_sqr_53(rt, rt, m, mp);
  5611. sp_3072_mont_sqr_53(rt, rt, m, mp);
  5612. sp_3072_mont_mul_53(rt, rt, t[y], m, mp);
  5613. }
  5614. sp_3072_mont_reduce_53(rt, m, mp);
  5615. n = sp_3072_cmp_53(rt, m);
  5616. sp_3072_cond_sub_53(rt, rt, m, ~(n >> 31));
  5617. XMEMCPY(r, rt, sizeof(sp_digit) * 106);
  5618. }
  5619. #ifdef WOLFSSL_SP_SMALL_STACK
  5620. if (td != NULL)
  5621. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  5622. #endif
  5623. return err;
  5624. #endif
  5625. }
  5626. #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) | WOLFSSL_HAVE_SP_DH */
  5627. /* Sub b from a into r. (r = a - b)
  5628. *
  5629. * r A single precision integer.
  5630. * a A single precision integer.
  5631. * b A single precision integer.
  5632. */
  5633. SP_NOINLINE static int sp_3072_sub_106(sp_digit* r, const sp_digit* a,
  5634. const sp_digit* b)
  5635. {
  5636. int i;
  5637. for (i = 0; i < 106; i++) {
  5638. r[i] = a[i] - b[i];
  5639. }
  5640. return 0;
  5641. }
  5642. /* r = 2^n mod m where n is the number of bits to reduce by.
  5643. * Given m must be 3072 bits, just need to subtract.
  5644. *
  5645. * r A single precision number.
  5646. * m A single precision number.
  5647. */
  5648. static void sp_3072_mont_norm_106(sp_digit* r, const sp_digit* m)
  5649. {
  5650. /* Set r = 2^n - 1. */
  5651. int i;
  5652. for (i=0; i<105; i++) {
  5653. r[i] = 0x1fffffff;
  5654. }
  5655. r[105] = 0x7ffffffL;
  5656. /* r = (2^n - 1) mod n */
  5657. (void)sp_3072_sub_106(r, r, m);
  5658. /* Add one so r = 2^n mod m */
  5659. r[0] += 1;
  5660. }
  5661. /* Compare a with b in constant time.
  5662. *
  5663. * a A single precision integer.
  5664. * b A single precision integer.
  5665. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  5666. * respectively.
  5667. */
  5668. static sp_digit sp_3072_cmp_106(const sp_digit* a, const sp_digit* b)
  5669. {
  5670. sp_digit r = 0;
  5671. int i;
  5672. for (i=105; i>=0; i--) {
  5673. r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
  5674. }
  5675. return r;
  5676. }
  5677. /* Conditionally subtract b from a using the mask m.
  5678. * m is -1 to subtract and 0 when not.
  5679. *
  5680. * r A single precision number representing condition subtract result.
  5681. * a A single precision number to subtract from.
  5682. * b A single precision number to subtract.
  5683. * m Mask value to apply.
  5684. */
  5685. static void sp_3072_cond_sub_106(sp_digit* r, const sp_digit* a,
  5686. const sp_digit* b, const sp_digit m)
  5687. {
  5688. int i;
  5689. for (i = 0; i < 106; i++) {
  5690. r[i] = a[i] - (b[i] & m);
  5691. }
  5692. }
  5693. /* Mul a by scalar b and add into r. (r += a * b)
  5694. *
  5695. * r A single precision integer.
  5696. * a A single precision integer.
  5697. * b A scalar.
  5698. */
  5699. SP_NOINLINE static void sp_3072_mul_add_106(sp_digit* r, const sp_digit* a,
  5700. const sp_digit b)
  5701. {
  5702. #ifndef WOLFSSL_SP_LARGE_CODE
  5703. sp_int64 tb = b;
  5704. sp_int64 t = 0;
  5705. int i;
  5706. for (i = 0; i < 106; i++) {
  5707. t += r[i];
  5708. t += tb * a[i];
  5709. r[i] = ((sp_digit)t) & 0x1fffffff;
  5710. t >>= 29;
  5711. }
  5712. r[106] += (sp_digit)t;
  5713. #else
  5714. sp_int64 tb = b;
  5715. sp_int64 t[4];
  5716. int i;
  5717. t[0] = 0;
  5718. for (i = 0; i < 104; i += 4) {
  5719. t[0] += (tb * a[i+0]) + r[i+0];
  5720. t[1] = (tb * a[i+1]) + r[i+1];
  5721. t[2] = (tb * a[i+2]) + r[i+2];
  5722. t[3] = (tb * a[i+3]) + r[i+3];
  5723. r[i+0] = t[0] & 0x1fffffff;
  5724. t[1] += t[0] >> 29;
  5725. r[i+1] = t[1] & 0x1fffffff;
  5726. t[2] += t[1] >> 29;
  5727. r[i+2] = t[2] & 0x1fffffff;
  5728. t[3] += t[2] >> 29;
  5729. r[i+3] = t[3] & 0x1fffffff;
  5730. t[0] = t[3] >> 29;
  5731. }
  5732. t[0] += (tb * a[104]) + r[104];
  5733. t[1] = (tb * a[105]) + r[105];
  5734. r[104] = t[0] & 0x1fffffff;
  5735. t[1] += t[0] >> 29;
  5736. r[105] = t[1] & 0x1fffffff;
  5737. r[106] += (sp_digit)(t[1] >> 29);
  5738. #endif /* !WOLFSSL_SP_LARGE_CODE */
  5739. }
  5740. /* Shift the result in the high 3072 bits down to the bottom.
  5741. *
  5742. * r A single precision number.
  5743. * a A single precision number.
  5744. */
  5745. static void sp_3072_mont_shift_106(sp_digit* r, const sp_digit* a)
  5746. {
  5747. int i;
  5748. sp_int64 n = a[105] >> 27;
  5749. n += ((sp_int64)a[106]) << 2;
  5750. for (i = 0; i < 105; i++) {
  5751. r[i] = n & 0x1fffffff;
  5752. n >>= 29;
  5753. n += ((sp_int64)a[107 + i]) << 2;
  5754. }
  5755. r[105] = (sp_digit)n;
  5756. XMEMSET(&r[106], 0, sizeof(*r) * 106U);
  5757. }
  5758. /* Reduce the number back to 3072 bits using Montgomery reduction.
  5759. *
  5760. * a A single precision number to reduce in place.
  5761. * m The single precision number representing the modulus.
  5762. * mp The digit representing the negative inverse of m mod 2^n.
  5763. */
  5764. static void sp_3072_mont_reduce_106(sp_digit* a, const sp_digit* m, sp_digit mp)
  5765. {
  5766. int i;
  5767. sp_digit mu;
  5768. sp_digit over;
  5769. sp_3072_norm_106(a + 106);
  5770. #ifdef WOLFSSL_SP_DH
  5771. if (mp != 1) {
  5772. for (i=0; i<105; i++) {
  5773. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
  5774. sp_3072_mul_add_106(a+i, m, mu);
  5775. a[i+1] += a[i] >> 29;
  5776. }
  5777. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x7ffffffL;
  5778. sp_3072_mul_add_106(a+i, m, mu);
  5779. a[i+1] += a[i] >> 29;
  5780. a[i] &= 0x1fffffff;
  5781. }
  5782. else {
  5783. for (i=0; i<105; i++) {
  5784. mu = a[i] & 0x1fffffff;
  5785. sp_3072_mul_add_106(a+i, m, mu);
  5786. a[i+1] += a[i] >> 29;
  5787. }
  5788. mu = a[i] & 0x7ffffffL;
  5789. sp_3072_mul_add_106(a+i, m, mu);
  5790. a[i+1] += a[i] >> 29;
  5791. a[i] &= 0x1fffffff;
  5792. }
  5793. #else
  5794. for (i=0; i<105; i++) {
  5795. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
  5796. sp_3072_mul_add_106(a+i, m, mu);
  5797. a[i+1] += a[i] >> 29;
  5798. }
  5799. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x7ffffffL;
  5800. sp_3072_mul_add_106(a+i, m, mu);
  5801. a[i+1] += a[i] >> 29;
  5802. a[i] &= 0x1fffffff;
  5803. #endif
  5804. sp_3072_mont_shift_106(a, a);
  5805. over = a[105] - m[105];
  5806. sp_3072_cond_sub_106(a, a, m, ~((over - 1) >> 31));
  5807. sp_3072_norm_106(a);
  5808. }
  5809. /* Multiply two Montgomery form numbers mod the modulus (prime).
  5810. * (r = a * b mod m)
  5811. *
  5812. * r Result of multiplication.
  5813. * a First number to multiply in Montgomery form.
  5814. * b Second number to multiply in Montgomery form.
  5815. * m Modulus (prime).
  5816. * mp Montgomery multiplier.
  5817. */
  5818. SP_NOINLINE static void sp_3072_mont_mul_106(sp_digit* r, const sp_digit* a,
  5819. const sp_digit* b, const sp_digit* m, sp_digit mp)
  5820. {
  5821. sp_3072_mul_106(r, a, b);
  5822. sp_3072_mont_reduce_106(r, m, mp);
  5823. }
  5824. /* Square the Montgomery form number. (r = a * a mod m)
  5825. *
  5826. * r Result of squaring.
  5827. * a Number to square in Montgomery form.
  5828. * m Modulus (prime).
  5829. * mp Montgomery multiplier.
  5830. */
  5831. SP_NOINLINE static void sp_3072_mont_sqr_106(sp_digit* r, const sp_digit* a,
  5832. const sp_digit* m, sp_digit mp)
  5833. {
  5834. sp_3072_sqr_106(r, a);
  5835. sp_3072_mont_reduce_106(r, m, mp);
  5836. }
  5837. /* Multiply a by scalar b into r. (r = a * b)
  5838. *
  5839. * r A single precision integer.
  5840. * a A single precision integer.
  5841. * b A scalar.
  5842. */
  5843. SP_NOINLINE static void sp_3072_mul_d_212(sp_digit* r, const sp_digit* a,
  5844. sp_digit b)
  5845. {
  5846. sp_int64 tb = b;
  5847. sp_int64 t = 0;
  5848. int i;
  5849. for (i = 0; i < 212; i++) {
  5850. t += tb * a[i];
  5851. r[i] = (sp_digit)(t & 0x1fffffff);
  5852. t >>= 29;
  5853. }
  5854. r[212] = (sp_digit)t;
  5855. }
  5856. #ifdef WOLFSSL_SP_SMALL
  5857. /* Conditionally add a and b using the mask m.
  5858. * m is -1 to add and 0 when not.
  5859. *
  5860. * r A single precision number representing conditional add result.
  5861. * a A single precision number to add with.
  5862. * b A single precision number to add.
  5863. * m Mask value to apply.
  5864. */
  5865. static void sp_3072_cond_add_106(sp_digit* r, const sp_digit* a,
  5866. const sp_digit* b, const sp_digit m)
  5867. {
  5868. int i;
  5869. for (i = 0; i < 106; i++) {
  5870. r[i] = a[i] + (b[i] & m);
  5871. }
  5872. }
  5873. #endif /* WOLFSSL_SP_SMALL */
  5874. /* Add b to a into r. (r = a + b)
  5875. *
  5876. * r A single precision integer.
  5877. * a A single precision integer.
  5878. * b A single precision integer.
  5879. */
  5880. SP_NOINLINE static int sp_3072_add_106(sp_digit* r, const sp_digit* a,
  5881. const sp_digit* b)
  5882. {
  5883. int i;
  5884. for (i = 0; i < 106; i++) {
  5885. r[i] = a[i] + b[i];
  5886. }
  5887. return 0;
  5888. }
  5889. SP_NOINLINE static void sp_3072_rshift_106(sp_digit* r, const sp_digit* a,
  5890. byte n)
  5891. {
  5892. int i;
  5893. for (i=0; i<105; i++) {
  5894. r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
  5895. }
  5896. r[105] = a[105] >> n;
  5897. }
  5898. static WC_INLINE sp_digit sp_3072_div_word_106(sp_digit d1, sp_digit d0,
  5899. sp_digit div)
  5900. {
  5901. #ifdef SP_USE_DIVTI3
  5902. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  5903. return d / div;
  5904. #elif defined(__x86_64__) || defined(__i386__)
  5905. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  5906. sp_uint32 lo = (sp_uint32)d;
  5907. sp_digit hi = (sp_digit)(d >> 32);
  5908. __asm__ __volatile__ (
  5909. "idiv %2"
  5910. : "+a" (lo)
  5911. : "d" (hi), "r" (div)
  5912. : "cc"
  5913. );
  5914. return (sp_digit)lo;
  5915. #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
  5916. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  5917. sp_digit dv = (div >> 1) + 1;
  5918. sp_digit t1 = (sp_digit)(d >> 29);
  5919. sp_digit t0 = (sp_digit)(d & 0x1fffffff);
  5920. sp_digit t2;
  5921. sp_digit sign;
  5922. sp_digit r;
  5923. int i;
  5924. sp_int64 m;
  5925. r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  5926. t1 -= dv & (0 - r);
  5927. for (i = 27; i >= 1; i--) {
  5928. t1 += t1 + (((sp_uint32)t0 >> 28) & 1);
  5929. t0 <<= 1;
  5930. t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  5931. r += r + t2;
  5932. t1 -= dv & (0 - t2);
  5933. t1 += t2;
  5934. }
  5935. r += r + 1;
  5936. m = d - ((sp_int64)r * div);
  5937. r += (sp_digit)(m >> 29);
  5938. m = d - ((sp_int64)r * div);
  5939. r += (sp_digit)(m >> 58) - (sp_digit)(d >> 58);
  5940. m = d - ((sp_int64)r * div);
  5941. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  5942. m *= sign;
  5943. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  5944. r += sign * t2;
  5945. m = d - ((sp_int64)r * div);
  5946. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  5947. m *= sign;
  5948. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  5949. r += sign * t2;
  5950. return r;
  5951. #else
  5952. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  5953. sp_digit r = 0;
  5954. sp_digit t;
  5955. sp_digit dv = (div >> 14) + 1;
  5956. t = (sp_digit)(d >> 28);
  5957. t = (t / dv) << 14;
  5958. r += t;
  5959. d -= (sp_int64)t * div;
  5960. t = (sp_digit)(d >> 13);
  5961. t = t / (dv << 1);
  5962. r += t;
  5963. d -= (sp_int64)t * div;
  5964. t = (sp_digit)d;
  5965. t = t / div;
  5966. r += t;
  5967. d -= (sp_int64)t * div;
  5968. return r;
  5969. #endif
  5970. }
  5971. static WC_INLINE sp_digit sp_3072_word_div_word_106(sp_digit d, sp_digit div)
  5972. {
  5973. #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
  5974. defined(SP_DIV_WORD_USE_DIV)
  5975. return d / div;
  5976. #else
  5977. return (sp_digit)((sp_uint32)(div - d) >> 31);
  5978. #endif
  5979. }
  5980. /* Divide d in a and put remainder into r (m*d + r = a)
  5981. * m is not calculated as it is not needed at this time.
  5982. *
  5983. * Full implementation.
  5984. *
  5985. * a Number to be divided.
  5986. * d Number to divide with.
  5987. * m Multiplier result.
  5988. * r Remainder from the division.
  5989. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  5990. */
  5991. static int sp_3072_div_106(const sp_digit* a, const sp_digit* d,
  5992. const sp_digit* m, sp_digit* r)
  5993. {
  5994. int i;
  5995. #ifndef WOLFSSL_SP_DIV_32
  5996. #endif
  5997. sp_digit dv;
  5998. sp_digit r1;
  5999. #ifdef WOLFSSL_SP_SMALL_STACK
  6000. sp_digit* t1 = NULL;
  6001. #else
  6002. sp_digit t1[4 * 106 + 3];
  6003. #endif
  6004. sp_digit* t2 = NULL;
  6005. sp_digit* sd = NULL;
  6006. int err = MP_OKAY;
  6007. (void)m;
  6008. #ifdef WOLFSSL_SP_SMALL_STACK
  6009. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 106 + 3), NULL,
  6010. DYNAMIC_TYPE_TMP_BUFFER);
  6011. if (t1 == NULL)
  6012. err = MEMORY_E;
  6013. #endif
  6014. (void)m;
  6015. if (err == MP_OKAY) {
  6016. t2 = t1 + 212 + 1;
  6017. sd = t2 + 106 + 1;
  6018. sp_3072_mul_d_106(sd, d, (sp_digit)1 << 2);
  6019. sp_3072_mul_d_212(t1, a, (sp_digit)1 << 2);
  6020. dv = sd[105];
  6021. t1[106 + 106] += t1[106 + 106 - 1] >> 29;
  6022. t1[106 + 106 - 1] &= 0x1fffffff;
  6023. for (i=106; i>=0; i--) {
  6024. r1 = sp_3072_div_word_106(t1[106 + i], t1[106 + i - 1], dv);
  6025. sp_3072_mul_d_106(t2, sd, r1);
  6026. (void)sp_3072_sub_106(&t1[i], &t1[i], t2);
  6027. sp_3072_norm_106(&t1[i]);
  6028. t1[106 + i] -= t2[106];
  6029. t1[106 + i] += t1[106 + i - 1] >> 29;
  6030. t1[106 + i - 1] &= 0x1fffffff;
  6031. r1 = sp_3072_div_word_106(-t1[106 + i], -t1[106 + i - 1], dv);
  6032. r1 -= t1[106 + i];
  6033. sp_3072_mul_d_106(t2, sd, r1);
  6034. (void)sp_3072_add_106(&t1[i], &t1[i], t2);
  6035. t1[106 + i] += t1[106 + i - 1] >> 29;
  6036. t1[106 + i - 1] &= 0x1fffffff;
  6037. }
  6038. t1[106 - 1] += t1[106 - 2] >> 29;
  6039. t1[106 - 2] &= 0x1fffffff;
  6040. r1 = sp_3072_word_div_word_106(t1[106 - 1], dv);
  6041. sp_3072_mul_d_106(t2, sd, r1);
  6042. sp_3072_sub_106(t1, t1, t2);
  6043. XMEMCPY(r, t1, sizeof(*r) * 212U);
  6044. for (i=0; i<105; i++) {
  6045. r[i+1] += r[i] >> 29;
  6046. r[i] &= 0x1fffffff;
  6047. }
  6048. sp_3072_cond_add_106(r, r, sd, r[105] >> 31);
  6049. sp_3072_norm_106(r);
  6050. sp_3072_rshift_106(r, r, 2);
  6051. }
  6052. #ifdef WOLFSSL_SP_SMALL_STACK
  6053. if (t1 != NULL)
  6054. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  6055. #endif
  6056. return err;
  6057. }
  6058. /* Reduce a modulo m into r. (r = a mod m)
  6059. *
  6060. * r A single precision number that is the reduced result.
  6061. * a A single precision number that is to be reduced.
  6062. * m A single precision number that is the modulus to reduce with.
  6063. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  6064. */
  6065. static int sp_3072_mod_106(sp_digit* r, const sp_digit* a, const sp_digit* m)
  6066. {
  6067. return sp_3072_div_106(a, m, NULL, r);
  6068. }
  6069. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
  6070. /* Modular exponentiate a to the e mod m. (r = a^e mod m)
  6071. *
  6072. * r A single precision number that is the result of the operation.
  6073. * a A single precision number being exponentiated.
  6074. * e A single precision number that is the exponent.
  6075. * bits The number of bits in the exponent.
  6076. * m A single precision number that is the modulus.
  6077. * returns 0 on success.
  6078. * returns MEMORY_E on dynamic memory allocation failure.
  6079. * returns MP_VAL when base is even or exponent is 0.
  6080. */
  6081. static int sp_3072_mod_exp_106(sp_digit* r, const sp_digit* a, const sp_digit* e,
  6082. int bits, const sp_digit* m, int reduceA)
  6083. {
  6084. #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
  6085. #ifdef WOLFSSL_SP_SMALL_STACK
  6086. sp_digit* td = NULL;
  6087. #else
  6088. sp_digit td[3 * 212];
  6089. #endif
  6090. sp_digit* t[3] = {0, 0, 0};
  6091. sp_digit* norm = NULL;
  6092. sp_digit mp = 1;
  6093. sp_digit n;
  6094. int i;
  6095. int c;
  6096. byte y;
  6097. int err = MP_OKAY;
  6098. if (bits == 0) {
  6099. err = MP_VAL;
  6100. }
  6101. #ifdef WOLFSSL_SP_SMALL_STACK
  6102. if (err == MP_OKAY) {
  6103. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 106 * 2, NULL,
  6104. DYNAMIC_TYPE_TMP_BUFFER);
  6105. if (td == NULL)
  6106. err = MEMORY_E;
  6107. }
  6108. #endif
  6109. if (err == MP_OKAY) {
  6110. norm = td;
  6111. for (i=0; i<3; i++) {
  6112. t[i] = td + (i * 106 * 2);
  6113. XMEMSET(t[i], 0, sizeof(sp_digit) * 106U * 2U);
  6114. }
  6115. sp_3072_mont_setup(m, &mp);
  6116. sp_3072_mont_norm_106(norm, m);
  6117. if (reduceA != 0) {
  6118. err = sp_3072_mod_106(t[1], a, m);
  6119. }
  6120. else {
  6121. XMEMCPY(t[1], a, sizeof(sp_digit) * 106U);
  6122. }
  6123. }
  6124. if (err == MP_OKAY) {
  6125. sp_3072_mul_106(t[1], t[1], norm);
  6126. err = sp_3072_mod_106(t[1], t[1], m);
  6127. }
  6128. if (err == MP_OKAY) {
  6129. i = bits / 29;
  6130. c = bits % 29;
  6131. n = e[i--] << (29 - c);
  6132. for (; ; c--) {
  6133. if (c == 0) {
  6134. if (i == -1) {
  6135. break;
  6136. }
  6137. n = e[i--];
  6138. c = 29;
  6139. }
  6140. y = (int)((n >> 28) & 1);
  6141. n <<= 1;
  6142. sp_3072_mont_mul_106(t[y^1], t[0], t[1], m, mp);
  6143. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  6144. ((size_t)t[1] & addr_mask[y])),
  6145. sizeof(*t[2]) * 106 * 2);
  6146. sp_3072_mont_sqr_106(t[2], t[2], m, mp);
  6147. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  6148. ((size_t)t[1] & addr_mask[y])), t[2],
  6149. sizeof(*t[2]) * 106 * 2);
  6150. }
  6151. sp_3072_mont_reduce_106(t[0], m, mp);
  6152. n = sp_3072_cmp_106(t[0], m);
  6153. sp_3072_cond_sub_106(t[0], t[0], m, ~(n >> 31));
  6154. XMEMCPY(r, t[0], sizeof(*r) * 106 * 2);
  6155. }
  6156. #ifdef WOLFSSL_SP_SMALL_STACK
  6157. if (td != NULL)
  6158. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  6159. #endif
  6160. return err;
  6161. #elif !defined(WC_NO_CACHE_RESISTANT)
  6162. #ifdef WOLFSSL_SP_SMALL_STACK
  6163. sp_digit* td = NULL;
  6164. #else
  6165. sp_digit td[3 * 212];
  6166. #endif
  6167. sp_digit* t[3] = {0, 0, 0};
  6168. sp_digit* norm = NULL;
  6169. sp_digit mp = 1;
  6170. sp_digit n;
  6171. int i;
  6172. int c;
  6173. byte y;
  6174. int err = MP_OKAY;
  6175. if (bits == 0) {
  6176. err = MP_VAL;
  6177. }
  6178. #ifdef WOLFSSL_SP_SMALL_STACK
  6179. if (err == MP_OKAY) {
  6180. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 106 * 2, NULL,
  6181. DYNAMIC_TYPE_TMP_BUFFER);
  6182. if (td == NULL)
  6183. err = MEMORY_E;
  6184. }
  6185. #endif
  6186. if (err == MP_OKAY) {
  6187. norm = td;
  6188. for (i=0; i<3; i++) {
  6189. t[i] = td + (i * 106 * 2);
  6190. }
  6191. sp_3072_mont_setup(m, &mp);
  6192. sp_3072_mont_norm_106(norm, m);
  6193. if (reduceA != 0) {
  6194. err = sp_3072_mod_106(t[1], a, m);
  6195. if (err == MP_OKAY) {
  6196. sp_3072_mul_106(t[1], t[1], norm);
  6197. err = sp_3072_mod_106(t[1], t[1], m);
  6198. }
  6199. }
  6200. else {
  6201. sp_3072_mul_106(t[1], a, norm);
  6202. err = sp_3072_mod_106(t[1], t[1], m);
  6203. }
  6204. }
  6205. if (err == MP_OKAY) {
  6206. i = bits / 29;
  6207. c = bits % 29;
  6208. n = e[i--] << (29 - c);
  6209. for (; ; c--) {
  6210. if (c == 0) {
  6211. if (i == -1) {
  6212. break;
  6213. }
  6214. n = e[i--];
  6215. c = 29;
  6216. }
  6217. y = (int)((n >> 28) & 1);
  6218. n <<= 1;
  6219. sp_3072_mont_mul_106(t[y^1], t[0], t[1], m, mp);
  6220. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  6221. ((size_t)t[1] & addr_mask[y])),
  6222. sizeof(*t[2]) * 106 * 2);
  6223. sp_3072_mont_sqr_106(t[2], t[2], m, mp);
  6224. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  6225. ((size_t)t[1] & addr_mask[y])), t[2],
  6226. sizeof(*t[2]) * 106 * 2);
  6227. }
  6228. sp_3072_mont_reduce_106(t[0], m, mp);
  6229. n = sp_3072_cmp_106(t[0], m);
  6230. sp_3072_cond_sub_106(t[0], t[0], m, ~(n >> 31));
  6231. XMEMCPY(r, t[0], sizeof(*r) * 106 * 2);
  6232. }
  6233. #ifdef WOLFSSL_SP_SMALL_STACK
  6234. if (td != NULL)
  6235. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  6236. #endif
  6237. return err;
  6238. #else
  6239. #ifdef WOLFSSL_SP_SMALL_STACK
  6240. sp_digit* td = NULL;
  6241. #else
  6242. sp_digit td[(16 * 212) + 212];
  6243. #endif
  6244. sp_digit* t[16];
  6245. sp_digit* rt = NULL;
  6246. sp_digit* norm = NULL;
  6247. sp_digit mp = 1;
  6248. sp_digit n;
  6249. int i;
  6250. int c;
  6251. byte y;
  6252. int err = MP_OKAY;
  6253. if (bits == 0) {
  6254. err = MP_VAL;
  6255. }
  6256. #ifdef WOLFSSL_SP_SMALL_STACK
  6257. if (err == MP_OKAY) {
  6258. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((16 * 212) + 212), NULL,
  6259. DYNAMIC_TYPE_TMP_BUFFER);
  6260. if (td == NULL)
  6261. err = MEMORY_E;
  6262. }
  6263. #endif
  6264. if (err == MP_OKAY) {
  6265. norm = td;
  6266. for (i=0; i<16; i++)
  6267. t[i] = td + i * 212;
  6268. rt = td + 3392;
  6269. sp_3072_mont_setup(m, &mp);
  6270. sp_3072_mont_norm_106(norm, m);
  6271. if (reduceA != 0) {
  6272. err = sp_3072_mod_106(t[1], a, m);
  6273. if (err == MP_OKAY) {
  6274. sp_3072_mul_106(t[1], t[1], norm);
  6275. err = sp_3072_mod_106(t[1], t[1], m);
  6276. }
  6277. }
  6278. else {
  6279. sp_3072_mul_106(t[1], a, norm);
  6280. err = sp_3072_mod_106(t[1], t[1], m);
  6281. }
  6282. }
  6283. if (err == MP_OKAY) {
  6284. sp_3072_mont_sqr_106(t[ 2], t[ 1], m, mp);
  6285. sp_3072_mont_mul_106(t[ 3], t[ 2], t[ 1], m, mp);
  6286. sp_3072_mont_sqr_106(t[ 4], t[ 2], m, mp);
  6287. sp_3072_mont_mul_106(t[ 5], t[ 3], t[ 2], m, mp);
  6288. sp_3072_mont_sqr_106(t[ 6], t[ 3], m, mp);
  6289. sp_3072_mont_mul_106(t[ 7], t[ 4], t[ 3], m, mp);
  6290. sp_3072_mont_sqr_106(t[ 8], t[ 4], m, mp);
  6291. sp_3072_mont_mul_106(t[ 9], t[ 5], t[ 4], m, mp);
  6292. sp_3072_mont_sqr_106(t[10], t[ 5], m, mp);
  6293. sp_3072_mont_mul_106(t[11], t[ 6], t[ 5], m, mp);
  6294. sp_3072_mont_sqr_106(t[12], t[ 6], m, mp);
  6295. sp_3072_mont_mul_106(t[13], t[ 7], t[ 6], m, mp);
  6296. sp_3072_mont_sqr_106(t[14], t[ 7], m, mp);
  6297. sp_3072_mont_mul_106(t[15], t[ 8], t[ 7], m, mp);
  6298. bits = ((bits + 3) / 4) * 4;
  6299. i = ((bits + 28) / 29) - 1;
  6300. c = bits % 29;
  6301. if (c == 0) {
  6302. c = 29;
  6303. }
  6304. if (i < 106) {
  6305. n = e[i--] << (32 - c);
  6306. }
  6307. else {
  6308. n = 0;
  6309. i--;
  6310. }
  6311. if (c < 4) {
  6312. n |= e[i--] << (3 - c);
  6313. c += 29;
  6314. }
  6315. y = (int)((n >> 28) & 0xf);
  6316. n <<= 4;
  6317. c -= 4;
  6318. XMEMCPY(rt, t[y], sizeof(sp_digit) * 212);
  6319. while ((i >= 0) || (c >= 4)) {
  6320. if (c >= 4) {
  6321. y = (byte)((n >> 28) & 0xf);
  6322. n <<= 4;
  6323. c -= 4;
  6324. }
  6325. else if (c == 0) {
  6326. n = e[i--] << 3;
  6327. y = (byte)((n >> 28) & 0xf);
  6328. n <<= 4;
  6329. c = 25;
  6330. }
  6331. else {
  6332. y = (byte)((n >> 28) & 0xf);
  6333. n = e[i--] << 3;
  6334. c = 4 - c;
  6335. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  6336. n <<= c;
  6337. c = 29 - c;
  6338. }
  6339. sp_3072_mont_sqr_106(rt, rt, m, mp);
  6340. sp_3072_mont_sqr_106(rt, rt, m, mp);
  6341. sp_3072_mont_sqr_106(rt, rt, m, mp);
  6342. sp_3072_mont_sqr_106(rt, rt, m, mp);
  6343. sp_3072_mont_mul_106(rt, rt, t[y], m, mp);
  6344. }
  6345. sp_3072_mont_reduce_106(rt, m, mp);
  6346. n = sp_3072_cmp_106(rt, m);
  6347. sp_3072_cond_sub_106(rt, rt, m, ~(n >> 31));
  6348. XMEMCPY(r, rt, sizeof(sp_digit) * 212);
  6349. }
  6350. #ifdef WOLFSSL_SP_SMALL_STACK
  6351. if (td != NULL)
  6352. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  6353. #endif
  6354. return err;
  6355. #endif
  6356. }
  6357. #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
  6358. #ifdef WOLFSSL_HAVE_SP_RSA
  6359. /* RSA public key operation.
  6360. *
  6361. * in Array of bytes representing the number to exponentiate, base.
  6362. * inLen Number of bytes in base.
  6363. * em Public exponent.
  6364. * mm Modulus.
  6365. * out Buffer to hold big-endian bytes of exponentiation result.
  6366. * Must be at least 384 bytes long.
  6367. * outLen Number of bytes in result.
  6368. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
  6369. * an array is too long and MEMORY_E when dynamic memory allocation fails.
  6370. */
  6371. int sp_RsaPublic_3072(const byte* in, word32 inLen, const mp_int* em,
  6372. const mp_int* mm, byte* out, word32* outLen)
  6373. {
  6374. #ifdef WOLFSSL_SP_SMALL
  6375. #ifdef WOLFSSL_SP_SMALL_STACK
  6376. sp_digit* a = NULL;
  6377. #else
  6378. sp_digit a[106 * 5];
  6379. #endif
  6380. sp_digit* m = NULL;
  6381. sp_digit* r = NULL;
  6382. sp_digit* norm = NULL;
  6383. sp_digit e[1] = {0};
  6384. sp_digit mp = 0;
  6385. int i;
  6386. int err = MP_OKAY;
  6387. if (*outLen < 384U) {
  6388. err = MP_TO_E;
  6389. }
  6390. if (err == MP_OKAY) {
  6391. if (mp_count_bits(em) > 29) {
  6392. err = MP_READ_E;
  6393. }
  6394. else if (inLen > 384U) {
  6395. err = MP_READ_E;
  6396. }
  6397. else if (mp_count_bits(mm) != 3072) {
  6398. err = MP_READ_E;
  6399. }
  6400. else if (mp_iseven(mm)) {
  6401. err = MP_VAL;
  6402. }
  6403. }
  6404. #ifdef WOLFSSL_SP_SMALL_STACK
  6405. if (err == MP_OKAY) {
  6406. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 5, NULL,
  6407. DYNAMIC_TYPE_RSA);
  6408. if (a == NULL)
  6409. err = MEMORY_E;
  6410. }
  6411. #endif
  6412. if (err == MP_OKAY) {
  6413. r = a + 106 * 2;
  6414. m = r + 106 * 2;
  6415. norm = r;
  6416. sp_3072_from_bin(a, 106, in, inLen);
  6417. #if DIGIT_BIT >= 29
  6418. e[0] = (sp_digit)em->dp[0];
  6419. #else
  6420. e[0] = (sp_digit)em->dp[0];
  6421. if (em->used > 1) {
  6422. e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT;
  6423. }
  6424. #endif
  6425. if (e[0] == 0) {
  6426. err = MP_EXPTMOD_E;
  6427. }
  6428. }
  6429. if (err == MP_OKAY) {
  6430. sp_3072_from_mp(m, 106, mm);
  6431. sp_3072_mont_setup(m, &mp);
  6432. sp_3072_mont_norm_106(norm, m);
  6433. }
  6434. if (err == MP_OKAY) {
  6435. sp_3072_mul_106(a, a, norm);
  6436. err = sp_3072_mod_106(a, a, m);
  6437. }
  6438. if (err == MP_OKAY) {
  6439. for (i=28; i>=0; i--) {
  6440. if ((e[0] >> i) != 0) {
  6441. break;
  6442. }
  6443. }
  6444. XMEMCPY(r, a, sizeof(sp_digit) * 106 * 2);
  6445. for (i--; i>=0; i--) {
  6446. sp_3072_mont_sqr_106(r, r, m, mp);
  6447. if (((e[0] >> i) & 1) == 1) {
  6448. sp_3072_mont_mul_106(r, r, a, m, mp);
  6449. }
  6450. }
  6451. sp_3072_mont_reduce_106(r, m, mp);
  6452. mp = sp_3072_cmp_106(r, m);
  6453. sp_3072_cond_sub_106(r, r, m, ~(mp >> 31));
  6454. sp_3072_to_bin_106(r, out);
  6455. *outLen = 384;
  6456. }
  6457. #ifdef WOLFSSL_SP_SMALL_STACK
  6458. if (a != NULL)
  6459. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  6460. #endif
  6461. return err;
  6462. #else
  6463. #ifdef WOLFSSL_SP_SMALL_STACK
  6464. sp_digit* d = NULL;
  6465. #else
  6466. sp_digit d[106 * 5];
  6467. #endif
  6468. sp_digit* a = NULL;
  6469. sp_digit* m = NULL;
  6470. sp_digit* r = NULL;
  6471. sp_digit e[1] = {0};
  6472. int err = MP_OKAY;
  6473. if (*outLen < 384U) {
  6474. err = MP_TO_E;
  6475. }
  6476. if (err == MP_OKAY) {
  6477. if (mp_count_bits(em) > 29) {
  6478. err = MP_READ_E;
  6479. }
  6480. else if (inLen > 384U) {
  6481. err = MP_READ_E;
  6482. }
  6483. else if (mp_count_bits(mm) != 3072) {
  6484. err = MP_READ_E;
  6485. }
  6486. else if (mp_iseven(mm)) {
  6487. err = MP_VAL;
  6488. }
  6489. }
  6490. #ifdef WOLFSSL_SP_SMALL_STACK
  6491. if (err == MP_OKAY) {
  6492. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 5, NULL,
  6493. DYNAMIC_TYPE_RSA);
  6494. if (d == NULL)
  6495. err = MEMORY_E;
  6496. }
  6497. #endif
  6498. if (err == MP_OKAY) {
  6499. a = d;
  6500. r = a + 106 * 2;
  6501. m = r + 106 * 2;
  6502. sp_3072_from_bin(a, 106, in, inLen);
  6503. #if DIGIT_BIT >= 29
  6504. e[0] = (sp_digit)em->dp[0];
  6505. #else
  6506. e[0] = (sp_digit)em->dp[0];
  6507. if (em->used > 1) {
  6508. e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT;
  6509. }
  6510. #endif
  6511. if (e[0] == 0) {
  6512. err = MP_EXPTMOD_E;
  6513. }
  6514. }
  6515. if (err == MP_OKAY) {
  6516. sp_3072_from_mp(m, 106, mm);
  6517. if (e[0] == 0x3) {
  6518. sp_3072_sqr_106(r, a);
  6519. err = sp_3072_mod_106(r, r, m);
  6520. if (err == MP_OKAY) {
  6521. sp_3072_mul_106(r, a, r);
  6522. err = sp_3072_mod_106(r, r, m);
  6523. }
  6524. }
  6525. else {
  6526. sp_digit* norm = r;
  6527. int i;
  6528. sp_digit mp;
  6529. sp_3072_mont_setup(m, &mp);
  6530. sp_3072_mont_norm_106(norm, m);
  6531. sp_3072_mul_106(a, a, norm);
  6532. err = sp_3072_mod_106(a, a, m);
  6533. if (err == MP_OKAY) {
  6534. for (i=28; i>=0; i--) {
  6535. if ((e[0] >> i) != 0) {
  6536. break;
  6537. }
  6538. }
  6539. XMEMCPY(r, a, sizeof(sp_digit) * 212U);
  6540. for (i--; i>=0; i--) {
  6541. sp_3072_mont_sqr_106(r, r, m, mp);
  6542. if (((e[0] >> i) & 1) == 1) {
  6543. sp_3072_mont_mul_106(r, r, a, m, mp);
  6544. }
  6545. }
  6546. sp_3072_mont_reduce_106(r, m, mp);
  6547. mp = sp_3072_cmp_106(r, m);
  6548. sp_3072_cond_sub_106(r, r, m, ~(mp >> 31));
  6549. }
  6550. }
  6551. }
  6552. if (err == MP_OKAY) {
  6553. sp_3072_to_bin_106(r, out);
  6554. *outLen = 384;
  6555. }
  6556. #ifdef WOLFSSL_SP_SMALL_STACK
  6557. if (d != NULL)
  6558. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  6559. #endif
  6560. return err;
  6561. #endif /* WOLFSSL_SP_SMALL */
  6562. }
  6563. #ifndef WOLFSSL_RSA_PUBLIC_ONLY
  6564. #if !defined(SP_RSA_PRIVATE_EXP_D) && !defined(RSA_LOW_MEM)
  6565. #endif /* !SP_RSA_PRIVATE_EXP_D & !RSA_LOW_MEM */
  6566. /* RSA private key operation.
  6567. *
  6568. * in Array of bytes representing the number to exponentiate, base.
  6569. * inLen Number of bytes in base.
  6570. * dm Private exponent.
  6571. * pm First prime.
  6572. * qm Second prime.
  6573. * dpm First prime's CRT exponent.
  6574. * dqm Second prime's CRT exponent.
  6575. * qim Inverse of second prime mod p.
  6576. * mm Modulus.
  6577. * out Buffer to hold big-endian bytes of exponentiation result.
  6578. * Must be at least 384 bytes long.
  6579. * outLen Number of bytes in result.
  6580. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
  6581. * an array is too long and MEMORY_E when dynamic memory allocation fails.
  6582. */
  6583. int sp_RsaPrivate_3072(const byte* in, word32 inLen, const mp_int* dm,
  6584. const mp_int* pm, const mp_int* qm, const mp_int* dpm, const mp_int* dqm,
  6585. const mp_int* qim, const mp_int* mm, byte* out, word32* outLen)
  6586. {
  6587. #if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM)
  6588. #if defined(WOLFSSL_SP_SMALL)
  6589. #ifdef WOLFSSL_SP_SMALL_STACK
  6590. sp_digit* d = NULL;
  6591. #else
  6592. sp_digit d[106 * 4];
  6593. #endif
  6594. sp_digit* a = NULL;
  6595. sp_digit* m = NULL;
  6596. sp_digit* r = NULL;
  6597. int err = MP_OKAY;
  6598. (void)pm;
  6599. (void)qm;
  6600. (void)dpm;
  6601. (void)dqm;
  6602. (void)qim;
  6603. if (*outLen < 384U) {
  6604. err = MP_TO_E;
  6605. }
  6606. if (err == MP_OKAY) {
  6607. if (mp_count_bits(dm) > 3072) {
  6608. err = MP_READ_E;
  6609. }
  6610. else if (inLen > 384) {
  6611. err = MP_READ_E;
  6612. }
  6613. else if (mp_count_bits(mm) != 3072) {
  6614. err = MP_READ_E;
  6615. }
  6616. else if (mp_iseven(mm)) {
  6617. err = MP_VAL;
  6618. }
  6619. }
  6620. #ifdef WOLFSSL_SP_SMALL_STACK
  6621. if (err == MP_OKAY) {
  6622. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 4, NULL,
  6623. DYNAMIC_TYPE_RSA);
  6624. if (d == NULL)
  6625. err = MEMORY_E;
  6626. }
  6627. #endif
  6628. if (err == MP_OKAY) {
  6629. a = d + 106;
  6630. m = a + 212;
  6631. r = a;
  6632. sp_3072_from_bin(a, 106, in, inLen);
  6633. sp_3072_from_mp(d, 106, dm);
  6634. sp_3072_from_mp(m, 106, mm);
  6635. err = sp_3072_mod_exp_106(r, a, d, 3072, m, 0);
  6636. }
  6637. if (err == MP_OKAY) {
  6638. sp_3072_to_bin_106(r, out);
  6639. *outLen = 384;
  6640. }
  6641. #ifdef WOLFSSL_SP_SMALL_STACK
  6642. if (d != NULL)
  6643. #endif
  6644. {
  6645. /* only "a" and "r" are sensitive and need zeroized (same pointer) */
  6646. if (a != NULL)
  6647. ForceZero(a, sizeof(sp_digit) * 106);
  6648. #ifdef WOLFSSL_SP_SMALL_STACK
  6649. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  6650. #endif
  6651. }
  6652. return err;
  6653. #else
  6654. #ifdef WOLFSSL_SP_SMALL_STACK
  6655. sp_digit* d = NULL;
  6656. #else
  6657. sp_digit d[106 * 4];
  6658. #endif
  6659. sp_digit* a = NULL;
  6660. sp_digit* m = NULL;
  6661. sp_digit* r = NULL;
  6662. int err = MP_OKAY;
  6663. (void)pm;
  6664. (void)qm;
  6665. (void)dpm;
  6666. (void)dqm;
  6667. (void)qim;
  6668. if (*outLen < 384U) {
  6669. err = MP_TO_E;
  6670. }
  6671. if (err == MP_OKAY) {
  6672. if (mp_count_bits(dm) > 3072) {
  6673. err = MP_READ_E;
  6674. }
  6675. else if (inLen > 384U) {
  6676. err = MP_READ_E;
  6677. }
  6678. else if (mp_count_bits(mm) != 3072) {
  6679. err = MP_READ_E;
  6680. }
  6681. else if (mp_iseven(mm)) {
  6682. err = MP_VAL;
  6683. }
  6684. }
  6685. #ifdef WOLFSSL_SP_SMALL_STACK
  6686. if (err == MP_OKAY) {
  6687. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 4, NULL,
  6688. DYNAMIC_TYPE_RSA);
  6689. if (d == NULL)
  6690. err = MEMORY_E;
  6691. }
  6692. #endif
  6693. if (err == MP_OKAY) {
  6694. a = d + 106;
  6695. m = a + 212;
  6696. r = a;
  6697. sp_3072_from_bin(a, 106, in, inLen);
  6698. sp_3072_from_mp(d, 106, dm);
  6699. sp_3072_from_mp(m, 106, mm);
  6700. err = sp_3072_mod_exp_106(r, a, d, 3072, m, 0);
  6701. }
  6702. if (err == MP_OKAY) {
  6703. sp_3072_to_bin_106(r, out);
  6704. *outLen = 384;
  6705. }
  6706. #ifdef WOLFSSL_SP_SMALL_STACK
  6707. if (d != NULL)
  6708. #endif
  6709. {
  6710. /* only "a" and "r" are sensitive and need zeroized (same pointer) */
  6711. if (a != NULL)
  6712. ForceZero(a, sizeof(sp_digit) * 106);
  6713. #ifdef WOLFSSL_SP_SMALL_STACK
  6714. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  6715. #endif
  6716. }
  6717. return err;
  6718. #endif /* WOLFSSL_SP_SMALL */
  6719. #else
  6720. #if defined(WOLFSSL_SP_SMALL)
  6721. #ifdef WOLFSSL_SP_SMALL_STACK
  6722. sp_digit* a = NULL;
  6723. #else
  6724. sp_digit a[53 * 8];
  6725. #endif
  6726. sp_digit* p = NULL;
  6727. sp_digit* dp = NULL;
  6728. sp_digit* dq = NULL;
  6729. sp_digit* qi = NULL;
  6730. sp_digit* tmpa = NULL;
  6731. sp_digit* tmpb = NULL;
  6732. sp_digit* r = NULL;
  6733. int err = MP_OKAY;
  6734. (void)dm;
  6735. (void)mm;
  6736. if (*outLen < 384U) {
  6737. err = MP_TO_E;
  6738. }
  6739. if (err == MP_OKAY) {
  6740. if (inLen > 384) {
  6741. err = MP_READ_E;
  6742. }
  6743. else if (mp_count_bits(mm) != 3072) {
  6744. err = MP_READ_E;
  6745. }
  6746. else if (mp_iseven(mm)) {
  6747. err = MP_VAL;
  6748. }
  6749. else if (mp_iseven(pm)) {
  6750. err = MP_VAL;
  6751. }
  6752. else if (mp_iseven(qm)) {
  6753. err = MP_VAL;
  6754. }
  6755. }
  6756. #ifdef WOLFSSL_SP_SMALL_STACK
  6757. if (err == MP_OKAY) {
  6758. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 53 * 8, NULL,
  6759. DYNAMIC_TYPE_RSA);
  6760. if (a == NULL)
  6761. err = MEMORY_E;
  6762. }
  6763. #endif
  6764. if (err == MP_OKAY) {
  6765. p = a + 106;
  6766. qi = dq = dp = p + 53;
  6767. tmpa = qi + 53;
  6768. tmpb = tmpa + 106;
  6769. r = a;
  6770. sp_3072_from_bin(a, 106, in, inLen);
  6771. sp_3072_from_mp(p, 53, pm);
  6772. sp_3072_from_mp(dp, 53, dpm);
  6773. err = sp_3072_mod_exp_53(tmpa, a, dp, 1536, p, 1);
  6774. }
  6775. if (err == MP_OKAY) {
  6776. sp_3072_from_mp(p, 53, qm);
  6777. sp_3072_from_mp(dq, 53, dqm);
  6778. err = sp_3072_mod_exp_53(tmpb, a, dq, 1536, p, 1);
  6779. }
  6780. if (err == MP_OKAY) {
  6781. sp_3072_from_mp(p, 53, pm);
  6782. (void)sp_3072_sub_53(tmpa, tmpa, tmpb);
  6783. sp_3072_norm_53(tmpa);
  6784. sp_3072_cond_add_53(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[52] >> 31));
  6785. sp_3072_cond_add_53(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[52] >> 31));
  6786. sp_3072_norm_53(tmpa);
  6787. sp_3072_from_mp(qi, 53, qim);
  6788. sp_3072_mul_53(tmpa, tmpa, qi);
  6789. err = sp_3072_mod_53(tmpa, tmpa, p);
  6790. }
  6791. if (err == MP_OKAY) {
  6792. sp_3072_from_mp(p, 53, qm);
  6793. sp_3072_mul_53(tmpa, p, tmpa);
  6794. (void)sp_3072_add_106(r, tmpb, tmpa);
  6795. sp_3072_norm_106(r);
  6796. sp_3072_to_bin_106(r, out);
  6797. *outLen = 384;
  6798. }
  6799. #ifdef WOLFSSL_SP_SMALL_STACK
  6800. if (a != NULL)
  6801. #endif
  6802. {
  6803. ForceZero(a, sizeof(sp_digit) * 53 * 8);
  6804. #ifdef WOLFSSL_SP_SMALL_STACK
  6805. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  6806. #endif
  6807. }
  6808. return err;
  6809. #else
  6810. #ifdef WOLFSSL_SP_SMALL_STACK
  6811. sp_digit* a = NULL;
  6812. #else
  6813. sp_digit a[53 * 13];
  6814. #endif
  6815. sp_digit* p = NULL;
  6816. sp_digit* q = NULL;
  6817. sp_digit* dp = NULL;
  6818. sp_digit* dq = NULL;
  6819. sp_digit* qi = NULL;
  6820. sp_digit* tmpa = NULL;
  6821. sp_digit* tmpb = NULL;
  6822. sp_digit* r = NULL;
  6823. int err = MP_OKAY;
  6824. (void)dm;
  6825. (void)mm;
  6826. if (*outLen < 384U) {
  6827. err = MP_TO_E;
  6828. }
  6829. if (err == MP_OKAY) {
  6830. if (inLen > 384U) {
  6831. err = MP_READ_E;
  6832. }
  6833. else if (mp_count_bits(mm) != 3072) {
  6834. err = MP_READ_E;
  6835. }
  6836. else if (mp_iseven(mm)) {
  6837. err = MP_VAL;
  6838. }
  6839. else if (mp_iseven(pm)) {
  6840. err = MP_VAL;
  6841. }
  6842. else if (mp_iseven(qm)) {
  6843. err = MP_VAL;
  6844. }
  6845. }
  6846. #ifdef WOLFSSL_SP_SMALL_STACK
  6847. if (err == MP_OKAY) {
  6848. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 53 * 13, NULL,
  6849. DYNAMIC_TYPE_RSA);
  6850. if (a == NULL)
  6851. err = MEMORY_E;
  6852. }
  6853. #endif
  6854. if (err == MP_OKAY) {
  6855. p = a + 106 * 2;
  6856. q = p + 53;
  6857. dp = q + 53;
  6858. dq = dp + 53;
  6859. qi = dq + 53;
  6860. tmpa = qi + 53;
  6861. tmpb = tmpa + 106;
  6862. r = a;
  6863. sp_3072_from_bin(a, 106, in, inLen);
  6864. sp_3072_from_mp(p, 53, pm);
  6865. sp_3072_from_mp(q, 53, qm);
  6866. sp_3072_from_mp(dp, 53, dpm);
  6867. sp_3072_from_mp(dq, 53, dqm);
  6868. sp_3072_from_mp(qi, 53, qim);
  6869. err = sp_3072_mod_exp_53(tmpa, a, dp, 1536, p, 1);
  6870. }
  6871. if (err == MP_OKAY) {
  6872. err = sp_3072_mod_exp_53(tmpb, a, dq, 1536, q, 1);
  6873. }
  6874. if (err == MP_OKAY) {
  6875. (void)sp_3072_sub_53(tmpa, tmpa, tmpb);
  6876. sp_3072_norm_53(tmpa);
  6877. sp_3072_cond_add_53(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[52] >> 31));
  6878. sp_3072_cond_add_53(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[52] >> 31));
  6879. sp_3072_norm_53(tmpa);
  6880. sp_3072_mul_53(tmpa, tmpa, qi);
  6881. err = sp_3072_mod_53(tmpa, tmpa, p);
  6882. }
  6883. if (err == MP_OKAY) {
  6884. sp_3072_mul_53(tmpa, tmpa, q);
  6885. (void)sp_3072_add_106(r, tmpb, tmpa);
  6886. sp_3072_norm_106(r);
  6887. sp_3072_to_bin_106(r, out);
  6888. *outLen = 384;
  6889. }
  6890. #ifdef WOLFSSL_SP_SMALL_STACK
  6891. if (a != NULL)
  6892. #endif
  6893. {
  6894. ForceZero(a, sizeof(sp_digit) * 53 * 13);
  6895. #ifdef WOLFSSL_SP_SMALL_STACK
  6896. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  6897. #endif
  6898. }
  6899. return err;
  6900. #endif /* WOLFSSL_SP_SMALL */
  6901. #endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */
  6902. }
  6903. #endif /* !WOLFSSL_RSA_PUBLIC_ONLY */
  6904. #endif /* WOLFSSL_HAVE_SP_RSA */
  6905. #if defined(WOLFSSL_HAVE_SP_DH) || (defined(WOLFSSL_HAVE_SP_RSA) && \
  6906. !defined(WOLFSSL_RSA_PUBLIC_ONLY))
  6907. /* Convert an array of sp_digit to an mp_int.
  6908. *
  6909. * a A single precision integer.
  6910. * r A multi-precision integer.
  6911. */
  6912. static int sp_3072_to_mp(const sp_digit* a, mp_int* r)
  6913. {
  6914. int err;
  6915. err = mp_grow(r, (3072 + DIGIT_BIT - 1) / DIGIT_BIT);
  6916. if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
  6917. #if DIGIT_BIT == 29
  6918. XMEMCPY(r->dp, a, sizeof(sp_digit) * 106);
  6919. r->used = 106;
  6920. mp_clamp(r);
  6921. #elif DIGIT_BIT < 29
  6922. int i;
  6923. int j = 0;
  6924. int s = 0;
  6925. r->dp[0] = 0;
  6926. for (i = 0; i < 106; i++) {
  6927. r->dp[j] |= (mp_digit)(a[i] << s);
  6928. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  6929. s = DIGIT_BIT - s;
  6930. r->dp[++j] = (mp_digit)(a[i] >> s);
  6931. while (s + DIGIT_BIT <= 29) {
  6932. s += DIGIT_BIT;
  6933. r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  6934. if (s == SP_WORD_SIZE) {
  6935. r->dp[j] = 0;
  6936. }
  6937. else {
  6938. r->dp[j] = (mp_digit)(a[i] >> s);
  6939. }
  6940. }
  6941. s = 29 - s;
  6942. }
  6943. r->used = (3072 + DIGIT_BIT - 1) / DIGIT_BIT;
  6944. mp_clamp(r);
  6945. #else
  6946. int i;
  6947. int j = 0;
  6948. int s = 0;
  6949. r->dp[0] = 0;
  6950. for (i = 0; i < 106; i++) {
  6951. r->dp[j] |= ((mp_digit)a[i]) << s;
  6952. if (s + 29 >= DIGIT_BIT) {
  6953. #if DIGIT_BIT != 32 && DIGIT_BIT != 64
  6954. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  6955. #endif
  6956. s = DIGIT_BIT - s;
  6957. r->dp[++j] = a[i] >> s;
  6958. s = 29 - s;
  6959. }
  6960. else {
  6961. s += 29;
  6962. }
  6963. }
  6964. r->used = (3072 + DIGIT_BIT - 1) / DIGIT_BIT;
  6965. mp_clamp(r);
  6966. #endif
  6967. }
  6968. return err;
  6969. }
  6970. /* Perform the modular exponentiation for Diffie-Hellman.
  6971. *
  6972. * base Base. MP integer.
  6973. * exp Exponent. MP integer.
  6974. * mod Modulus. MP integer.
  6975. * res Result. MP integer.
  6976. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  6977. * and MEMORY_E if memory allocation fails.
  6978. */
  6979. int sp_ModExp_3072(const mp_int* base, const mp_int* exp, const mp_int* mod,
  6980. mp_int* res)
  6981. {
  6982. #ifdef WOLFSSL_SP_SMALL
  6983. int err = MP_OKAY;
  6984. #ifdef WOLFSSL_SP_SMALL_STACK
  6985. sp_digit* b = NULL;
  6986. #else
  6987. sp_digit b[106 * 4];
  6988. #endif
  6989. sp_digit* e = NULL;
  6990. sp_digit* m = NULL;
  6991. sp_digit* r = NULL;
  6992. int expBits = mp_count_bits(exp);
  6993. if (mp_count_bits(base) > 3072) {
  6994. err = MP_READ_E;
  6995. }
  6996. else if (expBits > 3072) {
  6997. err = MP_READ_E;
  6998. }
  6999. else if (mp_count_bits(mod) != 3072) {
  7000. err = MP_READ_E;
  7001. }
  7002. else if (mp_iseven(mod)) {
  7003. err = MP_VAL;
  7004. }
  7005. #ifdef WOLFSSL_SP_SMALL_STACK
  7006. if (err == MP_OKAY) {
  7007. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 4, NULL,
  7008. DYNAMIC_TYPE_DH);
  7009. if (b == NULL)
  7010. err = MEMORY_E;
  7011. }
  7012. #endif
  7013. if (err == MP_OKAY) {
  7014. e = b + 106 * 2;
  7015. m = e + 106;
  7016. r = b;
  7017. sp_3072_from_mp(b, 106, base);
  7018. sp_3072_from_mp(e, 106, exp);
  7019. sp_3072_from_mp(m, 106, mod);
  7020. err = sp_3072_mod_exp_106(r, b, e, mp_count_bits(exp), m, 0);
  7021. }
  7022. if (err == MP_OKAY) {
  7023. err = sp_3072_to_mp(r, res);
  7024. }
  7025. #ifdef WOLFSSL_SP_SMALL_STACK
  7026. if (b != NULL)
  7027. #endif
  7028. {
  7029. /* only "e" is sensitive and needs zeroized */
  7030. if (e != NULL)
  7031. ForceZero(e, sizeof(sp_digit) * 106U);
  7032. #ifdef WOLFSSL_SP_SMALL_STACK
  7033. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  7034. #endif
  7035. }
  7036. return err;
  7037. #else
  7038. #ifdef WOLFSSL_SP_SMALL_STACK
  7039. sp_digit* b = NULL;
  7040. #else
  7041. sp_digit b[106 * 4];
  7042. #endif
  7043. sp_digit* e = NULL;
  7044. sp_digit* m = NULL;
  7045. sp_digit* r = NULL;
  7046. int err = MP_OKAY;
  7047. int expBits = mp_count_bits(exp);
  7048. if (mp_count_bits(base) > 3072) {
  7049. err = MP_READ_E;
  7050. }
  7051. else if (expBits > 3072) {
  7052. err = MP_READ_E;
  7053. }
  7054. else if (mp_count_bits(mod) != 3072) {
  7055. err = MP_READ_E;
  7056. }
  7057. else if (mp_iseven(mod)) {
  7058. err = MP_VAL;
  7059. }
  7060. #ifdef WOLFSSL_SP_SMALL_STACK
  7061. if (err == MP_OKAY) {
  7062. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 4, NULL, DYNAMIC_TYPE_DH);
  7063. if (b == NULL)
  7064. err = MEMORY_E;
  7065. }
  7066. #endif
  7067. if (err == MP_OKAY) {
  7068. e = b + 106 * 2;
  7069. m = e + 106;
  7070. r = b;
  7071. sp_3072_from_mp(b, 106, base);
  7072. sp_3072_from_mp(e, 106, exp);
  7073. sp_3072_from_mp(m, 106, mod);
  7074. err = sp_3072_mod_exp_106(r, b, e, expBits, m, 0);
  7075. }
  7076. if (err == MP_OKAY) {
  7077. err = sp_3072_to_mp(r, res);
  7078. }
  7079. #ifdef WOLFSSL_SP_SMALL_STACK
  7080. if (b != NULL)
  7081. #endif
  7082. {
  7083. /* only "e" is sensitive and needs zeroized */
  7084. if (e != NULL)
  7085. ForceZero(e, sizeof(sp_digit) * 106U);
  7086. #ifdef WOLFSSL_SP_SMALL_STACK
  7087. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  7088. #endif
  7089. }
  7090. return err;
  7091. #endif
  7092. }
  7093. #ifdef WOLFSSL_HAVE_SP_DH
  7094. #ifdef HAVE_FFDHE_3072
  7095. SP_NOINLINE static void sp_3072_lshift_106(sp_digit* r, const sp_digit* a,
  7096. byte n)
  7097. {
  7098. int i;
  7099. r[106] = a[105] >> (29 - n);
  7100. for (i=105; i>0; i--) {
  7101. r[i] = ((a[i] << n) | (a[i-1] >> (29 - n))) & 0x1fffffff;
  7102. }
  7103. r[0] = (a[0] << n) & 0x1fffffff;
  7104. }
  7105. /* Modular exponentiate 2 to the e mod m. (r = 2^e mod m)
  7106. *
  7107. * r A single precision number that is the result of the operation.
  7108. * e A single precision number that is the exponent.
  7109. * bits The number of bits in the exponent.
  7110. * m A single precision number that is the modulus.
  7111. * returns 0 on success.
  7112. * returns MEMORY_E on dynamic memory allocation failure.
  7113. * returns MP_VAL when base is even.
  7114. */
  7115. static int sp_3072_mod_exp_2_106(sp_digit* r, const sp_digit* e, int bits, const sp_digit* m)
  7116. {
  7117. #ifdef WOLFSSL_SP_SMALL_STACK
  7118. sp_digit* td = NULL;
  7119. #else
  7120. sp_digit td[319];
  7121. #endif
  7122. sp_digit* norm = NULL;
  7123. sp_digit* tmp = NULL;
  7124. sp_digit mp = 1;
  7125. sp_digit n;
  7126. sp_digit o;
  7127. int i;
  7128. int c;
  7129. byte y;
  7130. int err = MP_OKAY;
  7131. if (bits == 0) {
  7132. err = MP_VAL;
  7133. }
  7134. #ifdef WOLFSSL_SP_SMALL_STACK
  7135. if (err == MP_OKAY) {
  7136. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 319, NULL,
  7137. DYNAMIC_TYPE_TMP_BUFFER);
  7138. if (td == NULL)
  7139. err = MEMORY_E;
  7140. }
  7141. #endif
  7142. if (err == MP_OKAY) {
  7143. norm = td;
  7144. tmp = td + 212;
  7145. XMEMSET(td, 0, sizeof(sp_digit) * 319);
  7146. sp_3072_mont_setup(m, &mp);
  7147. sp_3072_mont_norm_106(norm, m);
  7148. bits = ((bits + 3) / 4) * 4;
  7149. i = ((bits + 28) / 29) - 1;
  7150. c = bits % 29;
  7151. if (c == 0) {
  7152. c = 29;
  7153. }
  7154. if (i < 106) {
  7155. n = e[i--] << (32 - c);
  7156. }
  7157. else {
  7158. n = 0;
  7159. i--;
  7160. }
  7161. if (c < 4) {
  7162. n |= e[i--] << (3 - c);
  7163. c += 29;
  7164. }
  7165. y = (int)((n >> 28) & 0xf);
  7166. n <<= 4;
  7167. c -= 4;
  7168. sp_3072_lshift_106(r, norm, (byte)y);
  7169. while ((i >= 0) || (c >= 4)) {
  7170. if (c >= 4) {
  7171. y = (byte)((n >> 28) & 0xf);
  7172. n <<= 4;
  7173. c -= 4;
  7174. }
  7175. else if (c == 0) {
  7176. n = e[i--] << 3;
  7177. y = (byte)((n >> 28) & 0xf);
  7178. n <<= 4;
  7179. c = 25;
  7180. }
  7181. else {
  7182. y = (byte)((n >> 28) & 0xf);
  7183. n = e[i--] << 3;
  7184. c = 4 - c;
  7185. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  7186. n <<= c;
  7187. c = 29 - c;
  7188. }
  7189. sp_3072_mont_sqr_106(r, r, m, mp);
  7190. sp_3072_mont_sqr_106(r, r, m, mp);
  7191. sp_3072_mont_sqr_106(r, r, m, mp);
  7192. sp_3072_mont_sqr_106(r, r, m, mp);
  7193. sp_3072_lshift_106(r, r, (byte)y);
  7194. sp_3072_mul_d_106(tmp, norm, (r[106] << 2) + (r[105] >> 27));
  7195. r[106] = 0;
  7196. r[105] &= 0x7ffffffL;
  7197. (void)sp_3072_add_106(r, r, tmp);
  7198. sp_3072_norm_106(r);
  7199. o = sp_3072_cmp_106(r, m);
  7200. sp_3072_cond_sub_106(r, r, m, ~(o >> 31));
  7201. }
  7202. sp_3072_mont_reduce_106(r, m, mp);
  7203. n = sp_3072_cmp_106(r, m);
  7204. sp_3072_cond_sub_106(r, r, m, ~(n >> 31));
  7205. }
  7206. #ifdef WOLFSSL_SP_SMALL_STACK
  7207. if (td != NULL)
  7208. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  7209. #endif
  7210. return err;
  7211. }
  7212. #endif /* HAVE_FFDHE_3072 */
  7213. /* Perform the modular exponentiation for Diffie-Hellman.
  7214. *
  7215. * base Base.
  7216. * exp Array of bytes that is the exponent.
  7217. * expLen Length of data, in bytes, in exponent.
  7218. * mod Modulus.
  7219. * out Buffer to hold big-endian bytes of exponentiation result.
  7220. * Must be at least 384 bytes long.
  7221. * outLen Length, in bytes, of exponentiation result.
  7222. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  7223. * and MEMORY_E if memory allocation fails.
  7224. */
  7225. int sp_DhExp_3072(const mp_int* base, const byte* exp, word32 expLen,
  7226. const mp_int* mod, byte* out, word32* outLen)
  7227. {
  7228. #ifdef WOLFSSL_SP_SMALL_STACK
  7229. sp_digit* b = NULL;
  7230. #else
  7231. sp_digit b[106 * 4];
  7232. #endif
  7233. sp_digit* e = NULL;
  7234. sp_digit* m = NULL;
  7235. sp_digit* r = NULL;
  7236. word32 i;
  7237. int err = MP_OKAY;
  7238. if (mp_count_bits(base) > 3072) {
  7239. err = MP_READ_E;
  7240. }
  7241. else if (expLen > 384U) {
  7242. err = MP_READ_E;
  7243. }
  7244. else if (mp_count_bits(mod) != 3072) {
  7245. err = MP_READ_E;
  7246. }
  7247. else if (mp_iseven(mod)) {
  7248. err = MP_VAL;
  7249. }
  7250. #ifdef WOLFSSL_SP_SMALL_STACK
  7251. if (err == MP_OKAY) {
  7252. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 4, NULL,
  7253. DYNAMIC_TYPE_DH);
  7254. if (b == NULL)
  7255. err = MEMORY_E;
  7256. }
  7257. #endif
  7258. if (err == MP_OKAY) {
  7259. e = b + 106 * 2;
  7260. m = e + 106;
  7261. r = b;
  7262. sp_3072_from_mp(b, 106, base);
  7263. sp_3072_from_bin(e, 106, exp, expLen);
  7264. sp_3072_from_mp(m, 106, mod);
  7265. #ifdef HAVE_FFDHE_3072
  7266. if (base->used == 1 && base->dp[0] == 2U &&
  7267. (m[105] >> 11) == 0xffffL) {
  7268. err = sp_3072_mod_exp_2_106(r, e, expLen * 8U, m);
  7269. }
  7270. else {
  7271. #endif
  7272. err = sp_3072_mod_exp_106(r, b, e, expLen * 8U, m, 0);
  7273. #ifdef HAVE_FFDHE_3072
  7274. }
  7275. #endif
  7276. }
  7277. if (err == MP_OKAY) {
  7278. sp_3072_to_bin_106(r, out);
  7279. *outLen = 384;
  7280. for (i=0; i<384U && out[i] == 0U; i++) {
  7281. /* Search for first non-zero. */
  7282. }
  7283. *outLen -= i;
  7284. XMEMMOVE(out, out + i, *outLen);
  7285. }
  7286. #ifdef WOLFSSL_SP_SMALL_STACK
  7287. if (b != NULL)
  7288. #endif
  7289. {
  7290. /* only "e" is sensitive and needs zeroized */
  7291. if (e != NULL)
  7292. ForceZero(e, sizeof(sp_digit) * 106U);
  7293. #ifdef WOLFSSL_SP_SMALL_STACK
  7294. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  7295. #endif
  7296. }
  7297. return err;
  7298. }
  7299. #endif /* WOLFSSL_HAVE_SP_DH */
  7300. /* Perform the modular exponentiation for Diffie-Hellman.
  7301. *
  7302. * base Base. MP integer.
  7303. * exp Exponent. MP integer.
  7304. * mod Modulus. MP integer.
  7305. * res Result. MP integer.
  7306. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  7307. * and MEMORY_E if memory allocation fails.
  7308. */
  7309. int sp_ModExp_1536(const mp_int* base, const mp_int* exp, const mp_int* mod,
  7310. mp_int* res)
  7311. {
  7312. #ifdef WOLFSSL_SP_SMALL
  7313. int err = MP_OKAY;
  7314. #ifdef WOLFSSL_SP_SMALL_STACK
  7315. sp_digit* b = NULL;
  7316. #else
  7317. sp_digit b[53 * 4];
  7318. #endif
  7319. sp_digit* e = NULL;
  7320. sp_digit* m = NULL;
  7321. sp_digit* r = NULL;
  7322. int expBits = mp_count_bits(exp);
  7323. if (mp_count_bits(base) > 1536) {
  7324. err = MP_READ_E;
  7325. }
  7326. else if (expBits > 1536) {
  7327. err = MP_READ_E;
  7328. }
  7329. else if (mp_count_bits(mod) != 1536) {
  7330. err = MP_READ_E;
  7331. }
  7332. else if (mp_iseven(mod)) {
  7333. err = MP_VAL;
  7334. }
  7335. #ifdef WOLFSSL_SP_SMALL_STACK
  7336. if (err == MP_OKAY) {
  7337. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 53 * 4, NULL,
  7338. DYNAMIC_TYPE_DH);
  7339. if (b == NULL)
  7340. err = MEMORY_E;
  7341. }
  7342. #endif
  7343. if (err == MP_OKAY) {
  7344. e = b + 53 * 2;
  7345. m = e + 53;
  7346. r = b;
  7347. sp_3072_from_mp(b, 53, base);
  7348. sp_3072_from_mp(e, 53, exp);
  7349. sp_3072_from_mp(m, 53, mod);
  7350. err = sp_3072_mod_exp_53(r, b, e, mp_count_bits(exp), m, 0);
  7351. }
  7352. if (err == MP_OKAY) {
  7353. XMEMSET(r + 53, 0, sizeof(*r) * 53U);
  7354. err = sp_3072_to_mp(r, res);
  7355. }
  7356. #ifdef WOLFSSL_SP_SMALL_STACK
  7357. if (b != NULL)
  7358. #endif
  7359. {
  7360. /* only "e" is sensitive and needs zeroized */
  7361. if (e != NULL)
  7362. ForceZero(e, sizeof(sp_digit) * 106U);
  7363. #ifdef WOLFSSL_SP_SMALL_STACK
  7364. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  7365. #endif
  7366. }
  7367. return err;
  7368. #else
  7369. #ifdef WOLFSSL_SP_SMALL_STACK
  7370. sp_digit* b = NULL;
  7371. #else
  7372. sp_digit b[53 * 4];
  7373. #endif
  7374. sp_digit* e = NULL;
  7375. sp_digit* m = NULL;
  7376. sp_digit* r = NULL;
  7377. int err = MP_OKAY;
  7378. int expBits = mp_count_bits(exp);
  7379. if (mp_count_bits(base) > 1536) {
  7380. err = MP_READ_E;
  7381. }
  7382. else if (expBits > 1536) {
  7383. err = MP_READ_E;
  7384. }
  7385. else if (mp_count_bits(mod) != 1536) {
  7386. err = MP_READ_E;
  7387. }
  7388. else if (mp_iseven(mod)) {
  7389. err = MP_VAL;
  7390. }
  7391. #ifdef WOLFSSL_SP_SMALL_STACK
  7392. if (err == MP_OKAY) {
  7393. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 53 * 4, NULL, DYNAMIC_TYPE_DH);
  7394. if (b == NULL)
  7395. err = MEMORY_E;
  7396. }
  7397. #endif
  7398. if (err == MP_OKAY) {
  7399. e = b + 53 * 2;
  7400. m = e + 53;
  7401. r = b;
  7402. sp_3072_from_mp(b, 53, base);
  7403. sp_3072_from_mp(e, 53, exp);
  7404. sp_3072_from_mp(m, 53, mod);
  7405. err = sp_3072_mod_exp_53(r, b, e, expBits, m, 0);
  7406. }
  7407. if (err == MP_OKAY) {
  7408. XMEMSET(r + 53, 0, sizeof(*r) * 53U);
  7409. err = sp_3072_to_mp(r, res);
  7410. }
  7411. #ifdef WOLFSSL_SP_SMALL_STACK
  7412. if (b != NULL)
  7413. #endif
  7414. {
  7415. /* only "e" is sensitive and needs zeroized */
  7416. if (e != NULL)
  7417. ForceZero(e, sizeof(sp_digit) * 106U);
  7418. #ifdef WOLFSSL_SP_SMALL_STACK
  7419. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  7420. #endif
  7421. }
  7422. return err;
  7423. #endif
  7424. }
  7425. #endif /* WOLFSSL_HAVE_SP_DH | (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) */
  7426. #else
  7427. /* Read big endian unsigned byte array into r.
  7428. *
  7429. * r A single precision integer.
  7430. * size Maximum number of bytes to convert
  7431. * a Byte array.
  7432. * n Number of bytes in array to read.
  7433. */
  7434. static void sp_3072_from_bin(sp_digit* r, int size, const byte* a, int n)
  7435. {
  7436. int i;
  7437. int j = 0;
  7438. word32 s = 0;
  7439. r[0] = 0;
  7440. for (i = n-1; i >= 0; i--) {
  7441. r[j] |= (((sp_digit)a[i]) << s);
  7442. if (s >= 20U) {
  7443. r[j] &= 0xfffffff;
  7444. s = 28U - s;
  7445. if (j + 1 >= size) {
  7446. break;
  7447. }
  7448. r[++j] = (sp_digit)a[i] >> s;
  7449. s = 8U - s;
  7450. }
  7451. else {
  7452. s += 8U;
  7453. }
  7454. }
  7455. for (j++; j < size; j++) {
  7456. r[j] = 0;
  7457. }
  7458. }
  7459. /* Convert an mp_int to an array of sp_digit.
  7460. *
  7461. * r A single precision integer.
  7462. * size Maximum number of bytes to convert
  7463. * a A multi-precision integer.
  7464. */
  7465. static void sp_3072_from_mp(sp_digit* r, int size, const mp_int* a)
  7466. {
  7467. #if DIGIT_BIT == 28
  7468. int i;
  7469. sp_digit j = (sp_digit)0 - (sp_digit)a->used;
  7470. int o = 0;
  7471. for (i = 0; i < size; i++) {
  7472. sp_digit mask = (sp_digit)0 - (j >> 27);
  7473. r[i] = a->dp[o] & mask;
  7474. j++;
  7475. o += (int)(j >> 27);
  7476. }
  7477. #elif DIGIT_BIT > 28
  7478. unsigned int i;
  7479. int j = 0;
  7480. word32 s = 0;
  7481. r[0] = 0;
  7482. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  7483. r[j] |= ((sp_digit)a->dp[i] << s);
  7484. r[j] &= 0xfffffff;
  7485. s = 28U - s;
  7486. if (j + 1 >= size) {
  7487. break;
  7488. }
  7489. /* lint allow cast of mismatch word32 and mp_digit */
  7490. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  7491. while ((s + 28U) <= (word32)DIGIT_BIT) {
  7492. s += 28U;
  7493. r[j] &= 0xfffffff;
  7494. if (j + 1 >= size) {
  7495. break;
  7496. }
  7497. if (s < (word32)DIGIT_BIT) {
  7498. /* lint allow cast of mismatch word32 and mp_digit */
  7499. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  7500. }
  7501. else {
  7502. r[++j] = (sp_digit)0;
  7503. }
  7504. }
  7505. s = (word32)DIGIT_BIT - s;
  7506. }
  7507. for (j++; j < size; j++) {
  7508. r[j] = 0;
  7509. }
  7510. #else
  7511. unsigned int i;
  7512. int j = 0;
  7513. int s = 0;
  7514. r[0] = 0;
  7515. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  7516. r[j] |= ((sp_digit)a->dp[i]) << s;
  7517. if (s + DIGIT_BIT >= 28) {
  7518. r[j] &= 0xfffffff;
  7519. if (j + 1 >= size) {
  7520. break;
  7521. }
  7522. s = 28 - s;
  7523. if (s == DIGIT_BIT) {
  7524. r[++j] = 0;
  7525. s = 0;
  7526. }
  7527. else {
  7528. r[++j] = a->dp[i] >> s;
  7529. s = DIGIT_BIT - s;
  7530. }
  7531. }
  7532. else {
  7533. s += DIGIT_BIT;
  7534. }
  7535. }
  7536. for (j++; j < size; j++) {
  7537. r[j] = 0;
  7538. }
  7539. #endif
  7540. }
  7541. /* Write r as big endian to byte array.
  7542. * Fixed length number of bytes written: 384
  7543. *
  7544. * r A single precision integer.
  7545. * a Byte array.
  7546. */
  7547. static void sp_3072_to_bin_112(sp_digit* r, byte* a)
  7548. {
  7549. int i;
  7550. int j;
  7551. int s = 0;
  7552. int b;
  7553. for (i=0; i<111; i++) {
  7554. r[i+1] += r[i] >> 28;
  7555. r[i] &= 0xfffffff;
  7556. }
  7557. j = 3079 / 8 - 1;
  7558. a[j] = 0;
  7559. for (i=0; i<110 && j>=0; i++) {
  7560. b = 0;
  7561. /* lint allow cast of mismatch sp_digit and int */
  7562. a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
  7563. b += 8 - s;
  7564. if (j < 0) {
  7565. break;
  7566. }
  7567. while (b < 28) {
  7568. a[j--] = (byte)(r[i] >> b);
  7569. b += 8;
  7570. if (j < 0) {
  7571. break;
  7572. }
  7573. }
  7574. s = 8 - (b - 28);
  7575. if (j >= 0) {
  7576. a[j] = 0;
  7577. }
  7578. if (s != 0) {
  7579. j++;
  7580. }
  7581. }
  7582. }
  7583. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
  7584. /* Normalize the values in each word to 28 bits.
  7585. *
  7586. * a Array of sp_digit to normalize.
  7587. */
  7588. static void sp_3072_norm_56(sp_digit* a)
  7589. {
  7590. int i;
  7591. for (i = 0; i < 48; i += 8) {
  7592. a[i+1] += a[i+0] >> 28; a[i+0] &= 0xfffffff;
  7593. a[i+2] += a[i+1] >> 28; a[i+1] &= 0xfffffff;
  7594. a[i+3] += a[i+2] >> 28; a[i+2] &= 0xfffffff;
  7595. a[i+4] += a[i+3] >> 28; a[i+3] &= 0xfffffff;
  7596. a[i+5] += a[i+4] >> 28; a[i+4] &= 0xfffffff;
  7597. a[i+6] += a[i+5] >> 28; a[i+5] &= 0xfffffff;
  7598. a[i+7] += a[i+6] >> 28; a[i+6] &= 0xfffffff;
  7599. a[i+8] += a[i+7] >> 28; a[i+7] &= 0xfffffff;
  7600. }
  7601. a[49] += a[48] >> 28; a[48] &= 0xfffffff;
  7602. a[50] += a[49] >> 28; a[49] &= 0xfffffff;
  7603. a[51] += a[50] >> 28; a[50] &= 0xfffffff;
  7604. a[52] += a[51] >> 28; a[51] &= 0xfffffff;
  7605. a[53] += a[52] >> 28; a[52] &= 0xfffffff;
  7606. a[54] += a[53] >> 28; a[53] &= 0xfffffff;
  7607. a[55] += a[54] >> 28; a[54] &= 0xfffffff;
  7608. }
  7609. #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
  7610. /* Normalize the values in each word to 28 bits.
  7611. *
  7612. * a Array of sp_digit to normalize.
  7613. */
  7614. static void sp_3072_norm_55(sp_digit* a)
  7615. {
  7616. int i;
  7617. for (i = 0; i < 48; i += 8) {
  7618. a[i+1] += a[i+0] >> 28; a[i+0] &= 0xfffffff;
  7619. a[i+2] += a[i+1] >> 28; a[i+1] &= 0xfffffff;
  7620. a[i+3] += a[i+2] >> 28; a[i+2] &= 0xfffffff;
  7621. a[i+4] += a[i+3] >> 28; a[i+3] &= 0xfffffff;
  7622. a[i+5] += a[i+4] >> 28; a[i+4] &= 0xfffffff;
  7623. a[i+6] += a[i+5] >> 28; a[i+5] &= 0xfffffff;
  7624. a[i+7] += a[i+6] >> 28; a[i+6] &= 0xfffffff;
  7625. a[i+8] += a[i+7] >> 28; a[i+7] &= 0xfffffff;
  7626. }
  7627. a[49] += a[48] >> 28; a[48] &= 0xfffffff;
  7628. a[50] += a[49] >> 28; a[49] &= 0xfffffff;
  7629. a[51] += a[50] >> 28; a[50] &= 0xfffffff;
  7630. a[52] += a[51] >> 28; a[51] &= 0xfffffff;
  7631. a[53] += a[52] >> 28; a[52] &= 0xfffffff;
  7632. a[54] += a[53] >> 28; a[53] &= 0xfffffff;
  7633. }
  7634. /* Normalize the values in each word to 28 bits.
  7635. *
  7636. * a Array of sp_digit to normalize.
  7637. */
  7638. static void sp_3072_norm_112(sp_digit* a)
  7639. {
  7640. int i;
  7641. for (i = 0; i < 104; i += 8) {
  7642. a[i+1] += a[i+0] >> 28; a[i+0] &= 0xfffffff;
  7643. a[i+2] += a[i+1] >> 28; a[i+1] &= 0xfffffff;
  7644. a[i+3] += a[i+2] >> 28; a[i+2] &= 0xfffffff;
  7645. a[i+4] += a[i+3] >> 28; a[i+3] &= 0xfffffff;
  7646. a[i+5] += a[i+4] >> 28; a[i+4] &= 0xfffffff;
  7647. a[i+6] += a[i+5] >> 28; a[i+5] &= 0xfffffff;
  7648. a[i+7] += a[i+6] >> 28; a[i+6] &= 0xfffffff;
  7649. a[i+8] += a[i+7] >> 28; a[i+7] &= 0xfffffff;
  7650. }
  7651. a[105] += a[104] >> 28; a[104] &= 0xfffffff;
  7652. a[106] += a[105] >> 28; a[105] &= 0xfffffff;
  7653. a[107] += a[106] >> 28; a[106] &= 0xfffffff;
  7654. a[108] += a[107] >> 28; a[107] &= 0xfffffff;
  7655. a[109] += a[108] >> 28; a[108] &= 0xfffffff;
  7656. a[110] += a[109] >> 28; a[109] &= 0xfffffff;
  7657. a[111] += a[110] >> 28; a[110] &= 0xfffffff;
  7658. }
  7659. /* Normalize the values in each word to 28 bits.
  7660. *
  7661. * a Array of sp_digit to normalize.
  7662. */
  7663. static void sp_3072_norm_110(sp_digit* a)
  7664. {
  7665. int i;
  7666. for (i = 0; i < 104; i += 8) {
  7667. a[i+1] += a[i+0] >> 28; a[i+0] &= 0xfffffff;
  7668. a[i+2] += a[i+1] >> 28; a[i+1] &= 0xfffffff;
  7669. a[i+3] += a[i+2] >> 28; a[i+2] &= 0xfffffff;
  7670. a[i+4] += a[i+3] >> 28; a[i+3] &= 0xfffffff;
  7671. a[i+5] += a[i+4] >> 28; a[i+4] &= 0xfffffff;
  7672. a[i+6] += a[i+5] >> 28; a[i+5] &= 0xfffffff;
  7673. a[i+7] += a[i+6] >> 28; a[i+6] &= 0xfffffff;
  7674. a[i+8] += a[i+7] >> 28; a[i+7] &= 0xfffffff;
  7675. }
  7676. a[105] += a[104] >> 28; a[104] &= 0xfffffff;
  7677. a[106] += a[105] >> 28; a[105] &= 0xfffffff;
  7678. a[107] += a[106] >> 28; a[106] &= 0xfffffff;
  7679. a[108] += a[107] >> 28; a[107] &= 0xfffffff;
  7680. a[109] += a[108] >> 28; a[108] &= 0xfffffff;
  7681. }
  7682. #ifndef WOLFSSL_SP_SMALL
  7683. /* Multiply a and b into r. (r = a * b)
  7684. *
  7685. * r A single precision integer.
  7686. * a A single precision integer.
  7687. * b A single precision integer.
  7688. */
  7689. SP_NOINLINE static void sp_3072_mul_14(sp_digit* r, const sp_digit* a,
  7690. const sp_digit* b)
  7691. {
  7692. sp_uint64 t0;
  7693. sp_uint64 t1;
  7694. sp_digit t[14];
  7695. t0 = ((sp_uint64)a[ 0]) * b[ 0];
  7696. t1 = ((sp_uint64)a[ 0]) * b[ 1]
  7697. + ((sp_uint64)a[ 1]) * b[ 0];
  7698. t[ 0] = t0 & 0xfffffff; t1 += t0 >> 28;
  7699. t0 = ((sp_uint64)a[ 0]) * b[ 2]
  7700. + ((sp_uint64)a[ 1]) * b[ 1]
  7701. + ((sp_uint64)a[ 2]) * b[ 0];
  7702. t[ 1] = t1 & 0xfffffff; t0 += t1 >> 28;
  7703. t1 = ((sp_uint64)a[ 0]) * b[ 3]
  7704. + ((sp_uint64)a[ 1]) * b[ 2]
  7705. + ((sp_uint64)a[ 2]) * b[ 1]
  7706. + ((sp_uint64)a[ 3]) * b[ 0];
  7707. t[ 2] = t0 & 0xfffffff; t1 += t0 >> 28;
  7708. t0 = ((sp_uint64)a[ 0]) * b[ 4]
  7709. + ((sp_uint64)a[ 1]) * b[ 3]
  7710. + ((sp_uint64)a[ 2]) * b[ 2]
  7711. + ((sp_uint64)a[ 3]) * b[ 1]
  7712. + ((sp_uint64)a[ 4]) * b[ 0];
  7713. t[ 3] = t1 & 0xfffffff; t0 += t1 >> 28;
  7714. t1 = ((sp_uint64)a[ 0]) * b[ 5]
  7715. + ((sp_uint64)a[ 1]) * b[ 4]
  7716. + ((sp_uint64)a[ 2]) * b[ 3]
  7717. + ((sp_uint64)a[ 3]) * b[ 2]
  7718. + ((sp_uint64)a[ 4]) * b[ 1]
  7719. + ((sp_uint64)a[ 5]) * b[ 0];
  7720. t[ 4] = t0 & 0xfffffff; t1 += t0 >> 28;
  7721. t0 = ((sp_uint64)a[ 0]) * b[ 6]
  7722. + ((sp_uint64)a[ 1]) * b[ 5]
  7723. + ((sp_uint64)a[ 2]) * b[ 4]
  7724. + ((sp_uint64)a[ 3]) * b[ 3]
  7725. + ((sp_uint64)a[ 4]) * b[ 2]
  7726. + ((sp_uint64)a[ 5]) * b[ 1]
  7727. + ((sp_uint64)a[ 6]) * b[ 0];
  7728. t[ 5] = t1 & 0xfffffff; t0 += t1 >> 28;
  7729. t1 = ((sp_uint64)a[ 0]) * b[ 7]
  7730. + ((sp_uint64)a[ 1]) * b[ 6]
  7731. + ((sp_uint64)a[ 2]) * b[ 5]
  7732. + ((sp_uint64)a[ 3]) * b[ 4]
  7733. + ((sp_uint64)a[ 4]) * b[ 3]
  7734. + ((sp_uint64)a[ 5]) * b[ 2]
  7735. + ((sp_uint64)a[ 6]) * b[ 1]
  7736. + ((sp_uint64)a[ 7]) * b[ 0];
  7737. t[ 6] = t0 & 0xfffffff; t1 += t0 >> 28;
  7738. t0 = ((sp_uint64)a[ 0]) * b[ 8]
  7739. + ((sp_uint64)a[ 1]) * b[ 7]
  7740. + ((sp_uint64)a[ 2]) * b[ 6]
  7741. + ((sp_uint64)a[ 3]) * b[ 5]
  7742. + ((sp_uint64)a[ 4]) * b[ 4]
  7743. + ((sp_uint64)a[ 5]) * b[ 3]
  7744. + ((sp_uint64)a[ 6]) * b[ 2]
  7745. + ((sp_uint64)a[ 7]) * b[ 1]
  7746. + ((sp_uint64)a[ 8]) * b[ 0];
  7747. t[ 7] = t1 & 0xfffffff; t0 += t1 >> 28;
  7748. t1 = ((sp_uint64)a[ 0]) * b[ 9]
  7749. + ((sp_uint64)a[ 1]) * b[ 8]
  7750. + ((sp_uint64)a[ 2]) * b[ 7]
  7751. + ((sp_uint64)a[ 3]) * b[ 6]
  7752. + ((sp_uint64)a[ 4]) * b[ 5]
  7753. + ((sp_uint64)a[ 5]) * b[ 4]
  7754. + ((sp_uint64)a[ 6]) * b[ 3]
  7755. + ((sp_uint64)a[ 7]) * b[ 2]
  7756. + ((sp_uint64)a[ 8]) * b[ 1]
  7757. + ((sp_uint64)a[ 9]) * b[ 0];
  7758. t[ 8] = t0 & 0xfffffff; t1 += t0 >> 28;
  7759. t0 = ((sp_uint64)a[ 0]) * b[10]
  7760. + ((sp_uint64)a[ 1]) * b[ 9]
  7761. + ((sp_uint64)a[ 2]) * b[ 8]
  7762. + ((sp_uint64)a[ 3]) * b[ 7]
  7763. + ((sp_uint64)a[ 4]) * b[ 6]
  7764. + ((sp_uint64)a[ 5]) * b[ 5]
  7765. + ((sp_uint64)a[ 6]) * b[ 4]
  7766. + ((sp_uint64)a[ 7]) * b[ 3]
  7767. + ((sp_uint64)a[ 8]) * b[ 2]
  7768. + ((sp_uint64)a[ 9]) * b[ 1]
  7769. + ((sp_uint64)a[10]) * b[ 0];
  7770. t[ 9] = t1 & 0xfffffff; t0 += t1 >> 28;
  7771. t1 = ((sp_uint64)a[ 0]) * b[11]
  7772. + ((sp_uint64)a[ 1]) * b[10]
  7773. + ((sp_uint64)a[ 2]) * b[ 9]
  7774. + ((sp_uint64)a[ 3]) * b[ 8]
  7775. + ((sp_uint64)a[ 4]) * b[ 7]
  7776. + ((sp_uint64)a[ 5]) * b[ 6]
  7777. + ((sp_uint64)a[ 6]) * b[ 5]
  7778. + ((sp_uint64)a[ 7]) * b[ 4]
  7779. + ((sp_uint64)a[ 8]) * b[ 3]
  7780. + ((sp_uint64)a[ 9]) * b[ 2]
  7781. + ((sp_uint64)a[10]) * b[ 1]
  7782. + ((sp_uint64)a[11]) * b[ 0];
  7783. t[10] = t0 & 0xfffffff; t1 += t0 >> 28;
  7784. t0 = ((sp_uint64)a[ 0]) * b[12]
  7785. + ((sp_uint64)a[ 1]) * b[11]
  7786. + ((sp_uint64)a[ 2]) * b[10]
  7787. + ((sp_uint64)a[ 3]) * b[ 9]
  7788. + ((sp_uint64)a[ 4]) * b[ 8]
  7789. + ((sp_uint64)a[ 5]) * b[ 7]
  7790. + ((sp_uint64)a[ 6]) * b[ 6]
  7791. + ((sp_uint64)a[ 7]) * b[ 5]
  7792. + ((sp_uint64)a[ 8]) * b[ 4]
  7793. + ((sp_uint64)a[ 9]) * b[ 3]
  7794. + ((sp_uint64)a[10]) * b[ 2]
  7795. + ((sp_uint64)a[11]) * b[ 1]
  7796. + ((sp_uint64)a[12]) * b[ 0];
  7797. t[11] = t1 & 0xfffffff; t0 += t1 >> 28;
  7798. t1 = ((sp_uint64)a[ 0]) * b[13]
  7799. + ((sp_uint64)a[ 1]) * b[12]
  7800. + ((sp_uint64)a[ 2]) * b[11]
  7801. + ((sp_uint64)a[ 3]) * b[10]
  7802. + ((sp_uint64)a[ 4]) * b[ 9]
  7803. + ((sp_uint64)a[ 5]) * b[ 8]
  7804. + ((sp_uint64)a[ 6]) * b[ 7]
  7805. + ((sp_uint64)a[ 7]) * b[ 6]
  7806. + ((sp_uint64)a[ 8]) * b[ 5]
  7807. + ((sp_uint64)a[ 9]) * b[ 4]
  7808. + ((sp_uint64)a[10]) * b[ 3]
  7809. + ((sp_uint64)a[11]) * b[ 2]
  7810. + ((sp_uint64)a[12]) * b[ 1]
  7811. + ((sp_uint64)a[13]) * b[ 0];
  7812. t[12] = t0 & 0xfffffff; t1 += t0 >> 28;
  7813. t0 = ((sp_uint64)a[ 1]) * b[13]
  7814. + ((sp_uint64)a[ 2]) * b[12]
  7815. + ((sp_uint64)a[ 3]) * b[11]
  7816. + ((sp_uint64)a[ 4]) * b[10]
  7817. + ((sp_uint64)a[ 5]) * b[ 9]
  7818. + ((sp_uint64)a[ 6]) * b[ 8]
  7819. + ((sp_uint64)a[ 7]) * b[ 7]
  7820. + ((sp_uint64)a[ 8]) * b[ 6]
  7821. + ((sp_uint64)a[ 9]) * b[ 5]
  7822. + ((sp_uint64)a[10]) * b[ 4]
  7823. + ((sp_uint64)a[11]) * b[ 3]
  7824. + ((sp_uint64)a[12]) * b[ 2]
  7825. + ((sp_uint64)a[13]) * b[ 1];
  7826. t[13] = t1 & 0xfffffff; t0 += t1 >> 28;
  7827. t1 = ((sp_uint64)a[ 2]) * b[13]
  7828. + ((sp_uint64)a[ 3]) * b[12]
  7829. + ((sp_uint64)a[ 4]) * b[11]
  7830. + ((sp_uint64)a[ 5]) * b[10]
  7831. + ((sp_uint64)a[ 6]) * b[ 9]
  7832. + ((sp_uint64)a[ 7]) * b[ 8]
  7833. + ((sp_uint64)a[ 8]) * b[ 7]
  7834. + ((sp_uint64)a[ 9]) * b[ 6]
  7835. + ((sp_uint64)a[10]) * b[ 5]
  7836. + ((sp_uint64)a[11]) * b[ 4]
  7837. + ((sp_uint64)a[12]) * b[ 3]
  7838. + ((sp_uint64)a[13]) * b[ 2];
  7839. r[14] = t0 & 0xfffffff; t1 += t0 >> 28;
  7840. t0 = ((sp_uint64)a[ 3]) * b[13]
  7841. + ((sp_uint64)a[ 4]) * b[12]
  7842. + ((sp_uint64)a[ 5]) * b[11]
  7843. + ((sp_uint64)a[ 6]) * b[10]
  7844. + ((sp_uint64)a[ 7]) * b[ 9]
  7845. + ((sp_uint64)a[ 8]) * b[ 8]
  7846. + ((sp_uint64)a[ 9]) * b[ 7]
  7847. + ((sp_uint64)a[10]) * b[ 6]
  7848. + ((sp_uint64)a[11]) * b[ 5]
  7849. + ((sp_uint64)a[12]) * b[ 4]
  7850. + ((sp_uint64)a[13]) * b[ 3];
  7851. r[15] = t1 & 0xfffffff; t0 += t1 >> 28;
  7852. t1 = ((sp_uint64)a[ 4]) * b[13]
  7853. + ((sp_uint64)a[ 5]) * b[12]
  7854. + ((sp_uint64)a[ 6]) * b[11]
  7855. + ((sp_uint64)a[ 7]) * b[10]
  7856. + ((sp_uint64)a[ 8]) * b[ 9]
  7857. + ((sp_uint64)a[ 9]) * b[ 8]
  7858. + ((sp_uint64)a[10]) * b[ 7]
  7859. + ((sp_uint64)a[11]) * b[ 6]
  7860. + ((sp_uint64)a[12]) * b[ 5]
  7861. + ((sp_uint64)a[13]) * b[ 4];
  7862. r[16] = t0 & 0xfffffff; t1 += t0 >> 28;
  7863. t0 = ((sp_uint64)a[ 5]) * b[13]
  7864. + ((sp_uint64)a[ 6]) * b[12]
  7865. + ((sp_uint64)a[ 7]) * b[11]
  7866. + ((sp_uint64)a[ 8]) * b[10]
  7867. + ((sp_uint64)a[ 9]) * b[ 9]
  7868. + ((sp_uint64)a[10]) * b[ 8]
  7869. + ((sp_uint64)a[11]) * b[ 7]
  7870. + ((sp_uint64)a[12]) * b[ 6]
  7871. + ((sp_uint64)a[13]) * b[ 5];
  7872. r[17] = t1 & 0xfffffff; t0 += t1 >> 28;
  7873. t1 = ((sp_uint64)a[ 6]) * b[13]
  7874. + ((sp_uint64)a[ 7]) * b[12]
  7875. + ((sp_uint64)a[ 8]) * b[11]
  7876. + ((sp_uint64)a[ 9]) * b[10]
  7877. + ((sp_uint64)a[10]) * b[ 9]
  7878. + ((sp_uint64)a[11]) * b[ 8]
  7879. + ((sp_uint64)a[12]) * b[ 7]
  7880. + ((sp_uint64)a[13]) * b[ 6];
  7881. r[18] = t0 & 0xfffffff; t1 += t0 >> 28;
  7882. t0 = ((sp_uint64)a[ 7]) * b[13]
  7883. + ((sp_uint64)a[ 8]) * b[12]
  7884. + ((sp_uint64)a[ 9]) * b[11]
  7885. + ((sp_uint64)a[10]) * b[10]
  7886. + ((sp_uint64)a[11]) * b[ 9]
  7887. + ((sp_uint64)a[12]) * b[ 8]
  7888. + ((sp_uint64)a[13]) * b[ 7];
  7889. r[19] = t1 & 0xfffffff; t0 += t1 >> 28;
  7890. t1 = ((sp_uint64)a[ 8]) * b[13]
  7891. + ((sp_uint64)a[ 9]) * b[12]
  7892. + ((sp_uint64)a[10]) * b[11]
  7893. + ((sp_uint64)a[11]) * b[10]
  7894. + ((sp_uint64)a[12]) * b[ 9]
  7895. + ((sp_uint64)a[13]) * b[ 8];
  7896. r[20] = t0 & 0xfffffff; t1 += t0 >> 28;
  7897. t0 = ((sp_uint64)a[ 9]) * b[13]
  7898. + ((sp_uint64)a[10]) * b[12]
  7899. + ((sp_uint64)a[11]) * b[11]
  7900. + ((sp_uint64)a[12]) * b[10]
  7901. + ((sp_uint64)a[13]) * b[ 9];
  7902. r[21] = t1 & 0xfffffff; t0 += t1 >> 28;
  7903. t1 = ((sp_uint64)a[10]) * b[13]
  7904. + ((sp_uint64)a[11]) * b[12]
  7905. + ((sp_uint64)a[12]) * b[11]
  7906. + ((sp_uint64)a[13]) * b[10];
  7907. r[22] = t0 & 0xfffffff; t1 += t0 >> 28;
  7908. t0 = ((sp_uint64)a[11]) * b[13]
  7909. + ((sp_uint64)a[12]) * b[12]
  7910. + ((sp_uint64)a[13]) * b[11];
  7911. r[23] = t1 & 0xfffffff; t0 += t1 >> 28;
  7912. t1 = ((sp_uint64)a[12]) * b[13]
  7913. + ((sp_uint64)a[13]) * b[12];
  7914. r[24] = t0 & 0xfffffff; t1 += t0 >> 28;
  7915. t0 = ((sp_uint64)a[13]) * b[13];
  7916. r[25] = t1 & 0xfffffff; t0 += t1 >> 28;
  7917. r[26] = t0 & 0xfffffff;
  7918. r[27] = (sp_digit)(t0 >> 28);
  7919. XMEMCPY(r, t, sizeof(t));
  7920. }
  7921. /* Add b to a into r. (r = a + b)
  7922. *
  7923. * r A single precision integer.
  7924. * a A single precision integer.
  7925. * b A single precision integer.
  7926. */
  7927. SP_NOINLINE static int sp_3072_add_14(sp_digit* r, const sp_digit* a,
  7928. const sp_digit* b)
  7929. {
  7930. r[ 0] = a[ 0] + b[ 0];
  7931. r[ 1] = a[ 1] + b[ 1];
  7932. r[ 2] = a[ 2] + b[ 2];
  7933. r[ 3] = a[ 3] + b[ 3];
  7934. r[ 4] = a[ 4] + b[ 4];
  7935. r[ 5] = a[ 5] + b[ 5];
  7936. r[ 6] = a[ 6] + b[ 6];
  7937. r[ 7] = a[ 7] + b[ 7];
  7938. r[ 8] = a[ 8] + b[ 8];
  7939. r[ 9] = a[ 9] + b[ 9];
  7940. r[10] = a[10] + b[10];
  7941. r[11] = a[11] + b[11];
  7942. r[12] = a[12] + b[12];
  7943. r[13] = a[13] + b[13];
  7944. return 0;
  7945. }
  7946. /* Add b to a into r. (r = a + b)
  7947. *
  7948. * r A single precision integer.
  7949. * a A single precision integer.
  7950. * b A single precision integer.
  7951. */
  7952. SP_NOINLINE static int sp_3072_add_28(sp_digit* r, const sp_digit* a,
  7953. const sp_digit* b)
  7954. {
  7955. int i;
  7956. for (i = 0; i < 24; i += 8) {
  7957. r[i + 0] = a[i + 0] + b[i + 0];
  7958. r[i + 1] = a[i + 1] + b[i + 1];
  7959. r[i + 2] = a[i + 2] + b[i + 2];
  7960. r[i + 3] = a[i + 3] + b[i + 3];
  7961. r[i + 4] = a[i + 4] + b[i + 4];
  7962. r[i + 5] = a[i + 5] + b[i + 5];
  7963. r[i + 6] = a[i + 6] + b[i + 6];
  7964. r[i + 7] = a[i + 7] + b[i + 7];
  7965. }
  7966. r[24] = a[24] + b[24];
  7967. r[25] = a[25] + b[25];
  7968. r[26] = a[26] + b[26];
  7969. r[27] = a[27] + b[27];
  7970. return 0;
  7971. }
  7972. /* Sub b from a into r. (r = a - b)
  7973. *
  7974. * r A single precision integer.
  7975. * a A single precision integer.
  7976. * b A single precision integer.
  7977. */
  7978. SP_NOINLINE static int sp_3072_sub_28(sp_digit* r, const sp_digit* a,
  7979. const sp_digit* b)
  7980. {
  7981. int i;
  7982. for (i = 0; i < 24; i += 8) {
  7983. r[i + 0] = a[i + 0] - b[i + 0];
  7984. r[i + 1] = a[i + 1] - b[i + 1];
  7985. r[i + 2] = a[i + 2] - b[i + 2];
  7986. r[i + 3] = a[i + 3] - b[i + 3];
  7987. r[i + 4] = a[i + 4] - b[i + 4];
  7988. r[i + 5] = a[i + 5] - b[i + 5];
  7989. r[i + 6] = a[i + 6] - b[i + 6];
  7990. r[i + 7] = a[i + 7] - b[i + 7];
  7991. }
  7992. r[24] = a[24] - b[24];
  7993. r[25] = a[25] - b[25];
  7994. r[26] = a[26] - b[26];
  7995. r[27] = a[27] - b[27];
  7996. return 0;
  7997. }
  7998. /* Normalize the values in each word to 28 bits.
  7999. *
  8000. * a Array of sp_digit to normalize.
  8001. */
  8002. static void sp_3072_norm_14(sp_digit* a)
  8003. {
  8004. a[1] += a[0] >> 28; a[0] &= 0xfffffff;
  8005. a[2] += a[1] >> 28; a[1] &= 0xfffffff;
  8006. a[3] += a[2] >> 28; a[2] &= 0xfffffff;
  8007. a[4] += a[3] >> 28; a[3] &= 0xfffffff;
  8008. a[5] += a[4] >> 28; a[4] &= 0xfffffff;
  8009. a[6] += a[5] >> 28; a[5] &= 0xfffffff;
  8010. a[7] += a[6] >> 28; a[6] &= 0xfffffff;
  8011. a[8] += a[7] >> 28; a[7] &= 0xfffffff;
  8012. a[9] += a[8] >> 28; a[8] &= 0xfffffff;
  8013. a[10] += a[9] >> 28; a[9] &= 0xfffffff;
  8014. a[11] += a[10] >> 28; a[10] &= 0xfffffff;
  8015. a[12] += a[11] >> 28; a[11] &= 0xfffffff;
  8016. a[13] += a[12] >> 28; a[12] &= 0xfffffff;
  8017. }
  8018. /* Multiply a and b into r. (r = a * b)
  8019. *
  8020. * r A single precision integer.
  8021. * a A single precision integer.
  8022. * b A single precision integer.
  8023. */
  8024. SP_NOINLINE static void sp_3072_mul_28(sp_digit* r, const sp_digit* a,
  8025. const sp_digit* b)
  8026. {
  8027. sp_digit* z0 = r;
  8028. sp_digit z1[28];
  8029. sp_digit* a1 = z1;
  8030. sp_digit b1[14];
  8031. sp_digit* z2 = r + 28;
  8032. (void)sp_3072_add_14(a1, a, &a[14]);
  8033. sp_3072_norm_14(a1);
  8034. (void)sp_3072_add_14(b1, b, &b[14]);
  8035. sp_3072_norm_14(b1);
  8036. sp_3072_mul_14(z2, &a[14], &b[14]);
  8037. sp_3072_mul_14(z0, a, b);
  8038. sp_3072_mul_14(z1, a1, b1);
  8039. (void)sp_3072_sub_28(z1, z1, z2);
  8040. (void)sp_3072_sub_28(z1, z1, z0);
  8041. (void)sp_3072_add_28(r + 14, r + 14, z1);
  8042. sp_3072_norm_56(r);
  8043. }
  8044. /* Add b to a into r. (r = a + b)
  8045. *
  8046. * r A single precision integer.
  8047. * a A single precision integer.
  8048. * b A single precision integer.
  8049. */
  8050. SP_NOINLINE static int sp_3072_add_56(sp_digit* r, const sp_digit* a,
  8051. const sp_digit* b)
  8052. {
  8053. int i;
  8054. for (i = 0; i < 56; i += 8) {
  8055. r[i + 0] = a[i + 0] + b[i + 0];
  8056. r[i + 1] = a[i + 1] + b[i + 1];
  8057. r[i + 2] = a[i + 2] + b[i + 2];
  8058. r[i + 3] = a[i + 3] + b[i + 3];
  8059. r[i + 4] = a[i + 4] + b[i + 4];
  8060. r[i + 5] = a[i + 5] + b[i + 5];
  8061. r[i + 6] = a[i + 6] + b[i + 6];
  8062. r[i + 7] = a[i + 7] + b[i + 7];
  8063. }
  8064. return 0;
  8065. }
  8066. /* Sub b from a into r. (r = a - b)
  8067. *
  8068. * r A single precision integer.
  8069. * a A single precision integer.
  8070. * b A single precision integer.
  8071. */
  8072. SP_NOINLINE static int sp_3072_sub_56(sp_digit* r, const sp_digit* a,
  8073. const sp_digit* b)
  8074. {
  8075. int i;
  8076. for (i = 0; i < 56; i += 8) {
  8077. r[i + 0] = a[i + 0] - b[i + 0];
  8078. r[i + 1] = a[i + 1] - b[i + 1];
  8079. r[i + 2] = a[i + 2] - b[i + 2];
  8080. r[i + 3] = a[i + 3] - b[i + 3];
  8081. r[i + 4] = a[i + 4] - b[i + 4];
  8082. r[i + 5] = a[i + 5] - b[i + 5];
  8083. r[i + 6] = a[i + 6] - b[i + 6];
  8084. r[i + 7] = a[i + 7] - b[i + 7];
  8085. }
  8086. return 0;
  8087. }
  8088. /* Normalize the values in each word to 28 bits.
  8089. *
  8090. * a Array of sp_digit to normalize.
  8091. */
  8092. static void sp_3072_norm_28(sp_digit* a)
  8093. {
  8094. int i;
  8095. for (i = 0; i < 24; i += 8) {
  8096. a[i+1] += a[i+0] >> 28; a[i+0] &= 0xfffffff;
  8097. a[i+2] += a[i+1] >> 28; a[i+1] &= 0xfffffff;
  8098. a[i+3] += a[i+2] >> 28; a[i+2] &= 0xfffffff;
  8099. a[i+4] += a[i+3] >> 28; a[i+3] &= 0xfffffff;
  8100. a[i+5] += a[i+4] >> 28; a[i+4] &= 0xfffffff;
  8101. a[i+6] += a[i+5] >> 28; a[i+5] &= 0xfffffff;
  8102. a[i+7] += a[i+6] >> 28; a[i+6] &= 0xfffffff;
  8103. a[i+8] += a[i+7] >> 28; a[i+7] &= 0xfffffff;
  8104. }
  8105. a[25] += a[24] >> 28; a[24] &= 0xfffffff;
  8106. a[26] += a[25] >> 28; a[25] &= 0xfffffff;
  8107. a[27] += a[26] >> 28; a[26] &= 0xfffffff;
  8108. }
  8109. /* Multiply a and b into r. (r = a * b)
  8110. *
  8111. * r A single precision integer.
  8112. * a A single precision integer.
  8113. * b A single precision integer.
  8114. */
  8115. SP_NOINLINE static void sp_3072_mul_56(sp_digit* r, const sp_digit* a,
  8116. const sp_digit* b)
  8117. {
  8118. sp_digit* z0 = r;
  8119. sp_digit z1[56];
  8120. sp_digit* a1 = z1;
  8121. sp_digit b1[28];
  8122. sp_digit* z2 = r + 56;
  8123. (void)sp_3072_add_28(a1, a, &a[28]);
  8124. sp_3072_norm_28(a1);
  8125. (void)sp_3072_add_28(b1, b, &b[28]);
  8126. sp_3072_norm_28(b1);
  8127. sp_3072_mul_28(z2, &a[28], &b[28]);
  8128. sp_3072_mul_28(z0, a, b);
  8129. sp_3072_mul_28(z1, a1, b1);
  8130. (void)sp_3072_sub_56(z1, z1, z2);
  8131. (void)sp_3072_sub_56(z1, z1, z0);
  8132. (void)sp_3072_add_56(r + 28, r + 28, z1);
  8133. sp_3072_norm_112(r);
  8134. }
  8135. /* Add b to a into r. (r = a + b)
  8136. *
  8137. * r A single precision integer.
  8138. * a A single precision integer.
  8139. * b A single precision integer.
  8140. */
  8141. SP_NOINLINE static int sp_3072_add_112(sp_digit* r, const sp_digit* a,
  8142. const sp_digit* b)
  8143. {
  8144. int i;
  8145. for (i = 0; i < 112; i += 8) {
  8146. r[i + 0] = a[i + 0] + b[i + 0];
  8147. r[i + 1] = a[i + 1] + b[i + 1];
  8148. r[i + 2] = a[i + 2] + b[i + 2];
  8149. r[i + 3] = a[i + 3] + b[i + 3];
  8150. r[i + 4] = a[i + 4] + b[i + 4];
  8151. r[i + 5] = a[i + 5] + b[i + 5];
  8152. r[i + 6] = a[i + 6] + b[i + 6];
  8153. r[i + 7] = a[i + 7] + b[i + 7];
  8154. }
  8155. return 0;
  8156. }
  8157. /* Sub b from a into r. (r = a - b)
  8158. *
  8159. * r A single precision integer.
  8160. * a A single precision integer.
  8161. * b A single precision integer.
  8162. */
  8163. SP_NOINLINE static int sp_3072_sub_112(sp_digit* r, const sp_digit* a,
  8164. const sp_digit* b)
  8165. {
  8166. int i;
  8167. for (i = 0; i < 112; i += 8) {
  8168. r[i + 0] = a[i + 0] - b[i + 0];
  8169. r[i + 1] = a[i + 1] - b[i + 1];
  8170. r[i + 2] = a[i + 2] - b[i + 2];
  8171. r[i + 3] = a[i + 3] - b[i + 3];
  8172. r[i + 4] = a[i + 4] - b[i + 4];
  8173. r[i + 5] = a[i + 5] - b[i + 5];
  8174. r[i + 6] = a[i + 6] - b[i + 6];
  8175. r[i + 7] = a[i + 7] - b[i + 7];
  8176. }
  8177. return 0;
  8178. }
  8179. /* Normalize the values in each word to 28 bits.
  8180. *
  8181. * a Array of sp_digit to normalize.
  8182. */
  8183. static void sp_3072_norm_224(sp_digit* a)
  8184. {
  8185. int i;
  8186. for (i = 0; i < 216; i += 8) {
  8187. a[i+1] += a[i+0] >> 28; a[i+0] &= 0xfffffff;
  8188. a[i+2] += a[i+1] >> 28; a[i+1] &= 0xfffffff;
  8189. a[i+3] += a[i+2] >> 28; a[i+2] &= 0xfffffff;
  8190. a[i+4] += a[i+3] >> 28; a[i+3] &= 0xfffffff;
  8191. a[i+5] += a[i+4] >> 28; a[i+4] &= 0xfffffff;
  8192. a[i+6] += a[i+5] >> 28; a[i+5] &= 0xfffffff;
  8193. a[i+7] += a[i+6] >> 28; a[i+6] &= 0xfffffff;
  8194. a[i+8] += a[i+7] >> 28; a[i+7] &= 0xfffffff;
  8195. }
  8196. a[217] += a[216] >> 28; a[216] &= 0xfffffff;
  8197. a[218] += a[217] >> 28; a[217] &= 0xfffffff;
  8198. a[219] += a[218] >> 28; a[218] &= 0xfffffff;
  8199. a[220] += a[219] >> 28; a[219] &= 0xfffffff;
  8200. a[221] += a[220] >> 28; a[220] &= 0xfffffff;
  8201. a[222] += a[221] >> 28; a[221] &= 0xfffffff;
  8202. a[223] += a[222] >> 28; a[222] &= 0xfffffff;
  8203. }
  8204. /* Multiply a and b into r. (r = a * b)
  8205. *
  8206. * r A single precision integer.
  8207. * a A single precision integer.
  8208. * b A single precision integer.
  8209. */
  8210. SP_NOINLINE static void sp_3072_mul_112(sp_digit* r, const sp_digit* a,
  8211. const sp_digit* b)
  8212. {
  8213. sp_digit* z0 = r;
  8214. sp_digit z1[112];
  8215. sp_digit* a1 = z1;
  8216. sp_digit b1[56];
  8217. sp_digit* z2 = r + 112;
  8218. (void)sp_3072_add_56(a1, a, &a[56]);
  8219. sp_3072_norm_56(a1);
  8220. (void)sp_3072_add_56(b1, b, &b[56]);
  8221. sp_3072_norm_56(b1);
  8222. sp_3072_mul_56(z2, &a[56], &b[56]);
  8223. sp_3072_mul_56(z0, a, b);
  8224. sp_3072_mul_56(z1, a1, b1);
  8225. (void)sp_3072_sub_112(z1, z1, z2);
  8226. (void)sp_3072_sub_112(z1, z1, z0);
  8227. (void)sp_3072_add_112(r + 56, r + 56, z1);
  8228. sp_3072_norm_224(r);
  8229. }
  8230. /* Square a and put result in r. (r = a * a)
  8231. *
  8232. * r A single precision integer.
  8233. * a A single precision integer.
  8234. */
  8235. SP_NOINLINE static void sp_3072_sqr_14(sp_digit* r, const sp_digit* a)
  8236. {
  8237. sp_uint64 t0;
  8238. sp_uint64 t1;
  8239. sp_digit t[14];
  8240. t0 = ((sp_uint64)a[ 0]) * a[ 0];
  8241. t1 = (((sp_uint64)a[ 0]) * a[ 1]) * 2;
  8242. t[ 0] = t0 & 0xfffffff; t1 += t0 >> 28;
  8243. t0 = (((sp_uint64)a[ 0]) * a[ 2]) * 2
  8244. + ((sp_uint64)a[ 1]) * a[ 1];
  8245. t[ 1] = t1 & 0xfffffff; t0 += t1 >> 28;
  8246. t1 = (((sp_uint64)a[ 0]) * a[ 3]
  8247. + ((sp_uint64)a[ 1]) * a[ 2]) * 2;
  8248. t[ 2] = t0 & 0xfffffff; t1 += t0 >> 28;
  8249. t0 = (((sp_uint64)a[ 0]) * a[ 4]
  8250. + ((sp_uint64)a[ 1]) * a[ 3]) * 2
  8251. + ((sp_uint64)a[ 2]) * a[ 2];
  8252. t[ 3] = t1 & 0xfffffff; t0 += t1 >> 28;
  8253. t1 = (((sp_uint64)a[ 0]) * a[ 5]
  8254. + ((sp_uint64)a[ 1]) * a[ 4]
  8255. + ((sp_uint64)a[ 2]) * a[ 3]) * 2;
  8256. t[ 4] = t0 & 0xfffffff; t1 += t0 >> 28;
  8257. t0 = (((sp_uint64)a[ 0]) * a[ 6]
  8258. + ((sp_uint64)a[ 1]) * a[ 5]
  8259. + ((sp_uint64)a[ 2]) * a[ 4]) * 2
  8260. + ((sp_uint64)a[ 3]) * a[ 3];
  8261. t[ 5] = t1 & 0xfffffff; t0 += t1 >> 28;
  8262. t1 = (((sp_uint64)a[ 0]) * a[ 7]
  8263. + ((sp_uint64)a[ 1]) * a[ 6]
  8264. + ((sp_uint64)a[ 2]) * a[ 5]
  8265. + ((sp_uint64)a[ 3]) * a[ 4]) * 2;
  8266. t[ 6] = t0 & 0xfffffff; t1 += t0 >> 28;
  8267. t0 = (((sp_uint64)a[ 0]) * a[ 8]
  8268. + ((sp_uint64)a[ 1]) * a[ 7]
  8269. + ((sp_uint64)a[ 2]) * a[ 6]
  8270. + ((sp_uint64)a[ 3]) * a[ 5]) * 2
  8271. + ((sp_uint64)a[ 4]) * a[ 4];
  8272. t[ 7] = t1 & 0xfffffff; t0 += t1 >> 28;
  8273. t1 = (((sp_uint64)a[ 0]) * a[ 9]
  8274. + ((sp_uint64)a[ 1]) * a[ 8]
  8275. + ((sp_uint64)a[ 2]) * a[ 7]
  8276. + ((sp_uint64)a[ 3]) * a[ 6]
  8277. + ((sp_uint64)a[ 4]) * a[ 5]) * 2;
  8278. t[ 8] = t0 & 0xfffffff; t1 += t0 >> 28;
  8279. t0 = (((sp_uint64)a[ 0]) * a[10]
  8280. + ((sp_uint64)a[ 1]) * a[ 9]
  8281. + ((sp_uint64)a[ 2]) * a[ 8]
  8282. + ((sp_uint64)a[ 3]) * a[ 7]
  8283. + ((sp_uint64)a[ 4]) * a[ 6]) * 2
  8284. + ((sp_uint64)a[ 5]) * a[ 5];
  8285. t[ 9] = t1 & 0xfffffff; t0 += t1 >> 28;
  8286. t1 = (((sp_uint64)a[ 0]) * a[11]
  8287. + ((sp_uint64)a[ 1]) * a[10]
  8288. + ((sp_uint64)a[ 2]) * a[ 9]
  8289. + ((sp_uint64)a[ 3]) * a[ 8]
  8290. + ((sp_uint64)a[ 4]) * a[ 7]
  8291. + ((sp_uint64)a[ 5]) * a[ 6]) * 2;
  8292. t[10] = t0 & 0xfffffff; t1 += t0 >> 28;
  8293. t0 = (((sp_uint64)a[ 0]) * a[12]
  8294. + ((sp_uint64)a[ 1]) * a[11]
  8295. + ((sp_uint64)a[ 2]) * a[10]
  8296. + ((sp_uint64)a[ 3]) * a[ 9]
  8297. + ((sp_uint64)a[ 4]) * a[ 8]
  8298. + ((sp_uint64)a[ 5]) * a[ 7]) * 2
  8299. + ((sp_uint64)a[ 6]) * a[ 6];
  8300. t[11] = t1 & 0xfffffff; t0 += t1 >> 28;
  8301. t1 = (((sp_uint64)a[ 0]) * a[13]
  8302. + ((sp_uint64)a[ 1]) * a[12]
  8303. + ((sp_uint64)a[ 2]) * a[11]
  8304. + ((sp_uint64)a[ 3]) * a[10]
  8305. + ((sp_uint64)a[ 4]) * a[ 9]
  8306. + ((sp_uint64)a[ 5]) * a[ 8]
  8307. + ((sp_uint64)a[ 6]) * a[ 7]) * 2;
  8308. t[12] = t0 & 0xfffffff; t1 += t0 >> 28;
  8309. t0 = (((sp_uint64)a[ 1]) * a[13]
  8310. + ((sp_uint64)a[ 2]) * a[12]
  8311. + ((sp_uint64)a[ 3]) * a[11]
  8312. + ((sp_uint64)a[ 4]) * a[10]
  8313. + ((sp_uint64)a[ 5]) * a[ 9]
  8314. + ((sp_uint64)a[ 6]) * a[ 8]) * 2
  8315. + ((sp_uint64)a[ 7]) * a[ 7];
  8316. t[13] = t1 & 0xfffffff; t0 += t1 >> 28;
  8317. t1 = (((sp_uint64)a[ 2]) * a[13]
  8318. + ((sp_uint64)a[ 3]) * a[12]
  8319. + ((sp_uint64)a[ 4]) * a[11]
  8320. + ((sp_uint64)a[ 5]) * a[10]
  8321. + ((sp_uint64)a[ 6]) * a[ 9]
  8322. + ((sp_uint64)a[ 7]) * a[ 8]) * 2;
  8323. r[14] = t0 & 0xfffffff; t1 += t0 >> 28;
  8324. t0 = (((sp_uint64)a[ 3]) * a[13]
  8325. + ((sp_uint64)a[ 4]) * a[12]
  8326. + ((sp_uint64)a[ 5]) * a[11]
  8327. + ((sp_uint64)a[ 6]) * a[10]
  8328. + ((sp_uint64)a[ 7]) * a[ 9]) * 2
  8329. + ((sp_uint64)a[ 8]) * a[ 8];
  8330. r[15] = t1 & 0xfffffff; t0 += t1 >> 28;
  8331. t1 = (((sp_uint64)a[ 4]) * a[13]
  8332. + ((sp_uint64)a[ 5]) * a[12]
  8333. + ((sp_uint64)a[ 6]) * a[11]
  8334. + ((sp_uint64)a[ 7]) * a[10]
  8335. + ((sp_uint64)a[ 8]) * a[ 9]) * 2;
  8336. r[16] = t0 & 0xfffffff; t1 += t0 >> 28;
  8337. t0 = (((sp_uint64)a[ 5]) * a[13]
  8338. + ((sp_uint64)a[ 6]) * a[12]
  8339. + ((sp_uint64)a[ 7]) * a[11]
  8340. + ((sp_uint64)a[ 8]) * a[10]) * 2
  8341. + ((sp_uint64)a[ 9]) * a[ 9];
  8342. r[17] = t1 & 0xfffffff; t0 += t1 >> 28;
  8343. t1 = (((sp_uint64)a[ 6]) * a[13]
  8344. + ((sp_uint64)a[ 7]) * a[12]
  8345. + ((sp_uint64)a[ 8]) * a[11]
  8346. + ((sp_uint64)a[ 9]) * a[10]) * 2;
  8347. r[18] = t0 & 0xfffffff; t1 += t0 >> 28;
  8348. t0 = (((sp_uint64)a[ 7]) * a[13]
  8349. + ((sp_uint64)a[ 8]) * a[12]
  8350. + ((sp_uint64)a[ 9]) * a[11]) * 2
  8351. + ((sp_uint64)a[10]) * a[10];
  8352. r[19] = t1 & 0xfffffff; t0 += t1 >> 28;
  8353. t1 = (((sp_uint64)a[ 8]) * a[13]
  8354. + ((sp_uint64)a[ 9]) * a[12]
  8355. + ((sp_uint64)a[10]) * a[11]) * 2;
  8356. r[20] = t0 & 0xfffffff; t1 += t0 >> 28;
  8357. t0 = (((sp_uint64)a[ 9]) * a[13]
  8358. + ((sp_uint64)a[10]) * a[12]) * 2
  8359. + ((sp_uint64)a[11]) * a[11];
  8360. r[21] = t1 & 0xfffffff; t0 += t1 >> 28;
  8361. t1 = (((sp_uint64)a[10]) * a[13]
  8362. + ((sp_uint64)a[11]) * a[12]) * 2;
  8363. r[22] = t0 & 0xfffffff; t1 += t0 >> 28;
  8364. t0 = (((sp_uint64)a[11]) * a[13]) * 2
  8365. + ((sp_uint64)a[12]) * a[12];
  8366. r[23] = t1 & 0xfffffff; t0 += t1 >> 28;
  8367. t1 = (((sp_uint64)a[12]) * a[13]) * 2;
  8368. r[24] = t0 & 0xfffffff; t1 += t0 >> 28;
  8369. t0 = ((sp_uint64)a[13]) * a[13];
  8370. r[25] = t1 & 0xfffffff; t0 += t1 >> 28;
  8371. r[26] = t0 & 0xfffffff;
  8372. r[27] = (sp_digit)(t0 >> 28);
  8373. XMEMCPY(r, t, sizeof(t));
  8374. }
  8375. /* Square a and put result in r. (r = a * a)
  8376. *
  8377. * r A single precision integer.
  8378. * a A single precision integer.
  8379. */
  8380. SP_NOINLINE static void sp_3072_sqr_28(sp_digit* r, const sp_digit* a)
  8381. {
  8382. sp_digit* z0 = r;
  8383. sp_digit z1[28];
  8384. sp_digit* a1 = z1;
  8385. sp_digit* z2 = r + 28;
  8386. (void)sp_3072_add_14(a1, a, &a[14]);
  8387. sp_3072_norm_14(a1);
  8388. sp_3072_sqr_14(z2, &a[14]);
  8389. sp_3072_sqr_14(z0, a);
  8390. sp_3072_sqr_14(z1, a1);
  8391. (void)sp_3072_sub_28(z1, z1, z2);
  8392. (void)sp_3072_sub_28(z1, z1, z0);
  8393. (void)sp_3072_add_28(r + 14, r + 14, z1);
  8394. sp_3072_norm_56(r);
  8395. }
  8396. /* Square a and put result in r. (r = a * a)
  8397. *
  8398. * r A single precision integer.
  8399. * a A single precision integer.
  8400. */
  8401. SP_NOINLINE static void sp_3072_sqr_56(sp_digit* r, const sp_digit* a)
  8402. {
  8403. sp_digit* z0 = r;
  8404. sp_digit z1[56];
  8405. sp_digit* a1 = z1;
  8406. sp_digit* z2 = r + 56;
  8407. (void)sp_3072_add_28(a1, a, &a[28]);
  8408. sp_3072_norm_28(a1);
  8409. sp_3072_sqr_28(z2, &a[28]);
  8410. sp_3072_sqr_28(z0, a);
  8411. sp_3072_sqr_28(z1, a1);
  8412. (void)sp_3072_sub_56(z1, z1, z2);
  8413. (void)sp_3072_sub_56(z1, z1, z0);
  8414. (void)sp_3072_add_56(r + 28, r + 28, z1);
  8415. sp_3072_norm_112(r);
  8416. }
  8417. /* Square a and put result in r. (r = a * a)
  8418. *
  8419. * r A single precision integer.
  8420. * a A single precision integer.
  8421. */
  8422. SP_NOINLINE static void sp_3072_sqr_112(sp_digit* r, const sp_digit* a)
  8423. {
  8424. sp_digit* z0 = r;
  8425. sp_digit z1[112];
  8426. sp_digit* a1 = z1;
  8427. sp_digit* z2 = r + 112;
  8428. (void)sp_3072_add_56(a1, a, &a[56]);
  8429. sp_3072_norm_56(a1);
  8430. sp_3072_sqr_56(z2, &a[56]);
  8431. sp_3072_sqr_56(z0, a);
  8432. sp_3072_sqr_56(z1, a1);
  8433. (void)sp_3072_sub_112(z1, z1, z2);
  8434. (void)sp_3072_sub_112(z1, z1, z0);
  8435. (void)sp_3072_add_112(r + 56, r + 56, z1);
  8436. sp_3072_norm_224(r);
  8437. }
  8438. #endif /* !WOLFSSL_SP_SMALL */
  8439. /* Calculate the bottom digit of -1/a mod 2^n.
  8440. *
  8441. * a A single precision number.
  8442. * rho Bottom word of inverse.
  8443. */
  8444. static void sp_3072_mont_setup(const sp_digit* a, sp_digit* rho)
  8445. {
  8446. sp_digit x;
  8447. sp_digit b;
  8448. b = a[0];
  8449. x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
  8450. x *= 2 - b * x; /* here x*a==1 mod 2**8 */
  8451. x *= 2 - b * x; /* here x*a==1 mod 2**16 */
  8452. x *= 2 - b * x; /* here x*a==1 mod 2**32 */
  8453. x &= 0xfffffff;
  8454. /* rho = -1/m mod b */
  8455. *rho = ((sp_digit)1 << 28) - x;
  8456. }
  8457. /* Multiply a by scalar b into r. (r = a * b)
  8458. *
  8459. * r A single precision integer.
  8460. * a A single precision integer.
  8461. * b A scalar.
  8462. */
  8463. SP_NOINLINE static void sp_3072_mul_d_112(sp_digit* r, const sp_digit* a,
  8464. sp_digit b)
  8465. {
  8466. sp_int64 tb = b;
  8467. sp_int64 t = 0;
  8468. sp_digit t2;
  8469. sp_int64 p[4];
  8470. int i;
  8471. for (i = 0; i < 112; i += 4) {
  8472. p[0] = tb * a[i + 0];
  8473. p[1] = tb * a[i + 1];
  8474. p[2] = tb * a[i + 2];
  8475. p[3] = tb * a[i + 3];
  8476. t += p[0];
  8477. t2 = (sp_digit)(t & 0xfffffff);
  8478. t >>= 28;
  8479. r[i + 0] = (sp_digit)t2;
  8480. t += p[1];
  8481. t2 = (sp_digit)(t & 0xfffffff);
  8482. t >>= 28;
  8483. r[i + 1] = (sp_digit)t2;
  8484. t += p[2];
  8485. t2 = (sp_digit)(t & 0xfffffff);
  8486. t >>= 28;
  8487. r[i + 2] = (sp_digit)t2;
  8488. t += p[3];
  8489. t2 = (sp_digit)(t & 0xfffffff);
  8490. t >>= 28;
  8491. r[i + 3] = (sp_digit)t2;
  8492. }
  8493. r[112] = (sp_digit)(t & 0xfffffff);
  8494. }
  8495. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
  8496. /* r = 2^n mod m where n is the number of bits to reduce by.
  8497. * Given m must be 3072 bits, just need to subtract.
  8498. *
  8499. * r A single precision number.
  8500. * m A single precision number.
  8501. */
  8502. static void sp_3072_mont_norm_56(sp_digit* r, const sp_digit* m)
  8503. {
  8504. /* Set r = 2^n - 1. */
  8505. int i;
  8506. for (i = 0; i < 48; i += 8) {
  8507. r[i + 0] = 0xfffffff;
  8508. r[i + 1] = 0xfffffff;
  8509. r[i + 2] = 0xfffffff;
  8510. r[i + 3] = 0xfffffff;
  8511. r[i + 4] = 0xfffffff;
  8512. r[i + 5] = 0xfffffff;
  8513. r[i + 6] = 0xfffffff;
  8514. r[i + 7] = 0xfffffff;
  8515. }
  8516. r[48] = 0xfffffff;
  8517. r[49] = 0xfffffff;
  8518. r[50] = 0xfffffff;
  8519. r[51] = 0xfffffff;
  8520. r[52] = 0xfffffff;
  8521. r[53] = 0xfffffff;
  8522. r[54] = 0xffffffL;
  8523. r[55] = 0;
  8524. /* r = (2^n - 1) mod n */
  8525. (void)sp_3072_sub_56(r, r, m);
  8526. /* Add one so r = 2^n mod m */
  8527. r[0] += 1;
  8528. }
  8529. /* Compare a with b in constant time.
  8530. *
  8531. * a A single precision integer.
  8532. * b A single precision integer.
  8533. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  8534. * respectively.
  8535. */
  8536. static sp_digit sp_3072_cmp_56(const sp_digit* a, const sp_digit* b)
  8537. {
  8538. sp_digit r = 0;
  8539. int i;
  8540. for (i = 48; i >= 0; i -= 8) {
  8541. r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 27);
  8542. r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 27);
  8543. r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 27);
  8544. r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 27);
  8545. r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 27);
  8546. r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 27);
  8547. r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 27);
  8548. r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 27);
  8549. }
  8550. return r;
  8551. }
  8552. /* Conditionally subtract b from a using the mask m.
  8553. * m is -1 to subtract and 0 when not.
  8554. *
  8555. * r A single precision number representing condition subtract result.
  8556. * a A single precision number to subtract from.
  8557. * b A single precision number to subtract.
  8558. * m Mask value to apply.
  8559. */
  8560. static void sp_3072_cond_sub_56(sp_digit* r, const sp_digit* a,
  8561. const sp_digit* b, const sp_digit m)
  8562. {
  8563. int i;
  8564. for (i = 0; i < 56; i += 8) {
  8565. r[i + 0] = a[i + 0] - (b[i + 0] & m);
  8566. r[i + 1] = a[i + 1] - (b[i + 1] & m);
  8567. r[i + 2] = a[i + 2] - (b[i + 2] & m);
  8568. r[i + 3] = a[i + 3] - (b[i + 3] & m);
  8569. r[i + 4] = a[i + 4] - (b[i + 4] & m);
  8570. r[i + 5] = a[i + 5] - (b[i + 5] & m);
  8571. r[i + 6] = a[i + 6] - (b[i + 6] & m);
  8572. r[i + 7] = a[i + 7] - (b[i + 7] & m);
  8573. }
  8574. }
  8575. /* Mul a by scalar b and add into r. (r += a * b)
  8576. *
  8577. * r A single precision integer.
  8578. * a A single precision integer.
  8579. * b A scalar.
  8580. */
  8581. SP_NOINLINE static void sp_3072_mul_add_56(sp_digit* r, const sp_digit* a,
  8582. const sp_digit b)
  8583. {
  8584. #ifndef WOLFSSL_SP_LARGE_CODE
  8585. sp_int64 tb = b;
  8586. sp_int64 t = 0;
  8587. int i;
  8588. for (i = 0; i < 56; i++) {
  8589. t += r[i];
  8590. t += tb * a[i];
  8591. r[i] = ((sp_digit)t) & 0xfffffff;
  8592. t >>= 28;
  8593. }
  8594. r[56] += (sp_digit)t;
  8595. #else
  8596. sp_int64 tb = b;
  8597. sp_int64 t[8];
  8598. int i;
  8599. t[0] = 0;
  8600. for (i = 0; i < 48; i += 8) {
  8601. t[0] += (tb * a[i+0]) + r[i+0];
  8602. t[1] = (tb * a[i+1]) + r[i+1];
  8603. t[2] = (tb * a[i+2]) + r[i+2];
  8604. t[3] = (tb * a[i+3]) + r[i+3];
  8605. t[4] = (tb * a[i+4]) + r[i+4];
  8606. t[5] = (tb * a[i+5]) + r[i+5];
  8607. t[6] = (tb * a[i+6]) + r[i+6];
  8608. t[7] = (tb * a[i+7]) + r[i+7];
  8609. r[i+0] = t[0] & 0xfffffff;
  8610. t[1] += t[0] >> 28;
  8611. r[i+1] = t[1] & 0xfffffff;
  8612. t[2] += t[1] >> 28;
  8613. r[i+2] = t[2] & 0xfffffff;
  8614. t[3] += t[2] >> 28;
  8615. r[i+3] = t[3] & 0xfffffff;
  8616. t[4] += t[3] >> 28;
  8617. r[i+4] = t[4] & 0xfffffff;
  8618. t[5] += t[4] >> 28;
  8619. r[i+5] = t[5] & 0xfffffff;
  8620. t[6] += t[5] >> 28;
  8621. r[i+6] = t[6] & 0xfffffff;
  8622. t[7] += t[6] >> 28;
  8623. r[i+7] = t[7] & 0xfffffff;
  8624. t[0] = t[7] >> 28;
  8625. }
  8626. t[0] += (tb * a[48]) + r[48];
  8627. t[1] = (tb * a[49]) + r[49];
  8628. t[2] = (tb * a[50]) + r[50];
  8629. t[3] = (tb * a[51]) + r[51];
  8630. t[4] = (tb * a[52]) + r[52];
  8631. t[5] = (tb * a[53]) + r[53];
  8632. t[6] = (tb * a[54]) + r[54];
  8633. t[7] = (tb * a[55]) + r[55];
  8634. r[48] = t[0] & 0xfffffff;
  8635. t[1] += t[0] >> 28;
  8636. r[49] = t[1] & 0xfffffff;
  8637. t[2] += t[1] >> 28;
  8638. r[50] = t[2] & 0xfffffff;
  8639. t[3] += t[2] >> 28;
  8640. r[51] = t[3] & 0xfffffff;
  8641. t[4] += t[3] >> 28;
  8642. r[52] = t[4] & 0xfffffff;
  8643. t[5] += t[4] >> 28;
  8644. r[53] = t[5] & 0xfffffff;
  8645. t[6] += t[5] >> 28;
  8646. r[54] = t[6] & 0xfffffff;
  8647. t[7] += t[6] >> 28;
  8648. r[55] = t[7] & 0xfffffff;
  8649. r[56] += (sp_digit)(t[7] >> 28);
  8650. #endif /* !WOLFSSL_SP_LARGE_CODE */
  8651. }
  8652. /* Shift the result in the high 1536 bits down to the bottom.
  8653. *
  8654. * r A single precision number.
  8655. * a A single precision number.
  8656. */
  8657. static void sp_3072_mont_shift_56(sp_digit* r, const sp_digit* a)
  8658. {
  8659. int i;
  8660. sp_int64 n = a[54] >> 24;
  8661. n += ((sp_int64)a[55]) << 4;
  8662. for (i = 0; i < 48; i += 8) {
  8663. r[i + 0] = n & 0xfffffff;
  8664. n >>= 28; n += ((sp_int64)a[i + 56]) << 4;
  8665. r[i + 1] = n & 0xfffffff;
  8666. n >>= 28; n += ((sp_int64)a[i + 57]) << 4;
  8667. r[i + 2] = n & 0xfffffff;
  8668. n >>= 28; n += ((sp_int64)a[i + 58]) << 4;
  8669. r[i + 3] = n & 0xfffffff;
  8670. n >>= 28; n += ((sp_int64)a[i + 59]) << 4;
  8671. r[i + 4] = n & 0xfffffff;
  8672. n >>= 28; n += ((sp_int64)a[i + 60]) << 4;
  8673. r[i + 5] = n & 0xfffffff;
  8674. n >>= 28; n += ((sp_int64)a[i + 61]) << 4;
  8675. r[i + 6] = n & 0xfffffff;
  8676. n >>= 28; n += ((sp_int64)a[i + 62]) << 4;
  8677. r[i + 7] = n & 0xfffffff;
  8678. n >>= 28; n += ((sp_int64)a[i + 63]) << 4;
  8679. }
  8680. r[48] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[104]) << 4;
  8681. r[49] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[105]) << 4;
  8682. r[50] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[106]) << 4;
  8683. r[51] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[107]) << 4;
  8684. r[52] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[108]) << 4;
  8685. r[53] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[109]) << 4;
  8686. r[54] = (sp_digit)n;
  8687. XMEMSET(&r[55], 0, sizeof(*r) * 55U);
  8688. }
  8689. /* Reduce the number back to 3072 bits using Montgomery reduction.
  8690. *
  8691. * a A single precision number to reduce in place.
  8692. * m The single precision number representing the modulus.
  8693. * mp The digit representing the negative inverse of m mod 2^n.
  8694. */
  8695. static void sp_3072_mont_reduce_56(sp_digit* a, const sp_digit* m, sp_digit mp)
  8696. {
  8697. int i;
  8698. sp_digit mu;
  8699. sp_digit over;
  8700. sp_3072_norm_56(a + 55);
  8701. for (i=0; i<54; i++) {
  8702. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffff;
  8703. sp_3072_mul_add_56(a+i, m, mu);
  8704. a[i+1] += a[i] >> 28;
  8705. }
  8706. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xffffffL;
  8707. sp_3072_mul_add_56(a+i, m, mu);
  8708. a[i+1] += a[i] >> 28;
  8709. a[i] &= 0xfffffff;
  8710. sp_3072_mont_shift_56(a, a);
  8711. over = a[54] - m[54];
  8712. sp_3072_cond_sub_56(a, a, m, ~((over - 1) >> 31));
  8713. sp_3072_norm_56(a);
  8714. }
  8715. /* Multiply two Montgomery form numbers mod the modulus (prime).
  8716. * (r = a * b mod m)
  8717. *
  8718. * r Result of multiplication.
  8719. * a First number to multiply in Montgomery form.
  8720. * b Second number to multiply in Montgomery form.
  8721. * m Modulus (prime).
  8722. * mp Montgomery multiplier.
  8723. */
  8724. SP_NOINLINE static void sp_3072_mont_mul_56(sp_digit* r, const sp_digit* a,
  8725. const sp_digit* b, const sp_digit* m, sp_digit mp)
  8726. {
  8727. sp_3072_mul_56(r, a, b);
  8728. sp_3072_mont_reduce_56(r, m, mp);
  8729. }
  8730. /* Square the Montgomery form number. (r = a * a mod m)
  8731. *
  8732. * r Result of squaring.
  8733. * a Number to square in Montgomery form.
  8734. * m Modulus (prime).
  8735. * mp Montgomery multiplier.
  8736. */
  8737. SP_NOINLINE static void sp_3072_mont_sqr_56(sp_digit* r, const sp_digit* a,
  8738. const sp_digit* m, sp_digit mp)
  8739. {
  8740. sp_3072_sqr_56(r, a);
  8741. sp_3072_mont_reduce_56(r, m, mp);
  8742. }
  8743. /* Multiply a by scalar b into r. (r = a * b)
  8744. *
  8745. * r A single precision integer.
  8746. * a A single precision integer.
  8747. * b A scalar.
  8748. */
  8749. SP_NOINLINE static void sp_3072_mul_d_56(sp_digit* r, const sp_digit* a,
  8750. sp_digit b)
  8751. {
  8752. sp_int64 tb = b;
  8753. sp_int64 t = 0;
  8754. sp_digit t2;
  8755. sp_int64 p[4];
  8756. int i;
  8757. for (i = 0; i < 56; i += 4) {
  8758. p[0] = tb * a[i + 0];
  8759. p[1] = tb * a[i + 1];
  8760. p[2] = tb * a[i + 2];
  8761. p[3] = tb * a[i + 3];
  8762. t += p[0];
  8763. t2 = (sp_digit)(t & 0xfffffff);
  8764. t >>= 28;
  8765. r[i + 0] = (sp_digit)t2;
  8766. t += p[1];
  8767. t2 = (sp_digit)(t & 0xfffffff);
  8768. t >>= 28;
  8769. r[i + 1] = (sp_digit)t2;
  8770. t += p[2];
  8771. t2 = (sp_digit)(t & 0xfffffff);
  8772. t >>= 28;
  8773. r[i + 2] = (sp_digit)t2;
  8774. t += p[3];
  8775. t2 = (sp_digit)(t & 0xfffffff);
  8776. t >>= 28;
  8777. r[i + 3] = (sp_digit)t2;
  8778. }
  8779. r[56] = (sp_digit)(t & 0xfffffff);
  8780. }
  8781. #ifndef WOLFSSL_SP_SMALL
  8782. /* Conditionally add a and b using the mask m.
  8783. * m is -1 to add and 0 when not.
  8784. *
  8785. * r A single precision number representing conditional add result.
  8786. * a A single precision number to add with.
  8787. * b A single precision number to add.
  8788. * m Mask value to apply.
  8789. */
  8790. static void sp_3072_cond_add_56(sp_digit* r, const sp_digit* a,
  8791. const sp_digit* b, const sp_digit m)
  8792. {
  8793. int i;
  8794. for (i = 0; i < 56; i += 8) {
  8795. r[i + 0] = a[i + 0] + (b[i + 0] & m);
  8796. r[i + 1] = a[i + 1] + (b[i + 1] & m);
  8797. r[i + 2] = a[i + 2] + (b[i + 2] & m);
  8798. r[i + 3] = a[i + 3] + (b[i + 3] & m);
  8799. r[i + 4] = a[i + 4] + (b[i + 4] & m);
  8800. r[i + 5] = a[i + 5] + (b[i + 5] & m);
  8801. r[i + 6] = a[i + 6] + (b[i + 6] & m);
  8802. r[i + 7] = a[i + 7] + (b[i + 7] & m);
  8803. }
  8804. }
  8805. #endif /* !WOLFSSL_SP_SMALL */
  8806. SP_NOINLINE static void sp_3072_rshift_56(sp_digit* r, const sp_digit* a,
  8807. byte n)
  8808. {
  8809. int i;
  8810. for (i=0; i<48; i += 8) {
  8811. r[i+0] = (a[i+0] >> n) | ((a[i+1] << (28 - n)) & 0xfffffff);
  8812. r[i+1] = (a[i+1] >> n) | ((a[i+2] << (28 - n)) & 0xfffffff);
  8813. r[i+2] = (a[i+2] >> n) | ((a[i+3] << (28 - n)) & 0xfffffff);
  8814. r[i+3] = (a[i+3] >> n) | ((a[i+4] << (28 - n)) & 0xfffffff);
  8815. r[i+4] = (a[i+4] >> n) | ((a[i+5] << (28 - n)) & 0xfffffff);
  8816. r[i+5] = (a[i+5] >> n) | ((a[i+6] << (28 - n)) & 0xfffffff);
  8817. r[i+6] = (a[i+6] >> n) | ((a[i+7] << (28 - n)) & 0xfffffff);
  8818. r[i+7] = (a[i+7] >> n) | ((a[i+8] << (28 - n)) & 0xfffffff);
  8819. }
  8820. r[48] = (a[48] >> n) | ((a[49] << (28 - n)) & 0xfffffff);
  8821. r[49] = (a[49] >> n) | ((a[50] << (28 - n)) & 0xfffffff);
  8822. r[50] = (a[50] >> n) | ((a[51] << (28 - n)) & 0xfffffff);
  8823. r[51] = (a[51] >> n) | ((a[52] << (28 - n)) & 0xfffffff);
  8824. r[52] = (a[52] >> n) | ((a[53] << (28 - n)) & 0xfffffff);
  8825. r[53] = (a[53] >> n) | ((a[54] << (28 - n)) & 0xfffffff);
  8826. r[54] = (a[54] >> n) | ((a[55] << (28 - n)) & 0xfffffff);
  8827. r[55] = a[55] >> n;
  8828. }
  8829. static WC_INLINE sp_digit sp_3072_div_word_56(sp_digit d1, sp_digit d0,
  8830. sp_digit div)
  8831. {
  8832. #ifdef SP_USE_DIVTI3
  8833. sp_int64 d = ((sp_int64)d1 << 28) + d0;
  8834. return d / div;
  8835. #elif defined(__x86_64__) || defined(__i386__)
  8836. sp_int64 d = ((sp_int64)d1 << 28) + d0;
  8837. sp_uint32 lo = (sp_uint32)d;
  8838. sp_digit hi = (sp_digit)(d >> 32);
  8839. __asm__ __volatile__ (
  8840. "idiv %2"
  8841. : "+a" (lo)
  8842. : "d" (hi), "r" (div)
  8843. : "cc"
  8844. );
  8845. return (sp_digit)lo;
  8846. #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
  8847. sp_int64 d = ((sp_int64)d1 << 28) + d0;
  8848. sp_digit dv = (div >> 1) + 1;
  8849. sp_digit t1 = (sp_digit)(d >> 28);
  8850. sp_digit t0 = (sp_digit)(d & 0xfffffff);
  8851. sp_digit t2;
  8852. sp_digit sign;
  8853. sp_digit r;
  8854. int i;
  8855. sp_int64 m;
  8856. r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  8857. t1 -= dv & (0 - r);
  8858. for (i = 26; i >= 1; i--) {
  8859. t1 += t1 + (((sp_uint32)t0 >> 27) & 1);
  8860. t0 <<= 1;
  8861. t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  8862. r += r + t2;
  8863. t1 -= dv & (0 - t2);
  8864. t1 += t2;
  8865. }
  8866. r += r + 1;
  8867. m = d - ((sp_int64)r * div);
  8868. r += (sp_digit)(m >> 28);
  8869. m = d - ((sp_int64)r * div);
  8870. r += (sp_digit)(m >> 56) - (sp_digit)(d >> 56);
  8871. m = d - ((sp_int64)r * div);
  8872. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  8873. m *= sign;
  8874. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  8875. r += sign * t2;
  8876. m = d - ((sp_int64)r * div);
  8877. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  8878. m *= sign;
  8879. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  8880. r += sign * t2;
  8881. return r;
  8882. #else
  8883. sp_int64 d = ((sp_int64)d1 << 28) + d0;
  8884. sp_digit r = 0;
  8885. sp_digit t;
  8886. sp_digit dv = (div >> 13) + 1;
  8887. t = (sp_digit)(d >> 26);
  8888. t = (t / dv) << 13;
  8889. r += t;
  8890. d -= (sp_int64)t * div;
  8891. t = (sp_digit)(d >> 11);
  8892. t = t / (dv << 2);
  8893. r += t;
  8894. d -= (sp_int64)t * div;
  8895. t = (sp_digit)d;
  8896. t = t / div;
  8897. r += t;
  8898. d -= (sp_int64)t * div;
  8899. return r;
  8900. #endif
  8901. }
  8902. static WC_INLINE sp_digit sp_3072_word_div_word_56(sp_digit d, sp_digit div)
  8903. {
  8904. #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
  8905. defined(SP_DIV_WORD_USE_DIV)
  8906. return d / div;
  8907. #else
  8908. return (sp_digit)((sp_uint32)(div - d) >> 31);
  8909. #endif
  8910. }
  8911. /* Divide d in a and put remainder into r (m*d + r = a)
  8912. * m is not calculated as it is not needed at this time.
  8913. *
  8914. * Full implementation.
  8915. *
  8916. * a Number to be divided.
  8917. * d Number to divide with.
  8918. * m Multiplier result.
  8919. * r Remainder from the division.
  8920. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  8921. */
  8922. static int sp_3072_div_56(const sp_digit* a, const sp_digit* d,
  8923. const sp_digit* m, sp_digit* r)
  8924. {
  8925. int i;
  8926. #ifndef WOLFSSL_SP_DIV_32
  8927. #endif
  8928. sp_digit dv;
  8929. sp_digit r1;
  8930. #ifdef WOLFSSL_SP_SMALL_STACK
  8931. sp_digit* t1 = NULL;
  8932. #else
  8933. sp_digit t1[4 * 56 + 3];
  8934. #endif
  8935. sp_digit* t2 = NULL;
  8936. sp_digit* sd = NULL;
  8937. int err = MP_OKAY;
  8938. (void)m;
  8939. #ifdef WOLFSSL_SP_SMALL_STACK
  8940. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 56 + 3), NULL,
  8941. DYNAMIC_TYPE_TMP_BUFFER);
  8942. if (t1 == NULL)
  8943. err = MEMORY_E;
  8944. #endif
  8945. (void)m;
  8946. if (err == MP_OKAY) {
  8947. t2 = t1 + 112 + 1;
  8948. sd = t2 + 56 + 1;
  8949. sp_3072_mul_d_56(sd, d, (sp_digit)1 << 4);
  8950. sp_3072_mul_d_112(t1, a, (sp_digit)1 << 4);
  8951. dv = sd[54];
  8952. t1[55 + 55] += t1[55 + 55 - 1] >> 28;
  8953. t1[55 + 55 - 1] &= 0xfffffff;
  8954. for (i=55; i>=0; i--) {
  8955. r1 = sp_3072_div_word_56(t1[55 + i], t1[55 + i - 1], dv);
  8956. sp_3072_mul_d_56(t2, sd, r1);
  8957. (void)sp_3072_sub_56(&t1[i], &t1[i], t2);
  8958. sp_3072_norm_55(&t1[i]);
  8959. t1[55 + i] += t1[55 + i - 1] >> 28;
  8960. t1[55 + i - 1] &= 0xfffffff;
  8961. r1 = sp_3072_div_word_56(-t1[55 + i], -t1[55 + i - 1], dv);
  8962. r1 -= t1[55 + i];
  8963. sp_3072_mul_d_56(t2, sd, r1);
  8964. (void)sp_3072_add_56(&t1[i], &t1[i], t2);
  8965. t1[55 + i] += t1[55 + i - 1] >> 28;
  8966. t1[55 + i - 1] &= 0xfffffff;
  8967. }
  8968. t1[55 - 1] += t1[55 - 2] >> 28;
  8969. t1[55 - 2] &= 0xfffffff;
  8970. r1 = sp_3072_word_div_word_56(t1[55 - 1], dv);
  8971. sp_3072_mul_d_56(t2, sd, r1);
  8972. sp_3072_sub_56(t1, t1, t2);
  8973. XMEMCPY(r, t1, sizeof(*r) * 112U);
  8974. for (i=0; i<54; i++) {
  8975. r[i+1] += r[i] >> 28;
  8976. r[i] &= 0xfffffff;
  8977. }
  8978. sp_3072_cond_add_56(r, r, sd, r[54] >> 31);
  8979. sp_3072_norm_55(r);
  8980. sp_3072_rshift_56(r, r, 4);
  8981. r[55] = 0;
  8982. }
  8983. #ifdef WOLFSSL_SP_SMALL_STACK
  8984. if (t1 != NULL)
  8985. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  8986. #endif
  8987. return err;
  8988. }
  8989. /* Reduce a modulo m into r. (r = a mod m)
  8990. *
  8991. * r A single precision number that is the reduced result.
  8992. * a A single precision number that is to be reduced.
  8993. * m A single precision number that is the modulus to reduce with.
  8994. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  8995. */
  8996. static int sp_3072_mod_56(sp_digit* r, const sp_digit* a, const sp_digit* m)
  8997. {
  8998. return sp_3072_div_56(a, m, NULL, r);
  8999. }
  9000. /* Modular exponentiate a to the e mod m. (r = a^e mod m)
  9001. *
  9002. * r A single precision number that is the result of the operation.
  9003. * a A single precision number being exponentiated.
  9004. * e A single precision number that is the exponent.
  9005. * bits The number of bits in the exponent.
  9006. * m A single precision number that is the modulus.
  9007. * returns 0 on success.
  9008. * returns MEMORY_E on dynamic memory allocation failure.
  9009. * returns MP_VAL when base is even or exponent is 0.
  9010. */
  9011. static int sp_3072_mod_exp_56(sp_digit* r, const sp_digit* a, const sp_digit* e,
  9012. int bits, const sp_digit* m, int reduceA)
  9013. {
  9014. #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
  9015. #ifdef WOLFSSL_SP_SMALL_STACK
  9016. sp_digit* td = NULL;
  9017. #else
  9018. sp_digit td[3 * 112];
  9019. #endif
  9020. sp_digit* t[3] = {0, 0, 0};
  9021. sp_digit* norm = NULL;
  9022. sp_digit mp = 1;
  9023. sp_digit n;
  9024. int i;
  9025. int c;
  9026. byte y;
  9027. int err = MP_OKAY;
  9028. if (bits == 0) {
  9029. err = MP_VAL;
  9030. }
  9031. #ifdef WOLFSSL_SP_SMALL_STACK
  9032. if (err == MP_OKAY) {
  9033. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 56 * 2, NULL,
  9034. DYNAMIC_TYPE_TMP_BUFFER);
  9035. if (td == NULL)
  9036. err = MEMORY_E;
  9037. }
  9038. #endif
  9039. if (err == MP_OKAY) {
  9040. norm = td;
  9041. for (i=0; i<3; i++) {
  9042. t[i] = td + (i * 56 * 2);
  9043. XMEMSET(t[i], 0, sizeof(sp_digit) * 56U * 2U);
  9044. }
  9045. sp_3072_mont_setup(m, &mp);
  9046. sp_3072_mont_norm_56(norm, m);
  9047. if (reduceA != 0) {
  9048. err = sp_3072_mod_56(t[1], a, m);
  9049. }
  9050. else {
  9051. XMEMCPY(t[1], a, sizeof(sp_digit) * 56U);
  9052. }
  9053. }
  9054. if (err == MP_OKAY) {
  9055. sp_3072_mul_56(t[1], t[1], norm);
  9056. err = sp_3072_mod_56(t[1], t[1], m);
  9057. }
  9058. if (err == MP_OKAY) {
  9059. i = bits / 28;
  9060. c = bits % 28;
  9061. n = e[i--] << (28 - c);
  9062. for (; ; c--) {
  9063. if (c == 0) {
  9064. if (i == -1) {
  9065. break;
  9066. }
  9067. n = e[i--];
  9068. c = 28;
  9069. }
  9070. y = (int)((n >> 27) & 1);
  9071. n <<= 1;
  9072. sp_3072_mont_mul_56(t[y^1], t[0], t[1], m, mp);
  9073. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  9074. ((size_t)t[1] & addr_mask[y])),
  9075. sizeof(*t[2]) * 56 * 2);
  9076. sp_3072_mont_sqr_56(t[2], t[2], m, mp);
  9077. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  9078. ((size_t)t[1] & addr_mask[y])), t[2],
  9079. sizeof(*t[2]) * 56 * 2);
  9080. }
  9081. sp_3072_mont_reduce_56(t[0], m, mp);
  9082. n = sp_3072_cmp_56(t[0], m);
  9083. sp_3072_cond_sub_56(t[0], t[0], m, ~(n >> 31));
  9084. XMEMCPY(r, t[0], sizeof(*r) * 56 * 2);
  9085. }
  9086. #ifdef WOLFSSL_SP_SMALL_STACK
  9087. if (td != NULL)
  9088. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  9089. #endif
  9090. return err;
  9091. #elif !defined(WC_NO_CACHE_RESISTANT)
  9092. #ifdef WOLFSSL_SP_SMALL_STACK
  9093. sp_digit* td = NULL;
  9094. #else
  9095. sp_digit td[3 * 112];
  9096. #endif
  9097. sp_digit* t[3] = {0, 0, 0};
  9098. sp_digit* norm = NULL;
  9099. sp_digit mp = 1;
  9100. sp_digit n;
  9101. int i;
  9102. int c;
  9103. byte y;
  9104. int err = MP_OKAY;
  9105. if (bits == 0) {
  9106. err = MP_VAL;
  9107. }
  9108. #ifdef WOLFSSL_SP_SMALL_STACK
  9109. if (err == MP_OKAY) {
  9110. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 56 * 2, NULL,
  9111. DYNAMIC_TYPE_TMP_BUFFER);
  9112. if (td == NULL)
  9113. err = MEMORY_E;
  9114. }
  9115. #endif
  9116. if (err == MP_OKAY) {
  9117. norm = td;
  9118. for (i=0; i<3; i++) {
  9119. t[i] = td + (i * 56 * 2);
  9120. }
  9121. sp_3072_mont_setup(m, &mp);
  9122. sp_3072_mont_norm_56(norm, m);
  9123. if (reduceA != 0) {
  9124. err = sp_3072_mod_56(t[1], a, m);
  9125. if (err == MP_OKAY) {
  9126. sp_3072_mul_56(t[1], t[1], norm);
  9127. err = sp_3072_mod_56(t[1], t[1], m);
  9128. }
  9129. }
  9130. else {
  9131. sp_3072_mul_56(t[1], a, norm);
  9132. err = sp_3072_mod_56(t[1], t[1], m);
  9133. }
  9134. }
  9135. if (err == MP_OKAY) {
  9136. i = bits / 28;
  9137. c = bits % 28;
  9138. n = e[i--] << (28 - c);
  9139. for (; ; c--) {
  9140. if (c == 0) {
  9141. if (i == -1) {
  9142. break;
  9143. }
  9144. n = e[i--];
  9145. c = 28;
  9146. }
  9147. y = (int)((n >> 27) & 1);
  9148. n <<= 1;
  9149. sp_3072_mont_mul_56(t[y^1], t[0], t[1], m, mp);
  9150. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  9151. ((size_t)t[1] & addr_mask[y])),
  9152. sizeof(*t[2]) * 56 * 2);
  9153. sp_3072_mont_sqr_56(t[2], t[2], m, mp);
  9154. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  9155. ((size_t)t[1] & addr_mask[y])), t[2],
  9156. sizeof(*t[2]) * 56 * 2);
  9157. }
  9158. sp_3072_mont_reduce_56(t[0], m, mp);
  9159. n = sp_3072_cmp_56(t[0], m);
  9160. sp_3072_cond_sub_56(t[0], t[0], m, ~(n >> 31));
  9161. XMEMCPY(r, t[0], sizeof(*r) * 56 * 2);
  9162. }
  9163. #ifdef WOLFSSL_SP_SMALL_STACK
  9164. if (td != NULL)
  9165. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  9166. #endif
  9167. return err;
  9168. #else
  9169. #ifdef WOLFSSL_SP_SMALL_STACK
  9170. sp_digit* td = NULL;
  9171. #else
  9172. sp_digit td[(32 * 112) + 112];
  9173. #endif
  9174. sp_digit* t[32];
  9175. sp_digit* rt = NULL;
  9176. sp_digit* norm = NULL;
  9177. sp_digit mp = 1;
  9178. sp_digit n;
  9179. int i;
  9180. int c;
  9181. byte y;
  9182. int err = MP_OKAY;
  9183. if (bits == 0) {
  9184. err = MP_VAL;
  9185. }
  9186. #ifdef WOLFSSL_SP_SMALL_STACK
  9187. if (err == MP_OKAY) {
  9188. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((32 * 112) + 112), NULL,
  9189. DYNAMIC_TYPE_TMP_BUFFER);
  9190. if (td == NULL)
  9191. err = MEMORY_E;
  9192. }
  9193. #endif
  9194. if (err == MP_OKAY) {
  9195. norm = td;
  9196. for (i=0; i<32; i++)
  9197. t[i] = td + i * 112;
  9198. rt = td + 3584;
  9199. sp_3072_mont_setup(m, &mp);
  9200. sp_3072_mont_norm_56(norm, m);
  9201. if (reduceA != 0) {
  9202. err = sp_3072_mod_56(t[1], a, m);
  9203. if (err == MP_OKAY) {
  9204. sp_3072_mul_56(t[1], t[1], norm);
  9205. err = sp_3072_mod_56(t[1], t[1], m);
  9206. }
  9207. }
  9208. else {
  9209. sp_3072_mul_56(t[1], a, norm);
  9210. err = sp_3072_mod_56(t[1], t[1], m);
  9211. }
  9212. }
  9213. if (err == MP_OKAY) {
  9214. sp_3072_mont_sqr_56(t[ 2], t[ 1], m, mp);
  9215. sp_3072_mont_mul_56(t[ 3], t[ 2], t[ 1], m, mp);
  9216. sp_3072_mont_sqr_56(t[ 4], t[ 2], m, mp);
  9217. sp_3072_mont_mul_56(t[ 5], t[ 3], t[ 2], m, mp);
  9218. sp_3072_mont_sqr_56(t[ 6], t[ 3], m, mp);
  9219. sp_3072_mont_mul_56(t[ 7], t[ 4], t[ 3], m, mp);
  9220. sp_3072_mont_sqr_56(t[ 8], t[ 4], m, mp);
  9221. sp_3072_mont_mul_56(t[ 9], t[ 5], t[ 4], m, mp);
  9222. sp_3072_mont_sqr_56(t[10], t[ 5], m, mp);
  9223. sp_3072_mont_mul_56(t[11], t[ 6], t[ 5], m, mp);
  9224. sp_3072_mont_sqr_56(t[12], t[ 6], m, mp);
  9225. sp_3072_mont_mul_56(t[13], t[ 7], t[ 6], m, mp);
  9226. sp_3072_mont_sqr_56(t[14], t[ 7], m, mp);
  9227. sp_3072_mont_mul_56(t[15], t[ 8], t[ 7], m, mp);
  9228. sp_3072_mont_sqr_56(t[16], t[ 8], m, mp);
  9229. sp_3072_mont_mul_56(t[17], t[ 9], t[ 8], m, mp);
  9230. sp_3072_mont_sqr_56(t[18], t[ 9], m, mp);
  9231. sp_3072_mont_mul_56(t[19], t[10], t[ 9], m, mp);
  9232. sp_3072_mont_sqr_56(t[20], t[10], m, mp);
  9233. sp_3072_mont_mul_56(t[21], t[11], t[10], m, mp);
  9234. sp_3072_mont_sqr_56(t[22], t[11], m, mp);
  9235. sp_3072_mont_mul_56(t[23], t[12], t[11], m, mp);
  9236. sp_3072_mont_sqr_56(t[24], t[12], m, mp);
  9237. sp_3072_mont_mul_56(t[25], t[13], t[12], m, mp);
  9238. sp_3072_mont_sqr_56(t[26], t[13], m, mp);
  9239. sp_3072_mont_mul_56(t[27], t[14], t[13], m, mp);
  9240. sp_3072_mont_sqr_56(t[28], t[14], m, mp);
  9241. sp_3072_mont_mul_56(t[29], t[15], t[14], m, mp);
  9242. sp_3072_mont_sqr_56(t[30], t[15], m, mp);
  9243. sp_3072_mont_mul_56(t[31], t[16], t[15], m, mp);
  9244. bits = ((bits + 4) / 5) * 5;
  9245. i = ((bits + 27) / 28) - 1;
  9246. c = bits % 28;
  9247. if (c == 0) {
  9248. c = 28;
  9249. }
  9250. if (i < 56) {
  9251. n = e[i--] << (32 - c);
  9252. }
  9253. else {
  9254. n = 0;
  9255. i--;
  9256. }
  9257. if (c < 5) {
  9258. n |= e[i--] << (4 - c);
  9259. c += 28;
  9260. }
  9261. y = (int)((n >> 27) & 0x1f);
  9262. n <<= 5;
  9263. c -= 5;
  9264. XMEMCPY(rt, t[y], sizeof(sp_digit) * 112);
  9265. while ((i >= 0) || (c >= 5)) {
  9266. if (c >= 5) {
  9267. y = (byte)((n >> 27) & 0x1f);
  9268. n <<= 5;
  9269. c -= 5;
  9270. }
  9271. else if (c == 0) {
  9272. n = e[i--] << 4;
  9273. y = (byte)((n >> 27) & 0x1f);
  9274. n <<= 5;
  9275. c = 23;
  9276. }
  9277. else {
  9278. y = (byte)((n >> 27) & 0x1f);
  9279. n = e[i--] << 4;
  9280. c = 5 - c;
  9281. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  9282. n <<= c;
  9283. c = 28 - c;
  9284. }
  9285. sp_3072_mont_sqr_56(rt, rt, m, mp);
  9286. sp_3072_mont_sqr_56(rt, rt, m, mp);
  9287. sp_3072_mont_sqr_56(rt, rt, m, mp);
  9288. sp_3072_mont_sqr_56(rt, rt, m, mp);
  9289. sp_3072_mont_sqr_56(rt, rt, m, mp);
  9290. sp_3072_mont_mul_56(rt, rt, t[y], m, mp);
  9291. }
  9292. sp_3072_mont_reduce_56(rt, m, mp);
  9293. n = sp_3072_cmp_56(rt, m);
  9294. sp_3072_cond_sub_56(rt, rt, m, ~(n >> 31));
  9295. XMEMCPY(r, rt, sizeof(sp_digit) * 112);
  9296. }
  9297. #ifdef WOLFSSL_SP_SMALL_STACK
  9298. if (td != NULL)
  9299. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  9300. #endif
  9301. return err;
  9302. #endif
  9303. }
  9304. #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) | WOLFSSL_HAVE_SP_DH */
  9305. /* r = 2^n mod m where n is the number of bits to reduce by.
  9306. * Given m must be 3072 bits, just need to subtract.
  9307. *
  9308. * r A single precision number.
  9309. * m A single precision number.
  9310. */
  9311. static void sp_3072_mont_norm_112(sp_digit* r, const sp_digit* m)
  9312. {
  9313. /* Set r = 2^n - 1. */
  9314. int i;
  9315. for (i = 0; i < 104; i += 8) {
  9316. r[i + 0] = 0xfffffff;
  9317. r[i + 1] = 0xfffffff;
  9318. r[i + 2] = 0xfffffff;
  9319. r[i + 3] = 0xfffffff;
  9320. r[i + 4] = 0xfffffff;
  9321. r[i + 5] = 0xfffffff;
  9322. r[i + 6] = 0xfffffff;
  9323. r[i + 7] = 0xfffffff;
  9324. }
  9325. r[104] = 0xfffffff;
  9326. r[105] = 0xfffffff;
  9327. r[106] = 0xfffffff;
  9328. r[107] = 0xfffffff;
  9329. r[108] = 0xfffffff;
  9330. r[109] = 0xfffffL;
  9331. r[110] = 0;
  9332. r[111] = 0;
  9333. /* r = (2^n - 1) mod n */
  9334. (void)sp_3072_sub_112(r, r, m);
  9335. /* Add one so r = 2^n mod m */
  9336. r[0] += 1;
  9337. }
  9338. /* Compare a with b in constant time.
  9339. *
  9340. * a A single precision integer.
  9341. * b A single precision integer.
  9342. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  9343. * respectively.
  9344. */
  9345. static sp_digit sp_3072_cmp_112(const sp_digit* a, const sp_digit* b)
  9346. {
  9347. sp_digit r = 0;
  9348. int i;
  9349. for (i = 104; i >= 0; i -= 8) {
  9350. r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 27);
  9351. r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 27);
  9352. r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 27);
  9353. r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 27);
  9354. r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 27);
  9355. r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 27);
  9356. r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 27);
  9357. r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 27);
  9358. }
  9359. return r;
  9360. }
  9361. /* Conditionally subtract b from a using the mask m.
  9362. * m is -1 to subtract and 0 when not.
  9363. *
  9364. * r A single precision number representing condition subtract result.
  9365. * a A single precision number to subtract from.
  9366. * b A single precision number to subtract.
  9367. * m Mask value to apply.
  9368. */
  9369. static void sp_3072_cond_sub_112(sp_digit* r, const sp_digit* a,
  9370. const sp_digit* b, const sp_digit m)
  9371. {
  9372. int i;
  9373. for (i = 0; i < 112; i += 8) {
  9374. r[i + 0] = a[i + 0] - (b[i + 0] & m);
  9375. r[i + 1] = a[i + 1] - (b[i + 1] & m);
  9376. r[i + 2] = a[i + 2] - (b[i + 2] & m);
  9377. r[i + 3] = a[i + 3] - (b[i + 3] & m);
  9378. r[i + 4] = a[i + 4] - (b[i + 4] & m);
  9379. r[i + 5] = a[i + 5] - (b[i + 5] & m);
  9380. r[i + 6] = a[i + 6] - (b[i + 6] & m);
  9381. r[i + 7] = a[i + 7] - (b[i + 7] & m);
  9382. }
  9383. }
  9384. /* Mul a by scalar b and add into r. (r += a * b)
  9385. *
  9386. * r A single precision integer.
  9387. * a A single precision integer.
  9388. * b A scalar.
  9389. */
  9390. SP_NOINLINE static void sp_3072_mul_add_112(sp_digit* r, const sp_digit* a,
  9391. const sp_digit b)
  9392. {
  9393. #ifndef WOLFSSL_SP_LARGE_CODE
  9394. sp_int64 tb = b;
  9395. sp_int64 t = 0;
  9396. int i;
  9397. for (i = 0; i < 112; i++) {
  9398. t += r[i];
  9399. t += tb * a[i];
  9400. r[i] = ((sp_digit)t) & 0xfffffff;
  9401. t >>= 28;
  9402. }
  9403. r[112] += (sp_digit)t;
  9404. #else
  9405. sp_int64 tb = b;
  9406. sp_int64 t[8];
  9407. int i;
  9408. t[0] = 0;
  9409. for (i = 0; i < 104; i += 8) {
  9410. t[0] += (tb * a[i+0]) + r[i+0];
  9411. t[1] = (tb * a[i+1]) + r[i+1];
  9412. t[2] = (tb * a[i+2]) + r[i+2];
  9413. t[3] = (tb * a[i+3]) + r[i+3];
  9414. t[4] = (tb * a[i+4]) + r[i+4];
  9415. t[5] = (tb * a[i+5]) + r[i+5];
  9416. t[6] = (tb * a[i+6]) + r[i+6];
  9417. t[7] = (tb * a[i+7]) + r[i+7];
  9418. r[i+0] = t[0] & 0xfffffff;
  9419. t[1] += t[0] >> 28;
  9420. r[i+1] = t[1] & 0xfffffff;
  9421. t[2] += t[1] >> 28;
  9422. r[i+2] = t[2] & 0xfffffff;
  9423. t[3] += t[2] >> 28;
  9424. r[i+3] = t[3] & 0xfffffff;
  9425. t[4] += t[3] >> 28;
  9426. r[i+4] = t[4] & 0xfffffff;
  9427. t[5] += t[4] >> 28;
  9428. r[i+5] = t[5] & 0xfffffff;
  9429. t[6] += t[5] >> 28;
  9430. r[i+6] = t[6] & 0xfffffff;
  9431. t[7] += t[6] >> 28;
  9432. r[i+7] = t[7] & 0xfffffff;
  9433. t[0] = t[7] >> 28;
  9434. }
  9435. t[0] += (tb * a[104]) + r[104];
  9436. t[1] = (tb * a[105]) + r[105];
  9437. t[2] = (tb * a[106]) + r[106];
  9438. t[3] = (tb * a[107]) + r[107];
  9439. t[4] = (tb * a[108]) + r[108];
  9440. t[5] = (tb * a[109]) + r[109];
  9441. t[6] = (tb * a[110]) + r[110];
  9442. t[7] = (tb * a[111]) + r[111];
  9443. r[104] = t[0] & 0xfffffff;
  9444. t[1] += t[0] >> 28;
  9445. r[105] = t[1] & 0xfffffff;
  9446. t[2] += t[1] >> 28;
  9447. r[106] = t[2] & 0xfffffff;
  9448. t[3] += t[2] >> 28;
  9449. r[107] = t[3] & 0xfffffff;
  9450. t[4] += t[3] >> 28;
  9451. r[108] = t[4] & 0xfffffff;
  9452. t[5] += t[4] >> 28;
  9453. r[109] = t[5] & 0xfffffff;
  9454. t[6] += t[5] >> 28;
  9455. r[110] = t[6] & 0xfffffff;
  9456. t[7] += t[6] >> 28;
  9457. r[111] = t[7] & 0xfffffff;
  9458. r[112] += (sp_digit)(t[7] >> 28);
  9459. #endif /* !WOLFSSL_SP_LARGE_CODE */
  9460. }
  9461. /* Shift the result in the high 3072 bits down to the bottom.
  9462. *
  9463. * r A single precision number.
  9464. * a A single precision number.
  9465. */
  9466. static void sp_3072_mont_shift_112(sp_digit* r, const sp_digit* a)
  9467. {
  9468. int i;
  9469. sp_int64 n = a[109] >> 20;
  9470. n += ((sp_int64)a[110]) << 8;
  9471. for (i = 0; i < 104; i += 8) {
  9472. r[i + 0] = n & 0xfffffff;
  9473. n >>= 28; n += ((sp_int64)a[i + 111]) << 8;
  9474. r[i + 1] = n & 0xfffffff;
  9475. n >>= 28; n += ((sp_int64)a[i + 112]) << 8;
  9476. r[i + 2] = n & 0xfffffff;
  9477. n >>= 28; n += ((sp_int64)a[i + 113]) << 8;
  9478. r[i + 3] = n & 0xfffffff;
  9479. n >>= 28; n += ((sp_int64)a[i + 114]) << 8;
  9480. r[i + 4] = n & 0xfffffff;
  9481. n >>= 28; n += ((sp_int64)a[i + 115]) << 8;
  9482. r[i + 5] = n & 0xfffffff;
  9483. n >>= 28; n += ((sp_int64)a[i + 116]) << 8;
  9484. r[i + 6] = n & 0xfffffff;
  9485. n >>= 28; n += ((sp_int64)a[i + 117]) << 8;
  9486. r[i + 7] = n & 0xfffffff;
  9487. n >>= 28; n += ((sp_int64)a[i + 118]) << 8;
  9488. }
  9489. r[104] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[215]) << 8;
  9490. r[105] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[216]) << 8;
  9491. r[106] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[217]) << 8;
  9492. r[107] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[218]) << 8;
  9493. r[108] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[219]) << 8;
  9494. r[109] = (sp_digit)n;
  9495. XMEMSET(&r[110], 0, sizeof(*r) * 110U);
  9496. }
  9497. /* Reduce the number back to 3072 bits using Montgomery reduction.
  9498. *
  9499. * a A single precision number to reduce in place.
  9500. * m The single precision number representing the modulus.
  9501. * mp The digit representing the negative inverse of m mod 2^n.
  9502. */
  9503. static void sp_3072_mont_reduce_112(sp_digit* a, const sp_digit* m, sp_digit mp)
  9504. {
  9505. int i;
  9506. sp_digit mu;
  9507. sp_digit over;
  9508. sp_3072_norm_112(a + 110);
  9509. #ifdef WOLFSSL_SP_DH
  9510. if (mp != 1) {
  9511. for (i=0; i<109; i++) {
  9512. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffff;
  9513. sp_3072_mul_add_112(a+i, m, mu);
  9514. a[i+1] += a[i] >> 28;
  9515. }
  9516. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffL;
  9517. sp_3072_mul_add_112(a+i, m, mu);
  9518. a[i+1] += a[i] >> 28;
  9519. a[i] &= 0xfffffff;
  9520. }
  9521. else {
  9522. for (i=0; i<109; i++) {
  9523. mu = a[i] & 0xfffffff;
  9524. sp_3072_mul_add_112(a+i, m, mu);
  9525. a[i+1] += a[i] >> 28;
  9526. }
  9527. mu = a[i] & 0xfffffL;
  9528. sp_3072_mul_add_112(a+i, m, mu);
  9529. a[i+1] += a[i] >> 28;
  9530. a[i] &= 0xfffffff;
  9531. }
  9532. #else
  9533. for (i=0; i<109; i++) {
  9534. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffff;
  9535. sp_3072_mul_add_112(a+i, m, mu);
  9536. a[i+1] += a[i] >> 28;
  9537. }
  9538. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffL;
  9539. sp_3072_mul_add_112(a+i, m, mu);
  9540. a[i+1] += a[i] >> 28;
  9541. a[i] &= 0xfffffff;
  9542. #endif
  9543. sp_3072_mont_shift_112(a, a);
  9544. over = a[109] - m[109];
  9545. sp_3072_cond_sub_112(a, a, m, ~((over - 1) >> 31));
  9546. sp_3072_norm_112(a);
  9547. }
  9548. /* Multiply two Montgomery form numbers mod the modulus (prime).
  9549. * (r = a * b mod m)
  9550. *
  9551. * r Result of multiplication.
  9552. * a First number to multiply in Montgomery form.
  9553. * b Second number to multiply in Montgomery form.
  9554. * m Modulus (prime).
  9555. * mp Montgomery multiplier.
  9556. */
  9557. SP_NOINLINE static void sp_3072_mont_mul_112(sp_digit* r, const sp_digit* a,
  9558. const sp_digit* b, const sp_digit* m, sp_digit mp)
  9559. {
  9560. sp_3072_mul_112(r, a, b);
  9561. sp_3072_mont_reduce_112(r, m, mp);
  9562. }
  9563. /* Square the Montgomery form number. (r = a * a mod m)
  9564. *
  9565. * r Result of squaring.
  9566. * a Number to square in Montgomery form.
  9567. * m Modulus (prime).
  9568. * mp Montgomery multiplier.
  9569. */
  9570. SP_NOINLINE static void sp_3072_mont_sqr_112(sp_digit* r, const sp_digit* a,
  9571. const sp_digit* m, sp_digit mp)
  9572. {
  9573. sp_3072_sqr_112(r, a);
  9574. sp_3072_mont_reduce_112(r, m, mp);
  9575. }
  9576. /* Multiply a by scalar b into r. (r = a * b)
  9577. *
  9578. * r A single precision integer.
  9579. * a A single precision integer.
  9580. * b A scalar.
  9581. */
  9582. SP_NOINLINE static void sp_3072_mul_d_224(sp_digit* r, const sp_digit* a,
  9583. sp_digit b)
  9584. {
  9585. sp_int64 tb = b;
  9586. sp_int64 t = 0;
  9587. sp_digit t2;
  9588. sp_int64 p[4];
  9589. int i;
  9590. for (i = 0; i < 224; i += 4) {
  9591. p[0] = tb * a[i + 0];
  9592. p[1] = tb * a[i + 1];
  9593. p[2] = tb * a[i + 2];
  9594. p[3] = tb * a[i + 3];
  9595. t += p[0];
  9596. t2 = (sp_digit)(t & 0xfffffff);
  9597. t >>= 28;
  9598. r[i + 0] = (sp_digit)t2;
  9599. t += p[1];
  9600. t2 = (sp_digit)(t & 0xfffffff);
  9601. t >>= 28;
  9602. r[i + 1] = (sp_digit)t2;
  9603. t += p[2];
  9604. t2 = (sp_digit)(t & 0xfffffff);
  9605. t >>= 28;
  9606. r[i + 2] = (sp_digit)t2;
  9607. t += p[3];
  9608. t2 = (sp_digit)(t & 0xfffffff);
  9609. t >>= 28;
  9610. r[i + 3] = (sp_digit)t2;
  9611. }
  9612. r[224] = (sp_digit)(t & 0xfffffff);
  9613. }
  9614. #ifndef WOLFSSL_SP_SMALL
  9615. /* Conditionally add a and b using the mask m.
  9616. * m is -1 to add and 0 when not.
  9617. *
  9618. * r A single precision number representing conditional add result.
  9619. * a A single precision number to add with.
  9620. * b A single precision number to add.
  9621. * m Mask value to apply.
  9622. */
  9623. static void sp_3072_cond_add_112(sp_digit* r, const sp_digit* a,
  9624. const sp_digit* b, const sp_digit m)
  9625. {
  9626. int i;
  9627. for (i = 0; i < 112; i += 8) {
  9628. r[i + 0] = a[i + 0] + (b[i + 0] & m);
  9629. r[i + 1] = a[i + 1] + (b[i + 1] & m);
  9630. r[i + 2] = a[i + 2] + (b[i + 2] & m);
  9631. r[i + 3] = a[i + 3] + (b[i + 3] & m);
  9632. r[i + 4] = a[i + 4] + (b[i + 4] & m);
  9633. r[i + 5] = a[i + 5] + (b[i + 5] & m);
  9634. r[i + 6] = a[i + 6] + (b[i + 6] & m);
  9635. r[i + 7] = a[i + 7] + (b[i + 7] & m);
  9636. }
  9637. }
  9638. #endif /* !WOLFSSL_SP_SMALL */
  9639. SP_NOINLINE static void sp_3072_rshift_112(sp_digit* r, const sp_digit* a,
  9640. byte n)
  9641. {
  9642. int i;
  9643. for (i=0; i<104; i += 8) {
  9644. r[i+0] = (a[i+0] >> n) | ((a[i+1] << (28 - n)) & 0xfffffff);
  9645. r[i+1] = (a[i+1] >> n) | ((a[i+2] << (28 - n)) & 0xfffffff);
  9646. r[i+2] = (a[i+2] >> n) | ((a[i+3] << (28 - n)) & 0xfffffff);
  9647. r[i+3] = (a[i+3] >> n) | ((a[i+4] << (28 - n)) & 0xfffffff);
  9648. r[i+4] = (a[i+4] >> n) | ((a[i+5] << (28 - n)) & 0xfffffff);
  9649. r[i+5] = (a[i+5] >> n) | ((a[i+6] << (28 - n)) & 0xfffffff);
  9650. r[i+6] = (a[i+6] >> n) | ((a[i+7] << (28 - n)) & 0xfffffff);
  9651. r[i+7] = (a[i+7] >> n) | ((a[i+8] << (28 - n)) & 0xfffffff);
  9652. }
  9653. r[104] = (a[104] >> n) | ((a[105] << (28 - n)) & 0xfffffff);
  9654. r[105] = (a[105] >> n) | ((a[106] << (28 - n)) & 0xfffffff);
  9655. r[106] = (a[106] >> n) | ((a[107] << (28 - n)) & 0xfffffff);
  9656. r[107] = (a[107] >> n) | ((a[108] << (28 - n)) & 0xfffffff);
  9657. r[108] = (a[108] >> n) | ((a[109] << (28 - n)) & 0xfffffff);
  9658. r[109] = (a[109] >> n) | ((a[110] << (28 - n)) & 0xfffffff);
  9659. r[110] = (a[110] >> n) | ((a[111] << (28 - n)) & 0xfffffff);
  9660. r[111] = a[111] >> n;
  9661. }
  9662. static WC_INLINE sp_digit sp_3072_div_word_112(sp_digit d1, sp_digit d0,
  9663. sp_digit div)
  9664. {
  9665. #ifdef SP_USE_DIVTI3
  9666. sp_int64 d = ((sp_int64)d1 << 28) + d0;
  9667. return d / div;
  9668. #elif defined(__x86_64__) || defined(__i386__)
  9669. sp_int64 d = ((sp_int64)d1 << 28) + d0;
  9670. sp_uint32 lo = (sp_uint32)d;
  9671. sp_digit hi = (sp_digit)(d >> 32);
  9672. __asm__ __volatile__ (
  9673. "idiv %2"
  9674. : "+a" (lo)
  9675. : "d" (hi), "r" (div)
  9676. : "cc"
  9677. );
  9678. return (sp_digit)lo;
  9679. #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
  9680. sp_int64 d = ((sp_int64)d1 << 28) + d0;
  9681. sp_digit dv = (div >> 1) + 1;
  9682. sp_digit t1 = (sp_digit)(d >> 28);
  9683. sp_digit t0 = (sp_digit)(d & 0xfffffff);
  9684. sp_digit t2;
  9685. sp_digit sign;
  9686. sp_digit r;
  9687. int i;
  9688. sp_int64 m;
  9689. r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  9690. t1 -= dv & (0 - r);
  9691. for (i = 26; i >= 1; i--) {
  9692. t1 += t1 + (((sp_uint32)t0 >> 27) & 1);
  9693. t0 <<= 1;
  9694. t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  9695. r += r + t2;
  9696. t1 -= dv & (0 - t2);
  9697. t1 += t2;
  9698. }
  9699. r += r + 1;
  9700. m = d - ((sp_int64)r * div);
  9701. r += (sp_digit)(m >> 28);
  9702. m = d - ((sp_int64)r * div);
  9703. r += (sp_digit)(m >> 56) - (sp_digit)(d >> 56);
  9704. m = d - ((sp_int64)r * div);
  9705. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  9706. m *= sign;
  9707. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  9708. r += sign * t2;
  9709. m = d - ((sp_int64)r * div);
  9710. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  9711. m *= sign;
  9712. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  9713. r += sign * t2;
  9714. return r;
  9715. #else
  9716. sp_int64 d = ((sp_int64)d1 << 28) + d0;
  9717. sp_digit r = 0;
  9718. sp_digit t;
  9719. sp_digit dv = (div >> 13) + 1;
  9720. t = (sp_digit)(d >> 26);
  9721. t = (t / dv) << 13;
  9722. r += t;
  9723. d -= (sp_int64)t * div;
  9724. t = (sp_digit)(d >> 11);
  9725. t = t / (dv << 2);
  9726. r += t;
  9727. d -= (sp_int64)t * div;
  9728. t = (sp_digit)d;
  9729. t = t / div;
  9730. r += t;
  9731. d -= (sp_int64)t * div;
  9732. return r;
  9733. #endif
  9734. }
  9735. static WC_INLINE sp_digit sp_3072_word_div_word_112(sp_digit d, sp_digit div)
  9736. {
  9737. #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
  9738. defined(SP_DIV_WORD_USE_DIV)
  9739. return d / div;
  9740. #else
  9741. return (sp_digit)((sp_uint32)(div - d) >> 31);
  9742. #endif
  9743. }
  9744. /* Divide d in a and put remainder into r (m*d + r = a)
  9745. * m is not calculated as it is not needed at this time.
  9746. *
  9747. * Full implementation.
  9748. *
  9749. * a Number to be divided.
  9750. * d Number to divide with.
  9751. * m Multiplier result.
  9752. * r Remainder from the division.
  9753. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  9754. */
  9755. static int sp_3072_div_112(const sp_digit* a, const sp_digit* d,
  9756. const sp_digit* m, sp_digit* r)
  9757. {
  9758. int i;
  9759. #ifndef WOLFSSL_SP_DIV_32
  9760. #endif
  9761. sp_digit dv;
  9762. sp_digit r1;
  9763. #ifdef WOLFSSL_SP_SMALL_STACK
  9764. sp_digit* t1 = NULL;
  9765. #else
  9766. sp_digit t1[4 * 112 + 3];
  9767. #endif
  9768. sp_digit* t2 = NULL;
  9769. sp_digit* sd = NULL;
  9770. int err = MP_OKAY;
  9771. (void)m;
  9772. #ifdef WOLFSSL_SP_SMALL_STACK
  9773. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 112 + 3), NULL,
  9774. DYNAMIC_TYPE_TMP_BUFFER);
  9775. if (t1 == NULL)
  9776. err = MEMORY_E;
  9777. #endif
  9778. (void)m;
  9779. if (err == MP_OKAY) {
  9780. t2 = t1 + 224 + 1;
  9781. sd = t2 + 112 + 1;
  9782. sp_3072_mul_d_112(sd, d, (sp_digit)1 << 8);
  9783. sp_3072_mul_d_224(t1, a, (sp_digit)1 << 8);
  9784. dv = sd[109];
  9785. t1[110 + 110] += t1[110 + 110 - 1] >> 28;
  9786. t1[110 + 110 - 1] &= 0xfffffff;
  9787. for (i=110; i>=0; i--) {
  9788. r1 = sp_3072_div_word_112(t1[110 + i], t1[110 + i - 1], dv);
  9789. sp_3072_mul_d_112(t2, sd, r1);
  9790. (void)sp_3072_sub_112(&t1[i], &t1[i], t2);
  9791. sp_3072_norm_110(&t1[i]);
  9792. t1[110 + i] += t1[110 + i - 1] >> 28;
  9793. t1[110 + i - 1] &= 0xfffffff;
  9794. r1 = sp_3072_div_word_112(-t1[110 + i], -t1[110 + i - 1], dv);
  9795. r1 -= t1[110 + i];
  9796. sp_3072_mul_d_112(t2, sd, r1);
  9797. (void)sp_3072_add_112(&t1[i], &t1[i], t2);
  9798. t1[110 + i] += t1[110 + i - 1] >> 28;
  9799. t1[110 + i - 1] &= 0xfffffff;
  9800. }
  9801. t1[110 - 1] += t1[110 - 2] >> 28;
  9802. t1[110 - 2] &= 0xfffffff;
  9803. r1 = sp_3072_word_div_word_112(t1[110 - 1], dv);
  9804. sp_3072_mul_d_112(t2, sd, r1);
  9805. sp_3072_sub_112(t1, t1, t2);
  9806. XMEMCPY(r, t1, sizeof(*r) * 224U);
  9807. for (i=0; i<109; i++) {
  9808. r[i+1] += r[i] >> 28;
  9809. r[i] &= 0xfffffff;
  9810. }
  9811. sp_3072_cond_add_112(r, r, sd, r[109] >> 31);
  9812. sp_3072_norm_110(r);
  9813. sp_3072_rshift_112(r, r, 8);
  9814. r[110] = 0;
  9815. r[111] = 0;
  9816. }
  9817. #ifdef WOLFSSL_SP_SMALL_STACK
  9818. if (t1 != NULL)
  9819. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  9820. #endif
  9821. return err;
  9822. }
  9823. /* Reduce a modulo m into r. (r = a mod m)
  9824. *
  9825. * r A single precision number that is the reduced result.
  9826. * a A single precision number that is to be reduced.
  9827. * m A single precision number that is the modulus to reduce with.
  9828. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  9829. */
  9830. static int sp_3072_mod_112(sp_digit* r, const sp_digit* a, const sp_digit* m)
  9831. {
  9832. return sp_3072_div_112(a, m, NULL, r);
  9833. }
  9834. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
  9835. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || \
  9836. defined(WOLFSSL_HAVE_SP_DH)
  9837. /* Modular exponentiate a to the e mod m. (r = a^e mod m)
  9838. *
  9839. * r A single precision number that is the result of the operation.
  9840. * a A single precision number being exponentiated.
  9841. * e A single precision number that is the exponent.
  9842. * bits The number of bits in the exponent.
  9843. * m A single precision number that is the modulus.
  9844. * returns 0 on success.
  9845. * returns MEMORY_E on dynamic memory allocation failure.
  9846. * returns MP_VAL when base is even or exponent is 0.
  9847. */
  9848. static int sp_3072_mod_exp_112(sp_digit* r, const sp_digit* a, const sp_digit* e,
  9849. int bits, const sp_digit* m, int reduceA)
  9850. {
  9851. #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
  9852. #ifdef WOLFSSL_SP_SMALL_STACK
  9853. sp_digit* td = NULL;
  9854. #else
  9855. sp_digit td[3 * 224];
  9856. #endif
  9857. sp_digit* t[3] = {0, 0, 0};
  9858. sp_digit* norm = NULL;
  9859. sp_digit mp = 1;
  9860. sp_digit n;
  9861. int i;
  9862. int c;
  9863. byte y;
  9864. int err = MP_OKAY;
  9865. if (bits == 0) {
  9866. err = MP_VAL;
  9867. }
  9868. #ifdef WOLFSSL_SP_SMALL_STACK
  9869. if (err == MP_OKAY) {
  9870. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 112 * 2, NULL,
  9871. DYNAMIC_TYPE_TMP_BUFFER);
  9872. if (td == NULL)
  9873. err = MEMORY_E;
  9874. }
  9875. #endif
  9876. if (err == MP_OKAY) {
  9877. norm = td;
  9878. for (i=0; i<3; i++) {
  9879. t[i] = td + (i * 112 * 2);
  9880. XMEMSET(t[i], 0, sizeof(sp_digit) * 112U * 2U);
  9881. }
  9882. sp_3072_mont_setup(m, &mp);
  9883. sp_3072_mont_norm_112(norm, m);
  9884. if (reduceA != 0) {
  9885. err = sp_3072_mod_112(t[1], a, m);
  9886. }
  9887. else {
  9888. XMEMCPY(t[1], a, sizeof(sp_digit) * 112U);
  9889. }
  9890. }
  9891. if (err == MP_OKAY) {
  9892. sp_3072_mul_112(t[1], t[1], norm);
  9893. err = sp_3072_mod_112(t[1], t[1], m);
  9894. }
  9895. if (err == MP_OKAY) {
  9896. i = bits / 28;
  9897. c = bits % 28;
  9898. n = e[i--] << (28 - c);
  9899. for (; ; c--) {
  9900. if (c == 0) {
  9901. if (i == -1) {
  9902. break;
  9903. }
  9904. n = e[i--];
  9905. c = 28;
  9906. }
  9907. y = (int)((n >> 27) & 1);
  9908. n <<= 1;
  9909. sp_3072_mont_mul_112(t[y^1], t[0], t[1], m, mp);
  9910. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  9911. ((size_t)t[1] & addr_mask[y])),
  9912. sizeof(*t[2]) * 112 * 2);
  9913. sp_3072_mont_sqr_112(t[2], t[2], m, mp);
  9914. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  9915. ((size_t)t[1] & addr_mask[y])), t[2],
  9916. sizeof(*t[2]) * 112 * 2);
  9917. }
  9918. sp_3072_mont_reduce_112(t[0], m, mp);
  9919. n = sp_3072_cmp_112(t[0], m);
  9920. sp_3072_cond_sub_112(t[0], t[0], m, ~(n >> 31));
  9921. XMEMCPY(r, t[0], sizeof(*r) * 112 * 2);
  9922. }
  9923. #ifdef WOLFSSL_SP_SMALL_STACK
  9924. if (td != NULL)
  9925. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  9926. #endif
  9927. return err;
  9928. #elif !defined(WC_NO_CACHE_RESISTANT)
  9929. #ifdef WOLFSSL_SP_SMALL_STACK
  9930. sp_digit* td = NULL;
  9931. #else
  9932. sp_digit td[3 * 224];
  9933. #endif
  9934. sp_digit* t[3] = {0, 0, 0};
  9935. sp_digit* norm = NULL;
  9936. sp_digit mp = 1;
  9937. sp_digit n;
  9938. int i;
  9939. int c;
  9940. byte y;
  9941. int err = MP_OKAY;
  9942. if (bits == 0) {
  9943. err = MP_VAL;
  9944. }
  9945. #ifdef WOLFSSL_SP_SMALL_STACK
  9946. if (err == MP_OKAY) {
  9947. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 112 * 2, NULL,
  9948. DYNAMIC_TYPE_TMP_BUFFER);
  9949. if (td == NULL)
  9950. err = MEMORY_E;
  9951. }
  9952. #endif
  9953. if (err == MP_OKAY) {
  9954. norm = td;
  9955. for (i=0; i<3; i++) {
  9956. t[i] = td + (i * 112 * 2);
  9957. }
  9958. sp_3072_mont_setup(m, &mp);
  9959. sp_3072_mont_norm_112(norm, m);
  9960. if (reduceA != 0) {
  9961. err = sp_3072_mod_112(t[1], a, m);
  9962. if (err == MP_OKAY) {
  9963. sp_3072_mul_112(t[1], t[1], norm);
  9964. err = sp_3072_mod_112(t[1], t[1], m);
  9965. }
  9966. }
  9967. else {
  9968. sp_3072_mul_112(t[1], a, norm);
  9969. err = sp_3072_mod_112(t[1], t[1], m);
  9970. }
  9971. }
  9972. if (err == MP_OKAY) {
  9973. i = bits / 28;
  9974. c = bits % 28;
  9975. n = e[i--] << (28 - c);
  9976. for (; ; c--) {
  9977. if (c == 0) {
  9978. if (i == -1) {
  9979. break;
  9980. }
  9981. n = e[i--];
  9982. c = 28;
  9983. }
  9984. y = (int)((n >> 27) & 1);
  9985. n <<= 1;
  9986. sp_3072_mont_mul_112(t[y^1], t[0], t[1], m, mp);
  9987. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  9988. ((size_t)t[1] & addr_mask[y])),
  9989. sizeof(*t[2]) * 112 * 2);
  9990. sp_3072_mont_sqr_112(t[2], t[2], m, mp);
  9991. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  9992. ((size_t)t[1] & addr_mask[y])), t[2],
  9993. sizeof(*t[2]) * 112 * 2);
  9994. }
  9995. sp_3072_mont_reduce_112(t[0], m, mp);
  9996. n = sp_3072_cmp_112(t[0], m);
  9997. sp_3072_cond_sub_112(t[0], t[0], m, ~(n >> 31));
  9998. XMEMCPY(r, t[0], sizeof(*r) * 112 * 2);
  9999. }
  10000. #ifdef WOLFSSL_SP_SMALL_STACK
  10001. if (td != NULL)
  10002. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  10003. #endif
  10004. return err;
  10005. #else
  10006. #ifdef WOLFSSL_SP_SMALL_STACK
  10007. sp_digit* td = NULL;
  10008. #else
  10009. sp_digit td[(16 * 224) + 224];
  10010. #endif
  10011. sp_digit* t[16];
  10012. sp_digit* rt = NULL;
  10013. sp_digit* norm = NULL;
  10014. sp_digit mp = 1;
  10015. sp_digit n;
  10016. int i;
  10017. int c;
  10018. byte y;
  10019. int err = MP_OKAY;
  10020. if (bits == 0) {
  10021. err = MP_VAL;
  10022. }
  10023. #ifdef WOLFSSL_SP_SMALL_STACK
  10024. if (err == MP_OKAY) {
  10025. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((16 * 224) + 224), NULL,
  10026. DYNAMIC_TYPE_TMP_BUFFER);
  10027. if (td == NULL)
  10028. err = MEMORY_E;
  10029. }
  10030. #endif
  10031. if (err == MP_OKAY) {
  10032. norm = td;
  10033. for (i=0; i<16; i++)
  10034. t[i] = td + i * 224;
  10035. rt = td + 3584;
  10036. sp_3072_mont_setup(m, &mp);
  10037. sp_3072_mont_norm_112(norm, m);
  10038. if (reduceA != 0) {
  10039. err = sp_3072_mod_112(t[1], a, m);
  10040. if (err == MP_OKAY) {
  10041. sp_3072_mul_112(t[1], t[1], norm);
  10042. err = sp_3072_mod_112(t[1], t[1], m);
  10043. }
  10044. }
  10045. else {
  10046. sp_3072_mul_112(t[1], a, norm);
  10047. err = sp_3072_mod_112(t[1], t[1], m);
  10048. }
  10049. }
  10050. if (err == MP_OKAY) {
  10051. sp_3072_mont_sqr_112(t[ 2], t[ 1], m, mp);
  10052. sp_3072_mont_mul_112(t[ 3], t[ 2], t[ 1], m, mp);
  10053. sp_3072_mont_sqr_112(t[ 4], t[ 2], m, mp);
  10054. sp_3072_mont_mul_112(t[ 5], t[ 3], t[ 2], m, mp);
  10055. sp_3072_mont_sqr_112(t[ 6], t[ 3], m, mp);
  10056. sp_3072_mont_mul_112(t[ 7], t[ 4], t[ 3], m, mp);
  10057. sp_3072_mont_sqr_112(t[ 8], t[ 4], m, mp);
  10058. sp_3072_mont_mul_112(t[ 9], t[ 5], t[ 4], m, mp);
  10059. sp_3072_mont_sqr_112(t[10], t[ 5], m, mp);
  10060. sp_3072_mont_mul_112(t[11], t[ 6], t[ 5], m, mp);
  10061. sp_3072_mont_sqr_112(t[12], t[ 6], m, mp);
  10062. sp_3072_mont_mul_112(t[13], t[ 7], t[ 6], m, mp);
  10063. sp_3072_mont_sqr_112(t[14], t[ 7], m, mp);
  10064. sp_3072_mont_mul_112(t[15], t[ 8], t[ 7], m, mp);
  10065. bits = ((bits + 3) / 4) * 4;
  10066. i = ((bits + 27) / 28) - 1;
  10067. c = bits % 28;
  10068. if (c == 0) {
  10069. c = 28;
  10070. }
  10071. if (i < 112) {
  10072. n = e[i--] << (32 - c);
  10073. }
  10074. else {
  10075. n = 0;
  10076. i--;
  10077. }
  10078. if (c < 4) {
  10079. n |= e[i--] << (4 - c);
  10080. c += 28;
  10081. }
  10082. y = (int)((n >> 28) & 0xf);
  10083. n <<= 4;
  10084. c -= 4;
  10085. XMEMCPY(rt, t[y], sizeof(sp_digit) * 224);
  10086. while ((i >= 0) || (c >= 4)) {
  10087. if (c >= 4) {
  10088. y = (byte)((n >> 28) & 0xf);
  10089. n <<= 4;
  10090. c -= 4;
  10091. }
  10092. else if (c == 0) {
  10093. n = e[i--] << 4;
  10094. y = (byte)((n >> 28) & 0xf);
  10095. n <<= 4;
  10096. c = 24;
  10097. }
  10098. else {
  10099. y = (byte)((n >> 28) & 0xf);
  10100. n = e[i--] << 4;
  10101. c = 4 - c;
  10102. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  10103. n <<= c;
  10104. c = 28 - c;
  10105. }
  10106. sp_3072_mont_sqr_112(rt, rt, m, mp);
  10107. sp_3072_mont_sqr_112(rt, rt, m, mp);
  10108. sp_3072_mont_sqr_112(rt, rt, m, mp);
  10109. sp_3072_mont_sqr_112(rt, rt, m, mp);
  10110. sp_3072_mont_mul_112(rt, rt, t[y], m, mp);
  10111. }
  10112. sp_3072_mont_reduce_112(rt, m, mp);
  10113. n = sp_3072_cmp_112(rt, m);
  10114. sp_3072_cond_sub_112(rt, rt, m, ~(n >> 31));
  10115. XMEMCPY(r, rt, sizeof(sp_digit) * 224);
  10116. }
  10117. #ifdef WOLFSSL_SP_SMALL_STACK
  10118. if (td != NULL)
  10119. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  10120. #endif
  10121. return err;
  10122. #endif
  10123. }
  10124. #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) || */
  10125. /* WOLFSSL_HAVE_SP_DH */
  10126. #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
  10127. #ifdef WOLFSSL_HAVE_SP_RSA
  10128. /* RSA public key operation.
  10129. *
  10130. * in Array of bytes representing the number to exponentiate, base.
  10131. * inLen Number of bytes in base.
  10132. * em Public exponent.
  10133. * mm Modulus.
  10134. * out Buffer to hold big-endian bytes of exponentiation result.
  10135. * Must be at least 384 bytes long.
  10136. * outLen Number of bytes in result.
  10137. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
  10138. * an array is too long and MEMORY_E when dynamic memory allocation fails.
  10139. */
  10140. int sp_RsaPublic_3072(const byte* in, word32 inLen, const mp_int* em,
  10141. const mp_int* mm, byte* out, word32* outLen)
  10142. {
  10143. #ifdef WOLFSSL_SP_SMALL
  10144. #ifdef WOLFSSL_SP_SMALL_STACK
  10145. sp_digit* a = NULL;
  10146. #else
  10147. sp_digit a[112 * 5];
  10148. #endif
  10149. sp_digit* m = NULL;
  10150. sp_digit* r = NULL;
  10151. sp_digit* norm = NULL;
  10152. sp_digit e[1] = {0};
  10153. sp_digit mp = 0;
  10154. int i;
  10155. int err = MP_OKAY;
  10156. if (*outLen < 384U) {
  10157. err = MP_TO_E;
  10158. }
  10159. if (err == MP_OKAY) {
  10160. if (mp_count_bits(em) > 28) {
  10161. err = MP_READ_E;
  10162. }
  10163. else if (inLen > 384U) {
  10164. err = MP_READ_E;
  10165. }
  10166. else if (mp_count_bits(mm) != 3072) {
  10167. err = MP_READ_E;
  10168. }
  10169. else if (mp_iseven(mm)) {
  10170. err = MP_VAL;
  10171. }
  10172. }
  10173. #ifdef WOLFSSL_SP_SMALL_STACK
  10174. if (err == MP_OKAY) {
  10175. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 5, NULL,
  10176. DYNAMIC_TYPE_RSA);
  10177. if (a == NULL)
  10178. err = MEMORY_E;
  10179. }
  10180. #endif
  10181. if (err == MP_OKAY) {
  10182. r = a + 112 * 2;
  10183. m = r + 112 * 2;
  10184. norm = r;
  10185. sp_3072_from_bin(a, 112, in, inLen);
  10186. #if DIGIT_BIT >= 28
  10187. e[0] = (sp_digit)em->dp[0];
  10188. #else
  10189. e[0] = (sp_digit)em->dp[0];
  10190. if (em->used > 1) {
  10191. e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT;
  10192. }
  10193. #endif
  10194. if (e[0] == 0) {
  10195. err = MP_EXPTMOD_E;
  10196. }
  10197. }
  10198. if (err == MP_OKAY) {
  10199. sp_3072_from_mp(m, 112, mm);
  10200. sp_3072_mont_setup(m, &mp);
  10201. sp_3072_mont_norm_112(norm, m);
  10202. }
  10203. if (err == MP_OKAY) {
  10204. sp_3072_mul_112(a, a, norm);
  10205. err = sp_3072_mod_112(a, a, m);
  10206. }
  10207. if (err == MP_OKAY) {
  10208. for (i=27; i>=0; i--) {
  10209. if ((e[0] >> i) != 0) {
  10210. break;
  10211. }
  10212. }
  10213. XMEMCPY(r, a, sizeof(sp_digit) * 112 * 2);
  10214. for (i--; i>=0; i--) {
  10215. sp_3072_mont_sqr_112(r, r, m, mp);
  10216. if (((e[0] >> i) & 1) == 1) {
  10217. sp_3072_mont_mul_112(r, r, a, m, mp);
  10218. }
  10219. }
  10220. sp_3072_mont_reduce_112(r, m, mp);
  10221. mp = sp_3072_cmp_112(r, m);
  10222. sp_3072_cond_sub_112(r, r, m, ~(mp >> 31));
  10223. sp_3072_to_bin_112(r, out);
  10224. *outLen = 384;
  10225. }
  10226. #ifdef WOLFSSL_SP_SMALL_STACK
  10227. if (a != NULL)
  10228. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  10229. #endif
  10230. return err;
  10231. #else
  10232. #ifdef WOLFSSL_SP_SMALL_STACK
  10233. sp_digit* d = NULL;
  10234. #else
  10235. sp_digit d[112 * 5];
  10236. #endif
  10237. sp_digit* a = NULL;
  10238. sp_digit* m = NULL;
  10239. sp_digit* r = NULL;
  10240. sp_digit e[1] = {0};
  10241. int err = MP_OKAY;
  10242. if (*outLen < 384U) {
  10243. err = MP_TO_E;
  10244. }
  10245. if (err == MP_OKAY) {
  10246. if (mp_count_bits(em) > 28) {
  10247. err = MP_READ_E;
  10248. }
  10249. else if (inLen > 384U) {
  10250. err = MP_READ_E;
  10251. }
  10252. else if (mp_count_bits(mm) != 3072) {
  10253. err = MP_READ_E;
  10254. }
  10255. else if (mp_iseven(mm)) {
  10256. err = MP_VAL;
  10257. }
  10258. }
  10259. #ifdef WOLFSSL_SP_SMALL_STACK
  10260. if (err == MP_OKAY) {
  10261. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 5, NULL,
  10262. DYNAMIC_TYPE_RSA);
  10263. if (d == NULL)
  10264. err = MEMORY_E;
  10265. }
  10266. #endif
  10267. if (err == MP_OKAY) {
  10268. a = d;
  10269. r = a + 112 * 2;
  10270. m = r + 112 * 2;
  10271. sp_3072_from_bin(a, 112, in, inLen);
  10272. #if DIGIT_BIT >= 28
  10273. e[0] = (sp_digit)em->dp[0];
  10274. #else
  10275. e[0] = (sp_digit)em->dp[0];
  10276. if (em->used > 1) {
  10277. e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT;
  10278. }
  10279. #endif
  10280. if (e[0] == 0) {
  10281. err = MP_EXPTMOD_E;
  10282. }
  10283. }
  10284. if (err == MP_OKAY) {
  10285. sp_3072_from_mp(m, 112, mm);
  10286. if (e[0] == 0x3) {
  10287. sp_3072_sqr_112(r, a);
  10288. err = sp_3072_mod_112(r, r, m);
  10289. if (err == MP_OKAY) {
  10290. sp_3072_mul_112(r, a, r);
  10291. err = sp_3072_mod_112(r, r, m);
  10292. }
  10293. }
  10294. else {
  10295. sp_digit* norm = r;
  10296. int i;
  10297. sp_digit mp;
  10298. sp_3072_mont_setup(m, &mp);
  10299. sp_3072_mont_norm_112(norm, m);
  10300. sp_3072_mul_112(a, a, norm);
  10301. err = sp_3072_mod_112(a, a, m);
  10302. if (err == MP_OKAY) {
  10303. for (i=27; i>=0; i--) {
  10304. if ((e[0] >> i) != 0) {
  10305. break;
  10306. }
  10307. }
  10308. XMEMCPY(r, a, sizeof(sp_digit) * 224U);
  10309. for (i--; i>=0; i--) {
  10310. sp_3072_mont_sqr_112(r, r, m, mp);
  10311. if (((e[0] >> i) & 1) == 1) {
  10312. sp_3072_mont_mul_112(r, r, a, m, mp);
  10313. }
  10314. }
  10315. sp_3072_mont_reduce_112(r, m, mp);
  10316. mp = sp_3072_cmp_112(r, m);
  10317. sp_3072_cond_sub_112(r, r, m, ~(mp >> 31));
  10318. }
  10319. }
  10320. }
  10321. if (err == MP_OKAY) {
  10322. sp_3072_to_bin_112(r, out);
  10323. *outLen = 384;
  10324. }
  10325. #ifdef WOLFSSL_SP_SMALL_STACK
  10326. if (d != NULL)
  10327. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  10328. #endif
  10329. return err;
  10330. #endif /* WOLFSSL_SP_SMALL */
  10331. }
  10332. #ifndef WOLFSSL_RSA_PUBLIC_ONLY
  10333. #if !defined(SP_RSA_PRIVATE_EXP_D) && !defined(RSA_LOW_MEM)
  10334. #endif /* !SP_RSA_PRIVATE_EXP_D & !RSA_LOW_MEM */
  10335. /* RSA private key operation.
  10336. *
  10337. * in Array of bytes representing the number to exponentiate, base.
  10338. * inLen Number of bytes in base.
  10339. * dm Private exponent.
  10340. * pm First prime.
  10341. * qm Second prime.
  10342. * dpm First prime's CRT exponent.
  10343. * dqm Second prime's CRT exponent.
  10344. * qim Inverse of second prime mod p.
  10345. * mm Modulus.
  10346. * out Buffer to hold big-endian bytes of exponentiation result.
  10347. * Must be at least 384 bytes long.
  10348. * outLen Number of bytes in result.
  10349. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
  10350. * an array is too long and MEMORY_E when dynamic memory allocation fails.
  10351. */
  10352. int sp_RsaPrivate_3072(const byte* in, word32 inLen, const mp_int* dm,
  10353. const mp_int* pm, const mp_int* qm, const mp_int* dpm, const mp_int* dqm,
  10354. const mp_int* qim, const mp_int* mm, byte* out, word32* outLen)
  10355. {
  10356. #if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM)
  10357. #if defined(WOLFSSL_SP_SMALL)
  10358. #ifdef WOLFSSL_SP_SMALL_STACK
  10359. sp_digit* d = NULL;
  10360. #else
  10361. sp_digit d[112 * 4];
  10362. #endif
  10363. sp_digit* a = NULL;
  10364. sp_digit* m = NULL;
  10365. sp_digit* r = NULL;
  10366. int err = MP_OKAY;
  10367. (void)pm;
  10368. (void)qm;
  10369. (void)dpm;
  10370. (void)dqm;
  10371. (void)qim;
  10372. if (*outLen < 384U) {
  10373. err = MP_TO_E;
  10374. }
  10375. if (err == MP_OKAY) {
  10376. if (mp_count_bits(dm) > 3072) {
  10377. err = MP_READ_E;
  10378. }
  10379. else if (inLen > 384) {
  10380. err = MP_READ_E;
  10381. }
  10382. else if (mp_count_bits(mm) != 3072) {
  10383. err = MP_READ_E;
  10384. }
  10385. else if (mp_iseven(mm)) {
  10386. err = MP_VAL;
  10387. }
  10388. }
  10389. #ifdef WOLFSSL_SP_SMALL_STACK
  10390. if (err == MP_OKAY) {
  10391. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 4, NULL,
  10392. DYNAMIC_TYPE_RSA);
  10393. if (d == NULL)
  10394. err = MEMORY_E;
  10395. }
  10396. #endif
  10397. if (err == MP_OKAY) {
  10398. a = d + 112;
  10399. m = a + 224;
  10400. r = a;
  10401. sp_3072_from_bin(a, 112, in, inLen);
  10402. sp_3072_from_mp(d, 112, dm);
  10403. sp_3072_from_mp(m, 112, mm);
  10404. err = sp_3072_mod_exp_112(r, a, d, 3072, m, 0);
  10405. }
  10406. if (err == MP_OKAY) {
  10407. sp_3072_to_bin_112(r, out);
  10408. *outLen = 384;
  10409. }
  10410. #ifdef WOLFSSL_SP_SMALL_STACK
  10411. if (d != NULL)
  10412. #endif
  10413. {
  10414. /* only "a" and "r" are sensitive and need zeroized (same pointer) */
  10415. if (a != NULL)
  10416. ForceZero(a, sizeof(sp_digit) * 112);
  10417. #ifdef WOLFSSL_SP_SMALL_STACK
  10418. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  10419. #endif
  10420. }
  10421. return err;
  10422. #else
  10423. #ifdef WOLFSSL_SP_SMALL_STACK
  10424. sp_digit* d = NULL;
  10425. #else
  10426. sp_digit d[112 * 4];
  10427. #endif
  10428. sp_digit* a = NULL;
  10429. sp_digit* m = NULL;
  10430. sp_digit* r = NULL;
  10431. int err = MP_OKAY;
  10432. (void)pm;
  10433. (void)qm;
  10434. (void)dpm;
  10435. (void)dqm;
  10436. (void)qim;
  10437. if (*outLen < 384U) {
  10438. err = MP_TO_E;
  10439. }
  10440. if (err == MP_OKAY) {
  10441. if (mp_count_bits(dm) > 3072) {
  10442. err = MP_READ_E;
  10443. }
  10444. else if (inLen > 384U) {
  10445. err = MP_READ_E;
  10446. }
  10447. else if (mp_count_bits(mm) != 3072) {
  10448. err = MP_READ_E;
  10449. }
  10450. else if (mp_iseven(mm)) {
  10451. err = MP_VAL;
  10452. }
  10453. }
  10454. #ifdef WOLFSSL_SP_SMALL_STACK
  10455. if (err == MP_OKAY) {
  10456. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 4, NULL,
  10457. DYNAMIC_TYPE_RSA);
  10458. if (d == NULL)
  10459. err = MEMORY_E;
  10460. }
  10461. #endif
  10462. if (err == MP_OKAY) {
  10463. a = d + 112;
  10464. m = a + 224;
  10465. r = a;
  10466. sp_3072_from_bin(a, 112, in, inLen);
  10467. sp_3072_from_mp(d, 112, dm);
  10468. sp_3072_from_mp(m, 112, mm);
  10469. err = sp_3072_mod_exp_112(r, a, d, 3072, m, 0);
  10470. }
  10471. if (err == MP_OKAY) {
  10472. sp_3072_to_bin_112(r, out);
  10473. *outLen = 384;
  10474. }
  10475. #ifdef WOLFSSL_SP_SMALL_STACK
  10476. if (d != NULL)
  10477. #endif
  10478. {
  10479. /* only "a" and "r" are sensitive and need zeroized (same pointer) */
  10480. if (a != NULL)
  10481. ForceZero(a, sizeof(sp_digit) * 112);
  10482. #ifdef WOLFSSL_SP_SMALL_STACK
  10483. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  10484. #endif
  10485. }
  10486. return err;
  10487. #endif /* WOLFSSL_SP_SMALL */
  10488. #else
  10489. #if defined(WOLFSSL_SP_SMALL)
  10490. #ifdef WOLFSSL_SP_SMALL_STACK
  10491. sp_digit* a = NULL;
  10492. #else
  10493. sp_digit a[56 * 8];
  10494. #endif
  10495. sp_digit* p = NULL;
  10496. sp_digit* dp = NULL;
  10497. sp_digit* dq = NULL;
  10498. sp_digit* qi = NULL;
  10499. sp_digit* tmpa = NULL;
  10500. sp_digit* tmpb = NULL;
  10501. sp_digit* r = NULL;
  10502. int err = MP_OKAY;
  10503. (void)dm;
  10504. (void)mm;
  10505. if (*outLen < 384U) {
  10506. err = MP_TO_E;
  10507. }
  10508. if (err == MP_OKAY) {
  10509. if (inLen > 384) {
  10510. err = MP_READ_E;
  10511. }
  10512. else if (mp_count_bits(mm) != 3072) {
  10513. err = MP_READ_E;
  10514. }
  10515. else if (mp_iseven(mm)) {
  10516. err = MP_VAL;
  10517. }
  10518. else if (mp_iseven(pm)) {
  10519. err = MP_VAL;
  10520. }
  10521. else if (mp_iseven(qm)) {
  10522. err = MP_VAL;
  10523. }
  10524. }
  10525. #ifdef WOLFSSL_SP_SMALL_STACK
  10526. if (err == MP_OKAY) {
  10527. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 56 * 8, NULL,
  10528. DYNAMIC_TYPE_RSA);
  10529. if (a == NULL)
  10530. err = MEMORY_E;
  10531. }
  10532. #endif
  10533. if (err == MP_OKAY) {
  10534. p = a + 112;
  10535. qi = dq = dp = p + 56;
  10536. tmpa = qi + 56;
  10537. tmpb = tmpa + 112;
  10538. r = a;
  10539. sp_3072_from_bin(a, 112, in, inLen);
  10540. sp_3072_from_mp(p, 56, pm);
  10541. sp_3072_from_mp(dp, 56, dpm);
  10542. err = sp_3072_mod_exp_56(tmpa, a, dp, 1536, p, 1);
  10543. }
  10544. if (err == MP_OKAY) {
  10545. sp_3072_from_mp(p, 56, qm);
  10546. sp_3072_from_mp(dq, 56, dqm);
  10547. err = sp_3072_mod_exp_56(tmpb, a, dq, 1536, p, 1);
  10548. }
  10549. if (err == MP_OKAY) {
  10550. sp_3072_from_mp(p, 56, pm);
  10551. (void)sp_3072_sub_56(tmpa, tmpa, tmpb);
  10552. sp_3072_norm_55(tmpa);
  10553. sp_3072_cond_add_56(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[54] >> 31));
  10554. sp_3072_cond_add_56(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[54] >> 31));
  10555. sp_3072_norm_56(tmpa);
  10556. sp_3072_from_mp(qi, 56, qim);
  10557. sp_3072_mul_56(tmpa, tmpa, qi);
  10558. err = sp_3072_mod_56(tmpa, tmpa, p);
  10559. }
  10560. if (err == MP_OKAY) {
  10561. sp_3072_from_mp(p, 56, qm);
  10562. sp_3072_mul_56(tmpa, p, tmpa);
  10563. (void)sp_3072_add_112(r, tmpb, tmpa);
  10564. sp_3072_norm_112(r);
  10565. sp_3072_to_bin_112(r, out);
  10566. *outLen = 384;
  10567. }
  10568. #ifdef WOLFSSL_SP_SMALL_STACK
  10569. if (a != NULL)
  10570. #endif
  10571. {
  10572. ForceZero(a, sizeof(sp_digit) * 56 * 8);
  10573. #ifdef WOLFSSL_SP_SMALL_STACK
  10574. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  10575. #endif
  10576. }
  10577. return err;
  10578. #else
  10579. #ifdef WOLFSSL_SP_SMALL_STACK
  10580. sp_digit* a = NULL;
  10581. #else
  10582. sp_digit a[56 * 13];
  10583. #endif
  10584. sp_digit* p = NULL;
  10585. sp_digit* q = NULL;
  10586. sp_digit* dp = NULL;
  10587. sp_digit* dq = NULL;
  10588. sp_digit* qi = NULL;
  10589. sp_digit* tmpa = NULL;
  10590. sp_digit* tmpb = NULL;
  10591. sp_digit* r = NULL;
  10592. int err = MP_OKAY;
  10593. (void)dm;
  10594. (void)mm;
  10595. if (*outLen < 384U) {
  10596. err = MP_TO_E;
  10597. }
  10598. if (err == MP_OKAY) {
  10599. if (inLen > 384U) {
  10600. err = MP_READ_E;
  10601. }
  10602. else if (mp_count_bits(mm) != 3072) {
  10603. err = MP_READ_E;
  10604. }
  10605. else if (mp_iseven(mm)) {
  10606. err = MP_VAL;
  10607. }
  10608. else if (mp_iseven(pm)) {
  10609. err = MP_VAL;
  10610. }
  10611. else if (mp_iseven(qm)) {
  10612. err = MP_VAL;
  10613. }
  10614. }
  10615. #ifdef WOLFSSL_SP_SMALL_STACK
  10616. if (err == MP_OKAY) {
  10617. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 56 * 13, NULL,
  10618. DYNAMIC_TYPE_RSA);
  10619. if (a == NULL)
  10620. err = MEMORY_E;
  10621. }
  10622. #endif
  10623. if (err == MP_OKAY) {
  10624. p = a + 112 * 2;
  10625. q = p + 56;
  10626. dp = q + 56;
  10627. dq = dp + 56;
  10628. qi = dq + 56;
  10629. tmpa = qi + 56;
  10630. tmpb = tmpa + 112;
  10631. r = a;
  10632. sp_3072_from_bin(a, 112, in, inLen);
  10633. sp_3072_from_mp(p, 56, pm);
  10634. sp_3072_from_mp(q, 56, qm);
  10635. sp_3072_from_mp(dp, 56, dpm);
  10636. sp_3072_from_mp(dq, 56, dqm);
  10637. sp_3072_from_mp(qi, 56, qim);
  10638. err = sp_3072_mod_exp_56(tmpa, a, dp, 1536, p, 1);
  10639. }
  10640. if (err == MP_OKAY) {
  10641. err = sp_3072_mod_exp_56(tmpb, a, dq, 1536, q, 1);
  10642. }
  10643. if (err == MP_OKAY) {
  10644. (void)sp_3072_sub_56(tmpa, tmpa, tmpb);
  10645. sp_3072_norm_55(tmpa);
  10646. sp_3072_cond_add_56(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[54] >> 31));
  10647. sp_3072_cond_add_56(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[54] >> 31));
  10648. sp_3072_norm_56(tmpa);
  10649. sp_3072_mul_56(tmpa, tmpa, qi);
  10650. err = sp_3072_mod_56(tmpa, tmpa, p);
  10651. }
  10652. if (err == MP_OKAY) {
  10653. sp_3072_mul_56(tmpa, tmpa, q);
  10654. (void)sp_3072_add_112(r, tmpb, tmpa);
  10655. sp_3072_norm_112(r);
  10656. sp_3072_to_bin_112(r, out);
  10657. *outLen = 384;
  10658. }
  10659. #ifdef WOLFSSL_SP_SMALL_STACK
  10660. if (a != NULL)
  10661. #endif
  10662. {
  10663. ForceZero(a, sizeof(sp_digit) * 56 * 13);
  10664. #ifdef WOLFSSL_SP_SMALL_STACK
  10665. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  10666. #endif
  10667. }
  10668. return err;
  10669. #endif /* WOLFSSL_SP_SMALL */
  10670. #endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */
  10671. }
  10672. #endif /* !WOLFSSL_RSA_PUBLIC_ONLY */
  10673. #endif /* WOLFSSL_HAVE_SP_RSA */
  10674. #if defined(WOLFSSL_HAVE_SP_DH) || (defined(WOLFSSL_HAVE_SP_RSA) && \
  10675. !defined(WOLFSSL_RSA_PUBLIC_ONLY))
  10676. /* Convert an array of sp_digit to an mp_int.
  10677. *
  10678. * a A single precision integer.
  10679. * r A multi-precision integer.
  10680. */
  10681. static int sp_3072_to_mp(const sp_digit* a, mp_int* r)
  10682. {
  10683. int err;
  10684. err = mp_grow(r, (3072 + DIGIT_BIT - 1) / DIGIT_BIT);
  10685. if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
  10686. #if DIGIT_BIT == 28
  10687. XMEMCPY(r->dp, a, sizeof(sp_digit) * 110);
  10688. r->used = 110;
  10689. mp_clamp(r);
  10690. #elif DIGIT_BIT < 28
  10691. int i;
  10692. int j = 0;
  10693. int s = 0;
  10694. r->dp[0] = 0;
  10695. for (i = 0; i < 110; i++) {
  10696. r->dp[j] |= (mp_digit)(a[i] << s);
  10697. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  10698. s = DIGIT_BIT - s;
  10699. r->dp[++j] = (mp_digit)(a[i] >> s);
  10700. while (s + DIGIT_BIT <= 28) {
  10701. s += DIGIT_BIT;
  10702. r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  10703. if (s == SP_WORD_SIZE) {
  10704. r->dp[j] = 0;
  10705. }
  10706. else {
  10707. r->dp[j] = (mp_digit)(a[i] >> s);
  10708. }
  10709. }
  10710. s = 28 - s;
  10711. }
  10712. r->used = (3072 + DIGIT_BIT - 1) / DIGIT_BIT;
  10713. mp_clamp(r);
  10714. #else
  10715. int i;
  10716. int j = 0;
  10717. int s = 0;
  10718. r->dp[0] = 0;
  10719. for (i = 0; i < 110; i++) {
  10720. r->dp[j] |= ((mp_digit)a[i]) << s;
  10721. if (s + 28 >= DIGIT_BIT) {
  10722. #if DIGIT_BIT != 32 && DIGIT_BIT != 64
  10723. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  10724. #endif
  10725. s = DIGIT_BIT - s;
  10726. r->dp[++j] = a[i] >> s;
  10727. s = 28 - s;
  10728. }
  10729. else {
  10730. s += 28;
  10731. }
  10732. }
  10733. r->used = (3072 + DIGIT_BIT - 1) / DIGIT_BIT;
  10734. mp_clamp(r);
  10735. #endif
  10736. }
  10737. return err;
  10738. }
  10739. /* Perform the modular exponentiation for Diffie-Hellman.
  10740. *
  10741. * base Base. MP integer.
  10742. * exp Exponent. MP integer.
  10743. * mod Modulus. MP integer.
  10744. * res Result. MP integer.
  10745. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  10746. * and MEMORY_E if memory allocation fails.
  10747. */
  10748. int sp_ModExp_3072(const mp_int* base, const mp_int* exp, const mp_int* mod,
  10749. mp_int* res)
  10750. {
  10751. #ifdef WOLFSSL_SP_SMALL
  10752. int err = MP_OKAY;
  10753. #ifdef WOLFSSL_SP_SMALL_STACK
  10754. sp_digit* b = NULL;
  10755. #else
  10756. sp_digit b[112 * 4];
  10757. #endif
  10758. sp_digit* e = NULL;
  10759. sp_digit* m = NULL;
  10760. sp_digit* r = NULL;
  10761. int expBits = mp_count_bits(exp);
  10762. if (mp_count_bits(base) > 3072) {
  10763. err = MP_READ_E;
  10764. }
  10765. else if (expBits > 3072) {
  10766. err = MP_READ_E;
  10767. }
  10768. else if (mp_count_bits(mod) != 3072) {
  10769. err = MP_READ_E;
  10770. }
  10771. else if (mp_iseven(mod)) {
  10772. err = MP_VAL;
  10773. }
  10774. #ifdef WOLFSSL_SP_SMALL_STACK
  10775. if (err == MP_OKAY) {
  10776. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 4, NULL,
  10777. DYNAMIC_TYPE_DH);
  10778. if (b == NULL)
  10779. err = MEMORY_E;
  10780. }
  10781. #endif
  10782. if (err == MP_OKAY) {
  10783. e = b + 112 * 2;
  10784. m = e + 112;
  10785. r = b;
  10786. sp_3072_from_mp(b, 112, base);
  10787. sp_3072_from_mp(e, 112, exp);
  10788. sp_3072_from_mp(m, 112, mod);
  10789. err = sp_3072_mod_exp_112(r, b, e, mp_count_bits(exp), m, 0);
  10790. }
  10791. if (err == MP_OKAY) {
  10792. err = sp_3072_to_mp(r, res);
  10793. }
  10794. #ifdef WOLFSSL_SP_SMALL_STACK
  10795. if (b != NULL)
  10796. #endif
  10797. {
  10798. /* only "e" is sensitive and needs zeroized */
  10799. if (e != NULL)
  10800. ForceZero(e, sizeof(sp_digit) * 112U);
  10801. #ifdef WOLFSSL_SP_SMALL_STACK
  10802. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  10803. #endif
  10804. }
  10805. return err;
  10806. #else
  10807. #ifdef WOLFSSL_SP_SMALL_STACK
  10808. sp_digit* b = NULL;
  10809. #else
  10810. sp_digit b[112 * 4];
  10811. #endif
  10812. sp_digit* e = NULL;
  10813. sp_digit* m = NULL;
  10814. sp_digit* r = NULL;
  10815. int err = MP_OKAY;
  10816. int expBits = mp_count_bits(exp);
  10817. if (mp_count_bits(base) > 3072) {
  10818. err = MP_READ_E;
  10819. }
  10820. else if (expBits > 3072) {
  10821. err = MP_READ_E;
  10822. }
  10823. else if (mp_count_bits(mod) != 3072) {
  10824. err = MP_READ_E;
  10825. }
  10826. else if (mp_iseven(mod)) {
  10827. err = MP_VAL;
  10828. }
  10829. #ifdef WOLFSSL_SP_SMALL_STACK
  10830. if (err == MP_OKAY) {
  10831. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 4, NULL, DYNAMIC_TYPE_DH);
  10832. if (b == NULL)
  10833. err = MEMORY_E;
  10834. }
  10835. #endif
  10836. if (err == MP_OKAY) {
  10837. e = b + 112 * 2;
  10838. m = e + 112;
  10839. r = b;
  10840. sp_3072_from_mp(b, 112, base);
  10841. sp_3072_from_mp(e, 112, exp);
  10842. sp_3072_from_mp(m, 112, mod);
  10843. err = sp_3072_mod_exp_112(r, b, e, expBits, m, 0);
  10844. }
  10845. if (err == MP_OKAY) {
  10846. err = sp_3072_to_mp(r, res);
  10847. }
  10848. #ifdef WOLFSSL_SP_SMALL_STACK
  10849. if (b != NULL)
  10850. #endif
  10851. {
  10852. /* only "e" is sensitive and needs zeroized */
  10853. if (e != NULL)
  10854. ForceZero(e, sizeof(sp_digit) * 112U);
  10855. #ifdef WOLFSSL_SP_SMALL_STACK
  10856. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  10857. #endif
  10858. }
  10859. return err;
  10860. #endif
  10861. }
  10862. #ifdef WOLFSSL_HAVE_SP_DH
  10863. #ifdef HAVE_FFDHE_3072
  10864. SP_NOINLINE static void sp_3072_lshift_112(sp_digit* r, const sp_digit* a,
  10865. byte n)
  10866. {
  10867. sp_int_digit s;
  10868. sp_int_digit t;
  10869. s = (sp_int_digit)a[111];
  10870. r[112] = s >> (28U - n);
  10871. s = (sp_int_digit)(a[111]); t = (sp_int_digit)(a[110]);
  10872. r[111] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10873. s = (sp_int_digit)(a[110]); t = (sp_int_digit)(a[109]);
  10874. r[110] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10875. s = (sp_int_digit)(a[109]); t = (sp_int_digit)(a[108]);
  10876. r[109] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10877. s = (sp_int_digit)(a[108]); t = (sp_int_digit)(a[107]);
  10878. r[108] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10879. s = (sp_int_digit)(a[107]); t = (sp_int_digit)(a[106]);
  10880. r[107] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10881. s = (sp_int_digit)(a[106]); t = (sp_int_digit)(a[105]);
  10882. r[106] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10883. s = (sp_int_digit)(a[105]); t = (sp_int_digit)(a[104]);
  10884. r[105] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10885. s = (sp_int_digit)(a[104]); t = (sp_int_digit)(a[103]);
  10886. r[104] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10887. s = (sp_int_digit)(a[103]); t = (sp_int_digit)(a[102]);
  10888. r[103] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10889. s = (sp_int_digit)(a[102]); t = (sp_int_digit)(a[101]);
  10890. r[102] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10891. s = (sp_int_digit)(a[101]); t = (sp_int_digit)(a[100]);
  10892. r[101] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10893. s = (sp_int_digit)(a[100]); t = (sp_int_digit)(a[99]);
  10894. r[100] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10895. s = (sp_int_digit)(a[99]); t = (sp_int_digit)(a[98]);
  10896. r[99] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10897. s = (sp_int_digit)(a[98]); t = (sp_int_digit)(a[97]);
  10898. r[98] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10899. s = (sp_int_digit)(a[97]); t = (sp_int_digit)(a[96]);
  10900. r[97] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10901. s = (sp_int_digit)(a[96]); t = (sp_int_digit)(a[95]);
  10902. r[96] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10903. s = (sp_int_digit)(a[95]); t = (sp_int_digit)(a[94]);
  10904. r[95] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10905. s = (sp_int_digit)(a[94]); t = (sp_int_digit)(a[93]);
  10906. r[94] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10907. s = (sp_int_digit)(a[93]); t = (sp_int_digit)(a[92]);
  10908. r[93] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10909. s = (sp_int_digit)(a[92]); t = (sp_int_digit)(a[91]);
  10910. r[92] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10911. s = (sp_int_digit)(a[91]); t = (sp_int_digit)(a[90]);
  10912. r[91] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10913. s = (sp_int_digit)(a[90]); t = (sp_int_digit)(a[89]);
  10914. r[90] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10915. s = (sp_int_digit)(a[89]); t = (sp_int_digit)(a[88]);
  10916. r[89] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10917. s = (sp_int_digit)(a[88]); t = (sp_int_digit)(a[87]);
  10918. r[88] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10919. s = (sp_int_digit)(a[87]); t = (sp_int_digit)(a[86]);
  10920. r[87] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10921. s = (sp_int_digit)(a[86]); t = (sp_int_digit)(a[85]);
  10922. r[86] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10923. s = (sp_int_digit)(a[85]); t = (sp_int_digit)(a[84]);
  10924. r[85] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10925. s = (sp_int_digit)(a[84]); t = (sp_int_digit)(a[83]);
  10926. r[84] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10927. s = (sp_int_digit)(a[83]); t = (sp_int_digit)(a[82]);
  10928. r[83] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10929. s = (sp_int_digit)(a[82]); t = (sp_int_digit)(a[81]);
  10930. r[82] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10931. s = (sp_int_digit)(a[81]); t = (sp_int_digit)(a[80]);
  10932. r[81] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10933. s = (sp_int_digit)(a[80]); t = (sp_int_digit)(a[79]);
  10934. r[80] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10935. s = (sp_int_digit)(a[79]); t = (sp_int_digit)(a[78]);
  10936. r[79] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10937. s = (sp_int_digit)(a[78]); t = (sp_int_digit)(a[77]);
  10938. r[78] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10939. s = (sp_int_digit)(a[77]); t = (sp_int_digit)(a[76]);
  10940. r[77] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10941. s = (sp_int_digit)(a[76]); t = (sp_int_digit)(a[75]);
  10942. r[76] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10943. s = (sp_int_digit)(a[75]); t = (sp_int_digit)(a[74]);
  10944. r[75] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10945. s = (sp_int_digit)(a[74]); t = (sp_int_digit)(a[73]);
  10946. r[74] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10947. s = (sp_int_digit)(a[73]); t = (sp_int_digit)(a[72]);
  10948. r[73] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10949. s = (sp_int_digit)(a[72]); t = (sp_int_digit)(a[71]);
  10950. r[72] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10951. s = (sp_int_digit)(a[71]); t = (sp_int_digit)(a[70]);
  10952. r[71] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10953. s = (sp_int_digit)(a[70]); t = (sp_int_digit)(a[69]);
  10954. r[70] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10955. s = (sp_int_digit)(a[69]); t = (sp_int_digit)(a[68]);
  10956. r[69] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10957. s = (sp_int_digit)(a[68]); t = (sp_int_digit)(a[67]);
  10958. r[68] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10959. s = (sp_int_digit)(a[67]); t = (sp_int_digit)(a[66]);
  10960. r[67] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10961. s = (sp_int_digit)(a[66]); t = (sp_int_digit)(a[65]);
  10962. r[66] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10963. s = (sp_int_digit)(a[65]); t = (sp_int_digit)(a[64]);
  10964. r[65] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10965. s = (sp_int_digit)(a[64]); t = (sp_int_digit)(a[63]);
  10966. r[64] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10967. s = (sp_int_digit)(a[63]); t = (sp_int_digit)(a[62]);
  10968. r[63] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10969. s = (sp_int_digit)(a[62]); t = (sp_int_digit)(a[61]);
  10970. r[62] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10971. s = (sp_int_digit)(a[61]); t = (sp_int_digit)(a[60]);
  10972. r[61] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10973. s = (sp_int_digit)(a[60]); t = (sp_int_digit)(a[59]);
  10974. r[60] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10975. s = (sp_int_digit)(a[59]); t = (sp_int_digit)(a[58]);
  10976. r[59] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10977. s = (sp_int_digit)(a[58]); t = (sp_int_digit)(a[57]);
  10978. r[58] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10979. s = (sp_int_digit)(a[57]); t = (sp_int_digit)(a[56]);
  10980. r[57] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10981. s = (sp_int_digit)(a[56]); t = (sp_int_digit)(a[55]);
  10982. r[56] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10983. s = (sp_int_digit)(a[55]); t = (sp_int_digit)(a[54]);
  10984. r[55] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10985. s = (sp_int_digit)(a[54]); t = (sp_int_digit)(a[53]);
  10986. r[54] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10987. s = (sp_int_digit)(a[53]); t = (sp_int_digit)(a[52]);
  10988. r[53] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10989. s = (sp_int_digit)(a[52]); t = (sp_int_digit)(a[51]);
  10990. r[52] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10991. s = (sp_int_digit)(a[51]); t = (sp_int_digit)(a[50]);
  10992. r[51] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10993. s = (sp_int_digit)(a[50]); t = (sp_int_digit)(a[49]);
  10994. r[50] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10995. s = (sp_int_digit)(a[49]); t = (sp_int_digit)(a[48]);
  10996. r[49] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10997. s = (sp_int_digit)(a[48]); t = (sp_int_digit)(a[47]);
  10998. r[48] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  10999. s = (sp_int_digit)(a[47]); t = (sp_int_digit)(a[46]);
  11000. r[47] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11001. s = (sp_int_digit)(a[46]); t = (sp_int_digit)(a[45]);
  11002. r[46] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11003. s = (sp_int_digit)(a[45]); t = (sp_int_digit)(a[44]);
  11004. r[45] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11005. s = (sp_int_digit)(a[44]); t = (sp_int_digit)(a[43]);
  11006. r[44] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11007. s = (sp_int_digit)(a[43]); t = (sp_int_digit)(a[42]);
  11008. r[43] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11009. s = (sp_int_digit)(a[42]); t = (sp_int_digit)(a[41]);
  11010. r[42] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11011. s = (sp_int_digit)(a[41]); t = (sp_int_digit)(a[40]);
  11012. r[41] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11013. s = (sp_int_digit)(a[40]); t = (sp_int_digit)(a[39]);
  11014. r[40] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11015. s = (sp_int_digit)(a[39]); t = (sp_int_digit)(a[38]);
  11016. r[39] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11017. s = (sp_int_digit)(a[38]); t = (sp_int_digit)(a[37]);
  11018. r[38] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11019. s = (sp_int_digit)(a[37]); t = (sp_int_digit)(a[36]);
  11020. r[37] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11021. s = (sp_int_digit)(a[36]); t = (sp_int_digit)(a[35]);
  11022. r[36] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11023. s = (sp_int_digit)(a[35]); t = (sp_int_digit)(a[34]);
  11024. r[35] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11025. s = (sp_int_digit)(a[34]); t = (sp_int_digit)(a[33]);
  11026. r[34] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11027. s = (sp_int_digit)(a[33]); t = (sp_int_digit)(a[32]);
  11028. r[33] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11029. s = (sp_int_digit)(a[32]); t = (sp_int_digit)(a[31]);
  11030. r[32] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11031. s = (sp_int_digit)(a[31]); t = (sp_int_digit)(a[30]);
  11032. r[31] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11033. s = (sp_int_digit)(a[30]); t = (sp_int_digit)(a[29]);
  11034. r[30] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11035. s = (sp_int_digit)(a[29]); t = (sp_int_digit)(a[28]);
  11036. r[29] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11037. s = (sp_int_digit)(a[28]); t = (sp_int_digit)(a[27]);
  11038. r[28] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11039. s = (sp_int_digit)(a[27]); t = (sp_int_digit)(a[26]);
  11040. r[27] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11041. s = (sp_int_digit)(a[26]); t = (sp_int_digit)(a[25]);
  11042. r[26] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11043. s = (sp_int_digit)(a[25]); t = (sp_int_digit)(a[24]);
  11044. r[25] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11045. s = (sp_int_digit)(a[24]); t = (sp_int_digit)(a[23]);
  11046. r[24] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11047. s = (sp_int_digit)(a[23]); t = (sp_int_digit)(a[22]);
  11048. r[23] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11049. s = (sp_int_digit)(a[22]); t = (sp_int_digit)(a[21]);
  11050. r[22] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11051. s = (sp_int_digit)(a[21]); t = (sp_int_digit)(a[20]);
  11052. r[21] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11053. s = (sp_int_digit)(a[20]); t = (sp_int_digit)(a[19]);
  11054. r[20] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11055. s = (sp_int_digit)(a[19]); t = (sp_int_digit)(a[18]);
  11056. r[19] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11057. s = (sp_int_digit)(a[18]); t = (sp_int_digit)(a[17]);
  11058. r[18] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11059. s = (sp_int_digit)(a[17]); t = (sp_int_digit)(a[16]);
  11060. r[17] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11061. s = (sp_int_digit)(a[16]); t = (sp_int_digit)(a[15]);
  11062. r[16] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11063. s = (sp_int_digit)(a[15]); t = (sp_int_digit)(a[14]);
  11064. r[15] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11065. s = (sp_int_digit)(a[14]); t = (sp_int_digit)(a[13]);
  11066. r[14] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11067. s = (sp_int_digit)(a[13]); t = (sp_int_digit)(a[12]);
  11068. r[13] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11069. s = (sp_int_digit)(a[12]); t = (sp_int_digit)(a[11]);
  11070. r[12] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11071. s = (sp_int_digit)(a[11]); t = (sp_int_digit)(a[10]);
  11072. r[11] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11073. s = (sp_int_digit)(a[10]); t = (sp_int_digit)(a[9]);
  11074. r[10] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11075. s = (sp_int_digit)(a[9]); t = (sp_int_digit)(a[8]);
  11076. r[9] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11077. s = (sp_int_digit)(a[8]); t = (sp_int_digit)(a[7]);
  11078. r[8] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11079. s = (sp_int_digit)(a[7]); t = (sp_int_digit)(a[6]);
  11080. r[7] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11081. s = (sp_int_digit)(a[6]); t = (sp_int_digit)(a[5]);
  11082. r[6] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11083. s = (sp_int_digit)(a[5]); t = (sp_int_digit)(a[4]);
  11084. r[5] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11085. s = (sp_int_digit)(a[4]); t = (sp_int_digit)(a[3]);
  11086. r[4] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11087. s = (sp_int_digit)(a[3]); t = (sp_int_digit)(a[2]);
  11088. r[3] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11089. s = (sp_int_digit)(a[2]); t = (sp_int_digit)(a[1]);
  11090. r[2] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11091. s = (sp_int_digit)(a[1]); t = (sp_int_digit)(a[0]);
  11092. r[1] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
  11093. r[0] = (a[0] << n) & 0xfffffff;
  11094. }
  11095. /* Modular exponentiate 2 to the e mod m. (r = 2^e mod m)
  11096. *
  11097. * r A single precision number that is the result of the operation.
  11098. * e A single precision number that is the exponent.
  11099. * bits The number of bits in the exponent.
  11100. * m A single precision number that is the modulus.
  11101. * returns 0 on success.
  11102. * returns MEMORY_E on dynamic memory allocation failure.
  11103. * returns MP_VAL when base is even.
  11104. */
  11105. static int sp_3072_mod_exp_2_112(sp_digit* r, const sp_digit* e, int bits, const sp_digit* m)
  11106. {
  11107. #ifdef WOLFSSL_SP_SMALL_STACK
  11108. sp_digit* td = NULL;
  11109. #else
  11110. sp_digit td[337];
  11111. #endif
  11112. sp_digit* norm = NULL;
  11113. sp_digit* tmp = NULL;
  11114. sp_digit mp = 1;
  11115. sp_digit n;
  11116. sp_digit o;
  11117. int i;
  11118. int c;
  11119. byte y;
  11120. int err = MP_OKAY;
  11121. if (bits == 0) {
  11122. err = MP_VAL;
  11123. }
  11124. #ifdef WOLFSSL_SP_SMALL_STACK
  11125. if (err == MP_OKAY) {
  11126. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 337, NULL,
  11127. DYNAMIC_TYPE_TMP_BUFFER);
  11128. if (td == NULL)
  11129. err = MEMORY_E;
  11130. }
  11131. #endif
  11132. if (err == MP_OKAY) {
  11133. norm = td;
  11134. tmp = td + 224;
  11135. XMEMSET(td, 0, sizeof(sp_digit) * 337);
  11136. sp_3072_mont_setup(m, &mp);
  11137. sp_3072_mont_norm_112(norm, m);
  11138. bits = ((bits + 3) / 4) * 4;
  11139. i = ((bits + 27) / 28) - 1;
  11140. c = bits % 28;
  11141. if (c == 0) {
  11142. c = 28;
  11143. }
  11144. if (i < 112) {
  11145. n = e[i--] << (32 - c);
  11146. }
  11147. else {
  11148. n = 0;
  11149. i--;
  11150. }
  11151. if (c < 4) {
  11152. n |= e[i--] << (4 - c);
  11153. c += 28;
  11154. }
  11155. y = (int)((n >> 28) & 0xf);
  11156. n <<= 4;
  11157. c -= 4;
  11158. sp_3072_lshift_112(r, norm, (byte)y);
  11159. while ((i >= 0) || (c >= 4)) {
  11160. if (c >= 4) {
  11161. y = (byte)((n >> 28) & 0xf);
  11162. n <<= 4;
  11163. c -= 4;
  11164. }
  11165. else if (c == 0) {
  11166. n = e[i--] << 4;
  11167. y = (byte)((n >> 28) & 0xf);
  11168. n <<= 4;
  11169. c = 24;
  11170. }
  11171. else {
  11172. y = (byte)((n >> 28) & 0xf);
  11173. n = e[i--] << 4;
  11174. c = 4 - c;
  11175. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  11176. n <<= c;
  11177. c = 28 - c;
  11178. }
  11179. sp_3072_mont_sqr_112(r, r, m, mp);
  11180. sp_3072_mont_sqr_112(r, r, m, mp);
  11181. sp_3072_mont_sqr_112(r, r, m, mp);
  11182. sp_3072_mont_sqr_112(r, r, m, mp);
  11183. sp_3072_lshift_112(r, r, (byte)y);
  11184. sp_3072_mul_d_112(tmp, norm, (r[110] << 8) + (r[109] >> 20));
  11185. r[110] = 0;
  11186. r[109] &= 0xfffffL;
  11187. (void)sp_3072_add_112(r, r, tmp);
  11188. sp_3072_norm_112(r);
  11189. o = sp_3072_cmp_112(r, m);
  11190. sp_3072_cond_sub_112(r, r, m, ~(o >> 31));
  11191. }
  11192. sp_3072_mont_reduce_112(r, m, mp);
  11193. n = sp_3072_cmp_112(r, m);
  11194. sp_3072_cond_sub_112(r, r, m, ~(n >> 31));
  11195. }
  11196. #ifdef WOLFSSL_SP_SMALL_STACK
  11197. if (td != NULL)
  11198. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  11199. #endif
  11200. return err;
  11201. }
  11202. #endif /* HAVE_FFDHE_3072 */
  11203. /* Perform the modular exponentiation for Diffie-Hellman.
  11204. *
  11205. * base Base.
  11206. * exp Array of bytes that is the exponent.
  11207. * expLen Length of data, in bytes, in exponent.
  11208. * mod Modulus.
  11209. * out Buffer to hold big-endian bytes of exponentiation result.
  11210. * Must be at least 384 bytes long.
  11211. * outLen Length, in bytes, of exponentiation result.
  11212. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  11213. * and MEMORY_E if memory allocation fails.
  11214. */
  11215. int sp_DhExp_3072(const mp_int* base, const byte* exp, word32 expLen,
  11216. const mp_int* mod, byte* out, word32* outLen)
  11217. {
  11218. #ifdef WOLFSSL_SP_SMALL_STACK
  11219. sp_digit* b = NULL;
  11220. #else
  11221. sp_digit b[112 * 4];
  11222. #endif
  11223. sp_digit* e = NULL;
  11224. sp_digit* m = NULL;
  11225. sp_digit* r = NULL;
  11226. word32 i;
  11227. int err = MP_OKAY;
  11228. if (mp_count_bits(base) > 3072) {
  11229. err = MP_READ_E;
  11230. }
  11231. else if (expLen > 384U) {
  11232. err = MP_READ_E;
  11233. }
  11234. else if (mp_count_bits(mod) != 3072) {
  11235. err = MP_READ_E;
  11236. }
  11237. else if (mp_iseven(mod)) {
  11238. err = MP_VAL;
  11239. }
  11240. #ifdef WOLFSSL_SP_SMALL_STACK
  11241. if (err == MP_OKAY) {
  11242. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 4, NULL,
  11243. DYNAMIC_TYPE_DH);
  11244. if (b == NULL)
  11245. err = MEMORY_E;
  11246. }
  11247. #endif
  11248. if (err == MP_OKAY) {
  11249. e = b + 112 * 2;
  11250. m = e + 112;
  11251. r = b;
  11252. sp_3072_from_mp(b, 112, base);
  11253. sp_3072_from_bin(e, 112, exp, expLen);
  11254. sp_3072_from_mp(m, 112, mod);
  11255. #ifdef HAVE_FFDHE_3072
  11256. if (base->used == 1 && base->dp[0] == 2U &&
  11257. (m[109] >> 4) == 0xffffL) {
  11258. err = sp_3072_mod_exp_2_112(r, e, expLen * 8U, m);
  11259. }
  11260. else {
  11261. #endif
  11262. err = sp_3072_mod_exp_112(r, b, e, expLen * 8U, m, 0);
  11263. #ifdef HAVE_FFDHE_3072
  11264. }
  11265. #endif
  11266. }
  11267. if (err == MP_OKAY) {
  11268. sp_3072_to_bin_112(r, out);
  11269. *outLen = 384;
  11270. for (i=0; i<384U && out[i] == 0U; i++) {
  11271. /* Search for first non-zero. */
  11272. }
  11273. *outLen -= i;
  11274. XMEMMOVE(out, out + i, *outLen);
  11275. }
  11276. #ifdef WOLFSSL_SP_SMALL_STACK
  11277. if (b != NULL)
  11278. #endif
  11279. {
  11280. /* only "e" is sensitive and needs zeroized */
  11281. if (e != NULL)
  11282. ForceZero(e, sizeof(sp_digit) * 112U);
  11283. #ifdef WOLFSSL_SP_SMALL_STACK
  11284. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  11285. #endif
  11286. }
  11287. return err;
  11288. }
  11289. #endif /* WOLFSSL_HAVE_SP_DH */
  11290. /* Perform the modular exponentiation for Diffie-Hellman.
  11291. *
  11292. * base Base. MP integer.
  11293. * exp Exponent. MP integer.
  11294. * mod Modulus. MP integer.
  11295. * res Result. MP integer.
  11296. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  11297. * and MEMORY_E if memory allocation fails.
  11298. */
  11299. int sp_ModExp_1536(const mp_int* base, const mp_int* exp, const mp_int* mod,
  11300. mp_int* res)
  11301. {
  11302. #ifdef WOLFSSL_SP_SMALL
  11303. int err = MP_OKAY;
  11304. #ifdef WOLFSSL_SP_SMALL_STACK
  11305. sp_digit* b = NULL;
  11306. #else
  11307. sp_digit b[56 * 4];
  11308. #endif
  11309. sp_digit* e = NULL;
  11310. sp_digit* m = NULL;
  11311. sp_digit* r = NULL;
  11312. int expBits = mp_count_bits(exp);
  11313. if (mp_count_bits(base) > 1536) {
  11314. err = MP_READ_E;
  11315. }
  11316. else if (expBits > 1536) {
  11317. err = MP_READ_E;
  11318. }
  11319. else if (mp_count_bits(mod) != 1536) {
  11320. err = MP_READ_E;
  11321. }
  11322. else if (mp_iseven(mod)) {
  11323. err = MP_VAL;
  11324. }
  11325. #ifdef WOLFSSL_SP_SMALL_STACK
  11326. if (err == MP_OKAY) {
  11327. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 56 * 4, NULL,
  11328. DYNAMIC_TYPE_DH);
  11329. if (b == NULL)
  11330. err = MEMORY_E;
  11331. }
  11332. #endif
  11333. if (err == MP_OKAY) {
  11334. e = b + 56 * 2;
  11335. m = e + 56;
  11336. r = b;
  11337. sp_3072_from_mp(b, 56, base);
  11338. sp_3072_from_mp(e, 56, exp);
  11339. sp_3072_from_mp(m, 56, mod);
  11340. err = sp_3072_mod_exp_56(r, b, e, mp_count_bits(exp), m, 0);
  11341. }
  11342. if (err == MP_OKAY) {
  11343. XMEMSET(r + 56, 0, sizeof(*r) * 56U);
  11344. err = sp_3072_to_mp(r, res);
  11345. }
  11346. #ifdef WOLFSSL_SP_SMALL_STACK
  11347. if (b != NULL)
  11348. #endif
  11349. {
  11350. /* only "e" is sensitive and needs zeroized */
  11351. if (e != NULL)
  11352. ForceZero(e, sizeof(sp_digit) * 112U);
  11353. #ifdef WOLFSSL_SP_SMALL_STACK
  11354. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  11355. #endif
  11356. }
  11357. return err;
  11358. #else
  11359. #ifdef WOLFSSL_SP_SMALL_STACK
  11360. sp_digit* b = NULL;
  11361. #else
  11362. sp_digit b[56 * 4];
  11363. #endif
  11364. sp_digit* e = NULL;
  11365. sp_digit* m = NULL;
  11366. sp_digit* r = NULL;
  11367. int err = MP_OKAY;
  11368. int expBits = mp_count_bits(exp);
  11369. if (mp_count_bits(base) > 1536) {
  11370. err = MP_READ_E;
  11371. }
  11372. else if (expBits > 1536) {
  11373. err = MP_READ_E;
  11374. }
  11375. else if (mp_count_bits(mod) != 1536) {
  11376. err = MP_READ_E;
  11377. }
  11378. else if (mp_iseven(mod)) {
  11379. err = MP_VAL;
  11380. }
  11381. #ifdef WOLFSSL_SP_SMALL_STACK
  11382. if (err == MP_OKAY) {
  11383. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 56 * 4, NULL, DYNAMIC_TYPE_DH);
  11384. if (b == NULL)
  11385. err = MEMORY_E;
  11386. }
  11387. #endif
  11388. if (err == MP_OKAY) {
  11389. e = b + 56 * 2;
  11390. m = e + 56;
  11391. r = b;
  11392. sp_3072_from_mp(b, 56, base);
  11393. sp_3072_from_mp(e, 56, exp);
  11394. sp_3072_from_mp(m, 56, mod);
  11395. err = sp_3072_mod_exp_56(r, b, e, expBits, m, 0);
  11396. }
  11397. if (err == MP_OKAY) {
  11398. XMEMSET(r + 56, 0, sizeof(*r) * 56U);
  11399. err = sp_3072_to_mp(r, res);
  11400. }
  11401. #ifdef WOLFSSL_SP_SMALL_STACK
  11402. if (b != NULL)
  11403. #endif
  11404. {
  11405. /* only "e" is sensitive and needs zeroized */
  11406. if (e != NULL)
  11407. ForceZero(e, sizeof(sp_digit) * 112U);
  11408. #ifdef WOLFSSL_SP_SMALL_STACK
  11409. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  11410. #endif
  11411. }
  11412. return err;
  11413. #endif
  11414. }
  11415. #endif /* WOLFSSL_HAVE_SP_DH | (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) */
  11416. #endif /* WOLFSSL_SP_SMALL */
  11417. #endif /* !WOLFSSL_SP_NO_3072 */
  11418. #ifdef WOLFSSL_SP_4096
  11419. #ifdef WOLFSSL_SP_SMALL
  11420. /* Read big endian unsigned byte array into r.
  11421. *
  11422. * r A single precision integer.
  11423. * size Maximum number of bytes to convert
  11424. * a Byte array.
  11425. * n Number of bytes in array to read.
  11426. */
  11427. static void sp_4096_from_bin(sp_digit* r, int size, const byte* a, int n)
  11428. {
  11429. int i;
  11430. int j = 0;
  11431. word32 s = 0;
  11432. r[0] = 0;
  11433. for (i = n-1; i >= 0; i--) {
  11434. r[j] |= (((sp_digit)a[i]) << s);
  11435. if (s >= 21U) {
  11436. r[j] &= 0x1fffffff;
  11437. s = 29U - s;
  11438. if (j + 1 >= size) {
  11439. break;
  11440. }
  11441. r[++j] = (sp_digit)a[i] >> s;
  11442. s = 8U - s;
  11443. }
  11444. else {
  11445. s += 8U;
  11446. }
  11447. }
  11448. for (j++; j < size; j++) {
  11449. r[j] = 0;
  11450. }
  11451. }
  11452. /* Convert an mp_int to an array of sp_digit.
  11453. *
  11454. * r A single precision integer.
  11455. * size Maximum number of bytes to convert
  11456. * a A multi-precision integer.
  11457. */
  11458. static void sp_4096_from_mp(sp_digit* r, int size, const mp_int* a)
  11459. {
  11460. #if DIGIT_BIT == 29
  11461. int i;
  11462. sp_digit j = (sp_digit)0 - (sp_digit)a->used;
  11463. int o = 0;
  11464. for (i = 0; i < size; i++) {
  11465. sp_digit mask = (sp_digit)0 - (j >> 28);
  11466. r[i] = a->dp[o] & mask;
  11467. j++;
  11468. o += (int)(j >> 28);
  11469. }
  11470. #elif DIGIT_BIT > 29
  11471. unsigned int i;
  11472. int j = 0;
  11473. word32 s = 0;
  11474. r[0] = 0;
  11475. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  11476. r[j] |= ((sp_digit)a->dp[i] << s);
  11477. r[j] &= 0x1fffffff;
  11478. s = 29U - s;
  11479. if (j + 1 >= size) {
  11480. break;
  11481. }
  11482. /* lint allow cast of mismatch word32 and mp_digit */
  11483. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  11484. while ((s + 29U) <= (word32)DIGIT_BIT) {
  11485. s += 29U;
  11486. r[j] &= 0x1fffffff;
  11487. if (j + 1 >= size) {
  11488. break;
  11489. }
  11490. if (s < (word32)DIGIT_BIT) {
  11491. /* lint allow cast of mismatch word32 and mp_digit */
  11492. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  11493. }
  11494. else {
  11495. r[++j] = (sp_digit)0;
  11496. }
  11497. }
  11498. s = (word32)DIGIT_BIT - s;
  11499. }
  11500. for (j++; j < size; j++) {
  11501. r[j] = 0;
  11502. }
  11503. #else
  11504. unsigned int i;
  11505. int j = 0;
  11506. int s = 0;
  11507. r[0] = 0;
  11508. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  11509. r[j] |= ((sp_digit)a->dp[i]) << s;
  11510. if (s + DIGIT_BIT >= 29) {
  11511. r[j] &= 0x1fffffff;
  11512. if (j + 1 >= size) {
  11513. break;
  11514. }
  11515. s = 29 - s;
  11516. if (s == DIGIT_BIT) {
  11517. r[++j] = 0;
  11518. s = 0;
  11519. }
  11520. else {
  11521. r[++j] = a->dp[i] >> s;
  11522. s = DIGIT_BIT - s;
  11523. }
  11524. }
  11525. else {
  11526. s += DIGIT_BIT;
  11527. }
  11528. }
  11529. for (j++; j < size; j++) {
  11530. r[j] = 0;
  11531. }
  11532. #endif
  11533. }
  11534. /* Write r as big endian to byte array.
  11535. * Fixed length number of bytes written: 512
  11536. *
  11537. * r A single precision integer.
  11538. * a Byte array.
  11539. */
  11540. static void sp_4096_to_bin_142(sp_digit* r, byte* a)
  11541. {
  11542. int i;
  11543. int j;
  11544. int s = 0;
  11545. int b;
  11546. for (i=0; i<141; i++) {
  11547. r[i+1] += r[i] >> 29;
  11548. r[i] &= 0x1fffffff;
  11549. }
  11550. j = 4103 / 8 - 1;
  11551. a[j] = 0;
  11552. for (i=0; i<142 && j>=0; i++) {
  11553. b = 0;
  11554. /* lint allow cast of mismatch sp_digit and int */
  11555. a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
  11556. b += 8 - s;
  11557. if (j < 0) {
  11558. break;
  11559. }
  11560. while (b < 29) {
  11561. a[j--] = (byte)(r[i] >> b);
  11562. b += 8;
  11563. if (j < 0) {
  11564. break;
  11565. }
  11566. }
  11567. s = 8 - (b - 29);
  11568. if (j >= 0) {
  11569. a[j] = 0;
  11570. }
  11571. if (s != 0) {
  11572. j++;
  11573. }
  11574. }
  11575. }
  11576. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
  11577. #if defined(WOLFSSL_HAVE_SP_RSA) && !defined(SP_RSA_PRIVATE_EXP_D)
  11578. /* Normalize the values in each word to 29 bits.
  11579. *
  11580. * a Array of sp_digit to normalize.
  11581. */
  11582. static void sp_4096_norm_71(sp_digit* a)
  11583. {
  11584. int i;
  11585. for (i = 0; i < 70; i++) {
  11586. a[i+1] += a[i] >> 29;
  11587. a[i] &= 0x1fffffff;
  11588. }
  11589. }
  11590. #endif /* WOLFSSL_HAVE_SP_RSA & !SP_RSA_PRIVATE_EXP_D */
  11591. #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
  11592. /* Normalize the values in each word to 29 bits.
  11593. *
  11594. * a Array of sp_digit to normalize.
  11595. */
  11596. static void sp_4096_norm_142(sp_digit* a)
  11597. {
  11598. int i;
  11599. for (i = 0; i < 141; i++) {
  11600. a[i+1] += a[i] >> 29;
  11601. a[i] &= 0x1fffffff;
  11602. }
  11603. }
  11604. /* Multiply a and b into r. (r = a * b)
  11605. *
  11606. * r A single precision integer.
  11607. * a A single precision integer.
  11608. * b A single precision integer.
  11609. */
  11610. SP_NOINLINE static void sp_4096_mul_142(sp_digit* r, const sp_digit* a,
  11611. const sp_digit* b)
  11612. {
  11613. int i;
  11614. int imax;
  11615. int k;
  11616. sp_uint64 c;
  11617. sp_uint64 lo;
  11618. c = ((sp_uint64)a[141]) * b[141];
  11619. r[283] = (sp_digit)(c >> 29);
  11620. c &= 0x1fffffff;
  11621. for (k = 281; k >= 0; k--) {
  11622. if (k >= 142) {
  11623. i = k - 141;
  11624. imax = 141;
  11625. }
  11626. else {
  11627. i = 0;
  11628. imax = k;
  11629. }
  11630. if (imax - i > 15) {
  11631. int imaxlo;
  11632. lo = 0;
  11633. for (imaxlo = i; imaxlo <= imax; imaxlo += 15) {
  11634. for (; i <= imax && i < imaxlo + 15; i++) {
  11635. lo += ((sp_uint64)a[i]) * b[k - i];
  11636. }
  11637. c += lo >> 29;
  11638. lo &= 0x1fffffff;
  11639. }
  11640. r[k + 2] += (sp_digit)(c >> 29);
  11641. r[k + 1] = (sp_digit)(c & 0x1fffffff);
  11642. c = lo & 0x1fffffff;
  11643. }
  11644. else {
  11645. lo = 0;
  11646. for (; i <= imax; i++) {
  11647. lo += ((sp_uint64)a[i]) * b[k - i];
  11648. }
  11649. c += lo >> 29;
  11650. r[k + 2] += (sp_digit)(c >> 29);
  11651. r[k + 1] = (sp_digit)(c & 0x1fffffff);
  11652. c = lo & 0x1fffffff;
  11653. }
  11654. }
  11655. r[0] = (sp_digit)c;
  11656. }
  11657. /* Square a and put result in r. (r = a * a)
  11658. *
  11659. * r A single precision integer.
  11660. * a A single precision integer.
  11661. */
  11662. SP_NOINLINE static void sp_4096_sqr_142(sp_digit* r, const sp_digit* a)
  11663. {
  11664. int i;
  11665. int imax;
  11666. int k;
  11667. sp_uint64 c;
  11668. sp_uint64 t;
  11669. c = ((sp_uint64)a[141]) * a[141];
  11670. r[283] = (sp_digit)(c >> 29);
  11671. c = (c & 0x1fffffff) << 29;
  11672. for (k = 281; k >= 0; k--) {
  11673. i = (k + 1) / 2;
  11674. if ((k & 1) == 0) {
  11675. c += ((sp_uint64)a[i]) * a[i];
  11676. i++;
  11677. }
  11678. if (k < 141) {
  11679. imax = k;
  11680. }
  11681. else {
  11682. imax = 141;
  11683. }
  11684. if (imax - i >= 14) {
  11685. int imaxlo;
  11686. sp_uint64 hi;
  11687. hi = c >> 29;
  11688. c &= 0x1fffffff;
  11689. for (imaxlo = i; imaxlo <= imax; imaxlo += 14) {
  11690. t = 0;
  11691. for (; i <= imax && i < imaxlo + 14; i++) {
  11692. t += ((sp_uint64)a[i]) * a[k - i];
  11693. }
  11694. c += t * 2;
  11695. hi += c >> 29;
  11696. c &= 0x1fffffff;
  11697. }
  11698. r[k + 2] += (sp_digit)(hi >> 29);
  11699. r[k + 1] = (sp_digit)(hi & 0x1fffffff);
  11700. c <<= 29;
  11701. }
  11702. else
  11703. {
  11704. t = 0;
  11705. for (; i <= imax; i++) {
  11706. t += ((sp_uint64)a[i]) * a[k - i];
  11707. }
  11708. c += t * 2;
  11709. r[k + 2] += (sp_digit) (c >> 58);
  11710. r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
  11711. c = (c & 0x1fffffff) << 29;
  11712. }
  11713. }
  11714. r[0] = (sp_digit)(c >> 29);
  11715. }
  11716. /* Calculate the bottom digit of -1/a mod 2^n.
  11717. *
  11718. * a A single precision number.
  11719. * rho Bottom word of inverse.
  11720. */
  11721. static void sp_4096_mont_setup(const sp_digit* a, sp_digit* rho)
  11722. {
  11723. sp_digit x;
  11724. sp_digit b;
  11725. b = a[0];
  11726. x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
  11727. x *= 2 - b * x; /* here x*a==1 mod 2**8 */
  11728. x *= 2 - b * x; /* here x*a==1 mod 2**16 */
  11729. x *= 2 - b * x; /* here x*a==1 mod 2**32 */
  11730. x &= 0x1fffffff;
  11731. /* rho = -1/m mod b */
  11732. *rho = ((sp_digit)1 << 29) - x;
  11733. }
  11734. /* Multiply a by scalar b into r. (r = a * b)
  11735. *
  11736. * r A single precision integer.
  11737. * a A single precision integer.
  11738. * b A scalar.
  11739. */
  11740. SP_NOINLINE static void sp_4096_mul_d_142(sp_digit* r, const sp_digit* a,
  11741. sp_digit b)
  11742. {
  11743. sp_int64 tb = b;
  11744. sp_int64 t = 0;
  11745. int i;
  11746. for (i = 0; i < 142; i++) {
  11747. t += tb * a[i];
  11748. r[i] = (sp_digit)(t & 0x1fffffff);
  11749. t >>= 29;
  11750. }
  11751. r[142] = (sp_digit)t;
  11752. }
  11753. #if (defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)
  11754. #if defined(WOLFSSL_HAVE_SP_RSA) && !defined(SP_RSA_PRIVATE_EXP_D)
  11755. /* Sub b from a into r. (r = a - b)
  11756. *
  11757. * r A single precision integer.
  11758. * a A single precision integer.
  11759. * b A single precision integer.
  11760. */
  11761. SP_NOINLINE static int sp_4096_sub_71(sp_digit* r, const sp_digit* a,
  11762. const sp_digit* b)
  11763. {
  11764. int i;
  11765. for (i = 0; i < 71; i++) {
  11766. r[i] = a[i] - b[i];
  11767. }
  11768. return 0;
  11769. }
  11770. /* r = 2^n mod m where n is the number of bits to reduce by.
  11771. * Given m must be 4096 bits, just need to subtract.
  11772. *
  11773. * r A single precision number.
  11774. * m A single precision number.
  11775. */
  11776. static void sp_4096_mont_norm_71(sp_digit* r, const sp_digit* m)
  11777. {
  11778. /* Set r = 2^n - 1. */
  11779. int i;
  11780. for (i=0; i<70; i++) {
  11781. r[i] = 0x1fffffff;
  11782. }
  11783. r[70] = 0x3ffffL;
  11784. /* r = (2^n - 1) mod n */
  11785. (void)sp_4096_sub_71(r, r, m);
  11786. /* Add one so r = 2^n mod m */
  11787. r[0] += 1;
  11788. }
  11789. /* Compare a with b in constant time.
  11790. *
  11791. * a A single precision integer.
  11792. * b A single precision integer.
  11793. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  11794. * respectively.
  11795. */
  11796. static sp_digit sp_4096_cmp_71(const sp_digit* a, const sp_digit* b)
  11797. {
  11798. sp_digit r = 0;
  11799. int i;
  11800. for (i=70; i>=0; i--) {
  11801. r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
  11802. }
  11803. return r;
  11804. }
  11805. /* Conditionally subtract b from a using the mask m.
  11806. * m is -1 to subtract and 0 when not.
  11807. *
  11808. * r A single precision number representing condition subtract result.
  11809. * a A single precision number to subtract from.
  11810. * b A single precision number to subtract.
  11811. * m Mask value to apply.
  11812. */
  11813. static void sp_4096_cond_sub_71(sp_digit* r, const sp_digit* a,
  11814. const sp_digit* b, const sp_digit m)
  11815. {
  11816. int i;
  11817. for (i = 0; i < 71; i++) {
  11818. r[i] = a[i] - (b[i] & m);
  11819. }
  11820. }
  11821. /* Mul a by scalar b and add into r. (r += a * b)
  11822. *
  11823. * r A single precision integer.
  11824. * a A single precision integer.
  11825. * b A scalar.
  11826. */
  11827. SP_NOINLINE static void sp_4096_mul_add_71(sp_digit* r, const sp_digit* a,
  11828. const sp_digit b)
  11829. {
  11830. #ifndef WOLFSSL_SP_LARGE_CODE
  11831. sp_int64 tb = b;
  11832. sp_int64 t = 0;
  11833. int i;
  11834. for (i = 0; i < 71; i++) {
  11835. t += r[i];
  11836. t += tb * a[i];
  11837. r[i] = ((sp_digit)t) & 0x1fffffff;
  11838. t >>= 29;
  11839. }
  11840. r[71] += (sp_digit)t;
  11841. #else
  11842. sp_int64 tb = b;
  11843. sp_int64 t[4];
  11844. int i;
  11845. t[0] = 0;
  11846. for (i = 0; i < 68; i += 4) {
  11847. t[0] += (tb * a[i+0]) + r[i+0];
  11848. t[1] = (tb * a[i+1]) + r[i+1];
  11849. t[2] = (tb * a[i+2]) + r[i+2];
  11850. t[3] = (tb * a[i+3]) + r[i+3];
  11851. r[i+0] = t[0] & 0x1fffffff;
  11852. t[1] += t[0] >> 29;
  11853. r[i+1] = t[1] & 0x1fffffff;
  11854. t[2] += t[1] >> 29;
  11855. r[i+2] = t[2] & 0x1fffffff;
  11856. t[3] += t[2] >> 29;
  11857. r[i+3] = t[3] & 0x1fffffff;
  11858. t[0] = t[3] >> 29;
  11859. }
  11860. t[0] += (tb * a[68]) + r[68];
  11861. t[1] = (tb * a[69]) + r[69];
  11862. t[2] = (tb * a[70]) + r[70];
  11863. r[68] = t[0] & 0x1fffffff;
  11864. t[1] += t[0] >> 29;
  11865. r[69] = t[1] & 0x1fffffff;
  11866. t[2] += t[1] >> 29;
  11867. r[70] = t[2] & 0x1fffffff;
  11868. r[71] += (sp_digit)(t[2] >> 29);
  11869. #endif /* !WOLFSSL_SP_LARGE_CODE */
  11870. }
  11871. /* Shift the result in the high 2048 bits down to the bottom.
  11872. *
  11873. * r A single precision number.
  11874. * a A single precision number.
  11875. */
  11876. static void sp_4096_mont_shift_71(sp_digit* r, const sp_digit* a)
  11877. {
  11878. int i;
  11879. sp_int64 n = a[70] >> 18;
  11880. n += ((sp_int64)a[71]) << 11;
  11881. for (i = 0; i < 70; i++) {
  11882. r[i] = n & 0x1fffffff;
  11883. n >>= 29;
  11884. n += ((sp_int64)a[72 + i]) << 11;
  11885. }
  11886. r[70] = (sp_digit)n;
  11887. XMEMSET(&r[71], 0, sizeof(*r) * 71U);
  11888. }
  11889. /* Reduce the number back to 4096 bits using Montgomery reduction.
  11890. *
  11891. * a A single precision number to reduce in place.
  11892. * m The single precision number representing the modulus.
  11893. * mp The digit representing the negative inverse of m mod 2^n.
  11894. */
  11895. static void sp_4096_mont_reduce_71(sp_digit* a, const sp_digit* m, sp_digit mp)
  11896. {
  11897. int i;
  11898. sp_digit mu;
  11899. sp_digit over;
  11900. sp_4096_norm_71(a + 71);
  11901. for (i=0; i<70; i++) {
  11902. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
  11903. sp_4096_mul_add_71(a+i, m, mu);
  11904. a[i+1] += a[i] >> 29;
  11905. }
  11906. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffL;
  11907. sp_4096_mul_add_71(a+i, m, mu);
  11908. a[i+1] += a[i] >> 29;
  11909. a[i] &= 0x1fffffff;
  11910. sp_4096_mont_shift_71(a, a);
  11911. over = a[70] - m[70];
  11912. sp_4096_cond_sub_71(a, a, m, ~((over - 1) >> 31));
  11913. sp_4096_norm_71(a);
  11914. }
  11915. /* Multiply a and b into r. (r = a * b)
  11916. *
  11917. * r A single precision integer.
  11918. * a A single precision integer.
  11919. * b A single precision integer.
  11920. */
  11921. SP_NOINLINE static void sp_4096_mul_71(sp_digit* r, const sp_digit* a,
  11922. const sp_digit* b)
  11923. {
  11924. int i;
  11925. int imax;
  11926. int k;
  11927. sp_uint64 c;
  11928. sp_uint64 lo;
  11929. c = ((sp_uint64)a[70]) * b[70];
  11930. r[141] = (sp_digit)(c >> 29);
  11931. c &= 0x1fffffff;
  11932. for (k = 139; k >= 0; k--) {
  11933. if (k >= 71) {
  11934. i = k - 70;
  11935. imax = 70;
  11936. }
  11937. else {
  11938. i = 0;
  11939. imax = k;
  11940. }
  11941. if (imax - i > 15) {
  11942. int imaxlo;
  11943. lo = 0;
  11944. for (imaxlo = i; imaxlo <= imax; imaxlo += 15) {
  11945. for (; i <= imax && i < imaxlo + 15; i++) {
  11946. lo += ((sp_uint64)a[i]) * b[k - i];
  11947. }
  11948. c += lo >> 29;
  11949. lo &= 0x1fffffff;
  11950. }
  11951. r[k + 2] += (sp_digit)(c >> 29);
  11952. r[k + 1] = (sp_digit)(c & 0x1fffffff);
  11953. c = lo & 0x1fffffff;
  11954. }
  11955. else {
  11956. lo = 0;
  11957. for (; i <= imax; i++) {
  11958. lo += ((sp_uint64)a[i]) * b[k - i];
  11959. }
  11960. c += lo >> 29;
  11961. r[k + 2] += (sp_digit)(c >> 29);
  11962. r[k + 1] = (sp_digit)(c & 0x1fffffff);
  11963. c = lo & 0x1fffffff;
  11964. }
  11965. }
  11966. r[0] = (sp_digit)c;
  11967. }
  11968. /* Multiply two Montgomery form numbers mod the modulus (prime).
  11969. * (r = a * b mod m)
  11970. *
  11971. * r Result of multiplication.
  11972. * a First number to multiply in Montgomery form.
  11973. * b Second number to multiply in Montgomery form.
  11974. * m Modulus (prime).
  11975. * mp Montgomery multiplier.
  11976. */
  11977. SP_NOINLINE static void sp_4096_mont_mul_71(sp_digit* r, const sp_digit* a,
  11978. const sp_digit* b, const sp_digit* m, sp_digit mp)
  11979. {
  11980. sp_4096_mul_71(r, a, b);
  11981. sp_4096_mont_reduce_71(r, m, mp);
  11982. }
  11983. /* Square a and put result in r. (r = a * a)
  11984. *
  11985. * r A single precision integer.
  11986. * a A single precision integer.
  11987. */
  11988. SP_NOINLINE static void sp_4096_sqr_71(sp_digit* r, const sp_digit* a)
  11989. {
  11990. int i;
  11991. int imax;
  11992. int k;
  11993. sp_uint64 c;
  11994. sp_uint64 t;
  11995. c = ((sp_uint64)a[70]) * a[70];
  11996. r[141] = (sp_digit)(c >> 29);
  11997. c = (c & 0x1fffffff) << 29;
  11998. for (k = 139; k >= 0; k--) {
  11999. i = (k + 1) / 2;
  12000. if ((k & 1) == 0) {
  12001. c += ((sp_uint64)a[i]) * a[i];
  12002. i++;
  12003. }
  12004. if (k < 70) {
  12005. imax = k;
  12006. }
  12007. else {
  12008. imax = 70;
  12009. }
  12010. if (imax - i >= 14) {
  12011. int imaxlo;
  12012. sp_uint64 hi;
  12013. hi = c >> 29;
  12014. c &= 0x1fffffff;
  12015. for (imaxlo = i; imaxlo <= imax; imaxlo += 14) {
  12016. t = 0;
  12017. for (; i <= imax && i < imaxlo + 14; i++) {
  12018. t += ((sp_uint64)a[i]) * a[k - i];
  12019. }
  12020. c += t * 2;
  12021. hi += c >> 29;
  12022. c &= 0x1fffffff;
  12023. }
  12024. r[k + 2] += (sp_digit)(hi >> 29);
  12025. r[k + 1] = (sp_digit)(hi & 0x1fffffff);
  12026. c <<= 29;
  12027. }
  12028. else
  12029. {
  12030. t = 0;
  12031. for (; i <= imax; i++) {
  12032. t += ((sp_uint64)a[i]) * a[k - i];
  12033. }
  12034. c += t * 2;
  12035. r[k + 2] += (sp_digit) (c >> 58);
  12036. r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
  12037. c = (c & 0x1fffffff) << 29;
  12038. }
  12039. }
  12040. r[0] = (sp_digit)(c >> 29);
  12041. }
  12042. /* Square the Montgomery form number. (r = a * a mod m)
  12043. *
  12044. * r Result of squaring.
  12045. * a Number to square in Montgomery form.
  12046. * m Modulus (prime).
  12047. * mp Montgomery multiplier.
  12048. */
  12049. SP_NOINLINE static void sp_4096_mont_sqr_71(sp_digit* r, const sp_digit* a,
  12050. const sp_digit* m, sp_digit mp)
  12051. {
  12052. sp_4096_sqr_71(r, a);
  12053. sp_4096_mont_reduce_71(r, m, mp);
  12054. }
  12055. /* Multiply a by scalar b into r. (r = a * b)
  12056. *
  12057. * r A single precision integer.
  12058. * a A single precision integer.
  12059. * b A scalar.
  12060. */
  12061. SP_NOINLINE static void sp_4096_mul_d_71(sp_digit* r, const sp_digit* a,
  12062. sp_digit b)
  12063. {
  12064. sp_int64 tb = b;
  12065. sp_int64 t = 0;
  12066. int i;
  12067. for (i = 0; i < 71; i++) {
  12068. t += tb * a[i];
  12069. r[i] = (sp_digit)(t & 0x1fffffff);
  12070. t >>= 29;
  12071. }
  12072. r[71] = (sp_digit)t;
  12073. }
  12074. #ifdef WOLFSSL_SP_SMALL
  12075. /* Conditionally add a and b using the mask m.
  12076. * m is -1 to add and 0 when not.
  12077. *
  12078. * r A single precision number representing conditional add result.
  12079. * a A single precision number to add with.
  12080. * b A single precision number to add.
  12081. * m Mask value to apply.
  12082. */
  12083. static void sp_4096_cond_add_71(sp_digit* r, const sp_digit* a,
  12084. const sp_digit* b, const sp_digit m)
  12085. {
  12086. int i;
  12087. for (i = 0; i < 71; i++) {
  12088. r[i] = a[i] + (b[i] & m);
  12089. }
  12090. }
  12091. #endif /* WOLFSSL_SP_SMALL */
  12092. /* Add b to a into r. (r = a + b)
  12093. *
  12094. * r A single precision integer.
  12095. * a A single precision integer.
  12096. * b A single precision integer.
  12097. */
  12098. SP_NOINLINE static int sp_4096_add_71(sp_digit* r, const sp_digit* a,
  12099. const sp_digit* b)
  12100. {
  12101. int i;
  12102. for (i = 0; i < 71; i++) {
  12103. r[i] = a[i] + b[i];
  12104. }
  12105. return 0;
  12106. }
  12107. SP_NOINLINE static void sp_4096_rshift_71(sp_digit* r, const sp_digit* a,
  12108. byte n)
  12109. {
  12110. int i;
  12111. for (i=0; i<70; i++) {
  12112. r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
  12113. }
  12114. r[70] = a[70] >> n;
  12115. }
  12116. static WC_INLINE sp_digit sp_4096_div_word_71(sp_digit d1, sp_digit d0,
  12117. sp_digit div)
  12118. {
  12119. #ifdef SP_USE_DIVTI3
  12120. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  12121. return d / div;
  12122. #elif defined(__x86_64__) || defined(__i386__)
  12123. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  12124. sp_uint32 lo = (sp_uint32)d;
  12125. sp_digit hi = (sp_digit)(d >> 32);
  12126. __asm__ __volatile__ (
  12127. "idiv %2"
  12128. : "+a" (lo)
  12129. : "d" (hi), "r" (div)
  12130. : "cc"
  12131. );
  12132. return (sp_digit)lo;
  12133. #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
  12134. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  12135. sp_digit dv = (div >> 1) + 1;
  12136. sp_digit t1 = (sp_digit)(d >> 29);
  12137. sp_digit t0 = (sp_digit)(d & 0x1fffffff);
  12138. sp_digit t2;
  12139. sp_digit sign;
  12140. sp_digit r;
  12141. int i;
  12142. sp_int64 m;
  12143. r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  12144. t1 -= dv & (0 - r);
  12145. for (i = 27; i >= 1; i--) {
  12146. t1 += t1 + (((sp_uint32)t0 >> 28) & 1);
  12147. t0 <<= 1;
  12148. t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  12149. r += r + t2;
  12150. t1 -= dv & (0 - t2);
  12151. t1 += t2;
  12152. }
  12153. r += r + 1;
  12154. m = d - ((sp_int64)r * div);
  12155. r += (sp_digit)(m >> 29);
  12156. m = d - ((sp_int64)r * div);
  12157. r += (sp_digit)(m >> 58) - (sp_digit)(d >> 58);
  12158. m = d - ((sp_int64)r * div);
  12159. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  12160. m *= sign;
  12161. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  12162. r += sign * t2;
  12163. m = d - ((sp_int64)r * div);
  12164. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  12165. m *= sign;
  12166. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  12167. r += sign * t2;
  12168. return r;
  12169. #else
  12170. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  12171. sp_digit r = 0;
  12172. sp_digit t;
  12173. sp_digit dv = (div >> 14) + 1;
  12174. t = (sp_digit)(d >> 28);
  12175. t = (t / dv) << 14;
  12176. r += t;
  12177. d -= (sp_int64)t * div;
  12178. t = (sp_digit)(d >> 13);
  12179. t = t / (dv << 1);
  12180. r += t;
  12181. d -= (sp_int64)t * div;
  12182. t = (sp_digit)d;
  12183. t = t / div;
  12184. r += t;
  12185. d -= (sp_int64)t * div;
  12186. return r;
  12187. #endif
  12188. }
  12189. static WC_INLINE sp_digit sp_4096_word_div_word_71(sp_digit d, sp_digit div)
  12190. {
  12191. #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
  12192. defined(SP_DIV_WORD_USE_DIV)
  12193. return d / div;
  12194. #else
  12195. return (sp_digit)((sp_uint32)(div - d) >> 31);
  12196. #endif
  12197. }
  12198. /* Divide d in a and put remainder into r (m*d + r = a)
  12199. * m is not calculated as it is not needed at this time.
  12200. *
  12201. * Full implementation.
  12202. *
  12203. * a Number to be divided.
  12204. * d Number to divide with.
  12205. * m Multiplier result.
  12206. * r Remainder from the division.
  12207. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  12208. */
  12209. static int sp_4096_div_71(const sp_digit* a, const sp_digit* d,
  12210. const sp_digit* m, sp_digit* r)
  12211. {
  12212. int i;
  12213. #ifndef WOLFSSL_SP_DIV_32
  12214. #endif
  12215. sp_digit dv;
  12216. sp_digit r1;
  12217. #ifdef WOLFSSL_SP_SMALL_STACK
  12218. sp_digit* t1 = NULL;
  12219. #else
  12220. sp_digit t1[4 * 71 + 3];
  12221. #endif
  12222. sp_digit* t2 = NULL;
  12223. sp_digit* sd = NULL;
  12224. int err = MP_OKAY;
  12225. (void)m;
  12226. #ifdef WOLFSSL_SP_SMALL_STACK
  12227. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 71 + 3), NULL,
  12228. DYNAMIC_TYPE_TMP_BUFFER);
  12229. if (t1 == NULL)
  12230. err = MEMORY_E;
  12231. #endif
  12232. (void)m;
  12233. if (err == MP_OKAY) {
  12234. t2 = t1 + 142 + 1;
  12235. sd = t2 + 71 + 1;
  12236. sp_4096_mul_d_71(sd, d, (sp_digit)1 << 11);
  12237. sp_4096_mul_d_142(t1, a, (sp_digit)1 << 11);
  12238. dv = sd[70];
  12239. t1[71 + 71] += t1[71 + 71 - 1] >> 29;
  12240. t1[71 + 71 - 1] &= 0x1fffffff;
  12241. for (i=71; i>=0; i--) {
  12242. r1 = sp_4096_div_word_71(t1[71 + i], t1[71 + i - 1], dv);
  12243. sp_4096_mul_d_71(t2, sd, r1);
  12244. (void)sp_4096_sub_71(&t1[i], &t1[i], t2);
  12245. sp_4096_norm_71(&t1[i]);
  12246. t1[71 + i] -= t2[71];
  12247. t1[71 + i] += t1[71 + i - 1] >> 29;
  12248. t1[71 + i - 1] &= 0x1fffffff;
  12249. r1 = sp_4096_div_word_71(-t1[71 + i], -t1[71 + i - 1], dv);
  12250. r1 -= t1[71 + i];
  12251. sp_4096_mul_d_71(t2, sd, r1);
  12252. (void)sp_4096_add_71(&t1[i], &t1[i], t2);
  12253. t1[71 + i] += t1[71 + i - 1] >> 29;
  12254. t1[71 + i - 1] &= 0x1fffffff;
  12255. }
  12256. t1[71 - 1] += t1[71 - 2] >> 29;
  12257. t1[71 - 2] &= 0x1fffffff;
  12258. r1 = sp_4096_word_div_word_71(t1[71 - 1], dv);
  12259. sp_4096_mul_d_71(t2, sd, r1);
  12260. sp_4096_sub_71(t1, t1, t2);
  12261. XMEMCPY(r, t1, sizeof(*r) * 142U);
  12262. for (i=0; i<70; i++) {
  12263. r[i+1] += r[i] >> 29;
  12264. r[i] &= 0x1fffffff;
  12265. }
  12266. sp_4096_cond_add_71(r, r, sd, r[70] >> 31);
  12267. sp_4096_norm_71(r);
  12268. sp_4096_rshift_71(r, r, 11);
  12269. }
  12270. #ifdef WOLFSSL_SP_SMALL_STACK
  12271. if (t1 != NULL)
  12272. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  12273. #endif
  12274. return err;
  12275. }
  12276. /* Reduce a modulo m into r. (r = a mod m)
  12277. *
  12278. * r A single precision number that is the reduced result.
  12279. * a A single precision number that is to be reduced.
  12280. * m A single precision number that is the modulus to reduce with.
  12281. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  12282. */
  12283. static int sp_4096_mod_71(sp_digit* r, const sp_digit* a, const sp_digit* m)
  12284. {
  12285. return sp_4096_div_71(a, m, NULL, r);
  12286. }
  12287. /* Modular exponentiate a to the e mod m. (r = a^e mod m)
  12288. *
  12289. * r A single precision number that is the result of the operation.
  12290. * a A single precision number being exponentiated.
  12291. * e A single precision number that is the exponent.
  12292. * bits The number of bits in the exponent.
  12293. * m A single precision number that is the modulus.
  12294. * returns 0 on success.
  12295. * returns MEMORY_E on dynamic memory allocation failure.
  12296. * returns MP_VAL when base is even or exponent is 0.
  12297. */
  12298. static int sp_4096_mod_exp_71(sp_digit* r, const sp_digit* a, const sp_digit* e,
  12299. int bits, const sp_digit* m, int reduceA)
  12300. {
  12301. #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
  12302. #ifdef WOLFSSL_SP_SMALL_STACK
  12303. sp_digit* td = NULL;
  12304. #else
  12305. sp_digit td[3 * 142];
  12306. #endif
  12307. sp_digit* t[3] = {0, 0, 0};
  12308. sp_digit* norm = NULL;
  12309. sp_digit mp = 1;
  12310. sp_digit n;
  12311. int i;
  12312. int c;
  12313. byte y;
  12314. int err = MP_OKAY;
  12315. if (bits == 0) {
  12316. err = MP_VAL;
  12317. }
  12318. #ifdef WOLFSSL_SP_SMALL_STACK
  12319. if (err == MP_OKAY) {
  12320. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 71 * 2, NULL,
  12321. DYNAMIC_TYPE_TMP_BUFFER);
  12322. if (td == NULL)
  12323. err = MEMORY_E;
  12324. }
  12325. #endif
  12326. if (err == MP_OKAY) {
  12327. norm = td;
  12328. for (i=0; i<3; i++) {
  12329. t[i] = td + (i * 71 * 2);
  12330. XMEMSET(t[i], 0, sizeof(sp_digit) * 71U * 2U);
  12331. }
  12332. sp_4096_mont_setup(m, &mp);
  12333. sp_4096_mont_norm_71(norm, m);
  12334. if (reduceA != 0) {
  12335. err = sp_4096_mod_71(t[1], a, m);
  12336. }
  12337. else {
  12338. XMEMCPY(t[1], a, sizeof(sp_digit) * 71U);
  12339. }
  12340. }
  12341. if (err == MP_OKAY) {
  12342. sp_4096_mul_71(t[1], t[1], norm);
  12343. err = sp_4096_mod_71(t[1], t[1], m);
  12344. }
  12345. if (err == MP_OKAY) {
  12346. i = bits / 29;
  12347. c = bits % 29;
  12348. n = e[i--] << (29 - c);
  12349. for (; ; c--) {
  12350. if (c == 0) {
  12351. if (i == -1) {
  12352. break;
  12353. }
  12354. n = e[i--];
  12355. c = 29;
  12356. }
  12357. y = (int)((n >> 28) & 1);
  12358. n <<= 1;
  12359. sp_4096_mont_mul_71(t[y^1], t[0], t[1], m, mp);
  12360. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  12361. ((size_t)t[1] & addr_mask[y])),
  12362. sizeof(*t[2]) * 71 * 2);
  12363. sp_4096_mont_sqr_71(t[2], t[2], m, mp);
  12364. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  12365. ((size_t)t[1] & addr_mask[y])), t[2],
  12366. sizeof(*t[2]) * 71 * 2);
  12367. }
  12368. sp_4096_mont_reduce_71(t[0], m, mp);
  12369. n = sp_4096_cmp_71(t[0], m);
  12370. sp_4096_cond_sub_71(t[0], t[0], m, ~(n >> 31));
  12371. XMEMCPY(r, t[0], sizeof(*r) * 71 * 2);
  12372. }
  12373. #ifdef WOLFSSL_SP_SMALL_STACK
  12374. if (td != NULL)
  12375. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  12376. #endif
  12377. return err;
  12378. #elif !defined(WC_NO_CACHE_RESISTANT)
  12379. #ifdef WOLFSSL_SP_SMALL_STACK
  12380. sp_digit* td = NULL;
  12381. #else
  12382. sp_digit td[3 * 142];
  12383. #endif
  12384. sp_digit* t[3] = {0, 0, 0};
  12385. sp_digit* norm = NULL;
  12386. sp_digit mp = 1;
  12387. sp_digit n;
  12388. int i;
  12389. int c;
  12390. byte y;
  12391. int err = MP_OKAY;
  12392. if (bits == 0) {
  12393. err = MP_VAL;
  12394. }
  12395. #ifdef WOLFSSL_SP_SMALL_STACK
  12396. if (err == MP_OKAY) {
  12397. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 71 * 2, NULL,
  12398. DYNAMIC_TYPE_TMP_BUFFER);
  12399. if (td == NULL)
  12400. err = MEMORY_E;
  12401. }
  12402. #endif
  12403. if (err == MP_OKAY) {
  12404. norm = td;
  12405. for (i=0; i<3; i++) {
  12406. t[i] = td + (i * 71 * 2);
  12407. }
  12408. sp_4096_mont_setup(m, &mp);
  12409. sp_4096_mont_norm_71(norm, m);
  12410. if (reduceA != 0) {
  12411. err = sp_4096_mod_71(t[1], a, m);
  12412. if (err == MP_OKAY) {
  12413. sp_4096_mul_71(t[1], t[1], norm);
  12414. err = sp_4096_mod_71(t[1], t[1], m);
  12415. }
  12416. }
  12417. else {
  12418. sp_4096_mul_71(t[1], a, norm);
  12419. err = sp_4096_mod_71(t[1], t[1], m);
  12420. }
  12421. }
  12422. if (err == MP_OKAY) {
  12423. i = bits / 29;
  12424. c = bits % 29;
  12425. n = e[i--] << (29 - c);
  12426. for (; ; c--) {
  12427. if (c == 0) {
  12428. if (i == -1) {
  12429. break;
  12430. }
  12431. n = e[i--];
  12432. c = 29;
  12433. }
  12434. y = (int)((n >> 28) & 1);
  12435. n <<= 1;
  12436. sp_4096_mont_mul_71(t[y^1], t[0], t[1], m, mp);
  12437. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  12438. ((size_t)t[1] & addr_mask[y])),
  12439. sizeof(*t[2]) * 71 * 2);
  12440. sp_4096_mont_sqr_71(t[2], t[2], m, mp);
  12441. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  12442. ((size_t)t[1] & addr_mask[y])), t[2],
  12443. sizeof(*t[2]) * 71 * 2);
  12444. }
  12445. sp_4096_mont_reduce_71(t[0], m, mp);
  12446. n = sp_4096_cmp_71(t[0], m);
  12447. sp_4096_cond_sub_71(t[0], t[0], m, ~(n >> 31));
  12448. XMEMCPY(r, t[0], sizeof(*r) * 71 * 2);
  12449. }
  12450. #ifdef WOLFSSL_SP_SMALL_STACK
  12451. if (td != NULL)
  12452. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  12453. #endif
  12454. return err;
  12455. #else
  12456. #ifdef WOLFSSL_SP_SMALL_STACK
  12457. sp_digit* td = NULL;
  12458. #else
  12459. sp_digit td[(32 * 142) + 142];
  12460. #endif
  12461. sp_digit* t[32];
  12462. sp_digit* rt = NULL;
  12463. sp_digit* norm = NULL;
  12464. sp_digit mp = 1;
  12465. sp_digit n;
  12466. int i;
  12467. int c;
  12468. byte y;
  12469. int err = MP_OKAY;
  12470. if (bits == 0) {
  12471. err = MP_VAL;
  12472. }
  12473. #ifdef WOLFSSL_SP_SMALL_STACK
  12474. if (err == MP_OKAY) {
  12475. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((32 * 142) + 142), NULL,
  12476. DYNAMIC_TYPE_TMP_BUFFER);
  12477. if (td == NULL)
  12478. err = MEMORY_E;
  12479. }
  12480. #endif
  12481. if (err == MP_OKAY) {
  12482. norm = td;
  12483. for (i=0; i<32; i++)
  12484. t[i] = td + i * 142;
  12485. rt = td + 4544;
  12486. sp_4096_mont_setup(m, &mp);
  12487. sp_4096_mont_norm_71(norm, m);
  12488. if (reduceA != 0) {
  12489. err = sp_4096_mod_71(t[1], a, m);
  12490. if (err == MP_OKAY) {
  12491. sp_4096_mul_71(t[1], t[1], norm);
  12492. err = sp_4096_mod_71(t[1], t[1], m);
  12493. }
  12494. }
  12495. else {
  12496. sp_4096_mul_71(t[1], a, norm);
  12497. err = sp_4096_mod_71(t[1], t[1], m);
  12498. }
  12499. }
  12500. if (err == MP_OKAY) {
  12501. sp_4096_mont_sqr_71(t[ 2], t[ 1], m, mp);
  12502. sp_4096_mont_mul_71(t[ 3], t[ 2], t[ 1], m, mp);
  12503. sp_4096_mont_sqr_71(t[ 4], t[ 2], m, mp);
  12504. sp_4096_mont_mul_71(t[ 5], t[ 3], t[ 2], m, mp);
  12505. sp_4096_mont_sqr_71(t[ 6], t[ 3], m, mp);
  12506. sp_4096_mont_mul_71(t[ 7], t[ 4], t[ 3], m, mp);
  12507. sp_4096_mont_sqr_71(t[ 8], t[ 4], m, mp);
  12508. sp_4096_mont_mul_71(t[ 9], t[ 5], t[ 4], m, mp);
  12509. sp_4096_mont_sqr_71(t[10], t[ 5], m, mp);
  12510. sp_4096_mont_mul_71(t[11], t[ 6], t[ 5], m, mp);
  12511. sp_4096_mont_sqr_71(t[12], t[ 6], m, mp);
  12512. sp_4096_mont_mul_71(t[13], t[ 7], t[ 6], m, mp);
  12513. sp_4096_mont_sqr_71(t[14], t[ 7], m, mp);
  12514. sp_4096_mont_mul_71(t[15], t[ 8], t[ 7], m, mp);
  12515. sp_4096_mont_sqr_71(t[16], t[ 8], m, mp);
  12516. sp_4096_mont_mul_71(t[17], t[ 9], t[ 8], m, mp);
  12517. sp_4096_mont_sqr_71(t[18], t[ 9], m, mp);
  12518. sp_4096_mont_mul_71(t[19], t[10], t[ 9], m, mp);
  12519. sp_4096_mont_sqr_71(t[20], t[10], m, mp);
  12520. sp_4096_mont_mul_71(t[21], t[11], t[10], m, mp);
  12521. sp_4096_mont_sqr_71(t[22], t[11], m, mp);
  12522. sp_4096_mont_mul_71(t[23], t[12], t[11], m, mp);
  12523. sp_4096_mont_sqr_71(t[24], t[12], m, mp);
  12524. sp_4096_mont_mul_71(t[25], t[13], t[12], m, mp);
  12525. sp_4096_mont_sqr_71(t[26], t[13], m, mp);
  12526. sp_4096_mont_mul_71(t[27], t[14], t[13], m, mp);
  12527. sp_4096_mont_sqr_71(t[28], t[14], m, mp);
  12528. sp_4096_mont_mul_71(t[29], t[15], t[14], m, mp);
  12529. sp_4096_mont_sqr_71(t[30], t[15], m, mp);
  12530. sp_4096_mont_mul_71(t[31], t[16], t[15], m, mp);
  12531. bits = ((bits + 4) / 5) * 5;
  12532. i = ((bits + 28) / 29) - 1;
  12533. c = bits % 29;
  12534. if (c == 0) {
  12535. c = 29;
  12536. }
  12537. if (i < 71) {
  12538. n = e[i--] << (32 - c);
  12539. }
  12540. else {
  12541. n = 0;
  12542. i--;
  12543. }
  12544. if (c < 5) {
  12545. n |= e[i--] << (3 - c);
  12546. c += 29;
  12547. }
  12548. y = (int)((n >> 27) & 0x1f);
  12549. n <<= 5;
  12550. c -= 5;
  12551. XMEMCPY(rt, t[y], sizeof(sp_digit) * 142);
  12552. while ((i >= 0) || (c >= 5)) {
  12553. if (c >= 5) {
  12554. y = (byte)((n >> 27) & 0x1f);
  12555. n <<= 5;
  12556. c -= 5;
  12557. }
  12558. else if (c == 0) {
  12559. n = e[i--] << 3;
  12560. y = (byte)((n >> 27) & 0x1f);
  12561. n <<= 5;
  12562. c = 24;
  12563. }
  12564. else {
  12565. y = (byte)((n >> 27) & 0x1f);
  12566. n = e[i--] << 3;
  12567. c = 5 - c;
  12568. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  12569. n <<= c;
  12570. c = 29 - c;
  12571. }
  12572. sp_4096_mont_sqr_71(rt, rt, m, mp);
  12573. sp_4096_mont_sqr_71(rt, rt, m, mp);
  12574. sp_4096_mont_sqr_71(rt, rt, m, mp);
  12575. sp_4096_mont_sqr_71(rt, rt, m, mp);
  12576. sp_4096_mont_sqr_71(rt, rt, m, mp);
  12577. sp_4096_mont_mul_71(rt, rt, t[y], m, mp);
  12578. }
  12579. sp_4096_mont_reduce_71(rt, m, mp);
  12580. n = sp_4096_cmp_71(rt, m);
  12581. sp_4096_cond_sub_71(rt, rt, m, ~(n >> 31));
  12582. XMEMCPY(r, rt, sizeof(sp_digit) * 142);
  12583. }
  12584. #ifdef WOLFSSL_SP_SMALL_STACK
  12585. if (td != NULL)
  12586. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  12587. #endif
  12588. return err;
  12589. #endif
  12590. }
  12591. #endif /* WOLFSSL_HAVE_SP_RSA & !SP_RSA_PRIVATE_EXP_D */
  12592. #endif /* (WOLFSSL_HAVE_SP_RSA | WOLFSSL_HAVE_SP_DH) & !WOLFSSL_RSA_PUBLIC_ONLY */
  12593. /* Sub b from a into r. (r = a - b)
  12594. *
  12595. * r A single precision integer.
  12596. * a A single precision integer.
  12597. * b A single precision integer.
  12598. */
  12599. SP_NOINLINE static int sp_4096_sub_142(sp_digit* r, const sp_digit* a,
  12600. const sp_digit* b)
  12601. {
  12602. int i;
  12603. for (i = 0; i < 142; i++) {
  12604. r[i] = a[i] - b[i];
  12605. }
  12606. return 0;
  12607. }
  12608. /* r = 2^n mod m where n is the number of bits to reduce by.
  12609. * Given m must be 4096 bits, just need to subtract.
  12610. *
  12611. * r A single precision number.
  12612. * m A single precision number.
  12613. */
  12614. static void sp_4096_mont_norm_142(sp_digit* r, const sp_digit* m)
  12615. {
  12616. /* Set r = 2^n - 1. */
  12617. int i;
  12618. for (i=0; i<141; i++) {
  12619. r[i] = 0x1fffffff;
  12620. }
  12621. r[141] = 0x7fL;
  12622. /* r = (2^n - 1) mod n */
  12623. (void)sp_4096_sub_142(r, r, m);
  12624. /* Add one so r = 2^n mod m */
  12625. r[0] += 1;
  12626. }
  12627. /* Compare a with b in constant time.
  12628. *
  12629. * a A single precision integer.
  12630. * b A single precision integer.
  12631. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  12632. * respectively.
  12633. */
  12634. static sp_digit sp_4096_cmp_142(const sp_digit* a, const sp_digit* b)
  12635. {
  12636. sp_digit r = 0;
  12637. int i;
  12638. for (i=141; i>=0; i--) {
  12639. r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
  12640. }
  12641. return r;
  12642. }
  12643. /* Conditionally subtract b from a using the mask m.
  12644. * m is -1 to subtract and 0 when not.
  12645. *
  12646. * r A single precision number representing condition subtract result.
  12647. * a A single precision number to subtract from.
  12648. * b A single precision number to subtract.
  12649. * m Mask value to apply.
  12650. */
  12651. static void sp_4096_cond_sub_142(sp_digit* r, const sp_digit* a,
  12652. const sp_digit* b, const sp_digit m)
  12653. {
  12654. int i;
  12655. for (i = 0; i < 142; i++) {
  12656. r[i] = a[i] - (b[i] & m);
  12657. }
  12658. }
  12659. /* Mul a by scalar b and add into r. (r += a * b)
  12660. *
  12661. * r A single precision integer.
  12662. * a A single precision integer.
  12663. * b A scalar.
  12664. */
  12665. SP_NOINLINE static void sp_4096_mul_add_142(sp_digit* r, const sp_digit* a,
  12666. const sp_digit b)
  12667. {
  12668. #ifndef WOLFSSL_SP_LARGE_CODE
  12669. sp_int64 tb = b;
  12670. sp_int64 t = 0;
  12671. int i;
  12672. for (i = 0; i < 142; i++) {
  12673. t += r[i];
  12674. t += tb * a[i];
  12675. r[i] = ((sp_digit)t) & 0x1fffffff;
  12676. t >>= 29;
  12677. }
  12678. r[142] += (sp_digit)t;
  12679. #else
  12680. sp_int64 tb = b;
  12681. sp_int64 t[4];
  12682. int i;
  12683. t[0] = 0;
  12684. for (i = 0; i < 140; i += 4) {
  12685. t[0] += (tb * a[i+0]) + r[i+0];
  12686. t[1] = (tb * a[i+1]) + r[i+1];
  12687. t[2] = (tb * a[i+2]) + r[i+2];
  12688. t[3] = (tb * a[i+3]) + r[i+3];
  12689. r[i+0] = t[0] & 0x1fffffff;
  12690. t[1] += t[0] >> 29;
  12691. r[i+1] = t[1] & 0x1fffffff;
  12692. t[2] += t[1] >> 29;
  12693. r[i+2] = t[2] & 0x1fffffff;
  12694. t[3] += t[2] >> 29;
  12695. r[i+3] = t[3] & 0x1fffffff;
  12696. t[0] = t[3] >> 29;
  12697. }
  12698. t[0] += (tb * a[140]) + r[140];
  12699. t[1] = (tb * a[141]) + r[141];
  12700. r[140] = t[0] & 0x1fffffff;
  12701. t[1] += t[0] >> 29;
  12702. r[141] = t[1] & 0x1fffffff;
  12703. r[142] += (sp_digit)(t[1] >> 29);
  12704. #endif /* !WOLFSSL_SP_LARGE_CODE */
  12705. }
  12706. /* Shift the result in the high 4096 bits down to the bottom.
  12707. *
  12708. * r A single precision number.
  12709. * a A single precision number.
  12710. */
  12711. static void sp_4096_mont_shift_142(sp_digit* r, const sp_digit* a)
  12712. {
  12713. int i;
  12714. sp_int64 n = a[141] >> 7;
  12715. n += ((sp_int64)a[142]) << 22;
  12716. for (i = 0; i < 141; i++) {
  12717. r[i] = n & 0x1fffffff;
  12718. n >>= 29;
  12719. n += ((sp_int64)a[143 + i]) << 22;
  12720. }
  12721. r[141] = (sp_digit)n;
  12722. XMEMSET(&r[142], 0, sizeof(*r) * 142U);
  12723. }
  12724. /* Reduce the number back to 4096 bits using Montgomery reduction.
  12725. *
  12726. * a A single precision number to reduce in place.
  12727. * m The single precision number representing the modulus.
  12728. * mp The digit representing the negative inverse of m mod 2^n.
  12729. */
  12730. static void sp_4096_mont_reduce_142(sp_digit* a, const sp_digit* m, sp_digit mp)
  12731. {
  12732. int i;
  12733. sp_digit mu;
  12734. sp_digit over;
  12735. sp_4096_norm_142(a + 142);
  12736. #ifdef WOLFSSL_SP_DH
  12737. if (mp != 1) {
  12738. for (i=0; i<141; i++) {
  12739. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
  12740. sp_4096_mul_add_142(a+i, m, mu);
  12741. a[i+1] += a[i] >> 29;
  12742. }
  12743. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x7fL;
  12744. sp_4096_mul_add_142(a+i, m, mu);
  12745. a[i+1] += a[i] >> 29;
  12746. a[i] &= 0x1fffffff;
  12747. }
  12748. else {
  12749. for (i=0; i<141; i++) {
  12750. mu = a[i] & 0x1fffffff;
  12751. sp_4096_mul_add_142(a+i, m, mu);
  12752. a[i+1] += a[i] >> 29;
  12753. }
  12754. mu = a[i] & 0x7fL;
  12755. sp_4096_mul_add_142(a+i, m, mu);
  12756. a[i+1] += a[i] >> 29;
  12757. a[i] &= 0x1fffffff;
  12758. }
  12759. #else
  12760. for (i=0; i<141; i++) {
  12761. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
  12762. sp_4096_mul_add_142(a+i, m, mu);
  12763. a[i+1] += a[i] >> 29;
  12764. }
  12765. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x7fL;
  12766. sp_4096_mul_add_142(a+i, m, mu);
  12767. a[i+1] += a[i] >> 29;
  12768. a[i] &= 0x1fffffff;
  12769. #endif
  12770. sp_4096_mont_shift_142(a, a);
  12771. over = a[141] - m[141];
  12772. sp_4096_cond_sub_142(a, a, m, ~((over - 1) >> 31));
  12773. sp_4096_norm_142(a);
  12774. }
  12775. /* Multiply two Montgomery form numbers mod the modulus (prime).
  12776. * (r = a * b mod m)
  12777. *
  12778. * r Result of multiplication.
  12779. * a First number to multiply in Montgomery form.
  12780. * b Second number to multiply in Montgomery form.
  12781. * m Modulus (prime).
  12782. * mp Montgomery multiplier.
  12783. */
  12784. SP_NOINLINE static void sp_4096_mont_mul_142(sp_digit* r, const sp_digit* a,
  12785. const sp_digit* b, const sp_digit* m, sp_digit mp)
  12786. {
  12787. sp_4096_mul_142(r, a, b);
  12788. sp_4096_mont_reduce_142(r, m, mp);
  12789. }
  12790. /* Square the Montgomery form number. (r = a * a mod m)
  12791. *
  12792. * r Result of squaring.
  12793. * a Number to square in Montgomery form.
  12794. * m Modulus (prime).
  12795. * mp Montgomery multiplier.
  12796. */
  12797. SP_NOINLINE static void sp_4096_mont_sqr_142(sp_digit* r, const sp_digit* a,
  12798. const sp_digit* m, sp_digit mp)
  12799. {
  12800. sp_4096_sqr_142(r, a);
  12801. sp_4096_mont_reduce_142(r, m, mp);
  12802. }
  12803. /* Multiply a by scalar b into r. (r = a * b)
  12804. *
  12805. * r A single precision integer.
  12806. * a A single precision integer.
  12807. * b A scalar.
  12808. */
  12809. SP_NOINLINE static void sp_4096_mul_d_284(sp_digit* r, const sp_digit* a,
  12810. sp_digit b)
  12811. {
  12812. sp_int64 tb = b;
  12813. sp_int64 t = 0;
  12814. int i;
  12815. for (i = 0; i < 284; i++) {
  12816. t += tb * a[i];
  12817. r[i] = (sp_digit)(t & 0x1fffffff);
  12818. t >>= 29;
  12819. }
  12820. r[284] = (sp_digit)t;
  12821. }
  12822. #ifdef WOLFSSL_SP_SMALL
  12823. /* Conditionally add a and b using the mask m.
  12824. * m is -1 to add and 0 when not.
  12825. *
  12826. * r A single precision number representing conditional add result.
  12827. * a A single precision number to add with.
  12828. * b A single precision number to add.
  12829. * m Mask value to apply.
  12830. */
  12831. static void sp_4096_cond_add_142(sp_digit* r, const sp_digit* a,
  12832. const sp_digit* b, const sp_digit m)
  12833. {
  12834. int i;
  12835. for (i = 0; i < 142; i++) {
  12836. r[i] = a[i] + (b[i] & m);
  12837. }
  12838. }
  12839. #endif /* WOLFSSL_SP_SMALL */
  12840. /* Add b to a into r. (r = a + b)
  12841. *
  12842. * r A single precision integer.
  12843. * a A single precision integer.
  12844. * b A single precision integer.
  12845. */
  12846. SP_NOINLINE static int sp_4096_add_142(sp_digit* r, const sp_digit* a,
  12847. const sp_digit* b)
  12848. {
  12849. int i;
  12850. for (i = 0; i < 142; i++) {
  12851. r[i] = a[i] + b[i];
  12852. }
  12853. return 0;
  12854. }
  12855. SP_NOINLINE static void sp_4096_rshift_142(sp_digit* r, const sp_digit* a,
  12856. byte n)
  12857. {
  12858. int i;
  12859. for (i=0; i<141; i++) {
  12860. r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
  12861. }
  12862. r[141] = a[141] >> n;
  12863. }
  12864. static WC_INLINE sp_digit sp_4096_div_word_142(sp_digit d1, sp_digit d0,
  12865. sp_digit div)
  12866. {
  12867. #ifdef SP_USE_DIVTI3
  12868. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  12869. return d / div;
  12870. #elif defined(__x86_64__) || defined(__i386__)
  12871. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  12872. sp_uint32 lo = (sp_uint32)d;
  12873. sp_digit hi = (sp_digit)(d >> 32);
  12874. __asm__ __volatile__ (
  12875. "idiv %2"
  12876. : "+a" (lo)
  12877. : "d" (hi), "r" (div)
  12878. : "cc"
  12879. );
  12880. return (sp_digit)lo;
  12881. #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
  12882. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  12883. sp_digit dv = (div >> 1) + 1;
  12884. sp_digit t1 = (sp_digit)(d >> 29);
  12885. sp_digit t0 = (sp_digit)(d & 0x1fffffff);
  12886. sp_digit t2;
  12887. sp_digit sign;
  12888. sp_digit r;
  12889. int i;
  12890. sp_int64 m;
  12891. r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  12892. t1 -= dv & (0 - r);
  12893. for (i = 27; i >= 1; i--) {
  12894. t1 += t1 + (((sp_uint32)t0 >> 28) & 1);
  12895. t0 <<= 1;
  12896. t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  12897. r += r + t2;
  12898. t1 -= dv & (0 - t2);
  12899. t1 += t2;
  12900. }
  12901. r += r + 1;
  12902. m = d - ((sp_int64)r * div);
  12903. r += (sp_digit)(m >> 29);
  12904. m = d - ((sp_int64)r * div);
  12905. r += (sp_digit)(m >> 58) - (sp_digit)(d >> 58);
  12906. m = d - ((sp_int64)r * div);
  12907. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  12908. m *= sign;
  12909. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  12910. r += sign * t2;
  12911. m = d - ((sp_int64)r * div);
  12912. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  12913. m *= sign;
  12914. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  12915. r += sign * t2;
  12916. return r;
  12917. #else
  12918. sp_int64 d = ((sp_int64)d1 << 29) + d0;
  12919. sp_digit r = 0;
  12920. sp_digit t;
  12921. sp_digit dv = (div >> 14) + 1;
  12922. t = (sp_digit)(d >> 28);
  12923. t = (t / dv) << 14;
  12924. r += t;
  12925. d -= (sp_int64)t * div;
  12926. t = (sp_digit)(d >> 13);
  12927. t = t / (dv << 1);
  12928. r += t;
  12929. d -= (sp_int64)t * div;
  12930. t = (sp_digit)d;
  12931. t = t / div;
  12932. r += t;
  12933. d -= (sp_int64)t * div;
  12934. return r;
  12935. #endif
  12936. }
  12937. static WC_INLINE sp_digit sp_4096_word_div_word_142(sp_digit d, sp_digit div)
  12938. {
  12939. #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
  12940. defined(SP_DIV_WORD_USE_DIV)
  12941. return d / div;
  12942. #else
  12943. return (sp_digit)((sp_uint32)(div - d) >> 31);
  12944. #endif
  12945. }
  12946. /* Divide d in a and put remainder into r (m*d + r = a)
  12947. * m is not calculated as it is not needed at this time.
  12948. *
  12949. * Full implementation.
  12950. *
  12951. * a Number to be divided.
  12952. * d Number to divide with.
  12953. * m Multiplier result.
  12954. * r Remainder from the division.
  12955. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  12956. */
  12957. static int sp_4096_div_142(const sp_digit* a, const sp_digit* d,
  12958. const sp_digit* m, sp_digit* r)
  12959. {
  12960. int i;
  12961. #ifndef WOLFSSL_SP_DIV_32
  12962. #endif
  12963. sp_digit dv;
  12964. sp_digit r1;
  12965. #ifdef WOLFSSL_SP_SMALL_STACK
  12966. sp_digit* t1 = NULL;
  12967. #else
  12968. sp_digit t1[4 * 142 + 3];
  12969. #endif
  12970. sp_digit* t2 = NULL;
  12971. sp_digit* sd = NULL;
  12972. int err = MP_OKAY;
  12973. (void)m;
  12974. #ifdef WOLFSSL_SP_SMALL_STACK
  12975. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 142 + 3), NULL,
  12976. DYNAMIC_TYPE_TMP_BUFFER);
  12977. if (t1 == NULL)
  12978. err = MEMORY_E;
  12979. #endif
  12980. (void)m;
  12981. if (err == MP_OKAY) {
  12982. t2 = t1 + 284 + 1;
  12983. sd = t2 + 142 + 1;
  12984. sp_4096_mul_d_142(sd, d, (sp_digit)1 << 22);
  12985. sp_4096_mul_d_284(t1, a, (sp_digit)1 << 22);
  12986. dv = sd[141];
  12987. t1[142 + 142] += t1[142 + 142 - 1] >> 29;
  12988. t1[142 + 142 - 1] &= 0x1fffffff;
  12989. for (i=142; i>=0; i--) {
  12990. r1 = sp_4096_div_word_142(t1[142 + i], t1[142 + i - 1], dv);
  12991. sp_4096_mul_d_142(t2, sd, r1);
  12992. (void)sp_4096_sub_142(&t1[i], &t1[i], t2);
  12993. sp_4096_norm_142(&t1[i]);
  12994. t1[142 + i] -= t2[142];
  12995. t1[142 + i] += t1[142 + i - 1] >> 29;
  12996. t1[142 + i - 1] &= 0x1fffffff;
  12997. r1 = sp_4096_div_word_142(-t1[142 + i], -t1[142 + i - 1], dv);
  12998. r1 -= t1[142 + i];
  12999. sp_4096_mul_d_142(t2, sd, r1);
  13000. (void)sp_4096_add_142(&t1[i], &t1[i], t2);
  13001. t1[142 + i] += t1[142 + i - 1] >> 29;
  13002. t1[142 + i - 1] &= 0x1fffffff;
  13003. }
  13004. t1[142 - 1] += t1[142 - 2] >> 29;
  13005. t1[142 - 2] &= 0x1fffffff;
  13006. r1 = sp_4096_word_div_word_142(t1[142 - 1], dv);
  13007. sp_4096_mul_d_142(t2, sd, r1);
  13008. sp_4096_sub_142(t1, t1, t2);
  13009. XMEMCPY(r, t1, sizeof(*r) * 284U);
  13010. for (i=0; i<141; i++) {
  13011. r[i+1] += r[i] >> 29;
  13012. r[i] &= 0x1fffffff;
  13013. }
  13014. sp_4096_cond_add_142(r, r, sd, r[141] >> 31);
  13015. sp_4096_norm_142(r);
  13016. sp_4096_rshift_142(r, r, 22);
  13017. }
  13018. #ifdef WOLFSSL_SP_SMALL_STACK
  13019. if (t1 != NULL)
  13020. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  13021. #endif
  13022. return err;
  13023. }
  13024. /* Reduce a modulo m into r. (r = a mod m)
  13025. *
  13026. * r A single precision number that is the reduced result.
  13027. * a A single precision number that is to be reduced.
  13028. * m A single precision number that is the modulus to reduce with.
  13029. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  13030. */
  13031. static int sp_4096_mod_142(sp_digit* r, const sp_digit* a, const sp_digit* m)
  13032. {
  13033. return sp_4096_div_142(a, m, NULL, r);
  13034. }
  13035. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
  13036. /* Modular exponentiate a to the e mod m. (r = a^e mod m)
  13037. *
  13038. * r A single precision number that is the result of the operation.
  13039. * a A single precision number being exponentiated.
  13040. * e A single precision number that is the exponent.
  13041. * bits The number of bits in the exponent.
  13042. * m A single precision number that is the modulus.
  13043. * returns 0 on success.
  13044. * returns MEMORY_E on dynamic memory allocation failure.
  13045. * returns MP_VAL when base is even or exponent is 0.
  13046. */
  13047. static int sp_4096_mod_exp_142(sp_digit* r, const sp_digit* a, const sp_digit* e,
  13048. int bits, const sp_digit* m, int reduceA)
  13049. {
  13050. #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
  13051. #ifdef WOLFSSL_SP_SMALL_STACK
  13052. sp_digit* td = NULL;
  13053. #else
  13054. sp_digit td[3 * 284];
  13055. #endif
  13056. sp_digit* t[3] = {0, 0, 0};
  13057. sp_digit* norm = NULL;
  13058. sp_digit mp = 1;
  13059. sp_digit n;
  13060. int i;
  13061. int c;
  13062. byte y;
  13063. int err = MP_OKAY;
  13064. if (bits == 0) {
  13065. err = MP_VAL;
  13066. }
  13067. #ifdef WOLFSSL_SP_SMALL_STACK
  13068. if (err == MP_OKAY) {
  13069. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 142 * 2, NULL,
  13070. DYNAMIC_TYPE_TMP_BUFFER);
  13071. if (td == NULL)
  13072. err = MEMORY_E;
  13073. }
  13074. #endif
  13075. if (err == MP_OKAY) {
  13076. norm = td;
  13077. for (i=0; i<3; i++) {
  13078. t[i] = td + (i * 142 * 2);
  13079. XMEMSET(t[i], 0, sizeof(sp_digit) * 142U * 2U);
  13080. }
  13081. sp_4096_mont_setup(m, &mp);
  13082. sp_4096_mont_norm_142(norm, m);
  13083. if (reduceA != 0) {
  13084. err = sp_4096_mod_142(t[1], a, m);
  13085. }
  13086. else {
  13087. XMEMCPY(t[1], a, sizeof(sp_digit) * 142U);
  13088. }
  13089. }
  13090. if (err == MP_OKAY) {
  13091. sp_4096_mul_142(t[1], t[1], norm);
  13092. err = sp_4096_mod_142(t[1], t[1], m);
  13093. }
  13094. if (err == MP_OKAY) {
  13095. i = bits / 29;
  13096. c = bits % 29;
  13097. n = e[i--] << (29 - c);
  13098. for (; ; c--) {
  13099. if (c == 0) {
  13100. if (i == -1) {
  13101. break;
  13102. }
  13103. n = e[i--];
  13104. c = 29;
  13105. }
  13106. y = (int)((n >> 28) & 1);
  13107. n <<= 1;
  13108. sp_4096_mont_mul_142(t[y^1], t[0], t[1], m, mp);
  13109. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  13110. ((size_t)t[1] & addr_mask[y])),
  13111. sizeof(*t[2]) * 142 * 2);
  13112. sp_4096_mont_sqr_142(t[2], t[2], m, mp);
  13113. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  13114. ((size_t)t[1] & addr_mask[y])), t[2],
  13115. sizeof(*t[2]) * 142 * 2);
  13116. }
  13117. sp_4096_mont_reduce_142(t[0], m, mp);
  13118. n = sp_4096_cmp_142(t[0], m);
  13119. sp_4096_cond_sub_142(t[0], t[0], m, ~(n >> 31));
  13120. XMEMCPY(r, t[0], sizeof(*r) * 142 * 2);
  13121. }
  13122. #ifdef WOLFSSL_SP_SMALL_STACK
  13123. if (td != NULL)
  13124. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  13125. #endif
  13126. return err;
  13127. #elif !defined(WC_NO_CACHE_RESISTANT)
  13128. #ifdef WOLFSSL_SP_SMALL_STACK
  13129. sp_digit* td = NULL;
  13130. #else
  13131. sp_digit td[3 * 284];
  13132. #endif
  13133. sp_digit* t[3] = {0, 0, 0};
  13134. sp_digit* norm = NULL;
  13135. sp_digit mp = 1;
  13136. sp_digit n;
  13137. int i;
  13138. int c;
  13139. byte y;
  13140. int err = MP_OKAY;
  13141. if (bits == 0) {
  13142. err = MP_VAL;
  13143. }
  13144. #ifdef WOLFSSL_SP_SMALL_STACK
  13145. if (err == MP_OKAY) {
  13146. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 142 * 2, NULL,
  13147. DYNAMIC_TYPE_TMP_BUFFER);
  13148. if (td == NULL)
  13149. err = MEMORY_E;
  13150. }
  13151. #endif
  13152. if (err == MP_OKAY) {
  13153. norm = td;
  13154. for (i=0; i<3; i++) {
  13155. t[i] = td + (i * 142 * 2);
  13156. }
  13157. sp_4096_mont_setup(m, &mp);
  13158. sp_4096_mont_norm_142(norm, m);
  13159. if (reduceA != 0) {
  13160. err = sp_4096_mod_142(t[1], a, m);
  13161. if (err == MP_OKAY) {
  13162. sp_4096_mul_142(t[1], t[1], norm);
  13163. err = sp_4096_mod_142(t[1], t[1], m);
  13164. }
  13165. }
  13166. else {
  13167. sp_4096_mul_142(t[1], a, norm);
  13168. err = sp_4096_mod_142(t[1], t[1], m);
  13169. }
  13170. }
  13171. if (err == MP_OKAY) {
  13172. i = bits / 29;
  13173. c = bits % 29;
  13174. n = e[i--] << (29 - c);
  13175. for (; ; c--) {
  13176. if (c == 0) {
  13177. if (i == -1) {
  13178. break;
  13179. }
  13180. n = e[i--];
  13181. c = 29;
  13182. }
  13183. y = (int)((n >> 28) & 1);
  13184. n <<= 1;
  13185. sp_4096_mont_mul_142(t[y^1], t[0], t[1], m, mp);
  13186. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  13187. ((size_t)t[1] & addr_mask[y])),
  13188. sizeof(*t[2]) * 142 * 2);
  13189. sp_4096_mont_sqr_142(t[2], t[2], m, mp);
  13190. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  13191. ((size_t)t[1] & addr_mask[y])), t[2],
  13192. sizeof(*t[2]) * 142 * 2);
  13193. }
  13194. sp_4096_mont_reduce_142(t[0], m, mp);
  13195. n = sp_4096_cmp_142(t[0], m);
  13196. sp_4096_cond_sub_142(t[0], t[0], m, ~(n >> 31));
  13197. XMEMCPY(r, t[0], sizeof(*r) * 142 * 2);
  13198. }
  13199. #ifdef WOLFSSL_SP_SMALL_STACK
  13200. if (td != NULL)
  13201. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  13202. #endif
  13203. return err;
  13204. #else
  13205. #ifdef WOLFSSL_SP_SMALL_STACK
  13206. sp_digit* td = NULL;
  13207. #else
  13208. sp_digit td[(16 * 284) + 284];
  13209. #endif
  13210. sp_digit* t[16];
  13211. sp_digit* rt = NULL;
  13212. sp_digit* norm = NULL;
  13213. sp_digit mp = 1;
  13214. sp_digit n;
  13215. int i;
  13216. int c;
  13217. byte y;
  13218. int err = MP_OKAY;
  13219. if (bits == 0) {
  13220. err = MP_VAL;
  13221. }
  13222. #ifdef WOLFSSL_SP_SMALL_STACK
  13223. if (err == MP_OKAY) {
  13224. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((16 * 284) + 284), NULL,
  13225. DYNAMIC_TYPE_TMP_BUFFER);
  13226. if (td == NULL)
  13227. err = MEMORY_E;
  13228. }
  13229. #endif
  13230. if (err == MP_OKAY) {
  13231. norm = td;
  13232. for (i=0; i<16; i++)
  13233. t[i] = td + i * 284;
  13234. rt = td + 4544;
  13235. sp_4096_mont_setup(m, &mp);
  13236. sp_4096_mont_norm_142(norm, m);
  13237. if (reduceA != 0) {
  13238. err = sp_4096_mod_142(t[1], a, m);
  13239. if (err == MP_OKAY) {
  13240. sp_4096_mul_142(t[1], t[1], norm);
  13241. err = sp_4096_mod_142(t[1], t[1], m);
  13242. }
  13243. }
  13244. else {
  13245. sp_4096_mul_142(t[1], a, norm);
  13246. err = sp_4096_mod_142(t[1], t[1], m);
  13247. }
  13248. }
  13249. if (err == MP_OKAY) {
  13250. sp_4096_mont_sqr_142(t[ 2], t[ 1], m, mp);
  13251. sp_4096_mont_mul_142(t[ 3], t[ 2], t[ 1], m, mp);
  13252. sp_4096_mont_sqr_142(t[ 4], t[ 2], m, mp);
  13253. sp_4096_mont_mul_142(t[ 5], t[ 3], t[ 2], m, mp);
  13254. sp_4096_mont_sqr_142(t[ 6], t[ 3], m, mp);
  13255. sp_4096_mont_mul_142(t[ 7], t[ 4], t[ 3], m, mp);
  13256. sp_4096_mont_sqr_142(t[ 8], t[ 4], m, mp);
  13257. sp_4096_mont_mul_142(t[ 9], t[ 5], t[ 4], m, mp);
  13258. sp_4096_mont_sqr_142(t[10], t[ 5], m, mp);
  13259. sp_4096_mont_mul_142(t[11], t[ 6], t[ 5], m, mp);
  13260. sp_4096_mont_sqr_142(t[12], t[ 6], m, mp);
  13261. sp_4096_mont_mul_142(t[13], t[ 7], t[ 6], m, mp);
  13262. sp_4096_mont_sqr_142(t[14], t[ 7], m, mp);
  13263. sp_4096_mont_mul_142(t[15], t[ 8], t[ 7], m, mp);
  13264. bits = ((bits + 3) / 4) * 4;
  13265. i = ((bits + 28) / 29) - 1;
  13266. c = bits % 29;
  13267. if (c == 0) {
  13268. c = 29;
  13269. }
  13270. if (i < 142) {
  13271. n = e[i--] << (32 - c);
  13272. }
  13273. else {
  13274. n = 0;
  13275. i--;
  13276. }
  13277. if (c < 4) {
  13278. n |= e[i--] << (3 - c);
  13279. c += 29;
  13280. }
  13281. y = (int)((n >> 28) & 0xf);
  13282. n <<= 4;
  13283. c -= 4;
  13284. XMEMCPY(rt, t[y], sizeof(sp_digit) * 284);
  13285. while ((i >= 0) || (c >= 4)) {
  13286. if (c >= 4) {
  13287. y = (byte)((n >> 28) & 0xf);
  13288. n <<= 4;
  13289. c -= 4;
  13290. }
  13291. else if (c == 0) {
  13292. n = e[i--] << 3;
  13293. y = (byte)((n >> 28) & 0xf);
  13294. n <<= 4;
  13295. c = 25;
  13296. }
  13297. else {
  13298. y = (byte)((n >> 28) & 0xf);
  13299. n = e[i--] << 3;
  13300. c = 4 - c;
  13301. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  13302. n <<= c;
  13303. c = 29 - c;
  13304. }
  13305. sp_4096_mont_sqr_142(rt, rt, m, mp);
  13306. sp_4096_mont_sqr_142(rt, rt, m, mp);
  13307. sp_4096_mont_sqr_142(rt, rt, m, mp);
  13308. sp_4096_mont_sqr_142(rt, rt, m, mp);
  13309. sp_4096_mont_mul_142(rt, rt, t[y], m, mp);
  13310. }
  13311. sp_4096_mont_reduce_142(rt, m, mp);
  13312. n = sp_4096_cmp_142(rt, m);
  13313. sp_4096_cond_sub_142(rt, rt, m, ~(n >> 31));
  13314. XMEMCPY(r, rt, sizeof(sp_digit) * 284);
  13315. }
  13316. #ifdef WOLFSSL_SP_SMALL_STACK
  13317. if (td != NULL)
  13318. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  13319. #endif
  13320. return err;
  13321. #endif
  13322. }
  13323. #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
  13324. #ifdef WOLFSSL_HAVE_SP_RSA
  13325. /* RSA public key operation.
  13326. *
  13327. * in Array of bytes representing the number to exponentiate, base.
  13328. * inLen Number of bytes in base.
  13329. * em Public exponent.
  13330. * mm Modulus.
  13331. * out Buffer to hold big-endian bytes of exponentiation result.
  13332. * Must be at least 512 bytes long.
  13333. * outLen Number of bytes in result.
  13334. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
  13335. * an array is too long and MEMORY_E when dynamic memory allocation fails.
  13336. */
  13337. int sp_RsaPublic_4096(const byte* in, word32 inLen, const mp_int* em,
  13338. const mp_int* mm, byte* out, word32* outLen)
  13339. {
  13340. #ifdef WOLFSSL_SP_SMALL
  13341. #ifdef WOLFSSL_SP_SMALL_STACK
  13342. sp_digit* a = NULL;
  13343. #else
  13344. sp_digit a[142 * 5];
  13345. #endif
  13346. sp_digit* m = NULL;
  13347. sp_digit* r = NULL;
  13348. sp_digit* norm = NULL;
  13349. sp_digit e[1] = {0};
  13350. sp_digit mp = 0;
  13351. int i;
  13352. int err = MP_OKAY;
  13353. if (*outLen < 512U) {
  13354. err = MP_TO_E;
  13355. }
  13356. if (err == MP_OKAY) {
  13357. if (mp_count_bits(em) > 29) {
  13358. err = MP_READ_E;
  13359. }
  13360. else if (inLen > 512U) {
  13361. err = MP_READ_E;
  13362. }
  13363. else if (mp_count_bits(mm) != 4096) {
  13364. err = MP_READ_E;
  13365. }
  13366. else if (mp_iseven(mm)) {
  13367. err = MP_VAL;
  13368. }
  13369. }
  13370. #ifdef WOLFSSL_SP_SMALL_STACK
  13371. if (err == MP_OKAY) {
  13372. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 5, NULL,
  13373. DYNAMIC_TYPE_RSA);
  13374. if (a == NULL)
  13375. err = MEMORY_E;
  13376. }
  13377. #endif
  13378. if (err == MP_OKAY) {
  13379. r = a + 142 * 2;
  13380. m = r + 142 * 2;
  13381. norm = r;
  13382. sp_4096_from_bin(a, 142, in, inLen);
  13383. #if DIGIT_BIT >= 29
  13384. e[0] = (sp_digit)em->dp[0];
  13385. #else
  13386. e[0] = (sp_digit)em->dp[0];
  13387. if (em->used > 1) {
  13388. e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT;
  13389. }
  13390. #endif
  13391. if (e[0] == 0) {
  13392. err = MP_EXPTMOD_E;
  13393. }
  13394. }
  13395. if (err == MP_OKAY) {
  13396. sp_4096_from_mp(m, 142, mm);
  13397. sp_4096_mont_setup(m, &mp);
  13398. sp_4096_mont_norm_142(norm, m);
  13399. }
  13400. if (err == MP_OKAY) {
  13401. sp_4096_mul_142(a, a, norm);
  13402. err = sp_4096_mod_142(a, a, m);
  13403. }
  13404. if (err == MP_OKAY) {
  13405. for (i=28; i>=0; i--) {
  13406. if ((e[0] >> i) != 0) {
  13407. break;
  13408. }
  13409. }
  13410. XMEMCPY(r, a, sizeof(sp_digit) * 142 * 2);
  13411. for (i--; i>=0; i--) {
  13412. sp_4096_mont_sqr_142(r, r, m, mp);
  13413. if (((e[0] >> i) & 1) == 1) {
  13414. sp_4096_mont_mul_142(r, r, a, m, mp);
  13415. }
  13416. }
  13417. sp_4096_mont_reduce_142(r, m, mp);
  13418. mp = sp_4096_cmp_142(r, m);
  13419. sp_4096_cond_sub_142(r, r, m, ~(mp >> 31));
  13420. sp_4096_to_bin_142(r, out);
  13421. *outLen = 512;
  13422. }
  13423. #ifdef WOLFSSL_SP_SMALL_STACK
  13424. if (a != NULL)
  13425. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  13426. #endif
  13427. return err;
  13428. #else
  13429. #ifdef WOLFSSL_SP_SMALL_STACK
  13430. sp_digit* d = NULL;
  13431. #else
  13432. sp_digit d[142 * 5];
  13433. #endif
  13434. sp_digit* a = NULL;
  13435. sp_digit* m = NULL;
  13436. sp_digit* r = NULL;
  13437. sp_digit e[1] = {0};
  13438. int err = MP_OKAY;
  13439. if (*outLen < 512U) {
  13440. err = MP_TO_E;
  13441. }
  13442. if (err == MP_OKAY) {
  13443. if (mp_count_bits(em) > 29) {
  13444. err = MP_READ_E;
  13445. }
  13446. else if (inLen > 512U) {
  13447. err = MP_READ_E;
  13448. }
  13449. else if (mp_count_bits(mm) != 4096) {
  13450. err = MP_READ_E;
  13451. }
  13452. else if (mp_iseven(mm)) {
  13453. err = MP_VAL;
  13454. }
  13455. }
  13456. #ifdef WOLFSSL_SP_SMALL_STACK
  13457. if (err == MP_OKAY) {
  13458. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 5, NULL,
  13459. DYNAMIC_TYPE_RSA);
  13460. if (d == NULL)
  13461. err = MEMORY_E;
  13462. }
  13463. #endif
  13464. if (err == MP_OKAY) {
  13465. a = d;
  13466. r = a + 142 * 2;
  13467. m = r + 142 * 2;
  13468. sp_4096_from_bin(a, 142, in, inLen);
  13469. #if DIGIT_BIT >= 29
  13470. e[0] = (sp_digit)em->dp[0];
  13471. #else
  13472. e[0] = (sp_digit)em->dp[0];
  13473. if (em->used > 1) {
  13474. e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT;
  13475. }
  13476. #endif
  13477. if (e[0] == 0) {
  13478. err = MP_EXPTMOD_E;
  13479. }
  13480. }
  13481. if (err == MP_OKAY) {
  13482. sp_4096_from_mp(m, 142, mm);
  13483. if (e[0] == 0x3) {
  13484. sp_4096_sqr_142(r, a);
  13485. err = sp_4096_mod_142(r, r, m);
  13486. if (err == MP_OKAY) {
  13487. sp_4096_mul_142(r, a, r);
  13488. err = sp_4096_mod_142(r, r, m);
  13489. }
  13490. }
  13491. else {
  13492. sp_digit* norm = r;
  13493. int i;
  13494. sp_digit mp;
  13495. sp_4096_mont_setup(m, &mp);
  13496. sp_4096_mont_norm_142(norm, m);
  13497. sp_4096_mul_142(a, a, norm);
  13498. err = sp_4096_mod_142(a, a, m);
  13499. if (err == MP_OKAY) {
  13500. for (i=28; i>=0; i--) {
  13501. if ((e[0] >> i) != 0) {
  13502. break;
  13503. }
  13504. }
  13505. XMEMCPY(r, a, sizeof(sp_digit) * 284U);
  13506. for (i--; i>=0; i--) {
  13507. sp_4096_mont_sqr_142(r, r, m, mp);
  13508. if (((e[0] >> i) & 1) == 1) {
  13509. sp_4096_mont_mul_142(r, r, a, m, mp);
  13510. }
  13511. }
  13512. sp_4096_mont_reduce_142(r, m, mp);
  13513. mp = sp_4096_cmp_142(r, m);
  13514. sp_4096_cond_sub_142(r, r, m, ~(mp >> 31));
  13515. }
  13516. }
  13517. }
  13518. if (err == MP_OKAY) {
  13519. sp_4096_to_bin_142(r, out);
  13520. *outLen = 512;
  13521. }
  13522. #ifdef WOLFSSL_SP_SMALL_STACK
  13523. if (d != NULL)
  13524. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  13525. #endif
  13526. return err;
  13527. #endif /* WOLFSSL_SP_SMALL */
  13528. }
  13529. #ifndef WOLFSSL_RSA_PUBLIC_ONLY
  13530. #if !defined(SP_RSA_PRIVATE_EXP_D) && !defined(RSA_LOW_MEM)
  13531. #endif /* !SP_RSA_PRIVATE_EXP_D & !RSA_LOW_MEM */
  13532. /* RSA private key operation.
  13533. *
  13534. * in Array of bytes representing the number to exponentiate, base.
  13535. * inLen Number of bytes in base.
  13536. * dm Private exponent.
  13537. * pm First prime.
  13538. * qm Second prime.
  13539. * dpm First prime's CRT exponent.
  13540. * dqm Second prime's CRT exponent.
  13541. * qim Inverse of second prime mod p.
  13542. * mm Modulus.
  13543. * out Buffer to hold big-endian bytes of exponentiation result.
  13544. * Must be at least 512 bytes long.
  13545. * outLen Number of bytes in result.
  13546. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
  13547. * an array is too long and MEMORY_E when dynamic memory allocation fails.
  13548. */
  13549. int sp_RsaPrivate_4096(const byte* in, word32 inLen, const mp_int* dm,
  13550. const mp_int* pm, const mp_int* qm, const mp_int* dpm, const mp_int* dqm,
  13551. const mp_int* qim, const mp_int* mm, byte* out, word32* outLen)
  13552. {
  13553. #if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM)
  13554. #if defined(WOLFSSL_SP_SMALL)
  13555. #ifdef WOLFSSL_SP_SMALL_STACK
  13556. sp_digit* d = NULL;
  13557. #else
  13558. sp_digit d[142 * 4];
  13559. #endif
  13560. sp_digit* a = NULL;
  13561. sp_digit* m = NULL;
  13562. sp_digit* r = NULL;
  13563. int err = MP_OKAY;
  13564. (void)pm;
  13565. (void)qm;
  13566. (void)dpm;
  13567. (void)dqm;
  13568. (void)qim;
  13569. if (*outLen < 512U) {
  13570. err = MP_TO_E;
  13571. }
  13572. if (err == MP_OKAY) {
  13573. if (mp_count_bits(dm) > 4096) {
  13574. err = MP_READ_E;
  13575. }
  13576. else if (inLen > 512) {
  13577. err = MP_READ_E;
  13578. }
  13579. else if (mp_count_bits(mm) != 4096) {
  13580. err = MP_READ_E;
  13581. }
  13582. else if (mp_iseven(mm)) {
  13583. err = MP_VAL;
  13584. }
  13585. }
  13586. #ifdef WOLFSSL_SP_SMALL_STACK
  13587. if (err == MP_OKAY) {
  13588. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 4, NULL,
  13589. DYNAMIC_TYPE_RSA);
  13590. if (d == NULL)
  13591. err = MEMORY_E;
  13592. }
  13593. #endif
  13594. if (err == MP_OKAY) {
  13595. a = d + 142;
  13596. m = a + 284;
  13597. r = a;
  13598. sp_4096_from_bin(a, 142, in, inLen);
  13599. sp_4096_from_mp(d, 142, dm);
  13600. sp_4096_from_mp(m, 142, mm);
  13601. err = sp_4096_mod_exp_142(r, a, d, 4096, m, 0);
  13602. }
  13603. if (err == MP_OKAY) {
  13604. sp_4096_to_bin_142(r, out);
  13605. *outLen = 512;
  13606. }
  13607. #ifdef WOLFSSL_SP_SMALL_STACK
  13608. if (d != NULL)
  13609. #endif
  13610. {
  13611. /* only "a" and "r" are sensitive and need zeroized (same pointer) */
  13612. if (a != NULL)
  13613. ForceZero(a, sizeof(sp_digit) * 142);
  13614. #ifdef WOLFSSL_SP_SMALL_STACK
  13615. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  13616. #endif
  13617. }
  13618. return err;
  13619. #else
  13620. #ifdef WOLFSSL_SP_SMALL_STACK
  13621. sp_digit* d = NULL;
  13622. #else
  13623. sp_digit d[142 * 4];
  13624. #endif
  13625. sp_digit* a = NULL;
  13626. sp_digit* m = NULL;
  13627. sp_digit* r = NULL;
  13628. int err = MP_OKAY;
  13629. (void)pm;
  13630. (void)qm;
  13631. (void)dpm;
  13632. (void)dqm;
  13633. (void)qim;
  13634. if (*outLen < 512U) {
  13635. err = MP_TO_E;
  13636. }
  13637. if (err == MP_OKAY) {
  13638. if (mp_count_bits(dm) > 4096) {
  13639. err = MP_READ_E;
  13640. }
  13641. else if (inLen > 512U) {
  13642. err = MP_READ_E;
  13643. }
  13644. else if (mp_count_bits(mm) != 4096) {
  13645. err = MP_READ_E;
  13646. }
  13647. else if (mp_iseven(mm)) {
  13648. err = MP_VAL;
  13649. }
  13650. }
  13651. #ifdef WOLFSSL_SP_SMALL_STACK
  13652. if (err == MP_OKAY) {
  13653. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 4, NULL,
  13654. DYNAMIC_TYPE_RSA);
  13655. if (d == NULL)
  13656. err = MEMORY_E;
  13657. }
  13658. #endif
  13659. if (err == MP_OKAY) {
  13660. a = d + 142;
  13661. m = a + 284;
  13662. r = a;
  13663. sp_4096_from_bin(a, 142, in, inLen);
  13664. sp_4096_from_mp(d, 142, dm);
  13665. sp_4096_from_mp(m, 142, mm);
  13666. err = sp_4096_mod_exp_142(r, a, d, 4096, m, 0);
  13667. }
  13668. if (err == MP_OKAY) {
  13669. sp_4096_to_bin_142(r, out);
  13670. *outLen = 512;
  13671. }
  13672. #ifdef WOLFSSL_SP_SMALL_STACK
  13673. if (d != NULL)
  13674. #endif
  13675. {
  13676. /* only "a" and "r" are sensitive and need zeroized (same pointer) */
  13677. if (a != NULL)
  13678. ForceZero(a, sizeof(sp_digit) * 142);
  13679. #ifdef WOLFSSL_SP_SMALL_STACK
  13680. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  13681. #endif
  13682. }
  13683. return err;
  13684. #endif /* WOLFSSL_SP_SMALL */
  13685. #else
  13686. #if defined(WOLFSSL_SP_SMALL)
  13687. #ifdef WOLFSSL_SP_SMALL_STACK
  13688. sp_digit* a = NULL;
  13689. #else
  13690. sp_digit a[71 * 8];
  13691. #endif
  13692. sp_digit* p = NULL;
  13693. sp_digit* dp = NULL;
  13694. sp_digit* dq = NULL;
  13695. sp_digit* qi = NULL;
  13696. sp_digit* tmpa = NULL;
  13697. sp_digit* tmpb = NULL;
  13698. sp_digit* r = NULL;
  13699. int err = MP_OKAY;
  13700. (void)dm;
  13701. (void)mm;
  13702. if (*outLen < 512U) {
  13703. err = MP_TO_E;
  13704. }
  13705. if (err == MP_OKAY) {
  13706. if (inLen > 512) {
  13707. err = MP_READ_E;
  13708. }
  13709. else if (mp_count_bits(mm) != 4096) {
  13710. err = MP_READ_E;
  13711. }
  13712. else if (mp_iseven(mm)) {
  13713. err = MP_VAL;
  13714. }
  13715. else if (mp_iseven(pm)) {
  13716. err = MP_VAL;
  13717. }
  13718. else if (mp_iseven(qm)) {
  13719. err = MP_VAL;
  13720. }
  13721. }
  13722. #ifdef WOLFSSL_SP_SMALL_STACK
  13723. if (err == MP_OKAY) {
  13724. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 71 * 8, NULL,
  13725. DYNAMIC_TYPE_RSA);
  13726. if (a == NULL)
  13727. err = MEMORY_E;
  13728. }
  13729. #endif
  13730. if (err == MP_OKAY) {
  13731. p = a + 142;
  13732. qi = dq = dp = p + 71;
  13733. tmpa = qi + 71;
  13734. tmpb = tmpa + 142;
  13735. r = a;
  13736. sp_4096_from_bin(a, 142, in, inLen);
  13737. sp_4096_from_mp(p, 71, pm);
  13738. sp_4096_from_mp(dp, 71, dpm);
  13739. err = sp_4096_mod_exp_71(tmpa, a, dp, 2048, p, 1);
  13740. }
  13741. if (err == MP_OKAY) {
  13742. sp_4096_from_mp(p, 71, qm);
  13743. sp_4096_from_mp(dq, 71, dqm);
  13744. err = sp_4096_mod_exp_71(tmpb, a, dq, 2048, p, 1);
  13745. }
  13746. if (err == MP_OKAY) {
  13747. sp_4096_from_mp(p, 71, pm);
  13748. (void)sp_4096_sub_71(tmpa, tmpa, tmpb);
  13749. sp_4096_norm_71(tmpa);
  13750. sp_4096_cond_add_71(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[70] >> 31));
  13751. sp_4096_cond_add_71(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[70] >> 31));
  13752. sp_4096_norm_71(tmpa);
  13753. sp_4096_from_mp(qi, 71, qim);
  13754. sp_4096_mul_71(tmpa, tmpa, qi);
  13755. err = sp_4096_mod_71(tmpa, tmpa, p);
  13756. }
  13757. if (err == MP_OKAY) {
  13758. sp_4096_from_mp(p, 71, qm);
  13759. sp_4096_mul_71(tmpa, p, tmpa);
  13760. (void)sp_4096_add_142(r, tmpb, tmpa);
  13761. sp_4096_norm_142(r);
  13762. sp_4096_to_bin_142(r, out);
  13763. *outLen = 512;
  13764. }
  13765. #ifdef WOLFSSL_SP_SMALL_STACK
  13766. if (a != NULL)
  13767. #endif
  13768. {
  13769. ForceZero(a, sizeof(sp_digit) * 71 * 8);
  13770. #ifdef WOLFSSL_SP_SMALL_STACK
  13771. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  13772. #endif
  13773. }
  13774. return err;
  13775. #else
  13776. #ifdef WOLFSSL_SP_SMALL_STACK
  13777. sp_digit* a = NULL;
  13778. #else
  13779. sp_digit a[71 * 13];
  13780. #endif
  13781. sp_digit* p = NULL;
  13782. sp_digit* q = NULL;
  13783. sp_digit* dp = NULL;
  13784. sp_digit* dq = NULL;
  13785. sp_digit* qi = NULL;
  13786. sp_digit* tmpa = NULL;
  13787. sp_digit* tmpb = NULL;
  13788. sp_digit* r = NULL;
  13789. int err = MP_OKAY;
  13790. (void)dm;
  13791. (void)mm;
  13792. if (*outLen < 512U) {
  13793. err = MP_TO_E;
  13794. }
  13795. if (err == MP_OKAY) {
  13796. if (inLen > 512U) {
  13797. err = MP_READ_E;
  13798. }
  13799. else if (mp_count_bits(mm) != 4096) {
  13800. err = MP_READ_E;
  13801. }
  13802. else if (mp_iseven(mm)) {
  13803. err = MP_VAL;
  13804. }
  13805. else if (mp_iseven(pm)) {
  13806. err = MP_VAL;
  13807. }
  13808. else if (mp_iseven(qm)) {
  13809. err = MP_VAL;
  13810. }
  13811. }
  13812. #ifdef WOLFSSL_SP_SMALL_STACK
  13813. if (err == MP_OKAY) {
  13814. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 71 * 13, NULL,
  13815. DYNAMIC_TYPE_RSA);
  13816. if (a == NULL)
  13817. err = MEMORY_E;
  13818. }
  13819. #endif
  13820. if (err == MP_OKAY) {
  13821. p = a + 142 * 2;
  13822. q = p + 71;
  13823. dp = q + 71;
  13824. dq = dp + 71;
  13825. qi = dq + 71;
  13826. tmpa = qi + 71;
  13827. tmpb = tmpa + 142;
  13828. r = a;
  13829. sp_4096_from_bin(a, 142, in, inLen);
  13830. sp_4096_from_mp(p, 71, pm);
  13831. sp_4096_from_mp(q, 71, qm);
  13832. sp_4096_from_mp(dp, 71, dpm);
  13833. sp_4096_from_mp(dq, 71, dqm);
  13834. sp_4096_from_mp(qi, 71, qim);
  13835. err = sp_4096_mod_exp_71(tmpa, a, dp, 2048, p, 1);
  13836. }
  13837. if (err == MP_OKAY) {
  13838. err = sp_4096_mod_exp_71(tmpb, a, dq, 2048, q, 1);
  13839. }
  13840. if (err == MP_OKAY) {
  13841. (void)sp_4096_sub_71(tmpa, tmpa, tmpb);
  13842. sp_4096_norm_71(tmpa);
  13843. sp_4096_cond_add_71(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[70] >> 31));
  13844. sp_4096_cond_add_71(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[70] >> 31));
  13845. sp_4096_norm_71(tmpa);
  13846. sp_4096_mul_71(tmpa, tmpa, qi);
  13847. err = sp_4096_mod_71(tmpa, tmpa, p);
  13848. }
  13849. if (err == MP_OKAY) {
  13850. sp_4096_mul_71(tmpa, tmpa, q);
  13851. (void)sp_4096_add_142(r, tmpb, tmpa);
  13852. sp_4096_norm_142(r);
  13853. sp_4096_to_bin_142(r, out);
  13854. *outLen = 512;
  13855. }
  13856. #ifdef WOLFSSL_SP_SMALL_STACK
  13857. if (a != NULL)
  13858. #endif
  13859. {
  13860. ForceZero(a, sizeof(sp_digit) * 71 * 13);
  13861. #ifdef WOLFSSL_SP_SMALL_STACK
  13862. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  13863. #endif
  13864. }
  13865. return err;
  13866. #endif /* WOLFSSL_SP_SMALL */
  13867. #endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */
  13868. }
  13869. #endif /* !WOLFSSL_RSA_PUBLIC_ONLY */
  13870. #endif /* WOLFSSL_HAVE_SP_RSA */
  13871. #if defined(WOLFSSL_HAVE_SP_DH) || (defined(WOLFSSL_HAVE_SP_RSA) && \
  13872. !defined(WOLFSSL_RSA_PUBLIC_ONLY))
  13873. /* Convert an array of sp_digit to an mp_int.
  13874. *
  13875. * a A single precision integer.
  13876. * r A multi-precision integer.
  13877. */
  13878. static int sp_4096_to_mp(const sp_digit* a, mp_int* r)
  13879. {
  13880. int err;
  13881. err = mp_grow(r, (4096 + DIGIT_BIT - 1) / DIGIT_BIT);
  13882. if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
  13883. #if DIGIT_BIT == 29
  13884. XMEMCPY(r->dp, a, sizeof(sp_digit) * 142);
  13885. r->used = 142;
  13886. mp_clamp(r);
  13887. #elif DIGIT_BIT < 29
  13888. int i;
  13889. int j = 0;
  13890. int s = 0;
  13891. r->dp[0] = 0;
  13892. for (i = 0; i < 142; i++) {
  13893. r->dp[j] |= (mp_digit)(a[i] << s);
  13894. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  13895. s = DIGIT_BIT - s;
  13896. r->dp[++j] = (mp_digit)(a[i] >> s);
  13897. while (s + DIGIT_BIT <= 29) {
  13898. s += DIGIT_BIT;
  13899. r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  13900. if (s == SP_WORD_SIZE) {
  13901. r->dp[j] = 0;
  13902. }
  13903. else {
  13904. r->dp[j] = (mp_digit)(a[i] >> s);
  13905. }
  13906. }
  13907. s = 29 - s;
  13908. }
  13909. r->used = (4096 + DIGIT_BIT - 1) / DIGIT_BIT;
  13910. mp_clamp(r);
  13911. #else
  13912. int i;
  13913. int j = 0;
  13914. int s = 0;
  13915. r->dp[0] = 0;
  13916. for (i = 0; i < 142; i++) {
  13917. r->dp[j] |= ((mp_digit)a[i]) << s;
  13918. if (s + 29 >= DIGIT_BIT) {
  13919. #if DIGIT_BIT != 32 && DIGIT_BIT != 64
  13920. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  13921. #endif
  13922. s = DIGIT_BIT - s;
  13923. r->dp[++j] = a[i] >> s;
  13924. s = 29 - s;
  13925. }
  13926. else {
  13927. s += 29;
  13928. }
  13929. }
  13930. r->used = (4096 + DIGIT_BIT - 1) / DIGIT_BIT;
  13931. mp_clamp(r);
  13932. #endif
  13933. }
  13934. return err;
  13935. }
  13936. /* Perform the modular exponentiation for Diffie-Hellman.
  13937. *
  13938. * base Base. MP integer.
  13939. * exp Exponent. MP integer.
  13940. * mod Modulus. MP integer.
  13941. * res Result. MP integer.
  13942. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  13943. * and MEMORY_E if memory allocation fails.
  13944. */
  13945. int sp_ModExp_4096(const mp_int* base, const mp_int* exp, const mp_int* mod,
  13946. mp_int* res)
  13947. {
  13948. #ifdef WOLFSSL_SP_SMALL
  13949. int err = MP_OKAY;
  13950. #ifdef WOLFSSL_SP_SMALL_STACK
  13951. sp_digit* b = NULL;
  13952. #else
  13953. sp_digit b[142 * 4];
  13954. #endif
  13955. sp_digit* e = NULL;
  13956. sp_digit* m = NULL;
  13957. sp_digit* r = NULL;
  13958. int expBits = mp_count_bits(exp);
  13959. if (mp_count_bits(base) > 4096) {
  13960. err = MP_READ_E;
  13961. }
  13962. else if (expBits > 4096) {
  13963. err = MP_READ_E;
  13964. }
  13965. else if (mp_count_bits(mod) != 4096) {
  13966. err = MP_READ_E;
  13967. }
  13968. else if (mp_iseven(mod)) {
  13969. err = MP_VAL;
  13970. }
  13971. #ifdef WOLFSSL_SP_SMALL_STACK
  13972. if (err == MP_OKAY) {
  13973. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 4, NULL,
  13974. DYNAMIC_TYPE_DH);
  13975. if (b == NULL)
  13976. err = MEMORY_E;
  13977. }
  13978. #endif
  13979. if (err == MP_OKAY) {
  13980. e = b + 142 * 2;
  13981. m = e + 142;
  13982. r = b;
  13983. sp_4096_from_mp(b, 142, base);
  13984. sp_4096_from_mp(e, 142, exp);
  13985. sp_4096_from_mp(m, 142, mod);
  13986. err = sp_4096_mod_exp_142(r, b, e, mp_count_bits(exp), m, 0);
  13987. }
  13988. if (err == MP_OKAY) {
  13989. err = sp_4096_to_mp(r, res);
  13990. }
  13991. #ifdef WOLFSSL_SP_SMALL_STACK
  13992. if (b != NULL)
  13993. #endif
  13994. {
  13995. /* only "e" is sensitive and needs zeroized */
  13996. if (e != NULL)
  13997. ForceZero(e, sizeof(sp_digit) * 142U);
  13998. #ifdef WOLFSSL_SP_SMALL_STACK
  13999. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  14000. #endif
  14001. }
  14002. return err;
  14003. #else
  14004. #ifdef WOLFSSL_SP_SMALL_STACK
  14005. sp_digit* b = NULL;
  14006. #else
  14007. sp_digit b[142 * 4];
  14008. #endif
  14009. sp_digit* e = NULL;
  14010. sp_digit* m = NULL;
  14011. sp_digit* r = NULL;
  14012. int err = MP_OKAY;
  14013. int expBits = mp_count_bits(exp);
  14014. if (mp_count_bits(base) > 4096) {
  14015. err = MP_READ_E;
  14016. }
  14017. else if (expBits > 4096) {
  14018. err = MP_READ_E;
  14019. }
  14020. else if (mp_count_bits(mod) != 4096) {
  14021. err = MP_READ_E;
  14022. }
  14023. else if (mp_iseven(mod)) {
  14024. err = MP_VAL;
  14025. }
  14026. #ifdef WOLFSSL_SP_SMALL_STACK
  14027. if (err == MP_OKAY) {
  14028. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 4, NULL, DYNAMIC_TYPE_DH);
  14029. if (b == NULL)
  14030. err = MEMORY_E;
  14031. }
  14032. #endif
  14033. if (err == MP_OKAY) {
  14034. e = b + 142 * 2;
  14035. m = e + 142;
  14036. r = b;
  14037. sp_4096_from_mp(b, 142, base);
  14038. sp_4096_from_mp(e, 142, exp);
  14039. sp_4096_from_mp(m, 142, mod);
  14040. err = sp_4096_mod_exp_142(r, b, e, expBits, m, 0);
  14041. }
  14042. if (err == MP_OKAY) {
  14043. err = sp_4096_to_mp(r, res);
  14044. }
  14045. #ifdef WOLFSSL_SP_SMALL_STACK
  14046. if (b != NULL)
  14047. #endif
  14048. {
  14049. /* only "e" is sensitive and needs zeroized */
  14050. if (e != NULL)
  14051. ForceZero(e, sizeof(sp_digit) * 142U);
  14052. #ifdef WOLFSSL_SP_SMALL_STACK
  14053. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  14054. #endif
  14055. }
  14056. return err;
  14057. #endif
  14058. }
  14059. #ifdef WOLFSSL_HAVE_SP_DH
  14060. #ifdef HAVE_FFDHE_4096
  14061. SP_NOINLINE static void sp_4096_lshift_142(sp_digit* r, const sp_digit* a,
  14062. byte n)
  14063. {
  14064. int i;
  14065. r[142] = a[141] >> (29 - n);
  14066. for (i=141; i>0; i--) {
  14067. r[i] = ((a[i] << n) | (a[i-1] >> (29 - n))) & 0x1fffffff;
  14068. }
  14069. r[0] = (a[0] << n) & 0x1fffffff;
  14070. }
  14071. /* Modular exponentiate 2 to the e mod m. (r = 2^e mod m)
  14072. *
  14073. * r A single precision number that is the result of the operation.
  14074. * e A single precision number that is the exponent.
  14075. * bits The number of bits in the exponent.
  14076. * m A single precision number that is the modulus.
  14077. * returns 0 on success.
  14078. * returns MEMORY_E on dynamic memory allocation failure.
  14079. * returns MP_VAL when base is even.
  14080. */
  14081. static int sp_4096_mod_exp_2_142(sp_digit* r, const sp_digit* e, int bits, const sp_digit* m)
  14082. {
  14083. #ifdef WOLFSSL_SP_SMALL_STACK
  14084. sp_digit* td = NULL;
  14085. #else
  14086. sp_digit td[427];
  14087. #endif
  14088. sp_digit* norm = NULL;
  14089. sp_digit* tmp = NULL;
  14090. sp_digit mp = 1;
  14091. sp_digit n;
  14092. sp_digit o;
  14093. int i;
  14094. int c;
  14095. byte y;
  14096. int err = MP_OKAY;
  14097. if (bits == 0) {
  14098. err = MP_VAL;
  14099. }
  14100. #ifdef WOLFSSL_SP_SMALL_STACK
  14101. if (err == MP_OKAY) {
  14102. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 427, NULL,
  14103. DYNAMIC_TYPE_TMP_BUFFER);
  14104. if (td == NULL)
  14105. err = MEMORY_E;
  14106. }
  14107. #endif
  14108. if (err == MP_OKAY) {
  14109. norm = td;
  14110. tmp = td + 284;
  14111. XMEMSET(td, 0, sizeof(sp_digit) * 427);
  14112. sp_4096_mont_setup(m, &mp);
  14113. sp_4096_mont_norm_142(norm, m);
  14114. bits = ((bits + 3) / 4) * 4;
  14115. i = ((bits + 28) / 29) - 1;
  14116. c = bits % 29;
  14117. if (c == 0) {
  14118. c = 29;
  14119. }
  14120. if (i < 142) {
  14121. n = e[i--] << (32 - c);
  14122. }
  14123. else {
  14124. n = 0;
  14125. i--;
  14126. }
  14127. if (c < 4) {
  14128. n |= e[i--] << (3 - c);
  14129. c += 29;
  14130. }
  14131. y = (int)((n >> 28) & 0xf);
  14132. n <<= 4;
  14133. c -= 4;
  14134. sp_4096_lshift_142(r, norm, (byte)y);
  14135. while ((i >= 0) || (c >= 4)) {
  14136. if (c >= 4) {
  14137. y = (byte)((n >> 28) & 0xf);
  14138. n <<= 4;
  14139. c -= 4;
  14140. }
  14141. else if (c == 0) {
  14142. n = e[i--] << 3;
  14143. y = (byte)((n >> 28) & 0xf);
  14144. n <<= 4;
  14145. c = 25;
  14146. }
  14147. else {
  14148. y = (byte)((n >> 28) & 0xf);
  14149. n = e[i--] << 3;
  14150. c = 4 - c;
  14151. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  14152. n <<= c;
  14153. c = 29 - c;
  14154. }
  14155. sp_4096_mont_sqr_142(r, r, m, mp);
  14156. sp_4096_mont_sqr_142(r, r, m, mp);
  14157. sp_4096_mont_sqr_142(r, r, m, mp);
  14158. sp_4096_mont_sqr_142(r, r, m, mp);
  14159. sp_4096_lshift_142(r, r, (byte)y);
  14160. sp_4096_mul_d_142(tmp, norm, (r[142] << 22) + (r[141] >> 7));
  14161. r[142] = 0;
  14162. r[141] &= 0x7fL;
  14163. (void)sp_4096_add_142(r, r, tmp);
  14164. sp_4096_norm_142(r);
  14165. o = sp_4096_cmp_142(r, m);
  14166. sp_4096_cond_sub_142(r, r, m, ~(o >> 31));
  14167. }
  14168. sp_4096_mont_reduce_142(r, m, mp);
  14169. n = sp_4096_cmp_142(r, m);
  14170. sp_4096_cond_sub_142(r, r, m, ~(n >> 31));
  14171. }
  14172. #ifdef WOLFSSL_SP_SMALL_STACK
  14173. if (td != NULL)
  14174. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  14175. #endif
  14176. return err;
  14177. }
  14178. #endif /* HAVE_FFDHE_4096 */
  14179. /* Perform the modular exponentiation for Diffie-Hellman.
  14180. *
  14181. * base Base.
  14182. * exp Array of bytes that is the exponent.
  14183. * expLen Length of data, in bytes, in exponent.
  14184. * mod Modulus.
  14185. * out Buffer to hold big-endian bytes of exponentiation result.
  14186. * Must be at least 512 bytes long.
  14187. * outLen Length, in bytes, of exponentiation result.
  14188. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  14189. * and MEMORY_E if memory allocation fails.
  14190. */
  14191. int sp_DhExp_4096(const mp_int* base, const byte* exp, word32 expLen,
  14192. const mp_int* mod, byte* out, word32* outLen)
  14193. {
  14194. #ifdef WOLFSSL_SP_SMALL_STACK
  14195. sp_digit* b = NULL;
  14196. #else
  14197. sp_digit b[142 * 4];
  14198. #endif
  14199. sp_digit* e = NULL;
  14200. sp_digit* m = NULL;
  14201. sp_digit* r = NULL;
  14202. word32 i;
  14203. int err = MP_OKAY;
  14204. if (mp_count_bits(base) > 4096) {
  14205. err = MP_READ_E;
  14206. }
  14207. else if (expLen > 512U) {
  14208. err = MP_READ_E;
  14209. }
  14210. else if (mp_count_bits(mod) != 4096) {
  14211. err = MP_READ_E;
  14212. }
  14213. else if (mp_iseven(mod)) {
  14214. err = MP_VAL;
  14215. }
  14216. #ifdef WOLFSSL_SP_SMALL_STACK
  14217. if (err == MP_OKAY) {
  14218. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 4, NULL,
  14219. DYNAMIC_TYPE_DH);
  14220. if (b == NULL)
  14221. err = MEMORY_E;
  14222. }
  14223. #endif
  14224. if (err == MP_OKAY) {
  14225. e = b + 142 * 2;
  14226. m = e + 142;
  14227. r = b;
  14228. sp_4096_from_mp(b, 142, base);
  14229. sp_4096_from_bin(e, 142, exp, expLen);
  14230. sp_4096_from_mp(m, 142, mod);
  14231. #ifdef HAVE_FFDHE_4096
  14232. if (base->used == 1 && base->dp[0] == 2U &&
  14233. ((m[141] << 9) | (m[140] >> 20)) == 0xffffL) {
  14234. err = sp_4096_mod_exp_2_142(r, e, expLen * 8U, m);
  14235. }
  14236. else {
  14237. #endif
  14238. err = sp_4096_mod_exp_142(r, b, e, expLen * 8U, m, 0);
  14239. #ifdef HAVE_FFDHE_4096
  14240. }
  14241. #endif
  14242. }
  14243. if (err == MP_OKAY) {
  14244. sp_4096_to_bin_142(r, out);
  14245. *outLen = 512;
  14246. for (i=0; i<512U && out[i] == 0U; i++) {
  14247. /* Search for first non-zero. */
  14248. }
  14249. *outLen -= i;
  14250. XMEMMOVE(out, out + i, *outLen);
  14251. }
  14252. #ifdef WOLFSSL_SP_SMALL_STACK
  14253. if (b != NULL)
  14254. #endif
  14255. {
  14256. /* only "e" is sensitive and needs zeroized */
  14257. if (e != NULL)
  14258. ForceZero(e, sizeof(sp_digit) * 142U);
  14259. #ifdef WOLFSSL_SP_SMALL_STACK
  14260. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  14261. #endif
  14262. }
  14263. return err;
  14264. }
  14265. #endif /* WOLFSSL_HAVE_SP_DH */
  14266. #endif /* WOLFSSL_HAVE_SP_DH | (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) */
  14267. #else
  14268. /* Read big endian unsigned byte array into r.
  14269. *
  14270. * r A single precision integer.
  14271. * size Maximum number of bytes to convert
  14272. * a Byte array.
  14273. * n Number of bytes in array to read.
  14274. */
  14275. static void sp_4096_from_bin(sp_digit* r, int size, const byte* a, int n)
  14276. {
  14277. int i;
  14278. int j = 0;
  14279. word32 s = 0;
  14280. r[0] = 0;
  14281. for (i = n-1; i >= 0; i--) {
  14282. r[j] |= (((sp_digit)a[i]) << s);
  14283. if (s >= 18U) {
  14284. r[j] &= 0x3ffffff;
  14285. s = 26U - s;
  14286. if (j + 1 >= size) {
  14287. break;
  14288. }
  14289. r[++j] = (sp_digit)a[i] >> s;
  14290. s = 8U - s;
  14291. }
  14292. else {
  14293. s += 8U;
  14294. }
  14295. }
  14296. for (j++; j < size; j++) {
  14297. r[j] = 0;
  14298. }
  14299. }
  14300. /* Convert an mp_int to an array of sp_digit.
  14301. *
  14302. * r A single precision integer.
  14303. * size Maximum number of bytes to convert
  14304. * a A multi-precision integer.
  14305. */
  14306. static void sp_4096_from_mp(sp_digit* r, int size, const mp_int* a)
  14307. {
  14308. #if DIGIT_BIT == 26
  14309. int i;
  14310. sp_digit j = (sp_digit)0 - (sp_digit)a->used;
  14311. int o = 0;
  14312. for (i = 0; i < size; i++) {
  14313. sp_digit mask = (sp_digit)0 - (j >> 25);
  14314. r[i] = a->dp[o] & mask;
  14315. j++;
  14316. o += (int)(j >> 25);
  14317. }
  14318. #elif DIGIT_BIT > 26
  14319. unsigned int i;
  14320. int j = 0;
  14321. word32 s = 0;
  14322. r[0] = 0;
  14323. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  14324. r[j] |= ((sp_digit)a->dp[i] << s);
  14325. r[j] &= 0x3ffffff;
  14326. s = 26U - s;
  14327. if (j + 1 >= size) {
  14328. break;
  14329. }
  14330. /* lint allow cast of mismatch word32 and mp_digit */
  14331. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  14332. while ((s + 26U) <= (word32)DIGIT_BIT) {
  14333. s += 26U;
  14334. r[j] &= 0x3ffffff;
  14335. if (j + 1 >= size) {
  14336. break;
  14337. }
  14338. if (s < (word32)DIGIT_BIT) {
  14339. /* lint allow cast of mismatch word32 and mp_digit */
  14340. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  14341. }
  14342. else {
  14343. r[++j] = (sp_digit)0;
  14344. }
  14345. }
  14346. s = (word32)DIGIT_BIT - s;
  14347. }
  14348. for (j++; j < size; j++) {
  14349. r[j] = 0;
  14350. }
  14351. #else
  14352. unsigned int i;
  14353. int j = 0;
  14354. int s = 0;
  14355. r[0] = 0;
  14356. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  14357. r[j] |= ((sp_digit)a->dp[i]) << s;
  14358. if (s + DIGIT_BIT >= 26) {
  14359. r[j] &= 0x3ffffff;
  14360. if (j + 1 >= size) {
  14361. break;
  14362. }
  14363. s = 26 - s;
  14364. if (s == DIGIT_BIT) {
  14365. r[++j] = 0;
  14366. s = 0;
  14367. }
  14368. else {
  14369. r[++j] = a->dp[i] >> s;
  14370. s = DIGIT_BIT - s;
  14371. }
  14372. }
  14373. else {
  14374. s += DIGIT_BIT;
  14375. }
  14376. }
  14377. for (j++; j < size; j++) {
  14378. r[j] = 0;
  14379. }
  14380. #endif
  14381. }
  14382. /* Write r as big endian to byte array.
  14383. * Fixed length number of bytes written: 512
  14384. *
  14385. * r A single precision integer.
  14386. * a Byte array.
  14387. */
  14388. static void sp_4096_to_bin_162(sp_digit* r, byte* a)
  14389. {
  14390. int i;
  14391. int j;
  14392. int s = 0;
  14393. int b;
  14394. for (i=0; i<161; i++) {
  14395. r[i+1] += r[i] >> 26;
  14396. r[i] &= 0x3ffffff;
  14397. }
  14398. j = 4103 / 8 - 1;
  14399. a[j] = 0;
  14400. for (i=0; i<158 && j>=0; i++) {
  14401. b = 0;
  14402. /* lint allow cast of mismatch sp_digit and int */
  14403. a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
  14404. b += 8 - s;
  14405. if (j < 0) {
  14406. break;
  14407. }
  14408. while (b < 26) {
  14409. a[j--] = (byte)(r[i] >> b);
  14410. b += 8;
  14411. if (j < 0) {
  14412. break;
  14413. }
  14414. }
  14415. s = 8 - (b - 26);
  14416. if (j >= 0) {
  14417. a[j] = 0;
  14418. }
  14419. if (s != 0) {
  14420. j++;
  14421. }
  14422. }
  14423. }
  14424. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
  14425. #if defined(WOLFSSL_HAVE_SP_RSA) && !defined(SP_RSA_PRIVATE_EXP_D)
  14426. /* Normalize the values in each word to 26 bits.
  14427. *
  14428. * a Array of sp_digit to normalize.
  14429. */
  14430. static void sp_4096_norm_81(sp_digit* a)
  14431. {
  14432. int i;
  14433. for (i = 0; i < 80; i += 8) {
  14434. a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
  14435. a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
  14436. a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
  14437. a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
  14438. a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
  14439. a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
  14440. a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
  14441. a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
  14442. }
  14443. }
  14444. #endif /* WOLFSSL_HAVE_SP_RSA & !SP_RSA_PRIVATE_EXP_D */
  14445. #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
  14446. /* Normalize the values in each word to 26 bits.
  14447. *
  14448. * a Array of sp_digit to normalize.
  14449. */
  14450. static void sp_4096_norm_79(sp_digit* a)
  14451. {
  14452. int i;
  14453. for (i = 0; i < 72; i += 8) {
  14454. a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
  14455. a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
  14456. a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
  14457. a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
  14458. a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
  14459. a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
  14460. a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
  14461. a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
  14462. }
  14463. a[73] += a[72] >> 26; a[72] &= 0x3ffffff;
  14464. a[74] += a[73] >> 26; a[73] &= 0x3ffffff;
  14465. a[75] += a[74] >> 26; a[74] &= 0x3ffffff;
  14466. a[76] += a[75] >> 26; a[75] &= 0x3ffffff;
  14467. a[77] += a[76] >> 26; a[76] &= 0x3ffffff;
  14468. a[78] += a[77] >> 26; a[77] &= 0x3ffffff;
  14469. }
  14470. /* Normalize the values in each word to 26 bits.
  14471. *
  14472. * a Array of sp_digit to normalize.
  14473. */
  14474. static void sp_4096_norm_162(sp_digit* a)
  14475. {
  14476. int i;
  14477. for (i = 0; i < 160; i += 8) {
  14478. a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
  14479. a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
  14480. a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
  14481. a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
  14482. a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
  14483. a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
  14484. a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
  14485. a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
  14486. }
  14487. a[161] += a[160] >> 26; a[160] &= 0x3ffffff;
  14488. }
  14489. /* Normalize the values in each word to 26 bits.
  14490. *
  14491. * a Array of sp_digit to normalize.
  14492. */
  14493. static void sp_4096_norm_158(sp_digit* a)
  14494. {
  14495. int i;
  14496. for (i = 0; i < 152; i += 8) {
  14497. a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
  14498. a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
  14499. a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
  14500. a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
  14501. a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
  14502. a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
  14503. a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
  14504. a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
  14505. }
  14506. a[153] += a[152] >> 26; a[152] &= 0x3ffffff;
  14507. a[154] += a[153] >> 26; a[153] &= 0x3ffffff;
  14508. a[155] += a[154] >> 26; a[154] &= 0x3ffffff;
  14509. a[156] += a[155] >> 26; a[155] &= 0x3ffffff;
  14510. a[157] += a[156] >> 26; a[156] &= 0x3ffffff;
  14511. }
  14512. #ifndef WOLFSSL_SP_SMALL
  14513. /* Multiply a and b into r. (r = a * b)
  14514. *
  14515. * r A single precision integer.
  14516. * a A single precision integer.
  14517. * b A single precision integer.
  14518. */
  14519. SP_NOINLINE static void sp_4096_mul_9(sp_digit* r, const sp_digit* a,
  14520. const sp_digit* b)
  14521. {
  14522. sp_uint64 t0;
  14523. sp_uint64 t1;
  14524. sp_digit t[9];
  14525. t0 = ((sp_uint64)a[ 0]) * b[ 0];
  14526. t1 = ((sp_uint64)a[ 0]) * b[ 1]
  14527. + ((sp_uint64)a[ 1]) * b[ 0];
  14528. t[ 0] = t0 & 0x3ffffff; t1 += t0 >> 26;
  14529. t0 = ((sp_uint64)a[ 0]) * b[ 2]
  14530. + ((sp_uint64)a[ 1]) * b[ 1]
  14531. + ((sp_uint64)a[ 2]) * b[ 0];
  14532. t[ 1] = t1 & 0x3ffffff; t0 += t1 >> 26;
  14533. t1 = ((sp_uint64)a[ 0]) * b[ 3]
  14534. + ((sp_uint64)a[ 1]) * b[ 2]
  14535. + ((sp_uint64)a[ 2]) * b[ 1]
  14536. + ((sp_uint64)a[ 3]) * b[ 0];
  14537. t[ 2] = t0 & 0x3ffffff; t1 += t0 >> 26;
  14538. t0 = ((sp_uint64)a[ 0]) * b[ 4]
  14539. + ((sp_uint64)a[ 1]) * b[ 3]
  14540. + ((sp_uint64)a[ 2]) * b[ 2]
  14541. + ((sp_uint64)a[ 3]) * b[ 1]
  14542. + ((sp_uint64)a[ 4]) * b[ 0];
  14543. t[ 3] = t1 & 0x3ffffff; t0 += t1 >> 26;
  14544. t1 = ((sp_uint64)a[ 0]) * b[ 5]
  14545. + ((sp_uint64)a[ 1]) * b[ 4]
  14546. + ((sp_uint64)a[ 2]) * b[ 3]
  14547. + ((sp_uint64)a[ 3]) * b[ 2]
  14548. + ((sp_uint64)a[ 4]) * b[ 1]
  14549. + ((sp_uint64)a[ 5]) * b[ 0];
  14550. t[ 4] = t0 & 0x3ffffff; t1 += t0 >> 26;
  14551. t0 = ((sp_uint64)a[ 0]) * b[ 6]
  14552. + ((sp_uint64)a[ 1]) * b[ 5]
  14553. + ((sp_uint64)a[ 2]) * b[ 4]
  14554. + ((sp_uint64)a[ 3]) * b[ 3]
  14555. + ((sp_uint64)a[ 4]) * b[ 2]
  14556. + ((sp_uint64)a[ 5]) * b[ 1]
  14557. + ((sp_uint64)a[ 6]) * b[ 0];
  14558. t[ 5] = t1 & 0x3ffffff; t0 += t1 >> 26;
  14559. t1 = ((sp_uint64)a[ 0]) * b[ 7]
  14560. + ((sp_uint64)a[ 1]) * b[ 6]
  14561. + ((sp_uint64)a[ 2]) * b[ 5]
  14562. + ((sp_uint64)a[ 3]) * b[ 4]
  14563. + ((sp_uint64)a[ 4]) * b[ 3]
  14564. + ((sp_uint64)a[ 5]) * b[ 2]
  14565. + ((sp_uint64)a[ 6]) * b[ 1]
  14566. + ((sp_uint64)a[ 7]) * b[ 0];
  14567. t[ 6] = t0 & 0x3ffffff; t1 += t0 >> 26;
  14568. t0 = ((sp_uint64)a[ 0]) * b[ 8]
  14569. + ((sp_uint64)a[ 1]) * b[ 7]
  14570. + ((sp_uint64)a[ 2]) * b[ 6]
  14571. + ((sp_uint64)a[ 3]) * b[ 5]
  14572. + ((sp_uint64)a[ 4]) * b[ 4]
  14573. + ((sp_uint64)a[ 5]) * b[ 3]
  14574. + ((sp_uint64)a[ 6]) * b[ 2]
  14575. + ((sp_uint64)a[ 7]) * b[ 1]
  14576. + ((sp_uint64)a[ 8]) * b[ 0];
  14577. t[ 7] = t1 & 0x3ffffff; t0 += t1 >> 26;
  14578. t1 = ((sp_uint64)a[ 1]) * b[ 8]
  14579. + ((sp_uint64)a[ 2]) * b[ 7]
  14580. + ((sp_uint64)a[ 3]) * b[ 6]
  14581. + ((sp_uint64)a[ 4]) * b[ 5]
  14582. + ((sp_uint64)a[ 5]) * b[ 4]
  14583. + ((sp_uint64)a[ 6]) * b[ 3]
  14584. + ((sp_uint64)a[ 7]) * b[ 2]
  14585. + ((sp_uint64)a[ 8]) * b[ 1];
  14586. t[ 8] = t0 & 0x3ffffff; t1 += t0 >> 26;
  14587. t0 = ((sp_uint64)a[ 2]) * b[ 8]
  14588. + ((sp_uint64)a[ 3]) * b[ 7]
  14589. + ((sp_uint64)a[ 4]) * b[ 6]
  14590. + ((sp_uint64)a[ 5]) * b[ 5]
  14591. + ((sp_uint64)a[ 6]) * b[ 4]
  14592. + ((sp_uint64)a[ 7]) * b[ 3]
  14593. + ((sp_uint64)a[ 8]) * b[ 2];
  14594. r[ 9] = t1 & 0x3ffffff; t0 += t1 >> 26;
  14595. t1 = ((sp_uint64)a[ 3]) * b[ 8]
  14596. + ((sp_uint64)a[ 4]) * b[ 7]
  14597. + ((sp_uint64)a[ 5]) * b[ 6]
  14598. + ((sp_uint64)a[ 6]) * b[ 5]
  14599. + ((sp_uint64)a[ 7]) * b[ 4]
  14600. + ((sp_uint64)a[ 8]) * b[ 3];
  14601. r[10] = t0 & 0x3ffffff; t1 += t0 >> 26;
  14602. t0 = ((sp_uint64)a[ 4]) * b[ 8]
  14603. + ((sp_uint64)a[ 5]) * b[ 7]
  14604. + ((sp_uint64)a[ 6]) * b[ 6]
  14605. + ((sp_uint64)a[ 7]) * b[ 5]
  14606. + ((sp_uint64)a[ 8]) * b[ 4];
  14607. r[11] = t1 & 0x3ffffff; t0 += t1 >> 26;
  14608. t1 = ((sp_uint64)a[ 5]) * b[ 8]
  14609. + ((sp_uint64)a[ 6]) * b[ 7]
  14610. + ((sp_uint64)a[ 7]) * b[ 6]
  14611. + ((sp_uint64)a[ 8]) * b[ 5];
  14612. r[12] = t0 & 0x3ffffff; t1 += t0 >> 26;
  14613. t0 = ((sp_uint64)a[ 6]) * b[ 8]
  14614. + ((sp_uint64)a[ 7]) * b[ 7]
  14615. + ((sp_uint64)a[ 8]) * b[ 6];
  14616. r[13] = t1 & 0x3ffffff; t0 += t1 >> 26;
  14617. t1 = ((sp_uint64)a[ 7]) * b[ 8]
  14618. + ((sp_uint64)a[ 8]) * b[ 7];
  14619. r[14] = t0 & 0x3ffffff; t1 += t0 >> 26;
  14620. t0 = ((sp_uint64)a[ 8]) * b[ 8];
  14621. r[15] = t1 & 0x3ffffff; t0 += t1 >> 26;
  14622. r[16] = t0 & 0x3ffffff;
  14623. r[17] = (sp_digit)(t0 >> 26);
  14624. XMEMCPY(r, t, sizeof(t));
  14625. }
  14626. /* Add b to a into r. (r = a + b)
  14627. *
  14628. * r A single precision integer.
  14629. * a A single precision integer.
  14630. * b A single precision integer.
  14631. */
  14632. SP_NOINLINE static int sp_4096_add_9(sp_digit* r, const sp_digit* a,
  14633. const sp_digit* b)
  14634. {
  14635. r[ 0] = a[ 0] + b[ 0];
  14636. r[ 1] = a[ 1] + b[ 1];
  14637. r[ 2] = a[ 2] + b[ 2];
  14638. r[ 3] = a[ 3] + b[ 3];
  14639. r[ 4] = a[ 4] + b[ 4];
  14640. r[ 5] = a[ 5] + b[ 5];
  14641. r[ 6] = a[ 6] + b[ 6];
  14642. r[ 7] = a[ 7] + b[ 7];
  14643. r[ 8] = a[ 8] + b[ 8];
  14644. return 0;
  14645. }
  14646. /* Sub b from a into r. (r = a - b)
  14647. *
  14648. * r A single precision integer.
  14649. * a A single precision integer.
  14650. * b A single precision integer.
  14651. */
  14652. SP_NOINLINE static int sp_4096_sub_18(sp_digit* r, const sp_digit* a,
  14653. const sp_digit* b)
  14654. {
  14655. int i;
  14656. for (i = 0; i < 16; i += 8) {
  14657. r[i + 0] = a[i + 0] - b[i + 0];
  14658. r[i + 1] = a[i + 1] - b[i + 1];
  14659. r[i + 2] = a[i + 2] - b[i + 2];
  14660. r[i + 3] = a[i + 3] - b[i + 3];
  14661. r[i + 4] = a[i + 4] - b[i + 4];
  14662. r[i + 5] = a[i + 5] - b[i + 5];
  14663. r[i + 6] = a[i + 6] - b[i + 6];
  14664. r[i + 7] = a[i + 7] - b[i + 7];
  14665. }
  14666. r[16] = a[16] - b[16];
  14667. r[17] = a[17] - b[17];
  14668. return 0;
  14669. }
  14670. /* Add b to a into r. (r = a + b)
  14671. *
  14672. * r A single precision integer.
  14673. * a A single precision integer.
  14674. * b A single precision integer.
  14675. */
  14676. SP_NOINLINE static int sp_4096_add_18(sp_digit* r, const sp_digit* a,
  14677. const sp_digit* b)
  14678. {
  14679. int i;
  14680. for (i = 0; i < 16; i += 8) {
  14681. r[i + 0] = a[i + 0] + b[i + 0];
  14682. r[i + 1] = a[i + 1] + b[i + 1];
  14683. r[i + 2] = a[i + 2] + b[i + 2];
  14684. r[i + 3] = a[i + 3] + b[i + 3];
  14685. r[i + 4] = a[i + 4] + b[i + 4];
  14686. r[i + 5] = a[i + 5] + b[i + 5];
  14687. r[i + 6] = a[i + 6] + b[i + 6];
  14688. r[i + 7] = a[i + 7] + b[i + 7];
  14689. }
  14690. r[16] = a[16] + b[16];
  14691. r[17] = a[17] + b[17];
  14692. return 0;
  14693. }
  14694. /* Normalize the values in each word to 26 bits.
  14695. *
  14696. * a Array of sp_digit to normalize.
  14697. */
  14698. static void sp_4096_norm_9(sp_digit* a)
  14699. {
  14700. a[1] += a[0] >> 26; a[0] &= 0x3ffffff;
  14701. a[2] += a[1] >> 26; a[1] &= 0x3ffffff;
  14702. a[3] += a[2] >> 26; a[2] &= 0x3ffffff;
  14703. a[4] += a[3] >> 26; a[3] &= 0x3ffffff;
  14704. a[5] += a[4] >> 26; a[4] &= 0x3ffffff;
  14705. a[6] += a[5] >> 26; a[5] &= 0x3ffffff;
  14706. a[7] += a[6] >> 26; a[6] &= 0x3ffffff;
  14707. a[8] += a[7] >> 26; a[7] &= 0x3ffffff;
  14708. }
  14709. /* Normalize the values in each word to 26 bits.
  14710. *
  14711. * a Array of sp_digit to normalize.
  14712. */
  14713. static void sp_4096_norm_18(sp_digit* a)
  14714. {
  14715. int i;
  14716. for (i = 0; i < 16; i += 8) {
  14717. a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
  14718. a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
  14719. a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
  14720. a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
  14721. a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
  14722. a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
  14723. a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
  14724. a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
  14725. }
  14726. a[17] += a[16] >> 26; a[16] &= 0x3ffffff;
  14727. }
  14728. /* Normalize the values in each word to 26 bits.
  14729. *
  14730. * a Array of sp_digit to normalize.
  14731. */
  14732. static void sp_4096_norm_54(sp_digit* a)
  14733. {
  14734. int i;
  14735. for (i = 0; i < 48; i += 8) {
  14736. a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
  14737. a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
  14738. a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
  14739. a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
  14740. a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
  14741. a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
  14742. a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
  14743. a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
  14744. }
  14745. a[49] += a[48] >> 26; a[48] &= 0x3ffffff;
  14746. a[50] += a[49] >> 26; a[49] &= 0x3ffffff;
  14747. a[51] += a[50] >> 26; a[50] &= 0x3ffffff;
  14748. a[52] += a[51] >> 26; a[51] &= 0x3ffffff;
  14749. a[53] += a[52] >> 26; a[52] &= 0x3ffffff;
  14750. }
  14751. /* Multiply a and b into r. (r = a * b)
  14752. *
  14753. * r A single precision integer.
  14754. * a A single precision integer.
  14755. * b A single precision integer.
  14756. */
  14757. SP_NOINLINE static void sp_4096_mul_27(sp_digit* r, const sp_digit* a,
  14758. const sp_digit* b)
  14759. {
  14760. sp_digit p0[18];
  14761. sp_digit p1[18];
  14762. sp_digit p2[18];
  14763. sp_digit p3[18];
  14764. sp_digit p4[18];
  14765. sp_digit p5[18];
  14766. sp_digit t0[18];
  14767. sp_digit t1[18];
  14768. sp_digit t2[18];
  14769. sp_digit a0[9];
  14770. sp_digit a1[9];
  14771. sp_digit a2[9];
  14772. sp_digit b0[9];
  14773. sp_digit b1[9];
  14774. sp_digit b2[9];
  14775. (void)sp_4096_add_9(a0, a, &a[9]);
  14776. sp_4096_norm_9(a0);
  14777. (void)sp_4096_add_9(b0, b, &b[9]);
  14778. sp_4096_norm_9(b0);
  14779. (void)sp_4096_add_9(a1, &a[9], &a[18]);
  14780. sp_4096_norm_9(a1);
  14781. (void)sp_4096_add_9(b1, &b[9], &b[18]);
  14782. sp_4096_norm_9(b1);
  14783. (void)sp_4096_add_9(a2, a0, &a[18]);
  14784. sp_4096_norm_9(a1);
  14785. (void)sp_4096_add_9(b2, b0, &b[18]);
  14786. sp_4096_norm_9(b2);
  14787. sp_4096_mul_9(p0, a, b);
  14788. sp_4096_mul_9(p2, &a[9], &b[9]);
  14789. sp_4096_mul_9(p4, &a[18], &b[18]);
  14790. sp_4096_mul_9(p1, a0, b0);
  14791. sp_4096_mul_9(p3, a1, b1);
  14792. sp_4096_mul_9(p5, a2, b2);
  14793. XMEMSET(r, 0, sizeof(*r)*2U*27U);
  14794. (void)sp_4096_sub_18(t0, p3, p2);
  14795. (void)sp_4096_sub_18(t1, p1, p2);
  14796. (void)sp_4096_sub_18(t2, p5, t0);
  14797. (void)sp_4096_sub_18(t2, t2, t1);
  14798. sp_4096_norm_18(t2);
  14799. (void)sp_4096_sub_18(t0, t0, p4);
  14800. sp_4096_norm_18(t0);
  14801. (void)sp_4096_sub_18(t1, t1, p0);
  14802. sp_4096_norm_18(t1);
  14803. (void)sp_4096_add_18(r, r, p0);
  14804. (void)sp_4096_add_18(&r[9], &r[9], t1);
  14805. (void)sp_4096_add_18(&r[18], &r[18], t2);
  14806. (void)sp_4096_add_18(&r[27], &r[27], t0);
  14807. (void)sp_4096_add_18(&r[36], &r[36], p4);
  14808. sp_4096_norm_54(r);
  14809. }
  14810. /* Add b to a into r. (r = a + b)
  14811. *
  14812. * r A single precision integer.
  14813. * a A single precision integer.
  14814. * b A single precision integer.
  14815. */
  14816. SP_NOINLINE static int sp_4096_add_27(sp_digit* r, const sp_digit* a,
  14817. const sp_digit* b)
  14818. {
  14819. int i;
  14820. for (i = 0; i < 24; i += 8) {
  14821. r[i + 0] = a[i + 0] + b[i + 0];
  14822. r[i + 1] = a[i + 1] + b[i + 1];
  14823. r[i + 2] = a[i + 2] + b[i + 2];
  14824. r[i + 3] = a[i + 3] + b[i + 3];
  14825. r[i + 4] = a[i + 4] + b[i + 4];
  14826. r[i + 5] = a[i + 5] + b[i + 5];
  14827. r[i + 6] = a[i + 6] + b[i + 6];
  14828. r[i + 7] = a[i + 7] + b[i + 7];
  14829. }
  14830. r[24] = a[24] + b[24];
  14831. r[25] = a[25] + b[25];
  14832. r[26] = a[26] + b[26];
  14833. return 0;
  14834. }
  14835. /* Sub b from a into r. (r = a - b)
  14836. *
  14837. * r A single precision integer.
  14838. * a A single precision integer.
  14839. * b A single precision integer.
  14840. */
  14841. SP_NOINLINE static int sp_4096_sub_54(sp_digit* r, const sp_digit* a,
  14842. const sp_digit* b)
  14843. {
  14844. int i;
  14845. for (i = 0; i < 48; i += 8) {
  14846. r[i + 0] = a[i + 0] - b[i + 0];
  14847. r[i + 1] = a[i + 1] - b[i + 1];
  14848. r[i + 2] = a[i + 2] - b[i + 2];
  14849. r[i + 3] = a[i + 3] - b[i + 3];
  14850. r[i + 4] = a[i + 4] - b[i + 4];
  14851. r[i + 5] = a[i + 5] - b[i + 5];
  14852. r[i + 6] = a[i + 6] - b[i + 6];
  14853. r[i + 7] = a[i + 7] - b[i + 7];
  14854. }
  14855. r[48] = a[48] - b[48];
  14856. r[49] = a[49] - b[49];
  14857. r[50] = a[50] - b[50];
  14858. r[51] = a[51] - b[51];
  14859. r[52] = a[52] - b[52];
  14860. r[53] = a[53] - b[53];
  14861. return 0;
  14862. }
  14863. /* Add b to a into r. (r = a + b)
  14864. *
  14865. * r A single precision integer.
  14866. * a A single precision integer.
  14867. * b A single precision integer.
  14868. */
  14869. SP_NOINLINE static int sp_4096_add_54(sp_digit* r, const sp_digit* a,
  14870. const sp_digit* b)
  14871. {
  14872. int i;
  14873. for (i = 0; i < 48; i += 8) {
  14874. r[i + 0] = a[i + 0] + b[i + 0];
  14875. r[i + 1] = a[i + 1] + b[i + 1];
  14876. r[i + 2] = a[i + 2] + b[i + 2];
  14877. r[i + 3] = a[i + 3] + b[i + 3];
  14878. r[i + 4] = a[i + 4] + b[i + 4];
  14879. r[i + 5] = a[i + 5] + b[i + 5];
  14880. r[i + 6] = a[i + 6] + b[i + 6];
  14881. r[i + 7] = a[i + 7] + b[i + 7];
  14882. }
  14883. r[48] = a[48] + b[48];
  14884. r[49] = a[49] + b[49];
  14885. r[50] = a[50] + b[50];
  14886. r[51] = a[51] + b[51];
  14887. r[52] = a[52] + b[52];
  14888. r[53] = a[53] + b[53];
  14889. return 0;
  14890. }
  14891. /* Normalize the values in each word to 26 bits.
  14892. *
  14893. * a Array of sp_digit to normalize.
  14894. */
  14895. static void sp_4096_norm_27(sp_digit* a)
  14896. {
  14897. int i;
  14898. for (i = 0; i < 24; i += 8) {
  14899. a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
  14900. a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
  14901. a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
  14902. a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
  14903. a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
  14904. a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
  14905. a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
  14906. a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
  14907. }
  14908. a[25] += a[24] >> 26; a[24] &= 0x3ffffff;
  14909. a[26] += a[25] >> 26; a[25] &= 0x3ffffff;
  14910. }
  14911. /* Multiply a and b into r. (r = a * b)
  14912. *
  14913. * r A single precision integer.
  14914. * a A single precision integer.
  14915. * b A single precision integer.
  14916. */
  14917. SP_NOINLINE static void sp_4096_mul_81(sp_digit* r, const sp_digit* a,
  14918. const sp_digit* b)
  14919. {
  14920. sp_digit p0[54];
  14921. sp_digit p1[54];
  14922. sp_digit p2[54];
  14923. sp_digit p3[54];
  14924. sp_digit p4[54];
  14925. sp_digit p5[54];
  14926. sp_digit t0[54];
  14927. sp_digit t1[54];
  14928. sp_digit t2[54];
  14929. sp_digit a0[27];
  14930. sp_digit a1[27];
  14931. sp_digit a2[27];
  14932. sp_digit b0[27];
  14933. sp_digit b1[27];
  14934. sp_digit b2[27];
  14935. (void)sp_4096_add_27(a0, a, &a[27]);
  14936. sp_4096_norm_27(a0);
  14937. (void)sp_4096_add_27(b0, b, &b[27]);
  14938. sp_4096_norm_27(b0);
  14939. (void)sp_4096_add_27(a1, &a[27], &a[54]);
  14940. sp_4096_norm_27(a1);
  14941. (void)sp_4096_add_27(b1, &b[27], &b[54]);
  14942. sp_4096_norm_27(b1);
  14943. (void)sp_4096_add_27(a2, a0, &a[54]);
  14944. sp_4096_norm_27(a1);
  14945. (void)sp_4096_add_27(b2, b0, &b[54]);
  14946. sp_4096_norm_27(b2);
  14947. sp_4096_mul_27(p0, a, b);
  14948. sp_4096_mul_27(p2, &a[27], &b[27]);
  14949. sp_4096_mul_27(p4, &a[54], &b[54]);
  14950. sp_4096_mul_27(p1, a0, b0);
  14951. sp_4096_mul_27(p3, a1, b1);
  14952. sp_4096_mul_27(p5, a2, b2);
  14953. XMEMSET(r, 0, sizeof(*r)*2U*81U);
  14954. (void)sp_4096_sub_54(t0, p3, p2);
  14955. (void)sp_4096_sub_54(t1, p1, p2);
  14956. (void)sp_4096_sub_54(t2, p5, t0);
  14957. (void)sp_4096_sub_54(t2, t2, t1);
  14958. sp_4096_norm_54(t2);
  14959. (void)sp_4096_sub_54(t0, t0, p4);
  14960. sp_4096_norm_54(t0);
  14961. (void)sp_4096_sub_54(t1, t1, p0);
  14962. sp_4096_norm_54(t1);
  14963. (void)sp_4096_add_54(r, r, p0);
  14964. (void)sp_4096_add_54(&r[27], &r[27], t1);
  14965. (void)sp_4096_add_54(&r[54], &r[54], t2);
  14966. (void)sp_4096_add_54(&r[81], &r[81], t0);
  14967. (void)sp_4096_add_54(&r[108], &r[108], p4);
  14968. sp_4096_norm_162(r);
  14969. }
  14970. /* Add b to a into r. (r = a + b)
  14971. *
  14972. * r A single precision integer.
  14973. * a A single precision integer.
  14974. * b A single precision integer.
  14975. */
  14976. SP_NOINLINE static int sp_4096_add_81(sp_digit* r, const sp_digit* a,
  14977. const sp_digit* b)
  14978. {
  14979. int i;
  14980. for (i = 0; i < 80; i += 8) {
  14981. r[i + 0] = a[i + 0] + b[i + 0];
  14982. r[i + 1] = a[i + 1] + b[i + 1];
  14983. r[i + 2] = a[i + 2] + b[i + 2];
  14984. r[i + 3] = a[i + 3] + b[i + 3];
  14985. r[i + 4] = a[i + 4] + b[i + 4];
  14986. r[i + 5] = a[i + 5] + b[i + 5];
  14987. r[i + 6] = a[i + 6] + b[i + 6];
  14988. r[i + 7] = a[i + 7] + b[i + 7];
  14989. }
  14990. r[80] = a[80] + b[80];
  14991. return 0;
  14992. }
  14993. /* Add b to a into r. (r = a + b)
  14994. *
  14995. * r A single precision integer.
  14996. * a A single precision integer.
  14997. * b A single precision integer.
  14998. */
  14999. SP_NOINLINE static int sp_4096_add_162(sp_digit* r, const sp_digit* a,
  15000. const sp_digit* b)
  15001. {
  15002. int i;
  15003. for (i = 0; i < 160; i += 8) {
  15004. r[i + 0] = a[i + 0] + b[i + 0];
  15005. r[i + 1] = a[i + 1] + b[i + 1];
  15006. r[i + 2] = a[i + 2] + b[i + 2];
  15007. r[i + 3] = a[i + 3] + b[i + 3];
  15008. r[i + 4] = a[i + 4] + b[i + 4];
  15009. r[i + 5] = a[i + 5] + b[i + 5];
  15010. r[i + 6] = a[i + 6] + b[i + 6];
  15011. r[i + 7] = a[i + 7] + b[i + 7];
  15012. }
  15013. r[160] = a[160] + b[160];
  15014. r[161] = a[161] + b[161];
  15015. return 0;
  15016. }
  15017. /* Sub b from a into r. (r = a - b)
  15018. *
  15019. * r A single precision integer.
  15020. * a A single precision integer.
  15021. * b A single precision integer.
  15022. */
  15023. SP_NOINLINE static int sp_4096_sub_162(sp_digit* r, const sp_digit* a,
  15024. const sp_digit* b)
  15025. {
  15026. int i;
  15027. for (i = 0; i < 160; i += 8) {
  15028. r[i + 0] = a[i + 0] - b[i + 0];
  15029. r[i + 1] = a[i + 1] - b[i + 1];
  15030. r[i + 2] = a[i + 2] - b[i + 2];
  15031. r[i + 3] = a[i + 3] - b[i + 3];
  15032. r[i + 4] = a[i + 4] - b[i + 4];
  15033. r[i + 5] = a[i + 5] - b[i + 5];
  15034. r[i + 6] = a[i + 6] - b[i + 6];
  15035. r[i + 7] = a[i + 7] - b[i + 7];
  15036. }
  15037. r[160] = a[160] - b[160];
  15038. r[161] = a[161] - b[161];
  15039. return 0;
  15040. }
  15041. /* Normalize the values in each word to 26 bits.
  15042. *
  15043. * a Array of sp_digit to normalize.
  15044. */
  15045. static void sp_4096_norm_324(sp_digit* a)
  15046. {
  15047. int i;
  15048. for (i = 0; i < 320; i += 8) {
  15049. a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
  15050. a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
  15051. a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
  15052. a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
  15053. a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
  15054. a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
  15055. a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
  15056. a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
  15057. }
  15058. a[321] += a[320] >> 26; a[320] &= 0x3ffffff;
  15059. a[322] += a[321] >> 26; a[321] &= 0x3ffffff;
  15060. a[323] += a[322] >> 26; a[322] &= 0x3ffffff;
  15061. }
  15062. /* Multiply a and b into r. (r = a * b)
  15063. *
  15064. * r A single precision integer.
  15065. * a A single precision integer.
  15066. * b A single precision integer.
  15067. */
  15068. SP_NOINLINE static void sp_4096_mul_162(sp_digit* r, const sp_digit* a,
  15069. const sp_digit* b)
  15070. {
  15071. sp_digit* z0 = r;
  15072. sp_digit z1[162];
  15073. sp_digit* a1 = z1;
  15074. sp_digit b1[81];
  15075. sp_digit* z2 = r + 162;
  15076. (void)sp_4096_add_81(a1, a, &a[81]);
  15077. sp_4096_norm_81(a1);
  15078. (void)sp_4096_add_81(b1, b, &b[81]);
  15079. sp_4096_norm_81(b1);
  15080. sp_4096_mul_81(z2, &a[81], &b[81]);
  15081. sp_4096_mul_81(z0, a, b);
  15082. sp_4096_mul_81(z1, a1, b1);
  15083. (void)sp_4096_sub_162(z1, z1, z2);
  15084. (void)sp_4096_sub_162(z1, z1, z0);
  15085. (void)sp_4096_add_162(r + 81, r + 81, z1);
  15086. sp_4096_norm_324(r);
  15087. }
  15088. /* Square a and put result in r. (r = a * a)
  15089. *
  15090. * r A single precision integer.
  15091. * a A single precision integer.
  15092. */
  15093. SP_NOINLINE static void sp_4096_sqr_9(sp_digit* r, const sp_digit* a)
  15094. {
  15095. sp_uint64 t0;
  15096. sp_uint64 t1;
  15097. sp_digit t[9];
  15098. t0 = ((sp_uint64)a[ 0]) * a[ 0];
  15099. t1 = (((sp_uint64)a[ 0]) * a[ 1]) * 2;
  15100. t[ 0] = t0 & 0x3ffffff; t1 += t0 >> 26;
  15101. t0 = (((sp_uint64)a[ 0]) * a[ 2]) * 2
  15102. + ((sp_uint64)a[ 1]) * a[ 1];
  15103. t[ 1] = t1 & 0x3ffffff; t0 += t1 >> 26;
  15104. t1 = (((sp_uint64)a[ 0]) * a[ 3]
  15105. + ((sp_uint64)a[ 1]) * a[ 2]) * 2;
  15106. t[ 2] = t0 & 0x3ffffff; t1 += t0 >> 26;
  15107. t0 = (((sp_uint64)a[ 0]) * a[ 4]
  15108. + ((sp_uint64)a[ 1]) * a[ 3]) * 2
  15109. + ((sp_uint64)a[ 2]) * a[ 2];
  15110. t[ 3] = t1 & 0x3ffffff; t0 += t1 >> 26;
  15111. t1 = (((sp_uint64)a[ 0]) * a[ 5]
  15112. + ((sp_uint64)a[ 1]) * a[ 4]
  15113. + ((sp_uint64)a[ 2]) * a[ 3]) * 2;
  15114. t[ 4] = t0 & 0x3ffffff; t1 += t0 >> 26;
  15115. t0 = (((sp_uint64)a[ 0]) * a[ 6]
  15116. + ((sp_uint64)a[ 1]) * a[ 5]
  15117. + ((sp_uint64)a[ 2]) * a[ 4]) * 2
  15118. + ((sp_uint64)a[ 3]) * a[ 3];
  15119. t[ 5] = t1 & 0x3ffffff; t0 += t1 >> 26;
  15120. t1 = (((sp_uint64)a[ 0]) * a[ 7]
  15121. + ((sp_uint64)a[ 1]) * a[ 6]
  15122. + ((sp_uint64)a[ 2]) * a[ 5]
  15123. + ((sp_uint64)a[ 3]) * a[ 4]) * 2;
  15124. t[ 6] = t0 & 0x3ffffff; t1 += t0 >> 26;
  15125. t0 = (((sp_uint64)a[ 0]) * a[ 8]
  15126. + ((sp_uint64)a[ 1]) * a[ 7]
  15127. + ((sp_uint64)a[ 2]) * a[ 6]
  15128. + ((sp_uint64)a[ 3]) * a[ 5]) * 2
  15129. + ((sp_uint64)a[ 4]) * a[ 4];
  15130. t[ 7] = t1 & 0x3ffffff; t0 += t1 >> 26;
  15131. t1 = (((sp_uint64)a[ 1]) * a[ 8]
  15132. + ((sp_uint64)a[ 2]) * a[ 7]
  15133. + ((sp_uint64)a[ 3]) * a[ 6]
  15134. + ((sp_uint64)a[ 4]) * a[ 5]) * 2;
  15135. t[ 8] = t0 & 0x3ffffff; t1 += t0 >> 26;
  15136. t0 = (((sp_uint64)a[ 2]) * a[ 8]
  15137. + ((sp_uint64)a[ 3]) * a[ 7]
  15138. + ((sp_uint64)a[ 4]) * a[ 6]) * 2
  15139. + ((sp_uint64)a[ 5]) * a[ 5];
  15140. r[ 9] = t1 & 0x3ffffff; t0 += t1 >> 26;
  15141. t1 = (((sp_uint64)a[ 3]) * a[ 8]
  15142. + ((sp_uint64)a[ 4]) * a[ 7]
  15143. + ((sp_uint64)a[ 5]) * a[ 6]) * 2;
  15144. r[10] = t0 & 0x3ffffff; t1 += t0 >> 26;
  15145. t0 = (((sp_uint64)a[ 4]) * a[ 8]
  15146. + ((sp_uint64)a[ 5]) * a[ 7]) * 2
  15147. + ((sp_uint64)a[ 6]) * a[ 6];
  15148. r[11] = t1 & 0x3ffffff; t0 += t1 >> 26;
  15149. t1 = (((sp_uint64)a[ 5]) * a[ 8]
  15150. + ((sp_uint64)a[ 6]) * a[ 7]) * 2;
  15151. r[12] = t0 & 0x3ffffff; t1 += t0 >> 26;
  15152. t0 = (((sp_uint64)a[ 6]) * a[ 8]) * 2
  15153. + ((sp_uint64)a[ 7]) * a[ 7];
  15154. r[13] = t1 & 0x3ffffff; t0 += t1 >> 26;
  15155. t1 = (((sp_uint64)a[ 7]) * a[ 8]) * 2;
  15156. r[14] = t0 & 0x3ffffff; t1 += t0 >> 26;
  15157. t0 = ((sp_uint64)a[ 8]) * a[ 8];
  15158. r[15] = t1 & 0x3ffffff; t0 += t1 >> 26;
  15159. r[16] = t0 & 0x3ffffff;
  15160. r[17] = (sp_digit)(t0 >> 26);
  15161. XMEMCPY(r, t, sizeof(t));
  15162. }
  15163. /* Square a into r. (r = a * a)
  15164. *
  15165. * r A single precision integer.
  15166. * a A single precision integer.
  15167. */
  15168. SP_NOINLINE static void sp_4096_sqr_27(sp_digit* r, const sp_digit* a)
  15169. {
  15170. sp_digit p0[18];
  15171. sp_digit p1[18];
  15172. sp_digit p2[18];
  15173. sp_digit p3[18];
  15174. sp_digit p4[18];
  15175. sp_digit p5[18];
  15176. sp_digit t0[18];
  15177. sp_digit t1[18];
  15178. sp_digit t2[18];
  15179. sp_digit a0[9];
  15180. sp_digit a1[9];
  15181. sp_digit a2[9];
  15182. (void)sp_4096_add_9(a0, a, &a[9]);
  15183. sp_4096_norm_9(a0);
  15184. (void)sp_4096_add_9(a1, &a[9], &a[18]);
  15185. sp_4096_norm_9(a1);
  15186. (void)sp_4096_add_9(a2, a0, &a[18]);
  15187. sp_4096_norm_9(a2);
  15188. sp_4096_sqr_9(p0, a);
  15189. sp_4096_sqr_9(p2, &a[9]);
  15190. sp_4096_sqr_9(p4, &a[18]);
  15191. sp_4096_sqr_9(p1, a0);
  15192. sp_4096_sqr_9(p3, a1);
  15193. sp_4096_sqr_9(p5, a2);
  15194. XMEMSET(r, 0, sizeof(*r)*2U*27U);
  15195. (void)sp_4096_sub_18(t0, p3, p2);
  15196. (void)sp_4096_sub_18(t1, p1, p2);
  15197. (void)sp_4096_sub_18(t2, p5, t0);
  15198. (void)sp_4096_sub_18(t2, t2, t1);
  15199. sp_4096_norm_18(t2);
  15200. (void)sp_4096_sub_18(t0, t0, p4);
  15201. sp_4096_norm_18(t0);
  15202. (void)sp_4096_sub_18(t1, t1, p0);
  15203. sp_4096_norm_18(t1);
  15204. (void)sp_4096_add_18(r, r, p0);
  15205. (void)sp_4096_add_18(&r[9], &r[9], t1);
  15206. (void)sp_4096_add_18(&r[18], &r[18], t2);
  15207. (void)sp_4096_add_18(&r[27], &r[27], t0);
  15208. (void)sp_4096_add_18(&r[36], &r[36], p4);
  15209. sp_4096_norm_54(r);
  15210. }
  15211. /* Square a into r. (r = a * a)
  15212. *
  15213. * r A single precision integer.
  15214. * a A single precision integer.
  15215. */
  15216. SP_NOINLINE static void sp_4096_sqr_81(sp_digit* r, const sp_digit* a)
  15217. {
  15218. sp_digit p0[54];
  15219. sp_digit p1[54];
  15220. sp_digit p2[54];
  15221. sp_digit p3[54];
  15222. sp_digit p4[54];
  15223. sp_digit p5[54];
  15224. sp_digit t0[54];
  15225. sp_digit t1[54];
  15226. sp_digit t2[54];
  15227. sp_digit a0[27];
  15228. sp_digit a1[27];
  15229. sp_digit a2[27];
  15230. (void)sp_4096_add_27(a0, a, &a[27]);
  15231. sp_4096_norm_27(a0);
  15232. (void)sp_4096_add_27(a1, &a[27], &a[54]);
  15233. sp_4096_norm_27(a1);
  15234. (void)sp_4096_add_27(a2, a0, &a[54]);
  15235. sp_4096_norm_27(a2);
  15236. sp_4096_sqr_27(p0, a);
  15237. sp_4096_sqr_27(p2, &a[27]);
  15238. sp_4096_sqr_27(p4, &a[54]);
  15239. sp_4096_sqr_27(p1, a0);
  15240. sp_4096_sqr_27(p3, a1);
  15241. sp_4096_sqr_27(p5, a2);
  15242. XMEMSET(r, 0, sizeof(*r)*2U*81U);
  15243. (void)sp_4096_sub_54(t0, p3, p2);
  15244. (void)sp_4096_sub_54(t1, p1, p2);
  15245. (void)sp_4096_sub_54(t2, p5, t0);
  15246. (void)sp_4096_sub_54(t2, t2, t1);
  15247. sp_4096_norm_54(t2);
  15248. (void)sp_4096_sub_54(t0, t0, p4);
  15249. sp_4096_norm_54(t0);
  15250. (void)sp_4096_sub_54(t1, t1, p0);
  15251. sp_4096_norm_54(t1);
  15252. (void)sp_4096_add_54(r, r, p0);
  15253. (void)sp_4096_add_54(&r[27], &r[27], t1);
  15254. (void)sp_4096_add_54(&r[54], &r[54], t2);
  15255. (void)sp_4096_add_54(&r[81], &r[81], t0);
  15256. (void)sp_4096_add_54(&r[108], &r[108], p4);
  15257. sp_4096_norm_162(r);
  15258. }
  15259. /* Square a and put result in r. (r = a * a)
  15260. *
  15261. * r A single precision integer.
  15262. * a A single precision integer.
  15263. */
  15264. SP_NOINLINE static void sp_4096_sqr_162(sp_digit* r, const sp_digit* a)
  15265. {
  15266. sp_digit* z0 = r;
  15267. sp_digit z1[162];
  15268. sp_digit* a1 = z1;
  15269. sp_digit* z2 = r + 162;
  15270. (void)sp_4096_add_81(a1, a, &a[81]);
  15271. sp_4096_norm_81(a1);
  15272. sp_4096_sqr_81(z2, &a[81]);
  15273. sp_4096_sqr_81(z0, a);
  15274. sp_4096_sqr_81(z1, a1);
  15275. (void)sp_4096_sub_162(z1, z1, z2);
  15276. (void)sp_4096_sub_162(z1, z1, z0);
  15277. (void)sp_4096_add_162(r + 81, r + 81, z1);
  15278. sp_4096_norm_324(r);
  15279. }
  15280. #endif /* !WOLFSSL_SP_SMALL */
  15281. /* Calculate the bottom digit of -1/a mod 2^n.
  15282. *
  15283. * a A single precision number.
  15284. * rho Bottom word of inverse.
  15285. */
  15286. static void sp_4096_mont_setup(const sp_digit* a, sp_digit* rho)
  15287. {
  15288. sp_digit x;
  15289. sp_digit b;
  15290. b = a[0];
  15291. x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
  15292. x *= 2 - b * x; /* here x*a==1 mod 2**8 */
  15293. x *= 2 - b * x; /* here x*a==1 mod 2**16 */
  15294. x *= 2 - b * x; /* here x*a==1 mod 2**32 */
  15295. x &= 0x3ffffff;
  15296. /* rho = -1/m mod b */
  15297. *rho = ((sp_digit)1 << 26) - x;
  15298. }
  15299. /* Multiply a by scalar b into r. (r = a * b)
  15300. *
  15301. * r A single precision integer.
  15302. * a A single precision integer.
  15303. * b A scalar.
  15304. */
  15305. SP_NOINLINE static void sp_4096_mul_d_162(sp_digit* r, const sp_digit* a,
  15306. sp_digit b)
  15307. {
  15308. sp_int64 tb = b;
  15309. sp_int64 t = 0;
  15310. sp_digit t2;
  15311. sp_int64 p[4];
  15312. int i;
  15313. for (i = 0; i < 160; i += 4) {
  15314. p[0] = tb * a[i + 0];
  15315. p[1] = tb * a[i + 1];
  15316. p[2] = tb * a[i + 2];
  15317. p[3] = tb * a[i + 3];
  15318. t += p[0];
  15319. t2 = (sp_digit)(t & 0x3ffffff);
  15320. t >>= 26;
  15321. r[i + 0] = (sp_digit)t2;
  15322. t += p[1];
  15323. t2 = (sp_digit)(t & 0x3ffffff);
  15324. t >>= 26;
  15325. r[i + 1] = (sp_digit)t2;
  15326. t += p[2];
  15327. t2 = (sp_digit)(t & 0x3ffffff);
  15328. t >>= 26;
  15329. r[i + 2] = (sp_digit)t2;
  15330. t += p[3];
  15331. t2 = (sp_digit)(t & 0x3ffffff);
  15332. t >>= 26;
  15333. r[i + 3] = (sp_digit)t2;
  15334. }
  15335. t += tb * a[160];
  15336. r[160] = (sp_digit)(t & 0x3ffffff);
  15337. t >>= 26;
  15338. t += tb * a[161];
  15339. r[161] = (sp_digit)(t & 0x3ffffff);
  15340. t >>= 26;
  15341. r[162] = (sp_digit)(t & 0x3ffffff);
  15342. }
  15343. #if (defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)
  15344. #if defined(WOLFSSL_HAVE_SP_RSA) && !defined(SP_RSA_PRIVATE_EXP_D)
  15345. /* Sub b from a into r. (r = a - b)
  15346. *
  15347. * r A single precision integer.
  15348. * a A single precision integer.
  15349. * b A single precision integer.
  15350. */
  15351. SP_NOINLINE static int sp_4096_sub_81(sp_digit* r, const sp_digit* a,
  15352. const sp_digit* b)
  15353. {
  15354. int i;
  15355. for (i = 0; i < 80; i += 8) {
  15356. r[i + 0] = a[i + 0] - b[i + 0];
  15357. r[i + 1] = a[i + 1] - b[i + 1];
  15358. r[i + 2] = a[i + 2] - b[i + 2];
  15359. r[i + 3] = a[i + 3] - b[i + 3];
  15360. r[i + 4] = a[i + 4] - b[i + 4];
  15361. r[i + 5] = a[i + 5] - b[i + 5];
  15362. r[i + 6] = a[i + 6] - b[i + 6];
  15363. r[i + 7] = a[i + 7] - b[i + 7];
  15364. }
  15365. r[80] = a[80] - b[80];
  15366. return 0;
  15367. }
  15368. /* r = 2^n mod m where n is the number of bits to reduce by.
  15369. * Given m must be 4096 bits, just need to subtract.
  15370. *
  15371. * r A single precision number.
  15372. * m A single precision number.
  15373. */
  15374. static void sp_4096_mont_norm_81(sp_digit* r, const sp_digit* m)
  15375. {
  15376. /* Set r = 2^n - 1. */
  15377. int i;
  15378. for (i = 0; i < 72; i += 8) {
  15379. r[i + 0] = 0x3ffffff;
  15380. r[i + 1] = 0x3ffffff;
  15381. r[i + 2] = 0x3ffffff;
  15382. r[i + 3] = 0x3ffffff;
  15383. r[i + 4] = 0x3ffffff;
  15384. r[i + 5] = 0x3ffffff;
  15385. r[i + 6] = 0x3ffffff;
  15386. r[i + 7] = 0x3ffffff;
  15387. }
  15388. r[72] = 0x3ffffff;
  15389. r[73] = 0x3ffffff;
  15390. r[74] = 0x3ffffff;
  15391. r[75] = 0x3ffffff;
  15392. r[76] = 0x3ffffff;
  15393. r[77] = 0x3ffffff;
  15394. r[78] = 0xfffffL;
  15395. r[79] = 0;
  15396. r[80] = 0;
  15397. /* r = (2^n - 1) mod n */
  15398. (void)sp_4096_sub_81(r, r, m);
  15399. /* Add one so r = 2^n mod m */
  15400. r[0] += 1;
  15401. }
  15402. /* Compare a with b in constant time.
  15403. *
  15404. * a A single precision integer.
  15405. * b A single precision integer.
  15406. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  15407. * respectively.
  15408. */
  15409. static sp_digit sp_4096_cmp_81(const sp_digit* a, const sp_digit* b)
  15410. {
  15411. sp_digit r = 0;
  15412. int i;
  15413. r |= (a[80] - b[80]) & (0 - (sp_digit)1);
  15414. for (i = 72; i >= 0; i -= 8) {
  15415. r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 25);
  15416. r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 25);
  15417. r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 25);
  15418. r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 25);
  15419. r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 25);
  15420. r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 25);
  15421. r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 25);
  15422. r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 25);
  15423. }
  15424. return r;
  15425. }
  15426. /* Conditionally subtract b from a using the mask m.
  15427. * m is -1 to subtract and 0 when not.
  15428. *
  15429. * r A single precision number representing condition subtract result.
  15430. * a A single precision number to subtract from.
  15431. * b A single precision number to subtract.
  15432. * m Mask value to apply.
  15433. */
  15434. static void sp_4096_cond_sub_81(sp_digit* r, const sp_digit* a,
  15435. const sp_digit* b, const sp_digit m)
  15436. {
  15437. int i;
  15438. for (i = 0; i < 80; i += 8) {
  15439. r[i + 0] = a[i + 0] - (b[i + 0] & m);
  15440. r[i + 1] = a[i + 1] - (b[i + 1] & m);
  15441. r[i + 2] = a[i + 2] - (b[i + 2] & m);
  15442. r[i + 3] = a[i + 3] - (b[i + 3] & m);
  15443. r[i + 4] = a[i + 4] - (b[i + 4] & m);
  15444. r[i + 5] = a[i + 5] - (b[i + 5] & m);
  15445. r[i + 6] = a[i + 6] - (b[i + 6] & m);
  15446. r[i + 7] = a[i + 7] - (b[i + 7] & m);
  15447. }
  15448. r[80] = a[80] - (b[80] & m);
  15449. }
  15450. /* Mul a by scalar b and add into r. (r += a * b)
  15451. *
  15452. * r A single precision integer.
  15453. * a A single precision integer.
  15454. * b A scalar.
  15455. */
  15456. SP_NOINLINE static void sp_4096_mul_add_81(sp_digit* r, const sp_digit* a,
  15457. const sp_digit b)
  15458. {
  15459. #ifndef WOLFSSL_SP_LARGE_CODE
  15460. sp_int64 tb = b;
  15461. sp_int64 t = 0;
  15462. int i;
  15463. for (i = 0; i < 81; i++) {
  15464. t += r[i];
  15465. t += tb * a[i];
  15466. r[i] = ((sp_digit)t) & 0x3ffffff;
  15467. t >>= 26;
  15468. }
  15469. r[81] += (sp_digit)t;
  15470. #else
  15471. sp_int64 tb = b;
  15472. sp_int64 t[8];
  15473. int i;
  15474. t[0] = 0;
  15475. for (i = 0; i < 80; i += 8) {
  15476. t[0] += (tb * a[i+0]) + r[i+0];
  15477. t[1] = (tb * a[i+1]) + r[i+1];
  15478. t[2] = (tb * a[i+2]) + r[i+2];
  15479. t[3] = (tb * a[i+3]) + r[i+3];
  15480. t[4] = (tb * a[i+4]) + r[i+4];
  15481. t[5] = (tb * a[i+5]) + r[i+5];
  15482. t[6] = (tb * a[i+6]) + r[i+6];
  15483. t[7] = (tb * a[i+7]) + r[i+7];
  15484. r[i+0] = t[0] & 0x3ffffff;
  15485. t[1] += t[0] >> 26;
  15486. r[i+1] = t[1] & 0x3ffffff;
  15487. t[2] += t[1] >> 26;
  15488. r[i+2] = t[2] & 0x3ffffff;
  15489. t[3] += t[2] >> 26;
  15490. r[i+3] = t[3] & 0x3ffffff;
  15491. t[4] += t[3] >> 26;
  15492. r[i+4] = t[4] & 0x3ffffff;
  15493. t[5] += t[4] >> 26;
  15494. r[i+5] = t[5] & 0x3ffffff;
  15495. t[6] += t[5] >> 26;
  15496. r[i+6] = t[6] & 0x3ffffff;
  15497. t[7] += t[6] >> 26;
  15498. r[i+7] = t[7] & 0x3ffffff;
  15499. t[0] = t[7] >> 26;
  15500. }
  15501. t[0] += (tb * a[80]) + r[80];
  15502. r[80] = t[0] & 0x3ffffff;
  15503. r[81] += (sp_digit)(t[0] >> 26);
  15504. #endif /* !WOLFSSL_SP_LARGE_CODE */
  15505. }
  15506. /* Shift the result in the high 2048 bits down to the bottom.
  15507. *
  15508. * r A single precision number.
  15509. * a A single precision number.
  15510. */
  15511. static void sp_4096_mont_shift_81(sp_digit* r, const sp_digit* a)
  15512. {
  15513. int i;
  15514. sp_int64 n = a[78] >> 20;
  15515. n += ((sp_int64)a[79]) << 6;
  15516. for (i = 0; i < 72; i += 8) {
  15517. r[i + 0] = n & 0x3ffffff;
  15518. n >>= 26; n += ((sp_int64)a[i + 80]) << 6;
  15519. r[i + 1] = n & 0x3ffffff;
  15520. n >>= 26; n += ((sp_int64)a[i + 81]) << 6;
  15521. r[i + 2] = n & 0x3ffffff;
  15522. n >>= 26; n += ((sp_int64)a[i + 82]) << 6;
  15523. r[i + 3] = n & 0x3ffffff;
  15524. n >>= 26; n += ((sp_int64)a[i + 83]) << 6;
  15525. r[i + 4] = n & 0x3ffffff;
  15526. n >>= 26; n += ((sp_int64)a[i + 84]) << 6;
  15527. r[i + 5] = n & 0x3ffffff;
  15528. n >>= 26; n += ((sp_int64)a[i + 85]) << 6;
  15529. r[i + 6] = n & 0x3ffffff;
  15530. n >>= 26; n += ((sp_int64)a[i + 86]) << 6;
  15531. r[i + 7] = n & 0x3ffffff;
  15532. n >>= 26; n += ((sp_int64)a[i + 87]) << 6;
  15533. }
  15534. r[72] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[152]) << 6;
  15535. r[73] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[153]) << 6;
  15536. r[74] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[154]) << 6;
  15537. r[75] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[155]) << 6;
  15538. r[76] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[156]) << 6;
  15539. r[77] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[157]) << 6;
  15540. r[78] = (sp_digit)n;
  15541. XMEMSET(&r[79], 0, sizeof(*r) * 79U);
  15542. }
  15543. /* Reduce the number back to 4096 bits using Montgomery reduction.
  15544. *
  15545. * a A single precision number to reduce in place.
  15546. * m The single precision number representing the modulus.
  15547. * mp The digit representing the negative inverse of m mod 2^n.
  15548. */
  15549. static void sp_4096_mont_reduce_81(sp_digit* a, const sp_digit* m, sp_digit mp)
  15550. {
  15551. int i;
  15552. sp_digit mu;
  15553. sp_digit over;
  15554. sp_4096_norm_81(a + 79);
  15555. for (i=0; i<78; i++) {
  15556. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffff;
  15557. sp_4096_mul_add_81(a+i, m, mu);
  15558. a[i+1] += a[i] >> 26;
  15559. }
  15560. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffL;
  15561. sp_4096_mul_add_81(a+i, m, mu);
  15562. a[i+1] += a[i] >> 26;
  15563. a[i] &= 0x3ffffff;
  15564. sp_4096_mont_shift_81(a, a);
  15565. over = a[78] - m[78];
  15566. sp_4096_cond_sub_81(a, a, m, ~((over - 1) >> 31));
  15567. sp_4096_norm_81(a);
  15568. }
  15569. /* Multiply two Montgomery form numbers mod the modulus (prime).
  15570. * (r = a * b mod m)
  15571. *
  15572. * r Result of multiplication.
  15573. * a First number to multiply in Montgomery form.
  15574. * b Second number to multiply in Montgomery form.
  15575. * m Modulus (prime).
  15576. * mp Montgomery multiplier.
  15577. */
  15578. SP_NOINLINE static void sp_4096_mont_mul_81(sp_digit* r, const sp_digit* a,
  15579. const sp_digit* b, const sp_digit* m, sp_digit mp)
  15580. {
  15581. sp_4096_mul_81(r, a, b);
  15582. sp_4096_mont_reduce_81(r, m, mp);
  15583. }
  15584. /* Square the Montgomery form number. (r = a * a mod m)
  15585. *
  15586. * r Result of squaring.
  15587. * a Number to square in Montgomery form.
  15588. * m Modulus (prime).
  15589. * mp Montgomery multiplier.
  15590. */
  15591. SP_NOINLINE static void sp_4096_mont_sqr_81(sp_digit* r, const sp_digit* a,
  15592. const sp_digit* m, sp_digit mp)
  15593. {
  15594. sp_4096_sqr_81(r, a);
  15595. sp_4096_mont_reduce_81(r, m, mp);
  15596. }
  15597. /* Multiply a by scalar b into r. (r = a * b)
  15598. *
  15599. * r A single precision integer.
  15600. * a A single precision integer.
  15601. * b A scalar.
  15602. */
  15603. SP_NOINLINE static void sp_4096_mul_d_81(sp_digit* r, const sp_digit* a,
  15604. sp_digit b)
  15605. {
  15606. sp_int64 tb = b;
  15607. sp_int64 t = 0;
  15608. sp_digit t2;
  15609. sp_int64 p[4];
  15610. int i;
  15611. for (i = 0; i < 80; i += 4) {
  15612. p[0] = tb * a[i + 0];
  15613. p[1] = tb * a[i + 1];
  15614. p[2] = tb * a[i + 2];
  15615. p[3] = tb * a[i + 3];
  15616. t += p[0];
  15617. t2 = (sp_digit)(t & 0x3ffffff);
  15618. t >>= 26;
  15619. r[i + 0] = (sp_digit)t2;
  15620. t += p[1];
  15621. t2 = (sp_digit)(t & 0x3ffffff);
  15622. t >>= 26;
  15623. r[i + 1] = (sp_digit)t2;
  15624. t += p[2];
  15625. t2 = (sp_digit)(t & 0x3ffffff);
  15626. t >>= 26;
  15627. r[i + 2] = (sp_digit)t2;
  15628. t += p[3];
  15629. t2 = (sp_digit)(t & 0x3ffffff);
  15630. t >>= 26;
  15631. r[i + 3] = (sp_digit)t2;
  15632. }
  15633. t += tb * a[80];
  15634. r[80] = (sp_digit)(t & 0x3ffffff);
  15635. t >>= 26;
  15636. r[81] = (sp_digit)(t & 0x3ffffff);
  15637. }
  15638. #ifndef WOLFSSL_SP_SMALL
  15639. /* Conditionally add a and b using the mask m.
  15640. * m is -1 to add and 0 when not.
  15641. *
  15642. * r A single precision number representing conditional add result.
  15643. * a A single precision number to add with.
  15644. * b A single precision number to add.
  15645. * m Mask value to apply.
  15646. */
  15647. static void sp_4096_cond_add_81(sp_digit* r, const sp_digit* a,
  15648. const sp_digit* b, const sp_digit m)
  15649. {
  15650. int i;
  15651. for (i = 0; i < 80; i += 8) {
  15652. r[i + 0] = a[i + 0] + (b[i + 0] & m);
  15653. r[i + 1] = a[i + 1] + (b[i + 1] & m);
  15654. r[i + 2] = a[i + 2] + (b[i + 2] & m);
  15655. r[i + 3] = a[i + 3] + (b[i + 3] & m);
  15656. r[i + 4] = a[i + 4] + (b[i + 4] & m);
  15657. r[i + 5] = a[i + 5] + (b[i + 5] & m);
  15658. r[i + 6] = a[i + 6] + (b[i + 6] & m);
  15659. r[i + 7] = a[i + 7] + (b[i + 7] & m);
  15660. }
  15661. r[80] = a[80] + (b[80] & m);
  15662. }
  15663. #endif /* !WOLFSSL_SP_SMALL */
  15664. SP_NOINLINE static void sp_4096_rshift_81(sp_digit* r, const sp_digit* a,
  15665. byte n)
  15666. {
  15667. int i;
  15668. for (i=0; i<80; i += 8) {
  15669. r[i+0] = (a[i+0] >> n) | ((a[i+1] << (26 - n)) & 0x3ffffff);
  15670. r[i+1] = (a[i+1] >> n) | ((a[i+2] << (26 - n)) & 0x3ffffff);
  15671. r[i+2] = (a[i+2] >> n) | ((a[i+3] << (26 - n)) & 0x3ffffff);
  15672. r[i+3] = (a[i+3] >> n) | ((a[i+4] << (26 - n)) & 0x3ffffff);
  15673. r[i+4] = (a[i+4] >> n) | ((a[i+5] << (26 - n)) & 0x3ffffff);
  15674. r[i+5] = (a[i+5] >> n) | ((a[i+6] << (26 - n)) & 0x3ffffff);
  15675. r[i+6] = (a[i+6] >> n) | ((a[i+7] << (26 - n)) & 0x3ffffff);
  15676. r[i+7] = (a[i+7] >> n) | ((a[i+8] << (26 - n)) & 0x3ffffff);
  15677. }
  15678. r[80] = a[80] >> n;
  15679. }
  15680. static WC_INLINE sp_digit sp_4096_div_word_81(sp_digit d1, sp_digit d0,
  15681. sp_digit div)
  15682. {
  15683. #ifdef SP_USE_DIVTI3
  15684. sp_int64 d = ((sp_int64)d1 << 26) + d0;
  15685. return d / div;
  15686. #elif defined(__x86_64__) || defined(__i386__)
  15687. sp_int64 d = ((sp_int64)d1 << 26) + d0;
  15688. sp_uint32 lo = (sp_uint32)d;
  15689. sp_digit hi = (sp_digit)(d >> 32);
  15690. __asm__ __volatile__ (
  15691. "idiv %2"
  15692. : "+a" (lo)
  15693. : "d" (hi), "r" (div)
  15694. : "cc"
  15695. );
  15696. return (sp_digit)lo;
  15697. #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
  15698. sp_int64 d = ((sp_int64)d1 << 26) + d0;
  15699. sp_digit dv = (div >> 1) + 1;
  15700. sp_digit t1 = (sp_digit)(d >> 26);
  15701. sp_digit t0 = (sp_digit)(d & 0x3ffffff);
  15702. sp_digit t2;
  15703. sp_digit sign;
  15704. sp_digit r;
  15705. int i;
  15706. sp_int64 m;
  15707. r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  15708. t1 -= dv & (0 - r);
  15709. for (i = 24; i >= 1; i--) {
  15710. t1 += t1 + (((sp_uint32)t0 >> 25) & 1);
  15711. t0 <<= 1;
  15712. t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  15713. r += r + t2;
  15714. t1 -= dv & (0 - t2);
  15715. t1 += t2;
  15716. }
  15717. r += r + 1;
  15718. m = d - ((sp_int64)r * div);
  15719. r += (sp_digit)(m >> 26);
  15720. m = d - ((sp_int64)r * div);
  15721. r += (sp_digit)(m >> 52) - (sp_digit)(d >> 52);
  15722. m = d - ((sp_int64)r * div);
  15723. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  15724. m *= sign;
  15725. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  15726. r += sign * t2;
  15727. m = d - ((sp_int64)r * div);
  15728. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  15729. m *= sign;
  15730. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  15731. r += sign * t2;
  15732. return r;
  15733. #else
  15734. sp_int64 d = ((sp_int64)d1 << 26) + d0;
  15735. sp_digit r = 0;
  15736. sp_digit t;
  15737. sp_digit dv = (div >> 11) + 1;
  15738. t = (sp_digit)(d >> 22);
  15739. t = (t / dv) << 11;
  15740. r += t;
  15741. d -= (sp_int64)t * div;
  15742. t = (sp_digit)(d >> 7);
  15743. t = t / (dv << 4);
  15744. r += t;
  15745. d -= (sp_int64)t * div;
  15746. t = (sp_digit)d;
  15747. t = t / div;
  15748. r += t;
  15749. d -= (sp_int64)t * div;
  15750. return r;
  15751. #endif
  15752. }
  15753. static WC_INLINE sp_digit sp_4096_word_div_word_81(sp_digit d, sp_digit div)
  15754. {
  15755. #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
  15756. defined(SP_DIV_WORD_USE_DIV)
  15757. return d / div;
  15758. #else
  15759. return (sp_digit)((sp_uint32)(div - d) >> 31);
  15760. #endif
  15761. }
  15762. /* Divide d in a and put remainder into r (m*d + r = a)
  15763. * m is not calculated as it is not needed at this time.
  15764. *
  15765. * Full implementation.
  15766. *
  15767. * a Number to be divided.
  15768. * d Number to divide with.
  15769. * m Multiplier result.
  15770. * r Remainder from the division.
  15771. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  15772. */
  15773. static int sp_4096_div_81(const sp_digit* a, const sp_digit* d,
  15774. const sp_digit* m, sp_digit* r)
  15775. {
  15776. int i;
  15777. #ifndef WOLFSSL_SP_DIV_32
  15778. #endif
  15779. sp_digit dv;
  15780. sp_digit r1;
  15781. #ifdef WOLFSSL_SP_SMALL_STACK
  15782. sp_digit* t1 = NULL;
  15783. #else
  15784. sp_digit t1[4 * 81 + 3];
  15785. #endif
  15786. sp_digit* t2 = NULL;
  15787. sp_digit* sd = NULL;
  15788. int err = MP_OKAY;
  15789. (void)m;
  15790. #ifdef WOLFSSL_SP_SMALL_STACK
  15791. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 81 + 3), NULL,
  15792. DYNAMIC_TYPE_TMP_BUFFER);
  15793. if (t1 == NULL)
  15794. err = MEMORY_E;
  15795. #endif
  15796. (void)m;
  15797. if (err == MP_OKAY) {
  15798. t2 = t1 + 162 + 1;
  15799. sd = t2 + 81 + 1;
  15800. sp_4096_mul_d_81(sd, d, (sp_digit)1 << 6);
  15801. sp_4096_mul_d_162(t1, a, (sp_digit)1 << 6);
  15802. dv = sd[78];
  15803. t1[79 + 79] += t1[79 + 79 - 1] >> 26;
  15804. t1[79 + 79 - 1] &= 0x3ffffff;
  15805. for (i=79; i>=0; i--) {
  15806. r1 = sp_4096_div_word_81(t1[79 + i], t1[79 + i - 1], dv);
  15807. sp_4096_mul_d_81(t2, sd, r1);
  15808. (void)sp_4096_sub_81(&t1[i], &t1[i], t2);
  15809. sp_4096_norm_79(&t1[i]);
  15810. t1[79 + i] += t1[79 + i - 1] >> 26;
  15811. t1[79 + i - 1] &= 0x3ffffff;
  15812. r1 = sp_4096_div_word_81(-t1[79 + i], -t1[79 + i - 1], dv);
  15813. r1 -= t1[79 + i];
  15814. sp_4096_mul_d_81(t2, sd, r1);
  15815. (void)sp_4096_add_81(&t1[i], &t1[i], t2);
  15816. t1[79 + i] += t1[79 + i - 1] >> 26;
  15817. t1[79 + i - 1] &= 0x3ffffff;
  15818. }
  15819. t1[79 - 1] += t1[79 - 2] >> 26;
  15820. t1[79 - 2] &= 0x3ffffff;
  15821. r1 = sp_4096_word_div_word_81(t1[79 - 1], dv);
  15822. sp_4096_mul_d_81(t2, sd, r1);
  15823. sp_4096_sub_81(t1, t1, t2);
  15824. XMEMCPY(r, t1, sizeof(*r) * 162U);
  15825. for (i=0; i<78; i++) {
  15826. r[i+1] += r[i] >> 26;
  15827. r[i] &= 0x3ffffff;
  15828. }
  15829. sp_4096_cond_add_81(r, r, sd, r[78] >> 31);
  15830. sp_4096_norm_79(r);
  15831. sp_4096_rshift_81(r, r, 6);
  15832. r[79] = 0;
  15833. r[80] = 0;
  15834. }
  15835. #ifdef WOLFSSL_SP_SMALL_STACK
  15836. if (t1 != NULL)
  15837. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  15838. #endif
  15839. return err;
  15840. }
  15841. /* Reduce a modulo m into r. (r = a mod m)
  15842. *
  15843. * r A single precision number that is the reduced result.
  15844. * a A single precision number that is to be reduced.
  15845. * m A single precision number that is the modulus to reduce with.
  15846. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  15847. */
  15848. static int sp_4096_mod_81(sp_digit* r, const sp_digit* a, const sp_digit* m)
  15849. {
  15850. return sp_4096_div_81(a, m, NULL, r);
  15851. }
  15852. /* Modular exponentiate a to the e mod m. (r = a^e mod m)
  15853. *
  15854. * r A single precision number that is the result of the operation.
  15855. * a A single precision number being exponentiated.
  15856. * e A single precision number that is the exponent.
  15857. * bits The number of bits in the exponent.
  15858. * m A single precision number that is the modulus.
  15859. * returns 0 on success.
  15860. * returns MEMORY_E on dynamic memory allocation failure.
  15861. * returns MP_VAL when base is even or exponent is 0.
  15862. */
  15863. static int sp_4096_mod_exp_81(sp_digit* r, const sp_digit* a, const sp_digit* e,
  15864. int bits, const sp_digit* m, int reduceA)
  15865. {
  15866. #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
  15867. #ifdef WOLFSSL_SP_SMALL_STACK
  15868. sp_digit* td = NULL;
  15869. #else
  15870. sp_digit td[3 * 162];
  15871. #endif
  15872. sp_digit* t[3] = {0, 0, 0};
  15873. sp_digit* norm = NULL;
  15874. sp_digit mp = 1;
  15875. sp_digit n;
  15876. int i;
  15877. int c;
  15878. byte y;
  15879. int err = MP_OKAY;
  15880. if (bits == 0) {
  15881. err = MP_VAL;
  15882. }
  15883. #ifdef WOLFSSL_SP_SMALL_STACK
  15884. if (err == MP_OKAY) {
  15885. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 81 * 2, NULL,
  15886. DYNAMIC_TYPE_TMP_BUFFER);
  15887. if (td == NULL)
  15888. err = MEMORY_E;
  15889. }
  15890. #endif
  15891. if (err == MP_OKAY) {
  15892. norm = td;
  15893. for (i=0; i<3; i++) {
  15894. t[i] = td + (i * 81 * 2);
  15895. XMEMSET(t[i], 0, sizeof(sp_digit) * 81U * 2U);
  15896. }
  15897. sp_4096_mont_setup(m, &mp);
  15898. sp_4096_mont_norm_81(norm, m);
  15899. if (reduceA != 0) {
  15900. err = sp_4096_mod_81(t[1], a, m);
  15901. }
  15902. else {
  15903. XMEMCPY(t[1], a, sizeof(sp_digit) * 81U);
  15904. }
  15905. }
  15906. if (err == MP_OKAY) {
  15907. sp_4096_mul_81(t[1], t[1], norm);
  15908. err = sp_4096_mod_81(t[1], t[1], m);
  15909. }
  15910. if (err == MP_OKAY) {
  15911. i = bits / 26;
  15912. c = bits % 26;
  15913. n = e[i--] << (26 - c);
  15914. for (; ; c--) {
  15915. if (c == 0) {
  15916. if (i == -1) {
  15917. break;
  15918. }
  15919. n = e[i--];
  15920. c = 26;
  15921. }
  15922. y = (int)((n >> 25) & 1);
  15923. n <<= 1;
  15924. sp_4096_mont_mul_81(t[y^1], t[0], t[1], m, mp);
  15925. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  15926. ((size_t)t[1] & addr_mask[y])),
  15927. sizeof(*t[2]) * 81 * 2);
  15928. sp_4096_mont_sqr_81(t[2], t[2], m, mp);
  15929. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  15930. ((size_t)t[1] & addr_mask[y])), t[2],
  15931. sizeof(*t[2]) * 81 * 2);
  15932. }
  15933. sp_4096_mont_reduce_81(t[0], m, mp);
  15934. n = sp_4096_cmp_81(t[0], m);
  15935. sp_4096_cond_sub_81(t[0], t[0], m, ~(n >> 31));
  15936. XMEMCPY(r, t[0], sizeof(*r) * 81 * 2);
  15937. }
  15938. #ifdef WOLFSSL_SP_SMALL_STACK
  15939. if (td != NULL)
  15940. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  15941. #endif
  15942. return err;
  15943. #elif !defined(WC_NO_CACHE_RESISTANT)
  15944. #ifdef WOLFSSL_SP_SMALL_STACK
  15945. sp_digit* td = NULL;
  15946. #else
  15947. sp_digit td[3 * 162];
  15948. #endif
  15949. sp_digit* t[3] = {0, 0, 0};
  15950. sp_digit* norm = NULL;
  15951. sp_digit mp = 1;
  15952. sp_digit n;
  15953. int i;
  15954. int c;
  15955. byte y;
  15956. int err = MP_OKAY;
  15957. if (bits == 0) {
  15958. err = MP_VAL;
  15959. }
  15960. #ifdef WOLFSSL_SP_SMALL_STACK
  15961. if (err == MP_OKAY) {
  15962. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 81 * 2, NULL,
  15963. DYNAMIC_TYPE_TMP_BUFFER);
  15964. if (td == NULL)
  15965. err = MEMORY_E;
  15966. }
  15967. #endif
  15968. if (err == MP_OKAY) {
  15969. norm = td;
  15970. for (i=0; i<3; i++) {
  15971. t[i] = td + (i * 81 * 2);
  15972. }
  15973. sp_4096_mont_setup(m, &mp);
  15974. sp_4096_mont_norm_81(norm, m);
  15975. if (reduceA != 0) {
  15976. err = sp_4096_mod_81(t[1], a, m);
  15977. if (err == MP_OKAY) {
  15978. sp_4096_mul_81(t[1], t[1], norm);
  15979. err = sp_4096_mod_81(t[1], t[1], m);
  15980. }
  15981. }
  15982. else {
  15983. sp_4096_mul_81(t[1], a, norm);
  15984. err = sp_4096_mod_81(t[1], t[1], m);
  15985. }
  15986. }
  15987. if (err == MP_OKAY) {
  15988. i = bits / 26;
  15989. c = bits % 26;
  15990. n = e[i--] << (26 - c);
  15991. for (; ; c--) {
  15992. if (c == 0) {
  15993. if (i == -1) {
  15994. break;
  15995. }
  15996. n = e[i--];
  15997. c = 26;
  15998. }
  15999. y = (int)((n >> 25) & 1);
  16000. n <<= 1;
  16001. sp_4096_mont_mul_81(t[y^1], t[0], t[1], m, mp);
  16002. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  16003. ((size_t)t[1] & addr_mask[y])),
  16004. sizeof(*t[2]) * 81 * 2);
  16005. sp_4096_mont_sqr_81(t[2], t[2], m, mp);
  16006. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  16007. ((size_t)t[1] & addr_mask[y])), t[2],
  16008. sizeof(*t[2]) * 81 * 2);
  16009. }
  16010. sp_4096_mont_reduce_81(t[0], m, mp);
  16011. n = sp_4096_cmp_81(t[0], m);
  16012. sp_4096_cond_sub_81(t[0], t[0], m, ~(n >> 31));
  16013. XMEMCPY(r, t[0], sizeof(*r) * 81 * 2);
  16014. }
  16015. #ifdef WOLFSSL_SP_SMALL_STACK
  16016. if (td != NULL)
  16017. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  16018. #endif
  16019. return err;
  16020. #else
  16021. #ifdef WOLFSSL_SP_SMALL_STACK
  16022. sp_digit* td = NULL;
  16023. #else
  16024. sp_digit td[(32 * 162) + 162];
  16025. #endif
  16026. sp_digit* t[32];
  16027. sp_digit* rt = NULL;
  16028. sp_digit* norm = NULL;
  16029. sp_digit mp = 1;
  16030. sp_digit n;
  16031. int i;
  16032. int c;
  16033. byte y;
  16034. int err = MP_OKAY;
  16035. if (bits == 0) {
  16036. err = MP_VAL;
  16037. }
  16038. #ifdef WOLFSSL_SP_SMALL_STACK
  16039. if (err == MP_OKAY) {
  16040. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((32 * 162) + 162), NULL,
  16041. DYNAMIC_TYPE_TMP_BUFFER);
  16042. if (td == NULL)
  16043. err = MEMORY_E;
  16044. }
  16045. #endif
  16046. if (err == MP_OKAY) {
  16047. norm = td;
  16048. for (i=0; i<32; i++)
  16049. t[i] = td + i * 162;
  16050. rt = td + 5184;
  16051. sp_4096_mont_setup(m, &mp);
  16052. sp_4096_mont_norm_81(norm, m);
  16053. if (reduceA != 0) {
  16054. err = sp_4096_mod_81(t[1], a, m);
  16055. if (err == MP_OKAY) {
  16056. sp_4096_mul_81(t[1], t[1], norm);
  16057. err = sp_4096_mod_81(t[1], t[1], m);
  16058. }
  16059. }
  16060. else {
  16061. sp_4096_mul_81(t[1], a, norm);
  16062. err = sp_4096_mod_81(t[1], t[1], m);
  16063. }
  16064. }
  16065. if (err == MP_OKAY) {
  16066. sp_4096_mont_sqr_81(t[ 2], t[ 1], m, mp);
  16067. sp_4096_mont_mul_81(t[ 3], t[ 2], t[ 1], m, mp);
  16068. sp_4096_mont_sqr_81(t[ 4], t[ 2], m, mp);
  16069. sp_4096_mont_mul_81(t[ 5], t[ 3], t[ 2], m, mp);
  16070. sp_4096_mont_sqr_81(t[ 6], t[ 3], m, mp);
  16071. sp_4096_mont_mul_81(t[ 7], t[ 4], t[ 3], m, mp);
  16072. sp_4096_mont_sqr_81(t[ 8], t[ 4], m, mp);
  16073. sp_4096_mont_mul_81(t[ 9], t[ 5], t[ 4], m, mp);
  16074. sp_4096_mont_sqr_81(t[10], t[ 5], m, mp);
  16075. sp_4096_mont_mul_81(t[11], t[ 6], t[ 5], m, mp);
  16076. sp_4096_mont_sqr_81(t[12], t[ 6], m, mp);
  16077. sp_4096_mont_mul_81(t[13], t[ 7], t[ 6], m, mp);
  16078. sp_4096_mont_sqr_81(t[14], t[ 7], m, mp);
  16079. sp_4096_mont_mul_81(t[15], t[ 8], t[ 7], m, mp);
  16080. sp_4096_mont_sqr_81(t[16], t[ 8], m, mp);
  16081. sp_4096_mont_mul_81(t[17], t[ 9], t[ 8], m, mp);
  16082. sp_4096_mont_sqr_81(t[18], t[ 9], m, mp);
  16083. sp_4096_mont_mul_81(t[19], t[10], t[ 9], m, mp);
  16084. sp_4096_mont_sqr_81(t[20], t[10], m, mp);
  16085. sp_4096_mont_mul_81(t[21], t[11], t[10], m, mp);
  16086. sp_4096_mont_sqr_81(t[22], t[11], m, mp);
  16087. sp_4096_mont_mul_81(t[23], t[12], t[11], m, mp);
  16088. sp_4096_mont_sqr_81(t[24], t[12], m, mp);
  16089. sp_4096_mont_mul_81(t[25], t[13], t[12], m, mp);
  16090. sp_4096_mont_sqr_81(t[26], t[13], m, mp);
  16091. sp_4096_mont_mul_81(t[27], t[14], t[13], m, mp);
  16092. sp_4096_mont_sqr_81(t[28], t[14], m, mp);
  16093. sp_4096_mont_mul_81(t[29], t[15], t[14], m, mp);
  16094. sp_4096_mont_sqr_81(t[30], t[15], m, mp);
  16095. sp_4096_mont_mul_81(t[31], t[16], t[15], m, mp);
  16096. bits = ((bits + 4) / 5) * 5;
  16097. i = ((bits + 25) / 26) - 1;
  16098. c = bits % 26;
  16099. if (c == 0) {
  16100. c = 26;
  16101. }
  16102. if (i < 81) {
  16103. n = e[i--] << (32 - c);
  16104. }
  16105. else {
  16106. n = 0;
  16107. i--;
  16108. }
  16109. if (c < 5) {
  16110. n |= e[i--] << (6 - c);
  16111. c += 26;
  16112. }
  16113. y = (int)((n >> 27) & 0x1f);
  16114. n <<= 5;
  16115. c -= 5;
  16116. XMEMCPY(rt, t[y], sizeof(sp_digit) * 162);
  16117. while ((i >= 0) || (c >= 5)) {
  16118. if (c >= 5) {
  16119. y = (byte)((n >> 27) & 0x1f);
  16120. n <<= 5;
  16121. c -= 5;
  16122. }
  16123. else if (c == 0) {
  16124. n = e[i--] << 6;
  16125. y = (byte)((n >> 27) & 0x1f);
  16126. n <<= 5;
  16127. c = 21;
  16128. }
  16129. else {
  16130. y = (byte)((n >> 27) & 0x1f);
  16131. n = e[i--] << 6;
  16132. c = 5 - c;
  16133. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  16134. n <<= c;
  16135. c = 26 - c;
  16136. }
  16137. sp_4096_mont_sqr_81(rt, rt, m, mp);
  16138. sp_4096_mont_sqr_81(rt, rt, m, mp);
  16139. sp_4096_mont_sqr_81(rt, rt, m, mp);
  16140. sp_4096_mont_sqr_81(rt, rt, m, mp);
  16141. sp_4096_mont_sqr_81(rt, rt, m, mp);
  16142. sp_4096_mont_mul_81(rt, rt, t[y], m, mp);
  16143. }
  16144. sp_4096_mont_reduce_81(rt, m, mp);
  16145. n = sp_4096_cmp_81(rt, m);
  16146. sp_4096_cond_sub_81(rt, rt, m, ~(n >> 31));
  16147. XMEMCPY(r, rt, sizeof(sp_digit) * 162);
  16148. }
  16149. #ifdef WOLFSSL_SP_SMALL_STACK
  16150. if (td != NULL)
  16151. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  16152. #endif
  16153. return err;
  16154. #endif
  16155. }
  16156. #endif /* WOLFSSL_HAVE_SP_RSA & !SP_RSA_PRIVATE_EXP_D */
  16157. #endif /* (WOLFSSL_HAVE_SP_RSA | WOLFSSL_HAVE_SP_DH) & !WOLFSSL_RSA_PUBLIC_ONLY */
  16158. /* r = 2^n mod m where n is the number of bits to reduce by.
  16159. * Given m must be 4096 bits, just need to subtract.
  16160. *
  16161. * r A single precision number.
  16162. * m A single precision number.
  16163. */
  16164. static void sp_4096_mont_norm_162(sp_digit* r, const sp_digit* m)
  16165. {
  16166. /* Set r = 2^n - 1. */
  16167. int i;
  16168. for (i = 0; i < 152; i += 8) {
  16169. r[i + 0] = 0x3ffffff;
  16170. r[i + 1] = 0x3ffffff;
  16171. r[i + 2] = 0x3ffffff;
  16172. r[i + 3] = 0x3ffffff;
  16173. r[i + 4] = 0x3ffffff;
  16174. r[i + 5] = 0x3ffffff;
  16175. r[i + 6] = 0x3ffffff;
  16176. r[i + 7] = 0x3ffffff;
  16177. }
  16178. r[152] = 0x3ffffff;
  16179. r[153] = 0x3ffffff;
  16180. r[154] = 0x3ffffff;
  16181. r[155] = 0x3ffffff;
  16182. r[156] = 0x3ffffff;
  16183. r[157] = 0x3fffL;
  16184. r[158] = 0;
  16185. r[159] = 0;
  16186. r[160] = 0;
  16187. r[161] = 0;
  16188. /* r = (2^n - 1) mod n */
  16189. (void)sp_4096_sub_162(r, r, m);
  16190. /* Add one so r = 2^n mod m */
  16191. r[0] += 1;
  16192. }
  16193. /* Compare a with b in constant time.
  16194. *
  16195. * a A single precision integer.
  16196. * b A single precision integer.
  16197. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  16198. * respectively.
  16199. */
  16200. static sp_digit sp_4096_cmp_162(const sp_digit* a, const sp_digit* b)
  16201. {
  16202. sp_digit r = 0;
  16203. int i;
  16204. r |= (a[161] - b[161]) & (0 - (sp_digit)1);
  16205. r |= (a[160] - b[160]) & ~(((sp_digit)0 - r) >> 25);
  16206. for (i = 152; i >= 0; i -= 8) {
  16207. r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 25);
  16208. r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 25);
  16209. r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 25);
  16210. r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 25);
  16211. r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 25);
  16212. r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 25);
  16213. r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 25);
  16214. r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 25);
  16215. }
  16216. return r;
  16217. }
  16218. /* Conditionally subtract b from a using the mask m.
  16219. * m is -1 to subtract and 0 when not.
  16220. *
  16221. * r A single precision number representing condition subtract result.
  16222. * a A single precision number to subtract from.
  16223. * b A single precision number to subtract.
  16224. * m Mask value to apply.
  16225. */
  16226. static void sp_4096_cond_sub_162(sp_digit* r, const sp_digit* a,
  16227. const sp_digit* b, const sp_digit m)
  16228. {
  16229. int i;
  16230. for (i = 0; i < 160; i += 8) {
  16231. r[i + 0] = a[i + 0] - (b[i + 0] & m);
  16232. r[i + 1] = a[i + 1] - (b[i + 1] & m);
  16233. r[i + 2] = a[i + 2] - (b[i + 2] & m);
  16234. r[i + 3] = a[i + 3] - (b[i + 3] & m);
  16235. r[i + 4] = a[i + 4] - (b[i + 4] & m);
  16236. r[i + 5] = a[i + 5] - (b[i + 5] & m);
  16237. r[i + 6] = a[i + 6] - (b[i + 6] & m);
  16238. r[i + 7] = a[i + 7] - (b[i + 7] & m);
  16239. }
  16240. r[160] = a[160] - (b[160] & m);
  16241. r[161] = a[161] - (b[161] & m);
  16242. }
  16243. /* Mul a by scalar b and add into r. (r += a * b)
  16244. *
  16245. * r A single precision integer.
  16246. * a A single precision integer.
  16247. * b A scalar.
  16248. */
  16249. SP_NOINLINE static void sp_4096_mul_add_162(sp_digit* r, const sp_digit* a,
  16250. const sp_digit b)
  16251. {
  16252. #ifndef WOLFSSL_SP_LARGE_CODE
  16253. sp_int64 tb = b;
  16254. sp_int64 t = 0;
  16255. int i;
  16256. for (i = 0; i < 162; i++) {
  16257. t += r[i];
  16258. t += tb * a[i];
  16259. r[i] = ((sp_digit)t) & 0x3ffffff;
  16260. t >>= 26;
  16261. }
  16262. r[162] += (sp_digit)t;
  16263. #else
  16264. sp_int64 tb = b;
  16265. sp_int64 t[8];
  16266. int i;
  16267. t[0] = 0;
  16268. for (i = 0; i < 160; i += 8) {
  16269. t[0] += (tb * a[i+0]) + r[i+0];
  16270. t[1] = (tb * a[i+1]) + r[i+1];
  16271. t[2] = (tb * a[i+2]) + r[i+2];
  16272. t[3] = (tb * a[i+3]) + r[i+3];
  16273. t[4] = (tb * a[i+4]) + r[i+4];
  16274. t[5] = (tb * a[i+5]) + r[i+5];
  16275. t[6] = (tb * a[i+6]) + r[i+6];
  16276. t[7] = (tb * a[i+7]) + r[i+7];
  16277. r[i+0] = t[0] & 0x3ffffff;
  16278. t[1] += t[0] >> 26;
  16279. r[i+1] = t[1] & 0x3ffffff;
  16280. t[2] += t[1] >> 26;
  16281. r[i+2] = t[2] & 0x3ffffff;
  16282. t[3] += t[2] >> 26;
  16283. r[i+3] = t[3] & 0x3ffffff;
  16284. t[4] += t[3] >> 26;
  16285. r[i+4] = t[4] & 0x3ffffff;
  16286. t[5] += t[4] >> 26;
  16287. r[i+5] = t[5] & 0x3ffffff;
  16288. t[6] += t[5] >> 26;
  16289. r[i+6] = t[6] & 0x3ffffff;
  16290. t[7] += t[6] >> 26;
  16291. r[i+7] = t[7] & 0x3ffffff;
  16292. t[0] = t[7] >> 26;
  16293. }
  16294. t[0] += (tb * a[160]) + r[160];
  16295. t[1] = (tb * a[161]) + r[161];
  16296. r[160] = t[0] & 0x3ffffff;
  16297. t[1] += t[0] >> 26;
  16298. r[161] = t[1] & 0x3ffffff;
  16299. r[162] += (sp_digit)(t[1] >> 26);
  16300. #endif /* !WOLFSSL_SP_LARGE_CODE */
  16301. }
  16302. /* Shift the result in the high 4096 bits down to the bottom.
  16303. *
  16304. * r A single precision number.
  16305. * a A single precision number.
  16306. */
  16307. static void sp_4096_mont_shift_162(sp_digit* r, const sp_digit* a)
  16308. {
  16309. int i;
  16310. sp_int64 n = a[157] >> 14;
  16311. n += ((sp_int64)a[158]) << 12;
  16312. for (i = 0; i < 152; i += 8) {
  16313. r[i + 0] = n & 0x3ffffff;
  16314. n >>= 26; n += ((sp_int64)a[i + 159]) << 12;
  16315. r[i + 1] = n & 0x3ffffff;
  16316. n >>= 26; n += ((sp_int64)a[i + 160]) << 12;
  16317. r[i + 2] = n & 0x3ffffff;
  16318. n >>= 26; n += ((sp_int64)a[i + 161]) << 12;
  16319. r[i + 3] = n & 0x3ffffff;
  16320. n >>= 26; n += ((sp_int64)a[i + 162]) << 12;
  16321. r[i + 4] = n & 0x3ffffff;
  16322. n >>= 26; n += ((sp_int64)a[i + 163]) << 12;
  16323. r[i + 5] = n & 0x3ffffff;
  16324. n >>= 26; n += ((sp_int64)a[i + 164]) << 12;
  16325. r[i + 6] = n & 0x3ffffff;
  16326. n >>= 26; n += ((sp_int64)a[i + 165]) << 12;
  16327. r[i + 7] = n & 0x3ffffff;
  16328. n >>= 26; n += ((sp_int64)a[i + 166]) << 12;
  16329. }
  16330. r[152] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[311]) << 12;
  16331. r[153] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[312]) << 12;
  16332. r[154] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[313]) << 12;
  16333. r[155] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[314]) << 12;
  16334. r[156] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[315]) << 12;
  16335. r[157] = (sp_digit)n;
  16336. XMEMSET(&r[158], 0, sizeof(*r) * 158U);
  16337. }
  16338. /* Reduce the number back to 4096 bits using Montgomery reduction.
  16339. *
  16340. * a A single precision number to reduce in place.
  16341. * m The single precision number representing the modulus.
  16342. * mp The digit representing the negative inverse of m mod 2^n.
  16343. */
  16344. static void sp_4096_mont_reduce_162(sp_digit* a, const sp_digit* m, sp_digit mp)
  16345. {
  16346. int i;
  16347. sp_digit mu;
  16348. sp_digit over;
  16349. sp_4096_norm_162(a + 158);
  16350. #ifdef WOLFSSL_SP_DH
  16351. if (mp != 1) {
  16352. for (i=0; i<157; i++) {
  16353. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffff;
  16354. sp_4096_mul_add_162(a+i, m, mu);
  16355. a[i+1] += a[i] >> 26;
  16356. }
  16357. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3fffL;
  16358. sp_4096_mul_add_162(a+i, m, mu);
  16359. a[i+1] += a[i] >> 26;
  16360. a[i] &= 0x3ffffff;
  16361. }
  16362. else {
  16363. for (i=0; i<157; i++) {
  16364. mu = a[i] & 0x3ffffff;
  16365. sp_4096_mul_add_162(a+i, m, mu);
  16366. a[i+1] += a[i] >> 26;
  16367. }
  16368. mu = a[i] & 0x3fffL;
  16369. sp_4096_mul_add_162(a+i, m, mu);
  16370. a[i+1] += a[i] >> 26;
  16371. a[i] &= 0x3ffffff;
  16372. }
  16373. #else
  16374. for (i=0; i<157; i++) {
  16375. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffff;
  16376. sp_4096_mul_add_162(a+i, m, mu);
  16377. a[i+1] += a[i] >> 26;
  16378. }
  16379. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3fffL;
  16380. sp_4096_mul_add_162(a+i, m, mu);
  16381. a[i+1] += a[i] >> 26;
  16382. a[i] &= 0x3ffffff;
  16383. #endif
  16384. sp_4096_mont_shift_162(a, a);
  16385. over = a[157] - m[157];
  16386. sp_4096_cond_sub_162(a, a, m, ~((over - 1) >> 31));
  16387. sp_4096_norm_162(a);
  16388. }
  16389. /* Multiply two Montgomery form numbers mod the modulus (prime).
  16390. * (r = a * b mod m)
  16391. *
  16392. * r Result of multiplication.
  16393. * a First number to multiply in Montgomery form.
  16394. * b Second number to multiply in Montgomery form.
  16395. * m Modulus (prime).
  16396. * mp Montgomery multiplier.
  16397. */
  16398. SP_NOINLINE static void sp_4096_mont_mul_162(sp_digit* r, const sp_digit* a,
  16399. const sp_digit* b, const sp_digit* m, sp_digit mp)
  16400. {
  16401. sp_4096_mul_162(r, a, b);
  16402. sp_4096_mont_reduce_162(r, m, mp);
  16403. }
  16404. /* Square the Montgomery form number. (r = a * a mod m)
  16405. *
  16406. * r Result of squaring.
  16407. * a Number to square in Montgomery form.
  16408. * m Modulus (prime).
  16409. * mp Montgomery multiplier.
  16410. */
  16411. SP_NOINLINE static void sp_4096_mont_sqr_162(sp_digit* r, const sp_digit* a,
  16412. const sp_digit* m, sp_digit mp)
  16413. {
  16414. sp_4096_sqr_162(r, a);
  16415. sp_4096_mont_reduce_162(r, m, mp);
  16416. }
  16417. /* Multiply a by scalar b into r. (r = a * b)
  16418. *
  16419. * r A single precision integer.
  16420. * a A single precision integer.
  16421. * b A scalar.
  16422. */
  16423. SP_NOINLINE static void sp_4096_mul_d_324(sp_digit* r, const sp_digit* a,
  16424. sp_digit b)
  16425. {
  16426. sp_int64 tb = b;
  16427. sp_int64 t = 0;
  16428. sp_digit t2;
  16429. sp_int64 p[4];
  16430. int i;
  16431. for (i = 0; i < 324; i += 4) {
  16432. p[0] = tb * a[i + 0];
  16433. p[1] = tb * a[i + 1];
  16434. p[2] = tb * a[i + 2];
  16435. p[3] = tb * a[i + 3];
  16436. t += p[0];
  16437. t2 = (sp_digit)(t & 0x3ffffff);
  16438. t >>= 26;
  16439. r[i + 0] = (sp_digit)t2;
  16440. t += p[1];
  16441. t2 = (sp_digit)(t & 0x3ffffff);
  16442. t >>= 26;
  16443. r[i + 1] = (sp_digit)t2;
  16444. t += p[2];
  16445. t2 = (sp_digit)(t & 0x3ffffff);
  16446. t >>= 26;
  16447. r[i + 2] = (sp_digit)t2;
  16448. t += p[3];
  16449. t2 = (sp_digit)(t & 0x3ffffff);
  16450. t >>= 26;
  16451. r[i + 3] = (sp_digit)t2;
  16452. }
  16453. r[324] = (sp_digit)(t & 0x3ffffff);
  16454. }
  16455. #ifndef WOLFSSL_SP_SMALL
  16456. /* Conditionally add a and b using the mask m.
  16457. * m is -1 to add and 0 when not.
  16458. *
  16459. * r A single precision number representing conditional add result.
  16460. * a A single precision number to add with.
  16461. * b A single precision number to add.
  16462. * m Mask value to apply.
  16463. */
  16464. static void sp_4096_cond_add_162(sp_digit* r, const sp_digit* a,
  16465. const sp_digit* b, const sp_digit m)
  16466. {
  16467. int i;
  16468. for (i = 0; i < 160; i += 8) {
  16469. r[i + 0] = a[i + 0] + (b[i + 0] & m);
  16470. r[i + 1] = a[i + 1] + (b[i + 1] & m);
  16471. r[i + 2] = a[i + 2] + (b[i + 2] & m);
  16472. r[i + 3] = a[i + 3] + (b[i + 3] & m);
  16473. r[i + 4] = a[i + 4] + (b[i + 4] & m);
  16474. r[i + 5] = a[i + 5] + (b[i + 5] & m);
  16475. r[i + 6] = a[i + 6] + (b[i + 6] & m);
  16476. r[i + 7] = a[i + 7] + (b[i + 7] & m);
  16477. }
  16478. r[160] = a[160] + (b[160] & m);
  16479. r[161] = a[161] + (b[161] & m);
  16480. }
  16481. #endif /* !WOLFSSL_SP_SMALL */
  16482. SP_NOINLINE static void sp_4096_rshift_162(sp_digit* r, const sp_digit* a,
  16483. byte n)
  16484. {
  16485. int i;
  16486. for (i=0; i<160; i += 8) {
  16487. r[i+0] = (a[i+0] >> n) | ((a[i+1] << (26 - n)) & 0x3ffffff);
  16488. r[i+1] = (a[i+1] >> n) | ((a[i+2] << (26 - n)) & 0x3ffffff);
  16489. r[i+2] = (a[i+2] >> n) | ((a[i+3] << (26 - n)) & 0x3ffffff);
  16490. r[i+3] = (a[i+3] >> n) | ((a[i+4] << (26 - n)) & 0x3ffffff);
  16491. r[i+4] = (a[i+4] >> n) | ((a[i+5] << (26 - n)) & 0x3ffffff);
  16492. r[i+5] = (a[i+5] >> n) | ((a[i+6] << (26 - n)) & 0x3ffffff);
  16493. r[i+6] = (a[i+6] >> n) | ((a[i+7] << (26 - n)) & 0x3ffffff);
  16494. r[i+7] = (a[i+7] >> n) | ((a[i+8] << (26 - n)) & 0x3ffffff);
  16495. }
  16496. r[160] = (a[160] >> n) | ((a[161] << (26 - n)) & 0x3ffffff);
  16497. r[161] = a[161] >> n;
  16498. }
  16499. static WC_INLINE sp_digit sp_4096_div_word_162(sp_digit d1, sp_digit d0,
  16500. sp_digit div)
  16501. {
  16502. #ifdef SP_USE_DIVTI3
  16503. sp_int64 d = ((sp_int64)d1 << 26) + d0;
  16504. return d / div;
  16505. #elif defined(__x86_64__) || defined(__i386__)
  16506. sp_int64 d = ((sp_int64)d1 << 26) + d0;
  16507. sp_uint32 lo = (sp_uint32)d;
  16508. sp_digit hi = (sp_digit)(d >> 32);
  16509. __asm__ __volatile__ (
  16510. "idiv %2"
  16511. : "+a" (lo)
  16512. : "d" (hi), "r" (div)
  16513. : "cc"
  16514. );
  16515. return (sp_digit)lo;
  16516. #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
  16517. sp_int64 d = ((sp_int64)d1 << 26) + d0;
  16518. sp_digit dv = (div >> 1) + 1;
  16519. sp_digit t1 = (sp_digit)(d >> 26);
  16520. sp_digit t0 = (sp_digit)(d & 0x3ffffff);
  16521. sp_digit t2;
  16522. sp_digit sign;
  16523. sp_digit r;
  16524. int i;
  16525. sp_int64 m;
  16526. r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  16527. t1 -= dv & (0 - r);
  16528. for (i = 24; i >= 1; i--) {
  16529. t1 += t1 + (((sp_uint32)t0 >> 25) & 1);
  16530. t0 <<= 1;
  16531. t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  16532. r += r + t2;
  16533. t1 -= dv & (0 - t2);
  16534. t1 += t2;
  16535. }
  16536. r += r + 1;
  16537. m = d - ((sp_int64)r * div);
  16538. r += (sp_digit)(m >> 26);
  16539. m = d - ((sp_int64)r * div);
  16540. r += (sp_digit)(m >> 52) - (sp_digit)(d >> 52);
  16541. m = d - ((sp_int64)r * div);
  16542. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  16543. m *= sign;
  16544. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  16545. r += sign * t2;
  16546. m = d - ((sp_int64)r * div);
  16547. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  16548. m *= sign;
  16549. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  16550. r += sign * t2;
  16551. return r;
  16552. #else
  16553. sp_int64 d = ((sp_int64)d1 << 26) + d0;
  16554. sp_digit r = 0;
  16555. sp_digit t;
  16556. sp_digit dv = (div >> 11) + 1;
  16557. t = (sp_digit)(d >> 22);
  16558. t = (t / dv) << 11;
  16559. r += t;
  16560. d -= (sp_int64)t * div;
  16561. t = (sp_digit)(d >> 7);
  16562. t = t / (dv << 4);
  16563. r += t;
  16564. d -= (sp_int64)t * div;
  16565. t = (sp_digit)d;
  16566. t = t / div;
  16567. r += t;
  16568. d -= (sp_int64)t * div;
  16569. return r;
  16570. #endif
  16571. }
  16572. static WC_INLINE sp_digit sp_4096_word_div_word_162(sp_digit d, sp_digit div)
  16573. {
  16574. #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
  16575. defined(SP_DIV_WORD_USE_DIV)
  16576. return d / div;
  16577. #else
  16578. return (sp_digit)((sp_uint32)(div - d) >> 31);
  16579. #endif
  16580. }
  16581. /* Divide d in a and put remainder into r (m*d + r = a)
  16582. * m is not calculated as it is not needed at this time.
  16583. *
  16584. * Full implementation.
  16585. *
  16586. * a Number to be divided.
  16587. * d Number to divide with.
  16588. * m Multiplier result.
  16589. * r Remainder from the division.
  16590. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  16591. */
  16592. static int sp_4096_div_162(const sp_digit* a, const sp_digit* d,
  16593. const sp_digit* m, sp_digit* r)
  16594. {
  16595. int i;
  16596. #ifndef WOLFSSL_SP_DIV_32
  16597. #endif
  16598. sp_digit dv;
  16599. sp_digit r1;
  16600. #ifdef WOLFSSL_SP_SMALL_STACK
  16601. sp_digit* t1 = NULL;
  16602. #else
  16603. sp_digit t1[4 * 162 + 3];
  16604. #endif
  16605. sp_digit* t2 = NULL;
  16606. sp_digit* sd = NULL;
  16607. int err = MP_OKAY;
  16608. (void)m;
  16609. #ifdef WOLFSSL_SP_SMALL_STACK
  16610. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 162 + 3), NULL,
  16611. DYNAMIC_TYPE_TMP_BUFFER);
  16612. if (t1 == NULL)
  16613. err = MEMORY_E;
  16614. #endif
  16615. (void)m;
  16616. if (err == MP_OKAY) {
  16617. t2 = t1 + 324 + 1;
  16618. sd = t2 + 162 + 1;
  16619. sp_4096_mul_d_162(sd, d, (sp_digit)1 << 12);
  16620. sp_4096_mul_d_324(t1, a, (sp_digit)1 << 12);
  16621. dv = sd[157];
  16622. t1[158 + 158] += t1[158 + 158 - 1] >> 26;
  16623. t1[158 + 158 - 1] &= 0x3ffffff;
  16624. for (i=158; i>=0; i--) {
  16625. r1 = sp_4096_div_word_162(t1[158 + i], t1[158 + i - 1], dv);
  16626. sp_4096_mul_d_162(t2, sd, r1);
  16627. (void)sp_4096_sub_162(&t1[i], &t1[i], t2);
  16628. sp_4096_norm_158(&t1[i]);
  16629. t1[158 + i] += t1[158 + i - 1] >> 26;
  16630. t1[158 + i - 1] &= 0x3ffffff;
  16631. r1 = sp_4096_div_word_162(-t1[158 + i], -t1[158 + i - 1], dv);
  16632. r1 -= t1[158 + i];
  16633. sp_4096_mul_d_162(t2, sd, r1);
  16634. (void)sp_4096_add_162(&t1[i], &t1[i], t2);
  16635. t1[158 + i] += t1[158 + i - 1] >> 26;
  16636. t1[158 + i - 1] &= 0x3ffffff;
  16637. }
  16638. t1[158 - 1] += t1[158 - 2] >> 26;
  16639. t1[158 - 2] &= 0x3ffffff;
  16640. r1 = sp_4096_word_div_word_162(t1[158 - 1], dv);
  16641. sp_4096_mul_d_162(t2, sd, r1);
  16642. sp_4096_sub_162(t1, t1, t2);
  16643. XMEMCPY(r, t1, sizeof(*r) * 324U);
  16644. for (i=0; i<157; i++) {
  16645. r[i+1] += r[i] >> 26;
  16646. r[i] &= 0x3ffffff;
  16647. }
  16648. sp_4096_cond_add_162(r, r, sd, r[157] >> 31);
  16649. sp_4096_norm_158(r);
  16650. sp_4096_rshift_162(r, r, 12);
  16651. r[158] = 0;
  16652. r[159] = 0;
  16653. r[160] = 0;
  16654. r[161] = 0;
  16655. }
  16656. #ifdef WOLFSSL_SP_SMALL_STACK
  16657. if (t1 != NULL)
  16658. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  16659. #endif
  16660. return err;
  16661. }
  16662. /* Reduce a modulo m into r. (r = a mod m)
  16663. *
  16664. * r A single precision number that is the reduced result.
  16665. * a A single precision number that is to be reduced.
  16666. * m A single precision number that is the modulus to reduce with.
  16667. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  16668. */
  16669. static int sp_4096_mod_162(sp_digit* r, const sp_digit* a, const sp_digit* m)
  16670. {
  16671. return sp_4096_div_162(a, m, NULL, r);
  16672. }
  16673. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
  16674. #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || \
  16675. defined(WOLFSSL_HAVE_SP_DH)
  16676. /* Modular exponentiate a to the e mod m. (r = a^e mod m)
  16677. *
  16678. * r A single precision number that is the result of the operation.
  16679. * a A single precision number being exponentiated.
  16680. * e A single precision number that is the exponent.
  16681. * bits The number of bits in the exponent.
  16682. * m A single precision number that is the modulus.
  16683. * returns 0 on success.
  16684. * returns MEMORY_E on dynamic memory allocation failure.
  16685. * returns MP_VAL when base is even or exponent is 0.
  16686. */
  16687. static int sp_4096_mod_exp_162(sp_digit* r, const sp_digit* a, const sp_digit* e,
  16688. int bits, const sp_digit* m, int reduceA)
  16689. {
  16690. #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
  16691. #ifdef WOLFSSL_SP_SMALL_STACK
  16692. sp_digit* td = NULL;
  16693. #else
  16694. sp_digit td[3 * 324];
  16695. #endif
  16696. sp_digit* t[3] = {0, 0, 0};
  16697. sp_digit* norm = NULL;
  16698. sp_digit mp = 1;
  16699. sp_digit n;
  16700. int i;
  16701. int c;
  16702. byte y;
  16703. int err = MP_OKAY;
  16704. if (bits == 0) {
  16705. err = MP_VAL;
  16706. }
  16707. #ifdef WOLFSSL_SP_SMALL_STACK
  16708. if (err == MP_OKAY) {
  16709. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 162 * 2, NULL,
  16710. DYNAMIC_TYPE_TMP_BUFFER);
  16711. if (td == NULL)
  16712. err = MEMORY_E;
  16713. }
  16714. #endif
  16715. if (err == MP_OKAY) {
  16716. norm = td;
  16717. for (i=0; i<3; i++) {
  16718. t[i] = td + (i * 162 * 2);
  16719. XMEMSET(t[i], 0, sizeof(sp_digit) * 162U * 2U);
  16720. }
  16721. sp_4096_mont_setup(m, &mp);
  16722. sp_4096_mont_norm_162(norm, m);
  16723. if (reduceA != 0) {
  16724. err = sp_4096_mod_162(t[1], a, m);
  16725. }
  16726. else {
  16727. XMEMCPY(t[1], a, sizeof(sp_digit) * 162U);
  16728. }
  16729. }
  16730. if (err == MP_OKAY) {
  16731. sp_4096_mul_162(t[1], t[1], norm);
  16732. err = sp_4096_mod_162(t[1], t[1], m);
  16733. }
  16734. if (err == MP_OKAY) {
  16735. i = bits / 26;
  16736. c = bits % 26;
  16737. n = e[i--] << (26 - c);
  16738. for (; ; c--) {
  16739. if (c == 0) {
  16740. if (i == -1) {
  16741. break;
  16742. }
  16743. n = e[i--];
  16744. c = 26;
  16745. }
  16746. y = (int)((n >> 25) & 1);
  16747. n <<= 1;
  16748. sp_4096_mont_mul_162(t[y^1], t[0], t[1], m, mp);
  16749. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  16750. ((size_t)t[1] & addr_mask[y])),
  16751. sizeof(*t[2]) * 162 * 2);
  16752. sp_4096_mont_sqr_162(t[2], t[2], m, mp);
  16753. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  16754. ((size_t)t[1] & addr_mask[y])), t[2],
  16755. sizeof(*t[2]) * 162 * 2);
  16756. }
  16757. sp_4096_mont_reduce_162(t[0], m, mp);
  16758. n = sp_4096_cmp_162(t[0], m);
  16759. sp_4096_cond_sub_162(t[0], t[0], m, ~(n >> 31));
  16760. XMEMCPY(r, t[0], sizeof(*r) * 162 * 2);
  16761. }
  16762. #ifdef WOLFSSL_SP_SMALL_STACK
  16763. if (td != NULL)
  16764. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  16765. #endif
  16766. return err;
  16767. #elif !defined(WC_NO_CACHE_RESISTANT)
  16768. #ifdef WOLFSSL_SP_SMALL_STACK
  16769. sp_digit* td = NULL;
  16770. #else
  16771. sp_digit td[3 * 324];
  16772. #endif
  16773. sp_digit* t[3] = {0, 0, 0};
  16774. sp_digit* norm = NULL;
  16775. sp_digit mp = 1;
  16776. sp_digit n;
  16777. int i;
  16778. int c;
  16779. byte y;
  16780. int err = MP_OKAY;
  16781. if (bits == 0) {
  16782. err = MP_VAL;
  16783. }
  16784. #ifdef WOLFSSL_SP_SMALL_STACK
  16785. if (err == MP_OKAY) {
  16786. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 162 * 2, NULL,
  16787. DYNAMIC_TYPE_TMP_BUFFER);
  16788. if (td == NULL)
  16789. err = MEMORY_E;
  16790. }
  16791. #endif
  16792. if (err == MP_OKAY) {
  16793. norm = td;
  16794. for (i=0; i<3; i++) {
  16795. t[i] = td + (i * 162 * 2);
  16796. }
  16797. sp_4096_mont_setup(m, &mp);
  16798. sp_4096_mont_norm_162(norm, m);
  16799. if (reduceA != 0) {
  16800. err = sp_4096_mod_162(t[1], a, m);
  16801. if (err == MP_OKAY) {
  16802. sp_4096_mul_162(t[1], t[1], norm);
  16803. err = sp_4096_mod_162(t[1], t[1], m);
  16804. }
  16805. }
  16806. else {
  16807. sp_4096_mul_162(t[1], a, norm);
  16808. err = sp_4096_mod_162(t[1], t[1], m);
  16809. }
  16810. }
  16811. if (err == MP_OKAY) {
  16812. i = bits / 26;
  16813. c = bits % 26;
  16814. n = e[i--] << (26 - c);
  16815. for (; ; c--) {
  16816. if (c == 0) {
  16817. if (i == -1) {
  16818. break;
  16819. }
  16820. n = e[i--];
  16821. c = 26;
  16822. }
  16823. y = (int)((n >> 25) & 1);
  16824. n <<= 1;
  16825. sp_4096_mont_mul_162(t[y^1], t[0], t[1], m, mp);
  16826. XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
  16827. ((size_t)t[1] & addr_mask[y])),
  16828. sizeof(*t[2]) * 162 * 2);
  16829. sp_4096_mont_sqr_162(t[2], t[2], m, mp);
  16830. XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
  16831. ((size_t)t[1] & addr_mask[y])), t[2],
  16832. sizeof(*t[2]) * 162 * 2);
  16833. }
  16834. sp_4096_mont_reduce_162(t[0], m, mp);
  16835. n = sp_4096_cmp_162(t[0], m);
  16836. sp_4096_cond_sub_162(t[0], t[0], m, ~(n >> 31));
  16837. XMEMCPY(r, t[0], sizeof(*r) * 162 * 2);
  16838. }
  16839. #ifdef WOLFSSL_SP_SMALL_STACK
  16840. if (td != NULL)
  16841. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  16842. #endif
  16843. return err;
  16844. #else
  16845. #ifdef WOLFSSL_SP_SMALL_STACK
  16846. sp_digit* td = NULL;
  16847. #else
  16848. sp_digit td[(16 * 324) + 324];
  16849. #endif
  16850. sp_digit* t[16];
  16851. sp_digit* rt = NULL;
  16852. sp_digit* norm = NULL;
  16853. sp_digit mp = 1;
  16854. sp_digit n;
  16855. int i;
  16856. int c;
  16857. byte y;
  16858. int err = MP_OKAY;
  16859. if (bits == 0) {
  16860. err = MP_VAL;
  16861. }
  16862. #ifdef WOLFSSL_SP_SMALL_STACK
  16863. if (err == MP_OKAY) {
  16864. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((16 * 324) + 324), NULL,
  16865. DYNAMIC_TYPE_TMP_BUFFER);
  16866. if (td == NULL)
  16867. err = MEMORY_E;
  16868. }
  16869. #endif
  16870. if (err == MP_OKAY) {
  16871. norm = td;
  16872. for (i=0; i<16; i++)
  16873. t[i] = td + i * 324;
  16874. rt = td + 5184;
  16875. sp_4096_mont_setup(m, &mp);
  16876. sp_4096_mont_norm_162(norm, m);
  16877. if (reduceA != 0) {
  16878. err = sp_4096_mod_162(t[1], a, m);
  16879. if (err == MP_OKAY) {
  16880. sp_4096_mul_162(t[1], t[1], norm);
  16881. err = sp_4096_mod_162(t[1], t[1], m);
  16882. }
  16883. }
  16884. else {
  16885. sp_4096_mul_162(t[1], a, norm);
  16886. err = sp_4096_mod_162(t[1], t[1], m);
  16887. }
  16888. }
  16889. if (err == MP_OKAY) {
  16890. sp_4096_mont_sqr_162(t[ 2], t[ 1], m, mp);
  16891. sp_4096_mont_mul_162(t[ 3], t[ 2], t[ 1], m, mp);
  16892. sp_4096_mont_sqr_162(t[ 4], t[ 2], m, mp);
  16893. sp_4096_mont_mul_162(t[ 5], t[ 3], t[ 2], m, mp);
  16894. sp_4096_mont_sqr_162(t[ 6], t[ 3], m, mp);
  16895. sp_4096_mont_mul_162(t[ 7], t[ 4], t[ 3], m, mp);
  16896. sp_4096_mont_sqr_162(t[ 8], t[ 4], m, mp);
  16897. sp_4096_mont_mul_162(t[ 9], t[ 5], t[ 4], m, mp);
  16898. sp_4096_mont_sqr_162(t[10], t[ 5], m, mp);
  16899. sp_4096_mont_mul_162(t[11], t[ 6], t[ 5], m, mp);
  16900. sp_4096_mont_sqr_162(t[12], t[ 6], m, mp);
  16901. sp_4096_mont_mul_162(t[13], t[ 7], t[ 6], m, mp);
  16902. sp_4096_mont_sqr_162(t[14], t[ 7], m, mp);
  16903. sp_4096_mont_mul_162(t[15], t[ 8], t[ 7], m, mp);
  16904. bits = ((bits + 3) / 4) * 4;
  16905. i = ((bits + 25) / 26) - 1;
  16906. c = bits % 26;
  16907. if (c == 0) {
  16908. c = 26;
  16909. }
  16910. if (i < 162) {
  16911. n = e[i--] << (32 - c);
  16912. }
  16913. else {
  16914. n = 0;
  16915. i--;
  16916. }
  16917. if (c < 4) {
  16918. n |= e[i--] << (6 - c);
  16919. c += 26;
  16920. }
  16921. y = (int)((n >> 28) & 0xf);
  16922. n <<= 4;
  16923. c -= 4;
  16924. XMEMCPY(rt, t[y], sizeof(sp_digit) * 324);
  16925. while ((i >= 0) || (c >= 4)) {
  16926. if (c >= 4) {
  16927. y = (byte)((n >> 28) & 0xf);
  16928. n <<= 4;
  16929. c -= 4;
  16930. }
  16931. else if (c == 0) {
  16932. n = e[i--] << 6;
  16933. y = (byte)((n >> 28) & 0xf);
  16934. n <<= 4;
  16935. c = 22;
  16936. }
  16937. else {
  16938. y = (byte)((n >> 28) & 0xf);
  16939. n = e[i--] << 6;
  16940. c = 4 - c;
  16941. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  16942. n <<= c;
  16943. c = 26 - c;
  16944. }
  16945. sp_4096_mont_sqr_162(rt, rt, m, mp);
  16946. sp_4096_mont_sqr_162(rt, rt, m, mp);
  16947. sp_4096_mont_sqr_162(rt, rt, m, mp);
  16948. sp_4096_mont_sqr_162(rt, rt, m, mp);
  16949. sp_4096_mont_mul_162(rt, rt, t[y], m, mp);
  16950. }
  16951. sp_4096_mont_reduce_162(rt, m, mp);
  16952. n = sp_4096_cmp_162(rt, m);
  16953. sp_4096_cond_sub_162(rt, rt, m, ~(n >> 31));
  16954. XMEMCPY(r, rt, sizeof(sp_digit) * 324);
  16955. }
  16956. #ifdef WOLFSSL_SP_SMALL_STACK
  16957. if (td != NULL)
  16958. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  16959. #endif
  16960. return err;
  16961. #endif
  16962. }
  16963. #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) || */
  16964. /* WOLFSSL_HAVE_SP_DH */
  16965. #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
  16966. #ifdef WOLFSSL_HAVE_SP_RSA
  16967. /* RSA public key operation.
  16968. *
  16969. * in Array of bytes representing the number to exponentiate, base.
  16970. * inLen Number of bytes in base.
  16971. * em Public exponent.
  16972. * mm Modulus.
  16973. * out Buffer to hold big-endian bytes of exponentiation result.
  16974. * Must be at least 512 bytes long.
  16975. * outLen Number of bytes in result.
  16976. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
  16977. * an array is too long and MEMORY_E when dynamic memory allocation fails.
  16978. */
  16979. int sp_RsaPublic_4096(const byte* in, word32 inLen, const mp_int* em,
  16980. const mp_int* mm, byte* out, word32* outLen)
  16981. {
  16982. #ifdef WOLFSSL_SP_SMALL
  16983. #ifdef WOLFSSL_SP_SMALL_STACK
  16984. sp_digit* a = NULL;
  16985. #else
  16986. sp_digit a[162 * 5];
  16987. #endif
  16988. sp_digit* m = NULL;
  16989. sp_digit* r = NULL;
  16990. sp_digit* norm = NULL;
  16991. sp_digit e[1] = {0};
  16992. sp_digit mp = 0;
  16993. int i;
  16994. int err = MP_OKAY;
  16995. if (*outLen < 512U) {
  16996. err = MP_TO_E;
  16997. }
  16998. if (err == MP_OKAY) {
  16999. if (mp_count_bits(em) > 26) {
  17000. err = MP_READ_E;
  17001. }
  17002. else if (inLen > 512U) {
  17003. err = MP_READ_E;
  17004. }
  17005. else if (mp_count_bits(mm) != 4096) {
  17006. err = MP_READ_E;
  17007. }
  17008. else if (mp_iseven(mm)) {
  17009. err = MP_VAL;
  17010. }
  17011. }
  17012. #ifdef WOLFSSL_SP_SMALL_STACK
  17013. if (err == MP_OKAY) {
  17014. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 5, NULL,
  17015. DYNAMIC_TYPE_RSA);
  17016. if (a == NULL)
  17017. err = MEMORY_E;
  17018. }
  17019. #endif
  17020. if (err == MP_OKAY) {
  17021. r = a + 162 * 2;
  17022. m = r + 162 * 2;
  17023. norm = r;
  17024. sp_4096_from_bin(a, 162, in, inLen);
  17025. #if DIGIT_BIT >= 26
  17026. e[0] = (sp_digit)em->dp[0];
  17027. #else
  17028. e[0] = (sp_digit)em->dp[0];
  17029. if (em->used > 1) {
  17030. e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT;
  17031. }
  17032. #endif
  17033. if (e[0] == 0) {
  17034. err = MP_EXPTMOD_E;
  17035. }
  17036. }
  17037. if (err == MP_OKAY) {
  17038. sp_4096_from_mp(m, 162, mm);
  17039. sp_4096_mont_setup(m, &mp);
  17040. sp_4096_mont_norm_162(norm, m);
  17041. }
  17042. if (err == MP_OKAY) {
  17043. sp_4096_mul_162(a, a, norm);
  17044. err = sp_4096_mod_162(a, a, m);
  17045. }
  17046. if (err == MP_OKAY) {
  17047. for (i=25; i>=0; i--) {
  17048. if ((e[0] >> i) != 0) {
  17049. break;
  17050. }
  17051. }
  17052. XMEMCPY(r, a, sizeof(sp_digit) * 162 * 2);
  17053. for (i--; i>=0; i--) {
  17054. sp_4096_mont_sqr_162(r, r, m, mp);
  17055. if (((e[0] >> i) & 1) == 1) {
  17056. sp_4096_mont_mul_162(r, r, a, m, mp);
  17057. }
  17058. }
  17059. sp_4096_mont_reduce_162(r, m, mp);
  17060. mp = sp_4096_cmp_162(r, m);
  17061. sp_4096_cond_sub_162(r, r, m, ~(mp >> 31));
  17062. sp_4096_to_bin_162(r, out);
  17063. *outLen = 512;
  17064. }
  17065. #ifdef WOLFSSL_SP_SMALL_STACK
  17066. if (a != NULL)
  17067. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  17068. #endif
  17069. return err;
  17070. #else
  17071. #ifdef WOLFSSL_SP_SMALL_STACK
  17072. sp_digit* d = NULL;
  17073. #else
  17074. sp_digit d[162 * 5];
  17075. #endif
  17076. sp_digit* a = NULL;
  17077. sp_digit* m = NULL;
  17078. sp_digit* r = NULL;
  17079. sp_digit e[1] = {0};
  17080. int err = MP_OKAY;
  17081. if (*outLen < 512U) {
  17082. err = MP_TO_E;
  17083. }
  17084. if (err == MP_OKAY) {
  17085. if (mp_count_bits(em) > 26) {
  17086. err = MP_READ_E;
  17087. }
  17088. else if (inLen > 512U) {
  17089. err = MP_READ_E;
  17090. }
  17091. else if (mp_count_bits(mm) != 4096) {
  17092. err = MP_READ_E;
  17093. }
  17094. else if (mp_iseven(mm)) {
  17095. err = MP_VAL;
  17096. }
  17097. }
  17098. #ifdef WOLFSSL_SP_SMALL_STACK
  17099. if (err == MP_OKAY) {
  17100. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 5, NULL,
  17101. DYNAMIC_TYPE_RSA);
  17102. if (d == NULL)
  17103. err = MEMORY_E;
  17104. }
  17105. #endif
  17106. if (err == MP_OKAY) {
  17107. a = d;
  17108. r = a + 162 * 2;
  17109. m = r + 162 * 2;
  17110. sp_4096_from_bin(a, 162, in, inLen);
  17111. #if DIGIT_BIT >= 26
  17112. e[0] = (sp_digit)em->dp[0];
  17113. #else
  17114. e[0] = (sp_digit)em->dp[0];
  17115. if (em->used > 1) {
  17116. e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT;
  17117. }
  17118. #endif
  17119. if (e[0] == 0) {
  17120. err = MP_EXPTMOD_E;
  17121. }
  17122. }
  17123. if (err == MP_OKAY) {
  17124. sp_4096_from_mp(m, 162, mm);
  17125. if (e[0] == 0x3) {
  17126. sp_4096_sqr_162(r, a);
  17127. err = sp_4096_mod_162(r, r, m);
  17128. if (err == MP_OKAY) {
  17129. sp_4096_mul_162(r, a, r);
  17130. err = sp_4096_mod_162(r, r, m);
  17131. }
  17132. }
  17133. else {
  17134. sp_digit* norm = r;
  17135. int i;
  17136. sp_digit mp;
  17137. sp_4096_mont_setup(m, &mp);
  17138. sp_4096_mont_norm_162(norm, m);
  17139. sp_4096_mul_162(a, a, norm);
  17140. err = sp_4096_mod_162(a, a, m);
  17141. if (err == MP_OKAY) {
  17142. for (i=25; i>=0; i--) {
  17143. if ((e[0] >> i) != 0) {
  17144. break;
  17145. }
  17146. }
  17147. XMEMCPY(r, a, sizeof(sp_digit) * 324U);
  17148. for (i--; i>=0; i--) {
  17149. sp_4096_mont_sqr_162(r, r, m, mp);
  17150. if (((e[0] >> i) & 1) == 1) {
  17151. sp_4096_mont_mul_162(r, r, a, m, mp);
  17152. }
  17153. }
  17154. sp_4096_mont_reduce_162(r, m, mp);
  17155. mp = sp_4096_cmp_162(r, m);
  17156. sp_4096_cond_sub_162(r, r, m, ~(mp >> 31));
  17157. }
  17158. }
  17159. }
  17160. if (err == MP_OKAY) {
  17161. sp_4096_to_bin_162(r, out);
  17162. *outLen = 512;
  17163. }
  17164. #ifdef WOLFSSL_SP_SMALL_STACK
  17165. if (d != NULL)
  17166. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  17167. #endif
  17168. return err;
  17169. #endif /* WOLFSSL_SP_SMALL */
  17170. }
  17171. #ifndef WOLFSSL_RSA_PUBLIC_ONLY
  17172. #if !defined(SP_RSA_PRIVATE_EXP_D) && !defined(RSA_LOW_MEM)
  17173. #endif /* !SP_RSA_PRIVATE_EXP_D & !RSA_LOW_MEM */
  17174. /* RSA private key operation.
  17175. *
  17176. * in Array of bytes representing the number to exponentiate, base.
  17177. * inLen Number of bytes in base.
  17178. * dm Private exponent.
  17179. * pm First prime.
  17180. * qm Second prime.
  17181. * dpm First prime's CRT exponent.
  17182. * dqm Second prime's CRT exponent.
  17183. * qim Inverse of second prime mod p.
  17184. * mm Modulus.
  17185. * out Buffer to hold big-endian bytes of exponentiation result.
  17186. * Must be at least 512 bytes long.
  17187. * outLen Number of bytes in result.
  17188. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
  17189. * an array is too long and MEMORY_E when dynamic memory allocation fails.
  17190. */
  17191. int sp_RsaPrivate_4096(const byte* in, word32 inLen, const mp_int* dm,
  17192. const mp_int* pm, const mp_int* qm, const mp_int* dpm, const mp_int* dqm,
  17193. const mp_int* qim, const mp_int* mm, byte* out, word32* outLen)
  17194. {
  17195. #if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM)
  17196. #if defined(WOLFSSL_SP_SMALL)
  17197. #ifdef WOLFSSL_SP_SMALL_STACK
  17198. sp_digit* d = NULL;
  17199. #else
  17200. sp_digit d[162 * 4];
  17201. #endif
  17202. sp_digit* a = NULL;
  17203. sp_digit* m = NULL;
  17204. sp_digit* r = NULL;
  17205. int err = MP_OKAY;
  17206. (void)pm;
  17207. (void)qm;
  17208. (void)dpm;
  17209. (void)dqm;
  17210. (void)qim;
  17211. if (*outLen < 512U) {
  17212. err = MP_TO_E;
  17213. }
  17214. if (err == MP_OKAY) {
  17215. if (mp_count_bits(dm) > 4096) {
  17216. err = MP_READ_E;
  17217. }
  17218. else if (inLen > 512) {
  17219. err = MP_READ_E;
  17220. }
  17221. else if (mp_count_bits(mm) != 4096) {
  17222. err = MP_READ_E;
  17223. }
  17224. else if (mp_iseven(mm)) {
  17225. err = MP_VAL;
  17226. }
  17227. }
  17228. #ifdef WOLFSSL_SP_SMALL_STACK
  17229. if (err == MP_OKAY) {
  17230. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 4, NULL,
  17231. DYNAMIC_TYPE_RSA);
  17232. if (d == NULL)
  17233. err = MEMORY_E;
  17234. }
  17235. #endif
  17236. if (err == MP_OKAY) {
  17237. a = d + 162;
  17238. m = a + 324;
  17239. r = a;
  17240. sp_4096_from_bin(a, 162, in, inLen);
  17241. sp_4096_from_mp(d, 162, dm);
  17242. sp_4096_from_mp(m, 162, mm);
  17243. err = sp_4096_mod_exp_162(r, a, d, 4096, m, 0);
  17244. }
  17245. if (err == MP_OKAY) {
  17246. sp_4096_to_bin_162(r, out);
  17247. *outLen = 512;
  17248. }
  17249. #ifdef WOLFSSL_SP_SMALL_STACK
  17250. if (d != NULL)
  17251. #endif
  17252. {
  17253. /* only "a" and "r" are sensitive and need zeroized (same pointer) */
  17254. if (a != NULL)
  17255. ForceZero(a, sizeof(sp_digit) * 162);
  17256. #ifdef WOLFSSL_SP_SMALL_STACK
  17257. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  17258. #endif
  17259. }
  17260. return err;
  17261. #else
  17262. #ifdef WOLFSSL_SP_SMALL_STACK
  17263. sp_digit* d = NULL;
  17264. #else
  17265. sp_digit d[162 * 4];
  17266. #endif
  17267. sp_digit* a = NULL;
  17268. sp_digit* m = NULL;
  17269. sp_digit* r = NULL;
  17270. int err = MP_OKAY;
  17271. (void)pm;
  17272. (void)qm;
  17273. (void)dpm;
  17274. (void)dqm;
  17275. (void)qim;
  17276. if (*outLen < 512U) {
  17277. err = MP_TO_E;
  17278. }
  17279. if (err == MP_OKAY) {
  17280. if (mp_count_bits(dm) > 4096) {
  17281. err = MP_READ_E;
  17282. }
  17283. else if (inLen > 512U) {
  17284. err = MP_READ_E;
  17285. }
  17286. else if (mp_count_bits(mm) != 4096) {
  17287. err = MP_READ_E;
  17288. }
  17289. else if (mp_iseven(mm)) {
  17290. err = MP_VAL;
  17291. }
  17292. }
  17293. #ifdef WOLFSSL_SP_SMALL_STACK
  17294. if (err == MP_OKAY) {
  17295. d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 4, NULL,
  17296. DYNAMIC_TYPE_RSA);
  17297. if (d == NULL)
  17298. err = MEMORY_E;
  17299. }
  17300. #endif
  17301. if (err == MP_OKAY) {
  17302. a = d + 162;
  17303. m = a + 324;
  17304. r = a;
  17305. sp_4096_from_bin(a, 162, in, inLen);
  17306. sp_4096_from_mp(d, 162, dm);
  17307. sp_4096_from_mp(m, 162, mm);
  17308. err = sp_4096_mod_exp_162(r, a, d, 4096, m, 0);
  17309. }
  17310. if (err == MP_OKAY) {
  17311. sp_4096_to_bin_162(r, out);
  17312. *outLen = 512;
  17313. }
  17314. #ifdef WOLFSSL_SP_SMALL_STACK
  17315. if (d != NULL)
  17316. #endif
  17317. {
  17318. /* only "a" and "r" are sensitive and need zeroized (same pointer) */
  17319. if (a != NULL)
  17320. ForceZero(a, sizeof(sp_digit) * 162);
  17321. #ifdef WOLFSSL_SP_SMALL_STACK
  17322. XFREE(d, NULL, DYNAMIC_TYPE_RSA);
  17323. #endif
  17324. }
  17325. return err;
  17326. #endif /* WOLFSSL_SP_SMALL */
  17327. #else
  17328. #if defined(WOLFSSL_SP_SMALL)
  17329. #ifdef WOLFSSL_SP_SMALL_STACK
  17330. sp_digit* a = NULL;
  17331. #else
  17332. sp_digit a[81 * 8];
  17333. #endif
  17334. sp_digit* p = NULL;
  17335. sp_digit* dp = NULL;
  17336. sp_digit* dq = NULL;
  17337. sp_digit* qi = NULL;
  17338. sp_digit* tmpa = NULL;
  17339. sp_digit* tmpb = NULL;
  17340. sp_digit* r = NULL;
  17341. int err = MP_OKAY;
  17342. (void)dm;
  17343. (void)mm;
  17344. if (*outLen < 512U) {
  17345. err = MP_TO_E;
  17346. }
  17347. if (err == MP_OKAY) {
  17348. if (inLen > 512) {
  17349. err = MP_READ_E;
  17350. }
  17351. else if (mp_count_bits(mm) != 4096) {
  17352. err = MP_READ_E;
  17353. }
  17354. else if (mp_iseven(mm)) {
  17355. err = MP_VAL;
  17356. }
  17357. else if (mp_iseven(pm)) {
  17358. err = MP_VAL;
  17359. }
  17360. else if (mp_iseven(qm)) {
  17361. err = MP_VAL;
  17362. }
  17363. }
  17364. #ifdef WOLFSSL_SP_SMALL_STACK
  17365. if (err == MP_OKAY) {
  17366. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 81 * 8, NULL,
  17367. DYNAMIC_TYPE_RSA);
  17368. if (a == NULL)
  17369. err = MEMORY_E;
  17370. }
  17371. #endif
  17372. if (err == MP_OKAY) {
  17373. p = a + 162;
  17374. qi = dq = dp = p + 81;
  17375. tmpa = qi + 81;
  17376. tmpb = tmpa + 162;
  17377. r = a;
  17378. sp_4096_from_bin(a, 162, in, inLen);
  17379. sp_4096_from_mp(p, 81, pm);
  17380. sp_4096_from_mp(dp, 81, dpm);
  17381. err = sp_4096_mod_exp_81(tmpa, a, dp, 2048, p, 1);
  17382. }
  17383. if (err == MP_OKAY) {
  17384. sp_4096_from_mp(p, 81, qm);
  17385. sp_4096_from_mp(dq, 81, dqm);
  17386. err = sp_4096_mod_exp_81(tmpb, a, dq, 2048, p, 1);
  17387. }
  17388. if (err == MP_OKAY) {
  17389. sp_4096_from_mp(p, 81, pm);
  17390. (void)sp_4096_sub_81(tmpa, tmpa, tmpb);
  17391. sp_4096_norm_79(tmpa);
  17392. sp_4096_cond_add_81(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[78] >> 31));
  17393. sp_4096_cond_add_81(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[78] >> 31));
  17394. sp_4096_norm_81(tmpa);
  17395. sp_4096_from_mp(qi, 81, qim);
  17396. sp_4096_mul_81(tmpa, tmpa, qi);
  17397. err = sp_4096_mod_81(tmpa, tmpa, p);
  17398. }
  17399. if (err == MP_OKAY) {
  17400. sp_4096_from_mp(p, 81, qm);
  17401. sp_4096_mul_81(tmpa, p, tmpa);
  17402. (void)sp_4096_add_162(r, tmpb, tmpa);
  17403. sp_4096_norm_162(r);
  17404. sp_4096_to_bin_162(r, out);
  17405. *outLen = 512;
  17406. }
  17407. #ifdef WOLFSSL_SP_SMALL_STACK
  17408. if (a != NULL)
  17409. #endif
  17410. {
  17411. ForceZero(a, sizeof(sp_digit) * 81 * 8);
  17412. #ifdef WOLFSSL_SP_SMALL_STACK
  17413. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  17414. #endif
  17415. }
  17416. return err;
  17417. #else
  17418. #ifdef WOLFSSL_SP_SMALL_STACK
  17419. sp_digit* a = NULL;
  17420. #else
  17421. sp_digit a[81 * 13];
  17422. #endif
  17423. sp_digit* p = NULL;
  17424. sp_digit* q = NULL;
  17425. sp_digit* dp = NULL;
  17426. sp_digit* dq = NULL;
  17427. sp_digit* qi = NULL;
  17428. sp_digit* tmpa = NULL;
  17429. sp_digit* tmpb = NULL;
  17430. sp_digit* r = NULL;
  17431. int err = MP_OKAY;
  17432. (void)dm;
  17433. (void)mm;
  17434. if (*outLen < 512U) {
  17435. err = MP_TO_E;
  17436. }
  17437. if (err == MP_OKAY) {
  17438. if (inLen > 512U) {
  17439. err = MP_READ_E;
  17440. }
  17441. else if (mp_count_bits(mm) != 4096) {
  17442. err = MP_READ_E;
  17443. }
  17444. else if (mp_iseven(mm)) {
  17445. err = MP_VAL;
  17446. }
  17447. else if (mp_iseven(pm)) {
  17448. err = MP_VAL;
  17449. }
  17450. else if (mp_iseven(qm)) {
  17451. err = MP_VAL;
  17452. }
  17453. }
  17454. #ifdef WOLFSSL_SP_SMALL_STACK
  17455. if (err == MP_OKAY) {
  17456. a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 81 * 13, NULL,
  17457. DYNAMIC_TYPE_RSA);
  17458. if (a == NULL)
  17459. err = MEMORY_E;
  17460. }
  17461. #endif
  17462. if (err == MP_OKAY) {
  17463. p = a + 162 * 2;
  17464. q = p + 81;
  17465. dp = q + 81;
  17466. dq = dp + 81;
  17467. qi = dq + 81;
  17468. tmpa = qi + 81;
  17469. tmpb = tmpa + 162;
  17470. r = a;
  17471. sp_4096_from_bin(a, 162, in, inLen);
  17472. sp_4096_from_mp(p, 81, pm);
  17473. sp_4096_from_mp(q, 81, qm);
  17474. sp_4096_from_mp(dp, 81, dpm);
  17475. sp_4096_from_mp(dq, 81, dqm);
  17476. sp_4096_from_mp(qi, 81, qim);
  17477. err = sp_4096_mod_exp_81(tmpa, a, dp, 2048, p, 1);
  17478. }
  17479. if (err == MP_OKAY) {
  17480. err = sp_4096_mod_exp_81(tmpb, a, dq, 2048, q, 1);
  17481. }
  17482. if (err == MP_OKAY) {
  17483. (void)sp_4096_sub_81(tmpa, tmpa, tmpb);
  17484. sp_4096_norm_79(tmpa);
  17485. sp_4096_cond_add_81(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[78] >> 31));
  17486. sp_4096_cond_add_81(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[78] >> 31));
  17487. sp_4096_norm_81(tmpa);
  17488. sp_4096_mul_81(tmpa, tmpa, qi);
  17489. err = sp_4096_mod_81(tmpa, tmpa, p);
  17490. }
  17491. if (err == MP_OKAY) {
  17492. sp_4096_mul_81(tmpa, tmpa, q);
  17493. (void)sp_4096_add_162(r, tmpb, tmpa);
  17494. sp_4096_norm_162(r);
  17495. sp_4096_to_bin_162(r, out);
  17496. *outLen = 512;
  17497. }
  17498. #ifdef WOLFSSL_SP_SMALL_STACK
  17499. if (a != NULL)
  17500. #endif
  17501. {
  17502. ForceZero(a, sizeof(sp_digit) * 81 * 13);
  17503. #ifdef WOLFSSL_SP_SMALL_STACK
  17504. XFREE(a, NULL, DYNAMIC_TYPE_RSA);
  17505. #endif
  17506. }
  17507. return err;
  17508. #endif /* WOLFSSL_SP_SMALL */
  17509. #endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */
  17510. }
  17511. #endif /* !WOLFSSL_RSA_PUBLIC_ONLY */
  17512. #endif /* WOLFSSL_HAVE_SP_RSA */
  17513. #if defined(WOLFSSL_HAVE_SP_DH) || (defined(WOLFSSL_HAVE_SP_RSA) && \
  17514. !defined(WOLFSSL_RSA_PUBLIC_ONLY))
  17515. /* Convert an array of sp_digit to an mp_int.
  17516. *
  17517. * a A single precision integer.
  17518. * r A multi-precision integer.
  17519. */
  17520. static int sp_4096_to_mp(const sp_digit* a, mp_int* r)
  17521. {
  17522. int err;
  17523. err = mp_grow(r, (4096 + DIGIT_BIT - 1) / DIGIT_BIT);
  17524. if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
  17525. #if DIGIT_BIT == 26
  17526. XMEMCPY(r->dp, a, sizeof(sp_digit) * 158);
  17527. r->used = 158;
  17528. mp_clamp(r);
  17529. #elif DIGIT_BIT < 26
  17530. int i;
  17531. int j = 0;
  17532. int s = 0;
  17533. r->dp[0] = 0;
  17534. for (i = 0; i < 158; i++) {
  17535. r->dp[j] |= (mp_digit)(a[i] << s);
  17536. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  17537. s = DIGIT_BIT - s;
  17538. r->dp[++j] = (mp_digit)(a[i] >> s);
  17539. while (s + DIGIT_BIT <= 26) {
  17540. s += DIGIT_BIT;
  17541. r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  17542. if (s == SP_WORD_SIZE) {
  17543. r->dp[j] = 0;
  17544. }
  17545. else {
  17546. r->dp[j] = (mp_digit)(a[i] >> s);
  17547. }
  17548. }
  17549. s = 26 - s;
  17550. }
  17551. r->used = (4096 + DIGIT_BIT - 1) / DIGIT_BIT;
  17552. mp_clamp(r);
  17553. #else
  17554. int i;
  17555. int j = 0;
  17556. int s = 0;
  17557. r->dp[0] = 0;
  17558. for (i = 0; i < 158; i++) {
  17559. r->dp[j] |= ((mp_digit)a[i]) << s;
  17560. if (s + 26 >= DIGIT_BIT) {
  17561. #if DIGIT_BIT != 32 && DIGIT_BIT != 64
  17562. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  17563. #endif
  17564. s = DIGIT_BIT - s;
  17565. r->dp[++j] = a[i] >> s;
  17566. s = 26 - s;
  17567. }
  17568. else {
  17569. s += 26;
  17570. }
  17571. }
  17572. r->used = (4096 + DIGIT_BIT - 1) / DIGIT_BIT;
  17573. mp_clamp(r);
  17574. #endif
  17575. }
  17576. return err;
  17577. }
  17578. /* Perform the modular exponentiation for Diffie-Hellman.
  17579. *
  17580. * base Base. MP integer.
  17581. * exp Exponent. MP integer.
  17582. * mod Modulus. MP integer.
  17583. * res Result. MP integer.
  17584. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  17585. * and MEMORY_E if memory allocation fails.
  17586. */
  17587. int sp_ModExp_4096(const mp_int* base, const mp_int* exp, const mp_int* mod,
  17588. mp_int* res)
  17589. {
  17590. #ifdef WOLFSSL_SP_SMALL
  17591. int err = MP_OKAY;
  17592. #ifdef WOLFSSL_SP_SMALL_STACK
  17593. sp_digit* b = NULL;
  17594. #else
  17595. sp_digit b[162 * 4];
  17596. #endif
  17597. sp_digit* e = NULL;
  17598. sp_digit* m = NULL;
  17599. sp_digit* r = NULL;
  17600. int expBits = mp_count_bits(exp);
  17601. if (mp_count_bits(base) > 4096) {
  17602. err = MP_READ_E;
  17603. }
  17604. else if (expBits > 4096) {
  17605. err = MP_READ_E;
  17606. }
  17607. else if (mp_count_bits(mod) != 4096) {
  17608. err = MP_READ_E;
  17609. }
  17610. else if (mp_iseven(mod)) {
  17611. err = MP_VAL;
  17612. }
  17613. #ifdef WOLFSSL_SP_SMALL_STACK
  17614. if (err == MP_OKAY) {
  17615. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 4, NULL,
  17616. DYNAMIC_TYPE_DH);
  17617. if (b == NULL)
  17618. err = MEMORY_E;
  17619. }
  17620. #endif
  17621. if (err == MP_OKAY) {
  17622. e = b + 162 * 2;
  17623. m = e + 162;
  17624. r = b;
  17625. sp_4096_from_mp(b, 162, base);
  17626. sp_4096_from_mp(e, 162, exp);
  17627. sp_4096_from_mp(m, 162, mod);
  17628. err = sp_4096_mod_exp_162(r, b, e, mp_count_bits(exp), m, 0);
  17629. }
  17630. if (err == MP_OKAY) {
  17631. err = sp_4096_to_mp(r, res);
  17632. }
  17633. #ifdef WOLFSSL_SP_SMALL_STACK
  17634. if (b != NULL)
  17635. #endif
  17636. {
  17637. /* only "e" is sensitive and needs zeroized */
  17638. if (e != NULL)
  17639. ForceZero(e, sizeof(sp_digit) * 162U);
  17640. #ifdef WOLFSSL_SP_SMALL_STACK
  17641. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  17642. #endif
  17643. }
  17644. return err;
  17645. #else
  17646. #ifdef WOLFSSL_SP_SMALL_STACK
  17647. sp_digit* b = NULL;
  17648. #else
  17649. sp_digit b[162 * 4];
  17650. #endif
  17651. sp_digit* e = NULL;
  17652. sp_digit* m = NULL;
  17653. sp_digit* r = NULL;
  17654. int err = MP_OKAY;
  17655. int expBits = mp_count_bits(exp);
  17656. if (mp_count_bits(base) > 4096) {
  17657. err = MP_READ_E;
  17658. }
  17659. else if (expBits > 4096) {
  17660. err = MP_READ_E;
  17661. }
  17662. else if (mp_count_bits(mod) != 4096) {
  17663. err = MP_READ_E;
  17664. }
  17665. else if (mp_iseven(mod)) {
  17666. err = MP_VAL;
  17667. }
  17668. #ifdef WOLFSSL_SP_SMALL_STACK
  17669. if (err == MP_OKAY) {
  17670. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 4, NULL, DYNAMIC_TYPE_DH);
  17671. if (b == NULL)
  17672. err = MEMORY_E;
  17673. }
  17674. #endif
  17675. if (err == MP_OKAY) {
  17676. e = b + 162 * 2;
  17677. m = e + 162;
  17678. r = b;
  17679. sp_4096_from_mp(b, 162, base);
  17680. sp_4096_from_mp(e, 162, exp);
  17681. sp_4096_from_mp(m, 162, mod);
  17682. err = sp_4096_mod_exp_162(r, b, e, expBits, m, 0);
  17683. }
  17684. if (err == MP_OKAY) {
  17685. err = sp_4096_to_mp(r, res);
  17686. }
  17687. #ifdef WOLFSSL_SP_SMALL_STACK
  17688. if (b != NULL)
  17689. #endif
  17690. {
  17691. /* only "e" is sensitive and needs zeroized */
  17692. if (e != NULL)
  17693. ForceZero(e, sizeof(sp_digit) * 162U);
  17694. #ifdef WOLFSSL_SP_SMALL_STACK
  17695. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  17696. #endif
  17697. }
  17698. return err;
  17699. #endif
  17700. }
  17701. #ifdef WOLFSSL_HAVE_SP_DH
  17702. #ifdef HAVE_FFDHE_4096
  17703. SP_NOINLINE static void sp_4096_lshift_162(sp_digit* r, const sp_digit* a,
  17704. byte n)
  17705. {
  17706. sp_int_digit s;
  17707. sp_int_digit t;
  17708. s = (sp_int_digit)a[161];
  17709. r[162] = s >> (26U - n);
  17710. s = (sp_int_digit)(a[161]); t = (sp_int_digit)(a[160]);
  17711. r[161] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17712. s = (sp_int_digit)(a[160]); t = (sp_int_digit)(a[159]);
  17713. r[160] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17714. s = (sp_int_digit)(a[159]); t = (sp_int_digit)(a[158]);
  17715. r[159] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17716. s = (sp_int_digit)(a[158]); t = (sp_int_digit)(a[157]);
  17717. r[158] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17718. s = (sp_int_digit)(a[157]); t = (sp_int_digit)(a[156]);
  17719. r[157] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17720. s = (sp_int_digit)(a[156]); t = (sp_int_digit)(a[155]);
  17721. r[156] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17722. s = (sp_int_digit)(a[155]); t = (sp_int_digit)(a[154]);
  17723. r[155] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17724. s = (sp_int_digit)(a[154]); t = (sp_int_digit)(a[153]);
  17725. r[154] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17726. s = (sp_int_digit)(a[153]); t = (sp_int_digit)(a[152]);
  17727. r[153] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17728. s = (sp_int_digit)(a[152]); t = (sp_int_digit)(a[151]);
  17729. r[152] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17730. s = (sp_int_digit)(a[151]); t = (sp_int_digit)(a[150]);
  17731. r[151] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17732. s = (sp_int_digit)(a[150]); t = (sp_int_digit)(a[149]);
  17733. r[150] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17734. s = (sp_int_digit)(a[149]); t = (sp_int_digit)(a[148]);
  17735. r[149] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17736. s = (sp_int_digit)(a[148]); t = (sp_int_digit)(a[147]);
  17737. r[148] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17738. s = (sp_int_digit)(a[147]); t = (sp_int_digit)(a[146]);
  17739. r[147] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17740. s = (sp_int_digit)(a[146]); t = (sp_int_digit)(a[145]);
  17741. r[146] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17742. s = (sp_int_digit)(a[145]); t = (sp_int_digit)(a[144]);
  17743. r[145] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17744. s = (sp_int_digit)(a[144]); t = (sp_int_digit)(a[143]);
  17745. r[144] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17746. s = (sp_int_digit)(a[143]); t = (sp_int_digit)(a[142]);
  17747. r[143] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17748. s = (sp_int_digit)(a[142]); t = (sp_int_digit)(a[141]);
  17749. r[142] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17750. s = (sp_int_digit)(a[141]); t = (sp_int_digit)(a[140]);
  17751. r[141] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17752. s = (sp_int_digit)(a[140]); t = (sp_int_digit)(a[139]);
  17753. r[140] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17754. s = (sp_int_digit)(a[139]); t = (sp_int_digit)(a[138]);
  17755. r[139] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17756. s = (sp_int_digit)(a[138]); t = (sp_int_digit)(a[137]);
  17757. r[138] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17758. s = (sp_int_digit)(a[137]); t = (sp_int_digit)(a[136]);
  17759. r[137] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17760. s = (sp_int_digit)(a[136]); t = (sp_int_digit)(a[135]);
  17761. r[136] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17762. s = (sp_int_digit)(a[135]); t = (sp_int_digit)(a[134]);
  17763. r[135] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17764. s = (sp_int_digit)(a[134]); t = (sp_int_digit)(a[133]);
  17765. r[134] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17766. s = (sp_int_digit)(a[133]); t = (sp_int_digit)(a[132]);
  17767. r[133] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17768. s = (sp_int_digit)(a[132]); t = (sp_int_digit)(a[131]);
  17769. r[132] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17770. s = (sp_int_digit)(a[131]); t = (sp_int_digit)(a[130]);
  17771. r[131] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17772. s = (sp_int_digit)(a[130]); t = (sp_int_digit)(a[129]);
  17773. r[130] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17774. s = (sp_int_digit)(a[129]); t = (sp_int_digit)(a[128]);
  17775. r[129] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17776. s = (sp_int_digit)(a[128]); t = (sp_int_digit)(a[127]);
  17777. r[128] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17778. s = (sp_int_digit)(a[127]); t = (sp_int_digit)(a[126]);
  17779. r[127] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17780. s = (sp_int_digit)(a[126]); t = (sp_int_digit)(a[125]);
  17781. r[126] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17782. s = (sp_int_digit)(a[125]); t = (sp_int_digit)(a[124]);
  17783. r[125] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17784. s = (sp_int_digit)(a[124]); t = (sp_int_digit)(a[123]);
  17785. r[124] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17786. s = (sp_int_digit)(a[123]); t = (sp_int_digit)(a[122]);
  17787. r[123] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17788. s = (sp_int_digit)(a[122]); t = (sp_int_digit)(a[121]);
  17789. r[122] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17790. s = (sp_int_digit)(a[121]); t = (sp_int_digit)(a[120]);
  17791. r[121] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17792. s = (sp_int_digit)(a[120]); t = (sp_int_digit)(a[119]);
  17793. r[120] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17794. s = (sp_int_digit)(a[119]); t = (sp_int_digit)(a[118]);
  17795. r[119] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17796. s = (sp_int_digit)(a[118]); t = (sp_int_digit)(a[117]);
  17797. r[118] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17798. s = (sp_int_digit)(a[117]); t = (sp_int_digit)(a[116]);
  17799. r[117] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17800. s = (sp_int_digit)(a[116]); t = (sp_int_digit)(a[115]);
  17801. r[116] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17802. s = (sp_int_digit)(a[115]); t = (sp_int_digit)(a[114]);
  17803. r[115] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17804. s = (sp_int_digit)(a[114]); t = (sp_int_digit)(a[113]);
  17805. r[114] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17806. s = (sp_int_digit)(a[113]); t = (sp_int_digit)(a[112]);
  17807. r[113] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17808. s = (sp_int_digit)(a[112]); t = (sp_int_digit)(a[111]);
  17809. r[112] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17810. s = (sp_int_digit)(a[111]); t = (sp_int_digit)(a[110]);
  17811. r[111] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17812. s = (sp_int_digit)(a[110]); t = (sp_int_digit)(a[109]);
  17813. r[110] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17814. s = (sp_int_digit)(a[109]); t = (sp_int_digit)(a[108]);
  17815. r[109] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17816. s = (sp_int_digit)(a[108]); t = (sp_int_digit)(a[107]);
  17817. r[108] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17818. s = (sp_int_digit)(a[107]); t = (sp_int_digit)(a[106]);
  17819. r[107] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17820. s = (sp_int_digit)(a[106]); t = (sp_int_digit)(a[105]);
  17821. r[106] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17822. s = (sp_int_digit)(a[105]); t = (sp_int_digit)(a[104]);
  17823. r[105] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17824. s = (sp_int_digit)(a[104]); t = (sp_int_digit)(a[103]);
  17825. r[104] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17826. s = (sp_int_digit)(a[103]); t = (sp_int_digit)(a[102]);
  17827. r[103] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17828. s = (sp_int_digit)(a[102]); t = (sp_int_digit)(a[101]);
  17829. r[102] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17830. s = (sp_int_digit)(a[101]); t = (sp_int_digit)(a[100]);
  17831. r[101] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17832. s = (sp_int_digit)(a[100]); t = (sp_int_digit)(a[99]);
  17833. r[100] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17834. s = (sp_int_digit)(a[99]); t = (sp_int_digit)(a[98]);
  17835. r[99] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17836. s = (sp_int_digit)(a[98]); t = (sp_int_digit)(a[97]);
  17837. r[98] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17838. s = (sp_int_digit)(a[97]); t = (sp_int_digit)(a[96]);
  17839. r[97] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17840. s = (sp_int_digit)(a[96]); t = (sp_int_digit)(a[95]);
  17841. r[96] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17842. s = (sp_int_digit)(a[95]); t = (sp_int_digit)(a[94]);
  17843. r[95] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17844. s = (sp_int_digit)(a[94]); t = (sp_int_digit)(a[93]);
  17845. r[94] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17846. s = (sp_int_digit)(a[93]); t = (sp_int_digit)(a[92]);
  17847. r[93] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17848. s = (sp_int_digit)(a[92]); t = (sp_int_digit)(a[91]);
  17849. r[92] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17850. s = (sp_int_digit)(a[91]); t = (sp_int_digit)(a[90]);
  17851. r[91] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17852. s = (sp_int_digit)(a[90]); t = (sp_int_digit)(a[89]);
  17853. r[90] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17854. s = (sp_int_digit)(a[89]); t = (sp_int_digit)(a[88]);
  17855. r[89] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17856. s = (sp_int_digit)(a[88]); t = (sp_int_digit)(a[87]);
  17857. r[88] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17858. s = (sp_int_digit)(a[87]); t = (sp_int_digit)(a[86]);
  17859. r[87] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17860. s = (sp_int_digit)(a[86]); t = (sp_int_digit)(a[85]);
  17861. r[86] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17862. s = (sp_int_digit)(a[85]); t = (sp_int_digit)(a[84]);
  17863. r[85] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17864. s = (sp_int_digit)(a[84]); t = (sp_int_digit)(a[83]);
  17865. r[84] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17866. s = (sp_int_digit)(a[83]); t = (sp_int_digit)(a[82]);
  17867. r[83] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17868. s = (sp_int_digit)(a[82]); t = (sp_int_digit)(a[81]);
  17869. r[82] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17870. s = (sp_int_digit)(a[81]); t = (sp_int_digit)(a[80]);
  17871. r[81] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17872. s = (sp_int_digit)(a[80]); t = (sp_int_digit)(a[79]);
  17873. r[80] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17874. s = (sp_int_digit)(a[79]); t = (sp_int_digit)(a[78]);
  17875. r[79] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17876. s = (sp_int_digit)(a[78]); t = (sp_int_digit)(a[77]);
  17877. r[78] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17878. s = (sp_int_digit)(a[77]); t = (sp_int_digit)(a[76]);
  17879. r[77] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17880. s = (sp_int_digit)(a[76]); t = (sp_int_digit)(a[75]);
  17881. r[76] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17882. s = (sp_int_digit)(a[75]); t = (sp_int_digit)(a[74]);
  17883. r[75] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17884. s = (sp_int_digit)(a[74]); t = (sp_int_digit)(a[73]);
  17885. r[74] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17886. s = (sp_int_digit)(a[73]); t = (sp_int_digit)(a[72]);
  17887. r[73] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17888. s = (sp_int_digit)(a[72]); t = (sp_int_digit)(a[71]);
  17889. r[72] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17890. s = (sp_int_digit)(a[71]); t = (sp_int_digit)(a[70]);
  17891. r[71] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17892. s = (sp_int_digit)(a[70]); t = (sp_int_digit)(a[69]);
  17893. r[70] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17894. s = (sp_int_digit)(a[69]); t = (sp_int_digit)(a[68]);
  17895. r[69] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17896. s = (sp_int_digit)(a[68]); t = (sp_int_digit)(a[67]);
  17897. r[68] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17898. s = (sp_int_digit)(a[67]); t = (sp_int_digit)(a[66]);
  17899. r[67] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17900. s = (sp_int_digit)(a[66]); t = (sp_int_digit)(a[65]);
  17901. r[66] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17902. s = (sp_int_digit)(a[65]); t = (sp_int_digit)(a[64]);
  17903. r[65] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17904. s = (sp_int_digit)(a[64]); t = (sp_int_digit)(a[63]);
  17905. r[64] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17906. s = (sp_int_digit)(a[63]); t = (sp_int_digit)(a[62]);
  17907. r[63] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17908. s = (sp_int_digit)(a[62]); t = (sp_int_digit)(a[61]);
  17909. r[62] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17910. s = (sp_int_digit)(a[61]); t = (sp_int_digit)(a[60]);
  17911. r[61] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17912. s = (sp_int_digit)(a[60]); t = (sp_int_digit)(a[59]);
  17913. r[60] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17914. s = (sp_int_digit)(a[59]); t = (sp_int_digit)(a[58]);
  17915. r[59] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17916. s = (sp_int_digit)(a[58]); t = (sp_int_digit)(a[57]);
  17917. r[58] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17918. s = (sp_int_digit)(a[57]); t = (sp_int_digit)(a[56]);
  17919. r[57] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17920. s = (sp_int_digit)(a[56]); t = (sp_int_digit)(a[55]);
  17921. r[56] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17922. s = (sp_int_digit)(a[55]); t = (sp_int_digit)(a[54]);
  17923. r[55] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17924. s = (sp_int_digit)(a[54]); t = (sp_int_digit)(a[53]);
  17925. r[54] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17926. s = (sp_int_digit)(a[53]); t = (sp_int_digit)(a[52]);
  17927. r[53] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17928. s = (sp_int_digit)(a[52]); t = (sp_int_digit)(a[51]);
  17929. r[52] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17930. s = (sp_int_digit)(a[51]); t = (sp_int_digit)(a[50]);
  17931. r[51] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17932. s = (sp_int_digit)(a[50]); t = (sp_int_digit)(a[49]);
  17933. r[50] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17934. s = (sp_int_digit)(a[49]); t = (sp_int_digit)(a[48]);
  17935. r[49] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17936. s = (sp_int_digit)(a[48]); t = (sp_int_digit)(a[47]);
  17937. r[48] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17938. s = (sp_int_digit)(a[47]); t = (sp_int_digit)(a[46]);
  17939. r[47] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17940. s = (sp_int_digit)(a[46]); t = (sp_int_digit)(a[45]);
  17941. r[46] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17942. s = (sp_int_digit)(a[45]); t = (sp_int_digit)(a[44]);
  17943. r[45] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17944. s = (sp_int_digit)(a[44]); t = (sp_int_digit)(a[43]);
  17945. r[44] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17946. s = (sp_int_digit)(a[43]); t = (sp_int_digit)(a[42]);
  17947. r[43] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17948. s = (sp_int_digit)(a[42]); t = (sp_int_digit)(a[41]);
  17949. r[42] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17950. s = (sp_int_digit)(a[41]); t = (sp_int_digit)(a[40]);
  17951. r[41] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17952. s = (sp_int_digit)(a[40]); t = (sp_int_digit)(a[39]);
  17953. r[40] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17954. s = (sp_int_digit)(a[39]); t = (sp_int_digit)(a[38]);
  17955. r[39] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17956. s = (sp_int_digit)(a[38]); t = (sp_int_digit)(a[37]);
  17957. r[38] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17958. s = (sp_int_digit)(a[37]); t = (sp_int_digit)(a[36]);
  17959. r[37] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17960. s = (sp_int_digit)(a[36]); t = (sp_int_digit)(a[35]);
  17961. r[36] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17962. s = (sp_int_digit)(a[35]); t = (sp_int_digit)(a[34]);
  17963. r[35] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17964. s = (sp_int_digit)(a[34]); t = (sp_int_digit)(a[33]);
  17965. r[34] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17966. s = (sp_int_digit)(a[33]); t = (sp_int_digit)(a[32]);
  17967. r[33] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17968. s = (sp_int_digit)(a[32]); t = (sp_int_digit)(a[31]);
  17969. r[32] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17970. s = (sp_int_digit)(a[31]); t = (sp_int_digit)(a[30]);
  17971. r[31] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17972. s = (sp_int_digit)(a[30]); t = (sp_int_digit)(a[29]);
  17973. r[30] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17974. s = (sp_int_digit)(a[29]); t = (sp_int_digit)(a[28]);
  17975. r[29] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17976. s = (sp_int_digit)(a[28]); t = (sp_int_digit)(a[27]);
  17977. r[28] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17978. s = (sp_int_digit)(a[27]); t = (sp_int_digit)(a[26]);
  17979. r[27] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17980. s = (sp_int_digit)(a[26]); t = (sp_int_digit)(a[25]);
  17981. r[26] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17982. s = (sp_int_digit)(a[25]); t = (sp_int_digit)(a[24]);
  17983. r[25] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17984. s = (sp_int_digit)(a[24]); t = (sp_int_digit)(a[23]);
  17985. r[24] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17986. s = (sp_int_digit)(a[23]); t = (sp_int_digit)(a[22]);
  17987. r[23] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17988. s = (sp_int_digit)(a[22]); t = (sp_int_digit)(a[21]);
  17989. r[22] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17990. s = (sp_int_digit)(a[21]); t = (sp_int_digit)(a[20]);
  17991. r[21] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17992. s = (sp_int_digit)(a[20]); t = (sp_int_digit)(a[19]);
  17993. r[20] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17994. s = (sp_int_digit)(a[19]); t = (sp_int_digit)(a[18]);
  17995. r[19] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17996. s = (sp_int_digit)(a[18]); t = (sp_int_digit)(a[17]);
  17997. r[18] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  17998. s = (sp_int_digit)(a[17]); t = (sp_int_digit)(a[16]);
  17999. r[17] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18000. s = (sp_int_digit)(a[16]); t = (sp_int_digit)(a[15]);
  18001. r[16] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18002. s = (sp_int_digit)(a[15]); t = (sp_int_digit)(a[14]);
  18003. r[15] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18004. s = (sp_int_digit)(a[14]); t = (sp_int_digit)(a[13]);
  18005. r[14] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18006. s = (sp_int_digit)(a[13]); t = (sp_int_digit)(a[12]);
  18007. r[13] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18008. s = (sp_int_digit)(a[12]); t = (sp_int_digit)(a[11]);
  18009. r[12] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18010. s = (sp_int_digit)(a[11]); t = (sp_int_digit)(a[10]);
  18011. r[11] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18012. s = (sp_int_digit)(a[10]); t = (sp_int_digit)(a[9]);
  18013. r[10] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18014. s = (sp_int_digit)(a[9]); t = (sp_int_digit)(a[8]);
  18015. r[9] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18016. s = (sp_int_digit)(a[8]); t = (sp_int_digit)(a[7]);
  18017. r[8] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18018. s = (sp_int_digit)(a[7]); t = (sp_int_digit)(a[6]);
  18019. r[7] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18020. s = (sp_int_digit)(a[6]); t = (sp_int_digit)(a[5]);
  18021. r[6] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18022. s = (sp_int_digit)(a[5]); t = (sp_int_digit)(a[4]);
  18023. r[5] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18024. s = (sp_int_digit)(a[4]); t = (sp_int_digit)(a[3]);
  18025. r[4] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18026. s = (sp_int_digit)(a[3]); t = (sp_int_digit)(a[2]);
  18027. r[3] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18028. s = (sp_int_digit)(a[2]); t = (sp_int_digit)(a[1]);
  18029. r[2] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18030. s = (sp_int_digit)(a[1]); t = (sp_int_digit)(a[0]);
  18031. r[1] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  18032. r[0] = (a[0] << n) & 0x3ffffff;
  18033. }
  18034. /* Modular exponentiate 2 to the e mod m. (r = 2^e mod m)
  18035. *
  18036. * r A single precision number that is the result of the operation.
  18037. * e A single precision number that is the exponent.
  18038. * bits The number of bits in the exponent.
  18039. * m A single precision number that is the modulus.
  18040. * returns 0 on success.
  18041. * returns MEMORY_E on dynamic memory allocation failure.
  18042. * returns MP_VAL when base is even.
  18043. */
  18044. static int sp_4096_mod_exp_2_162(sp_digit* r, const sp_digit* e, int bits, const sp_digit* m)
  18045. {
  18046. #ifdef WOLFSSL_SP_SMALL_STACK
  18047. sp_digit* td = NULL;
  18048. #else
  18049. sp_digit td[487];
  18050. #endif
  18051. sp_digit* norm = NULL;
  18052. sp_digit* tmp = NULL;
  18053. sp_digit mp = 1;
  18054. sp_digit n;
  18055. sp_digit o;
  18056. int i;
  18057. int c;
  18058. byte y;
  18059. int err = MP_OKAY;
  18060. if (bits == 0) {
  18061. err = MP_VAL;
  18062. }
  18063. #ifdef WOLFSSL_SP_SMALL_STACK
  18064. if (err == MP_OKAY) {
  18065. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 487, NULL,
  18066. DYNAMIC_TYPE_TMP_BUFFER);
  18067. if (td == NULL)
  18068. err = MEMORY_E;
  18069. }
  18070. #endif
  18071. if (err == MP_OKAY) {
  18072. norm = td;
  18073. tmp = td + 324;
  18074. XMEMSET(td, 0, sizeof(sp_digit) * 487);
  18075. sp_4096_mont_setup(m, &mp);
  18076. sp_4096_mont_norm_162(norm, m);
  18077. bits = ((bits + 3) / 4) * 4;
  18078. i = ((bits + 25) / 26) - 1;
  18079. c = bits % 26;
  18080. if (c == 0) {
  18081. c = 26;
  18082. }
  18083. if (i < 162) {
  18084. n = e[i--] << (32 - c);
  18085. }
  18086. else {
  18087. n = 0;
  18088. i--;
  18089. }
  18090. if (c < 4) {
  18091. n |= e[i--] << (6 - c);
  18092. c += 26;
  18093. }
  18094. y = (int)((n >> 28) & 0xf);
  18095. n <<= 4;
  18096. c -= 4;
  18097. sp_4096_lshift_162(r, norm, (byte)y);
  18098. while ((i >= 0) || (c >= 4)) {
  18099. if (c >= 4) {
  18100. y = (byte)((n >> 28) & 0xf);
  18101. n <<= 4;
  18102. c -= 4;
  18103. }
  18104. else if (c == 0) {
  18105. n = e[i--] << 6;
  18106. y = (byte)((n >> 28) & 0xf);
  18107. n <<= 4;
  18108. c = 22;
  18109. }
  18110. else {
  18111. y = (byte)((n >> 28) & 0xf);
  18112. n = e[i--] << 6;
  18113. c = 4 - c;
  18114. y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
  18115. n <<= c;
  18116. c = 26 - c;
  18117. }
  18118. sp_4096_mont_sqr_162(r, r, m, mp);
  18119. sp_4096_mont_sqr_162(r, r, m, mp);
  18120. sp_4096_mont_sqr_162(r, r, m, mp);
  18121. sp_4096_mont_sqr_162(r, r, m, mp);
  18122. sp_4096_lshift_162(r, r, (byte)y);
  18123. sp_4096_mul_d_162(tmp, norm, (r[158] << 12) + (r[157] >> 14));
  18124. r[158] = 0;
  18125. r[157] &= 0x3fffL;
  18126. (void)sp_4096_add_162(r, r, tmp);
  18127. sp_4096_norm_162(r);
  18128. o = sp_4096_cmp_162(r, m);
  18129. sp_4096_cond_sub_162(r, r, m, ~(o >> 31));
  18130. }
  18131. sp_4096_mont_reduce_162(r, m, mp);
  18132. n = sp_4096_cmp_162(r, m);
  18133. sp_4096_cond_sub_162(r, r, m, ~(n >> 31));
  18134. }
  18135. #ifdef WOLFSSL_SP_SMALL_STACK
  18136. if (td != NULL)
  18137. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  18138. #endif
  18139. return err;
  18140. }
  18141. #endif /* HAVE_FFDHE_4096 */
  18142. /* Perform the modular exponentiation for Diffie-Hellman.
  18143. *
  18144. * base Base.
  18145. * exp Array of bytes that is the exponent.
  18146. * expLen Length of data, in bytes, in exponent.
  18147. * mod Modulus.
  18148. * out Buffer to hold big-endian bytes of exponentiation result.
  18149. * Must be at least 512 bytes long.
  18150. * outLen Length, in bytes, of exponentiation result.
  18151. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  18152. * and MEMORY_E if memory allocation fails.
  18153. */
  18154. int sp_DhExp_4096(const mp_int* base, const byte* exp, word32 expLen,
  18155. const mp_int* mod, byte* out, word32* outLen)
  18156. {
  18157. #ifdef WOLFSSL_SP_SMALL_STACK
  18158. sp_digit* b = NULL;
  18159. #else
  18160. sp_digit b[162 * 4];
  18161. #endif
  18162. sp_digit* e = NULL;
  18163. sp_digit* m = NULL;
  18164. sp_digit* r = NULL;
  18165. word32 i;
  18166. int err = MP_OKAY;
  18167. if (mp_count_bits(base) > 4096) {
  18168. err = MP_READ_E;
  18169. }
  18170. else if (expLen > 512U) {
  18171. err = MP_READ_E;
  18172. }
  18173. else if (mp_count_bits(mod) != 4096) {
  18174. err = MP_READ_E;
  18175. }
  18176. else if (mp_iseven(mod)) {
  18177. err = MP_VAL;
  18178. }
  18179. #ifdef WOLFSSL_SP_SMALL_STACK
  18180. if (err == MP_OKAY) {
  18181. b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 4, NULL,
  18182. DYNAMIC_TYPE_DH);
  18183. if (b == NULL)
  18184. err = MEMORY_E;
  18185. }
  18186. #endif
  18187. if (err == MP_OKAY) {
  18188. e = b + 162 * 2;
  18189. m = e + 162;
  18190. r = b;
  18191. sp_4096_from_mp(b, 162, base);
  18192. sp_4096_from_bin(e, 162, exp, expLen);
  18193. sp_4096_from_mp(m, 162, mod);
  18194. #ifdef HAVE_FFDHE_4096
  18195. if (base->used == 1 && base->dp[0] == 2U &&
  18196. ((m[157] << 2) | (m[156] >> 24)) == 0xffffL) {
  18197. err = sp_4096_mod_exp_2_162(r, e, expLen * 8U, m);
  18198. }
  18199. else {
  18200. #endif
  18201. err = sp_4096_mod_exp_162(r, b, e, expLen * 8U, m, 0);
  18202. #ifdef HAVE_FFDHE_4096
  18203. }
  18204. #endif
  18205. }
  18206. if (err == MP_OKAY) {
  18207. sp_4096_to_bin_162(r, out);
  18208. *outLen = 512;
  18209. for (i=0; i<512U && out[i] == 0U; i++) {
  18210. /* Search for first non-zero. */
  18211. }
  18212. *outLen -= i;
  18213. XMEMMOVE(out, out + i, *outLen);
  18214. }
  18215. #ifdef WOLFSSL_SP_SMALL_STACK
  18216. if (b != NULL)
  18217. #endif
  18218. {
  18219. /* only "e" is sensitive and needs zeroized */
  18220. if (e != NULL)
  18221. ForceZero(e, sizeof(sp_digit) * 162U);
  18222. #ifdef WOLFSSL_SP_SMALL_STACK
  18223. XFREE(b, NULL, DYNAMIC_TYPE_DH);
  18224. #endif
  18225. }
  18226. return err;
  18227. }
  18228. #endif /* WOLFSSL_HAVE_SP_DH */
  18229. #endif /* WOLFSSL_HAVE_SP_DH | (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) */
  18230. #endif /* WOLFSSL_SP_SMALL */
  18231. #endif /* WOLFSSL_SP_4096 */
  18232. #endif /* WOLFSSL_HAVE_SP_RSA | WOLFSSL_HAVE_SP_DH */
  18233. #ifdef WOLFSSL_HAVE_SP_ECC
  18234. #ifndef WOLFSSL_SP_NO_256
  18235. /* Point structure to use. */
  18236. typedef struct sp_point_256 {
  18237. /* X ordinate of point. */
  18238. sp_digit x[2 * 9];
  18239. /* Y ordinate of point. */
  18240. sp_digit y[2 * 9];
  18241. /* Z ordinate of point. */
  18242. sp_digit z[2 * 9];
  18243. /* Indicates point is at infinity. */
  18244. int infinity;
  18245. } sp_point_256;
  18246. /* The modulus (prime) of the curve P256. */
  18247. static const sp_digit p256_mod[9] = {
  18248. 0x1fffffff,0x1fffffff,0x1fffffff,0x000001ff,0x00000000,0x00000000,
  18249. 0x00040000,0x1fe00000,0x00ffffff
  18250. };
  18251. /* The Montgomery normalizer for modulus of the curve P256. */
  18252. static const sp_digit p256_norm_mod[9] = {
  18253. 0x00000001,0x00000000,0x00000000,0x1ffffe00,0x1fffffff,0x1fffffff,
  18254. 0x1ffbffff,0x001fffff,0x00000000
  18255. };
  18256. /* The Montgomery multiplier for modulus of the curve P256. */
  18257. static const sp_digit p256_mp_mod = 0x0000001;
  18258. #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
  18259. defined(HAVE_ECC_VERIFY)
  18260. /* The order of the curve P256. */
  18261. static const sp_digit p256_order[9] = {
  18262. 0x1c632551,0x1dce5617,0x05e7a13c,0x0df55b4e,0x1ffffbce,0x1fffffff,
  18263. 0x0003ffff,0x1fe00000,0x00ffffff
  18264. };
  18265. #endif
  18266. /* The order of the curve P256 minus 2. */
  18267. static const sp_digit p256_order2[9] = {
  18268. 0x1c63254f,0x1dce5617,0x05e7a13c,0x0df55b4e,0x1ffffbce,0x1fffffff,
  18269. 0x0003ffff,0x1fe00000,0x00ffffff
  18270. };
  18271. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  18272. /* The Montgomery normalizer for order of the curve P256. */
  18273. static const sp_digit p256_norm_order[9] = {
  18274. 0x039cdaaf,0x0231a9e8,0x1a185ec3,0x120aa4b1,0x00000431,0x00000000,
  18275. 0x1ffc0000,0x001fffff,0x00000000
  18276. };
  18277. #endif
  18278. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  18279. /* The Montgomery multiplier for order of the curve P256. */
  18280. static const sp_digit p256_mp_order = 0xe00bc4f;
  18281. #endif
  18282. /* The base point of curve P256. */
  18283. static const sp_point_256 p256_base = {
  18284. /* X ordinate */
  18285. {
  18286. 0x1898c296,0x0509ca2e,0x1acce83d,0x06fb025b,0x040f2770,0x1372b1d2,
  18287. 0x091fe2f3,0x1e5c2588,0x006b17d1,
  18288. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  18289. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0
  18290. },
  18291. /* Y ordinate */
  18292. {
  18293. 0x17bf51f5,0x1db20341,0x0c57b3b2,0x1c66aed6,0x19e162bc,0x15a53e07,
  18294. 0x1e6e3b9f,0x1c5fc34f,0x004fe342,
  18295. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  18296. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0
  18297. },
  18298. /* Z ordinate */
  18299. {
  18300. 0x00000001,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
  18301. 0x00000000,0x00000000,0x00000000,
  18302. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  18303. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0
  18304. },
  18305. /* infinity */
  18306. 0
  18307. };
  18308. #if defined(HAVE_ECC_CHECK_KEY) || defined(HAVE_COMP_KEY)
  18309. static const sp_digit p256_b[9] = {
  18310. 0x07d2604b,0x1e71e1f1,0x14ec3d8e,0x1a0d6198,0x086bc651,0x1eaabb4c,
  18311. 0x0f9ecfae,0x1b154752,0x005ac635
  18312. };
  18313. #endif
  18314. #ifdef WOLFSSL_SP_SMALL
  18315. /* Multiply a and b into r. (r = a * b)
  18316. *
  18317. * r A single precision integer.
  18318. * a A single precision integer.
  18319. * b A single precision integer.
  18320. */
  18321. SP_NOINLINE static void sp_256_mul_9(sp_digit* r, const sp_digit* a,
  18322. const sp_digit* b)
  18323. {
  18324. int i;
  18325. int imax;
  18326. int k;
  18327. sp_uint64 c;
  18328. sp_uint64 lo;
  18329. c = ((sp_uint64)a[8]) * b[8];
  18330. r[17] = (sp_digit)(c >> 29);
  18331. c &= 0x1fffffff;
  18332. for (k = 15; k >= 0; k--) {
  18333. if (k >= 9) {
  18334. i = k - 8;
  18335. imax = 8;
  18336. }
  18337. else {
  18338. i = 0;
  18339. imax = k;
  18340. }
  18341. lo = 0;
  18342. for (; i <= imax; i++) {
  18343. lo += ((sp_uint64)a[i]) * b[k - i];
  18344. }
  18345. c += lo >> 29;
  18346. r[k + 2] += (sp_digit)(c >> 29);
  18347. r[k + 1] = (sp_digit)(c & 0x1fffffff);
  18348. c = lo & 0x1fffffff;
  18349. }
  18350. r[0] = (sp_digit)c;
  18351. }
  18352. #else
  18353. /* Multiply a and b into r. (r = a * b)
  18354. *
  18355. * r A single precision integer.
  18356. * a A single precision integer.
  18357. * b A single precision integer.
  18358. */
  18359. SP_NOINLINE static void sp_256_mul_9(sp_digit* r, const sp_digit* a,
  18360. const sp_digit* b)
  18361. {
  18362. sp_int64 t0;
  18363. sp_int64 t1;
  18364. sp_digit t[9];
  18365. t0 = ((sp_int64)a[ 0]) * b[ 0];
  18366. t1 = ((sp_int64)a[ 0]) * b[ 1]
  18367. + ((sp_int64)a[ 1]) * b[ 0];
  18368. t[ 0] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18369. t0 = ((sp_int64)a[ 0]) * b[ 2]
  18370. + ((sp_int64)a[ 1]) * b[ 1]
  18371. + ((sp_int64)a[ 2]) * b[ 0];
  18372. t[ 1] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18373. t1 = ((sp_int64)a[ 0]) * b[ 3]
  18374. + ((sp_int64)a[ 1]) * b[ 2]
  18375. + ((sp_int64)a[ 2]) * b[ 1]
  18376. + ((sp_int64)a[ 3]) * b[ 0];
  18377. t[ 2] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18378. t0 = ((sp_int64)a[ 0]) * b[ 4]
  18379. + ((sp_int64)a[ 1]) * b[ 3]
  18380. + ((sp_int64)a[ 2]) * b[ 2]
  18381. + ((sp_int64)a[ 3]) * b[ 1]
  18382. + ((sp_int64)a[ 4]) * b[ 0];
  18383. t[ 3] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18384. t1 = ((sp_int64)a[ 0]) * b[ 5]
  18385. + ((sp_int64)a[ 1]) * b[ 4]
  18386. + ((sp_int64)a[ 2]) * b[ 3]
  18387. + ((sp_int64)a[ 3]) * b[ 2]
  18388. + ((sp_int64)a[ 4]) * b[ 1]
  18389. + ((sp_int64)a[ 5]) * b[ 0];
  18390. t[ 4] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18391. t0 = ((sp_int64)a[ 0]) * b[ 6]
  18392. + ((sp_int64)a[ 1]) * b[ 5]
  18393. + ((sp_int64)a[ 2]) * b[ 4]
  18394. + ((sp_int64)a[ 3]) * b[ 3]
  18395. + ((sp_int64)a[ 4]) * b[ 2]
  18396. + ((sp_int64)a[ 5]) * b[ 1]
  18397. + ((sp_int64)a[ 6]) * b[ 0];
  18398. t[ 5] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18399. t1 = ((sp_int64)a[ 0]) * b[ 7]
  18400. + ((sp_int64)a[ 1]) * b[ 6]
  18401. + ((sp_int64)a[ 2]) * b[ 5]
  18402. + ((sp_int64)a[ 3]) * b[ 4]
  18403. + ((sp_int64)a[ 4]) * b[ 3]
  18404. + ((sp_int64)a[ 5]) * b[ 2]
  18405. + ((sp_int64)a[ 6]) * b[ 1]
  18406. + ((sp_int64)a[ 7]) * b[ 0];
  18407. t[ 6] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18408. t0 = ((sp_int64)a[ 0]) * b[ 8]
  18409. + ((sp_int64)a[ 1]) * b[ 7]
  18410. + ((sp_int64)a[ 2]) * b[ 6]
  18411. + ((sp_int64)a[ 3]) * b[ 5]
  18412. + ((sp_int64)a[ 4]) * b[ 4]
  18413. + ((sp_int64)a[ 5]) * b[ 3]
  18414. + ((sp_int64)a[ 6]) * b[ 2]
  18415. + ((sp_int64)a[ 7]) * b[ 1]
  18416. + ((sp_int64)a[ 8]) * b[ 0];
  18417. t[ 7] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18418. t1 = ((sp_int64)a[ 1]) * b[ 8]
  18419. + ((sp_int64)a[ 2]) * b[ 7]
  18420. + ((sp_int64)a[ 3]) * b[ 6]
  18421. + ((sp_int64)a[ 4]) * b[ 5]
  18422. + ((sp_int64)a[ 5]) * b[ 4]
  18423. + ((sp_int64)a[ 6]) * b[ 3]
  18424. + ((sp_int64)a[ 7]) * b[ 2]
  18425. + ((sp_int64)a[ 8]) * b[ 1];
  18426. t[ 8] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18427. t0 = ((sp_int64)a[ 2]) * b[ 8]
  18428. + ((sp_int64)a[ 3]) * b[ 7]
  18429. + ((sp_int64)a[ 4]) * b[ 6]
  18430. + ((sp_int64)a[ 5]) * b[ 5]
  18431. + ((sp_int64)a[ 6]) * b[ 4]
  18432. + ((sp_int64)a[ 7]) * b[ 3]
  18433. + ((sp_int64)a[ 8]) * b[ 2];
  18434. r[ 9] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18435. t1 = ((sp_int64)a[ 3]) * b[ 8]
  18436. + ((sp_int64)a[ 4]) * b[ 7]
  18437. + ((sp_int64)a[ 5]) * b[ 6]
  18438. + ((sp_int64)a[ 6]) * b[ 5]
  18439. + ((sp_int64)a[ 7]) * b[ 4]
  18440. + ((sp_int64)a[ 8]) * b[ 3];
  18441. r[10] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18442. t0 = ((sp_int64)a[ 4]) * b[ 8]
  18443. + ((sp_int64)a[ 5]) * b[ 7]
  18444. + ((sp_int64)a[ 6]) * b[ 6]
  18445. + ((sp_int64)a[ 7]) * b[ 5]
  18446. + ((sp_int64)a[ 8]) * b[ 4];
  18447. r[11] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18448. t1 = ((sp_int64)a[ 5]) * b[ 8]
  18449. + ((sp_int64)a[ 6]) * b[ 7]
  18450. + ((sp_int64)a[ 7]) * b[ 6]
  18451. + ((sp_int64)a[ 8]) * b[ 5];
  18452. r[12] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18453. t0 = ((sp_int64)a[ 6]) * b[ 8]
  18454. + ((sp_int64)a[ 7]) * b[ 7]
  18455. + ((sp_int64)a[ 8]) * b[ 6];
  18456. r[13] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18457. t1 = ((sp_int64)a[ 7]) * b[ 8]
  18458. + ((sp_int64)a[ 8]) * b[ 7];
  18459. r[14] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18460. t0 = ((sp_int64)a[ 8]) * b[ 8];
  18461. r[15] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18462. r[16] = t0 & 0x1fffffff;
  18463. r[17] = (sp_digit)(t0 >> 29);
  18464. XMEMCPY(r, t, sizeof(t));
  18465. }
  18466. #endif /* WOLFSSL_SP_SMALL */
  18467. #ifdef WOLFSSL_SP_SMALL
  18468. /* Square a and put result in r. (r = a * a)
  18469. *
  18470. * r A single precision integer.
  18471. * a A single precision integer.
  18472. */
  18473. SP_NOINLINE static void sp_256_sqr_9(sp_digit* r, const sp_digit* a)
  18474. {
  18475. int i;
  18476. int imax;
  18477. int k;
  18478. sp_uint64 c;
  18479. sp_uint64 t;
  18480. c = ((sp_uint64)a[8]) * a[8];
  18481. r[17] = (sp_digit)(c >> 29);
  18482. c = (c & 0x1fffffff) << 29;
  18483. for (k = 15; k >= 0; k--) {
  18484. i = (k + 1) / 2;
  18485. if ((k & 1) == 0) {
  18486. c += ((sp_uint64)a[i]) * a[i];
  18487. i++;
  18488. }
  18489. if (k < 8) {
  18490. imax = k;
  18491. }
  18492. else {
  18493. imax = 8;
  18494. }
  18495. t = 0;
  18496. for (; i <= imax; i++) {
  18497. t += ((sp_uint64)a[i]) * a[k - i];
  18498. }
  18499. c += t * 2;
  18500. r[k + 2] += (sp_digit) (c >> 58);
  18501. r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
  18502. c = (c & 0x1fffffff) << 29;
  18503. }
  18504. r[0] = (sp_digit)(c >> 29);
  18505. }
  18506. #else
  18507. /* Square a and put result in r. (r = a * a)
  18508. *
  18509. * r A single precision integer.
  18510. * a A single precision integer.
  18511. */
  18512. SP_NOINLINE static void sp_256_sqr_9(sp_digit* r, const sp_digit* a)
  18513. {
  18514. sp_int64 t0;
  18515. sp_int64 t1;
  18516. sp_digit t[9];
  18517. t0 = ((sp_int64)a[ 0]) * a[ 0];
  18518. t1 = (((sp_int64)a[ 0]) * a[ 1]) * 2;
  18519. t[ 0] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18520. t0 = (((sp_int64)a[ 0]) * a[ 2]) * 2
  18521. + ((sp_int64)a[ 1]) * a[ 1];
  18522. t[ 1] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18523. t1 = (((sp_int64)a[ 0]) * a[ 3]
  18524. + ((sp_int64)a[ 1]) * a[ 2]) * 2;
  18525. t[ 2] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18526. t0 = (((sp_int64)a[ 0]) * a[ 4]
  18527. + ((sp_int64)a[ 1]) * a[ 3]) * 2
  18528. + ((sp_int64)a[ 2]) * a[ 2];
  18529. t[ 3] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18530. t1 = (((sp_int64)a[ 0]) * a[ 5]
  18531. + ((sp_int64)a[ 1]) * a[ 4]
  18532. + ((sp_int64)a[ 2]) * a[ 3]) * 2;
  18533. t[ 4] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18534. t0 = (((sp_int64)a[ 0]) * a[ 6]
  18535. + ((sp_int64)a[ 1]) * a[ 5]
  18536. + ((sp_int64)a[ 2]) * a[ 4]) * 2
  18537. + ((sp_int64)a[ 3]) * a[ 3];
  18538. t[ 5] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18539. t1 = (((sp_int64)a[ 0]) * a[ 7]
  18540. + ((sp_int64)a[ 1]) * a[ 6]
  18541. + ((sp_int64)a[ 2]) * a[ 5]
  18542. + ((sp_int64)a[ 3]) * a[ 4]) * 2;
  18543. t[ 6] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18544. t0 = (((sp_int64)a[ 0]) * a[ 8]
  18545. + ((sp_int64)a[ 1]) * a[ 7]
  18546. + ((sp_int64)a[ 2]) * a[ 6]
  18547. + ((sp_int64)a[ 3]) * a[ 5]) * 2
  18548. + ((sp_int64)a[ 4]) * a[ 4];
  18549. t[ 7] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18550. t1 = (((sp_int64)a[ 1]) * a[ 8]
  18551. + ((sp_int64)a[ 2]) * a[ 7]
  18552. + ((sp_int64)a[ 3]) * a[ 6]
  18553. + ((sp_int64)a[ 4]) * a[ 5]) * 2;
  18554. t[ 8] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18555. t0 = (((sp_int64)a[ 2]) * a[ 8]
  18556. + ((sp_int64)a[ 3]) * a[ 7]
  18557. + ((sp_int64)a[ 4]) * a[ 6]) * 2
  18558. + ((sp_int64)a[ 5]) * a[ 5];
  18559. r[ 9] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18560. t1 = (((sp_int64)a[ 3]) * a[ 8]
  18561. + ((sp_int64)a[ 4]) * a[ 7]
  18562. + ((sp_int64)a[ 5]) * a[ 6]) * 2;
  18563. r[10] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18564. t0 = (((sp_int64)a[ 4]) * a[ 8]
  18565. + ((sp_int64)a[ 5]) * a[ 7]) * 2
  18566. + ((sp_int64)a[ 6]) * a[ 6];
  18567. r[11] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18568. t1 = (((sp_int64)a[ 5]) * a[ 8]
  18569. + ((sp_int64)a[ 6]) * a[ 7]) * 2;
  18570. r[12] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18571. t0 = (((sp_int64)a[ 6]) * a[ 8]) * 2
  18572. + ((sp_int64)a[ 7]) * a[ 7];
  18573. r[13] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18574. t1 = (((sp_int64)a[ 7]) * a[ 8]) * 2;
  18575. r[14] = t0 & 0x1fffffff; t1 += t0 >> 29;
  18576. t0 = ((sp_int64)a[ 8]) * a[ 8];
  18577. r[15] = t1 & 0x1fffffff; t0 += t1 >> 29;
  18578. r[16] = t0 & 0x1fffffff;
  18579. r[17] = (sp_digit)(t0 >> 29);
  18580. XMEMCPY(r, t, sizeof(t));
  18581. }
  18582. #endif /* WOLFSSL_SP_SMALL */
  18583. #ifdef WOLFSSL_SP_SMALL
  18584. /* Add b to a into r. (r = a + b)
  18585. *
  18586. * r A single precision integer.
  18587. * a A single precision integer.
  18588. * b A single precision integer.
  18589. */
  18590. SP_NOINLINE static int sp_256_add_9(sp_digit* r, const sp_digit* a,
  18591. const sp_digit* b)
  18592. {
  18593. int i;
  18594. for (i = 0; i < 9; i++) {
  18595. r[i] = a[i] + b[i];
  18596. }
  18597. return 0;
  18598. }
  18599. #else
  18600. /* Add b to a into r. (r = a + b)
  18601. *
  18602. * r A single precision integer.
  18603. * a A single precision integer.
  18604. * b A single precision integer.
  18605. */
  18606. SP_NOINLINE static int sp_256_add_9(sp_digit* r, const sp_digit* a,
  18607. const sp_digit* b)
  18608. {
  18609. r[ 0] = a[ 0] + b[ 0];
  18610. r[ 1] = a[ 1] + b[ 1];
  18611. r[ 2] = a[ 2] + b[ 2];
  18612. r[ 3] = a[ 3] + b[ 3];
  18613. r[ 4] = a[ 4] + b[ 4];
  18614. r[ 5] = a[ 5] + b[ 5];
  18615. r[ 6] = a[ 6] + b[ 6];
  18616. r[ 7] = a[ 7] + b[ 7];
  18617. r[ 8] = a[ 8] + b[ 8];
  18618. return 0;
  18619. }
  18620. #endif /* WOLFSSL_SP_SMALL */
  18621. #ifdef WOLFSSL_SP_SMALL
  18622. /* Sub b from a into r. (r = a - b)
  18623. *
  18624. * r A single precision integer.
  18625. * a A single precision integer.
  18626. * b A single precision integer.
  18627. */
  18628. SP_NOINLINE static int sp_256_sub_9(sp_digit* r, const sp_digit* a,
  18629. const sp_digit* b)
  18630. {
  18631. int i;
  18632. for (i = 0; i < 9; i++) {
  18633. r[i] = a[i] - b[i];
  18634. }
  18635. return 0;
  18636. }
  18637. #else
  18638. /* Sub b from a into r. (r = a - b)
  18639. *
  18640. * r A single precision integer.
  18641. * a A single precision integer.
  18642. * b A single precision integer.
  18643. */
  18644. SP_NOINLINE static int sp_256_sub_9(sp_digit* r, const sp_digit* a,
  18645. const sp_digit* b)
  18646. {
  18647. r[ 0] = a[ 0] - b[ 0];
  18648. r[ 1] = a[ 1] - b[ 1];
  18649. r[ 2] = a[ 2] - b[ 2];
  18650. r[ 3] = a[ 3] - b[ 3];
  18651. r[ 4] = a[ 4] - b[ 4];
  18652. r[ 5] = a[ 5] - b[ 5];
  18653. r[ 6] = a[ 6] - b[ 6];
  18654. r[ 7] = a[ 7] - b[ 7];
  18655. r[ 8] = a[ 8] - b[ 8];
  18656. return 0;
  18657. }
  18658. #endif /* WOLFSSL_SP_SMALL */
  18659. /* Convert an mp_int to an array of sp_digit.
  18660. *
  18661. * r A single precision integer.
  18662. * size Maximum number of bytes to convert
  18663. * a A multi-precision integer.
  18664. */
  18665. static void sp_256_from_mp(sp_digit* r, int size, const mp_int* a)
  18666. {
  18667. #if DIGIT_BIT == 29
  18668. int i;
  18669. sp_digit j = (sp_digit)0 - (sp_digit)a->used;
  18670. int o = 0;
  18671. for (i = 0; i < size; i++) {
  18672. sp_digit mask = (sp_digit)0 - (j >> 28);
  18673. r[i] = a->dp[o] & mask;
  18674. j++;
  18675. o += (int)(j >> 28);
  18676. }
  18677. #elif DIGIT_BIT > 29
  18678. unsigned int i;
  18679. int j = 0;
  18680. word32 s = 0;
  18681. r[0] = 0;
  18682. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  18683. r[j] |= ((sp_digit)a->dp[i] << s);
  18684. r[j] &= 0x1fffffff;
  18685. s = 29U - s;
  18686. if (j + 1 >= size) {
  18687. break;
  18688. }
  18689. /* lint allow cast of mismatch word32 and mp_digit */
  18690. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  18691. while ((s + 29U) <= (word32)DIGIT_BIT) {
  18692. s += 29U;
  18693. r[j] &= 0x1fffffff;
  18694. if (j + 1 >= size) {
  18695. break;
  18696. }
  18697. if (s < (word32)DIGIT_BIT) {
  18698. /* lint allow cast of mismatch word32 and mp_digit */
  18699. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  18700. }
  18701. else {
  18702. r[++j] = (sp_digit)0;
  18703. }
  18704. }
  18705. s = (word32)DIGIT_BIT - s;
  18706. }
  18707. for (j++; j < size; j++) {
  18708. r[j] = 0;
  18709. }
  18710. #else
  18711. unsigned int i;
  18712. int j = 0;
  18713. int s = 0;
  18714. r[0] = 0;
  18715. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  18716. r[j] |= ((sp_digit)a->dp[i]) << s;
  18717. if (s + DIGIT_BIT >= 29) {
  18718. r[j] &= 0x1fffffff;
  18719. if (j + 1 >= size) {
  18720. break;
  18721. }
  18722. s = 29 - s;
  18723. if (s == DIGIT_BIT) {
  18724. r[++j] = 0;
  18725. s = 0;
  18726. }
  18727. else {
  18728. r[++j] = a->dp[i] >> s;
  18729. s = DIGIT_BIT - s;
  18730. }
  18731. }
  18732. else {
  18733. s += DIGIT_BIT;
  18734. }
  18735. }
  18736. for (j++; j < size; j++) {
  18737. r[j] = 0;
  18738. }
  18739. #endif
  18740. }
  18741. /* Convert a point of type ecc_point to type sp_point_256.
  18742. *
  18743. * p Point of type sp_point_256 (result).
  18744. * pm Point of type ecc_point.
  18745. */
  18746. static void sp_256_point_from_ecc_point_9(sp_point_256* p,
  18747. const ecc_point* pm)
  18748. {
  18749. XMEMSET(p->x, 0, sizeof(p->x));
  18750. XMEMSET(p->y, 0, sizeof(p->y));
  18751. XMEMSET(p->z, 0, sizeof(p->z));
  18752. sp_256_from_mp(p->x, 9, pm->x);
  18753. sp_256_from_mp(p->y, 9, pm->y);
  18754. sp_256_from_mp(p->z, 9, pm->z);
  18755. p->infinity = 0;
  18756. }
  18757. /* Convert an array of sp_digit to an mp_int.
  18758. *
  18759. * a A single precision integer.
  18760. * r A multi-precision integer.
  18761. */
  18762. static int sp_256_to_mp(const sp_digit* a, mp_int* r)
  18763. {
  18764. int err;
  18765. err = mp_grow(r, (256 + DIGIT_BIT - 1) / DIGIT_BIT);
  18766. if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
  18767. #if DIGIT_BIT == 29
  18768. XMEMCPY(r->dp, a, sizeof(sp_digit) * 9);
  18769. r->used = 9;
  18770. mp_clamp(r);
  18771. #elif DIGIT_BIT < 29
  18772. int i;
  18773. int j = 0;
  18774. int s = 0;
  18775. r->dp[0] = 0;
  18776. for (i = 0; i < 9; i++) {
  18777. r->dp[j] |= (mp_digit)(a[i] << s);
  18778. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  18779. s = DIGIT_BIT - s;
  18780. r->dp[++j] = (mp_digit)(a[i] >> s);
  18781. while (s + DIGIT_BIT <= 29) {
  18782. s += DIGIT_BIT;
  18783. r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  18784. if (s == SP_WORD_SIZE) {
  18785. r->dp[j] = 0;
  18786. }
  18787. else {
  18788. r->dp[j] = (mp_digit)(a[i] >> s);
  18789. }
  18790. }
  18791. s = 29 - s;
  18792. }
  18793. r->used = (256 + DIGIT_BIT - 1) / DIGIT_BIT;
  18794. mp_clamp(r);
  18795. #else
  18796. int i;
  18797. int j = 0;
  18798. int s = 0;
  18799. r->dp[0] = 0;
  18800. for (i = 0; i < 9; i++) {
  18801. r->dp[j] |= ((mp_digit)a[i]) << s;
  18802. if (s + 29 >= DIGIT_BIT) {
  18803. #if DIGIT_BIT != 32 && DIGIT_BIT != 64
  18804. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  18805. #endif
  18806. s = DIGIT_BIT - s;
  18807. r->dp[++j] = a[i] >> s;
  18808. s = 29 - s;
  18809. }
  18810. else {
  18811. s += 29;
  18812. }
  18813. }
  18814. r->used = (256 + DIGIT_BIT - 1) / DIGIT_BIT;
  18815. mp_clamp(r);
  18816. #endif
  18817. }
  18818. return err;
  18819. }
  18820. /* Convert a point of type sp_point_256 to type ecc_point.
  18821. *
  18822. * p Point of type sp_point_256.
  18823. * pm Point of type ecc_point (result).
  18824. * returns MEMORY_E when allocation of memory in ecc_point fails otherwise
  18825. * MP_OKAY.
  18826. */
  18827. static int sp_256_point_to_ecc_point_9(const sp_point_256* p, ecc_point* pm)
  18828. {
  18829. int err;
  18830. err = sp_256_to_mp(p->x, pm->x);
  18831. if (err == MP_OKAY) {
  18832. err = sp_256_to_mp(p->y, pm->y);
  18833. }
  18834. if (err == MP_OKAY) {
  18835. err = sp_256_to_mp(p->z, pm->z);
  18836. }
  18837. return err;
  18838. }
  18839. /* Compare a with b in constant time.
  18840. *
  18841. * a A single precision integer.
  18842. * b A single precision integer.
  18843. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  18844. * respectively.
  18845. */
  18846. static sp_digit sp_256_cmp_9(const sp_digit* a, const sp_digit* b)
  18847. {
  18848. sp_digit r = 0;
  18849. #ifdef WOLFSSL_SP_SMALL
  18850. int i;
  18851. for (i=8; i>=0; i--) {
  18852. r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
  18853. }
  18854. #else
  18855. r |= (a[ 8] - b[ 8]) & (0 - (sp_digit)1);
  18856. r |= (a[ 7] - b[ 7]) & ~(((sp_digit)0 - r) >> 28);
  18857. r |= (a[ 6] - b[ 6]) & ~(((sp_digit)0 - r) >> 28);
  18858. r |= (a[ 5] - b[ 5]) & ~(((sp_digit)0 - r) >> 28);
  18859. r |= (a[ 4] - b[ 4]) & ~(((sp_digit)0 - r) >> 28);
  18860. r |= (a[ 3] - b[ 3]) & ~(((sp_digit)0 - r) >> 28);
  18861. r |= (a[ 2] - b[ 2]) & ~(((sp_digit)0 - r) >> 28);
  18862. r |= (a[ 1] - b[ 1]) & ~(((sp_digit)0 - r) >> 28);
  18863. r |= (a[ 0] - b[ 0]) & ~(((sp_digit)0 - r) >> 28);
  18864. #endif /* WOLFSSL_SP_SMALL */
  18865. return r;
  18866. }
  18867. /* Conditionally subtract b from a using the mask m.
  18868. * m is -1 to subtract and 0 when not.
  18869. *
  18870. * r A single precision number representing condition subtract result.
  18871. * a A single precision number to subtract from.
  18872. * b A single precision number to subtract.
  18873. * m Mask value to apply.
  18874. */
  18875. static void sp_256_cond_sub_9(sp_digit* r, const sp_digit* a,
  18876. const sp_digit* b, const sp_digit m)
  18877. {
  18878. #ifdef WOLFSSL_SP_SMALL
  18879. int i;
  18880. for (i = 0; i < 9; i++) {
  18881. r[i] = a[i] - (b[i] & m);
  18882. }
  18883. #else
  18884. r[ 0] = a[ 0] - (b[ 0] & m);
  18885. r[ 1] = a[ 1] - (b[ 1] & m);
  18886. r[ 2] = a[ 2] - (b[ 2] & m);
  18887. r[ 3] = a[ 3] - (b[ 3] & m);
  18888. r[ 4] = a[ 4] - (b[ 4] & m);
  18889. r[ 5] = a[ 5] - (b[ 5] & m);
  18890. r[ 6] = a[ 6] - (b[ 6] & m);
  18891. r[ 7] = a[ 7] - (b[ 7] & m);
  18892. r[ 8] = a[ 8] - (b[ 8] & m);
  18893. #endif /* WOLFSSL_SP_SMALL */
  18894. }
  18895. /* Mul a by scalar b and add into r. (r += a * b)
  18896. *
  18897. * r A single precision integer.
  18898. * a A single precision integer.
  18899. * b A scalar.
  18900. */
  18901. SP_NOINLINE static void sp_256_mul_add_9(sp_digit* r, const sp_digit* a,
  18902. const sp_digit b)
  18903. {
  18904. #ifndef WOLFSSL_SP_LARGE_CODE
  18905. sp_int64 tb = b;
  18906. sp_int64 t = 0;
  18907. int i;
  18908. for (i = 0; i < 9; i++) {
  18909. t += r[i];
  18910. t += tb * a[i];
  18911. r[i] = ((sp_digit)t) & 0x1fffffff;
  18912. t >>= 29;
  18913. }
  18914. r[9] += (sp_digit)t;
  18915. #else
  18916. #ifdef WOLFSSL_SP_SMALL
  18917. sp_int64 tb = b;
  18918. sp_int64 t[4];
  18919. int i;
  18920. t[0] = 0;
  18921. for (i = 0; i < 8; i += 4) {
  18922. t[0] += (tb * a[i+0]) + r[i+0];
  18923. t[1] = (tb * a[i+1]) + r[i+1];
  18924. t[2] = (tb * a[i+2]) + r[i+2];
  18925. t[3] = (tb * a[i+3]) + r[i+3];
  18926. r[i+0] = t[0] & 0x1fffffff;
  18927. t[1] += t[0] >> 29;
  18928. r[i+1] = t[1] & 0x1fffffff;
  18929. t[2] += t[1] >> 29;
  18930. r[i+2] = t[2] & 0x1fffffff;
  18931. t[3] += t[2] >> 29;
  18932. r[i+3] = t[3] & 0x1fffffff;
  18933. t[0] = t[3] >> 29;
  18934. }
  18935. t[0] += (tb * a[8]) + r[8];
  18936. r[8] = t[0] & 0x1fffffff;
  18937. r[9] += (sp_digit)(t[0] >> 29);
  18938. #else
  18939. sp_int64 tb = b;
  18940. sp_int64 t[8];
  18941. int i;
  18942. t[0] = 0;
  18943. for (i = 0; i < 8; i += 8) {
  18944. t[0] += (tb * a[i+0]) + r[i+0];
  18945. t[1] = (tb * a[i+1]) + r[i+1];
  18946. t[2] = (tb * a[i+2]) + r[i+2];
  18947. t[3] = (tb * a[i+3]) + r[i+3];
  18948. t[4] = (tb * a[i+4]) + r[i+4];
  18949. t[5] = (tb * a[i+5]) + r[i+5];
  18950. t[6] = (tb * a[i+6]) + r[i+6];
  18951. t[7] = (tb * a[i+7]) + r[i+7];
  18952. r[i+0] = t[0] & 0x1fffffff;
  18953. t[1] += t[0] >> 29;
  18954. r[i+1] = t[1] & 0x1fffffff;
  18955. t[2] += t[1] >> 29;
  18956. r[i+2] = t[2] & 0x1fffffff;
  18957. t[3] += t[2] >> 29;
  18958. r[i+3] = t[3] & 0x1fffffff;
  18959. t[4] += t[3] >> 29;
  18960. r[i+4] = t[4] & 0x1fffffff;
  18961. t[5] += t[4] >> 29;
  18962. r[i+5] = t[5] & 0x1fffffff;
  18963. t[6] += t[5] >> 29;
  18964. r[i+6] = t[6] & 0x1fffffff;
  18965. t[7] += t[6] >> 29;
  18966. r[i+7] = t[7] & 0x1fffffff;
  18967. t[0] = t[7] >> 29;
  18968. }
  18969. t[0] += (tb * a[8]) + r[8];
  18970. r[8] = t[0] & 0x1fffffff;
  18971. r[9] += (sp_digit)(t[0] >> 29);
  18972. #endif /* WOLFSSL_SP_SMALL */
  18973. #endif /* !WOLFSSL_SP_LARGE_CODE */
  18974. }
  18975. /* Normalize the values in each word to 29 bits.
  18976. *
  18977. * a Array of sp_digit to normalize.
  18978. */
  18979. static void sp_256_norm_9(sp_digit* a)
  18980. {
  18981. #ifdef WOLFSSL_SP_SMALL
  18982. int i;
  18983. for (i = 0; i < 8; i++) {
  18984. a[i+1] += a[i] >> 29;
  18985. a[i] &= 0x1fffffff;
  18986. }
  18987. #else
  18988. a[1] += a[0] >> 29; a[0] &= 0x1fffffff;
  18989. a[2] += a[1] >> 29; a[1] &= 0x1fffffff;
  18990. a[3] += a[2] >> 29; a[2] &= 0x1fffffff;
  18991. a[4] += a[3] >> 29; a[3] &= 0x1fffffff;
  18992. a[5] += a[4] >> 29; a[4] &= 0x1fffffff;
  18993. a[6] += a[5] >> 29; a[5] &= 0x1fffffff;
  18994. a[7] += a[6] >> 29; a[6] &= 0x1fffffff;
  18995. a[8] += a[7] >> 29; a[7] &= 0x1fffffff;
  18996. #endif /* WOLFSSL_SP_SMALL */
  18997. }
  18998. /* Shift the result in the high 256 bits down to the bottom.
  18999. *
  19000. * r A single precision number.
  19001. * a A single precision number.
  19002. */
  19003. static void sp_256_mont_shift_9(sp_digit* r, const sp_digit* a)
  19004. {
  19005. #ifdef WOLFSSL_SP_SMALL
  19006. int i;
  19007. sp_int64 n = a[8] >> 24;
  19008. n += ((sp_int64)a[9]) << 5;
  19009. for (i = 0; i < 8; i++) {
  19010. r[i] = n & 0x1fffffff;
  19011. n >>= 29;
  19012. n += ((sp_int64)a[10 + i]) << 5;
  19013. }
  19014. r[8] = (sp_digit)n;
  19015. #else
  19016. sp_int64 n = a[8] >> 24;
  19017. n += ((sp_int64)a[9]) << 5;
  19018. r[ 0] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[10]) << 5;
  19019. r[ 1] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[11]) << 5;
  19020. r[ 2] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[12]) << 5;
  19021. r[ 3] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[13]) << 5;
  19022. r[ 4] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[14]) << 5;
  19023. r[ 5] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[15]) << 5;
  19024. r[ 6] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[16]) << 5;
  19025. r[ 7] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[17]) << 5;
  19026. r[8] = (sp_digit)n;
  19027. #endif /* WOLFSSL_SP_SMALL */
  19028. XMEMSET(&r[9], 0, sizeof(*r) * 9U);
  19029. }
  19030. /* Reduce the number back to 256 bits using Montgomery reduction.
  19031. *
  19032. * a A single precision number to reduce in place.
  19033. * m The single precision number representing the modulus.
  19034. * mp The digit representing the negative inverse of m mod 2^n.
  19035. */
  19036. static void sp_256_mont_reduce_order_9(sp_digit* a, const sp_digit* m, sp_digit mp)
  19037. {
  19038. int i;
  19039. sp_digit mu;
  19040. sp_digit over;
  19041. sp_256_norm_9(a + 9);
  19042. for (i=0; i<8; i++) {
  19043. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
  19044. sp_256_mul_add_9(a+i, m, mu);
  19045. a[i+1] += a[i] >> 29;
  19046. }
  19047. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xffffffL;
  19048. sp_256_mul_add_9(a+i, m, mu);
  19049. a[i+1] += a[i] >> 29;
  19050. a[i] &= 0x1fffffff;
  19051. sp_256_mont_shift_9(a, a);
  19052. over = a[8] >> 24;
  19053. sp_256_cond_sub_9(a, a, m, ~((over - 1) >> 31));
  19054. sp_256_norm_9(a);
  19055. }
  19056. /* Reduce the number back to 256 bits using Montgomery reduction.
  19057. *
  19058. * a A single precision number to reduce in place.
  19059. * m The single precision number representing the modulus.
  19060. * mp The digit representing the negative inverse of m mod 2^n.
  19061. */
  19062. static void sp_256_mont_reduce_9(sp_digit* a, const sp_digit* m, sp_digit mp)
  19063. {
  19064. int i;
  19065. sp_digit am;
  19066. (void)m;
  19067. (void)mp;
  19068. for (i = 0; i < 8; i++) {
  19069. am = a[i] & 0x1fffffff;
  19070. a[i + 3] += (am << 9) & 0x1fffffff;
  19071. a[i + 4] += am >> 20;
  19072. a[i + 6] += (am << 18) & 0x1fffffff;
  19073. a[i + 7] += (am >> 11) - ((am << 21) & 0x1fffffff);
  19074. a[i + 8] += -(am >> 8) + ((am << 24) & 0x1fffffff);
  19075. a[i + 9] += am >> 5;
  19076. a[i + 1] += a[i] >> 29;
  19077. }
  19078. am = a[8] & 0xffffff;
  19079. a[8 + 3] += (am << 9) & 0x1fffffff;
  19080. a[8 + 4] += am >> 20;
  19081. a[8 + 6] += (am << 18) & 0x1fffffff;
  19082. a[8 + 7] += (am >> 11) - ((am << 21) & 0x1fffffff);
  19083. a[8 + 8] += -(am >> 8) + ((am << 24) & 0x1fffffff);
  19084. a[8 + 9] += am >> 5;
  19085. a[0] = (a[ 8] >> 24) + ((a[ 9] << 5) & 0x1fffffff);
  19086. a[1] = (a[ 9] >> 24) + ((a[10] << 5) & 0x1fffffff);
  19087. a[2] = (a[10] >> 24) + ((a[11] << 5) & 0x1fffffff);
  19088. a[3] = (a[11] >> 24) + ((a[12] << 5) & 0x1fffffff);
  19089. a[4] = (a[12] >> 24) + ((a[13] << 5) & 0x1fffffff);
  19090. a[5] = (a[13] >> 24) + ((a[14] << 5) & 0x1fffffff);
  19091. a[6] = (a[14] >> 24) + ((a[15] << 5) & 0x1fffffff);
  19092. a[7] = (a[15] >> 24) + ((a[16] << 5) & 0x1fffffff);
  19093. a[8] = (a[16] >> 24) + (a[17] << 5);
  19094. a[1] += a[0] >> 29; a[0] &= 0x1fffffff;
  19095. a[2] += a[1] >> 29; a[1] &= 0x1fffffff;
  19096. a[3] += a[2] >> 29; a[2] &= 0x1fffffff;
  19097. a[4] += a[3] >> 29; a[3] &= 0x1fffffff;
  19098. a[5] += a[4] >> 29; a[4] &= 0x1fffffff;
  19099. a[6] += a[5] >> 29; a[5] &= 0x1fffffff;
  19100. a[7] += a[6] >> 29; a[6] &= 0x1fffffff;
  19101. a[8] += a[7] >> 29; a[7] &= 0x1fffffff;
  19102. /* Get the bit over, if any. */
  19103. am = a[8] >> 24;
  19104. /* Create mask. */
  19105. am = 0 - am;
  19106. a[0] -= 0x1fffffff & am;
  19107. a[1] -= 0x1fffffff & am;
  19108. a[2] -= 0x1fffffff & am;
  19109. a[3] -= 0x000001ff & am;
  19110. /* p256_mod[4] is zero */
  19111. /* p256_mod[5] is zero */
  19112. a[6] -= 0x00040000 & am;
  19113. a[7] -= 0x1fe00000 & am;
  19114. a[8] -= 0x00ffffff & am;
  19115. a[1] += a[0] >> 29; a[0] &= 0x1fffffff;
  19116. a[2] += a[1] >> 29; a[1] &= 0x1fffffff;
  19117. a[3] += a[2] >> 29; a[2] &= 0x1fffffff;
  19118. a[4] += a[3] >> 29; a[3] &= 0x1fffffff;
  19119. a[5] += a[4] >> 29; a[4] &= 0x1fffffff;
  19120. a[6] += a[5] >> 29; a[5] &= 0x1fffffff;
  19121. a[7] += a[6] >> 29; a[6] &= 0x1fffffff;
  19122. a[8] += a[7] >> 29; a[7] &= 0x1fffffff;
  19123. }
  19124. /* Multiply two Montgomery form numbers mod the modulus (prime).
  19125. * (r = a * b mod m)
  19126. *
  19127. * r Result of multiplication.
  19128. * a First number to multiply in Montgomery form.
  19129. * b Second number to multiply in Montgomery form.
  19130. * m Modulus (prime).
  19131. * mp Montgomery multiplier.
  19132. */
  19133. SP_NOINLINE static void sp_256_mont_mul_9(sp_digit* r, const sp_digit* a,
  19134. const sp_digit* b, const sp_digit* m, sp_digit mp)
  19135. {
  19136. sp_256_mul_9(r, a, b);
  19137. sp_256_mont_reduce_9(r, m, mp);
  19138. }
  19139. /* Square the Montgomery form number. (r = a * a mod m)
  19140. *
  19141. * r Result of squaring.
  19142. * a Number to square in Montgomery form.
  19143. * m Modulus (prime).
  19144. * mp Montgomery multiplier.
  19145. */
  19146. SP_NOINLINE static void sp_256_mont_sqr_9(sp_digit* r, const sp_digit* a,
  19147. const sp_digit* m, sp_digit mp)
  19148. {
  19149. sp_256_sqr_9(r, a);
  19150. sp_256_mont_reduce_9(r, m, mp);
  19151. }
  19152. #if !defined(WOLFSSL_SP_SMALL) || defined(HAVE_COMP_KEY)
  19153. /* Square the Montgomery form number a number of times. (r = a ^ n mod m)
  19154. *
  19155. * r Result of squaring.
  19156. * a Number to square in Montgomery form.
  19157. * n Number of times to square.
  19158. * m Modulus (prime).
  19159. * mp Montgomery multiplier.
  19160. */
  19161. static void sp_256_mont_sqr_n_9(sp_digit* r, const sp_digit* a, int n,
  19162. const sp_digit* m, sp_digit mp)
  19163. {
  19164. sp_256_mont_sqr_9(r, a, m, mp);
  19165. for (; n > 1; n--) {
  19166. sp_256_mont_sqr_9(r, r, m, mp);
  19167. }
  19168. }
  19169. #endif /* !WOLFSSL_SP_SMALL || HAVE_COMP_KEY */
  19170. #ifdef WOLFSSL_SP_SMALL
  19171. /* Mod-2 for the P256 curve. */
  19172. static const uint32_t p256_mod_minus_2[8] = {
  19173. 0xfffffffdU,0xffffffffU,0xffffffffU,0x00000000U,0x00000000U,0x00000000U,
  19174. 0x00000001U,0xffffffffU
  19175. };
  19176. #endif /* !WOLFSSL_SP_SMALL */
  19177. /* Invert the number, in Montgomery form, modulo the modulus (prime) of the
  19178. * P256 curve. (r = 1 / a mod m)
  19179. *
  19180. * r Inverse result.
  19181. * a Number to invert.
  19182. * td Temporary data.
  19183. */
  19184. static void sp_256_mont_inv_9(sp_digit* r, const sp_digit* a, sp_digit* td)
  19185. {
  19186. #ifdef WOLFSSL_SP_SMALL
  19187. sp_digit* t = td;
  19188. int i;
  19189. XMEMCPY(t, a, sizeof(sp_digit) * 9);
  19190. for (i=254; i>=0; i--) {
  19191. sp_256_mont_sqr_9(t, t, p256_mod, p256_mp_mod);
  19192. if (p256_mod_minus_2[i / 32] & ((sp_digit)1 << (i % 32)))
  19193. sp_256_mont_mul_9(t, t, a, p256_mod, p256_mp_mod);
  19194. }
  19195. XMEMCPY(r, t, sizeof(sp_digit) * 9);
  19196. #else
  19197. sp_digit* t1 = td;
  19198. sp_digit* t2 = td + 2 * 9;
  19199. sp_digit* t3 = td + 4 * 9;
  19200. /* 0x2 */
  19201. sp_256_mont_sqr_9(t1, a, p256_mod, p256_mp_mod);
  19202. /* 0x3 */
  19203. sp_256_mont_mul_9(t2, t1, a, p256_mod, p256_mp_mod);
  19204. /* 0xc */
  19205. sp_256_mont_sqr_n_9(t1, t2, 2, p256_mod, p256_mp_mod);
  19206. /* 0xd */
  19207. sp_256_mont_mul_9(t3, t1, a, p256_mod, p256_mp_mod);
  19208. /* 0xf */
  19209. sp_256_mont_mul_9(t2, t2, t1, p256_mod, p256_mp_mod);
  19210. /* 0xf0 */
  19211. sp_256_mont_sqr_n_9(t1, t2, 4, p256_mod, p256_mp_mod);
  19212. /* 0xfd */
  19213. sp_256_mont_mul_9(t3, t3, t1, p256_mod, p256_mp_mod);
  19214. /* 0xff */
  19215. sp_256_mont_mul_9(t2, t2, t1, p256_mod, p256_mp_mod);
  19216. /* 0xff00 */
  19217. sp_256_mont_sqr_n_9(t1, t2, 8, p256_mod, p256_mp_mod);
  19218. /* 0xfffd */
  19219. sp_256_mont_mul_9(t3, t3, t1, p256_mod, p256_mp_mod);
  19220. /* 0xffff */
  19221. sp_256_mont_mul_9(t2, t2, t1, p256_mod, p256_mp_mod);
  19222. /* 0xffff0000 */
  19223. sp_256_mont_sqr_n_9(t1, t2, 16, p256_mod, p256_mp_mod);
  19224. /* 0xfffffffd */
  19225. sp_256_mont_mul_9(t3, t3, t1, p256_mod, p256_mp_mod);
  19226. /* 0xffffffff */
  19227. sp_256_mont_mul_9(t2, t2, t1, p256_mod, p256_mp_mod);
  19228. /* 0xffffffff00000000 */
  19229. sp_256_mont_sqr_n_9(t1, t2, 32, p256_mod, p256_mp_mod);
  19230. /* 0xffffffffffffffff */
  19231. sp_256_mont_mul_9(t2, t2, t1, p256_mod, p256_mp_mod);
  19232. /* 0xffffffff00000001 */
  19233. sp_256_mont_mul_9(r, t1, a, p256_mod, p256_mp_mod);
  19234. /* 0xffffffff000000010000000000000000000000000000000000000000 */
  19235. sp_256_mont_sqr_n_9(r, r, 160, p256_mod, p256_mp_mod);
  19236. /* 0xffffffff00000001000000000000000000000000ffffffffffffffff */
  19237. sp_256_mont_mul_9(r, r, t2, p256_mod, p256_mp_mod);
  19238. /* 0xffffffff00000001000000000000000000000000ffffffffffffffff00000000 */
  19239. sp_256_mont_sqr_n_9(r, r, 32, p256_mod, p256_mp_mod);
  19240. /* 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd */
  19241. sp_256_mont_mul_9(r, r, t3, p256_mod, p256_mp_mod);
  19242. #endif /* WOLFSSL_SP_SMALL */
  19243. }
  19244. /* Map the Montgomery form projective coordinate point to an affine point.
  19245. *
  19246. * r Resulting affine coordinate point.
  19247. * p Montgomery form projective coordinate point.
  19248. * t Temporary ordinate data.
  19249. */
  19250. static void sp_256_map_9(sp_point_256* r, const sp_point_256* p,
  19251. sp_digit* t)
  19252. {
  19253. sp_digit* t1 = t;
  19254. sp_digit* t2 = t + 2*9;
  19255. sp_int32 n;
  19256. sp_256_mont_inv_9(t1, p->z, t + 2*9);
  19257. sp_256_mont_sqr_9(t2, t1, p256_mod, p256_mp_mod);
  19258. sp_256_mont_mul_9(t1, t2, t1, p256_mod, p256_mp_mod);
  19259. /* x /= z^2 */
  19260. sp_256_mont_mul_9(r->x, p->x, t2, p256_mod, p256_mp_mod);
  19261. XMEMSET(r->x + 9, 0, sizeof(sp_digit) * 9U);
  19262. sp_256_mont_reduce_9(r->x, p256_mod, p256_mp_mod);
  19263. /* Reduce x to less than modulus */
  19264. n = sp_256_cmp_9(r->x, p256_mod);
  19265. sp_256_cond_sub_9(r->x, r->x, p256_mod, ~(n >> 28));
  19266. sp_256_norm_9(r->x);
  19267. /* y /= z^3 */
  19268. sp_256_mont_mul_9(r->y, p->y, t1, p256_mod, p256_mp_mod);
  19269. XMEMSET(r->y + 9, 0, sizeof(sp_digit) * 9U);
  19270. sp_256_mont_reduce_9(r->y, p256_mod, p256_mp_mod);
  19271. /* Reduce y to less than modulus */
  19272. n = sp_256_cmp_9(r->y, p256_mod);
  19273. sp_256_cond_sub_9(r->y, r->y, p256_mod, ~(n >> 28));
  19274. sp_256_norm_9(r->y);
  19275. XMEMSET(r->z, 0, sizeof(r->z) / 2);
  19276. r->z[0] = 1;
  19277. }
  19278. /* Add two Montgomery form numbers (r = a + b % m).
  19279. *
  19280. * r Result of addition.
  19281. * a First number to add in Montgomery form.
  19282. * b Second number to add in Montgomery form.
  19283. * m Modulus (prime).
  19284. */
  19285. static void sp_256_mont_add_9(sp_digit* r, const sp_digit* a, const sp_digit* b,
  19286. const sp_digit* m)
  19287. {
  19288. sp_digit over;
  19289. (void)sp_256_add_9(r, a, b);
  19290. sp_256_norm_9(r);
  19291. over = r[8] >> 24;
  19292. sp_256_cond_sub_9(r, r, m, ~((over - 1) >> 31));
  19293. sp_256_norm_9(r);
  19294. }
  19295. /* Double a Montgomery form number (r = a + a % m).
  19296. *
  19297. * r Result of doubling.
  19298. * a Number to double in Montgomery form.
  19299. * m Modulus (prime).
  19300. */
  19301. static void sp_256_mont_dbl_9(sp_digit* r, const sp_digit* a, const sp_digit* m)
  19302. {
  19303. sp_digit over;
  19304. (void)sp_256_add_9(r, a, a);
  19305. sp_256_norm_9(r);
  19306. over = r[8] >> 24;
  19307. sp_256_cond_sub_9(r, r, m, ~((over - 1) >> 31));
  19308. sp_256_norm_9(r);
  19309. }
  19310. /* Triple a Montgomery form number (r = a + a + a % m).
  19311. *
  19312. * r Result of Tripling.
  19313. * a Number to triple in Montgomery form.
  19314. * m Modulus (prime).
  19315. */
  19316. static void sp_256_mont_tpl_9(sp_digit* r, const sp_digit* a, const sp_digit* m)
  19317. {
  19318. sp_digit over;
  19319. (void)sp_256_add_9(r, a, a);
  19320. sp_256_norm_9(r);
  19321. over = r[8] >> 24;
  19322. sp_256_cond_sub_9(r, r, m, ~((over - 1) >> 31));
  19323. sp_256_norm_9(r);
  19324. (void)sp_256_add_9(r, r, a);
  19325. sp_256_norm_9(r);
  19326. over = r[8] >> 24;
  19327. sp_256_cond_sub_9(r, r, m, ~((over - 1) >> 31));
  19328. sp_256_norm_9(r);
  19329. }
  19330. #ifdef WOLFSSL_SP_SMALL
  19331. /* Conditionally add a and b using the mask m.
  19332. * m is -1 to add and 0 when not.
  19333. *
  19334. * r A single precision number representing conditional add result.
  19335. * a A single precision number to add with.
  19336. * b A single precision number to add.
  19337. * m Mask value to apply.
  19338. */
  19339. static void sp_256_cond_add_9(sp_digit* r, const sp_digit* a,
  19340. const sp_digit* b, const sp_digit m)
  19341. {
  19342. int i;
  19343. for (i = 0; i < 9; i++) {
  19344. r[i] = a[i] + (b[i] & m);
  19345. }
  19346. }
  19347. #endif /* WOLFSSL_SP_SMALL */
  19348. #ifndef WOLFSSL_SP_SMALL
  19349. /* Conditionally add a and b using the mask m.
  19350. * m is -1 to add and 0 when not.
  19351. *
  19352. * r A single precision number representing conditional add result.
  19353. * a A single precision number to add with.
  19354. * b A single precision number to add.
  19355. * m Mask value to apply.
  19356. */
  19357. static void sp_256_cond_add_9(sp_digit* r, const sp_digit* a,
  19358. const sp_digit* b, const sp_digit m)
  19359. {
  19360. r[ 0] = a[ 0] + (b[ 0] & m);
  19361. r[ 1] = a[ 1] + (b[ 1] & m);
  19362. r[ 2] = a[ 2] + (b[ 2] & m);
  19363. r[ 3] = a[ 3] + (b[ 3] & m);
  19364. r[ 4] = a[ 4] + (b[ 4] & m);
  19365. r[ 5] = a[ 5] + (b[ 5] & m);
  19366. r[ 6] = a[ 6] + (b[ 6] & m);
  19367. r[ 7] = a[ 7] + (b[ 7] & m);
  19368. r[ 8] = a[ 8] + (b[ 8] & m);
  19369. }
  19370. #endif /* !WOLFSSL_SP_SMALL */
  19371. /* Subtract two Montgomery form numbers (r = a - b % m).
  19372. *
  19373. * r Result of subtration.
  19374. * a Number to subtract from in Montgomery form.
  19375. * b Number to subtract with in Montgomery form.
  19376. * m Modulus (prime).
  19377. */
  19378. static void sp_256_mont_sub_9(sp_digit* r, const sp_digit* a, const sp_digit* b,
  19379. const sp_digit* m)
  19380. {
  19381. (void)sp_256_sub_9(r, a, b);
  19382. sp_256_norm_9(r);
  19383. sp_256_cond_add_9(r, r, m, r[8] >> 24);
  19384. sp_256_norm_9(r);
  19385. }
  19386. /* Shift number left one bit.
  19387. * Bottom bit is lost.
  19388. *
  19389. * r Result of shift.
  19390. * a Number to shift.
  19391. */
  19392. SP_NOINLINE static void sp_256_rshift1_9(sp_digit* r, const sp_digit* a)
  19393. {
  19394. #ifdef WOLFSSL_SP_SMALL
  19395. int i;
  19396. for (i=0; i<8; i++) {
  19397. r[i] = (a[i] >> 1) + ((a[i + 1] << 28) & 0x1fffffff);
  19398. }
  19399. #else
  19400. r[0] = (a[0] >> 1) + ((a[1] << 28) & 0x1fffffff);
  19401. r[1] = (a[1] >> 1) + ((a[2] << 28) & 0x1fffffff);
  19402. r[2] = (a[2] >> 1) + ((a[3] << 28) & 0x1fffffff);
  19403. r[3] = (a[3] >> 1) + ((a[4] << 28) & 0x1fffffff);
  19404. r[4] = (a[4] >> 1) + ((a[5] << 28) & 0x1fffffff);
  19405. r[5] = (a[5] >> 1) + ((a[6] << 28) & 0x1fffffff);
  19406. r[6] = (a[6] >> 1) + ((a[7] << 28) & 0x1fffffff);
  19407. r[7] = (a[7] >> 1) + ((a[8] << 28) & 0x1fffffff);
  19408. #endif
  19409. r[8] = a[8] >> 1;
  19410. }
  19411. /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m)
  19412. *
  19413. * r Result of division by 2.
  19414. * a Number to divide.
  19415. * m Modulus (prime).
  19416. */
  19417. static void sp_256_mont_div2_9(sp_digit* r, const sp_digit* a,
  19418. const sp_digit* m)
  19419. {
  19420. sp_256_cond_add_9(r, a, m, 0 - (a[0] & 1));
  19421. sp_256_norm_9(r);
  19422. sp_256_rshift1_9(r, r);
  19423. }
  19424. /* Double the Montgomery form projective point p.
  19425. *
  19426. * r Result of doubling point.
  19427. * p Point to double.
  19428. * t Temporary ordinate data.
  19429. */
  19430. static void sp_256_proj_point_dbl_9(sp_point_256* r, const sp_point_256* p,
  19431. sp_digit* t)
  19432. {
  19433. sp_digit* t1 = t;
  19434. sp_digit* t2 = t + 2*9;
  19435. sp_digit* x;
  19436. sp_digit* y;
  19437. sp_digit* z;
  19438. x = r->x;
  19439. y = r->y;
  19440. z = r->z;
  19441. /* Put infinity into result. */
  19442. if (r != p) {
  19443. r->infinity = p->infinity;
  19444. }
  19445. /* T1 = Z * Z */
  19446. sp_256_mont_sqr_9(t1, p->z, p256_mod, p256_mp_mod);
  19447. /* Z = Y * Z */
  19448. sp_256_mont_mul_9(z, p->y, p->z, p256_mod, p256_mp_mod);
  19449. /* Z = 2Z */
  19450. sp_256_mont_dbl_9(z, z, p256_mod);
  19451. /* T2 = X - T1 */
  19452. sp_256_mont_sub_9(t2, p->x, t1, p256_mod);
  19453. /* T1 = X + T1 */
  19454. sp_256_mont_add_9(t1, p->x, t1, p256_mod);
  19455. /* T2 = T1 * T2 */
  19456. sp_256_mont_mul_9(t2, t1, t2, p256_mod, p256_mp_mod);
  19457. /* T1 = 3T2 */
  19458. sp_256_mont_tpl_9(t1, t2, p256_mod);
  19459. /* Y = 2Y */
  19460. sp_256_mont_dbl_9(y, p->y, p256_mod);
  19461. /* Y = Y * Y */
  19462. sp_256_mont_sqr_9(y, y, p256_mod, p256_mp_mod);
  19463. /* T2 = Y * Y */
  19464. sp_256_mont_sqr_9(t2, y, p256_mod, p256_mp_mod);
  19465. /* T2 = T2/2 */
  19466. sp_256_mont_div2_9(t2, t2, p256_mod);
  19467. /* Y = Y * X */
  19468. sp_256_mont_mul_9(y, y, p->x, p256_mod, p256_mp_mod);
  19469. /* X = T1 * T1 */
  19470. sp_256_mont_sqr_9(x, t1, p256_mod, p256_mp_mod);
  19471. /* X = X - Y */
  19472. sp_256_mont_sub_9(x, x, y, p256_mod);
  19473. /* X = X - Y */
  19474. sp_256_mont_sub_9(x, x, y, p256_mod);
  19475. /* Y = Y - X */
  19476. sp_256_mont_sub_9(y, y, x, p256_mod);
  19477. /* Y = Y * T1 */
  19478. sp_256_mont_mul_9(y, y, t1, p256_mod, p256_mp_mod);
  19479. /* Y = Y - T2 */
  19480. sp_256_mont_sub_9(y, y, t2, p256_mod);
  19481. }
  19482. #ifdef WOLFSSL_SP_NONBLOCK
  19483. typedef struct sp_256_proj_point_dbl_9_ctx {
  19484. int state;
  19485. sp_digit* t1;
  19486. sp_digit* t2;
  19487. sp_digit* x;
  19488. sp_digit* y;
  19489. sp_digit* z;
  19490. } sp_256_proj_point_dbl_9_ctx;
  19491. /* Double the Montgomery form projective point p.
  19492. *
  19493. * r Result of doubling point.
  19494. * p Point to double.
  19495. * t Temporary ordinate data.
  19496. */
  19497. static int sp_256_proj_point_dbl_9_nb(sp_ecc_ctx_t* sp_ctx, sp_point_256* r,
  19498. const sp_point_256* p, sp_digit* t)
  19499. {
  19500. int err = FP_WOULDBLOCK;
  19501. sp_256_proj_point_dbl_9_ctx* ctx = (sp_256_proj_point_dbl_9_ctx*)sp_ctx->data;
  19502. typedef char ctx_size_test[sizeof(sp_256_proj_point_dbl_9_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  19503. (void)sizeof(ctx_size_test);
  19504. switch (ctx->state) {
  19505. case 0:
  19506. ctx->t1 = t;
  19507. ctx->t2 = t + 2*9;
  19508. ctx->x = r->x;
  19509. ctx->y = r->y;
  19510. ctx->z = r->z;
  19511. /* Put infinity into result. */
  19512. if (r != p) {
  19513. r->infinity = p->infinity;
  19514. }
  19515. ctx->state = 1;
  19516. break;
  19517. case 1:
  19518. /* T1 = Z * Z */
  19519. sp_256_mont_sqr_9(ctx->t1, p->z, p256_mod, p256_mp_mod);
  19520. ctx->state = 2;
  19521. break;
  19522. case 2:
  19523. /* Z = Y * Z */
  19524. sp_256_mont_mul_9(ctx->z, p->y, p->z, p256_mod, p256_mp_mod);
  19525. ctx->state = 3;
  19526. break;
  19527. case 3:
  19528. /* Z = 2Z */
  19529. sp_256_mont_dbl_9(ctx->z, ctx->z, p256_mod);
  19530. ctx->state = 4;
  19531. break;
  19532. case 4:
  19533. /* T2 = X - T1 */
  19534. sp_256_mont_sub_9(ctx->t2, p->x, ctx->t1, p256_mod);
  19535. ctx->state = 5;
  19536. break;
  19537. case 5:
  19538. /* T1 = X + T1 */
  19539. sp_256_mont_add_9(ctx->t1, p->x, ctx->t1, p256_mod);
  19540. ctx->state = 6;
  19541. break;
  19542. case 6:
  19543. /* T2 = T1 * T2 */
  19544. sp_256_mont_mul_9(ctx->t2, ctx->t1, ctx->t2, p256_mod, p256_mp_mod);
  19545. ctx->state = 7;
  19546. break;
  19547. case 7:
  19548. /* T1 = 3T2 */
  19549. sp_256_mont_tpl_9(ctx->t1, ctx->t2, p256_mod);
  19550. ctx->state = 8;
  19551. break;
  19552. case 8:
  19553. /* Y = 2Y */
  19554. sp_256_mont_dbl_9(ctx->y, p->y, p256_mod);
  19555. ctx->state = 9;
  19556. break;
  19557. case 9:
  19558. /* Y = Y * Y */
  19559. sp_256_mont_sqr_9(ctx->y, ctx->y, p256_mod, p256_mp_mod);
  19560. ctx->state = 10;
  19561. break;
  19562. case 10:
  19563. /* T2 = Y * Y */
  19564. sp_256_mont_sqr_9(ctx->t2, ctx->y, p256_mod, p256_mp_mod);
  19565. ctx->state = 11;
  19566. break;
  19567. case 11:
  19568. /* T2 = T2/2 */
  19569. sp_256_mont_div2_9(ctx->t2, ctx->t2, p256_mod);
  19570. ctx->state = 12;
  19571. break;
  19572. case 12:
  19573. /* Y = Y * X */
  19574. sp_256_mont_mul_9(ctx->y, ctx->y, p->x, p256_mod, p256_mp_mod);
  19575. ctx->state = 13;
  19576. break;
  19577. case 13:
  19578. /* X = T1 * T1 */
  19579. sp_256_mont_sqr_9(ctx->x, ctx->t1, p256_mod, p256_mp_mod);
  19580. ctx->state = 14;
  19581. break;
  19582. case 14:
  19583. /* X = X - Y */
  19584. sp_256_mont_sub_9(ctx->x, ctx->x, ctx->y, p256_mod);
  19585. ctx->state = 15;
  19586. break;
  19587. case 15:
  19588. /* X = X - Y */
  19589. sp_256_mont_sub_9(ctx->x, ctx->x, ctx->y, p256_mod);
  19590. ctx->state = 16;
  19591. break;
  19592. case 16:
  19593. /* Y = Y - X */
  19594. sp_256_mont_sub_9(ctx->y, ctx->y, ctx->x, p256_mod);
  19595. ctx->state = 17;
  19596. break;
  19597. case 17:
  19598. /* Y = Y * T1 */
  19599. sp_256_mont_mul_9(ctx->y, ctx->y, ctx->t1, p256_mod, p256_mp_mod);
  19600. ctx->state = 18;
  19601. break;
  19602. case 18:
  19603. /* Y = Y - T2 */
  19604. sp_256_mont_sub_9(ctx->y, ctx->y, ctx->t2, p256_mod);
  19605. ctx->state = 19;
  19606. /* fall-through */
  19607. case 19:
  19608. err = MP_OKAY;
  19609. break;
  19610. }
  19611. if (err == MP_OKAY && ctx->state != 19) {
  19612. err = FP_WOULDBLOCK;
  19613. }
  19614. return err;
  19615. }
  19616. #endif /* WOLFSSL_SP_NONBLOCK */
  19617. /* Compare two numbers to determine if they are equal.
  19618. * Constant time implementation.
  19619. *
  19620. * a First number to compare.
  19621. * b Second number to compare.
  19622. * returns 1 when equal and 0 otherwise.
  19623. */
  19624. static int sp_256_cmp_equal_9(const sp_digit* a, const sp_digit* b)
  19625. {
  19626. return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2]) |
  19627. (a[3] ^ b[3]) | (a[4] ^ b[4]) | (a[5] ^ b[5]) |
  19628. (a[6] ^ b[6]) | (a[7] ^ b[7]) | (a[8] ^ b[8])) == 0;
  19629. }
  19630. /* Returns 1 if the number of zero.
  19631. * Implementation is constant time.
  19632. *
  19633. * a Number to check.
  19634. * returns 1 if the number is zero and 0 otherwise.
  19635. */
  19636. static int sp_256_iszero_9(const sp_digit* a)
  19637. {
  19638. return (a[0] | a[1] | a[2] | a[3] | a[4] | a[5] | a[6] | a[7] |
  19639. a[8]) == 0;
  19640. }
  19641. /* Add two Montgomery form projective points.
  19642. *
  19643. * r Result of addition.
  19644. * p First point to add.
  19645. * q Second point to add.
  19646. * t Temporary ordinate data.
  19647. */
  19648. static void sp_256_proj_point_add_9(sp_point_256* r,
  19649. const sp_point_256* p, const sp_point_256* q, sp_digit* t)
  19650. {
  19651. sp_digit* t6 = t;
  19652. sp_digit* t1 = t + 2*9;
  19653. sp_digit* t2 = t + 4*9;
  19654. sp_digit* t3 = t + 6*9;
  19655. sp_digit* t4 = t + 8*9;
  19656. sp_digit* t5 = t + 10*9;
  19657. /* U1 = X1*Z2^2 */
  19658. sp_256_mont_sqr_9(t1, q->z, p256_mod, p256_mp_mod);
  19659. sp_256_mont_mul_9(t3, t1, q->z, p256_mod, p256_mp_mod);
  19660. sp_256_mont_mul_9(t1, t1, p->x, p256_mod, p256_mp_mod);
  19661. /* U2 = X2*Z1^2 */
  19662. sp_256_mont_sqr_9(t2, p->z, p256_mod, p256_mp_mod);
  19663. sp_256_mont_mul_9(t4, t2, p->z, p256_mod, p256_mp_mod);
  19664. sp_256_mont_mul_9(t2, t2, q->x, p256_mod, p256_mp_mod);
  19665. /* S1 = Y1*Z2^3 */
  19666. sp_256_mont_mul_9(t3, t3, p->y, p256_mod, p256_mp_mod);
  19667. /* S2 = Y2*Z1^3 */
  19668. sp_256_mont_mul_9(t4, t4, q->y, p256_mod, p256_mp_mod);
  19669. /* Check double */
  19670. if ((~p->infinity) & (~q->infinity) &
  19671. sp_256_cmp_equal_9(t2, t1) &
  19672. sp_256_cmp_equal_9(t4, t3)) {
  19673. sp_256_proj_point_dbl_9(r, p, t);
  19674. }
  19675. else {
  19676. sp_digit* x = t6;
  19677. sp_digit* y = t1;
  19678. sp_digit* z = t2;
  19679. /* H = U2 - U1 */
  19680. sp_256_mont_sub_9(t2, t2, t1, p256_mod);
  19681. /* R = S2 - S1 */
  19682. sp_256_mont_sub_9(t4, t4, t3, p256_mod);
  19683. /* X3 = R^2 - H^3 - 2*U1*H^2 */
  19684. sp_256_mont_sqr_9(t5, t2, p256_mod, p256_mp_mod);
  19685. sp_256_mont_mul_9(y, t1, t5, p256_mod, p256_mp_mod);
  19686. sp_256_mont_mul_9(t5, t5, t2, p256_mod, p256_mp_mod);
  19687. /* Z3 = H*Z1*Z2 */
  19688. sp_256_mont_mul_9(z, p->z, t2, p256_mod, p256_mp_mod);
  19689. sp_256_mont_mul_9(z, z, q->z, p256_mod, p256_mp_mod);
  19690. sp_256_mont_sqr_9(x, t4, p256_mod, p256_mp_mod);
  19691. sp_256_mont_sub_9(x, x, t5, p256_mod);
  19692. sp_256_mont_mul_9(t5, t5, t3, p256_mod, p256_mp_mod);
  19693. sp_256_mont_dbl_9(t3, y, p256_mod);
  19694. sp_256_mont_sub_9(x, x, t3, p256_mod);
  19695. /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
  19696. sp_256_mont_sub_9(y, y, x, p256_mod);
  19697. sp_256_mont_mul_9(y, y, t4, p256_mod, p256_mp_mod);
  19698. sp_256_mont_sub_9(y, y, t5, p256_mod);
  19699. {
  19700. int i;
  19701. sp_digit maskp = 0 - (q->infinity & (!p->infinity));
  19702. sp_digit maskq = 0 - (p->infinity & (!q->infinity));
  19703. sp_digit maskt = ~(maskp | maskq);
  19704. sp_digit inf = (sp_digit)(p->infinity & q->infinity);
  19705. for (i = 0; i < 9; i++) {
  19706. r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
  19707. (x[i] & maskt);
  19708. }
  19709. for (i = 0; i < 9; i++) {
  19710. r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
  19711. (y[i] & maskt);
  19712. }
  19713. for (i = 0; i < 9; i++) {
  19714. r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
  19715. (z[i] & maskt);
  19716. }
  19717. r->z[0] |= inf;
  19718. r->infinity = (word32)inf;
  19719. }
  19720. }
  19721. }
  19722. #ifdef WOLFSSL_SP_NONBLOCK
  19723. typedef struct sp_256_proj_point_add_9_ctx {
  19724. int state;
  19725. sp_256_proj_point_dbl_9_ctx dbl_ctx;
  19726. const sp_point_256* ap[2];
  19727. sp_point_256* rp[2];
  19728. sp_digit* t1;
  19729. sp_digit* t2;
  19730. sp_digit* t3;
  19731. sp_digit* t4;
  19732. sp_digit* t5;
  19733. sp_digit* t6;
  19734. sp_digit* x;
  19735. sp_digit* y;
  19736. sp_digit* z;
  19737. } sp_256_proj_point_add_9_ctx;
  19738. /* Add two Montgomery form projective points.
  19739. *
  19740. * r Result of addition.
  19741. * p First point to add.
  19742. * q Second point to add.
  19743. * t Temporary ordinate data.
  19744. */
  19745. static int sp_256_proj_point_add_9_nb(sp_ecc_ctx_t* sp_ctx, sp_point_256* r,
  19746. const sp_point_256* p, const sp_point_256* q, sp_digit* t)
  19747. {
  19748. int err = FP_WOULDBLOCK;
  19749. sp_256_proj_point_add_9_ctx* ctx = (sp_256_proj_point_add_9_ctx*)sp_ctx->data;
  19750. /* Ensure only the first point is the same as the result. */
  19751. if (q == r) {
  19752. const sp_point_256* a = p;
  19753. p = q;
  19754. q = a;
  19755. }
  19756. typedef char ctx_size_test[sizeof(sp_256_proj_point_add_9_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  19757. (void)sizeof(ctx_size_test);
  19758. switch (ctx->state) {
  19759. case 0: /* INIT */
  19760. ctx->t6 = t;
  19761. ctx->t1 = t + 2*9;
  19762. ctx->t2 = t + 4*9;
  19763. ctx->t3 = t + 6*9;
  19764. ctx->t4 = t + 8*9;
  19765. ctx->t5 = t + 10*9;
  19766. ctx->x = ctx->t6;
  19767. ctx->y = ctx->t1;
  19768. ctx->z = ctx->t2;
  19769. ctx->state = 1;
  19770. break;
  19771. case 1:
  19772. /* U1 = X1*Z2^2 */
  19773. sp_256_mont_sqr_9(ctx->t1, q->z, p256_mod, p256_mp_mod);
  19774. ctx->state = 2;
  19775. break;
  19776. case 2:
  19777. sp_256_mont_mul_9(ctx->t3, ctx->t1, q->z, p256_mod, p256_mp_mod);
  19778. ctx->state = 3;
  19779. break;
  19780. case 3:
  19781. sp_256_mont_mul_9(ctx->t1, ctx->t1, p->x, p256_mod, p256_mp_mod);
  19782. ctx->state = 4;
  19783. break;
  19784. case 4:
  19785. /* U2 = X2*Z1^2 */
  19786. sp_256_mont_sqr_9(ctx->t2, p->z, p256_mod, p256_mp_mod);
  19787. ctx->state = 5;
  19788. break;
  19789. case 5:
  19790. sp_256_mont_mul_9(ctx->t4, ctx->t2, p->z, p256_mod, p256_mp_mod);
  19791. ctx->state = 6;
  19792. break;
  19793. case 6:
  19794. sp_256_mont_mul_9(ctx->t2, ctx->t2, q->x, p256_mod, p256_mp_mod);
  19795. ctx->state = 7;
  19796. break;
  19797. case 7:
  19798. /* S1 = Y1*Z2^3 */
  19799. sp_256_mont_mul_9(ctx->t3, ctx->t3, p->y, p256_mod, p256_mp_mod);
  19800. ctx->state = 8;
  19801. break;
  19802. case 8:
  19803. /* S2 = Y2*Z1^3 */
  19804. sp_256_mont_mul_9(ctx->t4, ctx->t4, q->y, p256_mod, p256_mp_mod);
  19805. ctx->state = 9;
  19806. break;
  19807. case 9:
  19808. /* Check double */
  19809. if ((~p->infinity) & (~q->infinity) &
  19810. sp_256_cmp_equal_9(ctx->t2, ctx->t1) &
  19811. sp_256_cmp_equal_9(ctx->t4, ctx->t3)) {
  19812. XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
  19813. sp_256_proj_point_dbl_9(r, p, t);
  19814. ctx->state = 25;
  19815. }
  19816. else {
  19817. ctx->state = 10;
  19818. }
  19819. break;
  19820. case 10:
  19821. /* H = U2 - U1 */
  19822. sp_256_mont_sub_9(ctx->t2, ctx->t2, ctx->t1, p256_mod);
  19823. ctx->state = 11;
  19824. break;
  19825. case 11:
  19826. /* R = S2 - S1 */
  19827. sp_256_mont_sub_9(ctx->t4, ctx->t4, ctx->t3, p256_mod);
  19828. ctx->state = 12;
  19829. break;
  19830. case 12:
  19831. /* X3 = R^2 - H^3 - 2*U1*H^2 */
  19832. sp_256_mont_sqr_9(ctx->t5, ctx->t2, p256_mod, p256_mp_mod);
  19833. ctx->state = 13;
  19834. break;
  19835. case 13:
  19836. sp_256_mont_mul_9(ctx->y, ctx->t1, ctx->t5, p256_mod, p256_mp_mod);
  19837. ctx->state = 14;
  19838. break;
  19839. case 14:
  19840. sp_256_mont_mul_9(ctx->t5, ctx->t5, ctx->t2, p256_mod, p256_mp_mod);
  19841. ctx->state = 15;
  19842. break;
  19843. case 15:
  19844. /* Z3 = H*Z1*Z2 */
  19845. sp_256_mont_mul_9(ctx->z, p->z, ctx->t2, p256_mod, p256_mp_mod);
  19846. ctx->state = 16;
  19847. break;
  19848. case 16:
  19849. sp_256_mont_mul_9(ctx->z, ctx->z, q->z, p256_mod, p256_mp_mod);
  19850. ctx->state = 17;
  19851. break;
  19852. case 17:
  19853. sp_256_mont_sqr_9(ctx->x, ctx->t4, p256_mod, p256_mp_mod);
  19854. ctx->state = 18;
  19855. break;
  19856. case 18:
  19857. sp_256_mont_sub_9(ctx->x, ctx->x, ctx->t5, p256_mod);
  19858. ctx->state = 19;
  19859. break;
  19860. case 19:
  19861. sp_256_mont_mul_9(ctx->t5, ctx->t5, ctx->t3, p256_mod, p256_mp_mod);
  19862. ctx->state = 20;
  19863. break;
  19864. case 20:
  19865. sp_256_mont_dbl_9(ctx->t3, ctx->y, p256_mod);
  19866. sp_256_mont_sub_9(ctx->x, ctx->x, ctx->t3, p256_mod);
  19867. ctx->state = 21;
  19868. break;
  19869. case 21:
  19870. /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
  19871. sp_256_mont_sub_9(ctx->y, ctx->y, ctx->x, p256_mod);
  19872. ctx->state = 22;
  19873. break;
  19874. case 22:
  19875. sp_256_mont_mul_9(ctx->y, ctx->y, ctx->t4, p256_mod, p256_mp_mod);
  19876. ctx->state = 23;
  19877. break;
  19878. case 23:
  19879. sp_256_mont_sub_9(ctx->y, ctx->y, ctx->t5, p256_mod);
  19880. ctx->state = 24;
  19881. break;
  19882. case 24:
  19883. {
  19884. {
  19885. int i;
  19886. sp_digit maskp = 0 - (q->infinity & (!p->infinity));
  19887. sp_digit maskq = 0 - (p->infinity & (!q->infinity));
  19888. sp_digit maskt = ~(maskp | maskq);
  19889. sp_digit inf = (sp_digit)(p->infinity & q->infinity);
  19890. for (i = 0; i < 9; i++) {
  19891. r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
  19892. (ctx->x[i] & maskt);
  19893. }
  19894. for (i = 0; i < 9; i++) {
  19895. r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
  19896. (ctx->y[i] & maskt);
  19897. }
  19898. for (i = 0; i < 9; i++) {
  19899. r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
  19900. (ctx->z[i] & maskt);
  19901. }
  19902. r->z[0] |= inf;
  19903. r->infinity = (word32)inf;
  19904. }
  19905. ctx->state = 25;
  19906. break;
  19907. }
  19908. case 25:
  19909. err = MP_OKAY;
  19910. break;
  19911. }
  19912. if (err == MP_OKAY && ctx->state != 25) {
  19913. err = FP_WOULDBLOCK;
  19914. }
  19915. return err;
  19916. }
  19917. #endif /* WOLFSSL_SP_NONBLOCK */
  19918. /* Multiply a number by Montgomery normalizer mod modulus (prime).
  19919. *
  19920. * r The resulting Montgomery form number.
  19921. * a The number to convert.
  19922. * m The modulus (prime).
  19923. * returns MEMORY_E when memory allocation fails and MP_OKAY otherwise.
  19924. */
  19925. static int sp_256_mod_mul_norm_9(sp_digit* r, const sp_digit* a, const sp_digit* m)
  19926. {
  19927. #ifdef WOLFSSL_SP_SMALL_STACK
  19928. int64_t* t = NULL;
  19929. #else
  19930. int64_t t[2 * 8];
  19931. #endif
  19932. int64_t* a32 = NULL;
  19933. int64_t o;
  19934. int err = MP_OKAY;
  19935. (void)m;
  19936. #ifdef WOLFSSL_SP_SMALL_STACK
  19937. t = (int64_t*)XMALLOC(sizeof(int64_t) * 2 * 8, NULL, DYNAMIC_TYPE_ECC);
  19938. if (t == NULL)
  19939. return MEMORY_E;
  19940. #endif
  19941. if (err == MP_OKAY) {
  19942. a32 = t + 8;
  19943. a32[0] = a[0];
  19944. a32[0] |= a[1] << 29U;
  19945. a32[0] &= 0xffffffffL;
  19946. a32[1] = (a[1] >> 3);
  19947. a32[1] |= a[2] << 26U;
  19948. a32[1] &= 0xffffffffL;
  19949. a32[2] = (a[2] >> 6);
  19950. a32[2] |= a[3] << 23U;
  19951. a32[2] &= 0xffffffffL;
  19952. a32[3] = (a[3] >> 9);
  19953. a32[3] |= a[4] << 20U;
  19954. a32[3] &= 0xffffffffL;
  19955. a32[4] = (a[4] >> 12);
  19956. a32[4] |= a[5] << 17U;
  19957. a32[4] &= 0xffffffffL;
  19958. a32[5] = (a[5] >> 15);
  19959. a32[5] |= a[6] << 14U;
  19960. a32[5] &= 0xffffffffL;
  19961. a32[6] = (a[6] >> 18);
  19962. a32[6] |= a[7] << 11U;
  19963. a32[6] &= 0xffffffffL;
  19964. a32[7] = (a[7] >> 21);
  19965. a32[7] |= a[8] << 8U;
  19966. a32[7] &= 0xffffffffL;
  19967. /* 1 1 0 -1 -1 -1 -1 0 */
  19968. t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6];
  19969. /* 0 1 1 0 -1 -1 -1 -1 */
  19970. t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7];
  19971. /* 0 0 1 1 0 -1 -1 -1 */
  19972. t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7];
  19973. /* -1 -1 0 2 2 1 0 -1 */
  19974. t[3] = 0 - a32[0] - a32[1] + 2 * a32[3] + 2 * a32[4] + a32[5] - a32[7];
  19975. /* 0 -1 -1 0 2 2 1 0 */
  19976. t[4] = 0 - a32[1] - a32[2] + 2 * a32[4] + 2 * a32[5] + a32[6];
  19977. /* 0 0 -1 -1 0 2 2 1 */
  19978. t[5] = 0 - a32[2] - a32[3] + 2 * a32[5] + 2 * a32[6] + a32[7];
  19979. /* -1 -1 0 0 0 1 3 2 */
  19980. t[6] = 0 - a32[0] - a32[1] + a32[5] + 3 * a32[6] + 2 * a32[7];
  19981. /* 1 0 -1 -1 -1 -1 0 3 */
  19982. t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3 * a32[7];
  19983. t[1] += t[0] >> 32U; t[0] &= 0xffffffffL;
  19984. t[2] += t[1] >> 32U; t[1] &= 0xffffffffL;
  19985. t[3] += t[2] >> 32U; t[2] &= 0xffffffffL;
  19986. t[4] += t[3] >> 32U; t[3] &= 0xffffffffL;
  19987. t[5] += t[4] >> 32U; t[4] &= 0xffffffffL;
  19988. t[6] += t[5] >> 32U; t[5] &= 0xffffffffL;
  19989. t[7] += t[6] >> 32U; t[6] &= 0xffffffffL;
  19990. o = t[7] >> 32U; t[7] &= 0xffffffffL;
  19991. t[0] += o;
  19992. t[3] -= o;
  19993. t[6] -= o;
  19994. t[7] += o;
  19995. t[1] += t[0] >> 32U; t[0] &= 0xffffffffL;
  19996. t[2] += t[1] >> 32U; t[1] &= 0xffffffffL;
  19997. t[3] += t[2] >> 32U; t[2] &= 0xffffffffL;
  19998. t[4] += t[3] >> 32U; t[3] &= 0xffffffffL;
  19999. t[5] += t[4] >> 32U; t[4] &= 0xffffffffL;
  20000. t[6] += t[5] >> 32U; t[5] &= 0xffffffffL;
  20001. t[7] += t[6] >> 32U; t[6] &= 0xffffffffL;
  20002. r[0] = (sp_digit)(t[0]) & 0x1fffffffL;
  20003. r[1] = (sp_digit)(t[0] >> 29U);
  20004. r[1] |= (sp_digit)(t[1] << 3U);
  20005. r[1] &= 0x1fffffffL;
  20006. r[2] = (sp_digit)(t[1] >> 26U);
  20007. r[2] |= (sp_digit)(t[2] << 6U);
  20008. r[2] &= 0x1fffffffL;
  20009. r[3] = (sp_digit)(t[2] >> 23U);
  20010. r[3] |= (sp_digit)(t[3] << 9U);
  20011. r[3] &= 0x1fffffffL;
  20012. r[4] = (sp_digit)(t[3] >> 20U);
  20013. r[4] |= (sp_digit)(t[4] << 12U);
  20014. r[4] &= 0x1fffffffL;
  20015. r[5] = (sp_digit)(t[4] >> 17U);
  20016. r[5] |= (sp_digit)(t[5] << 15U);
  20017. r[5] &= 0x1fffffffL;
  20018. r[6] = (sp_digit)(t[5] >> 14U);
  20019. r[6] |= (sp_digit)(t[6] << 18U);
  20020. r[6] &= 0x1fffffffL;
  20021. r[7] = (sp_digit)(t[6] >> 11U);
  20022. r[7] |= (sp_digit)(t[7] << 21U);
  20023. r[7] &= 0x1fffffffL;
  20024. r[8] = (sp_digit)(t[7] >> 8U);
  20025. }
  20026. #ifdef WOLFSSL_SP_SMALL_STACK
  20027. if (t != NULL)
  20028. XFREE(t, NULL, DYNAMIC_TYPE_ECC);
  20029. #endif
  20030. return err;
  20031. }
  20032. #ifdef WOLFSSL_SP_SMALL
  20033. /* Multiply the point by the scalar and return the result.
  20034. * If map is true then convert result to affine coordinates.
  20035. *
  20036. * Small implementation using add and double that is cache attack resistant but
  20037. * allocates memory rather than use large stacks.
  20038. * 256 adds and doubles.
  20039. *
  20040. * r Resulting point.
  20041. * g Point to multiply.
  20042. * k Scalar to multiply by.
  20043. * map Indicates whether to convert result to affine.
  20044. * ct Constant time required.
  20045. * heap Heap to use for allocation.
  20046. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  20047. */
  20048. static int sp_256_ecc_mulmod_9(sp_point_256* r, const sp_point_256* g,
  20049. const sp_digit* k, int map, int ct, void* heap)
  20050. {
  20051. #ifdef WOLFSSL_SP_SMALL_STACK
  20052. sp_point_256* t = NULL;
  20053. sp_digit* tmp = NULL;
  20054. #else
  20055. sp_point_256 t[3];
  20056. sp_digit tmp[2 * 9 * 6];
  20057. #endif
  20058. sp_digit n;
  20059. int i;
  20060. int c;
  20061. int y;
  20062. int err = MP_OKAY;
  20063. /* Implementation is constant time. */
  20064. (void)ct;
  20065. (void)heap;
  20066. #ifdef WOLFSSL_SP_SMALL_STACK
  20067. t = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 3, heap,
  20068. DYNAMIC_TYPE_ECC);
  20069. if (t == NULL)
  20070. err = MEMORY_E;
  20071. if (err == MP_OKAY) {
  20072. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 6, heap,
  20073. DYNAMIC_TYPE_ECC);
  20074. if (tmp == NULL)
  20075. err = MEMORY_E;
  20076. }
  20077. #endif
  20078. if (err == MP_OKAY) {
  20079. XMEMSET(t, 0, sizeof(sp_point_256) * 3);
  20080. /* t[0] = {0, 0, 1} * norm */
  20081. t[0].infinity = 1;
  20082. /* t[1] = {g->x, g->y, g->z} * norm */
  20083. err = sp_256_mod_mul_norm_9(t[1].x, g->x, p256_mod);
  20084. }
  20085. if (err == MP_OKAY)
  20086. err = sp_256_mod_mul_norm_9(t[1].y, g->y, p256_mod);
  20087. if (err == MP_OKAY)
  20088. err = sp_256_mod_mul_norm_9(t[1].z, g->z, p256_mod);
  20089. if (err == MP_OKAY) {
  20090. i = 8;
  20091. c = 24;
  20092. n = k[i--] << (29 - c);
  20093. for (; ; c--) {
  20094. if (c == 0) {
  20095. if (i == -1)
  20096. break;
  20097. n = k[i--];
  20098. c = 29;
  20099. }
  20100. y = (n >> 28) & 1;
  20101. n <<= 1;
  20102. sp_256_proj_point_add_9(&t[y^1], &t[0], &t[1], tmp);
  20103. XMEMCPY(&t[2], (void*)(((size_t)&t[0] & addr_mask[y^1]) +
  20104. ((size_t)&t[1] & addr_mask[y])),
  20105. sizeof(sp_point_256));
  20106. sp_256_proj_point_dbl_9(&t[2], &t[2], tmp);
  20107. XMEMCPY((void*)(((size_t)&t[0] & addr_mask[y^1]) +
  20108. ((size_t)&t[1] & addr_mask[y])), &t[2],
  20109. sizeof(sp_point_256));
  20110. }
  20111. if (map != 0) {
  20112. sp_256_map_9(r, &t[0], tmp);
  20113. }
  20114. else {
  20115. XMEMCPY(r, &t[0], sizeof(sp_point_256));
  20116. }
  20117. }
  20118. #ifdef WOLFSSL_SP_SMALL_STACK
  20119. if (tmp != NULL)
  20120. #endif
  20121. {
  20122. ForceZero(tmp, sizeof(sp_digit) * 2 * 9 * 6);
  20123. #ifdef WOLFSSL_SP_SMALL_STACK
  20124. XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
  20125. #endif
  20126. }
  20127. #ifdef WOLFSSL_SP_SMALL_STACK
  20128. if (t != NULL)
  20129. #endif
  20130. {
  20131. ForceZero(t, sizeof(sp_point_256) * 3);
  20132. #ifdef WOLFSSL_SP_SMALL_STACK
  20133. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  20134. #endif
  20135. }
  20136. return err;
  20137. }
  20138. #ifdef WOLFSSL_SP_NONBLOCK
  20139. typedef struct sp_256_ecc_mulmod_9_ctx {
  20140. int state;
  20141. union {
  20142. sp_256_proj_point_dbl_9_ctx dbl_ctx;
  20143. sp_256_proj_point_add_9_ctx add_ctx;
  20144. };
  20145. sp_point_256 t[3];
  20146. sp_digit tmp[2 * 9 * 6];
  20147. sp_digit n;
  20148. int i;
  20149. int c;
  20150. int y;
  20151. } sp_256_ecc_mulmod_9_ctx;
  20152. static int sp_256_ecc_mulmod_9_nb(sp_ecc_ctx_t* sp_ctx, sp_point_256* r,
  20153. const sp_point_256* g, const sp_digit* k, int map, int ct, void* heap)
  20154. {
  20155. int err = FP_WOULDBLOCK;
  20156. sp_256_ecc_mulmod_9_ctx* ctx = (sp_256_ecc_mulmod_9_ctx*)sp_ctx->data;
  20157. typedef char ctx_size_test[sizeof(sp_256_ecc_mulmod_9_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  20158. (void)sizeof(ctx_size_test);
  20159. /* Implementation is constant time. */
  20160. (void)ct;
  20161. switch (ctx->state) {
  20162. case 0: /* INIT */
  20163. XMEMSET(ctx->t, 0, sizeof(sp_point_256) * 3);
  20164. ctx->i = 8;
  20165. ctx->c = 24;
  20166. ctx->n = k[ctx->i--] << (29 - ctx->c);
  20167. /* t[0] = {0, 0, 1} * norm */
  20168. ctx->t[0].infinity = 1;
  20169. ctx->state = 1;
  20170. break;
  20171. case 1: /* T1X */
  20172. /* t[1] = {g->x, g->y, g->z} * norm */
  20173. err = sp_256_mod_mul_norm_9(ctx->t[1].x, g->x, p256_mod);
  20174. ctx->state = 2;
  20175. break;
  20176. case 2: /* T1Y */
  20177. err = sp_256_mod_mul_norm_9(ctx->t[1].y, g->y, p256_mod);
  20178. ctx->state = 3;
  20179. break;
  20180. case 3: /* T1Z */
  20181. err = sp_256_mod_mul_norm_9(ctx->t[1].z, g->z, p256_mod);
  20182. ctx->state = 4;
  20183. break;
  20184. case 4: /* ADDPREP */
  20185. if (ctx->c == 0) {
  20186. if (ctx->i == -1) {
  20187. ctx->state = 7;
  20188. break;
  20189. }
  20190. ctx->n = k[ctx->i--];
  20191. ctx->c = 29;
  20192. }
  20193. ctx->y = (ctx->n >> 28) & 1;
  20194. ctx->n <<= 1;
  20195. XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
  20196. ctx->state = 5;
  20197. break;
  20198. case 5: /* ADD */
  20199. err = sp_256_proj_point_add_9_nb((sp_ecc_ctx_t*)&ctx->add_ctx,
  20200. &ctx->t[ctx->y^1], &ctx->t[0], &ctx->t[1], ctx->tmp);
  20201. if (err == MP_OKAY) {
  20202. XMEMCPY(&ctx->t[2], (void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
  20203. ((size_t)&ctx->t[1] & addr_mask[ctx->y])),
  20204. sizeof(sp_point_256));
  20205. XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
  20206. ctx->state = 6;
  20207. }
  20208. break;
  20209. case 6: /* DBL */
  20210. err = sp_256_proj_point_dbl_9_nb((sp_ecc_ctx_t*)&ctx->dbl_ctx, &ctx->t[2],
  20211. &ctx->t[2], ctx->tmp);
  20212. if (err == MP_OKAY) {
  20213. XMEMCPY((void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
  20214. ((size_t)&ctx->t[1] & addr_mask[ctx->y])), &ctx->t[2],
  20215. sizeof(sp_point_256));
  20216. ctx->state = 4;
  20217. ctx->c--;
  20218. }
  20219. break;
  20220. case 7: /* MAP */
  20221. if (map != 0) {
  20222. sp_256_map_9(r, &ctx->t[0], ctx->tmp);
  20223. }
  20224. else {
  20225. XMEMCPY(r, &ctx->t[0], sizeof(sp_point_256));
  20226. }
  20227. err = MP_OKAY;
  20228. break;
  20229. }
  20230. if (err == MP_OKAY && ctx->state != 7) {
  20231. err = FP_WOULDBLOCK;
  20232. }
  20233. if (err != FP_WOULDBLOCK) {
  20234. ForceZero(ctx->tmp, sizeof(ctx->tmp));
  20235. ForceZero(ctx->t, sizeof(ctx->t));
  20236. }
  20237. (void)heap;
  20238. return err;
  20239. }
  20240. #endif /* WOLFSSL_SP_NONBLOCK */
  20241. #else
  20242. /* A table entry for pre-computed points. */
  20243. typedef struct sp_table_entry_256 {
  20244. sp_digit x[9];
  20245. sp_digit y[9];
  20246. } sp_table_entry_256;
  20247. /* Conditionally copy a into r using the mask m.
  20248. * m is -1 to copy and 0 when not.
  20249. *
  20250. * r A single precision number to copy over.
  20251. * a A single precision number to copy.
  20252. * m Mask value to apply.
  20253. */
  20254. static void sp_256_cond_copy_9(sp_digit* r, const sp_digit* a, const sp_digit m)
  20255. {
  20256. sp_digit t[9];
  20257. #ifdef WOLFSSL_SP_SMALL
  20258. int i;
  20259. for (i = 0; i < 9; i++) {
  20260. t[i] = r[i] ^ a[i];
  20261. }
  20262. for (i = 0; i < 9; i++) {
  20263. r[i] ^= t[i] & m;
  20264. }
  20265. #else
  20266. t[ 0] = r[ 0] ^ a[ 0];
  20267. t[ 1] = r[ 1] ^ a[ 1];
  20268. t[ 2] = r[ 2] ^ a[ 2];
  20269. t[ 3] = r[ 3] ^ a[ 3];
  20270. t[ 4] = r[ 4] ^ a[ 4];
  20271. t[ 5] = r[ 5] ^ a[ 5];
  20272. t[ 6] = r[ 6] ^ a[ 6];
  20273. t[ 7] = r[ 7] ^ a[ 7];
  20274. t[ 8] = r[ 8] ^ a[ 8];
  20275. r[ 0] ^= t[ 0] & m;
  20276. r[ 1] ^= t[ 1] & m;
  20277. r[ 2] ^= t[ 2] & m;
  20278. r[ 3] ^= t[ 3] & m;
  20279. r[ 4] ^= t[ 4] & m;
  20280. r[ 5] ^= t[ 5] & m;
  20281. r[ 6] ^= t[ 6] & m;
  20282. r[ 7] ^= t[ 7] & m;
  20283. r[ 8] ^= t[ 8] & m;
  20284. #endif /* WOLFSSL_SP_SMALL */
  20285. }
  20286. /* Double the Montgomery form projective point p a number of times.
  20287. *
  20288. * r Result of repeated doubling of point.
  20289. * p Point to double.
  20290. * n Number of times to double
  20291. * t Temporary ordinate data.
  20292. */
  20293. static void sp_256_proj_point_dbl_n_9(sp_point_256* p, int i,
  20294. sp_digit* t)
  20295. {
  20296. sp_digit* w = t;
  20297. sp_digit* a = t + 2*9;
  20298. sp_digit* b = t + 4*9;
  20299. sp_digit* t1 = t + 6*9;
  20300. sp_digit* t2 = t + 8*9;
  20301. sp_digit* x;
  20302. sp_digit* y;
  20303. sp_digit* z;
  20304. volatile int n = i;
  20305. x = p->x;
  20306. y = p->y;
  20307. z = p->z;
  20308. /* Y = 2*Y */
  20309. sp_256_mont_dbl_9(y, y, p256_mod);
  20310. /* W = Z^4 */
  20311. sp_256_mont_sqr_9(w, z, p256_mod, p256_mp_mod);
  20312. sp_256_mont_sqr_9(w, w, p256_mod, p256_mp_mod);
  20313. #ifndef WOLFSSL_SP_SMALL
  20314. while (--n > 0)
  20315. #else
  20316. while (--n >= 0)
  20317. #endif
  20318. {
  20319. /* A = 3*(X^2 - W) */
  20320. sp_256_mont_sqr_9(t1, x, p256_mod, p256_mp_mod);
  20321. sp_256_mont_sub_9(t1, t1, w, p256_mod);
  20322. sp_256_mont_tpl_9(a, t1, p256_mod);
  20323. /* B = X*Y^2 */
  20324. sp_256_mont_sqr_9(t1, y, p256_mod, p256_mp_mod);
  20325. sp_256_mont_mul_9(b, t1, x, p256_mod, p256_mp_mod);
  20326. /* X = A^2 - 2B */
  20327. sp_256_mont_sqr_9(x, a, p256_mod, p256_mp_mod);
  20328. sp_256_mont_dbl_9(t2, b, p256_mod);
  20329. sp_256_mont_sub_9(x, x, t2, p256_mod);
  20330. /* B = 2.(B - X) */
  20331. sp_256_mont_sub_9(t2, b, x, p256_mod);
  20332. sp_256_mont_dbl_9(b, t2, p256_mod);
  20333. /* Z = Z*Y */
  20334. sp_256_mont_mul_9(z, z, y, p256_mod, p256_mp_mod);
  20335. /* t1 = Y^4 */
  20336. sp_256_mont_sqr_9(t1, t1, p256_mod, p256_mp_mod);
  20337. #ifdef WOLFSSL_SP_SMALL
  20338. if (n != 0)
  20339. #endif
  20340. {
  20341. /* W = W*Y^4 */
  20342. sp_256_mont_mul_9(w, w, t1, p256_mod, p256_mp_mod);
  20343. }
  20344. /* y = 2*A*(B - X) - Y^4 */
  20345. sp_256_mont_mul_9(y, b, a, p256_mod, p256_mp_mod);
  20346. sp_256_mont_sub_9(y, y, t1, p256_mod);
  20347. }
  20348. #ifndef WOLFSSL_SP_SMALL
  20349. /* A = 3*(X^2 - W) */
  20350. sp_256_mont_sqr_9(t1, x, p256_mod, p256_mp_mod);
  20351. sp_256_mont_sub_9(t1, t1, w, p256_mod);
  20352. sp_256_mont_tpl_9(a, t1, p256_mod);
  20353. /* B = X*Y^2 */
  20354. sp_256_mont_sqr_9(t1, y, p256_mod, p256_mp_mod);
  20355. sp_256_mont_mul_9(b, t1, x, p256_mod, p256_mp_mod);
  20356. /* X = A^2 - 2B */
  20357. sp_256_mont_sqr_9(x, a, p256_mod, p256_mp_mod);
  20358. sp_256_mont_dbl_9(t2, b, p256_mod);
  20359. sp_256_mont_sub_9(x, x, t2, p256_mod);
  20360. /* B = 2.(B - X) */
  20361. sp_256_mont_sub_9(t2, b, x, p256_mod);
  20362. sp_256_mont_dbl_9(b, t2, p256_mod);
  20363. /* Z = Z*Y */
  20364. sp_256_mont_mul_9(z, z, y, p256_mod, p256_mp_mod);
  20365. /* t1 = Y^4 */
  20366. sp_256_mont_sqr_9(t1, t1, p256_mod, p256_mp_mod);
  20367. /* y = 2*A*(B - X) - Y^4 */
  20368. sp_256_mont_mul_9(y, b, a, p256_mod, p256_mp_mod);
  20369. sp_256_mont_sub_9(y, y, t1, p256_mod);
  20370. #endif /* WOLFSSL_SP_SMALL */
  20371. /* Y = Y/2 */
  20372. sp_256_mont_div2_9(y, y, p256_mod);
  20373. }
  20374. /* Double the Montgomery form projective point p a number of times.
  20375. *
  20376. * r Result of repeated doubling of point.
  20377. * p Point to double.
  20378. * n Number of times to double
  20379. * t Temporary ordinate data.
  20380. */
  20381. static void sp_256_proj_point_dbl_n_store_9(sp_point_256* r,
  20382. const sp_point_256* p, int n, int m, sp_digit* t)
  20383. {
  20384. sp_digit* w = t;
  20385. sp_digit* a = t + 2*9;
  20386. sp_digit* b = t + 4*9;
  20387. sp_digit* t1 = t + 6*9;
  20388. sp_digit* t2 = t + 8*9;
  20389. sp_digit* x = r[2*m].x;
  20390. sp_digit* y = r[(1<<n)*m].y;
  20391. sp_digit* z = r[2*m].z;
  20392. int i;
  20393. int j;
  20394. for (i=0; i<9; i++) {
  20395. x[i] = p->x[i];
  20396. }
  20397. for (i=0; i<9; i++) {
  20398. y[i] = p->y[i];
  20399. }
  20400. for (i=0; i<9; i++) {
  20401. z[i] = p->z[i];
  20402. }
  20403. /* Y = 2*Y */
  20404. sp_256_mont_dbl_9(y, y, p256_mod);
  20405. /* W = Z^4 */
  20406. sp_256_mont_sqr_9(w, z, p256_mod, p256_mp_mod);
  20407. sp_256_mont_sqr_9(w, w, p256_mod, p256_mp_mod);
  20408. j = m;
  20409. for (i=1; i<=n; i++) {
  20410. j *= 2;
  20411. /* A = 3*(X^2 - W) */
  20412. sp_256_mont_sqr_9(t1, x, p256_mod, p256_mp_mod);
  20413. sp_256_mont_sub_9(t1, t1, w, p256_mod);
  20414. sp_256_mont_tpl_9(a, t1, p256_mod);
  20415. /* B = X*Y^2 */
  20416. sp_256_mont_sqr_9(t1, y, p256_mod, p256_mp_mod);
  20417. sp_256_mont_mul_9(b, t1, x, p256_mod, p256_mp_mod);
  20418. x = r[j].x;
  20419. /* X = A^2 - 2B */
  20420. sp_256_mont_sqr_9(x, a, p256_mod, p256_mp_mod);
  20421. sp_256_mont_dbl_9(t2, b, p256_mod);
  20422. sp_256_mont_sub_9(x, x, t2, p256_mod);
  20423. /* B = 2.(B - X) */
  20424. sp_256_mont_sub_9(t2, b, x, p256_mod);
  20425. sp_256_mont_dbl_9(b, t2, p256_mod);
  20426. /* Z = Z*Y */
  20427. sp_256_mont_mul_9(r[j].z, z, y, p256_mod, p256_mp_mod);
  20428. z = r[j].z;
  20429. /* t1 = Y^4 */
  20430. sp_256_mont_sqr_9(t1, t1, p256_mod, p256_mp_mod);
  20431. if (i != n) {
  20432. /* W = W*Y^4 */
  20433. sp_256_mont_mul_9(w, w, t1, p256_mod, p256_mp_mod);
  20434. }
  20435. /* y = 2*A*(B - X) - Y^4 */
  20436. sp_256_mont_mul_9(y, b, a, p256_mod, p256_mp_mod);
  20437. sp_256_mont_sub_9(y, y, t1, p256_mod);
  20438. /* Y = Y/2 */
  20439. sp_256_mont_div2_9(r[j].y, y, p256_mod);
  20440. r[j].infinity = 0;
  20441. }
  20442. }
  20443. /* Add two Montgomery form projective points.
  20444. *
  20445. * ra Result of addition.
  20446. * rs Result of subtraction.
  20447. * p First point to add.
  20448. * q Second point to add.
  20449. * t Temporary ordinate data.
  20450. */
  20451. static void sp_256_proj_point_add_sub_9(sp_point_256* ra,
  20452. sp_point_256* rs, const sp_point_256* p, const sp_point_256* q,
  20453. sp_digit* t)
  20454. {
  20455. sp_digit* t1 = t;
  20456. sp_digit* t2 = t + 2*9;
  20457. sp_digit* t3 = t + 4*9;
  20458. sp_digit* t4 = t + 6*9;
  20459. sp_digit* t5 = t + 8*9;
  20460. sp_digit* t6 = t + 10*9;
  20461. sp_digit* xa = ra->x;
  20462. sp_digit* ya = ra->y;
  20463. sp_digit* za = ra->z;
  20464. sp_digit* xs = rs->x;
  20465. sp_digit* ys = rs->y;
  20466. sp_digit* zs = rs->z;
  20467. XMEMCPY(xa, p->x, sizeof(p->x) / 2);
  20468. XMEMCPY(ya, p->y, sizeof(p->y) / 2);
  20469. XMEMCPY(za, p->z, sizeof(p->z) / 2);
  20470. ra->infinity = 0;
  20471. rs->infinity = 0;
  20472. /* U1 = X1*Z2^2 */
  20473. sp_256_mont_sqr_9(t1, q->z, p256_mod, p256_mp_mod);
  20474. sp_256_mont_mul_9(t3, t1, q->z, p256_mod, p256_mp_mod);
  20475. sp_256_mont_mul_9(t1, t1, xa, p256_mod, p256_mp_mod);
  20476. /* U2 = X2*Z1^2 */
  20477. sp_256_mont_sqr_9(t2, za, p256_mod, p256_mp_mod);
  20478. sp_256_mont_mul_9(t4, t2, za, p256_mod, p256_mp_mod);
  20479. sp_256_mont_mul_9(t2, t2, q->x, p256_mod, p256_mp_mod);
  20480. /* S1 = Y1*Z2^3 */
  20481. sp_256_mont_mul_9(t3, t3, ya, p256_mod, p256_mp_mod);
  20482. /* S2 = Y2*Z1^3 */
  20483. sp_256_mont_mul_9(t4, t4, q->y, p256_mod, p256_mp_mod);
  20484. /* H = U2 - U1 */
  20485. sp_256_mont_sub_9(t2, t2, t1, p256_mod);
  20486. /* RS = S2 + S1 */
  20487. sp_256_mont_add_9(t6, t4, t3, p256_mod);
  20488. /* R = S2 - S1 */
  20489. sp_256_mont_sub_9(t4, t4, t3, p256_mod);
  20490. /* Z3 = H*Z1*Z2 */
  20491. /* ZS = H*Z1*Z2 */
  20492. sp_256_mont_mul_9(za, za, q->z, p256_mod, p256_mp_mod);
  20493. sp_256_mont_mul_9(za, za, t2, p256_mod, p256_mp_mod);
  20494. XMEMCPY(zs, za, sizeof(p->z)/2);
  20495. /* X3 = R^2 - H^3 - 2*U1*H^2 */
  20496. /* XS = RS^2 - H^3 - 2*U1*H^2 */
  20497. sp_256_mont_sqr_9(xa, t4, p256_mod, p256_mp_mod);
  20498. sp_256_mont_sqr_9(xs, t6, p256_mod, p256_mp_mod);
  20499. sp_256_mont_sqr_9(t5, t2, p256_mod, p256_mp_mod);
  20500. sp_256_mont_mul_9(ya, t1, t5, p256_mod, p256_mp_mod);
  20501. sp_256_mont_mul_9(t5, t5, t2, p256_mod, p256_mp_mod);
  20502. sp_256_mont_sub_9(xa, xa, t5, p256_mod);
  20503. sp_256_mont_sub_9(xs, xs, t5, p256_mod);
  20504. sp_256_mont_dbl_9(t1, ya, p256_mod);
  20505. sp_256_mont_sub_9(xa, xa, t1, p256_mod);
  20506. sp_256_mont_sub_9(xs, xs, t1, p256_mod);
  20507. /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
  20508. /* YS = -RS*(U1*H^2 - XS) - S1*H^3 */
  20509. sp_256_mont_sub_9(ys, ya, xs, p256_mod);
  20510. sp_256_mont_sub_9(ya, ya, xa, p256_mod);
  20511. sp_256_mont_mul_9(ya, ya, t4, p256_mod, p256_mp_mod);
  20512. sp_256_sub_9(t6, p256_mod, t6);
  20513. sp_256_mont_mul_9(ys, ys, t6, p256_mod, p256_mp_mod);
  20514. sp_256_mont_mul_9(t5, t5, t3, p256_mod, p256_mp_mod);
  20515. sp_256_mont_sub_9(ya, ya, t5, p256_mod);
  20516. sp_256_mont_sub_9(ys, ys, t5, p256_mod);
  20517. }
  20518. /* Structure used to describe recoding of scalar multiplication. */
  20519. typedef struct ecc_recode_256 {
  20520. /* Index into pre-computation table. */
  20521. uint8_t i;
  20522. /* Use the negative of the point. */
  20523. uint8_t neg;
  20524. } ecc_recode_256;
  20525. /* The index into pre-computation table to use. */
  20526. static const uint8_t recode_index_9_6[66] = {
  20527. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  20528. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  20529. 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
  20530. 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
  20531. 0, 1,
  20532. };
  20533. /* Whether to negate y-ordinate. */
  20534. static const uint8_t recode_neg_9_6[66] = {
  20535. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  20536. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  20537. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  20538. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  20539. 0, 0,
  20540. };
  20541. /* Recode the scalar for multiplication using pre-computed values and
  20542. * subtraction.
  20543. *
  20544. * k Scalar to multiply by.
  20545. * v Vector of operations to perform.
  20546. */
  20547. static void sp_256_ecc_recode_6_9(const sp_digit* k, ecc_recode_256* v)
  20548. {
  20549. int i;
  20550. int j;
  20551. uint8_t y;
  20552. int carry = 0;
  20553. int o;
  20554. sp_digit n;
  20555. j = 0;
  20556. n = k[j];
  20557. o = 0;
  20558. for (i=0; i<43; i++) {
  20559. y = (int8_t)n;
  20560. if (o + 6 < 29) {
  20561. y &= 0x3f;
  20562. n >>= 6;
  20563. o += 6;
  20564. }
  20565. else if (o + 6 == 29) {
  20566. n >>= 6;
  20567. if (++j < 9)
  20568. n = k[j];
  20569. o = 0;
  20570. }
  20571. else if (++j < 9) {
  20572. n = k[j];
  20573. y |= (uint8_t)((n << (29 - o)) & 0x3f);
  20574. o -= 23;
  20575. n >>= o;
  20576. }
  20577. y += (uint8_t)carry;
  20578. v[i].i = recode_index_9_6[y];
  20579. v[i].neg = recode_neg_9_6[y];
  20580. carry = (y >> 6) + v[i].neg;
  20581. }
  20582. }
  20583. #ifndef WC_NO_CACHE_RESISTANT
  20584. /* Touch each possible point that could be being copied.
  20585. *
  20586. * r Point to copy into.
  20587. * table Table - start of the entries to access
  20588. * idx Index of entry to retrieve.
  20589. */
  20590. static void sp_256_get_point_33_9(sp_point_256* r, const sp_point_256* table,
  20591. int idx)
  20592. {
  20593. int i;
  20594. sp_digit mask;
  20595. r->x[0] = 0;
  20596. r->x[1] = 0;
  20597. r->x[2] = 0;
  20598. r->x[3] = 0;
  20599. r->x[4] = 0;
  20600. r->x[5] = 0;
  20601. r->x[6] = 0;
  20602. r->x[7] = 0;
  20603. r->x[8] = 0;
  20604. r->y[0] = 0;
  20605. r->y[1] = 0;
  20606. r->y[2] = 0;
  20607. r->y[3] = 0;
  20608. r->y[4] = 0;
  20609. r->y[5] = 0;
  20610. r->y[6] = 0;
  20611. r->y[7] = 0;
  20612. r->y[8] = 0;
  20613. r->z[0] = 0;
  20614. r->z[1] = 0;
  20615. r->z[2] = 0;
  20616. r->z[3] = 0;
  20617. r->z[4] = 0;
  20618. r->z[5] = 0;
  20619. r->z[6] = 0;
  20620. r->z[7] = 0;
  20621. r->z[8] = 0;
  20622. for (i = 1; i < 33; i++) {
  20623. mask = 0 - (i == idx);
  20624. r->x[0] |= mask & table[i].x[0];
  20625. r->x[1] |= mask & table[i].x[1];
  20626. r->x[2] |= mask & table[i].x[2];
  20627. r->x[3] |= mask & table[i].x[3];
  20628. r->x[4] |= mask & table[i].x[4];
  20629. r->x[5] |= mask & table[i].x[5];
  20630. r->x[6] |= mask & table[i].x[6];
  20631. r->x[7] |= mask & table[i].x[7];
  20632. r->x[8] |= mask & table[i].x[8];
  20633. r->y[0] |= mask & table[i].y[0];
  20634. r->y[1] |= mask & table[i].y[1];
  20635. r->y[2] |= mask & table[i].y[2];
  20636. r->y[3] |= mask & table[i].y[3];
  20637. r->y[4] |= mask & table[i].y[4];
  20638. r->y[5] |= mask & table[i].y[5];
  20639. r->y[6] |= mask & table[i].y[6];
  20640. r->y[7] |= mask & table[i].y[7];
  20641. r->y[8] |= mask & table[i].y[8];
  20642. r->z[0] |= mask & table[i].z[0];
  20643. r->z[1] |= mask & table[i].z[1];
  20644. r->z[2] |= mask & table[i].z[2];
  20645. r->z[3] |= mask & table[i].z[3];
  20646. r->z[4] |= mask & table[i].z[4];
  20647. r->z[5] |= mask & table[i].z[5];
  20648. r->z[6] |= mask & table[i].z[6];
  20649. r->z[7] |= mask & table[i].z[7];
  20650. r->z[8] |= mask & table[i].z[8];
  20651. }
  20652. }
  20653. #endif /* !WC_NO_CACHE_RESISTANT */
  20654. /* Multiply the point by the scalar and return the result.
  20655. * If map is true then convert result to affine coordinates.
  20656. *
  20657. * Window technique of 6 bits. (Add-Sub variation.)
  20658. * Calculate 0..32 times the point. Use function that adds and
  20659. * subtracts the same two points.
  20660. * Recode to add or subtract one of the computed points.
  20661. * Double to push up.
  20662. * NOT a sliding window.
  20663. *
  20664. * r Resulting point.
  20665. * g Point to multiply.
  20666. * k Scalar to multiply by.
  20667. * map Indicates whether to convert result to affine.
  20668. * ct Constant time required.
  20669. * heap Heap to use for allocation.
  20670. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  20671. */
  20672. static int sp_256_ecc_mulmod_win_add_sub_9(sp_point_256* r, const sp_point_256* g,
  20673. const sp_digit* k, int map, int ct, void* heap)
  20674. {
  20675. #ifdef WOLFSSL_SP_SMALL_STACK
  20676. sp_point_256* t = NULL;
  20677. sp_digit* tmp = NULL;
  20678. #else
  20679. sp_point_256 t[33+2];
  20680. sp_digit tmp[2 * 9 * 6];
  20681. #endif
  20682. sp_point_256* rt = NULL;
  20683. sp_point_256* p = NULL;
  20684. sp_digit* negy;
  20685. int i;
  20686. ecc_recode_256 v[43];
  20687. int err = MP_OKAY;
  20688. /* Constant time used for cache attack resistance implementation. */
  20689. (void)ct;
  20690. (void)heap;
  20691. #ifdef WOLFSSL_SP_SMALL_STACK
  20692. t = (sp_point_256*)XMALLOC(sizeof(sp_point_256) *
  20693. (33+2), heap, DYNAMIC_TYPE_ECC);
  20694. if (t == NULL)
  20695. err = MEMORY_E;
  20696. if (err == MP_OKAY) {
  20697. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 6,
  20698. heap, DYNAMIC_TYPE_ECC);
  20699. if (tmp == NULL)
  20700. err = MEMORY_E;
  20701. }
  20702. #endif
  20703. if (err == MP_OKAY) {
  20704. rt = t + 33;
  20705. p = t + 33+1;
  20706. /* t[0] = {0, 0, 1} * norm */
  20707. XMEMSET(&t[0], 0, sizeof(t[0]));
  20708. t[0].infinity = 1;
  20709. /* t[1] = {g->x, g->y, g->z} * norm */
  20710. err = sp_256_mod_mul_norm_9(t[1].x, g->x, p256_mod);
  20711. }
  20712. if (err == MP_OKAY) {
  20713. err = sp_256_mod_mul_norm_9(t[1].y, g->y, p256_mod);
  20714. }
  20715. if (err == MP_OKAY) {
  20716. err = sp_256_mod_mul_norm_9(t[1].z, g->z, p256_mod);
  20717. }
  20718. if (err == MP_OKAY) {
  20719. t[1].infinity = 0;
  20720. /* t[2] ... t[32] */
  20721. sp_256_proj_point_dbl_n_store_9(t, &t[ 1], 5, 1, tmp);
  20722. sp_256_proj_point_add_9(&t[ 3], &t[ 2], &t[ 1], tmp);
  20723. sp_256_proj_point_dbl_9(&t[ 6], &t[ 3], tmp);
  20724. sp_256_proj_point_add_sub_9(&t[ 7], &t[ 5], &t[ 6], &t[ 1], tmp);
  20725. sp_256_proj_point_dbl_9(&t[10], &t[ 5], tmp);
  20726. sp_256_proj_point_add_sub_9(&t[11], &t[ 9], &t[10], &t[ 1], tmp);
  20727. sp_256_proj_point_dbl_9(&t[12], &t[ 6], tmp);
  20728. sp_256_proj_point_dbl_9(&t[14], &t[ 7], tmp);
  20729. sp_256_proj_point_add_sub_9(&t[15], &t[13], &t[14], &t[ 1], tmp);
  20730. sp_256_proj_point_dbl_9(&t[18], &t[ 9], tmp);
  20731. sp_256_proj_point_add_sub_9(&t[19], &t[17], &t[18], &t[ 1], tmp);
  20732. sp_256_proj_point_dbl_9(&t[20], &t[10], tmp);
  20733. sp_256_proj_point_dbl_9(&t[22], &t[11], tmp);
  20734. sp_256_proj_point_add_sub_9(&t[23], &t[21], &t[22], &t[ 1], tmp);
  20735. sp_256_proj_point_dbl_9(&t[24], &t[12], tmp);
  20736. sp_256_proj_point_dbl_9(&t[26], &t[13], tmp);
  20737. sp_256_proj_point_add_sub_9(&t[27], &t[25], &t[26], &t[ 1], tmp);
  20738. sp_256_proj_point_dbl_9(&t[28], &t[14], tmp);
  20739. sp_256_proj_point_dbl_9(&t[30], &t[15], tmp);
  20740. sp_256_proj_point_add_sub_9(&t[31], &t[29], &t[30], &t[ 1], tmp);
  20741. negy = t[0].y;
  20742. sp_256_ecc_recode_6_9(k, v);
  20743. i = 42;
  20744. #ifndef WC_NO_CACHE_RESISTANT
  20745. if (ct) {
  20746. sp_256_get_point_33_9(rt, t, v[i].i);
  20747. rt->infinity = !v[i].i;
  20748. }
  20749. else
  20750. #endif
  20751. {
  20752. XMEMCPY(rt, &t[v[i].i], sizeof(sp_point_256));
  20753. }
  20754. for (--i; i>=0; i--) {
  20755. sp_256_proj_point_dbl_n_9(rt, 6, tmp);
  20756. #ifndef WC_NO_CACHE_RESISTANT
  20757. if (ct) {
  20758. sp_256_get_point_33_9(p, t, v[i].i);
  20759. p->infinity = !v[i].i;
  20760. }
  20761. else
  20762. #endif
  20763. {
  20764. XMEMCPY(p, &t[v[i].i], sizeof(sp_point_256));
  20765. }
  20766. sp_256_sub_9(negy, p256_mod, p->y);
  20767. sp_256_norm_9(negy);
  20768. sp_256_cond_copy_9(p->y, negy, (sp_digit)0 - v[i].neg);
  20769. sp_256_proj_point_add_9(rt, rt, p, tmp);
  20770. }
  20771. if (map != 0) {
  20772. sp_256_map_9(r, rt, tmp);
  20773. }
  20774. else {
  20775. XMEMCPY(r, rt, sizeof(sp_point_256));
  20776. }
  20777. }
  20778. #ifdef WOLFSSL_SP_SMALL_STACK
  20779. if (t != NULL)
  20780. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  20781. if (tmp != NULL)
  20782. XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
  20783. #endif
  20784. return err;
  20785. }
  20786. #ifdef FP_ECC
  20787. #endif /* FP_ECC */
  20788. /* Add two Montgomery form projective points. The second point has a q value of
  20789. * one.
  20790. * Only the first point can be the same pointer as the result point.
  20791. *
  20792. * r Result of addition.
  20793. * p First point to add.
  20794. * q Second point to add.
  20795. * t Temporary ordinate data.
  20796. */
  20797. static void sp_256_proj_point_add_qz1_9(sp_point_256* r,
  20798. const sp_point_256* p, const sp_point_256* q, sp_digit* t)
  20799. {
  20800. sp_digit* t2 = t;
  20801. sp_digit* t3 = t + 2*9;
  20802. sp_digit* t6 = t + 4*9;
  20803. sp_digit* t1 = t + 6*9;
  20804. sp_digit* t4 = t + 8*9;
  20805. sp_digit* t5 = t + 10*9;
  20806. /* Calculate values to subtract from P->x and P->y. */
  20807. /* U2 = X2*Z1^2 */
  20808. sp_256_mont_sqr_9(t2, p->z, p256_mod, p256_mp_mod);
  20809. sp_256_mont_mul_9(t4, t2, p->z, p256_mod, p256_mp_mod);
  20810. sp_256_mont_mul_9(t2, t2, q->x, p256_mod, p256_mp_mod);
  20811. /* S2 = Y2*Z1^3 */
  20812. sp_256_mont_mul_9(t4, t4, q->y, p256_mod, p256_mp_mod);
  20813. if ((~p->infinity) & (~q->infinity) &
  20814. sp_256_cmp_equal_9(p->x, t2) &
  20815. sp_256_cmp_equal_9(p->y, t4)) {
  20816. sp_256_proj_point_dbl_9(r, p, t);
  20817. }
  20818. else {
  20819. sp_digit* x = t2;
  20820. sp_digit* y = t3;
  20821. sp_digit* z = t6;
  20822. /* H = U2 - X1 */
  20823. sp_256_mont_sub_9(t2, t2, p->x, p256_mod);
  20824. /* R = S2 - Y1 */
  20825. sp_256_mont_sub_9(t4, t4, p->y, p256_mod);
  20826. /* Z3 = H*Z1 */
  20827. sp_256_mont_mul_9(z, p->z, t2, p256_mod, p256_mp_mod);
  20828. /* X3 = R^2 - H^3 - 2*X1*H^2 */
  20829. sp_256_mont_sqr_9(t1, t2, p256_mod, p256_mp_mod);
  20830. sp_256_mont_mul_9(t3, p->x, t1, p256_mod, p256_mp_mod);
  20831. sp_256_mont_mul_9(t1, t1, t2, p256_mod, p256_mp_mod);
  20832. sp_256_mont_sqr_9(t2, t4, p256_mod, p256_mp_mod);
  20833. sp_256_mont_sub_9(t2, t2, t1, p256_mod);
  20834. sp_256_mont_dbl_9(t5, t3, p256_mod);
  20835. sp_256_mont_sub_9(x, t2, t5, p256_mod);
  20836. /* Y3 = R*(X1*H^2 - X3) - Y1*H^3 */
  20837. sp_256_mont_sub_9(t3, t3, x, p256_mod);
  20838. sp_256_mont_mul_9(t3, t3, t4, p256_mod, p256_mp_mod);
  20839. sp_256_mont_mul_9(t1, t1, p->y, p256_mod, p256_mp_mod);
  20840. sp_256_mont_sub_9(y, t3, t1, p256_mod);
  20841. {
  20842. int i;
  20843. sp_digit maskp = 0 - (q->infinity & (!p->infinity));
  20844. sp_digit maskq = 0 - (p->infinity & (!q->infinity));
  20845. sp_digit maskt = ~(maskp | maskq);
  20846. sp_digit inf = (sp_digit)(p->infinity & q->infinity);
  20847. for (i = 0; i < 9; i++) {
  20848. r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
  20849. (x[i] & maskt);
  20850. }
  20851. for (i = 0; i < 9; i++) {
  20852. r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
  20853. (y[i] & maskt);
  20854. }
  20855. for (i = 0; i < 9; i++) {
  20856. r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
  20857. (z[i] & maskt);
  20858. }
  20859. r->z[0] |= inf;
  20860. r->infinity = (word32)inf;
  20861. }
  20862. }
  20863. }
  20864. #ifdef FP_ECC
  20865. /* Convert the projective point to affine.
  20866. * Ordinates are in Montgomery form.
  20867. *
  20868. * a Point to convert.
  20869. * t Temporary data.
  20870. */
  20871. static void sp_256_proj_to_affine_9(sp_point_256* a, sp_digit* t)
  20872. {
  20873. sp_digit* t1 = t;
  20874. sp_digit* t2 = t + 2 * 9;
  20875. sp_digit* tmp = t + 4 * 9;
  20876. sp_256_mont_inv_9(t1, a->z, tmp);
  20877. sp_256_mont_sqr_9(t2, t1, p256_mod, p256_mp_mod);
  20878. sp_256_mont_mul_9(t1, t2, t1, p256_mod, p256_mp_mod);
  20879. sp_256_mont_mul_9(a->x, a->x, t2, p256_mod, p256_mp_mod);
  20880. sp_256_mont_mul_9(a->y, a->y, t1, p256_mod, p256_mp_mod);
  20881. XMEMCPY(a->z, p256_norm_mod, sizeof(p256_norm_mod));
  20882. }
  20883. /* Generate the pre-computed table of points for the base point.
  20884. *
  20885. * width = 8
  20886. * 256 entries
  20887. * 32 bits between
  20888. *
  20889. * a The base point.
  20890. * table Place to store generated point data.
  20891. * tmp Temporary data.
  20892. * heap Heap to use for allocation.
  20893. */
  20894. static int sp_256_gen_stripe_table_9(const sp_point_256* a,
  20895. sp_table_entry_256* table, sp_digit* tmp, void* heap)
  20896. {
  20897. #ifdef WOLFSSL_SP_SMALL_STACK
  20898. sp_point_256* t = NULL;
  20899. #else
  20900. sp_point_256 t[3];
  20901. #endif
  20902. sp_point_256* s1 = NULL;
  20903. sp_point_256* s2 = NULL;
  20904. int i;
  20905. int j;
  20906. int err = MP_OKAY;
  20907. (void)heap;
  20908. #ifdef WOLFSSL_SP_SMALL_STACK
  20909. t = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 3, heap,
  20910. DYNAMIC_TYPE_ECC);
  20911. if (t == NULL)
  20912. err = MEMORY_E;
  20913. #endif
  20914. if (err == MP_OKAY) {
  20915. s1 = t + 1;
  20916. s2 = t + 2;
  20917. err = sp_256_mod_mul_norm_9(t->x, a->x, p256_mod);
  20918. }
  20919. if (err == MP_OKAY) {
  20920. err = sp_256_mod_mul_norm_9(t->y, a->y, p256_mod);
  20921. }
  20922. if (err == MP_OKAY) {
  20923. err = sp_256_mod_mul_norm_9(t->z, a->z, p256_mod);
  20924. }
  20925. if (err == MP_OKAY) {
  20926. t->infinity = 0;
  20927. sp_256_proj_to_affine_9(t, tmp);
  20928. XMEMCPY(s1->z, p256_norm_mod, sizeof(p256_norm_mod));
  20929. s1->infinity = 0;
  20930. XMEMCPY(s2->z, p256_norm_mod, sizeof(p256_norm_mod));
  20931. s2->infinity = 0;
  20932. /* table[0] = {0, 0, infinity} */
  20933. XMEMSET(&table[0], 0, sizeof(sp_table_entry_256));
  20934. /* table[1] = Affine version of 'a' in Montgomery form */
  20935. XMEMCPY(table[1].x, t->x, sizeof(table->x));
  20936. XMEMCPY(table[1].y, t->y, sizeof(table->y));
  20937. for (i=1; i<8; i++) {
  20938. sp_256_proj_point_dbl_n_9(t, 32, tmp);
  20939. sp_256_proj_to_affine_9(t, tmp);
  20940. XMEMCPY(table[1<<i].x, t->x, sizeof(table->x));
  20941. XMEMCPY(table[1<<i].y, t->y, sizeof(table->y));
  20942. }
  20943. for (i=1; i<8; i++) {
  20944. XMEMCPY(s1->x, table[1<<i].x, sizeof(table->x));
  20945. XMEMCPY(s1->y, table[1<<i].y, sizeof(table->y));
  20946. for (j=(1<<i)+1; j<(1<<(i+1)); j++) {
  20947. XMEMCPY(s2->x, table[j-(1<<i)].x, sizeof(table->x));
  20948. XMEMCPY(s2->y, table[j-(1<<i)].y, sizeof(table->y));
  20949. sp_256_proj_point_add_qz1_9(t, s1, s2, tmp);
  20950. sp_256_proj_to_affine_9(t, tmp);
  20951. XMEMCPY(table[j].x, t->x, sizeof(table->x));
  20952. XMEMCPY(table[j].y, t->y, sizeof(table->y));
  20953. }
  20954. }
  20955. }
  20956. #ifdef WOLFSSL_SP_SMALL_STACK
  20957. if (t != NULL)
  20958. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  20959. #endif
  20960. return err;
  20961. }
  20962. #endif /* FP_ECC */
  20963. #ifndef WC_NO_CACHE_RESISTANT
  20964. /* Touch each possible entry that could be being copied.
  20965. *
  20966. * r Point to copy into.
  20967. * table Table - start of the entries to access
  20968. * idx Index of entry to retrieve.
  20969. */
  20970. static void sp_256_get_entry_256_9(sp_point_256* r,
  20971. const sp_table_entry_256* table, int idx)
  20972. {
  20973. int i;
  20974. sp_digit mask;
  20975. r->x[0] = 0;
  20976. r->x[1] = 0;
  20977. r->x[2] = 0;
  20978. r->x[3] = 0;
  20979. r->x[4] = 0;
  20980. r->x[5] = 0;
  20981. r->x[6] = 0;
  20982. r->x[7] = 0;
  20983. r->x[8] = 0;
  20984. r->y[0] = 0;
  20985. r->y[1] = 0;
  20986. r->y[2] = 0;
  20987. r->y[3] = 0;
  20988. r->y[4] = 0;
  20989. r->y[5] = 0;
  20990. r->y[6] = 0;
  20991. r->y[7] = 0;
  20992. r->y[8] = 0;
  20993. for (i = 1; i < 256; i++) {
  20994. mask = 0 - (i == idx);
  20995. r->x[0] |= mask & table[i].x[0];
  20996. r->x[1] |= mask & table[i].x[1];
  20997. r->x[2] |= mask & table[i].x[2];
  20998. r->x[3] |= mask & table[i].x[3];
  20999. r->x[4] |= mask & table[i].x[4];
  21000. r->x[5] |= mask & table[i].x[5];
  21001. r->x[6] |= mask & table[i].x[6];
  21002. r->x[7] |= mask & table[i].x[7];
  21003. r->x[8] |= mask & table[i].x[8];
  21004. r->y[0] |= mask & table[i].y[0];
  21005. r->y[1] |= mask & table[i].y[1];
  21006. r->y[2] |= mask & table[i].y[2];
  21007. r->y[3] |= mask & table[i].y[3];
  21008. r->y[4] |= mask & table[i].y[4];
  21009. r->y[5] |= mask & table[i].y[5];
  21010. r->y[6] |= mask & table[i].y[6];
  21011. r->y[7] |= mask & table[i].y[7];
  21012. r->y[8] |= mask & table[i].y[8];
  21013. }
  21014. }
  21015. #endif /* !WC_NO_CACHE_RESISTANT */
  21016. /* Multiply the point by the scalar and return the result.
  21017. * If map is true then convert result to affine coordinates.
  21018. *
  21019. * Stripe implementation.
  21020. * Pre-generated: 2^0, 2^32, ...
  21021. * Pre-generated: products of all combinations of above.
  21022. * 8 doubles and adds (with qz=1)
  21023. *
  21024. * r Resulting point.
  21025. * k Scalar to multiply by.
  21026. * table Pre-computed table.
  21027. * map Indicates whether to convert result to affine.
  21028. * ct Constant time required.
  21029. * heap Heap to use for allocation.
  21030. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  21031. */
  21032. static int sp_256_ecc_mulmod_stripe_9(sp_point_256* r, const sp_point_256* g,
  21033. const sp_table_entry_256* table, const sp_digit* k, int map,
  21034. int ct, void* heap)
  21035. {
  21036. #ifdef WOLFSSL_SP_SMALL_STACK
  21037. sp_point_256* rt = NULL;
  21038. sp_digit* t = NULL;
  21039. #else
  21040. sp_point_256 rt[2];
  21041. sp_digit t[2 * 9 * 6];
  21042. #endif
  21043. sp_point_256* p = NULL;
  21044. int i;
  21045. int j;
  21046. int y;
  21047. int x;
  21048. int err = MP_OKAY;
  21049. (void)g;
  21050. /* Constant time used for cache attack resistance implementation. */
  21051. (void)ct;
  21052. (void)heap;
  21053. #ifdef WOLFSSL_SP_SMALL_STACK
  21054. rt = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, heap,
  21055. DYNAMIC_TYPE_ECC);
  21056. if (rt == NULL)
  21057. err = MEMORY_E;
  21058. if (err == MP_OKAY) {
  21059. t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 6, heap,
  21060. DYNAMIC_TYPE_ECC);
  21061. if (t == NULL)
  21062. err = MEMORY_E;
  21063. }
  21064. #endif
  21065. if (err == MP_OKAY) {
  21066. p = rt + 1;
  21067. XMEMCPY(p->z, p256_norm_mod, sizeof(p256_norm_mod));
  21068. XMEMCPY(rt->z, p256_norm_mod, sizeof(p256_norm_mod));
  21069. y = 0;
  21070. x = 31;
  21071. for (j=0; j<8; j++) {
  21072. y |= (int)(((k[x / 29] >> (x % 29)) & 1) << j);
  21073. x += 32;
  21074. }
  21075. #ifndef WC_NO_CACHE_RESISTANT
  21076. if (ct) {
  21077. sp_256_get_entry_256_9(rt, table, y);
  21078. } else
  21079. #endif
  21080. {
  21081. XMEMCPY(rt->x, table[y].x, sizeof(table[y].x));
  21082. XMEMCPY(rt->y, table[y].y, sizeof(table[y].y));
  21083. }
  21084. rt->infinity = !y;
  21085. for (i=30; i>=0; i--) {
  21086. y = 0;
  21087. x = i;
  21088. for (j=0; j<8; j++) {
  21089. y |= (int)(((k[x / 29] >> (x % 29)) & 1) << j);
  21090. x += 32;
  21091. }
  21092. sp_256_proj_point_dbl_9(rt, rt, t);
  21093. #ifndef WC_NO_CACHE_RESISTANT
  21094. if (ct) {
  21095. sp_256_get_entry_256_9(p, table, y);
  21096. }
  21097. else
  21098. #endif
  21099. {
  21100. XMEMCPY(p->x, table[y].x, sizeof(table[y].x));
  21101. XMEMCPY(p->y, table[y].y, sizeof(table[y].y));
  21102. }
  21103. p->infinity = !y;
  21104. sp_256_proj_point_add_qz1_9(rt, rt, p, t);
  21105. }
  21106. if (map != 0) {
  21107. sp_256_map_9(r, rt, t);
  21108. }
  21109. else {
  21110. XMEMCPY(r, rt, sizeof(sp_point_256));
  21111. }
  21112. }
  21113. #ifdef WOLFSSL_SP_SMALL_STACK
  21114. if (t != NULL)
  21115. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  21116. if (rt != NULL)
  21117. XFREE(rt, heap, DYNAMIC_TYPE_ECC);
  21118. #endif
  21119. return err;
  21120. }
  21121. #ifdef FP_ECC
  21122. #ifndef FP_ENTRIES
  21123. #define FP_ENTRIES 16
  21124. #endif
  21125. /* Cache entry - holds precomputation tables for a point. */
  21126. typedef struct sp_cache_256_t {
  21127. /* X ordinate of point that table was generated from. */
  21128. sp_digit x[9];
  21129. /* Y ordinate of point that table was generated from. */
  21130. sp_digit y[9];
  21131. /* Precomputation table for point. */
  21132. sp_table_entry_256 table[256];
  21133. /* Count of entries in table. */
  21134. uint32_t cnt;
  21135. /* Point and table set in entry. */
  21136. int set;
  21137. } sp_cache_256_t;
  21138. /* Cache of tables. */
  21139. static THREAD_LS_T sp_cache_256_t sp_cache_256[FP_ENTRIES];
  21140. /* Index of last entry in cache. */
  21141. static THREAD_LS_T int sp_cache_256_last = -1;
  21142. /* Cache has been initialized. */
  21143. static THREAD_LS_T int sp_cache_256_inited = 0;
  21144. #ifndef HAVE_THREAD_LS
  21145. static volatile int initCacheMutex_256 = 0;
  21146. static wolfSSL_Mutex sp_cache_256_lock;
  21147. #endif
  21148. /* Get the cache entry for the point.
  21149. *
  21150. * g [in] Point scalar multiplying.
  21151. * cache [out] Cache table to use.
  21152. */
  21153. static void sp_ecc_get_cache_256(const sp_point_256* g, sp_cache_256_t** cache)
  21154. {
  21155. int i;
  21156. int j;
  21157. uint32_t least;
  21158. if (sp_cache_256_inited == 0) {
  21159. for (i=0; i<FP_ENTRIES; i++) {
  21160. sp_cache_256[i].set = 0;
  21161. }
  21162. sp_cache_256_inited = 1;
  21163. }
  21164. /* Compare point with those in cache. */
  21165. for (i=0; i<FP_ENTRIES; i++) {
  21166. if (!sp_cache_256[i].set)
  21167. continue;
  21168. if (sp_256_cmp_equal_9(g->x, sp_cache_256[i].x) &
  21169. sp_256_cmp_equal_9(g->y, sp_cache_256[i].y)) {
  21170. sp_cache_256[i].cnt++;
  21171. break;
  21172. }
  21173. }
  21174. /* No match. */
  21175. if (i == FP_ENTRIES) {
  21176. /* Find empty entry. */
  21177. i = (sp_cache_256_last + 1) % FP_ENTRIES;
  21178. for (; i != sp_cache_256_last; i=(i+1)%FP_ENTRIES) {
  21179. if (!sp_cache_256[i].set) {
  21180. break;
  21181. }
  21182. }
  21183. /* Evict least used. */
  21184. if (i == sp_cache_256_last) {
  21185. least = sp_cache_256[0].cnt;
  21186. for (j=1; j<FP_ENTRIES; j++) {
  21187. if (sp_cache_256[j].cnt < least) {
  21188. i = j;
  21189. least = sp_cache_256[i].cnt;
  21190. }
  21191. }
  21192. }
  21193. XMEMCPY(sp_cache_256[i].x, g->x, sizeof(sp_cache_256[i].x));
  21194. XMEMCPY(sp_cache_256[i].y, g->y, sizeof(sp_cache_256[i].y));
  21195. sp_cache_256[i].set = 1;
  21196. sp_cache_256[i].cnt = 1;
  21197. }
  21198. *cache = &sp_cache_256[i];
  21199. sp_cache_256_last = i;
  21200. }
  21201. #endif /* FP_ECC */
  21202. /* Multiply the base point of P256 by the scalar and return the result.
  21203. * If map is true then convert result to affine coordinates.
  21204. *
  21205. * r Resulting point.
  21206. * g Point to multiply.
  21207. * k Scalar to multiply by.
  21208. * map Indicates whether to convert result to affine.
  21209. * ct Constant time required.
  21210. * heap Heap to use for allocation.
  21211. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  21212. */
  21213. static int sp_256_ecc_mulmod_9(sp_point_256* r, const sp_point_256* g,
  21214. const sp_digit* k, int map, int ct, void* heap)
  21215. {
  21216. #ifndef FP_ECC
  21217. return sp_256_ecc_mulmod_win_add_sub_9(r, g, k, map, ct, heap);
  21218. #else
  21219. #ifdef WOLFSSL_SP_SMALL_STACK
  21220. sp_digit* tmp;
  21221. #else
  21222. sp_digit tmp[2 * 9 * 6];
  21223. #endif
  21224. sp_cache_256_t* cache;
  21225. int err = MP_OKAY;
  21226. #ifdef WOLFSSL_SP_SMALL_STACK
  21227. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 6, heap, DYNAMIC_TYPE_ECC);
  21228. if (tmp == NULL) {
  21229. err = MEMORY_E;
  21230. }
  21231. #endif
  21232. #ifndef HAVE_THREAD_LS
  21233. if (err == MP_OKAY) {
  21234. if (initCacheMutex_256 == 0) {
  21235. wc_InitMutex(&sp_cache_256_lock);
  21236. initCacheMutex_256 = 1;
  21237. }
  21238. if (wc_LockMutex(&sp_cache_256_lock) != 0) {
  21239. err = BAD_MUTEX_E;
  21240. }
  21241. }
  21242. #endif /* HAVE_THREAD_LS */
  21243. if (err == MP_OKAY) {
  21244. sp_ecc_get_cache_256(g, &cache);
  21245. if (cache->cnt == 2)
  21246. sp_256_gen_stripe_table_9(g, cache->table, tmp, heap);
  21247. #ifndef HAVE_THREAD_LS
  21248. wc_UnLockMutex(&sp_cache_256_lock);
  21249. #endif /* HAVE_THREAD_LS */
  21250. if (cache->cnt < 2) {
  21251. err = sp_256_ecc_mulmod_win_add_sub_9(r, g, k, map, ct, heap);
  21252. }
  21253. else {
  21254. err = sp_256_ecc_mulmod_stripe_9(r, g, cache->table, k,
  21255. map, ct, heap);
  21256. }
  21257. }
  21258. #ifdef WOLFSSL_SP_SMALL_STACK
  21259. XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
  21260. #endif
  21261. return err;
  21262. #endif
  21263. }
  21264. #endif
  21265. /* Multiply the point by the scalar and return the result.
  21266. * If map is true then convert result to affine coordinates.
  21267. *
  21268. * km Scalar to multiply by.
  21269. * p Point to multiply.
  21270. * r Resulting point.
  21271. * map Indicates whether to convert result to affine.
  21272. * heap Heap to use for allocation.
  21273. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  21274. */
  21275. int sp_ecc_mulmod_256(const mp_int* km, const ecc_point* gm, ecc_point* r,
  21276. int map, void* heap)
  21277. {
  21278. #ifdef WOLFSSL_SP_SMALL_STACK
  21279. sp_point_256* point = NULL;
  21280. sp_digit* k = NULL;
  21281. #else
  21282. sp_point_256 point[1];
  21283. sp_digit k[9];
  21284. #endif
  21285. int err = MP_OKAY;
  21286. #ifdef WOLFSSL_SP_SMALL_STACK
  21287. point = (sp_point_256*)XMALLOC(sizeof(sp_point_256), heap,
  21288. DYNAMIC_TYPE_ECC);
  21289. if (point == NULL)
  21290. err = MEMORY_E;
  21291. if (err == MP_OKAY) {
  21292. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9, heap,
  21293. DYNAMIC_TYPE_ECC);
  21294. if (k == NULL)
  21295. err = MEMORY_E;
  21296. }
  21297. #endif
  21298. if (err == MP_OKAY) {
  21299. sp_256_from_mp(k, 9, km);
  21300. sp_256_point_from_ecc_point_9(point, gm);
  21301. err = sp_256_ecc_mulmod_9(point, point, k, map, 1, heap);
  21302. }
  21303. if (err == MP_OKAY) {
  21304. err = sp_256_point_to_ecc_point_9(point, r);
  21305. }
  21306. #ifdef WOLFSSL_SP_SMALL_STACK
  21307. if (k != NULL)
  21308. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  21309. if (point != NULL)
  21310. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  21311. #endif
  21312. return err;
  21313. }
  21314. /* Multiply the point by the scalar, add point a and return the result.
  21315. * If map is true then convert result to affine coordinates.
  21316. *
  21317. * km Scalar to multiply by.
  21318. * p Point to multiply.
  21319. * am Point to add to scalar multiply result.
  21320. * inMont Point to add is in montgomery form.
  21321. * r Resulting point.
  21322. * map Indicates whether to convert result to affine.
  21323. * heap Heap to use for allocation.
  21324. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  21325. */
  21326. int sp_ecc_mulmod_add_256(const mp_int* km, const ecc_point* gm,
  21327. const ecc_point* am, int inMont, ecc_point* r, int map, void* heap)
  21328. {
  21329. #ifdef WOLFSSL_SP_SMALL_STACK
  21330. sp_point_256* point = NULL;
  21331. sp_digit* k = NULL;
  21332. #else
  21333. sp_point_256 point[2];
  21334. sp_digit k[9 + 9 * 2 * 6];
  21335. #endif
  21336. sp_point_256* addP = NULL;
  21337. sp_digit* tmp = NULL;
  21338. int err = MP_OKAY;
  21339. #ifdef WOLFSSL_SP_SMALL_STACK
  21340. point = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, heap,
  21341. DYNAMIC_TYPE_ECC);
  21342. if (point == NULL)
  21343. err = MEMORY_E;
  21344. if (err == MP_OKAY) {
  21345. k = (sp_digit*)XMALLOC(
  21346. sizeof(sp_digit) * (9 + 9 * 2 * 6), heap,
  21347. DYNAMIC_TYPE_ECC);
  21348. if (k == NULL)
  21349. err = MEMORY_E;
  21350. }
  21351. #endif
  21352. if (err == MP_OKAY) {
  21353. addP = point + 1;
  21354. tmp = k + 9;
  21355. sp_256_from_mp(k, 9, km);
  21356. sp_256_point_from_ecc_point_9(point, gm);
  21357. sp_256_point_from_ecc_point_9(addP, am);
  21358. }
  21359. if ((err == MP_OKAY) && (!inMont)) {
  21360. err = sp_256_mod_mul_norm_9(addP->x, addP->x, p256_mod);
  21361. }
  21362. if ((err == MP_OKAY) && (!inMont)) {
  21363. err = sp_256_mod_mul_norm_9(addP->y, addP->y, p256_mod);
  21364. }
  21365. if ((err == MP_OKAY) && (!inMont)) {
  21366. err = sp_256_mod_mul_norm_9(addP->z, addP->z, p256_mod);
  21367. }
  21368. if (err == MP_OKAY) {
  21369. err = sp_256_ecc_mulmod_9(point, point, k, 0, 0, heap);
  21370. }
  21371. if (err == MP_OKAY) {
  21372. sp_256_proj_point_add_9(point, point, addP, tmp);
  21373. if (map) {
  21374. sp_256_map_9(point, point, tmp);
  21375. }
  21376. err = sp_256_point_to_ecc_point_9(point, r);
  21377. }
  21378. #ifdef WOLFSSL_SP_SMALL_STACK
  21379. if (k != NULL)
  21380. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  21381. if (point != NULL)
  21382. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  21383. #endif
  21384. return err;
  21385. }
  21386. #ifdef WOLFSSL_SP_SMALL
  21387. /* Multiply the base point of P256 by the scalar and return the result.
  21388. * If map is true then convert result to affine coordinates.
  21389. *
  21390. * r Resulting point.
  21391. * k Scalar to multiply by.
  21392. * map Indicates whether to convert result to affine.
  21393. * heap Heap to use for allocation.
  21394. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  21395. */
  21396. static int sp_256_ecc_mulmod_base_9(sp_point_256* r, const sp_digit* k,
  21397. int map, int ct, void* heap)
  21398. {
  21399. /* No pre-computed values. */
  21400. return sp_256_ecc_mulmod_9(r, &p256_base, k, map, ct, heap);
  21401. }
  21402. #ifdef WOLFSSL_SP_NONBLOCK
  21403. static int sp_256_ecc_mulmod_base_9_nb(sp_ecc_ctx_t* sp_ctx, sp_point_256* r,
  21404. const sp_digit* k, int map, int ct, void* heap)
  21405. {
  21406. /* No pre-computed values. */
  21407. return sp_256_ecc_mulmod_9_nb(sp_ctx, r, &p256_base, k, map, ct, heap);
  21408. }
  21409. #endif /* WOLFSSL_SP_NONBLOCK */
  21410. #else
  21411. /* Striping precomputation table.
  21412. * 8 points combined into a table of 256 points.
  21413. * Distance of 32 between points.
  21414. */
  21415. static const sp_table_entry_256 p256_table[256] = {
  21416. /* 0 */
  21417. { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
  21418. { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } },
  21419. /* 1 */
  21420. { { 0x18a9143c,0x0f3986a0,0x1b6d805e,0x152bf8bf,0x0251075b,0x1995bbb1,
  21421. 0x1719e7ed,0x0ed4a6ea,0x0018905f },
  21422. { 0x0e95560a,0x0f929abe,0x06791737,0x1571c974,0x1f3258b4,0x03446e90,
  21423. 0x16174ba2,0x0304b10b,0x008571ff } },
  21424. /* 2 */
  21425. { { 0x0147519a,0x01443012,0x0cdcbc08,0x103d584d,0x1ebc8d09,0x13e553c2,
  21426. 0x03a6a752,0x01bb7beb,0x00d953c5 },
  21427. { 0x1d590f8f,0x0b1b0e67,0x19b245e7,0x12c4d689,0x164cf72e,0x10881175,
  21428. 0x03cdff65,0x0fd3d651,0x00863ebb } },
  21429. /* 3 */
  21430. { { 0x1cdb6485,0x02b5b11a,0x028be5de,0x1e1d445e,0x0300b808,0x0caa27bf,
  21431. 0x0280f9a3,0x0ab6bff0,0x00000760 },
  21432. { 0x038d2010,0x11a75cdc,0x10dc229d,0x029f7664,0x06606540,0x1e9cc215,
  21433. 0x1b838391,0x0c2686e7,0x00830877 } },
  21434. /* 4 */
  21435. { { 0x16a0d2bb,0x1c917e28,0x188d2653,0x1982d834,0x02c8b0d5,0x079d2be3,
  21436. 0x19fe4907,0x0c3fa36c,0x002f5e69 },
  21437. { 0x15a01797,0x00ae385f,0x05586497,0x01689ac1,0x1db523d2,0x0d9b838f,
  21438. 0x1dec1244,0x02d1ade1,0x00f648f9 } },
  21439. /* 5 */
  21440. { { 0x0137bbbc,0x12b3423f,0x1a82fb27,0x088d3d14,0x13463e43,0x13b0bceb,
  21441. 0x0056c710,0x10a267a0,0x005abe02 },
  21442. { 0x004c7dab,0x15541be6,0x098301e4,0x1b3e9886,0x0cc37573,0x0ab13c73,
  21443. 0x0e0c324c,0x0b6d6dee,0x0094bb72 } },
  21444. /* 6 */
  21445. { { 0x120f141c,0x1fcda47b,0x1d6f1d2e,0x13679a5b,0x045c4619,0x1094a088,
  21446. 0x13bf70fd,0x1965efb8,0x00cdd6bb },
  21447. { 0x0af436fd,0x0533805f,0x04c9afb3,0x08fedb73,0x125226f6,0x13c900a7,
  21448. 0x17d8303e,0x17a97b5c,0x00a361be } },
  21449. /* 7 */
  21450. { { 0x197c13c7,0x05512ac2,0x0df0f84a,0x1ac6bea1,0x09d1dc38,0x0d7679e0,
  21451. 0x04b01c0e,0x013896a5,0x00ba12ca },
  21452. { 0x19f91dfd,0x12047d22,0x1a81fee7,0x0876cd9d,0x00b293af,0x1844cebc,
  21453. 0x1d2c7b3a,0x13ae03fd,0x0053ebb9 } },
  21454. /* 8 */
  21455. { { 0x10e63d34,0x1f3f718d,0x1953ead3,0x000ae553,0x1b5a4f46,0x199a6af3,
  21456. 0x00c70124,0x1240daa9,0x008589fb },
  21457. { 0x0583553a,0x1387ae63,0x1592796a,0x121295c4,0x04652087,0x02838802,
  21458. 0x113f3241,0x0da04a83,0x00ebb069 } },
  21459. /* 9 */
  21460. { { 0x0c1647c5,0x10b650ad,0x13d5e651,0x04fa8f89,0x1fbacb81,0x1551bb26,
  21461. 0x168f7199,0x197a364f,0x00eb2820 },
  21462. { 0x0a87e008,0x0037c6c3,0x08de3ce5,0x1bf53b24,0x0ecb2d87,0x17214066,
  21463. 0x08755bb4,0x136ab4fb,0x001f2828 } },
  21464. /* 10 */
  21465. { { 0x1b89da99,0x1dd50601,0x0a1008aa,0x05af3d70,0x005e8a6f,0x1c315c0e,
  21466. 0x158c9e11,0x0b20bca9,0x00337a4b },
  21467. { 0x01f7794a,0x033a8069,0x1b5fd84f,0x000b6efa,0x1d6e8207,0x1bc08267,
  21468. 0x0f582968,0x1abe985f,0x000d65e0 } },
  21469. /* 11 */
  21470. { { 0x15275d38,0x0e84ddf5,0x1828d636,0x114e8a17,0x0b265426,0x17fa4b9f,
  21471. 0x08cbc1d8,0x084a5e94,0x00c23da2 },
  21472. { 0x0b94520c,0x0d0dc278,0x16f5e397,0x0ccec760,0x09ea1096,0x05c34a69,
  21473. 0x1fc4e937,0x1198f219,0x0019de3b } },
  21474. /* 12 */
  21475. { { 0x06c5fe04,0x01d38b61,0x0e86f6c6,0x11bc1677,0x1712c3b2,0x02c35265,
  21476. 0x0ff5d0cb,0x1a923f99,0x00e34dcb },
  21477. { 0x0aa58403,0x0046a35d,0x1a5e94ed,0x12e90d05,0x0a8af9a6,0x00939b55,
  21478. 0x1dfe78e4,0x088f69c1,0x00e7641f } },
  21479. /* 13 */
  21480. { { 0x1f64ba59,0x0ba9ca0e,0x0090bf1f,0x1e21d816,0x01859d33,0x0fe350ac,
  21481. 0x1efd3c1b,0x0ae0a54a,0x004a12df },
  21482. { 0x1439dbd0,0x1d319c7c,0x194f87ef,0x0497a97b,0x1b314d3c,0x07fd10f8,
  21483. 0x091bf579,0x12776b7d,0x006af5aa } },
  21484. /* 14 */
  21485. { { 0x10c91999,0x1085b4c8,0x16012476,0x09688054,0x020900a2,0x0a5a5c66,
  21486. 0x004cf802,0x0b4cd488,0x005fe347 },
  21487. { 0x193e7b4b,0x07c655ef,0x08fe46ac,0x16a034f8,0x06263292,0x04d7668f,
  21488. 0x04590ba2,0x011d9fd5,0x00b544e3 } },
  21489. /* 15 */
  21490. { { 0x16ddfdce,0x03c63748,0x045e7999,0x0522cdf1,0x067e12c3,0x173b26a7,
  21491. 0x082d3a35,0x17b4d618,0x00e0b6b2 },
  21492. { 0x1b7efb57,0x09896f95,0x031001c3,0x181bbcf2,0x1c9441aa,0x1b56b3cd,
  21493. 0x1dd3e40c,0x1bc4b4c6,0x0071c023 } },
  21494. /* 16 */
  21495. { { 0x1fe20925,0x15461225,0x173a19d8,0x0335871f,0x0706391c,0x12eaee9c,
  21496. 0x13d96a5a,0x1a843a64,0x0061d587 },
  21497. { 0x037173ea,0x03b39d15,0x1de2d97a,0x090010a6,0x0b43e238,0x020f02dd,
  21498. 0x1ef843e1,0x0248c43d,0x00fa11fe } },
  21499. /* 17 */
  21500. { { 0x0cb19ffd,0x0448f959,0x048f08c7,0x151ab763,0x1ca8e01b,0x1eb3c562,
  21501. 0x1b72db40,0x0983e277,0x00586eb0 },
  21502. { 0x07e8ed09,0x01ae3729,0x067b7883,0x03467830,0x052fa1e8,0x0b602b63,
  21503. 0x1c449e3f,0x010e10c9,0x0019d5ac } },
  21504. /* 18 */
  21505. { { 0x109a4e1f,0x14cfac09,0x09c01d07,0x1bce37d2,0x08d20ab7,0x1785f7e9,
  21506. 0x18fc9a97,0x07eff38a,0x00e7c007 },
  21507. { 0x0ef59f76,0x1b6b31d0,0x1f2c1407,0x1676a841,0x002d4669,0x0fbd3d33,
  21508. 0x102b0230,0x1fd8cb67,0x00e08504 } },
  21509. /* 19 */
  21510. { { 0x0031b3ca,0x04c7b46d,0x169b59bc,0x19573dcd,0x046e86d1,0x00fd4a79,
  21511. 0x1ad16ff6,0x104b6132,0x0078f018 },
  21512. { 0x1a25787f,0x1f77ef21,0x132b26ed,0x0df01a3b,0x1fc36801,0x043bd9ad,
  21513. 0x11e833a9,0x170fd28e,0x0043a773 } },
  21514. /* 20 */
  21515. { { 0x12b533d5,0x12bbb9a6,0x0f777018,0x1715ed43,0x0c293673,0x1e4d53cf,
  21516. 0x1ac55df9,0x0a38764c,0x00bb6de6 },
  21517. { 0x165259b3,0x1f4981d5,0x0e9d2039,0x015fa7a0,0x0fc27d6a,0x01e8cd9e,
  21518. 0x066f16b2,0x134ba317,0x0060b461 } },
  21519. /* 21 */
  21520. { { 0x1ae5aa1c,0x0b51c708,0x19cd962f,0x0eca5693,0x187edb8b,0x000a772f,
  21521. 0x1f342c4c,0x1655dd7f,0x009d0f27 },
  21522. { 0x1a730a55,0x1492318b,0x0ef20eb2,0x0ab65fbb,0x19a719c9,0x0ff05600,
  21523. 0x12341f07,0x0da6add8,0x00244a56 } },
  21524. /* 22 */
  21525. { { 0x0acf1f96,0x0d81ca57,0x1309c71b,0x02455204,0x1d3b99f2,0x160dc165,
  21526. 0x1da4989a,0x10e6b03d,0x0045e58c },
  21527. { 0x038f9dbc,0x1ffa3ced,0x02281034,0x15e28dd1,0x0bed7a8a,0x0fd92370,
  21528. 0x1e92516b,0x03983c96,0x00c040e2 } },
  21529. /* 23 */
  21530. { { 0x0f8117b6,0x03d78003,0x08d50ce1,0x12d3fee7,0x075eb651,0x1abb0eca,
  21531. 0x1b1d20ac,0x12ed058d,0x001cdf5c },
  21532. { 0x11f04839,0x0dbbada0,0x1785a61f,0x1d59e891,0x132197db,0x0ee8db85,
  21533. 0x1cf6ca48,0x1f1525bf,0x00046755 } },
  21534. /* 24 */
  21535. { { 0x1ce8ffcd,0x04562e95,0x1986a0b3,0x0789165f,0x0d6c70d5,0x10b93901,
  21536. 0x17cfdbc5,0x02277074,0x00046e5e },
  21537. { 0x18007f01,0x1dc7fb26,0x1d0c60f9,0x03de24b5,0x1a03c7fb,0x0f531af0,
  21538. 0x016c1171,0x186607a0,0x006e0106 } },
  21539. /* 25 */
  21540. { { 0x08dd73b1,0x0639ac24,0x17b43652,0x00e11f32,0x02ab7767,0x0f5462b5,
  21541. 0x1c7ce0e1,0x1dbd2039,0x00442594 },
  21542. { 0x12d4b65b,0x07d51648,0x12430dfe,0x0468772d,0x18d1f94c,0x1250af4b,
  21543. 0x1a3b4c9b,0x0a2985dc,0x00a796fa } },
  21544. /* 26 */
  21545. { { 0x023addd7,0x0cfdb024,0x19a4eccd,0x14c307ca,0x13c809e2,0x1bc71e5f,
  21546. 0x1ba7e216,0x1538d2ec,0x00e4ad2d },
  21547. { 0x0e048a61,0x0bfbfa14,0x04b6680d,0x1a331981,0x0d8ef082,0x0d7a601f,
  21548. 0x050ff0e8,0x08d86f6a,0x00c5e940 } },
  21549. /* 27 */
  21550. { { 0x0be75f9e,0x1b529c61,0x048e9e11,0x0353d196,0x1c04b6fd,0x06f85884,
  21551. 0x1d1f6179,0x15fb68c8,0x0063283d },
  21552. { 0x1af2df15,0x139467bd,0x1669fd33,0x0588aa15,0x0bcc3e59,0x1356f41a,
  21553. 0x04e3eac8,0x15633035,0x0068bd19 } },
  21554. /* 28 */
  21555. { { 0x1887d659,0x04756a88,0x164c16b0,0x09abe966,0x14fe3337,0x14c0e7f3,
  21556. 0x1f5a5a61,0x1ea78dfb,0x00495292 },
  21557. { 0x1acec896,0x143c64f0,0x16d12112,0x096421d8,0x160a7d96,0x1bf13326,
  21558. 0x00dd9a5b,0x01a4c06d,0x000ec753 } },
  21559. /* 29 */
  21560. { { 0x0d2687bb,0x0d09d02d,0x0b887e8b,0x1076d5e6,0x0607ba1f,0x0f7a8eea,
  21561. 0x1c2ce43d,0x14cc90c7,0x000f6207 },
  21562. { 0x0f138233,0x0b3f1dd8,0x0aa9c62f,0x0d72d84e,0x088aedd6,0x02039376,
  21563. 0x173e3b40,0x0e411dad,0x00ff0db0 } },
  21564. /* 30 */
  21565. { { 0x0c95d553,0x04fd080a,0x1a02a29d,0x00a5faba,0x1566fa44,0x018bff9d,
  21566. 0x1a8c60ed,0x07910e81,0x00313b51 },
  21567. { 0x08d11549,0x00171560,0x17b8872d,0x1dc21769,0x0320e071,0x03eea3f9,
  21568. 0x1e049ae6,0x1f30de33,0x002d3abc } },
  21569. /* 31 */
  21570. { { 0x015581a2,0x0144280c,0x08846bd3,0x14daacc6,0x12e999a0,0x1d078655,
  21571. 0x137c66e9,0x021bdb31,0x00c036fa },
  21572. { 0x01fbd009,0x0d7045d6,0x1456058a,0x1163200d,0x00d8f0b6,0x193bcdcf,
  21573. 0x06530bac,0x1896da80,0x00a6b2a2 } },
  21574. /* 32 */
  21575. { { 0x0d3549cf,0x019f287b,0x135997b5,0x06d2dff5,0x1fcb46f3,0x1ed66708,
  21576. 0x0181a56f,0x0a55ef93,0x00810ee2 },
  21577. { 0x1159bb2c,0x0a287f0b,0x02cd5ed9,0x1f7d7ceb,0x1ea72f7d,0x1f3a6b4f,
  21578. 0x1d14ac15,0x0f524e62,0x00d48571 } },
  21579. /* 33 */
  21580. { { 0x10cb5a98,0x0ba0d457,0x0c442fc4,0x151f263e,0x02adfd3d,0x1165d59c,
  21581. 0x01386653,0x14e5f34c,0x006a6045 },
  21582. { 0x02b2411d,0x186069fd,0x03a5b805,0x1d707ca2,0x1b3ccbe0,0x0fb9c432,
  21583. 0x1e40ef32,0x1f5f3c2a,0x00d3e45c } },
  21584. /* 34 */
  21585. { { 0x083f7669,0x10fb4ddf,0x01df5af3,0x115d04e5,0x0278d09f,0x172a1922,
  21586. 0x06725522,0x1bdc7858,0x00207755 },
  21587. { 0x0fef1945,0x1deb0ecb,0x0b4a30e1,0x0279df62,0x164aa188,0x08eb396f,
  21588. 0x00367ef3,0x1cae2a96,0x0048dc5e } },
  21589. /* 35 */
  21590. { { 0x17e5a199,0x11bc85ff,0x0732edc4,0x1f719f31,0x19c79e0e,0x15ff0528,
  21591. 0x111709e8,0x1dbbfede,0x00f2fb0a },
  21592. { 0x10b5025f,0x0e04abaf,0x1ea7c890,0x0a87ae81,0x1fbd0550,0x04569c05,
  21593. 0x14963e8f,0x02bb651a,0x00a13e90 } },
  21594. /* 36 */
  21595. { { 0x02b65cbc,0x0fbd1a85,0x119089be,0x0972e454,0x107a10b0,0x1120f11f,
  21596. 0x09bc9973,0x160292ea,0x002bf0d6 },
  21597. { 0x0b216fb7,0x1ea6e9fa,0x17689ab4,0x0f70cff7,0x0505cf7d,0x1c1fb384,
  21598. 0x027ebade,0x0b42c5fd,0x0042a94a } },
  21599. /* 37 */
  21600. { { 0x0aadf191,0x0235685f,0x089a35d6,0x1491204b,0x1c1f60f8,0x182824a6,
  21601. 0x18f7a180,0x0d38cbdb,0x002c2dd9 },
  21602. { 0x13849c17,0x0810b8ec,0x0894375b,0x0911743b,0x05485460,0x03831e1d,
  21603. 0x16f12043,0x03e858ad,0x00f437fa } },
  21604. /* 38 */
  21605. { { 0x0a0f7dab,0x1506b8a2,0x1dba6b1a,0x092f262e,0x197860f0,0x10287af9,
  21606. 0x0aa14b02,0x066a8e0f,0x00aaf45b },
  21607. { 0x018d364a,0x0f1be19e,0x125c5961,0x17360c7c,0x05444d40,0x0b408af6,
  21608. 0x0af3d05c,0x01be9e4e,0x00cdf631 } },
  21609. /* 39 */
  21610. { { 0x0ea8b7ef,0x039e311c,0x0f08a1dd,0x126a310b,0x08e3408e,0x13b915ed,
  21611. 0x1fc90655,0x175b53c5,0x00f0d008 },
  21612. { 0x0414d3b1,0x089338e9,0x067a9d8a,0x0a930b60,0x1cbdbb37,0x1cb6a29d,
  21613. 0x0e2d7186,0x1eb9510f,0x005bd5c2 } },
  21614. /* 40 */
  21615. { { 0x149a3154,0x187a34f7,0x0acba6bb,0x0b4b2adc,0x04a9c3e8,0x160f5549,
  21616. 0x1c6516ab,0x191413c8,0x00aa12df },
  21617. { 0x0df69f1d,0x1793913a,0x1fd79cc9,0x09905945,0x1dd44e0e,0x0739dbd4,
  21618. 0x0406e763,0x0e7c9195,0x006c036e } },
  21619. /* 41 */
  21620. { { 0x0f6e3138,0x07d70950,0x0b4d1697,0x0dde004b,0x12bc5696,0x0325a2b3,
  21621. 0x1892264f,0x0b12d5f7,0x00292ff6 },
  21622. { 0x1e213402,0x09286a22,0x04b27fb5,0x101c4e87,0x072e8f65,0x1cbfed0e,
  21623. 0x09d825ec,0x1206236e,0x00644e0c } },
  21624. /* 42 */
  21625. { { 0x047153f0,0x0f210f0d,0x01063278,0x1876f324,0x17672b86,0x0743b82e,
  21626. 0x09de4ef7,0x127956f3,0x00f25ae7 },
  21627. { 0x0d869d0c,0x198ca51b,0x01b09907,0x0b910493,0x0945e9d5,0x0f5184b7,
  21628. 0x08f927ed,0x0a627b61,0x0039b8e6 } },
  21629. /* 43 */
  21630. { { 0x16fd2e59,0x1baa1005,0x157263cd,0x0580cd24,0x0573935e,0x190d0715,
  21631. 0x0c1b676a,0x05e1e33b,0x0039122f },
  21632. { 0x03cad53c,0x1de70f00,0x1705f8f3,0x16581fcc,0x13877225,0x18e94d50,
  21633. 0x1e35caeb,0x1f19d01f,0x008de80a } },
  21634. /* 44 */
  21635. { { 0x007bbb76,0x1df546c9,0x1e09d62b,0x18fcf842,0x036b1921,0x1ba58e02,
  21636. 0x10137e8a,0x00c5c6d1,0x00871949 },
  21637. { 0x03993df5,0x0fc945dd,0x0cf49aad,0x1aeb6be7,0x15050639,0x13c542da,
  21638. 0x1784046a,0x0d4b6e9f,0x00fc315e } },
  21639. /* 45 */
  21640. { { 0x08d6ecfa,0x10fea0d7,0x1b1fe195,0x1889ec35,0x0741d5f8,0x153da492,
  21641. 0x02226114,0x15bdc712,0x00e6d4a7 },
  21642. { 0x0593c75d,0x02a9768a,0x09c45898,0x0e1b49ba,0x0c7db70a,0x0f49bdd1,
  21643. 0x195f4abb,0x13537c55,0x0035dfaf } },
  21644. /* 46 */
  21645. { { 0x0a736636,0x1cab7e6d,0x0b2adf9a,0x0a3b2f5c,0x0996609f,0x1fa0879a,
  21646. 0x14afec42,0x1ae39061,0x001da5c7 },
  21647. { 0x1cce6825,0x020f2419,0x15cf0ed7,0x1a231ff2,0x036b815a,0x0963f918,
  21648. 0x075a8a15,0x1fbb7e97,0x007077c0 } },
  21649. /* 47 */
  21650. { { 0x06b9661c,0x1b1ffc6a,0x0b3f5c6f,0x1fa6d61a,0x1f8f7a1d,0x10a05423,
  21651. 0x19100dcf,0x05dca1df,0x0053a863 },
  21652. { 0x096d8051,0x0bb7fb43,0x13d1a282,0x18192b8e,0x026bddae,0x06e1af27,
  21653. 0x13058a65,0x0da69c3f,0x00028ca7 } },
  21654. /* 48 */
  21655. { { 0x1c9877ee,0x08ea3ee7,0x074000b4,0x06c42100,0x060b6c8b,0x008baa61,
  21656. 0x011b400b,0x1b0d2c5e,0x0004c17c },
  21657. { 0x10daddf5,0x0cde84a5,0x1395701b,0x046aea49,0x003b5bea,0x0b73396d,
  21658. 0x11d198cd,0x1d3fdb2e,0x00f7ba4d } },
  21659. /* 49 */
  21660. { { 0x0be1263f,0x06dfd1a7,0x0b9f39b4,0x0c6e6ae3,0x0f523557,0x02a9c153,
  21661. 0x11074910,0x000a4263,0x00e31f96 },
  21662. { 0x0a6b6ec6,0x0ddc90b7,0x10bf1134,0x03a25ce7,0x0a29437a,0x1f5644e8,
  21663. 0x11ef0439,0x0b39c69a,0x00aa3a62 } },
  21664. /* 50 */
  21665. { { 0x16f3dcd3,0x1e7cefa9,0x0fdcd83e,0x1bdaa1a5,0x04f5b6ce,0x087d6fa8,
  21666. 0x0bb9245c,0x0c4fcf3b,0x002398dd },
  21667. { 0x0d09569e,0x1a382d1b,0x127dda73,0x0c3376a2,0x0034cea0,0x01bb9afb,
  21668. 0x0843fe70,0x1643808c,0x005717f5 } },
  21669. /* 51 */
  21670. { { 0x01dd895e,0x1f114e49,0x10a11467,0x030a0081,0x17ecd8e5,0x091c8eb1,
  21671. 0x037be84f,0x0ac1c785,0x00660a2c },
  21672. { 0x167fcbd0,0x06544576,0x0a7c25a7,0x0e48f01d,0x12b4dc84,0x1a40b974,
  21673. 0x114ccacb,0x0989ea44,0x00624ee5 } },
  21674. /* 52 */
  21675. { { 0x1897eccc,0x0aa4e726,0x06202a82,0x13a3b27f,0x07c204d4,0x1211821d,
  21676. 0x0f01c8f0,0x1f7257bf,0x004f392a },
  21677. { 0x1de44fd9,0x0b4fc7d3,0x0cc8559a,0x19f7c8af,0x0bc3cb66,0x14019b47,
  21678. 0x06736cbe,0x0ef99b67,0x008a3e79 } },
  21679. /* 53 */
  21680. { { 0x06c4b125,0x0f0c40f8,0x18f2a337,0x09c601ed,0x013e9ae3,0x0cef2e3d,
  21681. 0x1013bda6,0x046e1848,0x003888d0 },
  21682. { 0x04f91081,0x11401ab2,0x0055411d,0x1f9ec2be,0x0d36e3d9,0x16e43196,
  21683. 0x0cd8609f,0x08e30204,0x00a5e62e } },
  21684. /* 54 */
  21685. { { 0x0facd6c8,0x1412f719,0x0f2f1986,0x18c6a8a9,0x19931699,0x16fbcc6f,
  21686. 0x0b70338f,0x1cc8cd4b,0x002c4768 },
  21687. { 0x10a64bc9,0x1a37fc64,0x1de7d72c,0x14c041c8,0x1e884630,0x08325e02,
  21688. 0x0a836527,0x083f3cca,0x007b5e64 } },
  21689. /* 55 */
  21690. { { 0x1d28444a,0x0b4a1160,0x04da8e48,0x0d8bb17c,0x07fcee99,0x17f2fd86,
  21691. 0x11288e1e,0x196191ae,0x00b8af73 },
  21692. { 0x138b86fd,0x1ef41d51,0x02973fd7,0x07e2b14b,0x09433fee,0x07b79056,
  21693. 0x025727ba,0x0befe7e1,0x00a03639 } },
  21694. /* 56 */
  21695. { { 0x010f7770,0x039e35dd,0x0a838923,0x02db0342,0x02b9fa6f,0x1b4128de,
  21696. 0x14cc4037,0x0030ebf6,0x004be36b },
  21697. { 0x1fb56dbb,0x11304374,0x19e93e24,0x1fdf160f,0x12f20306,0x0602b36a,
  21698. 0x0303bab3,0x10e37b80,0x008cbc9a } },
  21699. /* 57 */
  21700. { { 0x00dac4ab,0x098c4ae6,0x0bfc44b8,0x094880e2,0x0ee57a87,0x173e350e,
  21701. 0x17e18cca,0x07c18106,0x0044e755 },
  21702. { 0x1734002d,0x0a81fffb,0x0d10971b,0x0b971616,0x138b59d3,0x013b0743,
  21703. 0x106257dc,0x074bd71f,0x00470a68 } },
  21704. /* 58 */
  21705. { { 0x10513482,0x0dbb0ee4,0x1a49daa0,0x0e405403,0x13083028,0x00f70673,
  21706. 0x1bbf3691,0x1218c7b8,0x00164106 },
  21707. { 0x0d06a2ed,0x081a5033,0x06c402fd,0x1aee8a31,0x018c9dd4,0x173955c1,
  21708. 0x0d3f6452,0x1faf5797,0x00d73479 } },
  21709. /* 59 */
  21710. { { 0x1ad4c6e5,0x16f7d8b2,0x01b4135f,0x19e11eb6,0x1cb14262,0x0dd8c2ba,
  21711. 0x19ac4bb5,0x1c60ee2c,0x00816469 },
  21712. { 0x161e291e,0x1d5cebca,0x17859875,0x1b5e4583,0x00513eb9,0x13f589af,
  21713. 0x1e73d260,0x047e1ba7,0x000a36dd } },
  21714. /* 60 */
  21715. { { 0x01d5533c,0x0c69963a,0x0118a3c2,0x1eb53d0d,0x1bd117c5,0x1456f1a4,
  21716. 0x0460e688,0x1adfb756,0x00e331df },
  21717. { 0x0bcc6ed8,0x08055b43,0x1e898394,0x01877bde,0x050d7716,0x0cd3de74,
  21718. 0x0e26418f,0x054925c6,0x00d3b478 } },
  21719. /* 61 */
  21720. { { 0x13821f90,0x0a4db747,0x1adeab68,0x1bb3dacd,0x1311692e,0x14a98d00,
  21721. 0x16f42ed9,0x0b4990d4,0x00728127 },
  21722. { 0x13ff47e5,0x01c2c7be,0x00591054,0x0c2d78c2,0x19bb15e1,0x188d3efe,
  21723. 0x01658ac3,0x0fd9c28a,0x002c062e } },
  21724. /* 62 */
  21725. { { 0x0159ac2e,0x1b7ccb78,0x16c9c4e9,0x1cee6d97,0x06047281,0x09440472,
  21726. 0x1bc4ab5b,0x1f2589cf,0x00282a35 },
  21727. { 0x00ce5cd2,0x01aa58f6,0x1e708a67,0x13df9226,0x0c11ecf9,0x179c1f41,
  21728. 0x0af664b2,0x026aa9a5,0x00c71cd5 } },
  21729. /* 63 */
  21730. { { 0x09b578f4,0x042ef4e0,0x0bfe9e92,0x09c4b1c7,0x02f1f188,0x18dbac8c,
  21731. 0x0e8e3dda,0x0819e8fe,0x00c50f67 },
  21732. { 0x174b68ea,0x0e256f99,0x0597f8aa,0x0de646d3,0x13050a40,0x111142d2,
  21733. 0x0370be1a,0x14e4252b,0x00b9ecb3 } },
  21734. /* 64 */
  21735. { { 0x14f8b16a,0x17c20877,0x1ec99a95,0x0835fd88,0x087c1972,0x15c736ce,
  21736. 0x0c6c2901,0x0059a855,0x00803f3e },
  21737. { 0x04dbec69,0x18184d40,0x0eb417df,0x170bee77,0x0197fa83,0x1939d6c7,
  21738. 0x17071825,0x01ca0cf5,0x00c09744 } },
  21739. /* 65 */
  21740. { { 0x0379ab34,0x0352b796,0x077e3461,0x1c0d1708,0x068efa8e,0x022c8bb6,
  21741. 0x1cc080c5,0x1ab22be3,0x00f1af32 },
  21742. { 0x1d75bd50,0x0e1ba98a,0x0bd9ef26,0x19ff75ee,0x1723f837,0x120c246b,
  21743. 0x122c184e,0x061c5a83,0x0023d0f1 } },
  21744. /* 66 */
  21745. { { 0x141500d9,0x0bd5b76f,0x0fab6a21,0x1215cbf9,0x059510d8,0x032444b9,
  21746. 0x0b754bfa,0x1ad8147f,0x00b0288d },
  21747. { 0x050bcb08,0x09907983,0x175b85a1,0x1ec626d2,0x1aa7671a,0x1053dcc4,
  21748. 0x0348c7d4,0x09fe8119,0x00ffd372 } },
  21749. /* 67 */
  21750. { { 0x1458e6cb,0x1cb47325,0x1e974a14,0x1b5a4062,0x15f56992,0x1705bd53,
  21751. 0x1b7ce052,0x095af184,0x00f5590f },
  21752. { 0x0f0ba55a,0x1e125e9e,0x1de2eb83,0x08e49418,0x1674a0fc,0x0327b41d,
  21753. 0x088073a6,0x0a9edee9,0x0018d6da } },
  21754. /* 68 */
  21755. { { 0x15be5a2b,0x0c9f112e,0x0d3cf1bb,0x0f3306b2,0x06ffc6fe,0x04931131,
  21756. 0x05a90c50,0x1b2f3204,0x0050bbb4 },
  21757. { 0x057ec63e,0x1c0c8e37,0x07736c8d,0x04588030,0x0e0f6654,0x04cd811b,
  21758. 0x070d06a0,0x03003fc9,0x002b1001 } },
  21759. /* 69 */
  21760. { { 0x1b391593,0x0345ae2c,0x009c3f3f,0x0beb44b3,0x0dcbbc38,0x19d568cd,
  21761. 0x1831c513,0x13307f75,0x00dd5589 },
  21762. { 0x14b82ff4,0x1dc45c73,0x19cd3264,0x007880e3,0x0322ad2e,0x0f57a1e0,
  21763. 0x010669ea,0x0a2293ac,0x00e6e4c5 } },
  21764. /* 70 */
  21765. { { 0x1e9af288,0x0fb2add8,0x0b6a4c55,0x1c34c9ef,0x020e5647,0x1f25e594,
  21766. 0x1bfd0da5,0x1620fdaa,0x0051e00d },
  21767. { 0x171c327e,0x1e8b4dc3,0x05b0ab50,0x1b641695,0x1477929c,0x08fa9ef5,
  21768. 0x05df01f5,0x08293052,0x00e22f42 } },
  21769. /* 71 */
  21770. { { 0x035f1abb,0x0a2f47a3,0x14e21d33,0x18196ad0,0x0034d7ed,0x160fdad4,
  21771. 0x0327251c,0x07aa5b89,0x00f70937 },
  21772. { 0x08af30d6,0x00cb35dd,0x0deda710,0x1ebe95e2,0x1c47e95b,0x0b1549b0,
  21773. 0x0c44e598,0x111ce4eb,0x00bd52d2 } },
  21774. /* 72 */
  21775. { { 0x1c5fa877,0x18aae3d4,0x0e8f522a,0x15ace4fa,0x189d817d,0x1fcf39e8,
  21776. 0x1e990fd0,0x1c99154e,0x00a0d0f8 },
  21777. { 0x0c94f92d,0x1df57ec6,0x1376ce82,0x11917c18,0x0ba14d81,0x12fc5c17,
  21778. 0x08008b31,0x18f28dad,0x00a56c78 } },
  21779. /* 73 */
  21780. { { 0x0dd09529,0x0b11c8d8,0x0b77f3ca,0x1c1d4c7b,0x1f481803,0x1a8fadad,
  21781. 0x19e8b1dc,0x1f0e6346,0x00d8befd },
  21782. { 0x1c0157f4,0x1c8cea17,0x1239942a,0x195daffd,0x08b0af51,0x05a0016a,
  21783. 0x11e337e7,0x14b9d3ec,0x00854a68 } },
  21784. /* 74 */
  21785. { { 0x03506ea5,0x01afb3db,0x1f8359b7,0x0d891349,0x1cd4d928,0x0e9dff4a,
  21786. 0x0a54fc40,0x0173108d,0x005cacea },
  21787. { 0x1ceac44d,0x086fb064,0x13470eaa,0x0535e86a,0x1babe3db,0x1ef456ae,
  21788. 0x1ea42374,0x0246bc9d,0x00e4982d } },
  21789. /* 75 */
  21790. { { 0x034cd55e,0x18825116,0x00344c88,0x12b7664d,0x1d943586,0x0d7d0fd0,
  21791. 0x1267ecd1,0x1ec2d640,0x008046b7 },
  21792. { 0x18e7d098,0x099ac0f1,0x1bc2dc2d,0x0c3d1be8,0x178c4d7f,0x14f52265,
  21793. 0x1d54c37a,0x0f721055,0x00eb17ca } },
  21794. /* 76 */
  21795. { { 0x16a145b9,0x1a8dacc3,0x0f1c7b05,0x1ed61f83,0x115bba5c,0x1ab29c93,
  21796. 0x04c74f80,0x175f56bc,0x00097b00 },
  21797. { 0x165f69e1,0x1336474a,0x0f94666a,0x11eeb56b,0x1d98477e,0x1d08ed27,
  21798. 0x127980ce,0x0f75fb79,0x00f95c74 } },
  21799. /* 77 */
  21800. { { 0x1ebae45e,0x0c780e9d,0x0f1a5555,0x17d3e189,0x04fc6a8e,0x02d8ede3,
  21801. 0x00debadc,0x03cacddb,0x00351260 },
  21802. { 0x1a1161cd,0x19b78f0f,0x197be1e4,0x1571aa98,0x121e5328,0x17713927,
  21803. 0x0dad1d5f,0x046c0d15,0x000ef971 } },
  21804. /* 78 */
  21805. { { 0x14ca4226,0x12cc67ba,0x190b2380,0x1bc271f0,0x017905ee,0x1fba2347,
  21806. 0x12552258,0x066769f7,0x00fc16d9 },
  21807. { 0x07c800ca,0x14b7d98f,0x1e2b6aaf,0x00c6624c,0x1e8b5138,0x024bb7f9,
  21808. 0x085cf589,0x1e372baf,0x0014ca4a } },
  21809. /* 79 */
  21810. { { 0x1d2f81d5,0x123b8dd5,0x1df4659e,0x1f3ad203,0x1c9071a5,0x1f7be56c,
  21811. 0x0c776262,0x0c7eb384,0x004057b0 },
  21812. { 0x09c05c0a,0x1fec17f4,0x1037e16f,0x0238de3b,0x016dbe49,0x065751ad,
  21813. 0x0c4cefbf,0x0c9e2661,0x001c3b5d } },
  21814. /* 80 */
  21815. { { 0x00ec21fe,0x1f0a5ff4,0x156fa097,0x1c22d584,0x05d67f6c,0x0d0397a5,
  21816. 0x0ebe62f1,0x091b6fcc,0x00fad271 },
  21817. { 0x09ab05b3,0x0605b561,0x0946b9a4,0x1350789c,0x0de7d37a,0x043ae155,
  21818. 0x0a1029f7,0x1c73e1c3,0x0077387d } },
  21819. /* 81 */
  21820. { { 0x056c0dd7,0x14f6624d,0x021b1d07,0x1ff9b08c,0x1aecea5c,0x0a047a82,
  21821. 0x11fa3de8,0x1817de18,0x00b37b85 },
  21822. { 0x0c0e6a8f,0x0cb5b726,0x0e23c8cd,0x1a977ed6,0x0ef4efd6,0x09fd61ce,
  21823. 0x0356ae91,0x191f3ec5,0x009c135a } },
  21824. /* 82 */
  21825. { { 0x04e35743,0x15519014,0x08f37bcc,0x1ad5630b,0x19819320,0x18bb0ef8,
  21826. 0x147ee086,0x03f88670,0x00572136 },
  21827. { 0x11fc9168,0x186d9b53,0x17100f07,0x1174e6bc,0x0d8f55f9,0x143f1bde,
  21828. 0x06f7d932,0x193cd762,0x00dcbac3 } },
  21829. /* 83 */
  21830. { { 0x0518cbe2,0x00eccb42,0x07ac13bc,0x05f83139,0x1eebfd24,0x11e3f23f,
  21831. 0x0189c9d9,0x13c5ac4d,0x00b8c1c8 },
  21832. { 0x08e1d569,0x0d2c5eee,0x16233414,0x1013916f,0x131eb563,0x1fecf88f,
  21833. 0x0b509b09,0x1b45f284,0x005d23bb } },
  21834. /* 84 */
  21835. { { 0x15c8f8be,0x10e394a4,0x1cd8afc2,0x03890077,0x1d4ac296,0x0201efb1,
  21836. 0x04027906,0x19723d9d,0x00c109f9 },
  21837. { 0x18945705,0x1684ae82,0x1ae17030,0x107b2dbb,0x0449bb90,0x15c6bd20,
  21838. 0x1b8611a4,0x09e5ddc3,0x009bc334 } },
  21839. /* 85 */
  21840. { { 0x02913074,0x0ad71ab2,0x0950ac43,0x12364e91,0x0732a554,0x1332d988,
  21841. 0x13051a72,0x0a4be349,0x0029591d },
  21842. { 0x184f983f,0x1b7adb5d,0x17e13879,0x1dde833e,0x0a189be7,0x0a4b405d,
  21843. 0x0cb04803,0x03e31de6,0x00637655 } },
  21844. /* 86 */
  21845. { { 0x162976cc,0x0d2f8a72,0x1c4b0e2f,0x1947cc1d,0x0985222b,0x18323665,
  21846. 0x01eaefe8,0x19011c53,0x00bdb79d },
  21847. { 0x0b06a772,0x0965ae4e,0x14db73bf,0x08eb55fc,0x15db838f,0x10113e15,
  21848. 0x052b0a8f,0x0035ba78,0x008ee860 } },
  21849. /* 87 */
  21850. { { 0x04ade873,0x1f4b4c0d,0x1ee92332,0x13549b89,0x14ba57ee,0x144cad02,
  21851. 0x092cb3b8,0x0f4deef5,0x0092e51d },
  21852. { 0x1190a34d,0x045d7d43,0x0f47b465,0x11eeb7ed,0x11144d69,0x13718657,
  21853. 0x0aab403b,0x0de14ad5,0x005182f8 } },
  21854. /* 88 */
  21855. { { 0x1a4cc99c,0x1d310963,0x1b67287e,0x0136d07c,0x18c5aff6,0x13e5ad64,
  21856. 0x1bc976ec,0x0ba80e74,0x0091dcab },
  21857. { 0x1f575a70,0x0db661ea,0x0361fe80,0x06c272df,0x017360cb,0x074644cc,
  21858. 0x1cac5975,0x1b72f2e9,0x0017a0ce } },
  21859. /* 89 */
  21860. { { 0x076c8d3a,0x0430f150,0x03e492ce,0x155a7242,0x035d9701,0x157209d4,
  21861. 0x1d065343,0x0d8fe99b,0x002e8ce3 },
  21862. { 0x037a862b,0x0939ed58,0x19323ea4,0x15376ec1,0x0f2dd01b,0x09c419dd,
  21863. 0x03cfe591,0x19669ecd,0x00f4ccc6 } },
  21864. /* 90 */
  21865. { { 0x11f79687,0x077a92e7,0x1bea0551,0x12a92b25,0x18d297c5,0x0ba0d2e3,
  21866. 0x0f27848c,0x111341be,0x00ac0db4 },
  21867. { 0x1f01747f,0x15fe388e,0x05f7c4e1,0x1726b1de,0x16bb5592,0x0727ae65,
  21868. 0x128b9620,0x0c32992e,0x0095a64a } },
  21869. /* 91 */
  21870. { { 0x015a4c93,0x160f7ed6,0x1614505c,0x0d36e704,0x10bad402,0x1d8e0b65,
  21871. 0x19ddaa37,0x17452420,0x00231e54 },
  21872. { 0x0ae6d2dc,0x186fc8bc,0x044a4629,0x154c7e72,0x172234d6,0x1935af2d,
  21873. 0x0787d89d,0x065b14e6,0x00ab0be0 } },
  21874. /* 92 */
  21875. { { 0x0d131f2d,0x0bd6874c,0x013c4042,0x1e13c676,0x1a748637,0x10cb6af4,
  21876. 0x19e46b21,0x10059ed4,0x00f1bcc8 },
  21877. { 0x08daacb4,0x0e348a07,0x1d940249,0x1c80aac1,0x137a63c4,0x047e23bc,
  21878. 0x09c56473,0x0d2b5d76,0x00851694 } },
  21879. /* 93 */
  21880. { { 0x11dcf593,0x11ae0a1f,0x062f8ef7,0x00565360,0x19d3d782,0x16e14dee,
  21881. 0x1763a736,0x1a5b55aa,0x008f67d9 },
  21882. { 0x1481ea5f,0x0088b2b3,0x13164321,0x05bbd3c6,0x13fa8e7d,0x01fa0282,
  21883. 0x0d77ff75,0x17380e51,0x00f84572 } },
  21884. /* 94 */
  21885. { { 0x17af71c9,0x10d3d38c,0x1cd95957,0x092888f4,0x15063a14,0x1703870e,
  21886. 0x106686d2,0x020c2d65,0x00edee27 },
  21887. { 0x11734121,0x1781a7a8,0x097a7c2c,0x18dcaa94,0x02ecf1ca,0x0479d206,
  21888. 0x1fd23705,0x13689d7a,0x009fd27e } },
  21889. /* 95 */
  21890. { { 0x16e2cb16,0x063b2c57,0x16466d8f,0x16fa59fc,0x15583e3e,0x0c0b0b46,
  21891. 0x0e1d6a31,0x16d2b1fe,0x00a40c2f },
  21892. { 0x1edcc158,0x04f62b07,0x1c8c15a3,0x10098cab,0x07e127ad,0x13824d18,
  21893. 0x1b3f64e5,0x170fb8db,0x0099bc9b } },
  21894. /* 96 */
  21895. { { 0x127dafc6,0x054a90ec,0x02734661,0x03f6d2b8,0x06dde52c,0x00d07c9b,
  21896. 0x19927656,0x01742daf,0x009abe21 },
  21897. { 0x08915220,0x0057c252,0x1605b192,0x062ed49b,0x1ca5afa7,0x1cc38b40,
  21898. 0x12c31f54,0x0af0fe68,0x007881c2 } },
  21899. /* 97 */
  21900. { { 0x00bcf3ff,0x19ccda8f,0x1fdd3da4,0x05978a24,0x1d9680d0,0x12d16e80,
  21901. 0x05023ed1,0x033461d1,0x0015e6e3 },
  21902. { 0x1e0e05f4,0x036b7069,0x16210119,0x0f7bb886,0x050d3fad,0x03e8e27c,
  21903. 0x0b3af987,0x19e3222e,0x000e55fa } },
  21904. /* 98 */
  21905. { { 0x18787564,0x14ecc037,0x1a17399f,0x062e4263,0x1e8d61a3,0x0c655c0c,
  21906. 0x15ddac05,0x0ecdfd2c,0x00d73d09 },
  21907. { 0x1eb7206e,0x1241a128,0x062ed090,0x12521f8c,0x0a520a51,0x1c2caf18,
  21908. 0x142d772e,0x0e91e2b4,0x009250a3 } },
  21909. /* 99 */
  21910. { { 0x1e577410,0x17f847c5,0x1dea31b2,0x011406a0,0x063a4fd4,0x1944f605,
  21911. 0x102fc7d8,0x10583991,0x00774140 },
  21912. { 0x0b0991cd,0x0d207d37,0x1f70a581,0x1410cc93,0x0fd40c1c,0x11e3d992,
  21913. 0x02e4e9a2,0x09a25d64,0x008cb04f } },
  21914. /* 100 */
  21915. { { 0x0906171c,0x0e1682ab,0x09030fec,0x07d39b60,0x06841907,0x15a7ec48,
  21916. 0x0d476e39,0x1de8e247,0x00e4e429 },
  21917. { 0x18ec36f4,0x1c6ea9e1,0x12da89c2,0x05b803fe,0x09a48f9d,0x1703c3cd,
  21918. 0x15497419,0x1fe78dcc,0x0037bca2 } },
  21919. /* 101 */
  21920. { { 0x1f562470,0x06971e3e,0x0592b253,0x04e54581,0x193be44f,0x0efcc063,
  21921. 0x08a9f1b5,0x1b860056,0x0059913e },
  21922. { 0x1750592a,0x109cd41a,0x00f7809e,0x003b01cf,0x1d64f99e,0x01baf502,
  21923. 0x089b3e30,0x0956027c,0x0043786e } },
  21924. /* 102 */
  21925. { { 0x1e56b5a6,0x1995876c,0x1f1a3e7f,0x01b34db3,0x046a7075,0x1422acbc,
  21926. 0x19ebb057,0x1316fcf3,0x008638ca },
  21927. { 0x0afc24b2,0x1ad704b0,0x0b3a3c8b,0x131d5e9b,0x1a78f053,0x0ee85765,
  21928. 0x1bc0edd9,0x0d4f6754,0x001ecdd3 } },
  21929. /* 103 */
  21930. { { 0x0c5ff2f3,0x09d66b13,0x1cea5e17,0x0a2d8050,0x10d54a2d,0x04fd6908,
  21931. 0x0cb6b653,0x10ba8b3e,0x00d85d0f },
  21932. { 0x10b11da3,0x1b805c68,0x00c63127,0x0458614f,0x0decdd2c,0x047a4904,
  21933. 0x118955a6,0x18769da7,0x00a04f19 } },
  21934. /* 104 */
  21935. { { 0x0d7f93bd,0x03c92647,0x0bd47d82,0x0958ba72,0x171afcb6,0x1985410d,
  21936. 0x02c1f2b8,0x1d4b812a,0x0092b2ee },
  21937. { 0x05b6e235,0x0d6264a4,0x0db03c21,0x19495252,0x08891ab2,0x1359f028,
  21938. 0x1db203ea,0x042b0684,0x001ee782 } },
  21939. /* 105 */
  21940. { { 0x063e79f7,0x10517007,0x067641a9,0x01cf65e7,0x1c09df59,0x02a53303,
  21941. 0x05424084,0x1b0af4dc,0x00f3f2ce },
  21942. { 0x110d9b55,0x0028879f,0x19099208,0x1f9f59b0,0x10e7c9d2,0x0d53f45e,
  21943. 0x0843958c,0x0a87b47c,0x000f56a4 } },
  21944. /* 106 */
  21945. { { 0x1043e0df,0x190dffd0,0x001f9b56,0x096d9938,0x0517a6c7,0x17606a54,
  21946. 0x098c6995,0x08232d3c,0x00bd8f17 },
  21947. { 0x1eb7494a,0x14dddc35,0x1cee0e22,0x0fa8de8b,0x1a79a156,0x0953d272,
  21948. 0x08277de8,0x06a6199f,0x002d1a1c } },
  21949. /* 107 */
  21950. { { 0x106508da,0x0971c09a,0x15e569c6,0x03018943,0x144b3336,0x0ca4bd4c,
  21951. 0x091b376d,0x0bd723f7,0x00a107a6 },
  21952. { 0x0f94d639,0x168e8e28,0x162df5f9,0x15e6eb14,0x1ca1c8b4,0x0ac25e9b,
  21953. 0x0bc869f1,0x015f0f53,0x00183d76 } },
  21954. /* 108 */
  21955. { { 0x0dde59a4,0x0eb4b888,0x02fbe1ca,0x1b1a0e1d,0x0be78f1a,0x04b1a797,
  21956. 0x1d508a6d,0x13b84d3a,0x001d4417 },
  21957. { 0x0390d30e,0x196e067c,0x1a04432c,0x164ea61b,0x0339a0a3,0x0ee295e0,
  21958. 0x0988c6bc,0x1852c0da,0x00771f9c } },
  21959. /* 109 */
  21960. { { 0x05040739,0x0cc9f3bc,0x09aa4e66,0x073b7300,0x0fc26445,0x1b797afc,
  21961. 0x063b3d03,0x06206c4e,0x0064427a },
  21962. { 0x05428aa8,0x1a796c3c,0x1ed26a13,0x15b87fd7,0x101ac7b7,0x1636f91e,
  21963. 0x15b4806c,0x092d5d21,0x0049d9b7 } },
  21964. /* 110 */
  21965. { { 0x035d1099,0x03c6c5e2,0x03468233,0x179a9d1d,0x08a412ad,0x1150165b,
  21966. 0x11140b0b,0x0367ec0a,0x009037d8 },
  21967. { 0x074c7b61,0x06dd6138,0x0ff5cb9f,0x006356af,0x15352fe2,0x164b2cb6,
  21968. 0x0e718733,0x0d4f980c,0x0008c3de } },
  21969. /* 111 */
  21970. { { 0x16d552ab,0x07ee8107,0x13607c48,0x15ff300b,0x1129156b,0x1e1f489a,
  21971. 0x0cbc1bed,0x0848af2d,0x00c69094 },
  21972. { 0x01231bd1,0x1d9d74e2,0x11608145,0x18dd0eb9,0x0a1221ea,0x1bd5fceb,
  21973. 0x0b008220,0x00595fc7,0x003fa3db } },
  21974. /* 112 */
  21975. { { 0x05058880,0x1ad1f328,0x0e50fcb5,0x06cbdec8,0x049257da,0x030e7d59,
  21976. 0x03fd051e,0x161fb701,0x00c5c4bd },
  21977. { 0x1272b56b,0x1a89f1a5,0x0e410e9c,0x04fd2a23,0x04969c83,0x11befc42,
  21978. 0x1ad7f633,0x1288d856,0x002d56db } },
  21979. /* 113 */
  21980. { { 0x1f46ac6b,0x030bc17f,0x08b90949,0x1ef24c0f,0x08de1d19,0x11e204d2,
  21981. 0x090bebfa,0x13bca077,0x000f56bd },
  21982. { 0x145cda49,0x1bea7689,0x1bca6744,0x02b1f902,0x03402821,0x12a5575a,
  21983. 0x17c79f1a,0x13a22e76,0x004003bb } },
  21984. /* 114 */
  21985. { { 0x00803387,0x1c740c4d,0x12f5010e,0x022bea73,0x17f21ece,0x1046e943,
  21986. 0x1e790a5c,0x04540fe5,0x00537655 },
  21987. { 0x08a4182d,0x04c0510d,0x0677de69,0x17a0f464,0x1a2d4a2b,0x05170d0c,
  21988. 0x15259d34,0x0b0d8ba8,0x007a056f } },
  21989. /* 115 */
  21990. { { 0x1d8a2a47,0x03592ac4,0x17c9dcd9,0x10529187,0x0d5395b5,0x000755f8,
  21991. 0x19d547b0,0x1e2f4344,0x0077d482 },
  21992. { 0x07853948,0x050decac,0x1efffbae,0x102f7ad9,0x01e47a6f,0x002bc034,
  21993. 0x0392adbb,0x05656716,0x00411501 } },
  21994. /* 116 */
  21995. { { 0x0de28ced,0x039f87a3,0x04fb11cf,0x1b4ec136,0x063921d5,0x074f372e,
  21996. 0x051986e3,0x0e5f7d41,0x00cdf045 },
  21997. { 0x0c53c3b0,0x059e2c5b,0x1ee10f07,0x1c782088,0x1780e97f,0x0570965c,
  21998. 0x0427ecae,0x1b52e706,0x00ee703d } },
  21999. /* 117 */
  22000. { { 0x1f57e43a,0x028a8a07,0x0e046e0d,0x0cc1a763,0x0b986d44,0x0effc7a1,
  22001. 0x1884aced,0x13b42c59,0x002a0ad8 },
  22002. { 0x0bc277ba,0x072534a3,0x10709d99,0x1192a982,0x16274c78,0x1326655f,
  22003. 0x1964506a,0x0cf58568,0x00d62d0b } },
  22004. /* 118 */
  22005. { { 0x0c054ac4,0x0e2ec3d9,0x1f7de20e,0x00b0b3e4,0x128d6570,0x05f9d8c0,
  22006. 0x109bb7df,0x1e532384,0x00b39a23 },
  22007. { 0x10b16ae5,0x094250af,0x0dbd46e5,0x140b6342,0x007830c6,0x009bf938,
  22008. 0x1314758f,0x12580ce9,0x0004ed00 } },
  22009. /* 119 */
  22010. { { 0x1ae90393,0x1a0c2e8c,0x0f593987,0x0f685294,0x0fc14304,0x00d34c2a,
  22011. 0x0e1eb800,0x18202ef8,0x00a0a91f },
  22012. { 0x0e2c831e,0x1851f80d,0x1c9f85bf,0x0d5d0456,0x075b4bb7,0x0450ad18,
  22013. 0x11063c4b,0x1113da41,0x00084cf9 } },
  22014. /* 120 */
  22015. { { 0x1ca6becf,0x0c284ef7,0x1fecca36,0x1d5d00fb,0x0e8b92fc,0x0ae223bc,
  22016. 0x1df97628,0x164e757e,0x00d57955 },
  22017. { 0x11b5d4f1,0x086d3cf1,0x1e9e8708,0x05e09679,0x1c20baa5,0x1044ee13,
  22018. 0x07c75344,0x08405a28,0x008e14ea } },
  22019. /* 121 */
  22020. { { 0x12897042,0x16a81a2f,0x100b12bb,0x0a663e86,0x1fb218d0,0x00ca645e,
  22021. 0x05632367,0x06e5549a,0x00597e1a },
  22022. { 0x0f0bd68c,0x193f60d6,0x00925140,0x17c1b956,0x03e846d4,0x06bd64ff,
  22023. 0x17a96e72,0x06c33369,0x00ca3f02 } },
  22024. /* 122 */
  22025. { { 0x0170bd20,0x095085ab,0x0fd779d6,0x112fe2da,0x0ade20ea,0x1ff8a259,
  22026. 0x1f928cd8,0x0fc61380,0x00bde7fd },
  22027. { 0x18f5432c,0x0b5db695,0x10d112d4,0x1b8397c0,0x15b5a210,0x0f37fc7c,
  22028. 0x0660f6c0,0x01c14fba,0x00b623ad } },
  22029. /* 123 */
  22030. { { 0x00c7b65b,0x1adeb3ab,0x0928a269,0x18ab2047,0x06795ab8,0x07e86bd9,
  22031. 0x0defe088,0x08cb1d82,0x00d6aa2e },
  22032. { 0x1138bb85,0x055e005a,0x0cea5704,0x03a243b0,0x0a32e8c3,0x18058b81,
  22033. 0x04eac93f,0x1c05b98a,0x00111662 } },
  22034. /* 124 */
  22035. { { 0x0fb42b87,0x008a00af,0x1b137fde,0x1ebae036,0x1c129bd9,0x066bd3eb,
  22036. 0x03e19bb3,0x197296ea,0x00db3ee1 },
  22037. { 0x134837cf,0x1379ed87,0x15e353ec,0x1da31772,0x0657de7e,0x0fc9be2b,
  22038. 0x096574b3,0x084a440d,0x00886a64 } },
  22039. /* 125 */
  22040. { { 0x05b569ea,0x011a67db,0x0846704f,0x022283ee,0x0619e200,0x042ed0ad,
  22041. 0x1ef22eb7,0x1d603142,0x00a70cf4 },
  22042. { 0x0c4a6a65,0x127cbd74,0x0d0de3c8,0x0b9e4e02,0x0096036e,0x104f27bf,
  22043. 0x0ddef8e9,0x157a2e8f,0x00aa4772 } },
  22044. /* 126 */
  22045. { { 0x1aa60cc0,0x1b3b098b,0x1a0457d9,0x02c6c206,0x1bb5ac79,0x05da5de0,
  22046. 0x05d37b66,0x1b861f5f,0x00611a6d },
  22047. { 0x015ee47a,0x073c65e6,0x0365a94c,0x12c5049c,0x1ed882e8,0x0d6f9eec,
  22048. 0x1220dbcd,0x1f02c853,0x005cfffa } },
  22049. /* 127 */
  22050. { { 0x1b7a99cd,0x06aa67fc,0x0f116870,0x07733b08,0x139e17bf,0x0847b163,
  22051. 0x05300e2a,0x046fb833,0x006e5a6b },
  22052. { 0x0ba5db77,0x1c5a2a70,0x1d8358fb,0x1100ff59,0x08378b7b,0x00633b30,
  22053. 0x0f339647,0x11a485b5,0x00481a23 } },
  22054. /* 128 */
  22055. { { 0x15d0b34a,0x1a0bde01,0x09f029f8,0x1670d706,0x162d1440,0x1316d601,
  22056. 0x050e3edc,0x099c19bf,0x002c4111 },
  22057. { 0x0d95a0b1,0x1d2e778d,0x1550d88a,0x166f50cf,0x086c9c09,0x06e900f2,
  22058. 0x0a5c9b5b,0x17e85ff2,0x0020477a } },
  22059. /* 129 */
  22060. { { 0x18d65dbf,0x1ba8b9e0,0x07b6b60b,0x1f281c67,0x1001c77b,0x0935ee78,
  22061. 0x1ad9c08b,0x1358ee72,0x00ac6640 },
  22062. { 0x06261cc3,0x185d9b7e,0x039fa422,0x1ef79232,0x06c10213,0x075d522f,
  22063. 0x1e159507,0x0eb98245,0x00ce8e69 } },
  22064. /* 130 */
  22065. { { 0x1c0a67d2,0x1890da0d,0x13492283,0x08ec1488,0x1473762d,0x078eb2cd,
  22066. 0x12a03811,0x0ca4a176,0x0008fde3 },
  22067. { 0x048bf287,0x07761ed4,0x0da75bab,0x0c4305a6,0x09482c2a,0x0fee4922,
  22068. 0x135cd60b,0x1a4acbad,0x002f7e2f } },
  22069. /* 131 */
  22070. { { 0x03770fa7,0x125c96de,0x0410fe6b,0x1d1ab86f,0x01171095,0x074e8bbb,
  22071. 0x0ab953cd,0x05d20ee0,0x00c65be9 },
  22072. { 0x16fd0a40,0x1ac5181f,0x139e12c9,0x1045c779,0x167bfe7d,0x1ac2a7cb,
  22073. 0x0ce9eb93,0x08fa2327,0x004bff8e } },
  22074. /* 132 */
  22075. { { 0x00ff1480,0x0a0e90f8,0x1536c5b3,0x11f6fa0e,0x0f3ea2ab,0x0977ddf0,
  22076. 0x19f6b207,0x1ccaee52,0x003e4e4a },
  22077. { 0x1c5303e6,0x10c79b69,0x0988e5df,0x13329724,0x0c3c03bd,0x07130992,
  22078. 0x00a27b5c,0x1fab1d8c,0x005388ae } },
  22079. /* 133 */
  22080. { { 0x1e5d7713,0x0898bf5a,0x179276ab,0x130bdceb,0x1b26109b,0x1e27e3a7,
  22081. 0x1838cbd6,0x1a29eeb7,0x005cf908 },
  22082. { 0x0e657b12,0x1021a884,0x1bb6799d,0x08434b72,0x0ccc2bfd,0x1a8fc4b8,
  22083. 0x138838a7,0x080c1e01,0x00a698ba } },
  22084. /* 134 */
  22085. { { 0x0f748fec,0x1ed8b437,0x074b3e5c,0x0eab44fd,0x05effe6e,0x12a26713,
  22086. 0x16358c2d,0x114f5d75,0x00b142ef },
  22087. { 0x17d5770a,0x098d7cf8,0x0cd04beb,0x1e76ce59,0x159de66a,0x068def99,
  22088. 0x01d5af58,0x12cb0a2a,0x00d1896a } },
  22089. /* 135 */
  22090. { { 0x13c41c08,0x02cabd59,0x1a38b87b,0x1d2958a8,0x12f6c87d,0x15b9d623,
  22091. 0x08e46205,0x016f303b,0x00267b0e },
  22092. { 0x0e62b988,0x12aa72ec,0x1b4879db,0x1b8eaa22,0x06f99d8d,0x1d781e95,
  22093. 0x0e4d1843,0x0f542232,0x00b54e28 } },
  22094. /* 136 */
  22095. { { 0x178a876b,0x100915a8,0x14412d02,0x1f2dfe10,0x09f7651f,0x18d58a79,
  22096. 0x1398142c,0x116bf0fa,0x0084abb2 },
  22097. { 0x0270790a,0x0f6a1cfc,0x18fd1af5,0x196b3b0b,0x022122d6,0x0e0db60f,
  22098. 0x1901d7d5,0x0ce2ecaa,0x00e5436f } },
  22099. /* 137 */
  22100. { { 0x0286e8d5,0x1fc812f1,0x1114ef94,0x192b690c,0x0e3a0353,0x1adef204,
  22101. 0x067b60cb,0x116b739d,0x000404f6 },
  22102. { 0x0781e8e5,0x1699def5,0x0f0bd6f2,0x1ea0302c,0x1caa33cd,0x14b0008c,
  22103. 0x1c055d5d,0x1be15838,0x003a4263 } },
  22104. /* 138 */
  22105. { { 0x1aeb596d,0x14b2f664,0x0f24ad30,0x1407ce04,0x1396101e,0x1a5b1700,
  22106. 0x0d9d1c12,0x07f20bd4,0x000ca8fd },
  22107. { 0x151b2b61,0x1291d212,0x03f341a4,0x0f513872,0x0a63e1eb,0x095f01c9,
  22108. 0x10cf9fc7,0x0c89bb61,0x0096dca2 } },
  22109. /* 139 */
  22110. { { 0x187510af,0x01dda1d1,0x08da8048,0x1fd55153,0x10378846,0x0bb817ca,
  22111. 0x077348e9,0x024755ab,0x004363e2 },
  22112. { 0x00246a47,0x121d0e3a,0x17749372,0x0571a5ca,0x1af96b36,0x03022ec7,
  22113. 0x0313e6c2,0x0b9b1773,0x00840e11 } },
  22114. /* 140 */
  22115. { { 0x1023e8a7,0x09102f10,0x171e82fc,0x11519bb1,0x05ddfc80,0x11390b1d,
  22116. 0x1b538a4a,0x17a61bda,0x005e0d6a },
  22117. { 0x1cfc0f64,0x1d390e13,0x157b6201,0x1d803a1c,0x19db242e,0x1f7c8e8f,
  22118. 0x09689a9e,0x1e8528b4,0x007dea48 } },
  22119. /* 141 */
  22120. { { 0x05060a81,0x1efb78e7,0x1e55856a,0x1f38e5f1,0x0268be79,0x162a0356,
  22121. 0x1b473f4d,0x17dd7fa2,0x00abc2a2 },
  22122. { 0x13e2eac7,0x16337c8e,0x174119a2,0x0174c7a5,0x0d31b6f1,0x11bb8141,
  22123. 0x1f059e43,0x128d8fdd,0x004ea353 } },
  22124. /* 142 */
  22125. { { 0x1266309d,0x0c517c6a,0x05168fbb,0x038d8103,0x05dc10a5,0x1a2d2bc6,
  22126. 0x1f0f3b2b,0x1123929f,0x003a76e6 },
  22127. { 0x1d7b0d0f,0x15674523,0x161297e6,0x159d2d1e,0x17fbe963,0x06392734,
  22128. 0x1191468c,0x0148cbcc,0x008212a1 } },
  22129. /* 143 */
  22130. { { 0x0fab8caa,0x1be30e1e,0x0508e43b,0x171d081c,0x133ca18e,0x1fb3bf4b,
  22131. 0x05933477,0x0e2b3396,0x00aa7cab },
  22132. { 0x1c837bd1,0x17e4939d,0x1abd75c0,0x080fa186,0x1da49c06,0x09497a11,
  22133. 0x1f0c5d88,0x0e7fc0c2,0x0040e380 } },
  22134. /* 144 */
  22135. { { 0x07bf9b7c,0x07c04125,0x0f8c343d,0x1a46407f,0x19ce3365,0x09904be7,
  22136. 0x149afef9,0x001660aa,0x00e36047 },
  22137. { 0x0cc6c2c7,0x0e5cc88b,0x132fb993,0x106e1174,0x0d9ec726,0x0a1a31bd,
  22138. 0x057f737b,0x0ef47bdc,0x006542d6 } },
  22139. /* 145 */
  22140. { { 0x1b6c377a,0x1995b683,0x0d122f8f,0x00708f20,0x08af76cb,0x09d4106d,
  22141. 0x1c875bf7,0x1dc1376d,0x00a6534a },
  22142. { 0x1035facf,0x050bc068,0x12d1f98c,0x0ab4673b,0x1f39335e,0x07f0e223,
  22143. 0x1c89ba94,0x05fb935d,0x00f3cb67 } },
  22144. /* 146 */
  22145. { { 0x1b55fd83,0x19b8cff1,0x1777443a,0x0f48d90e,0x0a784e0d,0x0fd482e7,
  22146. 0x039cceb2,0x05d55d0e,0x007cafaa },
  22147. { 0x1d53b338,0x1c0a6820,0x01f9b1a6,0x198141df,0x12b0fe0a,0x088408b3,
  22148. 0x08bbee4f,0x183737aa,0x000aab13 } },
  22149. /* 147 */
  22150. { { 0x12681297,0x0e6713c6,0x02551ab7,0x0a1d636a,0x1aaf2cb3,0x18b9bb30,
  22151. 0x0ba4b710,0x00508e02,0x004b91a6 },
  22152. { 0x12f8ddcf,0x07f884ab,0x0446bd37,0x17ec3d35,0x0430e08e,0x1b0561b9,
  22153. 0x12ad23d0,0x0a6e4643,0x0049534c } },
  22154. /* 148 */
  22155. { { 0x107b7e9d,0x1efbeb8f,0x13545be0,0x11df4627,0x07ee3a47,0x1325b602,
  22156. 0x17b9e3bc,0x09facb58,0x00caf46c },
  22157. { 0x12aa8266,0x026863bc,0x0da12ee8,0x08a8cd22,0x116b0edf,0x08b45725,
  22158. 0x1c3d5b99,0x0ae098ce,0x0014ce9e } },
  22159. /* 149 */
  22160. { { 0x165e8f91,0x0a22f1f4,0x03c924a6,0x19437596,0x0a0a0d3a,0x0387c864,
  22161. 0x09c74c73,0x14a7c993,0x001bb708 },
  22162. { 0x158bdd7a,0x0e54f34a,0x0289ac75,0x140a1003,0x0f1ec734,0x1538a64e,
  22163. 0x040ac24e,0x1e5b4600,0x00f9d126 } },
  22164. /* 150 */
  22165. { { 0x0ff9563e,0x04de53d5,0x0645281d,0x0ef5fd69,0x11671dd0,0x0188dfaf,
  22166. 0x11a789e8,0x172e53d9,0x00807afc },
  22167. { 0x09b08b77,0x1c5499be,0x0f1f8e1f,0x074f0a88,0x1d8ba86c,0x1d2ca3b7,
  22168. 0x163217eb,0x1a2cad19,0x00751adc } },
  22169. /* 151 */
  22170. { { 0x10715c0d,0x1751c5a0,0x1da5fde2,0x07d4e31e,0x1f06dd11,0x158a49fd,
  22171. 0x10fd997a,0x0d04a6ee,0x0029ec44 },
  22172. { 0x150bebbc,0x0ca38ce5,0x1415088f,0x1dcb7fc8,0x1edb1399,0x0d9d4696,
  22173. 0x1df64335,0x1c725480,0x00ff9370 } },
  22174. /* 152 */
  22175. { { 0x06b75b65,0x0d16b4de,0x19947156,0x11f1aa4c,0x1d7d2418,0x199f1ef4,
  22176. 0x0068a2a7,0x1174553a,0x00977647 },
  22177. { 0x129af2c7,0x0293116c,0x1a4248e2,0x1ebada9c,0x051e9334,0x03f2d44d,
  22178. 0x0beb39b3,0x07f585f0,0x0074a631 } },
  22179. /* 153 */
  22180. { { 0x175f079c,0x17a6feed,0x18dbeeec,0x00f92a31,0x136dd85b,0x1e7873e6,
  22181. 0x18f46db3,0x02a1fe90,0x00ab75be },
  22182. { 0x173fc9b7,0x0d9b3e00,0x1653f420,0x14e841a4,0x11236b90,0x1f81e204,
  22183. 0x07d857f6,0x05c1688b,0x004ebeac } },
  22184. /* 154 */
  22185. { { 0x1c9f2c53,0x1b62ff3a,0x0ba5047a,0x0440231d,0x0c5d8d25,0x1b19fcad,
  22186. 0x1ff32221,0x0f658375,0x00df9988 },
  22187. { 0x050aaecb,0x1bc77694,0x15a89cae,0x12303603,0x1bcac9d4,0x0a88d8e6,
  22188. 0x01625e37,0x14eef3e8,0x0027b040 } },
  22189. /* 155 */
  22190. { { 0x173b2eb2,0x0202edbf,0x06c84624,0x1f0a111c,0x0327ee0d,0x18a92cb1,
  22191. 0x0fd5406d,0x06fc99f4,0x00b393dd },
  22192. { 0x1fd75165,0x091873d9,0x14cd5528,0x06898579,0x15022d66,0x18df07bd,
  22193. 0x1065b0db,0x025a08c6,0x0009588c } },
  22194. /* 156 */
  22195. { { 0x02601c3b,0x043049f8,0x170cd7f8,0x04a5f19e,0x0ff28fb0,0x194044a5,
  22196. 0x122e5573,0x153b73ec,0x0081c879 },
  22197. { 0x06f56c51,0x007343e6,0x05d86301,0x08e2d27e,0x1353bfed,0x0520c82c,
  22198. 0x0f1113e2,0x1eabf823,0x00fa0d48 } },
  22199. /* 157 */
  22200. { { 0x01608e4d,0x0370e4ef,0x00a08b2f,0x1bb4226b,0x0c2d7010,0x0ee08abf,
  22201. 0x1f5bdadf,0x0ad6d46c,0x008ea0e1 },
  22202. { 0x0383b3b4,0x1aa70179,0x007d4f28,0x0cd7287e,0x03ca5699,0x119596f0,
  22203. 0x16b13fd9,0x049f4016,0x003f5ab9 } },
  22204. /* 158 */
  22205. { { 0x19739efb,0x1bdd86ca,0x1afb034c,0x0361e9cf,0x067d1c75,0x16eb208d,
  22206. 0x15b8b694,0x10e56e84,0x008bc768 },
  22207. { 0x02d3d253,0x0df1db94,0x035de7e9,0x0cf343eb,0x167bba9f,0x00b470b3,
  22208. 0x0d3e872b,0x120c1f9e,0x00b386f1 } },
  22209. /* 159 */
  22210. { { 0x0fedcfc2,0x0f9e09a9,0x1e2bc34c,0x0d7ec4c5,0x088c2539,0x1a7572b9,
  22211. 0x1136680a,0x1ee360d3,0x004cb460 },
  22212. { 0x1b8095ea,0x133da69a,0x101d80eb,0x17f0b2df,0x0a16592b,0x0fb35b0a,
  22213. 0x088f851d,0x0112bdea,0x0052c0d5 } },
  22214. /* 160 */
  22215. { { 0x15339848,0x18e10870,0x1de32348,0x1451d0e0,0x0e170e87,0x1330b4ab,
  22216. 0x102e7477,0x07057613,0x004ac3c9 },
  22217. { 0x0998987d,0x0df02a8b,0x027d3586,0x06ed895c,0x1933d8b2,0x1bb28d1f,
  22218. 0x17d07782,0x18fc72e0,0x00380d94 } },
  22219. /* 161 */
  22220. { { 0x01542e75,0x0d1aad54,0x006e6dc0,0x0e4943dc,0x1708796c,0x14bbb126,
  22221. 0x1ebdace8,0x0e3bc4c6,0x002ce3e1 },
  22222. { 0x15d5bc1a,0x1f7f5a4f,0x1df8ad73,0x0ac0fc4e,0x1756ca65,0x1617ca89,
  22223. 0x19353faa,0x0a416c49,0x002e6cd8 } },
  22224. /* 162 */
  22225. { { 0x0c31c31d,0x142caa5c,0x1c86830d,0x067a00b7,0x19ec9685,0x11373ae3,
  22226. 0x15502f5d,0x08e858d3,0x00ca1775 },
  22227. { 0x16d2dbb2,0x0376d7ff,0x12a74633,0x1b197a2e,0x178e8fd0,0x03c9d522,
  22228. 0x139a1d7a,0x02739565,0x00a976a7 } },
  22229. /* 163 */
  22230. { { 0x13fb353d,0x1328f8dc,0x1f3e9c82,0x195716af,0x15281d75,0x07d398d8,
  22231. 0x0666aa23,0x02e143e9,0x008720a7 },
  22232. { 0x093e1b90,0x01f469bb,0x1db7f0e3,0x0bb8162d,0x08742d34,0x08055a95,
  22233. 0x04f23aa3,0x0538ed31,0x009719ef } },
  22234. /* 164 */
  22235. { { 0x18e35909,0x10776c6a,0x177045a0,0x0db1b867,0x05026936,0x0ce83710,
  22236. 0x13075fe6,0x0edc2ae0,0x00a50729 },
  22237. { 0x04e70b2e,0x0151bf56,0x042aa280,0x19ecaed1,0x12a5c84d,0x1f8c322d,
  22238. 0x1c9735c6,0x13bef6ee,0x0099389c } },
  22239. /* 165 */
  22240. { { 0x1ada7a4b,0x1c604793,0x0e24d988,0x1d3a07fa,0x1512c3ab,0x1744bb37,
  22241. 0x0b91ad9c,0x15440590,0x00a88806 },
  22242. { 0x1380184e,0x10102256,0x1aa2e159,0x16f18824,0x04f17a8c,0x186056c2,
  22243. 0x13f9e759,0x1f68e71b,0x000043bf } },
  22244. /* 166 */
  22245. { { 0x16d5192e,0x0acdaee1,0x042cabe3,0x110ba68b,0x01781acf,0x168508b0,
  22246. 0x019a0d59,0x00374d89,0x0052f3ef },
  22247. { 0x0edcb64d,0x0c339950,0x1a0de7ce,0x10584700,0x0f3090a4,0x12fd3820,
  22248. 0x19d45b2f,0x1133de4f,0x003296bd } },
  22249. /* 167 */
  22250. { { 0x054d81d7,0x1b55d44a,0x1ae6cf11,0x1bcfdea3,0x179869ea,0x10e6c0e2,
  22251. 0x07a58668,0x17f5dcae,0x003b90fe },
  22252. { 0x1496f7cb,0x1c9811f2,0x0d46f124,0x1c83b0ff,0x0b5ce55b,0x0ea44cdf,
  22253. 0x0c600fc7,0x13b3f021,0x006e8806 } },
  22254. /* 168 */
  22255. { { 0x143ea1db,0x11bd588d,0x1674a4b3,0x1fe352a4,0x0f1860a7,0x0110c7c2,
  22256. 0x144e146c,0x1d5bdf55,0x00a7222b },
  22257. { 0x0b0a9144,0x1563c761,0x1e967168,0x0480a3e5,0x1ce385a0,0x1652b0a3,
  22258. 0x1a424747,0x04778558,0x00be94d5 } },
  22259. /* 169 */
  22260. { { 0x0b226ce7,0x17a4a2f0,0x1fa2dc1c,0x1fae8f2c,0x0c63eb8a,0x0378c2d3,
  22261. 0x1d9bb7a9,0x1fd37d18,0x007782de },
  22262. { 0x1db38626,0x10695521,0x1d9eb45d,0x15cf0eed,0x19cdb460,0x037e2a24,
  22263. 0x192cd06e,0x0cf45125,0x00038385 } },
  22264. /* 170 */
  22265. { { 0x19ec1a0f,0x0c6d77eb,0x0ce725cb,0x19adfb9d,0x01a953bb,0x0ffe2c7b,
  22266. 0x1083d55d,0x1895bef6,0x00dbd986 },
  22267. { 0x15f39eb7,0x0d5440a0,0x0365db20,0x05f9eb73,0x1717d6ee,0x03aee797,
  22268. 0x0f415195,0x188d0c17,0x008e24d3 } },
  22269. /* 171 */
  22270. { { 0x1a587390,0x04ec72a4,0x0fb1621d,0x16329e19,0x183c612b,0x1ed2592c,
  22271. 0x1f211b81,0x18880f75,0x00541a99 },
  22272. { 0x024c8842,0x1920b493,0x1b017ff6,0x098255b0,0x1cf62604,0x0a5a27bf,
  22273. 0x17471674,0x093eafa6,0x00c0092c } },
  22274. /* 172 */
  22275. { { 0x1f2e61ef,0x1e63ae1e,0x06cd72b4,0x1083905c,0x129f47e8,0x1868c84f,
  22276. 0x113718b4,0x068e50d2,0x0075e406 },
  22277. { 0x1bc237d0,0x1ea0fe2d,0x13c07279,0x06f7e1d8,0x1d534c95,0x0d0b1415,
  22278. 0x161a4714,0x0b18f090,0x005b7cb6 } },
  22279. /* 173 */
  22280. { { 0x0a28ead1,0x12538424,0x0ed1fda5,0x1b8a11fa,0x05b39802,0x1fe8bb3f,
  22281. 0x1e866b92,0x1751be12,0x007ae13e },
  22282. { 0x0add384e,0x090b77c7,0x0cbfc1bf,0x0345b36d,0x1b5f3036,0x0c3c25e6,
  22283. 0x0ff4812e,0x0e9c551c,0x00787d80 } },
  22284. /* 174 */
  22285. { { 0x157fbb1c,0x0f12eb5b,0x08077af1,0x17bb6594,0x033ffe47,0x14d1b691,
  22286. 0x12112957,0x0333de50,0x005c2228 },
  22287. { 0x08315250,0x19ea542c,0x1c25f05d,0x04345704,0x1d33f21b,0x0750ef7a,
  22288. 0x0ac2adf1,0x15775e1e,0x00e45d37 } },
  22289. /* 175 */
  22290. { { 0x08511c8a,0x16f8f1a1,0x129b34f4,0x0453917b,0x039a7ebb,0x18d3b13e,
  22291. 0x074d5e29,0x04509bf7,0x00ed7bc1 },
  22292. { 0x13dea561,0x191536fc,0x03c3b473,0x07e31ba9,0x123e8544,0x10a02dd6,
  22293. 0x149f62e1,0x1928b94d,0x00aac97c } },
  22294. /* 176 */
  22295. { { 0x016bd00a,0x1aa753a5,0x102f307a,0x13d35beb,0x1fc06d83,0x1bf88fcd,
  22296. 0x113824ae,0x16622c7b,0x00318f97 },
  22297. { 0x030d7138,0x06062df6,0x10c0883b,0x11be4757,0x0360644e,0x0b97d811,
  22298. 0x1d34aede,0x1433509f,0x00fa41fa } },
  22299. /* 177 */
  22300. { { 0x06642269,0x0016cba5,0x0de0ef51,0x10299d37,0x1e60bc81,0x1c723ca0,
  22301. 0x0788e634,0x0583a4dd,0x0038bb6b },
  22302. { 0x0a577f87,0x1272512b,0x047f8731,0x05a4a7b8,0x007288b5,0x155fb114,
  22303. 0x0697fccd,0x00b9cec0,0x0094dd09 } },
  22304. /* 178 */
  22305. { { 0x1e93f92a,0x0b67bee6,0x0d7cc545,0x06679713,0x1e750a01,0x06fce4ca,
  22306. 0x0ba40901,0x0cfa4b85,0x00920778 },
  22307. { 0x0bf39d44,0x1238f008,0x0ed4f5f8,0x1920412d,0x03d8f5f2,0x1bd9ae4e,
  22308. 0x0d453112,0x117a537d,0x0081e842 } },
  22309. /* 179 */
  22310. { { 0x0477199f,0x0ece15d6,0x17b3765b,0x11dddcd6,0x0fd0e8cb,0x0d9ff720,
  22311. 0x12c62bdf,0x0c5b77f4,0x001b94ab },
  22312. { 0x0e47f143,0x0786c59e,0x1d1858d1,0x0c47f8c7,0x1938351e,0x1387e62c,
  22313. 0x03bbc63c,0x0500aab2,0x0006a38e } },
  22314. /* 180 */
  22315. { { 0x13355b49,0x12d809cd,0x1afe66cb,0x04cac169,0x1f3dc20e,0x1d35e934,
  22316. 0x13e3023f,0x04107b3a,0x00a7b36c },
  22317. { 0x1b3e8830,0x068ae1d0,0x07e702d9,0x19d5c351,0x16930d5f,0x12517168,
  22318. 0x08833fbb,0x16945045,0x00be54c6 } },
  22319. /* 181 */
  22320. { { 0x0d91167c,0x166d9efc,0x099897b5,0x187ef3cf,0x0c7f4517,0x12479a35,
  22321. 0x0aedc415,0x157d5c04,0x00bf30a5 },
  22322. { 0x13828a68,0x13bc2df4,0x0fbc0da3,0x038664fe,0x146b2516,0x0ff5ac90,
  22323. 0x04eb846d,0x1bc4e65a,0x00d1c820 } },
  22324. /* 182 */
  22325. { { 0x1038b363,0x01f09a3c,0x01794641,0x023ea8d6,0x0cad158c,0x1d5f3013,
  22326. 0x168d3f95,0x1dad1431,0x00b7d17b },
  22327. { 0x029c2559,0x0652c48f,0x1fff6111,0x1406ecb7,0x069484f7,0x1257ba72,
  22328. 0x11912637,0x0bcc8259,0x003997fd } },
  22329. /* 183 */
  22330. { { 0x0bd61507,0x103a3414,0x09934abc,0x0265aa69,0x015e329e,0x0fd84545,
  22331. 0x0fa3ffb7,0x05278d82,0x000eeb89 },
  22332. { 0x07e259f8,0x0db4d1f5,0x0f9f99fa,0x1b6fcda2,0x1a685ce1,0x0c7b568f,
  22333. 0x1bbc9dcc,0x1f192456,0x00228916 } },
  22334. /* 184 */
  22335. { { 0x0a12ab5b,0x0cd712d8,0x1ef04da5,0x022e3f2a,0x02b0ccc1,0x014f68b7,
  22336. 0x05fa0161,0x03add261,0x00ec05ad },
  22337. { 0x0c3f3708,0x0bdd2df5,0x0d675dc5,0x15f26a61,0x034e531b,0x091b88c1,
  22338. 0x0cdd1ed5,0x0acffe23,0x007d3141 } },
  22339. /* 185 */
  22340. { { 0x16dfefab,0x1ece02e7,0x0cddc1de,0x1e44d1b9,0x0bb95be2,0x16cb9d1c,
  22341. 0x1e8f94fa,0x1f93783a,0x00e9ce66 },
  22342. { 0x0f6a02a1,0x0d50abb3,0x19803b5d,0x010fbec1,0x1c1b938c,0x1f9a3466,
  22343. 0x1947e251,0x002e4500,0x00d9650b } },
  22344. /* 186 */
  22345. { { 0x1a057e60,0x025a6252,0x1bc97914,0x19877d1b,0x1ccbdcbc,0x19040be0,
  22346. 0x1e8a98d4,0x135009d6,0x0014d669 },
  22347. { 0x1b1f411a,0x045420ae,0x035da70b,0x175e17f0,0x177ad09f,0x17c80e17,
  22348. 0x062ad37b,0x0821a86b,0x006f4c68 } },
  22349. /* 187 */
  22350. { { 0x16c24a96,0x1936fa74,0x0f6668e1,0x1b790bf9,0x0e30a534,0x17794595,
  22351. 0x0aecf119,0x1fac2313,0x004c4350 },
  22352. { 0x1855b8da,0x0b3fb8b7,0x0f0e284a,0x0847288c,0x1334341a,0x0a09f574,
  22353. 0x02d70df8,0x084b4623,0x00a726d2 } },
  22354. /* 188 */
  22355. { { 0x148c1086,0x17359f74,0x14e8b876,0x1ca07b97,0x022f3f1d,0x169f81e8,
  22356. 0x0e48fcd7,0x10598d9e,0x0013639e },
  22357. { 0x0dafaa86,0x1649c7de,0x15289626,0x178bf64c,0x11329f45,0x19372282,
  22358. 0x168c658e,0x1c383466,0x00ca9365 } },
  22359. /* 189 */
  22360. { { 0x0c3b2d20,0x10ad63aa,0x138906cd,0x14a82f20,0x1071d742,0x10e2664e,
  22361. 0x0a96c214,0x0692e16e,0x009ce29c },
  22362. { 0x0d3e0ad6,0x0640fb9b,0x1e10d323,0x01b53de5,0x062d9806,0x0e8d3674,
  22363. 0x1e60d7b4,0x1af56855,0x0048c4ab } },
  22364. /* 190 */
  22365. { { 0x00c7485a,0x110d8662,0x09d36ff4,0x08ab77ca,0x1d2e8ead,0x1b4c4931,
  22366. 0x0f2d24f1,0x065ecf66,0x0078017c },
  22367. { 0x130cb5ee,0x0e9abb4c,0x1023b4ae,0x029d2818,0x11a4dc0d,0x1faa9397,
  22368. 0x1013e2de,0x0a9bcb83,0x0053cd04 } },
  22369. /* 191 */
  22370. { { 0x1d28ccac,0x06ac2fd2,0x16dd1baf,0x047cac00,0x123aa5f8,0x1850e680,
  22371. 0x0a3df1e7,0x183a7aff,0x00eea465 },
  22372. { 0x0551803b,0x00832cf8,0x19abdc1e,0x16b33ef9,0x08e706c0,0x13b81494,
  22373. 0x064d0656,0x148f5cd2,0x001b6e42 } },
  22374. /* 192 */
  22375. { { 0x167d04c3,0x14049be7,0x1bae044b,0x0257c513,0x14d601e3,0x0c43c92c,
  22376. 0x14f55ad7,0x02830ff7,0x000224da },
  22377. { 0x0c5fe36f,0x1d5dc318,0x1d47d7e1,0x1e78c09d,0x029ec580,0x18dfd9da,
  22378. 0x1cce593e,0x1e0857ff,0x0060838e } },
  22379. /* 193 */
  22380. { { 0x1e0bbe99,0x19659793,0x0a8e7b90,0x1489e609,0x139037bd,0x1e3d4fd4,
  22381. 0x190d7d25,0x0045a662,0x00636eb2 },
  22382. { 0x13ae00aa,0x07e8730c,0x0b9b4bff,0x1401fc63,0x1901c875,0x0c514fc9,
  22383. 0x0eb3d0d9,0x16c72431,0x008844ee } },
  22384. /* 194 */
  22385. { { 0x0b3bae58,0x0a0b8e93,0x18e7cf84,0x07bee22f,0x0eada7db,0x1e3fc0d4,
  22386. 0x027b34de,0x1b8a3f6f,0x0027ba83 },
  22387. { 0x1bf54de5,0x1efa1cff,0x1f869c69,0x0e06176b,0x17a48727,0x071aed94,
  22388. 0x12ad0bba,0x0690fe74,0x00adb62d } },
  22389. /* 195 */
  22390. { { 0x0175df2a,0x188b4515,0x030cba66,0x15409ec3,0x10916082,0x19738a35,
  22391. 0x02cb2793,0x0ecebcf9,0x00b990fd },
  22392. { 0x0df37313,0x014ecb5a,0x0d01e242,0x00aaf3a1,0x077111c2,0x17253c04,
  22393. 0x06359b26,0x1f29a21a,0x0081707e } },
  22394. /* 196 */
  22395. { { 0x03d6ff96,0x1ebe5590,0x010cd825,0x0a37f81b,0x0db4b5b8,0x11e26821,
  22396. 0x09709a20,0x1d5ab515,0x003792da },
  22397. { 0x141afa0b,0x140c432c,0x160d9c54,0x13ce8285,0x0e0a7f3e,0x1293adf2,
  22398. 0x06e85f20,0x0bd29600,0x005abd63 } },
  22399. /* 197 */
  22400. { { 0x0ac4927c,0x13fd4270,0x1233c8dc,0x10c06b4f,0x0a0dfe38,0x0af5256e,
  22401. 0x184292f3,0x04308d56,0x005995bf },
  22402. { 0x029dfa33,0x087c305c,0x03f062fa,0x1fc55d2b,0x10366caa,0x17a23c31,
  22403. 0x047a6cee,0x145a9068,0x0044c32c } },
  22404. /* 198 */
  22405. { { 0x040ed80c,0x1a54bf8f,0x14b2a0a9,0x07196263,0x16ad95f9,0x0925be16,
  22406. 0x15314fc8,0x1f701054,0x001f2162 },
  22407. { 0x120b173e,0x1233e62b,0x17c4be5f,0x114ccc10,0x165dc40e,0x0107264e,
  22408. 0x1f2633af,0x05787d20,0x008f1d40 } },
  22409. /* 199 */
  22410. { { 0x1bc4058a,0x1ac97ce7,0x0bd59c13,0x1c296c52,0x18c57b15,0x1f1bde0e,
  22411. 0x0fe71573,0x08724ddb,0x00b1980f },
  22412. { 0x12c76b09,0x0619f049,0x0c1fde26,0x0a4f3a67,0x1b4611df,0x156a431d,
  22413. 0x1915bc23,0x1366e891,0x002828ad } },
  22414. /* 200 */
  22415. { { 0x04cf4ac5,0x0b391626,0x1992beda,0x18347fbb,0x10832f5a,0x1d517044,
  22416. 0x0e401546,0x04eb4296,0x004973f1 },
  22417. { 0x122eac5d,0x0cec19a9,0x166d5a39,0x0fddea17,0x083935e0,0x1907d12c,
  22418. 0x0b1eacd9,0x1a1b62d1,0x006dac8e } },
  22419. /* 201 */
  22420. { { 0x0da835ef,0x1daa2d77,0x043b547d,0x0227a43a,0x01b094aa,0x12f009ba,
  22421. 0x19300d69,0x0b24173b,0x004b23ef },
  22422. { 0x1c4c7341,0x015db401,0x162f0dfa,0x0ee0da7e,0x03ee8d45,0x1c31d28f,
  22423. 0x0939cd49,0x069bbe93,0x004dd715 } },
  22424. /* 202 */
  22425. { { 0x15476cd9,0x1ca23394,0x069c96ef,0x1a0e5fc6,0x167e0648,0x045c7e25,
  22426. 0x16ec5107,0x0005e949,0x00fd3170 },
  22427. { 0x0995d0e1,0x05a1ffa4,0x1dca6a87,0x0d2ba21d,0x1898276e,0x1cbb20bc,
  22428. 0x0d978357,0x1192ad3e,0x0014fac5 } },
  22429. /* 203 */
  22430. { { 0x1312ae18,0x0cd0032f,0x124ff26b,0x0b1b81f9,0x12846519,0x0120453e,
  22431. 0x09436685,0x0a26d57b,0x00ed7c76 },
  22432. { 0x05d4abbc,0x113878d1,0x0844fa91,0x1bb1e7e3,0x1952f9b5,0x183aada8,
  22433. 0x1d4f1826,0x1ee9a5d3,0x00fefcb7 } },
  22434. /* 204 */
  22435. { { 0x1a119185,0x084a4bd5,0x1116e92f,0x1d186155,0x01179d54,0x1cef5529,
  22436. 0x002d2491,0x0fd0fc1b,0x001801a5 },
  22437. { 0x1cafffb0,0x19e9fc6f,0x09549001,0x0678175c,0x1dfbc6cf,0x1b1dadaf,
  22438. 0x0191e075,0x03c3d5a2,0x009f8fc1 } },
  22439. /* 205 */
  22440. { { 0x1e69544c,0x0c1d0b8a,0x12de04c5,0x1f0acfe0,0x04c320ea,0x147e93c5,
  22441. 0x06a4788a,0x13a7a74d,0x00a9d380 },
  22442. { 0x19a2da3b,0x1b616162,0x057211e4,0x1979ec31,0x1086938c,0x122731ea,
  22443. 0x1bdd7994,0x15dc22f1,0x003006b9 } },
  22444. /* 206 */
  22445. { { 0x09eead28,0x1d8f9586,0x1d37ef02,0x1ec6bb13,0x089397ee,0x0bfed967,
  22446. 0x1d841d1d,0x1ae8bf1e,0x000ab85f },
  22447. { 0x1e5b4549,0x06d3e499,0x048bc87b,0x0576b92f,0x180404be,0x093a5a1d,
  22448. 0x0b089868,0x0ea23d28,0x00b122d6 } },
  22449. /* 207 */
  22450. { { 0x06a5ae7a,0x1f303df3,0x0b72f8ce,0x0e07f4ed,0x0e5c501e,0x0180a75b,
  22451. 0x0bb2be41,0x18212fb7,0x009f599d },
  22452. { 0x0ff250ed,0x0badb8c0,0x0688371b,0x122ae869,0x027a38eb,0x02d20859,
  22453. 0x0de10958,0x1c114529,0x007d5528 } },
  22454. /* 208 */
  22455. { { 0x00c26def,0x07ac7b31,0x0acb47bc,0x0b0bd4b0,0x03881025,0x0bcd80e7,
  22456. 0x1cc3ef9f,0x002607e2,0x0028ccea },
  22457. { 0x19644ba5,0x0ed5e68b,0x1ffc2e34,0x0c87d00d,0x1e17b1fc,0x1b7e3359,
  22458. 0x0efe9829,0x09143a02,0x00c18baf } },
  22459. /* 209 */
  22460. { { 0x1dc4216d,0x0731c642,0x1850ab0d,0x0020ce40,0x1064a00c,0x10b8cafa,
  22461. 0x05af514e,0x13b6f52b,0x009def80 },
  22462. { 0x07ab8d2c,0x0f432173,0x0de8ad90,0x080866c4,0x0218bb42,0x1536b262,
  22463. 0x1395f541,0x160d1011,0x000357f8 } },
  22464. /* 210 */
  22465. { { 0x0cd2cc88,0x14edf322,0x0e3ce763,0x03851be1,0x0a0c8cc6,0x0c3a6698,
  22466. 0x021d28c2,0x1ba36913,0x00e4a01a },
  22467. { 0x157cd8f9,0x168f7567,0x1653120b,0x0cfa7d7a,0x0f7871b7,0x0e38bde9,
  22468. 0x10c29ca5,0x0f39c219,0x00466d7d } },
  22469. /* 211 */
  22470. { { 0x1dada2c7,0x1e98c494,0x06a89f51,0x014d871f,0x059e14fa,0x1e944105,
  22471. 0x146a4393,0x0448a3d5,0x00c672a5 },
  22472. { 0x1d86b655,0x0303e642,0x0b52bc4c,0x06ba77f3,0x172a6f02,0x03402b88,
  22473. 0x144e6682,0x1f5e54ce,0x005e3d64 } },
  22474. /* 212 */
  22475. { { 0x1b3b4416,0x1320863c,0x0c9b666a,0x1f9f0bd5,0x16a74cd8,0x1ba56db2,
  22476. 0x0bf17aff,0x12bd71c8,0x006c8a7a },
  22477. { 0x102a63bd,0x06305d3d,0x03c011c4,0x1e460717,0x190b06b2,0x1b9c1896,
  22478. 0x0a4631b0,0x0455b059,0x00348ae4 } },
  22479. /* 213 */
  22480. { { 0x1ccda2fb,0x1a3a331a,0x01c9b49f,0x1995431c,0x11f2022a,0x1bc12495,
  22481. 0x14ba16b7,0x1c1b3de5,0x00c1074d },
  22482. { 0x0e9a65b3,0x079e7225,0x15c546ff,0x03c9580b,0x09788fd7,0x0fa86735,
  22483. 0x1ff351c4,0x1b793ca9,0x00fbadfb } },
  22484. /* 214 */
  22485. { { 0x00a99363,0x189f8e69,0x1c89dd45,0x0acb1ed9,0x159b2b91,0x1ae69269,
  22486. 0x1f365a05,0x16906e2d,0x00b7f976 },
  22487. { 0x1d6dbf74,0x1ac7126a,0x10ebcd95,0x0775fae3,0x1dfe38d2,0x1bb00121,
  22488. 0x001523d1,0x05d95f99,0x00f4d41b } },
  22489. /* 215 */
  22490. { { 0x1dabd48d,0x0f8e7947,0x101e2914,0x037c6c65,0x146e9ce8,0x14ba08b8,
  22491. 0x1c41ab38,0x1d5c02c1,0x00180824 },
  22492. { 0x06e58358,0x1c3b4c5b,0x1b28d600,0x0d0ea59c,0x1e6c5635,0x071a2f20,
  22493. 0x149608e0,0x073079ed,0x0067e5f6 } },
  22494. /* 216 */
  22495. { { 0x0f4899ef,0x04e65c6e,0x0ed1303e,0x002be13d,0x18ec9949,0x093b592c,
  22496. 0x1f1951be,0x13409823,0x009fef78 },
  22497. { 0x13d2a071,0x09b3f67a,0x1466c25b,0x1c34ff48,0x02eefb10,0x1fd8308f,
  22498. 0x188329ac,0x10353389,0x00bc80c1 } },
  22499. /* 217 */
  22500. { { 0x05eb82e6,0x1929b7c7,0x1b2e4825,0x109f8fea,0x1da5e1a4,0x10b8a85a,
  22501. 0x1c431e38,0x0c53f19b,0x0049270e },
  22502. { 0x0a6b50ad,0x11cdbddf,0x0e23ff06,0x05098344,0x1197b9a0,0x158bc083,
  22503. 0x1dfd500f,0x1f2c26e5,0x00d2ee52 } },
  22504. /* 218 */
  22505. { { 0x08e0362a,0x1be6942c,0x09765374,0x1f514f1f,0x0a526442,0x1b72d21a,
  22506. 0x1ccebfe0,0x17dcb576,0x00dfb478 },
  22507. { 0x073eede6,0x08f8e73b,0x16cbc12a,0x1215a856,0x0da2fa53,0x1bdfaa98,
  22508. 0x1ce9799b,0x16811be8,0x00d9a140 } },
  22509. /* 219 */
  22510. { { 0x0e8ea498,0x10110dab,0x18fb8243,0x08f0526a,0x12ade623,0x01c899ae,
  22511. 0x0c6b81ae,0x11ac47e9,0x00760c05 },
  22512. { 0x0198aa79,0x1c4dac66,0x1eae9fc2,0x1121a5e0,0x0556af74,0x00887ef1,
  22513. 0x10253881,0x05b1e320,0x00714198 } },
  22514. /* 220 */
  22515. { { 0x0d4b0f45,0x1850719a,0x0aa5385b,0x10167072,0x01d5ed92,0x126359e3,
  22516. 0x191cebcc,0x19d13aa9,0x003af9d1 },
  22517. { 0x00930371,0x0c7bcc09,0x105c25ff,0x04cc9843,0x0309beda,0x02ee6e21,
  22518. 0x17583a55,0x186e72af,0x00b1f815 } },
  22519. /* 221 */
  22520. { { 0x09fec44a,0x07d53c74,0x0a932be1,0x055c8e79,0x0a624c8c,0x003ee0db,
  22521. 0x0149a472,0x0282a87e,0x00a41aed },
  22522. { 0x1d5ffe04,0x121a9ccb,0x16db8810,0x1965bec4,0x177758ba,0x105f43c0,
  22523. 0x03be1759,0x1bb0df6c,0x00d6e9c1 } },
  22524. /* 222 */
  22525. { { 0x06853264,0x15174bf6,0x0c1282ce,0x0a676fc4,0x0e9be771,0x15dbdc75,
  22526. 0x03086e44,0x0215d37f,0x009c9c6e },
  22527. { 0x0030b74c,0x1184d2cf,0x18c7a428,0x0e929ad4,0x179f24ed,0x0591d24d,
  22528. 0x06da27d1,0x12c81f4c,0x00566bd5 } },
  22529. /* 223 */
  22530. { { 0x018061f3,0x136008c6,0x00ff1c01,0x164ba6f9,0x13245190,0x04701393,
  22531. 0x117bc17f,0x121ea4a6,0x00cf2c73 },
  22532. { 0x10eb30cf,0x04de75a0,0x1ddc0ea8,0x05d7741a,0x1f255cfd,0x021d0a87,
  22533. 0x05e7a10b,0x0ab15441,0x0002f517 } },
  22534. /* 224 */
  22535. { { 0x0ddb7d07,0x0b77bca5,0x1155400e,0x1f8e8448,0x0a3ce0b4,0x075663c5,
  22536. 0x05f7ebfe,0x14bd1a9b,0x0014e9ad },
  22537. { 0x0f7079e2,0x15240509,0x0c2003b6,0x15479bc9,0x0157d45b,0x0f16bc1c,
  22538. 0x0ba005d9,0x1571d3b3,0x00a0ad4f } },
  22539. /* 225 */
  22540. { { 0x0a653618,0x1fdbb10a,0x1aaa97c2,0x05027863,0x09d5e187,0x139ba24a,
  22541. 0x1478554f,0x170dcadd,0x00bcd530 },
  22542. { 0x12e9c47b,0x14df4299,0x00166ac5,0x0eedfd6a,0x1fbb4dc2,0x0bb08c95,
  22543. 0x107736ea,0x19ed2f26,0x00909283 } },
  22544. /* 226 */
  22545. { { 0x16e81a13,0x1d801923,0x05c48e59,0x1c3532c4,0x019d69be,0x1b0de997,
  22546. 0x126823b4,0x19359c2a,0x0035eeb7 },
  22547. { 0x1e4e5bdc,0x140572d3,0x13bb1b84,0x1a59a76d,0x06bc12dc,0x11263713,
  22548. 0x01914b90,0x1e88915d,0x009a8b2c } },
  22549. /* 227 */
  22550. { { 0x09d03b59,0x1238df90,0x16bcaafd,0x1cc5476c,0x1eec9c90,0x18b475ea,
  22551. 0x0de7fdff,0x1e9a8922,0x006bdb60 },
  22552. { 0x0a55bc30,0x16d7f5e4,0x025ff836,0x1d5a2c20,0x03bddc79,0x0ba0a60f,
  22553. 0x02a50b86,0x1fb29741,0x0001ec3c } },
  22554. /* 228 */
  22555. { { 0x1c9485c2,0x1313bf5e,0x1ec431ee,0x1934f245,0x08d8a48c,0x0b07b851,
  22556. 0x13d93d87,0x1808ea8c,0x00d1acb1 },
  22557. { 0x06f36612,0x13481589,0x186362f4,0x07489dc0,0x157ee59c,0x14099841,
  22558. 0x1b0937e2,0x13a80ac4,0x007dcd07 } },
  22559. /* 229 */
  22560. { { 0x105a4b48,0x073ea69f,0x08c1dc97,0x1a52a46e,0x0915aadc,0x1cb8c095,
  22561. 0x06e3463d,0x1126efa3,0x000bf535 },
  22562. { 0x0c68ea73,0x0f66cad3,0x0e96134d,0x07779504,0x1a723c7f,0x1a637a39,
  22563. 0x1bf27ed9,0x1b3c2cd0,0x00d28be4 } },
  22564. /* 230 */
  22565. { { 0x18fa8e4b,0x095cc831,0x0ff63f17,0x1e30dd12,0x1b6fc559,0x115521b7,
  22566. 0x0338e9b7,0x154a21f1,0x00d76007 },
  22567. { 0x123a4988,0x088555b2,0x17409ccb,0x0b9e88e9,0x07278b45,0x184151a0,
  22568. 0x0c05fd19,0x0d166077,0x00f2b52f } },
  22569. /* 231 */
  22570. { { 0x1835b4ca,0x0abf57d4,0x19a72f03,0x0465f976,0x031982d2,0x1b406332,
  22571. 0x14ea3bba,0x11d98b5d,0x00d8dbe9 },
  22572. { 0x05a02709,0x1d4df1fe,0x0e87ea32,0x1cd1cbeb,0x0a85230b,0x01e6f887,
  22573. 0x1c17faf5,0x147dcab2,0x00e01593 } },
  22574. /* 232 */
  22575. { { 0x0a75a0a6,0x1f2d7a87,0x01600cf4,0x044d58af,0x16406512,0x0a87e80b,
  22576. 0x1c19bf9b,0x1635d71d,0x00afec07 },
  22577. { 0x00bb0a31,0x1dccab3c,0x0c26ab9f,0x15e7986e,0x1f3896f1,0x10ad00d5,
  22578. 0x1f76454e,0x0a8dc5b7,0x00a71b93 } },
  22579. /* 233 */
  22580. { { 0x18f593d2,0x1c709700,0x1e048aef,0x12085140,0x0f2add1a,0x02ed85d2,
  22581. 0x0f645414,0x0b8c50a4,0x0053a200 },
  22582. { 0x07f2b935,0x1e45b1cf,0x00a58681,0x1f2eb583,0x0ca2c2bf,0x1753ba8c,
  22583. 0x18f61af3,0x1367ab11,0x00bf47d1 } },
  22584. /* 234 */
  22585. { { 0x1d7665d5,0x194b3d3e,0x0bd37959,0x0060ae5e,0x0903f4e3,0x02d7406a,
  22586. 0x06d85100,0x0fe73934,0x00001c2c },
  22587. { 0x09efc6d6,0x01d400a3,0x11e9c905,0x017b54f7,0x150a4c81,0x1385d3c0,
  22588. 0x066d7d95,0x1cf0dff7,0x00fdadf8 } },
  22589. /* 235 */
  22590. { { 0x1fc00785,0x09c65c47,0x123ad9ff,0x14eb2276,0x08fbc77f,0x082adf9b,
  22591. 0x12501153,0x09ab5487,0x003a838e },
  22592. { 0x1e97bb9a,0x10b31949,0x07653655,0x1266c688,0x12a839eb,0x08d3056d,
  22593. 0x168d4556,0x0af0e7c3,0x003cdb82 } },
  22594. /* 236 */
  22595. { { 0x1de77eab,0x1b8a054b,0x19204244,0x038a1a82,0x1d0dff7e,0x05696758,
  22596. 0x1ee9d8b7,0x113e3eaf,0x005a60cc },
  22597. { 0x00d45673,0x059b1c12,0x04f19560,0x057c32b2,0x0b7411b8,0x025c6eb2,
  22598. 0x1f0015ca,0x0dfb7fb1,0x00922ff5 } },
  22599. /* 237 */
  22600. { { 0x09a129a1,0x1932ef76,0x0a138106,0x039caf98,0x1be3ca5b,0x0623675f,
  22601. 0x158810e0,0x0fbed8b9,0x0072919a },
  22602. { 0x0fb90f9a,0x0c7a29d4,0x1900c6ca,0x13801711,0x11856d71,0x073bbcb7,
  22603. 0x026b8cb0,0x1006c481,0x005e7917 } },
  22604. /* 238 */
  22605. { { 0x1f63cdfb,0x00b762ab,0x12b93f57,0x146ae3e3,0x197ca8e6,0x15f52b02,
  22606. 0x1eaff389,0x0e3c4985,0x004e0a53 },
  22607. { 0x05765357,0x1b52069d,0x1ce8ad09,0x135e881a,0x11a323c8,0x185720e8,
  22608. 0x13bae3cd,0x031aacc0,0x00f5ff78 } },
  22609. /* 239 */
  22610. { { 0x1a09df21,0x1f9f1ff0,0x1ba391fe,0x0ba51dcc,0x0901526d,0x1e8514e4,
  22611. 0x1990825a,0x1d2a67eb,0x00e41df0 },
  22612. { 0x13ba9e3f,0x02fed205,0x0136254c,0x0819d64c,0x167c7f23,0x10c93f81,
  22613. 0x157c219b,0x0dd589e2,0x008edd7d } },
  22614. /* 240 */
  22615. { { 0x0bfc8ff3,0x0d0ee070,0x0dbd0bf2,0x1fb057d2,0x181ef14e,0x17be6651,
  22616. 0x1a599c05,0x195db15d,0x001432c1 },
  22617. { 0x10b23c26,0x0342414b,0x0d6c9cfb,0x1fd0e60e,0x10f5aa64,0x1b72f577,
  22618. 0x0b1b8e27,0x016b591a,0x00caef48 } },
  22619. /* 241 */
  22620. { { 0x15315922,0x122e4bc3,0x18f32954,0x12a2e260,0x0f2cbd82,0x10685b27,
  22621. 0x08dbcf39,0x0fd1df5c,0x00d0ba17 },
  22622. { 0x11b3af60,0x1d4d747d,0x0b688394,0x12d5ca7a,0x0ef281a7,0x1b02efcf,
  22623. 0x18580758,0x0f838a95,0x00f31c95 } },
  22624. /* 242 */
  22625. { { 0x09cc4597,0x07ac6a92,0x18280a30,0x002b6175,0x0814adc5,0x1e2ab9a5,
  22626. 0x10ebbf17,0x1972dc2f,0x00013404 },
  22627. { 0x09a824bf,0x14f12c2e,0x07abb5ec,0x0630bc00,0x168acd59,0x134130f7,
  22628. 0x19b235bb,0x09723267,0x006f377c } },
  22629. /* 243 */
  22630. { { 0x08333fd2,0x1c9dd68d,0x0aa56e27,0x060404b4,0x15acea89,0x081bf57b,
  22631. 0x14188479,0x09da5a12,0x006dba3e },
  22632. { 0x104399cd,0x0477cc66,0x0dceb7a9,0x038cddcd,0x0caf3181,0x03a960bf,
  22633. 0x129dcbd8,0x08477d9e,0x00f13cf3 } },
  22634. /* 244 */
  22635. { { 0x0919e2eb,0x175cf605,0x0b03da33,0x13432bec,0x0229983a,0x1ddb3d5d,
  22636. 0x0b4f3ee8,0x1524e977,0x00c83fa9 },
  22637. { 0x02fa1ce0,0x0be8d85b,0x063befc3,0x16c1ea68,0x06f04e58,0x17cf2938,
  22638. 0x1a0efea3,0x1e8bae04,0x00b49d70 } },
  22639. /* 245 */
  22640. { { 0x1ad5513b,0x0a63a887,0x1d478b64,0x065dd962,0x19d5905f,0x020c6cfd,
  22641. 0x073db614,0x1761861e,0x0059cfad },
  22642. { 0x15cb7fd6,0x0b3d611a,0x0109a8f8,0x06cf7104,0x18864249,0x02c64853,
  22643. 0x0d9fabbb,0x0c46a949,0x005babf3 } },
  22644. /* 246 */
  22645. { { 0x0e424865,0x1e4c0e8f,0x1955dfcd,0x0050f1e5,0x0c0588b0,0x1878dcf0,
  22646. 0x03c1c0a5,0x14f204d9,0x006188c6 },
  22647. { 0x10f244da,0x17cd0cde,0x02021cc1,0x19dab9f6,0x136371ec,0x07cdcf90,
  22648. 0x0764d51c,0x0ebbea17,0x00993fe4 } },
  22649. /* 247 */
  22650. { { 0x1b2c3609,0x0718e6fc,0x11b53a9a,0x16338058,0x1510184e,0x160d4d3b,
  22651. 0x05adeb27,0x0cc9900c,0x0081f764 },
  22652. { 0x15fbe978,0x0be152d3,0x00ecd587,0x07fda7e3,0x1d2bf674,0x0f82280e,
  22653. 0x18360e34,0x054bfd20,0x00564a81 } },
  22654. /* 248 */
  22655. { { 0x1a817d1d,0x12d327a7,0x0a0b83de,0x12d0897d,0x1f9aa55f,0x0d07e6ab,
  22656. 0x15b2d7fd,0x19e01ca3,0x00226bf3 },
  22657. { 0x0f2833cf,0x168d4fc9,0x13e26a35,0x0146b49e,0x17f7720a,0x1624c79f,
  22658. 0x00d8454d,0x08ffe4af,0x0068779f } },
  22659. /* 249 */
  22660. { { 0x13043d08,0x0d860e0b,0x10083e9e,0x08cee83f,0x126d0a54,0x1f144d36,
  22661. 0x182f4dd9,0x1a3d6125,0x0097bcb0 },
  22662. { 0x132ed3c3,0x15b75547,0x006f120a,0x09e2a365,0x178f3c8a,0x1a79dfd0,
  22663. 0x1955346f,0x1d014f08,0x00a872ff } },
  22664. /* 250 */
  22665. { { 0x032b2086,0x0d5bc9ad,0x183d21ac,0x16e21d02,0x0e6bee1e,0x06c89db5,
  22666. 0x0daa6f43,0x1f96e654,0x0002812b },
  22667. { 0x0f605318,0x11febe56,0x1f5b4769,0x1cbaa1fb,0x0d619646,0x01cc1081,
  22668. 0x1abe875a,0x193fca72,0x0007391c } },
  22669. /* 251 */
  22670. { { 0x0b80d02b,0x080abf84,0x01dfdff1,0x0667a2c5,0x142ae6b8,0x0d7c3c6a,
  22671. 0x0821eb28,0x1b8fcda5,0x00355d2a },
  22672. { 0x087386e1,0x00f99ad1,0x190c9d6d,0x0e5529f1,0x189eafd2,0x1166f3cc,
  22673. 0x09e4a1b2,0x1c6f8547,0x003dc2b1 } },
  22674. /* 252 */
  22675. { { 0x04581352,0x144e90e0,0x19e0afb5,0x01904a6e,0x1701f0a0,0x0ac84ff6,
  22676. 0x11ac80ef,0x020799b0,0x00c47869 },
  22677. { 0x04c768ed,0x0dd3b841,0x107d95d7,0x1dd404d0,0x0ce0e72f,0x1f6ab566,
  22678. 0x14c9ccc4,0x0d1ab769,0x00ccc429 } },
  22679. /* 253 */
  22680. { { 0x1d7620b9,0x07286f09,0x04a95aa5,0x14b914b3,0x087c9d89,0x1b2033aa,
  22681. 0x073f7001,0x0855490e,0x00e147eb },
  22682. { 0x0cf3ae46,0x1a55a775,0x0d43ef89,0x126df6a0,0x040eafd4,0x1f23a464,
  22683. 0x1b8f7cab,0x08e101d2,0x00239ac0 } },
  22684. /* 254 */
  22685. { { 0x0bfee8d4,0x00e8f9a9,0x1ec3fb12,0x016b9ff4,0x1af3cce8,0x064f1674,
  22686. 0x16744171,0x147ebefc,0x00c55fa1 },
  22687. { 0x0257c227,0x0c378a74,0x0af802cc,0x02ca7e68,0x04fb2c5b,0x04cc5548,
  22688. 0x1a6426bf,0x139a9e96,0x00094cd9 } },
  22689. /* 255 */
  22690. { { 0x1703beba,0x14c0e426,0x13aca462,0x03a2a065,0x149ec863,0x1964f1de,
  22691. 0x14ce9117,0x16c85575,0x00b90a30 },
  22692. { 0x14a5abf9,0x032a027d,0x16dd80ed,0x0ea186eb,0x1d89f004,0x0166651a,
  22693. 0x13ddbe69,0x13436f24,0x00019f8b } },
  22694. };
  22695. /* Multiply the base point of P256 by the scalar and return the result.
  22696. * If map is true then convert result to affine coordinates.
  22697. *
  22698. * Stripe implementation.
  22699. * Pre-generated: 2^0, 2^32, ...
  22700. * Pre-generated: products of all combinations of above.
  22701. * 8 doubles and adds (with qz=1)
  22702. *
  22703. * r Resulting point.
  22704. * k Scalar to multiply by.
  22705. * map Indicates whether to convert result to affine.
  22706. * ct Constant time required.
  22707. * heap Heap to use for allocation.
  22708. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  22709. */
  22710. static int sp_256_ecc_mulmod_base_9(sp_point_256* r, const sp_digit* k,
  22711. int map, int ct, void* heap)
  22712. {
  22713. return sp_256_ecc_mulmod_stripe_9(r, &p256_base, p256_table,
  22714. k, map, ct, heap);
  22715. }
  22716. #endif
  22717. /* Multiply the base point of P256 by the scalar and return the result.
  22718. * If map is true then convert result to affine coordinates.
  22719. *
  22720. * km Scalar to multiply by.
  22721. * r Resulting point.
  22722. * map Indicates whether to convert result to affine.
  22723. * heap Heap to use for allocation.
  22724. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  22725. */
  22726. int sp_ecc_mulmod_base_256(const mp_int* km, ecc_point* r, int map, void* heap)
  22727. {
  22728. #ifdef WOLFSSL_SP_SMALL_STACK
  22729. sp_point_256* point = NULL;
  22730. sp_digit* k = NULL;
  22731. #else
  22732. sp_point_256 point[1];
  22733. sp_digit k[9];
  22734. #endif
  22735. int err = MP_OKAY;
  22736. #ifdef WOLFSSL_SP_SMALL_STACK
  22737. point = (sp_point_256*)XMALLOC(sizeof(sp_point_256), heap,
  22738. DYNAMIC_TYPE_ECC);
  22739. if (point == NULL)
  22740. err = MEMORY_E;
  22741. if (err == MP_OKAY) {
  22742. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9, heap,
  22743. DYNAMIC_TYPE_ECC);
  22744. if (k == NULL)
  22745. err = MEMORY_E;
  22746. }
  22747. #endif
  22748. if (err == MP_OKAY) {
  22749. sp_256_from_mp(k, 9, km);
  22750. err = sp_256_ecc_mulmod_base_9(point, k, map, 1, heap);
  22751. }
  22752. if (err == MP_OKAY) {
  22753. err = sp_256_point_to_ecc_point_9(point, r);
  22754. }
  22755. #ifdef WOLFSSL_SP_SMALL_STACK
  22756. if (k != NULL)
  22757. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  22758. if (point != NULL)
  22759. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  22760. #endif
  22761. return err;
  22762. }
  22763. /* Multiply the base point of P256 by the scalar, add point a and return
  22764. * the result. If map is true then convert result to affine coordinates.
  22765. *
  22766. * km Scalar to multiply by.
  22767. * am Point to add to scalar multiply result.
  22768. * inMont Point to add is in montgomery form.
  22769. * r Resulting point.
  22770. * map Indicates whether to convert result to affine.
  22771. * heap Heap to use for allocation.
  22772. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  22773. */
  22774. int sp_ecc_mulmod_base_add_256(const mp_int* km, const ecc_point* am,
  22775. int inMont, ecc_point* r, int map, void* heap)
  22776. {
  22777. #ifdef WOLFSSL_SP_SMALL_STACK
  22778. sp_point_256* point = NULL;
  22779. sp_digit* k = NULL;
  22780. #else
  22781. sp_point_256 point[2];
  22782. sp_digit k[9 + 9 * 2 * 6];
  22783. #endif
  22784. sp_point_256* addP = NULL;
  22785. sp_digit* tmp = NULL;
  22786. int err = MP_OKAY;
  22787. #ifdef WOLFSSL_SP_SMALL_STACK
  22788. point = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, heap,
  22789. DYNAMIC_TYPE_ECC);
  22790. if (point == NULL)
  22791. err = MEMORY_E;
  22792. if (err == MP_OKAY) {
  22793. k = (sp_digit*)XMALLOC(
  22794. sizeof(sp_digit) * (9 + 9 * 2 * 6),
  22795. heap, DYNAMIC_TYPE_ECC);
  22796. if (k == NULL)
  22797. err = MEMORY_E;
  22798. }
  22799. #endif
  22800. if (err == MP_OKAY) {
  22801. addP = point + 1;
  22802. tmp = k + 9;
  22803. sp_256_from_mp(k, 9, km);
  22804. sp_256_point_from_ecc_point_9(addP, am);
  22805. }
  22806. if ((err == MP_OKAY) && (!inMont)) {
  22807. err = sp_256_mod_mul_norm_9(addP->x, addP->x, p256_mod);
  22808. }
  22809. if ((err == MP_OKAY) && (!inMont)) {
  22810. err = sp_256_mod_mul_norm_9(addP->y, addP->y, p256_mod);
  22811. }
  22812. if ((err == MP_OKAY) && (!inMont)) {
  22813. err = sp_256_mod_mul_norm_9(addP->z, addP->z, p256_mod);
  22814. }
  22815. if (err == MP_OKAY) {
  22816. err = sp_256_ecc_mulmod_base_9(point, k, 0, 0, heap);
  22817. }
  22818. if (err == MP_OKAY) {
  22819. sp_256_proj_point_add_9(point, point, addP, tmp);
  22820. if (map) {
  22821. sp_256_map_9(point, point, tmp);
  22822. }
  22823. err = sp_256_point_to_ecc_point_9(point, r);
  22824. }
  22825. #ifdef WOLFSSL_SP_SMALL_STACK
  22826. if (k != NULL)
  22827. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  22828. if (point)
  22829. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  22830. #endif
  22831. return err;
  22832. }
  22833. #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
  22834. defined(HAVE_ECC_VERIFY)
  22835. #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN | HAVE_ECC_SIGN | HAVE_ECC_VERIFY */
  22836. /* Add 1 to a. (a = a + 1)
  22837. *
  22838. * r A single precision integer.
  22839. * a A single precision integer.
  22840. */
  22841. SP_NOINLINE static void sp_256_add_one_9(sp_digit* a)
  22842. {
  22843. a[0]++;
  22844. sp_256_norm_9(a);
  22845. }
  22846. /* Read big endian unsigned byte array into r.
  22847. *
  22848. * r A single precision integer.
  22849. * size Maximum number of bytes to convert
  22850. * a Byte array.
  22851. * n Number of bytes in array to read.
  22852. */
  22853. static void sp_256_from_bin(sp_digit* r, int size, const byte* a, int n)
  22854. {
  22855. int i;
  22856. int j = 0;
  22857. word32 s = 0;
  22858. r[0] = 0;
  22859. for (i = n-1; i >= 0; i--) {
  22860. r[j] |= (((sp_digit)a[i]) << s);
  22861. if (s >= 21U) {
  22862. r[j] &= 0x1fffffff;
  22863. s = 29U - s;
  22864. if (j + 1 >= size) {
  22865. break;
  22866. }
  22867. r[++j] = (sp_digit)a[i] >> s;
  22868. s = 8U - s;
  22869. }
  22870. else {
  22871. s += 8U;
  22872. }
  22873. }
  22874. for (j++; j < size; j++) {
  22875. r[j] = 0;
  22876. }
  22877. }
  22878. /* Generates a scalar that is in the range 1..order-1.
  22879. *
  22880. * rng Random number generator.
  22881. * k Scalar value.
  22882. * returns RNG failures, MEMORY_E when memory allocation fails and
  22883. * MP_OKAY on success.
  22884. */
  22885. static int sp_256_ecc_gen_k_9(WC_RNG* rng, sp_digit* k)
  22886. {
  22887. int err;
  22888. byte buf[32];
  22889. do {
  22890. err = wc_RNG_GenerateBlock(rng, buf, sizeof(buf));
  22891. if (err == 0) {
  22892. sp_256_from_bin(k, 9, buf, (int)sizeof(buf));
  22893. if (sp_256_cmp_9(k, p256_order2) <= 0) {
  22894. sp_256_add_one_9(k);
  22895. break;
  22896. }
  22897. }
  22898. }
  22899. while (err == 0);
  22900. return err;
  22901. }
  22902. /* Makes a random EC key pair.
  22903. *
  22904. * rng Random number generator.
  22905. * priv Generated private value.
  22906. * pub Generated public point.
  22907. * heap Heap to use for allocation.
  22908. * returns ECC_INF_E when the point does not have the correct order, RNG
  22909. * failures, MEMORY_E when memory allocation fails and MP_OKAY on success.
  22910. */
  22911. int sp_ecc_make_key_256(WC_RNG* rng, mp_int* priv, ecc_point* pub, void* heap)
  22912. {
  22913. #ifdef WOLFSSL_SP_SMALL_STACK
  22914. sp_point_256* point = NULL;
  22915. sp_digit* k = NULL;
  22916. #else
  22917. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  22918. sp_point_256 point[2];
  22919. #else
  22920. sp_point_256 point[1];
  22921. #endif
  22922. sp_digit k[9];
  22923. #endif
  22924. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  22925. sp_point_256* infinity = NULL;
  22926. #endif
  22927. int err = MP_OKAY;
  22928. (void)heap;
  22929. #ifdef WOLFSSL_SP_SMALL_STACK
  22930. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  22931. point = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, heap, DYNAMIC_TYPE_ECC);
  22932. #else
  22933. point = (sp_point_256*)XMALLOC(sizeof(sp_point_256), heap, DYNAMIC_TYPE_ECC);
  22934. #endif
  22935. if (point == NULL)
  22936. err = MEMORY_E;
  22937. if (err == MP_OKAY) {
  22938. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9, heap,
  22939. DYNAMIC_TYPE_ECC);
  22940. if (k == NULL)
  22941. err = MEMORY_E;
  22942. }
  22943. #endif
  22944. if (err == MP_OKAY) {
  22945. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  22946. infinity = point + 1;
  22947. #endif
  22948. err = sp_256_ecc_gen_k_9(rng, k);
  22949. }
  22950. if (err == MP_OKAY) {
  22951. err = sp_256_ecc_mulmod_base_9(point, k, 1, 1, NULL);
  22952. }
  22953. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  22954. if (err == MP_OKAY) {
  22955. err = sp_256_ecc_mulmod_9(infinity, point, p256_order, 1, 1, NULL);
  22956. }
  22957. if (err == MP_OKAY) {
  22958. if (sp_256_iszero_9(point->x) || sp_256_iszero_9(point->y)) {
  22959. err = ECC_INF_E;
  22960. }
  22961. }
  22962. #endif
  22963. if (err == MP_OKAY) {
  22964. err = sp_256_to_mp(k, priv);
  22965. }
  22966. if (err == MP_OKAY) {
  22967. err = sp_256_point_to_ecc_point_9(point, pub);
  22968. }
  22969. #ifdef WOLFSSL_SP_SMALL_STACK
  22970. if (k != NULL)
  22971. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  22972. if (point != NULL) {
  22973. /* point is not sensitive, so no need to zeroize */
  22974. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  22975. }
  22976. #endif
  22977. return err;
  22978. }
  22979. #ifdef WOLFSSL_SP_NONBLOCK
  22980. typedef struct sp_ecc_key_gen_256_ctx {
  22981. int state;
  22982. sp_256_ecc_mulmod_9_ctx mulmod_ctx;
  22983. sp_digit k[9];
  22984. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  22985. sp_point_256 point[2];
  22986. #else
  22987. sp_point_256 point[1];
  22988. #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
  22989. } sp_ecc_key_gen_256_ctx;
  22990. int sp_ecc_make_key_256_nb(sp_ecc_ctx_t* sp_ctx, WC_RNG* rng, mp_int* priv,
  22991. ecc_point* pub, void* heap)
  22992. {
  22993. int err = FP_WOULDBLOCK;
  22994. sp_ecc_key_gen_256_ctx* ctx = (sp_ecc_key_gen_256_ctx*)sp_ctx->data;
  22995. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  22996. sp_point_256* infinity = ctx->point + 1;
  22997. #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
  22998. typedef char ctx_size_test[sizeof(sp_ecc_key_gen_256_ctx)
  22999. >= sizeof(*sp_ctx) ? -1 : 1];
  23000. (void)sizeof(ctx_size_test);
  23001. switch (ctx->state) {
  23002. case 0:
  23003. err = sp_256_ecc_gen_k_9(rng, ctx->k);
  23004. if (err == MP_OKAY) {
  23005. err = FP_WOULDBLOCK;
  23006. ctx->state = 1;
  23007. }
  23008. break;
  23009. case 1:
  23010. err = sp_256_ecc_mulmod_base_9_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
  23011. ctx->point, ctx->k, 1, 1, heap);
  23012. if (err == MP_OKAY) {
  23013. err = FP_WOULDBLOCK;
  23014. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  23015. XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
  23016. ctx->state = 2;
  23017. #else
  23018. ctx->state = 3;
  23019. #endif
  23020. }
  23021. break;
  23022. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  23023. case 2:
  23024. err = sp_256_ecc_mulmod_9_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
  23025. infinity, ctx->point, p256_order, 1, 1);
  23026. if (err == MP_OKAY) {
  23027. if (sp_256_iszero_9(ctx->point->x) ||
  23028. sp_256_iszero_9(ctx->point->y)) {
  23029. err = ECC_INF_E;
  23030. }
  23031. else {
  23032. err = FP_WOULDBLOCK;
  23033. ctx->state = 3;
  23034. }
  23035. }
  23036. break;
  23037. #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
  23038. case 3:
  23039. err = sp_256_to_mp(ctx->k, priv);
  23040. if (err == MP_OKAY) {
  23041. err = sp_256_point_to_ecc_point_9(ctx->point, pub);
  23042. }
  23043. break;
  23044. }
  23045. if (err != FP_WOULDBLOCK) {
  23046. XMEMSET(ctx, 0, sizeof(sp_ecc_key_gen_256_ctx));
  23047. }
  23048. return err;
  23049. }
  23050. #endif /* WOLFSSL_SP_NONBLOCK */
  23051. #ifdef HAVE_ECC_DHE
  23052. /* Write r as big endian to byte array.
  23053. * Fixed length number of bytes written: 32
  23054. *
  23055. * r A single precision integer.
  23056. * a Byte array.
  23057. */
  23058. static void sp_256_to_bin_9(sp_digit* r, byte* a)
  23059. {
  23060. int i;
  23061. int j;
  23062. int s = 0;
  23063. int b;
  23064. for (i=0; i<8; i++) {
  23065. r[i+1] += r[i] >> 29;
  23066. r[i] &= 0x1fffffff;
  23067. }
  23068. j = 263 / 8 - 1;
  23069. a[j] = 0;
  23070. for (i=0; i<9 && j>=0; i++) {
  23071. b = 0;
  23072. /* lint allow cast of mismatch sp_digit and int */
  23073. a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
  23074. b += 8 - s;
  23075. if (j < 0) {
  23076. break;
  23077. }
  23078. while (b < 29) {
  23079. a[j--] = (byte)(r[i] >> b);
  23080. b += 8;
  23081. if (j < 0) {
  23082. break;
  23083. }
  23084. }
  23085. s = 8 - (b - 29);
  23086. if (j >= 0) {
  23087. a[j] = 0;
  23088. }
  23089. if (s != 0) {
  23090. j++;
  23091. }
  23092. }
  23093. }
  23094. /* Multiply the point by the scalar and serialize the X ordinate.
  23095. * The number is 0 padded to maximum size on output.
  23096. *
  23097. * priv Scalar to multiply the point by.
  23098. * pub Point to multiply.
  23099. * out Buffer to hold X ordinate.
  23100. * outLen On entry, size of the buffer in bytes.
  23101. * On exit, length of data in buffer in bytes.
  23102. * heap Heap to use for allocation.
  23103. * returns BUFFER_E if the buffer is to small for output size,
  23104. * MEMORY_E when memory allocation fails and MP_OKAY on success.
  23105. */
  23106. int sp_ecc_secret_gen_256(const mp_int* priv, const ecc_point* pub, byte* out,
  23107. word32* outLen, void* heap)
  23108. {
  23109. #ifdef WOLFSSL_SP_SMALL_STACK
  23110. sp_point_256* point = NULL;
  23111. sp_digit* k = NULL;
  23112. #else
  23113. sp_point_256 point[1];
  23114. sp_digit k[9];
  23115. #endif
  23116. int err = MP_OKAY;
  23117. if (*outLen < 32U) {
  23118. err = BUFFER_E;
  23119. }
  23120. #ifdef WOLFSSL_SP_SMALL_STACK
  23121. if (err == MP_OKAY) {
  23122. point = (sp_point_256*)XMALLOC(sizeof(sp_point_256), heap,
  23123. DYNAMIC_TYPE_ECC);
  23124. if (point == NULL)
  23125. err = MEMORY_E;
  23126. }
  23127. if (err == MP_OKAY) {
  23128. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9, heap,
  23129. DYNAMIC_TYPE_ECC);
  23130. if (k == NULL)
  23131. err = MEMORY_E;
  23132. }
  23133. #endif
  23134. if (err == MP_OKAY) {
  23135. sp_256_from_mp(k, 9, priv);
  23136. sp_256_point_from_ecc_point_9(point, pub);
  23137. err = sp_256_ecc_mulmod_9(point, point, k, 1, 1, heap);
  23138. }
  23139. if (err == MP_OKAY) {
  23140. sp_256_to_bin_9(point->x, out);
  23141. *outLen = 32;
  23142. }
  23143. #ifdef WOLFSSL_SP_SMALL_STACK
  23144. if (k != NULL)
  23145. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  23146. if (point != NULL)
  23147. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  23148. #endif
  23149. return err;
  23150. }
  23151. #ifdef WOLFSSL_SP_NONBLOCK
  23152. typedef struct sp_ecc_sec_gen_256_ctx {
  23153. int state;
  23154. union {
  23155. sp_256_ecc_mulmod_9_ctx mulmod_ctx;
  23156. };
  23157. sp_digit k[9];
  23158. sp_point_256 point;
  23159. } sp_ecc_sec_gen_256_ctx;
  23160. int sp_ecc_secret_gen_256_nb(sp_ecc_ctx_t* sp_ctx, const mp_int* priv,
  23161. const ecc_point* pub, byte* out, word32* outLen, void* heap)
  23162. {
  23163. int err = FP_WOULDBLOCK;
  23164. sp_ecc_sec_gen_256_ctx* ctx = (sp_ecc_sec_gen_256_ctx*)sp_ctx->data;
  23165. typedef char ctx_size_test[sizeof(sp_ecc_sec_gen_256_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  23166. (void)sizeof(ctx_size_test);
  23167. if (*outLen < 32U) {
  23168. err = BUFFER_E;
  23169. }
  23170. switch (ctx->state) {
  23171. case 0:
  23172. sp_256_from_mp(ctx->k, 9, priv);
  23173. sp_256_point_from_ecc_point_9(&ctx->point, pub);
  23174. ctx->state = 1;
  23175. break;
  23176. case 1:
  23177. err = sp_256_ecc_mulmod_9_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
  23178. &ctx->point, &ctx->point, ctx->k, 1, 1, heap);
  23179. if (err == MP_OKAY) {
  23180. sp_256_to_bin_9(ctx->point.x, out);
  23181. *outLen = 32;
  23182. }
  23183. break;
  23184. }
  23185. if (err == MP_OKAY && ctx->state != 1) {
  23186. err = FP_WOULDBLOCK;
  23187. }
  23188. if (err != FP_WOULDBLOCK) {
  23189. XMEMSET(ctx, 0, sizeof(sp_ecc_sec_gen_256_ctx));
  23190. }
  23191. return err;
  23192. }
  23193. #endif /* WOLFSSL_SP_NONBLOCK */
  23194. #endif /* HAVE_ECC_DHE */
  23195. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  23196. #endif
  23197. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  23198. SP_NOINLINE static void sp_256_rshift_9(sp_digit* r, const sp_digit* a,
  23199. byte n)
  23200. {
  23201. int i;
  23202. #ifdef WOLFSSL_SP_SMALL
  23203. for (i=0; i<8; i++) {
  23204. r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
  23205. }
  23206. #else
  23207. for (i=0; i<8; i += 8) {
  23208. r[i+0] = (a[i+0] >> n) | ((a[i+1] << (29 - n)) & 0x1fffffff);
  23209. r[i+1] = (a[i+1] >> n) | ((a[i+2] << (29 - n)) & 0x1fffffff);
  23210. r[i+2] = (a[i+2] >> n) | ((a[i+3] << (29 - n)) & 0x1fffffff);
  23211. r[i+3] = (a[i+3] >> n) | ((a[i+4] << (29 - n)) & 0x1fffffff);
  23212. r[i+4] = (a[i+4] >> n) | ((a[i+5] << (29 - n)) & 0x1fffffff);
  23213. r[i+5] = (a[i+5] >> n) | ((a[i+6] << (29 - n)) & 0x1fffffff);
  23214. r[i+6] = (a[i+6] >> n) | ((a[i+7] << (29 - n)) & 0x1fffffff);
  23215. r[i+7] = (a[i+7] >> n) | ((a[i+8] << (29 - n)) & 0x1fffffff);
  23216. }
  23217. #endif /* WOLFSSL_SP_SMALL */
  23218. r[8] = a[8] >> n;
  23219. }
  23220. /* Multiply a by scalar b into r. (r = a * b)
  23221. *
  23222. * r A single precision integer.
  23223. * a A single precision integer.
  23224. * b A scalar.
  23225. */
  23226. SP_NOINLINE static void sp_256_mul_d_9(sp_digit* r, const sp_digit* a,
  23227. sp_digit b)
  23228. {
  23229. #ifdef WOLFSSL_SP_SMALL
  23230. sp_int64 tb = b;
  23231. sp_int64 t = 0;
  23232. int i;
  23233. for (i = 0; i < 9; i++) {
  23234. t += tb * a[i];
  23235. r[i] = (sp_digit)(t & 0x1fffffff);
  23236. t >>= 29;
  23237. }
  23238. r[9] = (sp_digit)t;
  23239. #else
  23240. sp_int64 tb = b;
  23241. sp_int64 t[9];
  23242. t[ 0] = tb * a[ 0];
  23243. t[ 1] = tb * a[ 1];
  23244. t[ 2] = tb * a[ 2];
  23245. t[ 3] = tb * a[ 3];
  23246. t[ 4] = tb * a[ 4];
  23247. t[ 5] = tb * a[ 5];
  23248. t[ 6] = tb * a[ 6];
  23249. t[ 7] = tb * a[ 7];
  23250. t[ 8] = tb * a[ 8];
  23251. r[ 0] = (sp_digit) (t[ 0] & 0x1fffffff);
  23252. r[ 1] = (sp_digit)((t[ 0] >> 29) + (t[ 1] & 0x1fffffff));
  23253. r[ 2] = (sp_digit)((t[ 1] >> 29) + (t[ 2] & 0x1fffffff));
  23254. r[ 3] = (sp_digit)((t[ 2] >> 29) + (t[ 3] & 0x1fffffff));
  23255. r[ 4] = (sp_digit)((t[ 3] >> 29) + (t[ 4] & 0x1fffffff));
  23256. r[ 5] = (sp_digit)((t[ 4] >> 29) + (t[ 5] & 0x1fffffff));
  23257. r[ 6] = (sp_digit)((t[ 5] >> 29) + (t[ 6] & 0x1fffffff));
  23258. r[ 7] = (sp_digit)((t[ 6] >> 29) + (t[ 7] & 0x1fffffff));
  23259. r[ 8] = (sp_digit)((t[ 7] >> 29) + (t[ 8] & 0x1fffffff));
  23260. r[ 9] = (sp_digit) (t[ 8] >> 29);
  23261. #endif /* WOLFSSL_SP_SMALL */
  23262. }
  23263. SP_NOINLINE static void sp_256_lshift_18(sp_digit* r, const sp_digit* a,
  23264. byte n)
  23265. {
  23266. #ifdef WOLFSSL_SP_SMALL
  23267. int i;
  23268. r[18] = a[17] >> (29 - n);
  23269. for (i=17; i>0; i--) {
  23270. r[i] = ((a[i] << n) | (a[i-1] >> (29 - n))) & 0x1fffffff;
  23271. }
  23272. #else
  23273. sp_int_digit s;
  23274. sp_int_digit t;
  23275. s = (sp_int_digit)a[17];
  23276. r[18] = s >> (29U - n);
  23277. s = (sp_int_digit)(a[17]); t = (sp_int_digit)(a[16]);
  23278. r[17] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23279. s = (sp_int_digit)(a[16]); t = (sp_int_digit)(a[15]);
  23280. r[16] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23281. s = (sp_int_digit)(a[15]); t = (sp_int_digit)(a[14]);
  23282. r[15] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23283. s = (sp_int_digit)(a[14]); t = (sp_int_digit)(a[13]);
  23284. r[14] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23285. s = (sp_int_digit)(a[13]); t = (sp_int_digit)(a[12]);
  23286. r[13] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23287. s = (sp_int_digit)(a[12]); t = (sp_int_digit)(a[11]);
  23288. r[12] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23289. s = (sp_int_digit)(a[11]); t = (sp_int_digit)(a[10]);
  23290. r[11] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23291. s = (sp_int_digit)(a[10]); t = (sp_int_digit)(a[9]);
  23292. r[10] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23293. s = (sp_int_digit)(a[9]); t = (sp_int_digit)(a[8]);
  23294. r[9] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23295. s = (sp_int_digit)(a[8]); t = (sp_int_digit)(a[7]);
  23296. r[8] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23297. s = (sp_int_digit)(a[7]); t = (sp_int_digit)(a[6]);
  23298. r[7] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23299. s = (sp_int_digit)(a[6]); t = (sp_int_digit)(a[5]);
  23300. r[6] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23301. s = (sp_int_digit)(a[5]); t = (sp_int_digit)(a[4]);
  23302. r[5] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23303. s = (sp_int_digit)(a[4]); t = (sp_int_digit)(a[3]);
  23304. r[4] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23305. s = (sp_int_digit)(a[3]); t = (sp_int_digit)(a[2]);
  23306. r[3] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23307. s = (sp_int_digit)(a[2]); t = (sp_int_digit)(a[1]);
  23308. r[2] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23309. s = (sp_int_digit)(a[1]); t = (sp_int_digit)(a[0]);
  23310. r[1] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
  23311. #endif /* WOLFSSL_SP_SMALL */
  23312. r[0] = (a[0] << n) & 0x1fffffff;
  23313. }
  23314. /* Divide d in a and put remainder into r (m*d + r = a)
  23315. * m is not calculated as it is not needed at this time.
  23316. *
  23317. * Simplified based on top word of divisor being (1 << 29) - 1
  23318. *
  23319. * a Number to be divided.
  23320. * d Number to divide with.
  23321. * m Multiplier result.
  23322. * r Remainder from the division.
  23323. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  23324. */
  23325. static int sp_256_div_9(const sp_digit* a, const sp_digit* d,
  23326. const sp_digit* m, sp_digit* r)
  23327. {
  23328. int i;
  23329. sp_digit r1;
  23330. sp_digit mask;
  23331. #ifdef WOLFSSL_SP_SMALL_STACK
  23332. sp_digit* t1 = NULL;
  23333. #else
  23334. sp_digit t1[4 * 9 + 3];
  23335. #endif
  23336. sp_digit* t2 = NULL;
  23337. sp_digit* sd = NULL;
  23338. int err = MP_OKAY;
  23339. (void)m;
  23340. #ifdef WOLFSSL_SP_SMALL_STACK
  23341. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 9 + 3), NULL,
  23342. DYNAMIC_TYPE_TMP_BUFFER);
  23343. if (t1 == NULL)
  23344. err = MEMORY_E;
  23345. #endif
  23346. (void)m;
  23347. if (err == MP_OKAY) {
  23348. t2 = t1 + 18 + 1;
  23349. sd = t2 + 9 + 1;
  23350. sp_256_mul_d_9(sd, d, (sp_digit)1 << 5);
  23351. sp_256_lshift_18(t1, a, 5);
  23352. t1[9 + 9] += t1[9 + 9 - 1] >> 29;
  23353. t1[9 + 9 - 1] &= 0x1fffffff;
  23354. for (i=8; i>=0; i--) {
  23355. r1 = t1[9 + i];
  23356. sp_256_mul_d_9(t2, sd, r1);
  23357. (void)sp_256_sub_9(&t1[i], &t1[i], t2);
  23358. t1[9 + i] -= t2[9];
  23359. sp_256_norm_9(&t1[i + 1]);
  23360. mask = ~((t1[9 + i] - 1) >> 31);
  23361. sp_256_cond_sub_9(t1 + i, t1 + i, sd, mask);
  23362. sp_256_norm_9(&t1[i + 1]);
  23363. }
  23364. sp_256_norm_9(t1);
  23365. sp_256_rshift_9(r, t1, 5);
  23366. }
  23367. #ifdef WOLFSSL_SP_SMALL_STACK
  23368. if (t1 != NULL)
  23369. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  23370. #endif
  23371. return err;
  23372. }
  23373. /* Reduce a modulo m into r. (r = a mod m)
  23374. *
  23375. * r A single precision number that is the reduced result.
  23376. * a A single precision number that is to be reduced.
  23377. * m A single precision number that is the modulus to reduce with.
  23378. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  23379. */
  23380. static int sp_256_mod_9(sp_digit* r, const sp_digit* a, const sp_digit* m)
  23381. {
  23382. return sp_256_div_9(a, m, NULL, r);
  23383. }
  23384. #endif
  23385. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  23386. /* Multiply two number mod the order of P256 curve. (r = a * b mod order)
  23387. *
  23388. * r Result of the multiplication.
  23389. * a First operand of the multiplication.
  23390. * b Second operand of the multiplication.
  23391. */
  23392. static void sp_256_mont_mul_order_9(sp_digit* r, const sp_digit* a, const sp_digit* b)
  23393. {
  23394. sp_256_mul_9(r, a, b);
  23395. sp_256_mont_reduce_order_9(r, p256_order, p256_mp_order);
  23396. }
  23397. #if defined(HAVE_ECC_SIGN) || (defined(HAVE_ECC_VERIFY) && defined(WOLFSSL_SP_SMALL))
  23398. #ifdef WOLFSSL_SP_SMALL
  23399. /* Order-2 for the P256 curve. */
  23400. static const uint32_t p256_order_minus_2[8] = {
  23401. 0xfc63254fU,0xf3b9cac2U,0xa7179e84U,0xbce6faadU,0xffffffffU,0xffffffffU,
  23402. 0x00000000U,0xffffffffU
  23403. };
  23404. #else
  23405. /* The low half of the order-2 of the P256 curve. */
  23406. static const sp_int_digit p256_order_low[4] = {
  23407. 0xfc63254fU,0xf3b9cac2U,0xa7179e84U,0xbce6faadU
  23408. };
  23409. #endif /* WOLFSSL_SP_SMALL */
  23410. /* Square number mod the order of P256 curve. (r = a * a mod order)
  23411. *
  23412. * r Result of the squaring.
  23413. * a Number to square.
  23414. */
  23415. static void sp_256_mont_sqr_order_9(sp_digit* r, const sp_digit* a)
  23416. {
  23417. sp_256_sqr_9(r, a);
  23418. sp_256_mont_reduce_order_9(r, p256_order, p256_mp_order);
  23419. }
  23420. #ifndef WOLFSSL_SP_SMALL
  23421. /* Square number mod the order of P256 curve a number of times.
  23422. * (r = a ^ n mod order)
  23423. *
  23424. * r Result of the squaring.
  23425. * a Number to square.
  23426. */
  23427. static void sp_256_mont_sqr_n_order_9(sp_digit* r, const sp_digit* a, int n)
  23428. {
  23429. int i;
  23430. sp_256_mont_sqr_order_9(r, a);
  23431. for (i=1; i<n; i++) {
  23432. sp_256_mont_sqr_order_9(r, r);
  23433. }
  23434. }
  23435. #endif /* !WOLFSSL_SP_SMALL */
  23436. /* Invert the number, in Montgomery form, modulo the order of the P256 curve.
  23437. * (r = 1 / a mod order)
  23438. *
  23439. * r Inverse result.
  23440. * a Number to invert.
  23441. * td Temporary data.
  23442. */
  23443. #ifdef WOLFSSL_SP_NONBLOCK
  23444. typedef struct sp_256_mont_inv_order_9_ctx {
  23445. int state;
  23446. int i;
  23447. } sp_256_mont_inv_order_9_ctx;
  23448. static int sp_256_mont_inv_order_9_nb(sp_ecc_ctx_t* sp_ctx, sp_digit* r, const sp_digit* a,
  23449. sp_digit* t)
  23450. {
  23451. int err = FP_WOULDBLOCK;
  23452. sp_256_mont_inv_order_9_ctx* ctx = (sp_256_mont_inv_order_9_ctx*)sp_ctx;
  23453. typedef char ctx_size_test[sizeof(sp_256_mont_inv_order_9_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  23454. (void)sizeof(ctx_size_test);
  23455. switch (ctx->state) {
  23456. case 0:
  23457. XMEMCPY(t, a, sizeof(sp_digit) * 9);
  23458. ctx->i = 254;
  23459. ctx->state = 1;
  23460. break;
  23461. case 1:
  23462. sp_256_mont_sqr_order_9(t, t);
  23463. ctx->state = 2;
  23464. break;
  23465. case 2:
  23466. if ((p256_order_minus_2[ctx->i / 32] & ((sp_int_digit)1 << (ctx->i % 32))) != 0) {
  23467. sp_256_mont_mul_order_9(t, t, a);
  23468. }
  23469. ctx->i--;
  23470. ctx->state = (ctx->i == 0) ? 3 : 1;
  23471. break;
  23472. case 3:
  23473. XMEMCPY(r, t, sizeof(sp_digit) * 9U);
  23474. err = MP_OKAY;
  23475. break;
  23476. }
  23477. return err;
  23478. }
  23479. #endif /* WOLFSSL_SP_NONBLOCK */
  23480. static void sp_256_mont_inv_order_9(sp_digit* r, const sp_digit* a,
  23481. sp_digit* td)
  23482. {
  23483. #ifdef WOLFSSL_SP_SMALL
  23484. sp_digit* t = td;
  23485. int i;
  23486. XMEMCPY(t, a, sizeof(sp_digit) * 9);
  23487. for (i=254; i>=0; i--) {
  23488. sp_256_mont_sqr_order_9(t, t);
  23489. if ((p256_order_minus_2[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
  23490. sp_256_mont_mul_order_9(t, t, a);
  23491. }
  23492. }
  23493. XMEMCPY(r, t, sizeof(sp_digit) * 9U);
  23494. #else
  23495. sp_digit* t = td;
  23496. sp_digit* t2 = td + 2 * 9;
  23497. sp_digit* t3 = td + 4 * 9;
  23498. int i;
  23499. /* t = a^2 */
  23500. sp_256_mont_sqr_order_9(t, a);
  23501. /* t = a^3 = t * a */
  23502. sp_256_mont_mul_order_9(t, t, a);
  23503. /* t2= a^c = t ^ 2 ^ 2 */
  23504. sp_256_mont_sqr_n_order_9(t2, t, 2);
  23505. /* t3= a^f = t2 * t */
  23506. sp_256_mont_mul_order_9(t3, t2, t);
  23507. /* t2= a^f0 = t3 ^ 2 ^ 4 */
  23508. sp_256_mont_sqr_n_order_9(t2, t3, 4);
  23509. /* t = a^ff = t2 * t3 */
  23510. sp_256_mont_mul_order_9(t, t2, t3);
  23511. /* t2= a^ff00 = t ^ 2 ^ 8 */
  23512. sp_256_mont_sqr_n_order_9(t2, t, 8);
  23513. /* t = a^ffff = t2 * t */
  23514. sp_256_mont_mul_order_9(t, t2, t);
  23515. /* t2= a^ffff0000 = t ^ 2 ^ 16 */
  23516. sp_256_mont_sqr_n_order_9(t2, t, 16);
  23517. /* t = a^ffffffff = t2 * t */
  23518. sp_256_mont_mul_order_9(t, t2, t);
  23519. /* t2= a^ffffffff0000000000000000 = t ^ 2 ^ 64 */
  23520. sp_256_mont_sqr_n_order_9(t2, t, 64);
  23521. /* t2= a^ffffffff00000000ffffffff = t2 * t */
  23522. sp_256_mont_mul_order_9(t2, t2, t);
  23523. /* t2= a^ffffffff00000000ffffffff00000000 = t2 ^ 2 ^ 32 */
  23524. sp_256_mont_sqr_n_order_9(t2, t2, 32);
  23525. /* t2= a^ffffffff00000000ffffffffffffffff = t2 * t */
  23526. sp_256_mont_mul_order_9(t2, t2, t);
  23527. /* t2= a^ffffffff00000000ffffffffffffffffbce6 */
  23528. sp_256_mont_sqr_order_9(t2, t2);
  23529. sp_256_mont_mul_order_9(t2, t2, a);
  23530. sp_256_mont_sqr_n_order_9(t2, t2, 5);
  23531. sp_256_mont_mul_order_9(t2, t2, t3);
  23532. for (i=121; i>=112; i--) {
  23533. sp_256_mont_sqr_order_9(t2, t2);
  23534. if ((p256_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
  23535. sp_256_mont_mul_order_9(t2, t2, a);
  23536. }
  23537. }
  23538. /* t2= a^ffffffff00000000ffffffffffffffffbce6f */
  23539. sp_256_mont_sqr_n_order_9(t2, t2, 4);
  23540. sp_256_mont_mul_order_9(t2, t2, t3);
  23541. /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84 */
  23542. for (i=107; i>=64; i--) {
  23543. sp_256_mont_sqr_order_9(t2, t2);
  23544. if ((p256_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
  23545. sp_256_mont_mul_order_9(t2, t2, a);
  23546. }
  23547. }
  23548. /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f */
  23549. sp_256_mont_sqr_n_order_9(t2, t2, 4);
  23550. sp_256_mont_mul_order_9(t2, t2, t3);
  23551. /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2 */
  23552. for (i=59; i>=32; i--) {
  23553. sp_256_mont_sqr_order_9(t2, t2);
  23554. if ((p256_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
  23555. sp_256_mont_mul_order_9(t2, t2, a);
  23556. }
  23557. }
  23558. /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2f */
  23559. sp_256_mont_sqr_n_order_9(t2, t2, 4);
  23560. sp_256_mont_mul_order_9(t2, t2, t3);
  23561. /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254 */
  23562. for (i=27; i>=0; i--) {
  23563. sp_256_mont_sqr_order_9(t2, t2);
  23564. if ((p256_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
  23565. sp_256_mont_mul_order_9(t2, t2, a);
  23566. }
  23567. }
  23568. /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632540 */
  23569. sp_256_mont_sqr_n_order_9(t2, t2, 4);
  23570. /* r = a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f */
  23571. sp_256_mont_mul_order_9(r, t2, t3);
  23572. #endif /* WOLFSSL_SP_SMALL */
  23573. }
  23574. #endif /* HAVE_ECC_SIGN || (HAVE_ECC_VERIFY && WOLFSSL_SP_SMALL) */
  23575. #endif /* HAVE_ECC_SIGN | HAVE_ECC_VERIFY */
  23576. #ifdef HAVE_ECC_SIGN
  23577. #ifndef SP_ECC_MAX_SIG_GEN
  23578. #define SP_ECC_MAX_SIG_GEN 64
  23579. #endif
  23580. /* Calculate second signature value S from R, k and private value.
  23581. *
  23582. * s = (r * x + e) / k
  23583. *
  23584. * s Signature value.
  23585. * r First signature value.
  23586. * k Ephemeral private key.
  23587. * x Private key as a number.
  23588. * e Hash of message as a number.
  23589. * tmp Temporary storage for intermediate numbers.
  23590. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  23591. */
  23592. static int sp_256_calc_s_9(sp_digit* s, const sp_digit* r, sp_digit* k,
  23593. sp_digit* x, const sp_digit* e, sp_digit* tmp)
  23594. {
  23595. int err;
  23596. sp_digit carry;
  23597. sp_int32 c;
  23598. sp_digit* kInv = k;
  23599. /* Conv k to Montgomery form (mod order) */
  23600. sp_256_mul_9(k, k, p256_norm_order);
  23601. err = sp_256_mod_9(k, k, p256_order);
  23602. if (err == MP_OKAY) {
  23603. sp_256_norm_9(k);
  23604. /* kInv = 1/k mod order */
  23605. sp_256_mont_inv_order_9(kInv, k, tmp);
  23606. sp_256_norm_9(kInv);
  23607. /* s = r * x + e */
  23608. sp_256_mul_9(x, x, r);
  23609. err = sp_256_mod_9(x, x, p256_order);
  23610. }
  23611. if (err == MP_OKAY) {
  23612. sp_256_norm_9(x);
  23613. carry = sp_256_add_9(s, e, x);
  23614. sp_256_cond_sub_9(s, s, p256_order, 0 - carry);
  23615. sp_256_norm_9(s);
  23616. c = sp_256_cmp_9(s, p256_order);
  23617. sp_256_cond_sub_9(s, s, p256_order,
  23618. (sp_digit)0 - (sp_digit)(c >= 0));
  23619. sp_256_norm_9(s);
  23620. /* s = s * k^-1 mod order */
  23621. sp_256_mont_mul_order_9(s, s, kInv);
  23622. sp_256_norm_9(s);
  23623. }
  23624. return err;
  23625. }
  23626. /* Sign the hash using the private key.
  23627. * e = [hash, 256 bits] from binary
  23628. * r = (k.G)->x mod order
  23629. * s = (r * x + e) / k mod order
  23630. * The hash is truncated to the first 256 bits.
  23631. *
  23632. * hash Hash to sign.
  23633. * hashLen Length of the hash data.
  23634. * rng Random number generator.
  23635. * priv Private part of key - scalar.
  23636. * rm First part of result as an mp_int.
  23637. * sm Sirst part of result as an mp_int.
  23638. * heap Heap to use for allocation.
  23639. * returns RNG failures, MEMORY_E when memory allocation fails and
  23640. * MP_OKAY on success.
  23641. */
  23642. int sp_ecc_sign_256(const byte* hash, word32 hashLen, WC_RNG* rng,
  23643. const mp_int* priv, mp_int* rm, mp_int* sm, mp_int* km, void* heap)
  23644. {
  23645. #ifdef WOLFSSL_SP_SMALL_STACK
  23646. sp_digit* e = NULL;
  23647. sp_point_256* point = NULL;
  23648. #else
  23649. sp_digit e[7 * 2 * 9];
  23650. sp_point_256 point[1];
  23651. #endif
  23652. sp_digit* x = NULL;
  23653. sp_digit* k = NULL;
  23654. sp_digit* r = NULL;
  23655. sp_digit* tmp = NULL;
  23656. sp_digit* s = NULL;
  23657. sp_int32 c;
  23658. int err = MP_OKAY;
  23659. int i;
  23660. (void)heap;
  23661. #ifdef WOLFSSL_SP_SMALL_STACK
  23662. if (err == MP_OKAY) {
  23663. point = (sp_point_256*)XMALLOC(sizeof(sp_point_256), heap,
  23664. DYNAMIC_TYPE_ECC);
  23665. if (point == NULL)
  23666. err = MEMORY_E;
  23667. }
  23668. if (err == MP_OKAY) {
  23669. e = (sp_digit*)XMALLOC(sizeof(sp_digit) * 7 * 2 * 9, heap,
  23670. DYNAMIC_TYPE_ECC);
  23671. if (e == NULL)
  23672. err = MEMORY_E;
  23673. }
  23674. #endif
  23675. if (err == MP_OKAY) {
  23676. x = e + 2 * 9;
  23677. k = e + 4 * 9;
  23678. r = e + 6 * 9;
  23679. tmp = e + 8 * 9;
  23680. s = e;
  23681. if (hashLen > 32U) {
  23682. hashLen = 32U;
  23683. }
  23684. }
  23685. for (i = SP_ECC_MAX_SIG_GEN; err == MP_OKAY && i > 0; i--) {
  23686. /* New random point. */
  23687. if (km == NULL || mp_iszero(km)) {
  23688. err = sp_256_ecc_gen_k_9(rng, k);
  23689. }
  23690. else {
  23691. sp_256_from_mp(k, 9, km);
  23692. mp_zero(km);
  23693. }
  23694. if (err == MP_OKAY) {
  23695. err = sp_256_ecc_mulmod_base_9(point, k, 1, 1, heap);
  23696. }
  23697. if (err == MP_OKAY) {
  23698. /* r = point->x mod order */
  23699. XMEMCPY(r, point->x, sizeof(sp_digit) * 9U);
  23700. sp_256_norm_9(r);
  23701. c = sp_256_cmp_9(r, p256_order);
  23702. sp_256_cond_sub_9(r, r, p256_order,
  23703. (sp_digit)0 - (sp_digit)(c >= 0));
  23704. sp_256_norm_9(r);
  23705. if (!sp_256_iszero_9(r)) {
  23706. /* x is modified in calculation of s. */
  23707. sp_256_from_mp(x, 9, priv);
  23708. /* s ptr == e ptr, e is modified in calculation of s. */
  23709. sp_256_from_bin(e, 9, hash, (int)hashLen);
  23710. err = sp_256_calc_s_9(s, r, k, x, e, tmp);
  23711. /* Check that signature is usable. */
  23712. if ((err == MP_OKAY) && (!sp_256_iszero_9(s))) {
  23713. break;
  23714. }
  23715. }
  23716. }
  23717. #ifdef WOLFSSL_ECDSA_SET_K_ONE_LOOP
  23718. i = 1;
  23719. #endif
  23720. }
  23721. if (i == 0) {
  23722. err = RNG_FAILURE_E;
  23723. }
  23724. if (err == MP_OKAY) {
  23725. err = sp_256_to_mp(r, rm);
  23726. }
  23727. if (err == MP_OKAY) {
  23728. err = sp_256_to_mp(s, sm);
  23729. }
  23730. #ifdef WOLFSSL_SP_SMALL_STACK
  23731. if (e != NULL)
  23732. #endif
  23733. {
  23734. ForceZero(e, sizeof(sp_digit) * 7 * 2 * 9);
  23735. #ifdef WOLFSSL_SP_SMALL_STACK
  23736. XFREE(e, heap, DYNAMIC_TYPE_ECC);
  23737. #endif
  23738. }
  23739. #ifdef WOLFSSL_SP_SMALL_STACK
  23740. if (point != NULL)
  23741. #endif
  23742. {
  23743. ForceZero(point, sizeof(sp_point_256));
  23744. #ifdef WOLFSSL_SP_SMALL_STACK
  23745. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  23746. #endif
  23747. }
  23748. return err;
  23749. }
  23750. #ifdef WOLFSSL_SP_NONBLOCK
  23751. typedef struct sp_ecc_sign_256_ctx {
  23752. int state;
  23753. union {
  23754. sp_256_ecc_mulmod_9_ctx mulmod_ctx;
  23755. sp_256_mont_inv_order_9_ctx mont_inv_order_ctx;
  23756. };
  23757. sp_digit e[2*9];
  23758. sp_digit x[2*9];
  23759. sp_digit k[2*9];
  23760. sp_digit r[2*9];
  23761. sp_digit tmp[3 * 2*9];
  23762. sp_point_256 point;
  23763. sp_digit* s;
  23764. sp_digit* kInv;
  23765. int i;
  23766. } sp_ecc_sign_256_ctx;
  23767. int sp_ecc_sign_256_nb(sp_ecc_ctx_t* sp_ctx, const byte* hash, word32 hashLen, WC_RNG* rng,
  23768. mp_int* priv, mp_int* rm, mp_int* sm, mp_int* km, void* heap)
  23769. {
  23770. int err = FP_WOULDBLOCK;
  23771. sp_ecc_sign_256_ctx* ctx = (sp_ecc_sign_256_ctx*)sp_ctx->data;
  23772. typedef char ctx_size_test[sizeof(sp_ecc_sign_256_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  23773. (void)sizeof(ctx_size_test);
  23774. switch (ctx->state) {
  23775. case 0: /* INIT */
  23776. ctx->s = ctx->e;
  23777. ctx->kInv = ctx->k;
  23778. ctx->i = SP_ECC_MAX_SIG_GEN;
  23779. ctx->state = 1;
  23780. break;
  23781. case 1: /* GEN */
  23782. /* New random point. */
  23783. if (km == NULL || mp_iszero(km)) {
  23784. err = sp_256_ecc_gen_k_9(rng, ctx->k);
  23785. }
  23786. else {
  23787. sp_256_from_mp(ctx->k, 9, km);
  23788. mp_zero(km);
  23789. }
  23790. XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
  23791. ctx->state = 2;
  23792. break;
  23793. case 2: /* MULMOD */
  23794. err = sp_256_ecc_mulmod_9_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
  23795. &ctx->point, &p256_base, ctx->k, 1, 1, heap);
  23796. if (err == MP_OKAY) {
  23797. ctx->state = 3;
  23798. }
  23799. break;
  23800. case 3: /* MODORDER */
  23801. {
  23802. sp_int32 c;
  23803. /* r = point->x mod order */
  23804. XMEMCPY(ctx->r, ctx->point.x, sizeof(sp_digit) * 9U);
  23805. sp_256_norm_9(ctx->r);
  23806. c = sp_256_cmp_9(ctx->r, p256_order);
  23807. sp_256_cond_sub_9(ctx->r, ctx->r, p256_order,
  23808. (sp_digit)0 - (sp_digit)(c >= 0));
  23809. sp_256_norm_9(ctx->r);
  23810. if (hashLen > 32U) {
  23811. hashLen = 32U;
  23812. }
  23813. sp_256_from_mp(ctx->x, 9, priv);
  23814. sp_256_from_bin(ctx->e, 9, hash, (int)hashLen);
  23815. ctx->state = 4;
  23816. break;
  23817. }
  23818. case 4: /* KMODORDER */
  23819. /* Conv k to Montgomery form (mod order) */
  23820. sp_256_mul_9(ctx->k, ctx->k, p256_norm_order);
  23821. err = sp_256_mod_9(ctx->k, ctx->k, p256_order);
  23822. if (err == MP_OKAY) {
  23823. sp_256_norm_9(ctx->k);
  23824. XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
  23825. ctx->state = 5;
  23826. }
  23827. break;
  23828. case 5: /* KINV */
  23829. /* kInv = 1/k mod order */
  23830. err = sp_256_mont_inv_order_9_nb((sp_ecc_ctx_t*)&ctx->mont_inv_order_ctx, ctx->kInv, ctx->k, ctx->tmp);
  23831. if (err == MP_OKAY) {
  23832. XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
  23833. ctx->state = 6;
  23834. }
  23835. break;
  23836. case 6: /* KINVNORM */
  23837. sp_256_norm_9(ctx->kInv);
  23838. ctx->state = 7;
  23839. break;
  23840. case 7: /* R */
  23841. /* s = r * x + e */
  23842. sp_256_mul_9(ctx->x, ctx->x, ctx->r);
  23843. ctx->state = 8;
  23844. break;
  23845. case 8: /* S1 */
  23846. err = sp_256_mod_9(ctx->x, ctx->x, p256_order);
  23847. if (err == MP_OKAY)
  23848. ctx->state = 9;
  23849. break;
  23850. case 9: /* S2 */
  23851. {
  23852. sp_digit carry;
  23853. sp_int32 c;
  23854. sp_256_norm_9(ctx->x);
  23855. carry = sp_256_add_9(ctx->s, ctx->e, ctx->x);
  23856. sp_256_cond_sub_9(ctx->s, ctx->s,
  23857. p256_order, 0 - carry);
  23858. sp_256_norm_9(ctx->s);
  23859. c = sp_256_cmp_9(ctx->s, p256_order);
  23860. sp_256_cond_sub_9(ctx->s, ctx->s, p256_order,
  23861. (sp_digit)0 - (sp_digit)(c >= 0));
  23862. sp_256_norm_9(ctx->s);
  23863. /* s = s * k^-1 mod order */
  23864. sp_256_mont_mul_order_9(ctx->s, ctx->s, ctx->kInv);
  23865. sp_256_norm_9(ctx->s);
  23866. /* Check that signature is usable. */
  23867. if (sp_256_iszero_9(ctx->s) == 0) {
  23868. ctx->state = 10;
  23869. break;
  23870. }
  23871. #ifdef WOLFSSL_ECDSA_SET_K_ONE_LOOP
  23872. ctx->i = 1;
  23873. #endif
  23874. /* not usable gen, try again */
  23875. ctx->i--;
  23876. if (ctx->i == 0) {
  23877. err = RNG_FAILURE_E;
  23878. }
  23879. ctx->state = 1;
  23880. break;
  23881. }
  23882. case 10: /* RES */
  23883. err = sp_256_to_mp(ctx->r, rm);
  23884. if (err == MP_OKAY) {
  23885. err = sp_256_to_mp(ctx->s, sm);
  23886. }
  23887. break;
  23888. }
  23889. if (err == MP_OKAY && ctx->state != 10) {
  23890. err = FP_WOULDBLOCK;
  23891. }
  23892. if (err != FP_WOULDBLOCK) {
  23893. XMEMSET(ctx->e, 0, sizeof(sp_digit) * 2U * 9U);
  23894. XMEMSET(ctx->x, 0, sizeof(sp_digit) * 2U * 9U);
  23895. XMEMSET(ctx->k, 0, sizeof(sp_digit) * 2U * 9U);
  23896. XMEMSET(ctx->r, 0, sizeof(sp_digit) * 2U * 9U);
  23897. XMEMSET(ctx->tmp, 0, sizeof(sp_digit) * 3U * 2U * 9U);
  23898. }
  23899. return err;
  23900. }
  23901. #endif /* WOLFSSL_SP_NONBLOCK */
  23902. #endif /* HAVE_ECC_SIGN */
  23903. #ifndef WOLFSSL_SP_SMALL
  23904. static const char sp_256_tab32_9[32] = {
  23905. 1, 10, 2, 11, 14, 22, 3, 30,
  23906. 12, 15, 17, 19, 23, 26, 4, 31,
  23907. 9, 13, 21, 29, 16, 18, 25, 8,
  23908. 20, 28, 24, 7, 27, 6, 5, 32};
  23909. static int sp_256_num_bits_29_9(sp_digit v)
  23910. {
  23911. v |= v >> 1;
  23912. v |= v >> 2;
  23913. v |= v >> 4;
  23914. v |= v >> 8;
  23915. v |= v >> 16;
  23916. return sp_256_tab32_9[(uint32_t)(v*0x07C4ACDD) >> 27];
  23917. }
  23918. static int sp_256_num_bits_9(const sp_digit* a)
  23919. {
  23920. int i;
  23921. int r = 0;
  23922. for (i = 8; i >= 0; i--) {
  23923. if (a[i] != 0) {
  23924. r = sp_256_num_bits_29_9(a[i]);
  23925. r += i * 29;
  23926. break;
  23927. }
  23928. }
  23929. return r;
  23930. }
  23931. /* Non-constant time modular inversion.
  23932. *
  23933. * @param [out] r Resulting number.
  23934. * @param [in] a Number to invert.
  23935. * @param [in] m Modulus.
  23936. * @return MP_OKAY on success.
  23937. * @return MEMEORY_E when dynamic memory allocation fails.
  23938. */
  23939. static int sp_256_mod_inv_9(sp_digit* r, const sp_digit* a, const sp_digit* m)
  23940. {
  23941. int err = MP_OKAY;
  23942. #ifdef WOLFSSL_SP_SMALL_STACK
  23943. sp_digit* u = NULL;
  23944. #else
  23945. sp_digit u[9 * 4];
  23946. #endif
  23947. sp_digit* v = NULL;
  23948. sp_digit* b = NULL;
  23949. sp_digit* d = NULL;
  23950. int ut;
  23951. int vt;
  23952. #ifdef WOLFSSL_SP_SMALL_STACK
  23953. u = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9 * 4, NULL,
  23954. DYNAMIC_TYPE_ECC);
  23955. if (u == NULL)
  23956. err = MEMORY_E;
  23957. #endif
  23958. if (err == MP_OKAY) {
  23959. v = u + 9;
  23960. b = u + 2 * 9;
  23961. d = u + 3 * 9;
  23962. XMEMCPY(u, m, sizeof(sp_digit) * 9);
  23963. XMEMCPY(v, a, sizeof(sp_digit) * 9);
  23964. ut = sp_256_num_bits_9(u);
  23965. vt = sp_256_num_bits_9(v);
  23966. XMEMSET(b, 0, sizeof(sp_digit) * 9);
  23967. if ((v[0] & 1) == 0) {
  23968. sp_256_rshift1_9(v, v);
  23969. XMEMCPY(d, m, sizeof(sp_digit) * 9);
  23970. d[0]++;
  23971. sp_256_rshift1_9(d, d);
  23972. vt--;
  23973. while ((v[0] & 1) == 0) {
  23974. sp_256_rshift1_9(v, v);
  23975. if (d[0] & 1)
  23976. sp_256_add_9(d, d, m);
  23977. sp_256_rshift1_9(d, d);
  23978. vt--;
  23979. }
  23980. }
  23981. else {
  23982. XMEMSET(d+1, 0, sizeof(sp_digit) * (9 - 1));
  23983. d[0] = 1;
  23984. }
  23985. while (ut > 1 && vt > 1) {
  23986. if ((ut > vt) || ((ut == vt) &&
  23987. (sp_256_cmp_9(u, v) >= 0))) {
  23988. sp_256_sub_9(u, u, v);
  23989. sp_256_norm_9(u);
  23990. sp_256_sub_9(b, b, d);
  23991. sp_256_norm_9(b);
  23992. if (b[8] < 0)
  23993. sp_256_add_9(b, b, m);
  23994. sp_256_norm_9(b);
  23995. ut = sp_256_num_bits_9(u);
  23996. do {
  23997. sp_256_rshift1_9(u, u);
  23998. if (b[0] & 1)
  23999. sp_256_add_9(b, b, m);
  24000. sp_256_rshift1_9(b, b);
  24001. ut--;
  24002. }
  24003. while (ut > 0 && (u[0] & 1) == 0);
  24004. }
  24005. else {
  24006. sp_256_sub_9(v, v, u);
  24007. sp_256_norm_9(v);
  24008. sp_256_sub_9(d, d, b);
  24009. sp_256_norm_9(d);
  24010. if (d[8] < 0)
  24011. sp_256_add_9(d, d, m);
  24012. sp_256_norm_9(d);
  24013. vt = sp_256_num_bits_9(v);
  24014. do {
  24015. sp_256_rshift1_9(v, v);
  24016. if (d[0] & 1)
  24017. sp_256_add_9(d, d, m);
  24018. sp_256_rshift1_9(d, d);
  24019. vt--;
  24020. }
  24021. while (vt > 0 && (v[0] & 1) == 0);
  24022. }
  24023. }
  24024. if (ut == 1)
  24025. XMEMCPY(r, b, sizeof(sp_digit) * 9);
  24026. else
  24027. XMEMCPY(r, d, sizeof(sp_digit) * 9);
  24028. }
  24029. #ifdef WOLFSSL_SP_SMALL_STACK
  24030. if (u != NULL)
  24031. XFREE(u, NULL, DYNAMIC_TYPE_ECC);
  24032. #endif
  24033. return err;
  24034. }
  24035. #endif /* WOLFSSL_SP_SMALL */
  24036. /* Add point p1 into point p2. Handles p1 == p2 and result at infinity.
  24037. *
  24038. * p1 First point to add and holds result.
  24039. * p2 Second point to add.
  24040. * tmp Temporary storage for intermediate numbers.
  24041. */
  24042. static void sp_256_add_points_9(sp_point_256* p1, const sp_point_256* p2,
  24043. sp_digit* tmp)
  24044. {
  24045. sp_256_proj_point_add_9(p1, p1, p2, tmp);
  24046. if (sp_256_iszero_9(p1->z)) {
  24047. if (sp_256_iszero_9(p1->x) && sp_256_iszero_9(p1->y)) {
  24048. sp_256_proj_point_dbl_9(p1, p2, tmp);
  24049. }
  24050. else {
  24051. /* Y ordinate is not used from here - don't set. */
  24052. p1->x[0] = 0;
  24053. p1->x[1] = 0;
  24054. p1->x[2] = 0;
  24055. p1->x[3] = 0;
  24056. p1->x[4] = 0;
  24057. p1->x[5] = 0;
  24058. p1->x[6] = 0;
  24059. p1->x[7] = 0;
  24060. p1->x[8] = 0;
  24061. XMEMCPY(p1->z, p256_norm_mod, sizeof(p256_norm_mod));
  24062. }
  24063. }
  24064. }
  24065. /* Calculate the verification point: [e/s]G + [r/s]Q
  24066. *
  24067. * p1 Calculated point.
  24068. * p2 Public point and temporary.
  24069. * s Second part of signature as a number.
  24070. * u1 Temporary number.
  24071. * u2 Temporary number.
  24072. * heap Heap to use for allocation.
  24073. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  24074. */
  24075. static int sp_256_calc_vfy_point_9(sp_point_256* p1, sp_point_256* p2,
  24076. sp_digit* s, sp_digit* u1, sp_digit* u2, sp_digit* tmp, void* heap)
  24077. {
  24078. int err;
  24079. #ifndef WOLFSSL_SP_SMALL
  24080. err = sp_256_mod_inv_9(s, s, p256_order);
  24081. if (err == MP_OKAY)
  24082. #endif /* !WOLFSSL_SP_SMALL */
  24083. {
  24084. sp_256_mul_9(s, s, p256_norm_order);
  24085. err = sp_256_mod_9(s, s, p256_order);
  24086. }
  24087. if (err == MP_OKAY) {
  24088. sp_256_norm_9(s);
  24089. #ifdef WOLFSSL_SP_SMALL
  24090. {
  24091. sp_256_mont_inv_order_9(s, s, tmp);
  24092. sp_256_mont_mul_order_9(u1, u1, s);
  24093. sp_256_mont_mul_order_9(u2, u2, s);
  24094. }
  24095. #else
  24096. {
  24097. sp_256_mont_mul_order_9(u1, u1, s);
  24098. sp_256_mont_mul_order_9(u2, u2, s);
  24099. }
  24100. #endif /* WOLFSSL_SP_SMALL */
  24101. {
  24102. err = sp_256_ecc_mulmod_base_9(p1, u1, 0, 0, heap);
  24103. }
  24104. }
  24105. if ((err == MP_OKAY) && sp_256_iszero_9(p1->z)) {
  24106. p1->infinity = 1;
  24107. }
  24108. if (err == MP_OKAY) {
  24109. err = sp_256_ecc_mulmod_9(p2, p2, u2, 0, 0, heap);
  24110. }
  24111. if ((err == MP_OKAY) && sp_256_iszero_9(p2->z)) {
  24112. p2->infinity = 1;
  24113. }
  24114. if (err == MP_OKAY) {
  24115. sp_256_add_points_9(p1, p2, tmp);
  24116. }
  24117. return err;
  24118. }
  24119. #ifdef HAVE_ECC_VERIFY
  24120. /* Verify the signature values with the hash and public key.
  24121. * e = Truncate(hash, 256)
  24122. * u1 = e/s mod order
  24123. * u2 = r/s mod order
  24124. * r == (u1.G + u2.Q)->x mod order
  24125. * Optimization: Leave point in projective form.
  24126. * (x, y, 1) == (x' / z'*z', y' / z'*z'*z', z' / z')
  24127. * (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x'
  24128. * The hash is truncated to the first 256 bits.
  24129. *
  24130. * hash Hash to sign.
  24131. * hashLen Length of the hash data.
  24132. * rng Random number generator.
  24133. * priv Private part of key - scalar.
  24134. * rm First part of result as an mp_int.
  24135. * sm Sirst part of result as an mp_int.
  24136. * heap Heap to use for allocation.
  24137. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  24138. */
  24139. int sp_ecc_verify_256(const byte* hash, word32 hashLen, const mp_int* pX,
  24140. const mp_int* pY, const mp_int* pZ, const mp_int* rm, const mp_int* sm,
  24141. int* res, void* heap)
  24142. {
  24143. #ifdef WOLFSSL_SP_SMALL_STACK
  24144. sp_digit* u1 = NULL;
  24145. sp_point_256* p1 = NULL;
  24146. #else
  24147. sp_digit u1[18 * 9];
  24148. sp_point_256 p1[2];
  24149. #endif
  24150. sp_digit* u2 = NULL;
  24151. sp_digit* s = NULL;
  24152. sp_digit* tmp = NULL;
  24153. sp_point_256* p2 = NULL;
  24154. sp_digit carry;
  24155. sp_int32 c = 0;
  24156. int err = MP_OKAY;
  24157. #ifdef WOLFSSL_SP_SMALL_STACK
  24158. if (err == MP_OKAY) {
  24159. p1 = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, heap,
  24160. DYNAMIC_TYPE_ECC);
  24161. if (p1 == NULL)
  24162. err = MEMORY_E;
  24163. }
  24164. if (err == MP_OKAY) {
  24165. u1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 18 * 9, heap,
  24166. DYNAMIC_TYPE_ECC);
  24167. if (u1 == NULL)
  24168. err = MEMORY_E;
  24169. }
  24170. #endif
  24171. if (err == MP_OKAY) {
  24172. u2 = u1 + 2 * 9;
  24173. s = u1 + 4 * 9;
  24174. tmp = u1 + 6 * 9;
  24175. p2 = p1 + 1;
  24176. if (hashLen > 32U) {
  24177. hashLen = 32U;
  24178. }
  24179. sp_256_from_bin(u1, 9, hash, (int)hashLen);
  24180. sp_256_from_mp(u2, 9, rm);
  24181. sp_256_from_mp(s, 9, sm);
  24182. sp_256_from_mp(p2->x, 9, pX);
  24183. sp_256_from_mp(p2->y, 9, pY);
  24184. sp_256_from_mp(p2->z, 9, pZ);
  24185. err = sp_256_calc_vfy_point_9(p1, p2, s, u1, u2, tmp, heap);
  24186. }
  24187. if (err == MP_OKAY) {
  24188. /* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
  24189. /* Reload r and convert to Montgomery form. */
  24190. sp_256_from_mp(u2, 9, rm);
  24191. err = sp_256_mod_mul_norm_9(u2, u2, p256_mod);
  24192. }
  24193. if (err == MP_OKAY) {
  24194. /* u1 = r.z'.z' mod prime */
  24195. sp_256_mont_sqr_9(p1->z, p1->z, p256_mod, p256_mp_mod);
  24196. sp_256_mont_mul_9(u1, u2, p1->z, p256_mod, p256_mp_mod);
  24197. *res = (int)(sp_256_cmp_9(p1->x, u1) == 0);
  24198. if (*res == 0) {
  24199. /* Reload r and add order. */
  24200. sp_256_from_mp(u2, 9, rm);
  24201. carry = sp_256_add_9(u2, u2, p256_order);
  24202. /* Carry means result is greater than mod and is not valid. */
  24203. if (carry == 0) {
  24204. sp_256_norm_9(u2);
  24205. /* Compare with mod and if greater or equal then not valid. */
  24206. c = sp_256_cmp_9(u2, p256_mod);
  24207. }
  24208. }
  24209. if ((*res == 0) && (c < 0)) {
  24210. /* Convert to Montogomery form */
  24211. err = sp_256_mod_mul_norm_9(u2, u2, p256_mod);
  24212. if (err == MP_OKAY) {
  24213. /* u1 = (r + 1*order).z'.z' mod prime */
  24214. {
  24215. sp_256_mont_mul_9(u1, u2, p1->z, p256_mod, p256_mp_mod);
  24216. }
  24217. *res = (sp_256_cmp_9(p1->x, u1) == 0);
  24218. }
  24219. }
  24220. }
  24221. #ifdef WOLFSSL_SP_SMALL_STACK
  24222. if (u1 != NULL)
  24223. XFREE(u1, heap, DYNAMIC_TYPE_ECC);
  24224. if (p1 != NULL)
  24225. XFREE(p1, heap, DYNAMIC_TYPE_ECC);
  24226. #endif
  24227. return err;
  24228. }
  24229. #ifdef WOLFSSL_SP_NONBLOCK
  24230. typedef struct sp_ecc_verify_256_ctx {
  24231. int state;
  24232. union {
  24233. sp_256_ecc_mulmod_9_ctx mulmod_ctx;
  24234. sp_256_mont_inv_order_9_ctx mont_inv_order_ctx;
  24235. sp_256_proj_point_dbl_9_ctx dbl_ctx;
  24236. sp_256_proj_point_add_9_ctx add_ctx;
  24237. };
  24238. sp_digit u1[2*9];
  24239. sp_digit u2[2*9];
  24240. sp_digit s[2*9];
  24241. sp_digit tmp[2*9 * 6];
  24242. sp_point_256 p1;
  24243. sp_point_256 p2;
  24244. } sp_ecc_verify_256_ctx;
  24245. int sp_ecc_verify_256_nb(sp_ecc_ctx_t* sp_ctx, const byte* hash,
  24246. word32 hashLen, const mp_int* pX, const mp_int* pY, const mp_int* pZ,
  24247. const mp_int* rm, const mp_int* sm, int* res, void* heap)
  24248. {
  24249. int err = FP_WOULDBLOCK;
  24250. sp_ecc_verify_256_ctx* ctx = (sp_ecc_verify_256_ctx*)sp_ctx->data;
  24251. typedef char ctx_size_test[sizeof(sp_ecc_verify_256_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  24252. (void)sizeof(ctx_size_test);
  24253. switch (ctx->state) {
  24254. case 0: /* INIT */
  24255. if (hashLen > 32U) {
  24256. hashLen = 32U;
  24257. }
  24258. sp_256_from_bin(ctx->u1, 9, hash, (int)hashLen);
  24259. sp_256_from_mp(ctx->u2, 9, rm);
  24260. sp_256_from_mp(ctx->s, 9, sm);
  24261. sp_256_from_mp(ctx->p2.x, 9, pX);
  24262. sp_256_from_mp(ctx->p2.y, 9, pY);
  24263. sp_256_from_mp(ctx->p2.z, 9, pZ);
  24264. ctx->state = 1;
  24265. break;
  24266. case 1: /* NORMS0 */
  24267. sp_256_mul_9(ctx->s, ctx->s, p256_norm_order);
  24268. err = sp_256_mod_9(ctx->s, ctx->s, p256_order);
  24269. if (err == MP_OKAY)
  24270. ctx->state = 2;
  24271. break;
  24272. case 2: /* NORMS1 */
  24273. sp_256_norm_9(ctx->s);
  24274. XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
  24275. ctx->state = 3;
  24276. break;
  24277. case 3: /* NORMS2 */
  24278. err = sp_256_mont_inv_order_9_nb((sp_ecc_ctx_t*)&ctx->mont_inv_order_ctx, ctx->s, ctx->s, ctx->tmp);
  24279. if (err == MP_OKAY) {
  24280. ctx->state = 4;
  24281. }
  24282. break;
  24283. case 4: /* NORMS3 */
  24284. sp_256_mont_mul_order_9(ctx->u1, ctx->u1, ctx->s);
  24285. ctx->state = 5;
  24286. break;
  24287. case 5: /* NORMS4 */
  24288. sp_256_mont_mul_order_9(ctx->u2, ctx->u2, ctx->s);
  24289. XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
  24290. ctx->state = 6;
  24291. break;
  24292. case 6: /* MULBASE */
  24293. err = sp_256_ecc_mulmod_9_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx, &ctx->p1, &p256_base, ctx->u1, 0, 0, heap);
  24294. if (err == MP_OKAY) {
  24295. if (sp_256_iszero_9(ctx->p1.z)) {
  24296. ctx->p1.infinity = 1;
  24297. }
  24298. XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
  24299. ctx->state = 7;
  24300. }
  24301. break;
  24302. case 7: /* MULMOD */
  24303. err = sp_256_ecc_mulmod_9_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx, &ctx->p2, &ctx->p2, ctx->u2, 0, 0, heap);
  24304. if (err == MP_OKAY) {
  24305. if (sp_256_iszero_9(ctx->p2.z)) {
  24306. ctx->p2.infinity = 1;
  24307. }
  24308. XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
  24309. ctx->state = 8;
  24310. }
  24311. break;
  24312. case 8: /* ADD */
  24313. err = sp_256_proj_point_add_9_nb((sp_ecc_ctx_t*)&ctx->add_ctx, &ctx->p1, &ctx->p1, &ctx->p2, ctx->tmp);
  24314. if (err == MP_OKAY)
  24315. ctx->state = 9;
  24316. break;
  24317. case 9: /* MONT */
  24318. /* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
  24319. /* Reload r and convert to Montgomery form. */
  24320. sp_256_from_mp(ctx->u2, 9, rm);
  24321. err = sp_256_mod_mul_norm_9(ctx->u2, ctx->u2, p256_mod);
  24322. if (err == MP_OKAY)
  24323. ctx->state = 10;
  24324. break;
  24325. case 10: /* SQR */
  24326. /* u1 = r.z'.z' mod prime */
  24327. sp_256_mont_sqr_9(ctx->p1.z, ctx->p1.z, p256_mod, p256_mp_mod);
  24328. ctx->state = 11;
  24329. break;
  24330. case 11: /* MUL */
  24331. sp_256_mont_mul_9(ctx->u1, ctx->u2, ctx->p1.z, p256_mod, p256_mp_mod);
  24332. ctx->state = 12;
  24333. break;
  24334. case 12: /* RES */
  24335. {
  24336. sp_int32 c = 0;
  24337. err = MP_OKAY; /* math okay, now check result */
  24338. *res = (int)(sp_256_cmp_9(ctx->p1.x, ctx->u1) == 0);
  24339. if (*res == 0) {
  24340. sp_digit carry;
  24341. /* Reload r and add order. */
  24342. sp_256_from_mp(ctx->u2, 9, rm);
  24343. carry = sp_256_add_9(ctx->u2, ctx->u2, p256_order);
  24344. /* Carry means result is greater than mod and is not valid. */
  24345. if (carry == 0) {
  24346. sp_256_norm_9(ctx->u2);
  24347. /* Compare with mod and if greater or equal then not valid. */
  24348. c = sp_256_cmp_9(ctx->u2, p256_mod);
  24349. }
  24350. }
  24351. if ((*res == 0) && (c < 0)) {
  24352. /* Convert to Montogomery form */
  24353. err = sp_256_mod_mul_norm_9(ctx->u2, ctx->u2, p256_mod);
  24354. if (err == MP_OKAY) {
  24355. /* u1 = (r + 1*order).z'.z' mod prime */
  24356. sp_256_mont_mul_9(ctx->u1, ctx->u2, ctx->p1.z, p256_mod,
  24357. p256_mp_mod);
  24358. *res = (int)(sp_256_cmp_9(ctx->p1.x, ctx->u1) == 0);
  24359. }
  24360. }
  24361. break;
  24362. }
  24363. } /* switch */
  24364. if (err == MP_OKAY && ctx->state != 12) {
  24365. err = FP_WOULDBLOCK;
  24366. }
  24367. return err;
  24368. }
  24369. #endif /* WOLFSSL_SP_NONBLOCK */
  24370. #endif /* HAVE_ECC_VERIFY */
  24371. #ifdef HAVE_ECC_CHECK_KEY
  24372. /* Check that the x and y oridinates are a valid point on the curve.
  24373. *
  24374. * point EC point.
  24375. * heap Heap to use if dynamically allocating.
  24376. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
  24377. * not on the curve and MP_OKAY otherwise.
  24378. */
  24379. static int sp_256_ecc_is_point_9(const sp_point_256* point,
  24380. void* heap)
  24381. {
  24382. #ifdef WOLFSSL_SP_SMALL_STACK
  24383. sp_digit* t1 = NULL;
  24384. #else
  24385. sp_digit t1[9 * 4];
  24386. #endif
  24387. sp_digit* t2 = NULL;
  24388. int err = MP_OKAY;
  24389. #ifdef WOLFSSL_SP_SMALL_STACK
  24390. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9 * 4, heap, DYNAMIC_TYPE_ECC);
  24391. if (t1 == NULL)
  24392. err = MEMORY_E;
  24393. #endif
  24394. (void)heap;
  24395. if (err == MP_OKAY) {
  24396. t2 = t1 + 2 * 9;
  24397. /* y^2 - x^3 - a.x = b */
  24398. sp_256_sqr_9(t1, point->y);
  24399. (void)sp_256_mod_9(t1, t1, p256_mod);
  24400. sp_256_sqr_9(t2, point->x);
  24401. (void)sp_256_mod_9(t2, t2, p256_mod);
  24402. sp_256_mul_9(t2, t2, point->x);
  24403. (void)sp_256_mod_9(t2, t2, p256_mod);
  24404. sp_256_mont_sub_9(t1, t1, t2, p256_mod);
  24405. /* y^2 - x^3 + 3.x = b, when a = -3 */
  24406. sp_256_mont_add_9(t1, t1, point->x, p256_mod);
  24407. sp_256_mont_add_9(t1, t1, point->x, p256_mod);
  24408. sp_256_mont_add_9(t1, t1, point->x, p256_mod);
  24409. if (sp_256_cmp_9(t1, p256_b) != 0) {
  24410. err = MP_VAL;
  24411. }
  24412. }
  24413. #ifdef WOLFSSL_SP_SMALL_STACK
  24414. if (t1 != NULL)
  24415. XFREE(t1, heap, DYNAMIC_TYPE_ECC);
  24416. #endif
  24417. return err;
  24418. }
  24419. /* Check that the x and y oridinates are a valid point on the curve.
  24420. *
  24421. * pX X ordinate of EC point.
  24422. * pY Y ordinate of EC point.
  24423. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
  24424. * not on the curve and MP_OKAY otherwise.
  24425. */
  24426. int sp_ecc_is_point_256(const mp_int* pX, const mp_int* pY)
  24427. {
  24428. #ifdef WOLFSSL_SP_SMALL_STACK
  24429. sp_point_256* pub = NULL;
  24430. #else
  24431. sp_point_256 pub[1];
  24432. #endif
  24433. const byte one[1] = { 1 };
  24434. int err = MP_OKAY;
  24435. #ifdef WOLFSSL_SP_SMALL_STACK
  24436. pub = (sp_point_256*)XMALLOC(sizeof(sp_point_256), NULL,
  24437. DYNAMIC_TYPE_ECC);
  24438. if (pub == NULL)
  24439. err = MEMORY_E;
  24440. #endif
  24441. if (err == MP_OKAY) {
  24442. sp_256_from_mp(pub->x, 9, pX);
  24443. sp_256_from_mp(pub->y, 9, pY);
  24444. sp_256_from_bin(pub->z, 9, one, (int)sizeof(one));
  24445. err = sp_256_ecc_is_point_9(pub, NULL);
  24446. }
  24447. #ifdef WOLFSSL_SP_SMALL_STACK
  24448. if (pub != NULL)
  24449. XFREE(pub, NULL, DYNAMIC_TYPE_ECC);
  24450. #endif
  24451. return err;
  24452. }
  24453. /* Check that the private scalar generates the EC point (px, py), the point is
  24454. * on the curve and the point has the correct order.
  24455. *
  24456. * pX X ordinate of EC point.
  24457. * pY Y ordinate of EC point.
  24458. * privm Private scalar that generates EC point.
  24459. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
  24460. * not on the curve, ECC_INF_E if the point does not have the correct order,
  24461. * ECC_PRIV_KEY_E when the private scalar doesn't generate the EC point and
  24462. * MP_OKAY otherwise.
  24463. */
  24464. int sp_ecc_check_key_256(const mp_int* pX, const mp_int* pY,
  24465. const mp_int* privm, void* heap)
  24466. {
  24467. #ifdef WOLFSSL_SP_SMALL_STACK
  24468. sp_digit* priv = NULL;
  24469. sp_point_256* pub = NULL;
  24470. #else
  24471. sp_digit priv[9];
  24472. sp_point_256 pub[2];
  24473. #endif
  24474. sp_point_256* p = NULL;
  24475. const byte one[1] = { 1 };
  24476. int err = MP_OKAY;
  24477. /* Quick check the lengs of public key ordinates and private key are in
  24478. * range. Proper check later.
  24479. */
  24480. if (((mp_count_bits(pX) > 256) ||
  24481. (mp_count_bits(pY) > 256) ||
  24482. ((privm != NULL) && (mp_count_bits(privm) > 256)))) {
  24483. err = ECC_OUT_OF_RANGE_E;
  24484. }
  24485. #ifdef WOLFSSL_SP_SMALL_STACK
  24486. if (err == MP_OKAY) {
  24487. pub = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, heap,
  24488. DYNAMIC_TYPE_ECC);
  24489. if (pub == NULL)
  24490. err = MEMORY_E;
  24491. }
  24492. if (err == MP_OKAY && privm) {
  24493. priv = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9, heap,
  24494. DYNAMIC_TYPE_ECC);
  24495. if (priv == NULL)
  24496. err = MEMORY_E;
  24497. }
  24498. #endif
  24499. if (err == MP_OKAY) {
  24500. p = pub + 1;
  24501. sp_256_from_mp(pub->x, 9, pX);
  24502. sp_256_from_mp(pub->y, 9, pY);
  24503. sp_256_from_bin(pub->z, 9, one, (int)sizeof(one));
  24504. if (privm)
  24505. sp_256_from_mp(priv, 9, privm);
  24506. /* Check point at infinitiy. */
  24507. if ((sp_256_iszero_9(pub->x) != 0) &&
  24508. (sp_256_iszero_9(pub->y) != 0)) {
  24509. err = ECC_INF_E;
  24510. }
  24511. }
  24512. /* Check range of X and Y */
  24513. if ((err == MP_OKAY) &&
  24514. ((sp_256_cmp_9(pub->x, p256_mod) >= 0) ||
  24515. (sp_256_cmp_9(pub->y, p256_mod) >= 0))) {
  24516. err = ECC_OUT_OF_RANGE_E;
  24517. }
  24518. if (err == MP_OKAY) {
  24519. /* Check point is on curve */
  24520. err = sp_256_ecc_is_point_9(pub, heap);
  24521. }
  24522. if (err == MP_OKAY) {
  24523. /* Point * order = infinity */
  24524. err = sp_256_ecc_mulmod_9(p, pub, p256_order, 1, 1, heap);
  24525. }
  24526. /* Check result is infinity */
  24527. if ((err == MP_OKAY) && ((sp_256_iszero_9(p->x) == 0) ||
  24528. (sp_256_iszero_9(p->y) == 0))) {
  24529. err = ECC_INF_E;
  24530. }
  24531. if (privm) {
  24532. if (err == MP_OKAY) {
  24533. /* Base * private = point */
  24534. err = sp_256_ecc_mulmod_base_9(p, priv, 1, 1, heap);
  24535. }
  24536. /* Check result is public key */
  24537. if ((err == MP_OKAY) &&
  24538. ((sp_256_cmp_9(p->x, pub->x) != 0) ||
  24539. (sp_256_cmp_9(p->y, pub->y) != 0))) {
  24540. err = ECC_PRIV_KEY_E;
  24541. }
  24542. }
  24543. #ifdef WOLFSSL_SP_SMALL_STACK
  24544. if (pub != NULL)
  24545. XFREE(pub, heap, DYNAMIC_TYPE_ECC);
  24546. if (priv != NULL)
  24547. XFREE(priv, heap, DYNAMIC_TYPE_ECC);
  24548. #endif
  24549. return err;
  24550. }
  24551. #endif
  24552. #ifdef WOLFSSL_PUBLIC_ECC_ADD_DBL
  24553. /* Add two projective EC points together.
  24554. * (pX, pY, pZ) + (qX, qY, qZ) = (rX, rY, rZ)
  24555. *
  24556. * pX First EC point's X ordinate.
  24557. * pY First EC point's Y ordinate.
  24558. * pZ First EC point's Z ordinate.
  24559. * qX Second EC point's X ordinate.
  24560. * qY Second EC point's Y ordinate.
  24561. * qZ Second EC point's Z ordinate.
  24562. * rX Resultant EC point's X ordinate.
  24563. * rY Resultant EC point's Y ordinate.
  24564. * rZ Resultant EC point's Z ordinate.
  24565. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  24566. */
  24567. int sp_ecc_proj_add_point_256(mp_int* pX, mp_int* pY, mp_int* pZ,
  24568. mp_int* qX, mp_int* qY, mp_int* qZ,
  24569. mp_int* rX, mp_int* rY, mp_int* rZ)
  24570. {
  24571. #ifdef WOLFSSL_SP_SMALL_STACK
  24572. sp_digit* tmp = NULL;
  24573. sp_point_256* p = NULL;
  24574. #else
  24575. sp_digit tmp[2 * 9 * 6];
  24576. sp_point_256 p[2];
  24577. #endif
  24578. sp_point_256* q = NULL;
  24579. int err = MP_OKAY;
  24580. #ifdef WOLFSSL_SP_SMALL_STACK
  24581. if (err == MP_OKAY) {
  24582. p = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, NULL,
  24583. DYNAMIC_TYPE_ECC);
  24584. if (p == NULL)
  24585. err = MEMORY_E;
  24586. }
  24587. if (err == MP_OKAY) {
  24588. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 6, NULL,
  24589. DYNAMIC_TYPE_ECC);
  24590. if (tmp == NULL) {
  24591. err = MEMORY_E;
  24592. }
  24593. }
  24594. #endif
  24595. if (err == MP_OKAY) {
  24596. q = p + 1;
  24597. sp_256_from_mp(p->x, 9, pX);
  24598. sp_256_from_mp(p->y, 9, pY);
  24599. sp_256_from_mp(p->z, 9, pZ);
  24600. sp_256_from_mp(q->x, 9, qX);
  24601. sp_256_from_mp(q->y, 9, qY);
  24602. sp_256_from_mp(q->z, 9, qZ);
  24603. p->infinity = sp_256_iszero_9(p->x) &
  24604. sp_256_iszero_9(p->y);
  24605. q->infinity = sp_256_iszero_9(q->x) &
  24606. sp_256_iszero_9(q->y);
  24607. sp_256_proj_point_add_9(p, p, q, tmp);
  24608. }
  24609. if (err == MP_OKAY) {
  24610. err = sp_256_to_mp(p->x, rX);
  24611. }
  24612. if (err == MP_OKAY) {
  24613. err = sp_256_to_mp(p->y, rY);
  24614. }
  24615. if (err == MP_OKAY) {
  24616. err = sp_256_to_mp(p->z, rZ);
  24617. }
  24618. #ifdef WOLFSSL_SP_SMALL_STACK
  24619. if (tmp != NULL)
  24620. XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
  24621. if (p != NULL)
  24622. XFREE(p, NULL, DYNAMIC_TYPE_ECC);
  24623. #endif
  24624. return err;
  24625. }
  24626. /* Double a projective EC point.
  24627. * (pX, pY, pZ) + (pX, pY, pZ) = (rX, rY, rZ)
  24628. *
  24629. * pX EC point's X ordinate.
  24630. * pY EC point's Y ordinate.
  24631. * pZ EC point's Z ordinate.
  24632. * rX Resultant EC point's X ordinate.
  24633. * rY Resultant EC point's Y ordinate.
  24634. * rZ Resultant EC point's Z ordinate.
  24635. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  24636. */
  24637. int sp_ecc_proj_dbl_point_256(mp_int* pX, mp_int* pY, mp_int* pZ,
  24638. mp_int* rX, mp_int* rY, mp_int* rZ)
  24639. {
  24640. #ifdef WOLFSSL_SP_SMALL_STACK
  24641. sp_digit* tmp = NULL;
  24642. sp_point_256* p = NULL;
  24643. #else
  24644. sp_digit tmp[2 * 9 * 2];
  24645. sp_point_256 p[1];
  24646. #endif
  24647. int err = MP_OKAY;
  24648. #ifdef WOLFSSL_SP_SMALL_STACK
  24649. if (err == MP_OKAY) {
  24650. p = (sp_point_256*)XMALLOC(sizeof(sp_point_256), NULL,
  24651. DYNAMIC_TYPE_ECC);
  24652. if (p == NULL)
  24653. err = MEMORY_E;
  24654. }
  24655. if (err == MP_OKAY) {
  24656. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 2, NULL,
  24657. DYNAMIC_TYPE_ECC);
  24658. if (tmp == NULL)
  24659. err = MEMORY_E;
  24660. }
  24661. #endif
  24662. if (err == MP_OKAY) {
  24663. sp_256_from_mp(p->x, 9, pX);
  24664. sp_256_from_mp(p->y, 9, pY);
  24665. sp_256_from_mp(p->z, 9, pZ);
  24666. p->infinity = sp_256_iszero_9(p->x) &
  24667. sp_256_iszero_9(p->y);
  24668. sp_256_proj_point_dbl_9(p, p, tmp);
  24669. }
  24670. if (err == MP_OKAY) {
  24671. err = sp_256_to_mp(p->x, rX);
  24672. }
  24673. if (err == MP_OKAY) {
  24674. err = sp_256_to_mp(p->y, rY);
  24675. }
  24676. if (err == MP_OKAY) {
  24677. err = sp_256_to_mp(p->z, rZ);
  24678. }
  24679. #ifdef WOLFSSL_SP_SMALL_STACK
  24680. if (tmp != NULL)
  24681. XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
  24682. if (p != NULL)
  24683. XFREE(p, NULL, DYNAMIC_TYPE_ECC);
  24684. #endif
  24685. return err;
  24686. }
  24687. /* Map a projective EC point to affine in place.
  24688. * pZ will be one.
  24689. *
  24690. * pX EC point's X ordinate.
  24691. * pY EC point's Y ordinate.
  24692. * pZ EC point's Z ordinate.
  24693. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  24694. */
  24695. int sp_ecc_map_256(mp_int* pX, mp_int* pY, mp_int* pZ)
  24696. {
  24697. #ifdef WOLFSSL_SP_SMALL_STACK
  24698. sp_digit* tmp = NULL;
  24699. sp_point_256* p = NULL;
  24700. #else
  24701. sp_digit tmp[2 * 9 * 4];
  24702. sp_point_256 p[1];
  24703. #endif
  24704. int err = MP_OKAY;
  24705. #ifdef WOLFSSL_SP_SMALL_STACK
  24706. if (err == MP_OKAY) {
  24707. p = (sp_point_256*)XMALLOC(sizeof(sp_point_256), NULL,
  24708. DYNAMIC_TYPE_ECC);
  24709. if (p == NULL)
  24710. err = MEMORY_E;
  24711. }
  24712. if (err == MP_OKAY) {
  24713. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 4, NULL,
  24714. DYNAMIC_TYPE_ECC);
  24715. if (tmp == NULL)
  24716. err = MEMORY_E;
  24717. }
  24718. #endif
  24719. if (err == MP_OKAY) {
  24720. sp_256_from_mp(p->x, 9, pX);
  24721. sp_256_from_mp(p->y, 9, pY);
  24722. sp_256_from_mp(p->z, 9, pZ);
  24723. p->infinity = sp_256_iszero_9(p->x) &
  24724. sp_256_iszero_9(p->y);
  24725. sp_256_map_9(p, p, tmp);
  24726. }
  24727. if (err == MP_OKAY) {
  24728. err = sp_256_to_mp(p->x, pX);
  24729. }
  24730. if (err == MP_OKAY) {
  24731. err = sp_256_to_mp(p->y, pY);
  24732. }
  24733. if (err == MP_OKAY) {
  24734. err = sp_256_to_mp(p->z, pZ);
  24735. }
  24736. #ifdef WOLFSSL_SP_SMALL_STACK
  24737. if (tmp != NULL)
  24738. XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
  24739. if (p != NULL)
  24740. XFREE(p, NULL, DYNAMIC_TYPE_ECC);
  24741. #endif
  24742. return err;
  24743. }
  24744. #endif /* WOLFSSL_PUBLIC_ECC_ADD_DBL */
  24745. #ifdef HAVE_COMP_KEY
  24746. /* Find the square root of a number mod the prime of the curve.
  24747. *
  24748. * y The number to operate on and the result.
  24749. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  24750. */
  24751. static int sp_256_mont_sqrt_9(sp_digit* y)
  24752. {
  24753. #ifdef WOLFSSL_SP_SMALL_STACK
  24754. sp_digit* t1 = NULL;
  24755. #else
  24756. sp_digit t1[4 * 9];
  24757. #endif
  24758. sp_digit* t2 = NULL;
  24759. int err = MP_OKAY;
  24760. #ifdef WOLFSSL_SP_SMALL_STACK
  24761. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 4 * 9, NULL, DYNAMIC_TYPE_ECC);
  24762. if (t1 == NULL) {
  24763. err = MEMORY_E;
  24764. }
  24765. #endif
  24766. if (err == MP_OKAY) {
  24767. t2 = t1 + 2 * 9;
  24768. {
  24769. /* t2 = y ^ 0x2 */
  24770. sp_256_mont_sqr_9(t2, y, p256_mod, p256_mp_mod);
  24771. /* t1 = y ^ 0x3 */
  24772. sp_256_mont_mul_9(t1, t2, y, p256_mod, p256_mp_mod);
  24773. /* t2 = y ^ 0xc */
  24774. sp_256_mont_sqr_n_9(t2, t1, 2, p256_mod, p256_mp_mod);
  24775. /* t1 = y ^ 0xf */
  24776. sp_256_mont_mul_9(t1, t1, t2, p256_mod, p256_mp_mod);
  24777. /* t2 = y ^ 0xf0 */
  24778. sp_256_mont_sqr_n_9(t2, t1, 4, p256_mod, p256_mp_mod);
  24779. /* t1 = y ^ 0xff */
  24780. sp_256_mont_mul_9(t1, t1, t2, p256_mod, p256_mp_mod);
  24781. /* t2 = y ^ 0xff00 */
  24782. sp_256_mont_sqr_n_9(t2, t1, 8, p256_mod, p256_mp_mod);
  24783. /* t1 = y ^ 0xffff */
  24784. sp_256_mont_mul_9(t1, t1, t2, p256_mod, p256_mp_mod);
  24785. /* t2 = y ^ 0xffff0000 */
  24786. sp_256_mont_sqr_n_9(t2, t1, 16, p256_mod, p256_mp_mod);
  24787. /* t1 = y ^ 0xffffffff */
  24788. sp_256_mont_mul_9(t1, t1, t2, p256_mod, p256_mp_mod);
  24789. /* t1 = y ^ 0xffffffff00000000 */
  24790. sp_256_mont_sqr_n_9(t1, t1, 32, p256_mod, p256_mp_mod);
  24791. /* t1 = y ^ 0xffffffff00000001 */
  24792. sp_256_mont_mul_9(t1, t1, y, p256_mod, p256_mp_mod);
  24793. /* t1 = y ^ 0xffffffff00000001000000000000000000000000 */
  24794. sp_256_mont_sqr_n_9(t1, t1, 96, p256_mod, p256_mp_mod);
  24795. /* t1 = y ^ 0xffffffff00000001000000000000000000000001 */
  24796. sp_256_mont_mul_9(t1, t1, y, p256_mod, p256_mp_mod);
  24797. sp_256_mont_sqr_n_9(y, t1, 94, p256_mod, p256_mp_mod);
  24798. }
  24799. }
  24800. #ifdef WOLFSSL_SP_SMALL_STACK
  24801. if (t1 != NULL)
  24802. XFREE(t1, NULL, DYNAMIC_TYPE_ECC);
  24803. #endif
  24804. return err;
  24805. }
  24806. /* Uncompress the point given the X ordinate.
  24807. *
  24808. * xm X ordinate.
  24809. * odd Whether the Y ordinate is odd.
  24810. * ym Calculated Y ordinate.
  24811. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  24812. */
  24813. int sp_ecc_uncompress_256(mp_int* xm, int odd, mp_int* ym)
  24814. {
  24815. #ifdef WOLFSSL_SP_SMALL_STACK
  24816. sp_digit* x = NULL;
  24817. #else
  24818. sp_digit x[4 * 9];
  24819. #endif
  24820. sp_digit* y = NULL;
  24821. int err = MP_OKAY;
  24822. #ifdef WOLFSSL_SP_SMALL_STACK
  24823. x = (sp_digit*)XMALLOC(sizeof(sp_digit) * 4 * 9, NULL, DYNAMIC_TYPE_ECC);
  24824. if (x == NULL)
  24825. err = MEMORY_E;
  24826. #endif
  24827. if (err == MP_OKAY) {
  24828. y = x + 2 * 9;
  24829. sp_256_from_mp(x, 9, xm);
  24830. err = sp_256_mod_mul_norm_9(x, x, p256_mod);
  24831. }
  24832. if (err == MP_OKAY) {
  24833. /* y = x^3 */
  24834. {
  24835. sp_256_mont_sqr_9(y, x, p256_mod, p256_mp_mod);
  24836. sp_256_mont_mul_9(y, y, x, p256_mod, p256_mp_mod);
  24837. }
  24838. /* y = x^3 - 3x */
  24839. sp_256_mont_sub_9(y, y, x, p256_mod);
  24840. sp_256_mont_sub_9(y, y, x, p256_mod);
  24841. sp_256_mont_sub_9(y, y, x, p256_mod);
  24842. /* y = x^3 - 3x + b */
  24843. err = sp_256_mod_mul_norm_9(x, p256_b, p256_mod);
  24844. }
  24845. if (err == MP_OKAY) {
  24846. sp_256_mont_add_9(y, y, x, p256_mod);
  24847. /* y = sqrt(x^3 - 3x + b) */
  24848. err = sp_256_mont_sqrt_9(y);
  24849. }
  24850. if (err == MP_OKAY) {
  24851. XMEMSET(y + 9, 0, 9U * sizeof(sp_digit));
  24852. sp_256_mont_reduce_9(y, p256_mod, p256_mp_mod);
  24853. if ((((word32)y[0] ^ (word32)odd) & 1U) != 0U) {
  24854. sp_256_mont_sub_9(y, p256_mod, y, p256_mod);
  24855. }
  24856. err = sp_256_to_mp(y, ym);
  24857. }
  24858. #ifdef WOLFSSL_SP_SMALL_STACK
  24859. if (x != NULL)
  24860. XFREE(x, NULL, DYNAMIC_TYPE_ECC);
  24861. #endif
  24862. return err;
  24863. }
  24864. #endif
  24865. #endif /* !WOLFSSL_SP_NO_256 */
  24866. #ifdef WOLFSSL_SP_384
  24867. /* Point structure to use. */
  24868. typedef struct sp_point_384 {
  24869. /* X ordinate of point. */
  24870. sp_digit x[2 * 15];
  24871. /* Y ordinate of point. */
  24872. sp_digit y[2 * 15];
  24873. /* Z ordinate of point. */
  24874. sp_digit z[2 * 15];
  24875. /* Indicates point is at infinity. */
  24876. int infinity;
  24877. } sp_point_384;
  24878. /* The modulus (prime) of the curve P384. */
  24879. static const sp_digit p384_mod[15] = {
  24880. 0x3ffffff,0x000003f,0x0000000,0x3fc0000,0x2ffffff,0x3ffffff,0x3ffffff,
  24881. 0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,
  24882. 0x00fffff
  24883. };
  24884. /* The Montgomery normalizer for modulus of the curve P384. */
  24885. static const sp_digit p384_norm_mod[15] = {
  24886. 0x0000001,0x3ffffc0,0x3ffffff,0x003ffff,0x1000000,0x0000000,0x0000000,
  24887. 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  24888. 0x0000000
  24889. };
  24890. /* The Montgomery multiplier for modulus of the curve P384. */
  24891. static sp_digit p384_mp_mod = 0x000001;
  24892. #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
  24893. defined(HAVE_ECC_VERIFY)
  24894. /* The order of the curve P384. */
  24895. static const sp_digit p384_order[15] = {
  24896. 0x0c52973,0x3065ab3,0x277aece,0x2c922c2,0x3581a0d,0x10dcb77,0x234d81f,
  24897. 0x3ffff1d,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,
  24898. 0x00fffff
  24899. };
  24900. #endif
  24901. /* The order of the curve P384 minus 2. */
  24902. static const sp_digit p384_order2[15] = {
  24903. 0x0c52971,0x3065ab3,0x277aece,0x2c922c2,0x3581a0d,0x10dcb77,0x234d81f,
  24904. 0x3ffff1d,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,
  24905. 0x00fffff
  24906. };
  24907. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  24908. /* The Montgomery normalizer for order of the curve P384. */
  24909. static const sp_digit p384_norm_order[15] = {
  24910. 0x33ad68d,0x0f9a54c,0x1885131,0x136dd3d,0x0a7e5f2,0x2f23488,0x1cb27e0,
  24911. 0x00000e2,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  24912. 0x0000000
  24913. };
  24914. #endif
  24915. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  24916. /* The Montgomery multiplier for order of the curve P384. */
  24917. static sp_digit p384_mp_order = 0x8fdc45;
  24918. #endif
  24919. /* The base point of curve P384. */
  24920. static const sp_point_384 p384_base = {
  24921. /* X ordinate */
  24922. {
  24923. 0x2760ab7,0x1178e1c,0x296c3a5,0x176fd54,0x05502f2,0x0950a8e,0x3741e08,
  24924. 0x26e6167,0x3628ba7,0x11b874e,0x3320ad7,0x2c71c7b,0x305378e,0x288afa2,
  24925. 0x00aa87c,
  24926. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  24927. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  24928. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0
  24929. },
  24930. /* Y ordinate */
  24931. {
  24932. 0x0ea0e5f,0x0c75f24,0x019d7a4,0x33875fa,0x00a60b1,0x17c2e30,0x1a3113b,
  24933. 0x051f3a7,0x1bd289a,0x27e3d07,0x1292dc2,0x27a62fe,0x22c6f5d,0x392a589,
  24934. 0x003617d,
  24935. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  24936. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  24937. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0
  24938. },
  24939. /* Z ordinate */
  24940. {
  24941. 0x0000001,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  24942. 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  24943. 0x0000000,
  24944. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  24945. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  24946. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0
  24947. },
  24948. /* infinity */
  24949. 0
  24950. };
  24951. #if defined(HAVE_ECC_CHECK_KEY) || defined(HAVE_COMP_KEY)
  24952. static const sp_digit p384_b[15] = {
  24953. 0x3ec2aef,0x1723b74,0x119d2a8,0x23628bb,0x2c65639,0x004e1d6,0x14088f5,
  24954. 0x104480c,0x06efe81,0x2460767,0x23f82d1,0x23815af,0x2e7e498,0x3e9f88f,
  24955. 0x00b3312
  24956. };
  24957. #endif
  24958. #ifdef WOLFSSL_SP_SMALL
  24959. /* Multiply a and b into r. (r = a * b)
  24960. *
  24961. * r A single precision integer.
  24962. * a A single precision integer.
  24963. * b A single precision integer.
  24964. */
  24965. SP_NOINLINE static void sp_384_mul_15(sp_digit* r, const sp_digit* a,
  24966. const sp_digit* b)
  24967. {
  24968. int i;
  24969. int imax;
  24970. int k;
  24971. sp_uint64 c;
  24972. sp_uint64 lo;
  24973. c = ((sp_uint64)a[14]) * b[14];
  24974. r[29] = (sp_digit)(c >> 26);
  24975. c &= 0x3ffffff;
  24976. for (k = 27; k >= 0; k--) {
  24977. if (k >= 15) {
  24978. i = k - 14;
  24979. imax = 14;
  24980. }
  24981. else {
  24982. i = 0;
  24983. imax = k;
  24984. }
  24985. lo = 0;
  24986. for (; i <= imax; i++) {
  24987. lo += ((sp_uint64)a[i]) * b[k - i];
  24988. }
  24989. c += lo >> 26;
  24990. r[k + 2] += (sp_digit)(c >> 26);
  24991. r[k + 1] = (sp_digit)(c & 0x3ffffff);
  24992. c = lo & 0x3ffffff;
  24993. }
  24994. r[0] = (sp_digit)c;
  24995. }
  24996. #else
  24997. /* Multiply a and b into r. (r = a * b)
  24998. *
  24999. * r A single precision integer.
  25000. * a A single precision integer.
  25001. * b A single precision integer.
  25002. */
  25003. SP_NOINLINE static void sp_384_mul_15(sp_digit* r, const sp_digit* a,
  25004. const sp_digit* b)
  25005. {
  25006. sp_int64 t0;
  25007. sp_int64 t1;
  25008. sp_digit t[15];
  25009. t0 = ((sp_int64)a[ 0]) * b[ 0];
  25010. t1 = ((sp_int64)a[ 0]) * b[ 1]
  25011. + ((sp_int64)a[ 1]) * b[ 0];
  25012. t[ 0] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25013. t0 = ((sp_int64)a[ 0]) * b[ 2]
  25014. + ((sp_int64)a[ 1]) * b[ 1]
  25015. + ((sp_int64)a[ 2]) * b[ 0];
  25016. t[ 1] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25017. t1 = ((sp_int64)a[ 0]) * b[ 3]
  25018. + ((sp_int64)a[ 1]) * b[ 2]
  25019. + ((sp_int64)a[ 2]) * b[ 1]
  25020. + ((sp_int64)a[ 3]) * b[ 0];
  25021. t[ 2] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25022. t0 = ((sp_int64)a[ 0]) * b[ 4]
  25023. + ((sp_int64)a[ 1]) * b[ 3]
  25024. + ((sp_int64)a[ 2]) * b[ 2]
  25025. + ((sp_int64)a[ 3]) * b[ 1]
  25026. + ((sp_int64)a[ 4]) * b[ 0];
  25027. t[ 3] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25028. t1 = ((sp_int64)a[ 0]) * b[ 5]
  25029. + ((sp_int64)a[ 1]) * b[ 4]
  25030. + ((sp_int64)a[ 2]) * b[ 3]
  25031. + ((sp_int64)a[ 3]) * b[ 2]
  25032. + ((sp_int64)a[ 4]) * b[ 1]
  25033. + ((sp_int64)a[ 5]) * b[ 0];
  25034. t[ 4] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25035. t0 = ((sp_int64)a[ 0]) * b[ 6]
  25036. + ((sp_int64)a[ 1]) * b[ 5]
  25037. + ((sp_int64)a[ 2]) * b[ 4]
  25038. + ((sp_int64)a[ 3]) * b[ 3]
  25039. + ((sp_int64)a[ 4]) * b[ 2]
  25040. + ((sp_int64)a[ 5]) * b[ 1]
  25041. + ((sp_int64)a[ 6]) * b[ 0];
  25042. t[ 5] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25043. t1 = ((sp_int64)a[ 0]) * b[ 7]
  25044. + ((sp_int64)a[ 1]) * b[ 6]
  25045. + ((sp_int64)a[ 2]) * b[ 5]
  25046. + ((sp_int64)a[ 3]) * b[ 4]
  25047. + ((sp_int64)a[ 4]) * b[ 3]
  25048. + ((sp_int64)a[ 5]) * b[ 2]
  25049. + ((sp_int64)a[ 6]) * b[ 1]
  25050. + ((sp_int64)a[ 7]) * b[ 0];
  25051. t[ 6] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25052. t0 = ((sp_int64)a[ 0]) * b[ 8]
  25053. + ((sp_int64)a[ 1]) * b[ 7]
  25054. + ((sp_int64)a[ 2]) * b[ 6]
  25055. + ((sp_int64)a[ 3]) * b[ 5]
  25056. + ((sp_int64)a[ 4]) * b[ 4]
  25057. + ((sp_int64)a[ 5]) * b[ 3]
  25058. + ((sp_int64)a[ 6]) * b[ 2]
  25059. + ((sp_int64)a[ 7]) * b[ 1]
  25060. + ((sp_int64)a[ 8]) * b[ 0];
  25061. t[ 7] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25062. t1 = ((sp_int64)a[ 0]) * b[ 9]
  25063. + ((sp_int64)a[ 1]) * b[ 8]
  25064. + ((sp_int64)a[ 2]) * b[ 7]
  25065. + ((sp_int64)a[ 3]) * b[ 6]
  25066. + ((sp_int64)a[ 4]) * b[ 5]
  25067. + ((sp_int64)a[ 5]) * b[ 4]
  25068. + ((sp_int64)a[ 6]) * b[ 3]
  25069. + ((sp_int64)a[ 7]) * b[ 2]
  25070. + ((sp_int64)a[ 8]) * b[ 1]
  25071. + ((sp_int64)a[ 9]) * b[ 0];
  25072. t[ 8] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25073. t0 = ((sp_int64)a[ 0]) * b[10]
  25074. + ((sp_int64)a[ 1]) * b[ 9]
  25075. + ((sp_int64)a[ 2]) * b[ 8]
  25076. + ((sp_int64)a[ 3]) * b[ 7]
  25077. + ((sp_int64)a[ 4]) * b[ 6]
  25078. + ((sp_int64)a[ 5]) * b[ 5]
  25079. + ((sp_int64)a[ 6]) * b[ 4]
  25080. + ((sp_int64)a[ 7]) * b[ 3]
  25081. + ((sp_int64)a[ 8]) * b[ 2]
  25082. + ((sp_int64)a[ 9]) * b[ 1]
  25083. + ((sp_int64)a[10]) * b[ 0];
  25084. t[ 9] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25085. t1 = ((sp_int64)a[ 0]) * b[11]
  25086. + ((sp_int64)a[ 1]) * b[10]
  25087. + ((sp_int64)a[ 2]) * b[ 9]
  25088. + ((sp_int64)a[ 3]) * b[ 8]
  25089. + ((sp_int64)a[ 4]) * b[ 7]
  25090. + ((sp_int64)a[ 5]) * b[ 6]
  25091. + ((sp_int64)a[ 6]) * b[ 5]
  25092. + ((sp_int64)a[ 7]) * b[ 4]
  25093. + ((sp_int64)a[ 8]) * b[ 3]
  25094. + ((sp_int64)a[ 9]) * b[ 2]
  25095. + ((sp_int64)a[10]) * b[ 1]
  25096. + ((sp_int64)a[11]) * b[ 0];
  25097. t[10] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25098. t0 = ((sp_int64)a[ 0]) * b[12]
  25099. + ((sp_int64)a[ 1]) * b[11]
  25100. + ((sp_int64)a[ 2]) * b[10]
  25101. + ((sp_int64)a[ 3]) * b[ 9]
  25102. + ((sp_int64)a[ 4]) * b[ 8]
  25103. + ((sp_int64)a[ 5]) * b[ 7]
  25104. + ((sp_int64)a[ 6]) * b[ 6]
  25105. + ((sp_int64)a[ 7]) * b[ 5]
  25106. + ((sp_int64)a[ 8]) * b[ 4]
  25107. + ((sp_int64)a[ 9]) * b[ 3]
  25108. + ((sp_int64)a[10]) * b[ 2]
  25109. + ((sp_int64)a[11]) * b[ 1]
  25110. + ((sp_int64)a[12]) * b[ 0];
  25111. t[11] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25112. t1 = ((sp_int64)a[ 0]) * b[13]
  25113. + ((sp_int64)a[ 1]) * b[12]
  25114. + ((sp_int64)a[ 2]) * b[11]
  25115. + ((sp_int64)a[ 3]) * b[10]
  25116. + ((sp_int64)a[ 4]) * b[ 9]
  25117. + ((sp_int64)a[ 5]) * b[ 8]
  25118. + ((sp_int64)a[ 6]) * b[ 7]
  25119. + ((sp_int64)a[ 7]) * b[ 6]
  25120. + ((sp_int64)a[ 8]) * b[ 5]
  25121. + ((sp_int64)a[ 9]) * b[ 4]
  25122. + ((sp_int64)a[10]) * b[ 3]
  25123. + ((sp_int64)a[11]) * b[ 2]
  25124. + ((sp_int64)a[12]) * b[ 1]
  25125. + ((sp_int64)a[13]) * b[ 0];
  25126. t[12] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25127. t0 = ((sp_int64)a[ 0]) * b[14]
  25128. + ((sp_int64)a[ 1]) * b[13]
  25129. + ((sp_int64)a[ 2]) * b[12]
  25130. + ((sp_int64)a[ 3]) * b[11]
  25131. + ((sp_int64)a[ 4]) * b[10]
  25132. + ((sp_int64)a[ 5]) * b[ 9]
  25133. + ((sp_int64)a[ 6]) * b[ 8]
  25134. + ((sp_int64)a[ 7]) * b[ 7]
  25135. + ((sp_int64)a[ 8]) * b[ 6]
  25136. + ((sp_int64)a[ 9]) * b[ 5]
  25137. + ((sp_int64)a[10]) * b[ 4]
  25138. + ((sp_int64)a[11]) * b[ 3]
  25139. + ((sp_int64)a[12]) * b[ 2]
  25140. + ((sp_int64)a[13]) * b[ 1]
  25141. + ((sp_int64)a[14]) * b[ 0];
  25142. t[13] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25143. t1 = ((sp_int64)a[ 1]) * b[14]
  25144. + ((sp_int64)a[ 2]) * b[13]
  25145. + ((sp_int64)a[ 3]) * b[12]
  25146. + ((sp_int64)a[ 4]) * b[11]
  25147. + ((sp_int64)a[ 5]) * b[10]
  25148. + ((sp_int64)a[ 6]) * b[ 9]
  25149. + ((sp_int64)a[ 7]) * b[ 8]
  25150. + ((sp_int64)a[ 8]) * b[ 7]
  25151. + ((sp_int64)a[ 9]) * b[ 6]
  25152. + ((sp_int64)a[10]) * b[ 5]
  25153. + ((sp_int64)a[11]) * b[ 4]
  25154. + ((sp_int64)a[12]) * b[ 3]
  25155. + ((sp_int64)a[13]) * b[ 2]
  25156. + ((sp_int64)a[14]) * b[ 1];
  25157. t[14] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25158. t0 = ((sp_int64)a[ 2]) * b[14]
  25159. + ((sp_int64)a[ 3]) * b[13]
  25160. + ((sp_int64)a[ 4]) * b[12]
  25161. + ((sp_int64)a[ 5]) * b[11]
  25162. + ((sp_int64)a[ 6]) * b[10]
  25163. + ((sp_int64)a[ 7]) * b[ 9]
  25164. + ((sp_int64)a[ 8]) * b[ 8]
  25165. + ((sp_int64)a[ 9]) * b[ 7]
  25166. + ((sp_int64)a[10]) * b[ 6]
  25167. + ((sp_int64)a[11]) * b[ 5]
  25168. + ((sp_int64)a[12]) * b[ 4]
  25169. + ((sp_int64)a[13]) * b[ 3]
  25170. + ((sp_int64)a[14]) * b[ 2];
  25171. r[15] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25172. t1 = ((sp_int64)a[ 3]) * b[14]
  25173. + ((sp_int64)a[ 4]) * b[13]
  25174. + ((sp_int64)a[ 5]) * b[12]
  25175. + ((sp_int64)a[ 6]) * b[11]
  25176. + ((sp_int64)a[ 7]) * b[10]
  25177. + ((sp_int64)a[ 8]) * b[ 9]
  25178. + ((sp_int64)a[ 9]) * b[ 8]
  25179. + ((sp_int64)a[10]) * b[ 7]
  25180. + ((sp_int64)a[11]) * b[ 6]
  25181. + ((sp_int64)a[12]) * b[ 5]
  25182. + ((sp_int64)a[13]) * b[ 4]
  25183. + ((sp_int64)a[14]) * b[ 3];
  25184. r[16] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25185. t0 = ((sp_int64)a[ 4]) * b[14]
  25186. + ((sp_int64)a[ 5]) * b[13]
  25187. + ((sp_int64)a[ 6]) * b[12]
  25188. + ((sp_int64)a[ 7]) * b[11]
  25189. + ((sp_int64)a[ 8]) * b[10]
  25190. + ((sp_int64)a[ 9]) * b[ 9]
  25191. + ((sp_int64)a[10]) * b[ 8]
  25192. + ((sp_int64)a[11]) * b[ 7]
  25193. + ((sp_int64)a[12]) * b[ 6]
  25194. + ((sp_int64)a[13]) * b[ 5]
  25195. + ((sp_int64)a[14]) * b[ 4];
  25196. r[17] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25197. t1 = ((sp_int64)a[ 5]) * b[14]
  25198. + ((sp_int64)a[ 6]) * b[13]
  25199. + ((sp_int64)a[ 7]) * b[12]
  25200. + ((sp_int64)a[ 8]) * b[11]
  25201. + ((sp_int64)a[ 9]) * b[10]
  25202. + ((sp_int64)a[10]) * b[ 9]
  25203. + ((sp_int64)a[11]) * b[ 8]
  25204. + ((sp_int64)a[12]) * b[ 7]
  25205. + ((sp_int64)a[13]) * b[ 6]
  25206. + ((sp_int64)a[14]) * b[ 5];
  25207. r[18] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25208. t0 = ((sp_int64)a[ 6]) * b[14]
  25209. + ((sp_int64)a[ 7]) * b[13]
  25210. + ((sp_int64)a[ 8]) * b[12]
  25211. + ((sp_int64)a[ 9]) * b[11]
  25212. + ((sp_int64)a[10]) * b[10]
  25213. + ((sp_int64)a[11]) * b[ 9]
  25214. + ((sp_int64)a[12]) * b[ 8]
  25215. + ((sp_int64)a[13]) * b[ 7]
  25216. + ((sp_int64)a[14]) * b[ 6];
  25217. r[19] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25218. t1 = ((sp_int64)a[ 7]) * b[14]
  25219. + ((sp_int64)a[ 8]) * b[13]
  25220. + ((sp_int64)a[ 9]) * b[12]
  25221. + ((sp_int64)a[10]) * b[11]
  25222. + ((sp_int64)a[11]) * b[10]
  25223. + ((sp_int64)a[12]) * b[ 9]
  25224. + ((sp_int64)a[13]) * b[ 8]
  25225. + ((sp_int64)a[14]) * b[ 7];
  25226. r[20] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25227. t0 = ((sp_int64)a[ 8]) * b[14]
  25228. + ((sp_int64)a[ 9]) * b[13]
  25229. + ((sp_int64)a[10]) * b[12]
  25230. + ((sp_int64)a[11]) * b[11]
  25231. + ((sp_int64)a[12]) * b[10]
  25232. + ((sp_int64)a[13]) * b[ 9]
  25233. + ((sp_int64)a[14]) * b[ 8];
  25234. r[21] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25235. t1 = ((sp_int64)a[ 9]) * b[14]
  25236. + ((sp_int64)a[10]) * b[13]
  25237. + ((sp_int64)a[11]) * b[12]
  25238. + ((sp_int64)a[12]) * b[11]
  25239. + ((sp_int64)a[13]) * b[10]
  25240. + ((sp_int64)a[14]) * b[ 9];
  25241. r[22] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25242. t0 = ((sp_int64)a[10]) * b[14]
  25243. + ((sp_int64)a[11]) * b[13]
  25244. + ((sp_int64)a[12]) * b[12]
  25245. + ((sp_int64)a[13]) * b[11]
  25246. + ((sp_int64)a[14]) * b[10];
  25247. r[23] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25248. t1 = ((sp_int64)a[11]) * b[14]
  25249. + ((sp_int64)a[12]) * b[13]
  25250. + ((sp_int64)a[13]) * b[12]
  25251. + ((sp_int64)a[14]) * b[11];
  25252. r[24] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25253. t0 = ((sp_int64)a[12]) * b[14]
  25254. + ((sp_int64)a[13]) * b[13]
  25255. + ((sp_int64)a[14]) * b[12];
  25256. r[25] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25257. t1 = ((sp_int64)a[13]) * b[14]
  25258. + ((sp_int64)a[14]) * b[13];
  25259. r[26] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25260. t0 = ((sp_int64)a[14]) * b[14];
  25261. r[27] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25262. r[28] = t0 & 0x3ffffff;
  25263. r[29] = (sp_digit)(t0 >> 26);
  25264. XMEMCPY(r, t, sizeof(t));
  25265. }
  25266. #endif /* WOLFSSL_SP_SMALL */
  25267. #ifdef WOLFSSL_SP_SMALL
  25268. /* Square a and put result in r. (r = a * a)
  25269. *
  25270. * r A single precision integer.
  25271. * a A single precision integer.
  25272. */
  25273. SP_NOINLINE static void sp_384_sqr_15(sp_digit* r, const sp_digit* a)
  25274. {
  25275. int i;
  25276. int imax;
  25277. int k;
  25278. sp_uint64 c;
  25279. sp_uint64 t;
  25280. c = ((sp_uint64)a[14]) * a[14];
  25281. r[29] = (sp_digit)(c >> 26);
  25282. c = (c & 0x3ffffff) << 26;
  25283. for (k = 27; k >= 0; k--) {
  25284. i = (k + 1) / 2;
  25285. if ((k & 1) == 0) {
  25286. c += ((sp_uint64)a[i]) * a[i];
  25287. i++;
  25288. }
  25289. if (k < 14) {
  25290. imax = k;
  25291. }
  25292. else {
  25293. imax = 14;
  25294. }
  25295. t = 0;
  25296. for (; i <= imax; i++) {
  25297. t += ((sp_uint64)a[i]) * a[k - i];
  25298. }
  25299. c += t * 2;
  25300. r[k + 2] += (sp_digit) (c >> 52);
  25301. r[k + 1] = (sp_digit)((c >> 26) & 0x3ffffff);
  25302. c = (c & 0x3ffffff) << 26;
  25303. }
  25304. r[0] = (sp_digit)(c >> 26);
  25305. }
  25306. #else
  25307. /* Square a and put result in r. (r = a * a)
  25308. *
  25309. * r A single precision integer.
  25310. * a A single precision integer.
  25311. */
  25312. SP_NOINLINE static void sp_384_sqr_15(sp_digit* r, const sp_digit* a)
  25313. {
  25314. sp_int64 t0;
  25315. sp_int64 t1;
  25316. sp_digit t[15];
  25317. t0 = ((sp_int64)a[ 0]) * a[ 0];
  25318. t1 = (((sp_int64)a[ 0]) * a[ 1]) * 2;
  25319. t[ 0] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25320. t0 = (((sp_int64)a[ 0]) * a[ 2]) * 2
  25321. + ((sp_int64)a[ 1]) * a[ 1];
  25322. t[ 1] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25323. t1 = (((sp_int64)a[ 0]) * a[ 3]
  25324. + ((sp_int64)a[ 1]) * a[ 2]) * 2;
  25325. t[ 2] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25326. t0 = (((sp_int64)a[ 0]) * a[ 4]
  25327. + ((sp_int64)a[ 1]) * a[ 3]) * 2
  25328. + ((sp_int64)a[ 2]) * a[ 2];
  25329. t[ 3] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25330. t1 = (((sp_int64)a[ 0]) * a[ 5]
  25331. + ((sp_int64)a[ 1]) * a[ 4]
  25332. + ((sp_int64)a[ 2]) * a[ 3]) * 2;
  25333. t[ 4] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25334. t0 = (((sp_int64)a[ 0]) * a[ 6]
  25335. + ((sp_int64)a[ 1]) * a[ 5]
  25336. + ((sp_int64)a[ 2]) * a[ 4]) * 2
  25337. + ((sp_int64)a[ 3]) * a[ 3];
  25338. t[ 5] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25339. t1 = (((sp_int64)a[ 0]) * a[ 7]
  25340. + ((sp_int64)a[ 1]) * a[ 6]
  25341. + ((sp_int64)a[ 2]) * a[ 5]
  25342. + ((sp_int64)a[ 3]) * a[ 4]) * 2;
  25343. t[ 6] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25344. t0 = (((sp_int64)a[ 0]) * a[ 8]
  25345. + ((sp_int64)a[ 1]) * a[ 7]
  25346. + ((sp_int64)a[ 2]) * a[ 6]
  25347. + ((sp_int64)a[ 3]) * a[ 5]) * 2
  25348. + ((sp_int64)a[ 4]) * a[ 4];
  25349. t[ 7] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25350. t1 = (((sp_int64)a[ 0]) * a[ 9]
  25351. + ((sp_int64)a[ 1]) * a[ 8]
  25352. + ((sp_int64)a[ 2]) * a[ 7]
  25353. + ((sp_int64)a[ 3]) * a[ 6]
  25354. + ((sp_int64)a[ 4]) * a[ 5]) * 2;
  25355. t[ 8] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25356. t0 = (((sp_int64)a[ 0]) * a[10]
  25357. + ((sp_int64)a[ 1]) * a[ 9]
  25358. + ((sp_int64)a[ 2]) * a[ 8]
  25359. + ((sp_int64)a[ 3]) * a[ 7]
  25360. + ((sp_int64)a[ 4]) * a[ 6]) * 2
  25361. + ((sp_int64)a[ 5]) * a[ 5];
  25362. t[ 9] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25363. t1 = (((sp_int64)a[ 0]) * a[11]
  25364. + ((sp_int64)a[ 1]) * a[10]
  25365. + ((sp_int64)a[ 2]) * a[ 9]
  25366. + ((sp_int64)a[ 3]) * a[ 8]
  25367. + ((sp_int64)a[ 4]) * a[ 7]
  25368. + ((sp_int64)a[ 5]) * a[ 6]) * 2;
  25369. t[10] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25370. t0 = (((sp_int64)a[ 0]) * a[12]
  25371. + ((sp_int64)a[ 1]) * a[11]
  25372. + ((sp_int64)a[ 2]) * a[10]
  25373. + ((sp_int64)a[ 3]) * a[ 9]
  25374. + ((sp_int64)a[ 4]) * a[ 8]
  25375. + ((sp_int64)a[ 5]) * a[ 7]) * 2
  25376. + ((sp_int64)a[ 6]) * a[ 6];
  25377. t[11] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25378. t1 = (((sp_int64)a[ 0]) * a[13]
  25379. + ((sp_int64)a[ 1]) * a[12]
  25380. + ((sp_int64)a[ 2]) * a[11]
  25381. + ((sp_int64)a[ 3]) * a[10]
  25382. + ((sp_int64)a[ 4]) * a[ 9]
  25383. + ((sp_int64)a[ 5]) * a[ 8]
  25384. + ((sp_int64)a[ 6]) * a[ 7]) * 2;
  25385. t[12] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25386. t0 = (((sp_int64)a[ 0]) * a[14]
  25387. + ((sp_int64)a[ 1]) * a[13]
  25388. + ((sp_int64)a[ 2]) * a[12]
  25389. + ((sp_int64)a[ 3]) * a[11]
  25390. + ((sp_int64)a[ 4]) * a[10]
  25391. + ((sp_int64)a[ 5]) * a[ 9]
  25392. + ((sp_int64)a[ 6]) * a[ 8]) * 2
  25393. + ((sp_int64)a[ 7]) * a[ 7];
  25394. t[13] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25395. t1 = (((sp_int64)a[ 1]) * a[14]
  25396. + ((sp_int64)a[ 2]) * a[13]
  25397. + ((sp_int64)a[ 3]) * a[12]
  25398. + ((sp_int64)a[ 4]) * a[11]
  25399. + ((sp_int64)a[ 5]) * a[10]
  25400. + ((sp_int64)a[ 6]) * a[ 9]
  25401. + ((sp_int64)a[ 7]) * a[ 8]) * 2;
  25402. t[14] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25403. t0 = (((sp_int64)a[ 2]) * a[14]
  25404. + ((sp_int64)a[ 3]) * a[13]
  25405. + ((sp_int64)a[ 4]) * a[12]
  25406. + ((sp_int64)a[ 5]) * a[11]
  25407. + ((sp_int64)a[ 6]) * a[10]
  25408. + ((sp_int64)a[ 7]) * a[ 9]) * 2
  25409. + ((sp_int64)a[ 8]) * a[ 8];
  25410. r[15] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25411. t1 = (((sp_int64)a[ 3]) * a[14]
  25412. + ((sp_int64)a[ 4]) * a[13]
  25413. + ((sp_int64)a[ 5]) * a[12]
  25414. + ((sp_int64)a[ 6]) * a[11]
  25415. + ((sp_int64)a[ 7]) * a[10]
  25416. + ((sp_int64)a[ 8]) * a[ 9]) * 2;
  25417. r[16] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25418. t0 = (((sp_int64)a[ 4]) * a[14]
  25419. + ((sp_int64)a[ 5]) * a[13]
  25420. + ((sp_int64)a[ 6]) * a[12]
  25421. + ((sp_int64)a[ 7]) * a[11]
  25422. + ((sp_int64)a[ 8]) * a[10]) * 2
  25423. + ((sp_int64)a[ 9]) * a[ 9];
  25424. r[17] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25425. t1 = (((sp_int64)a[ 5]) * a[14]
  25426. + ((sp_int64)a[ 6]) * a[13]
  25427. + ((sp_int64)a[ 7]) * a[12]
  25428. + ((sp_int64)a[ 8]) * a[11]
  25429. + ((sp_int64)a[ 9]) * a[10]) * 2;
  25430. r[18] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25431. t0 = (((sp_int64)a[ 6]) * a[14]
  25432. + ((sp_int64)a[ 7]) * a[13]
  25433. + ((sp_int64)a[ 8]) * a[12]
  25434. + ((sp_int64)a[ 9]) * a[11]) * 2
  25435. + ((sp_int64)a[10]) * a[10];
  25436. r[19] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25437. t1 = (((sp_int64)a[ 7]) * a[14]
  25438. + ((sp_int64)a[ 8]) * a[13]
  25439. + ((sp_int64)a[ 9]) * a[12]
  25440. + ((sp_int64)a[10]) * a[11]) * 2;
  25441. r[20] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25442. t0 = (((sp_int64)a[ 8]) * a[14]
  25443. + ((sp_int64)a[ 9]) * a[13]
  25444. + ((sp_int64)a[10]) * a[12]) * 2
  25445. + ((sp_int64)a[11]) * a[11];
  25446. r[21] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25447. t1 = (((sp_int64)a[ 9]) * a[14]
  25448. + ((sp_int64)a[10]) * a[13]
  25449. + ((sp_int64)a[11]) * a[12]) * 2;
  25450. r[22] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25451. t0 = (((sp_int64)a[10]) * a[14]
  25452. + ((sp_int64)a[11]) * a[13]) * 2
  25453. + ((sp_int64)a[12]) * a[12];
  25454. r[23] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25455. t1 = (((sp_int64)a[11]) * a[14]
  25456. + ((sp_int64)a[12]) * a[13]) * 2;
  25457. r[24] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25458. t0 = (((sp_int64)a[12]) * a[14]) * 2
  25459. + ((sp_int64)a[13]) * a[13];
  25460. r[25] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25461. t1 = (((sp_int64)a[13]) * a[14]) * 2;
  25462. r[26] = t0 & 0x3ffffff; t1 += t0 >> 26;
  25463. t0 = ((sp_int64)a[14]) * a[14];
  25464. r[27] = t1 & 0x3ffffff; t0 += t1 >> 26;
  25465. r[28] = t0 & 0x3ffffff;
  25466. r[29] = (sp_digit)(t0 >> 26);
  25467. XMEMCPY(r, t, sizeof(t));
  25468. }
  25469. #endif /* WOLFSSL_SP_SMALL */
  25470. #ifdef WOLFSSL_SP_SMALL
  25471. /* Add b to a into r. (r = a + b)
  25472. *
  25473. * r A single precision integer.
  25474. * a A single precision integer.
  25475. * b A single precision integer.
  25476. */
  25477. SP_NOINLINE static int sp_384_add_15(sp_digit* r, const sp_digit* a,
  25478. const sp_digit* b)
  25479. {
  25480. int i;
  25481. for (i = 0; i < 15; i++) {
  25482. r[i] = a[i] + b[i];
  25483. }
  25484. return 0;
  25485. }
  25486. #else
  25487. /* Add b to a into r. (r = a + b)
  25488. *
  25489. * r A single precision integer.
  25490. * a A single precision integer.
  25491. * b A single precision integer.
  25492. */
  25493. SP_NOINLINE static int sp_384_add_15(sp_digit* r, const sp_digit* a,
  25494. const sp_digit* b)
  25495. {
  25496. r[ 0] = a[ 0] + b[ 0];
  25497. r[ 1] = a[ 1] + b[ 1];
  25498. r[ 2] = a[ 2] + b[ 2];
  25499. r[ 3] = a[ 3] + b[ 3];
  25500. r[ 4] = a[ 4] + b[ 4];
  25501. r[ 5] = a[ 5] + b[ 5];
  25502. r[ 6] = a[ 6] + b[ 6];
  25503. r[ 7] = a[ 7] + b[ 7];
  25504. r[ 8] = a[ 8] + b[ 8];
  25505. r[ 9] = a[ 9] + b[ 9];
  25506. r[10] = a[10] + b[10];
  25507. r[11] = a[11] + b[11];
  25508. r[12] = a[12] + b[12];
  25509. r[13] = a[13] + b[13];
  25510. r[14] = a[14] + b[14];
  25511. return 0;
  25512. }
  25513. #endif /* WOLFSSL_SP_SMALL */
  25514. #ifdef WOLFSSL_SP_SMALL
  25515. /* Sub b from a into r. (r = a - b)
  25516. *
  25517. * r A single precision integer.
  25518. * a A single precision integer.
  25519. * b A single precision integer.
  25520. */
  25521. SP_NOINLINE static int sp_384_sub_15(sp_digit* r, const sp_digit* a,
  25522. const sp_digit* b)
  25523. {
  25524. int i;
  25525. for (i = 0; i < 15; i++) {
  25526. r[i] = a[i] - b[i];
  25527. }
  25528. return 0;
  25529. }
  25530. #else
  25531. /* Sub b from a into r. (r = a - b)
  25532. *
  25533. * r A single precision integer.
  25534. * a A single precision integer.
  25535. * b A single precision integer.
  25536. */
  25537. SP_NOINLINE static int sp_384_sub_15(sp_digit* r, const sp_digit* a,
  25538. const sp_digit* b)
  25539. {
  25540. r[ 0] = a[ 0] - b[ 0];
  25541. r[ 1] = a[ 1] - b[ 1];
  25542. r[ 2] = a[ 2] - b[ 2];
  25543. r[ 3] = a[ 3] - b[ 3];
  25544. r[ 4] = a[ 4] - b[ 4];
  25545. r[ 5] = a[ 5] - b[ 5];
  25546. r[ 6] = a[ 6] - b[ 6];
  25547. r[ 7] = a[ 7] - b[ 7];
  25548. r[ 8] = a[ 8] - b[ 8];
  25549. r[ 9] = a[ 9] - b[ 9];
  25550. r[10] = a[10] - b[10];
  25551. r[11] = a[11] - b[11];
  25552. r[12] = a[12] - b[12];
  25553. r[13] = a[13] - b[13];
  25554. r[14] = a[14] - b[14];
  25555. return 0;
  25556. }
  25557. #endif /* WOLFSSL_SP_SMALL */
  25558. /* Convert an mp_int to an array of sp_digit.
  25559. *
  25560. * r A single precision integer.
  25561. * size Maximum number of bytes to convert
  25562. * a A multi-precision integer.
  25563. */
  25564. static void sp_384_from_mp(sp_digit* r, int size, const mp_int* a)
  25565. {
  25566. #if DIGIT_BIT == 26
  25567. int i;
  25568. sp_digit j = (sp_digit)0 - (sp_digit)a->used;
  25569. int o = 0;
  25570. for (i = 0; i < size; i++) {
  25571. sp_digit mask = (sp_digit)0 - (j >> 25);
  25572. r[i] = a->dp[o] & mask;
  25573. j++;
  25574. o += (int)(j >> 25);
  25575. }
  25576. #elif DIGIT_BIT > 26
  25577. unsigned int i;
  25578. int j = 0;
  25579. word32 s = 0;
  25580. r[0] = 0;
  25581. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  25582. r[j] |= ((sp_digit)a->dp[i] << s);
  25583. r[j] &= 0x3ffffff;
  25584. s = 26U - s;
  25585. if (j + 1 >= size) {
  25586. break;
  25587. }
  25588. /* lint allow cast of mismatch word32 and mp_digit */
  25589. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  25590. while ((s + 26U) <= (word32)DIGIT_BIT) {
  25591. s += 26U;
  25592. r[j] &= 0x3ffffff;
  25593. if (j + 1 >= size) {
  25594. break;
  25595. }
  25596. if (s < (word32)DIGIT_BIT) {
  25597. /* lint allow cast of mismatch word32 and mp_digit */
  25598. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  25599. }
  25600. else {
  25601. r[++j] = (sp_digit)0;
  25602. }
  25603. }
  25604. s = (word32)DIGIT_BIT - s;
  25605. }
  25606. for (j++; j < size; j++) {
  25607. r[j] = 0;
  25608. }
  25609. #else
  25610. unsigned int i;
  25611. int j = 0;
  25612. int s = 0;
  25613. r[0] = 0;
  25614. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  25615. r[j] |= ((sp_digit)a->dp[i]) << s;
  25616. if (s + DIGIT_BIT >= 26) {
  25617. r[j] &= 0x3ffffff;
  25618. if (j + 1 >= size) {
  25619. break;
  25620. }
  25621. s = 26 - s;
  25622. if (s == DIGIT_BIT) {
  25623. r[++j] = 0;
  25624. s = 0;
  25625. }
  25626. else {
  25627. r[++j] = a->dp[i] >> s;
  25628. s = DIGIT_BIT - s;
  25629. }
  25630. }
  25631. else {
  25632. s += DIGIT_BIT;
  25633. }
  25634. }
  25635. for (j++; j < size; j++) {
  25636. r[j] = 0;
  25637. }
  25638. #endif
  25639. }
  25640. /* Convert a point of type ecc_point to type sp_point_384.
  25641. *
  25642. * p Point of type sp_point_384 (result).
  25643. * pm Point of type ecc_point.
  25644. */
  25645. static void sp_384_point_from_ecc_point_15(sp_point_384* p,
  25646. const ecc_point* pm)
  25647. {
  25648. XMEMSET(p->x, 0, sizeof(p->x));
  25649. XMEMSET(p->y, 0, sizeof(p->y));
  25650. XMEMSET(p->z, 0, sizeof(p->z));
  25651. sp_384_from_mp(p->x, 15, pm->x);
  25652. sp_384_from_mp(p->y, 15, pm->y);
  25653. sp_384_from_mp(p->z, 15, pm->z);
  25654. p->infinity = 0;
  25655. }
  25656. /* Convert an array of sp_digit to an mp_int.
  25657. *
  25658. * a A single precision integer.
  25659. * r A multi-precision integer.
  25660. */
  25661. static int sp_384_to_mp(const sp_digit* a, mp_int* r)
  25662. {
  25663. int err;
  25664. err = mp_grow(r, (384 + DIGIT_BIT - 1) / DIGIT_BIT);
  25665. if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
  25666. #if DIGIT_BIT == 26
  25667. XMEMCPY(r->dp, a, sizeof(sp_digit) * 15);
  25668. r->used = 15;
  25669. mp_clamp(r);
  25670. #elif DIGIT_BIT < 26
  25671. int i;
  25672. int j = 0;
  25673. int s = 0;
  25674. r->dp[0] = 0;
  25675. for (i = 0; i < 15; i++) {
  25676. r->dp[j] |= (mp_digit)(a[i] << s);
  25677. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  25678. s = DIGIT_BIT - s;
  25679. r->dp[++j] = (mp_digit)(a[i] >> s);
  25680. while (s + DIGIT_BIT <= 26) {
  25681. s += DIGIT_BIT;
  25682. r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  25683. if (s == SP_WORD_SIZE) {
  25684. r->dp[j] = 0;
  25685. }
  25686. else {
  25687. r->dp[j] = (mp_digit)(a[i] >> s);
  25688. }
  25689. }
  25690. s = 26 - s;
  25691. }
  25692. r->used = (384 + DIGIT_BIT - 1) / DIGIT_BIT;
  25693. mp_clamp(r);
  25694. #else
  25695. int i;
  25696. int j = 0;
  25697. int s = 0;
  25698. r->dp[0] = 0;
  25699. for (i = 0; i < 15; i++) {
  25700. r->dp[j] |= ((mp_digit)a[i]) << s;
  25701. if (s + 26 >= DIGIT_BIT) {
  25702. #if DIGIT_BIT != 32 && DIGIT_BIT != 64
  25703. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  25704. #endif
  25705. s = DIGIT_BIT - s;
  25706. r->dp[++j] = a[i] >> s;
  25707. s = 26 - s;
  25708. }
  25709. else {
  25710. s += 26;
  25711. }
  25712. }
  25713. r->used = (384 + DIGIT_BIT - 1) / DIGIT_BIT;
  25714. mp_clamp(r);
  25715. #endif
  25716. }
  25717. return err;
  25718. }
  25719. /* Convert a point of type sp_point_384 to type ecc_point.
  25720. *
  25721. * p Point of type sp_point_384.
  25722. * pm Point of type ecc_point (result).
  25723. * returns MEMORY_E when allocation of memory in ecc_point fails otherwise
  25724. * MP_OKAY.
  25725. */
  25726. static int sp_384_point_to_ecc_point_15(const sp_point_384* p, ecc_point* pm)
  25727. {
  25728. int err;
  25729. err = sp_384_to_mp(p->x, pm->x);
  25730. if (err == MP_OKAY) {
  25731. err = sp_384_to_mp(p->y, pm->y);
  25732. }
  25733. if (err == MP_OKAY) {
  25734. err = sp_384_to_mp(p->z, pm->z);
  25735. }
  25736. return err;
  25737. }
  25738. /* Compare a with b in constant time.
  25739. *
  25740. * a A single precision integer.
  25741. * b A single precision integer.
  25742. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  25743. * respectively.
  25744. */
  25745. static sp_digit sp_384_cmp_15(const sp_digit* a, const sp_digit* b)
  25746. {
  25747. sp_digit r = 0;
  25748. #ifdef WOLFSSL_SP_SMALL
  25749. int i;
  25750. for (i=14; i>=0; i--) {
  25751. r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 25);
  25752. }
  25753. #else
  25754. r |= (a[14] - b[14]) & (0 - (sp_digit)1);
  25755. r |= (a[13] - b[13]) & ~(((sp_digit)0 - r) >> 25);
  25756. r |= (a[12] - b[12]) & ~(((sp_digit)0 - r) >> 25);
  25757. r |= (a[11] - b[11]) & ~(((sp_digit)0 - r) >> 25);
  25758. r |= (a[10] - b[10]) & ~(((sp_digit)0 - r) >> 25);
  25759. r |= (a[ 9] - b[ 9]) & ~(((sp_digit)0 - r) >> 25);
  25760. r |= (a[ 8] - b[ 8]) & ~(((sp_digit)0 - r) >> 25);
  25761. r |= (a[ 7] - b[ 7]) & ~(((sp_digit)0 - r) >> 25);
  25762. r |= (a[ 6] - b[ 6]) & ~(((sp_digit)0 - r) >> 25);
  25763. r |= (a[ 5] - b[ 5]) & ~(((sp_digit)0 - r) >> 25);
  25764. r |= (a[ 4] - b[ 4]) & ~(((sp_digit)0 - r) >> 25);
  25765. r |= (a[ 3] - b[ 3]) & ~(((sp_digit)0 - r) >> 25);
  25766. r |= (a[ 2] - b[ 2]) & ~(((sp_digit)0 - r) >> 25);
  25767. r |= (a[ 1] - b[ 1]) & ~(((sp_digit)0 - r) >> 25);
  25768. r |= (a[ 0] - b[ 0]) & ~(((sp_digit)0 - r) >> 25);
  25769. #endif /* WOLFSSL_SP_SMALL */
  25770. return r;
  25771. }
  25772. /* Conditionally subtract b from a using the mask m.
  25773. * m is -1 to subtract and 0 when not.
  25774. *
  25775. * r A single precision number representing condition subtract result.
  25776. * a A single precision number to subtract from.
  25777. * b A single precision number to subtract.
  25778. * m Mask value to apply.
  25779. */
  25780. static void sp_384_cond_sub_15(sp_digit* r, const sp_digit* a,
  25781. const sp_digit* b, const sp_digit m)
  25782. {
  25783. #ifdef WOLFSSL_SP_SMALL
  25784. int i;
  25785. for (i = 0; i < 15; i++) {
  25786. r[i] = a[i] - (b[i] & m);
  25787. }
  25788. #else
  25789. r[ 0] = a[ 0] - (b[ 0] & m);
  25790. r[ 1] = a[ 1] - (b[ 1] & m);
  25791. r[ 2] = a[ 2] - (b[ 2] & m);
  25792. r[ 3] = a[ 3] - (b[ 3] & m);
  25793. r[ 4] = a[ 4] - (b[ 4] & m);
  25794. r[ 5] = a[ 5] - (b[ 5] & m);
  25795. r[ 6] = a[ 6] - (b[ 6] & m);
  25796. r[ 7] = a[ 7] - (b[ 7] & m);
  25797. r[ 8] = a[ 8] - (b[ 8] & m);
  25798. r[ 9] = a[ 9] - (b[ 9] & m);
  25799. r[10] = a[10] - (b[10] & m);
  25800. r[11] = a[11] - (b[11] & m);
  25801. r[12] = a[12] - (b[12] & m);
  25802. r[13] = a[13] - (b[13] & m);
  25803. r[14] = a[14] - (b[14] & m);
  25804. #endif /* WOLFSSL_SP_SMALL */
  25805. }
  25806. /* Mul a by scalar b and add into r. (r += a * b)
  25807. *
  25808. * r A single precision integer.
  25809. * a A single precision integer.
  25810. * b A scalar.
  25811. */
  25812. SP_NOINLINE static void sp_384_mul_add_15(sp_digit* r, const sp_digit* a,
  25813. const sp_digit b)
  25814. {
  25815. #ifdef WOLFSSL_SP_SMALL
  25816. sp_int64 tb = b;
  25817. sp_int64 t[4];
  25818. int i;
  25819. t[0] = 0;
  25820. for (i = 0; i < 12; i += 4) {
  25821. t[0] += (tb * a[i+0]) + r[i+0];
  25822. t[1] = (tb * a[i+1]) + r[i+1];
  25823. t[2] = (tb * a[i+2]) + r[i+2];
  25824. t[3] = (tb * a[i+3]) + r[i+3];
  25825. r[i+0] = t[0] & 0x3ffffff;
  25826. t[1] += t[0] >> 26;
  25827. r[i+1] = t[1] & 0x3ffffff;
  25828. t[2] += t[1] >> 26;
  25829. r[i+2] = t[2] & 0x3ffffff;
  25830. t[3] += t[2] >> 26;
  25831. r[i+3] = t[3] & 0x3ffffff;
  25832. t[0] = t[3] >> 26;
  25833. }
  25834. t[0] += (tb * a[12]) + r[12];
  25835. t[1] = (tb * a[13]) + r[13];
  25836. t[2] = (tb * a[14]) + r[14];
  25837. r[12] = t[0] & 0x3ffffff;
  25838. t[1] += t[0] >> 26;
  25839. r[13] = t[1] & 0x3ffffff;
  25840. t[2] += t[1] >> 26;
  25841. r[14] = t[2] & 0x3ffffff;
  25842. r[15] += (sp_digit)(t[2] >> 26);
  25843. #else
  25844. sp_int64 tb = b;
  25845. sp_int64 t[15];
  25846. t[ 0] = tb * a[ 0];
  25847. t[ 1] = tb * a[ 1];
  25848. t[ 2] = tb * a[ 2];
  25849. t[ 3] = tb * a[ 3];
  25850. t[ 4] = tb * a[ 4];
  25851. t[ 5] = tb * a[ 5];
  25852. t[ 6] = tb * a[ 6];
  25853. t[ 7] = tb * a[ 7];
  25854. t[ 8] = tb * a[ 8];
  25855. t[ 9] = tb * a[ 9];
  25856. t[10] = tb * a[10];
  25857. t[11] = tb * a[11];
  25858. t[12] = tb * a[12];
  25859. t[13] = tb * a[13];
  25860. t[14] = tb * a[14];
  25861. r[ 0] += (sp_digit) (t[ 0] & 0x3ffffff);
  25862. r[ 1] += (sp_digit)((t[ 0] >> 26) + (t[ 1] & 0x3ffffff));
  25863. r[ 2] += (sp_digit)((t[ 1] >> 26) + (t[ 2] & 0x3ffffff));
  25864. r[ 3] += (sp_digit)((t[ 2] >> 26) + (t[ 3] & 0x3ffffff));
  25865. r[ 4] += (sp_digit)((t[ 3] >> 26) + (t[ 4] & 0x3ffffff));
  25866. r[ 5] += (sp_digit)((t[ 4] >> 26) + (t[ 5] & 0x3ffffff));
  25867. r[ 6] += (sp_digit)((t[ 5] >> 26) + (t[ 6] & 0x3ffffff));
  25868. r[ 7] += (sp_digit)((t[ 6] >> 26) + (t[ 7] & 0x3ffffff));
  25869. r[ 8] += (sp_digit)((t[ 7] >> 26) + (t[ 8] & 0x3ffffff));
  25870. r[ 9] += (sp_digit)((t[ 8] >> 26) + (t[ 9] & 0x3ffffff));
  25871. r[10] += (sp_digit)((t[ 9] >> 26) + (t[10] & 0x3ffffff));
  25872. r[11] += (sp_digit)((t[10] >> 26) + (t[11] & 0x3ffffff));
  25873. r[12] += (sp_digit)((t[11] >> 26) + (t[12] & 0x3ffffff));
  25874. r[13] += (sp_digit)((t[12] >> 26) + (t[13] & 0x3ffffff));
  25875. r[14] += (sp_digit)((t[13] >> 26) + (t[14] & 0x3ffffff));
  25876. r[15] += (sp_digit) (t[14] >> 26);
  25877. #endif /* WOLFSSL_SP_SMALL */
  25878. }
  25879. /* Normalize the values in each word to 26 bits.
  25880. *
  25881. * a Array of sp_digit to normalize.
  25882. */
  25883. static void sp_384_norm_15(sp_digit* a)
  25884. {
  25885. #ifdef WOLFSSL_SP_SMALL
  25886. int i;
  25887. for (i = 0; i < 14; i++) {
  25888. a[i+1] += a[i] >> 26;
  25889. a[i] &= 0x3ffffff;
  25890. }
  25891. #else
  25892. a[1] += a[0] >> 26; a[0] &= 0x3ffffff;
  25893. a[2] += a[1] >> 26; a[1] &= 0x3ffffff;
  25894. a[3] += a[2] >> 26; a[2] &= 0x3ffffff;
  25895. a[4] += a[3] >> 26; a[3] &= 0x3ffffff;
  25896. a[5] += a[4] >> 26; a[4] &= 0x3ffffff;
  25897. a[6] += a[5] >> 26; a[5] &= 0x3ffffff;
  25898. a[7] += a[6] >> 26; a[6] &= 0x3ffffff;
  25899. a[8] += a[7] >> 26; a[7] &= 0x3ffffff;
  25900. a[9] += a[8] >> 26; a[8] &= 0x3ffffff;
  25901. a[10] += a[9] >> 26; a[9] &= 0x3ffffff;
  25902. a[11] += a[10] >> 26; a[10] &= 0x3ffffff;
  25903. a[12] += a[11] >> 26; a[11] &= 0x3ffffff;
  25904. a[13] += a[12] >> 26; a[12] &= 0x3ffffff;
  25905. a[14] += a[13] >> 26; a[13] &= 0x3ffffff;
  25906. #endif /* WOLFSSL_SP_SMALL */
  25907. }
  25908. /* Shift the result in the high 384 bits down to the bottom.
  25909. *
  25910. * r A single precision number.
  25911. * a A single precision number.
  25912. */
  25913. static void sp_384_mont_shift_15(sp_digit* r, const sp_digit* a)
  25914. {
  25915. #ifdef WOLFSSL_SP_SMALL
  25916. int i;
  25917. sp_int64 n = a[14] >> 20;
  25918. n += ((sp_int64)a[15]) << 6;
  25919. for (i = 0; i < 14; i++) {
  25920. r[i] = n & 0x3ffffff;
  25921. n >>= 26;
  25922. n += ((sp_int64)a[16 + i]) << 6;
  25923. }
  25924. r[14] = (sp_digit)n;
  25925. #else
  25926. sp_int64 n = a[14] >> 20;
  25927. n += ((sp_int64)a[15]) << 6;
  25928. r[ 0] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[16]) << 6;
  25929. r[ 1] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[17]) << 6;
  25930. r[ 2] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[18]) << 6;
  25931. r[ 3] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[19]) << 6;
  25932. r[ 4] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[20]) << 6;
  25933. r[ 5] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[21]) << 6;
  25934. r[ 6] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[22]) << 6;
  25935. r[ 7] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[23]) << 6;
  25936. r[ 8] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[24]) << 6;
  25937. r[ 9] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[25]) << 6;
  25938. r[10] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[26]) << 6;
  25939. r[11] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[27]) << 6;
  25940. r[12] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[28]) << 6;
  25941. r[13] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[29]) << 6;
  25942. r[14] = (sp_digit)n;
  25943. #endif /* WOLFSSL_SP_SMALL */
  25944. XMEMSET(&r[15], 0, sizeof(*r) * 15U);
  25945. }
  25946. /* Reduce the number back to 384 bits using Montgomery reduction.
  25947. *
  25948. * a A single precision number to reduce in place.
  25949. * m The single precision number representing the modulus.
  25950. * mp The digit representing the negative inverse of m mod 2^n.
  25951. */
  25952. static void sp_384_mont_reduce_order_15(sp_digit* a, const sp_digit* m, sp_digit mp)
  25953. {
  25954. int i;
  25955. sp_digit mu;
  25956. sp_digit over;
  25957. sp_384_norm_15(a + 15);
  25958. for (i=0; i<14; i++) {
  25959. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffff;
  25960. sp_384_mul_add_15(a+i, m, mu);
  25961. a[i+1] += a[i] >> 26;
  25962. }
  25963. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffL;
  25964. sp_384_mul_add_15(a+i, m, mu);
  25965. a[i+1] += a[i] >> 26;
  25966. a[i] &= 0x3ffffff;
  25967. sp_384_mont_shift_15(a, a);
  25968. over = a[14] >> 20;
  25969. sp_384_cond_sub_15(a, a, m, ~((over - 1) >> 31));
  25970. sp_384_norm_15(a);
  25971. }
  25972. /* Reduce the number back to 384 bits using Montgomery reduction.
  25973. *
  25974. * a A single precision number to reduce in place.
  25975. * m The single precision number representing the modulus.
  25976. * mp The digit representing the negative inverse of m mod 2^n.
  25977. */
  25978. static void sp_384_mont_reduce_15(sp_digit* a, const sp_digit* m, sp_digit mp)
  25979. {
  25980. int i;
  25981. sp_digit am;
  25982. (void)m;
  25983. (void)mp;
  25984. for (i = 0; i < 14; i++) {
  25985. am = (a[i] * 0x1) & 0x3ffffff;
  25986. a[i + 1] += (am << 6) & 0x3ffffff;
  25987. a[i + 2] += am >> 20;
  25988. a[i + 3] -= (am << 18) & 0x3ffffff;
  25989. a[i + 4] -= am >> 8;
  25990. a[i + 4] -= (am << 24) & 0x3ffffff;
  25991. a[i + 5] -= am >> 2;
  25992. a[i + 14] += (am << 20) & 0x3ffffff;
  25993. a[i + 15] += am >> 6;
  25994. a[i + 1] += a[i] >> 26;
  25995. }
  25996. am = (a[14] * 0x1) & 0xfffff;
  25997. a[14 + 1] += (am << 6) & 0x3ffffff;
  25998. a[14 + 2] += am >> 20;
  25999. a[14 + 3] -= (am << 18) & 0x3ffffff;
  26000. a[14 + 4] -= am >> 8;
  26001. a[14 + 4] -= (am << 24) & 0x3ffffff;
  26002. a[14 + 5] -= am >> 2;
  26003. a[14 + 14] += (am << 20) & 0x3ffffff;
  26004. a[14 + 15] += am >> 6;
  26005. a[0] = (a[14] >> 20) + ((a[15] << 6) & 0x3ffffff);
  26006. a[1] = (a[15] >> 20) + ((a[16] << 6) & 0x3ffffff);
  26007. a[2] = (a[16] >> 20) + ((a[17] << 6) & 0x3ffffff);
  26008. a[3] = (a[17] >> 20) + ((a[18] << 6) & 0x3ffffff);
  26009. a[4] = (a[18] >> 20) + ((a[19] << 6) & 0x3ffffff);
  26010. a[5] = (a[19] >> 20) + ((a[20] << 6) & 0x3ffffff);
  26011. a[6] = (a[20] >> 20) + ((a[21] << 6) & 0x3ffffff);
  26012. a[7] = (a[21] >> 20) + ((a[22] << 6) & 0x3ffffff);
  26013. a[8] = (a[22] >> 20) + ((a[23] << 6) & 0x3ffffff);
  26014. a[9] = (a[23] >> 20) + ((a[24] << 6) & 0x3ffffff);
  26015. a[10] = (a[24] >> 20) + ((a[25] << 6) & 0x3ffffff);
  26016. a[11] = (a[25] >> 20) + ((a[26] << 6) & 0x3ffffff);
  26017. a[12] = (a[26] >> 20) + ((a[27] << 6) & 0x3ffffff);
  26018. a[13] = (a[27] >> 20) + ((a[28] << 6) & 0x3ffffff);
  26019. a[14] = (a[14 + 14] >> 20) + (a[29] << 6);
  26020. a[1] += a[0] >> 26; a[0] &= 0x3ffffff;
  26021. a[2] += a[1] >> 26; a[1] &= 0x3ffffff;
  26022. a[3] += a[2] >> 26; a[2] &= 0x3ffffff;
  26023. a[4] += a[3] >> 26; a[3] &= 0x3ffffff;
  26024. a[5] += a[4] >> 26; a[4] &= 0x3ffffff;
  26025. a[6] += a[5] >> 26; a[5] &= 0x3ffffff;
  26026. a[7] += a[6] >> 26; a[6] &= 0x3ffffff;
  26027. a[8] += a[7] >> 26; a[7] &= 0x3ffffff;
  26028. a[9] += a[8] >> 26; a[8] &= 0x3ffffff;
  26029. a[10] += a[9] >> 26; a[9] &= 0x3ffffff;
  26030. a[11] += a[10] >> 26; a[10] &= 0x3ffffff;
  26031. a[12] += a[11] >> 26; a[11] &= 0x3ffffff;
  26032. a[13] += a[12] >> 26; a[12] &= 0x3ffffff;
  26033. a[14] += a[13] >> 26; a[13] &= 0x3ffffff;
  26034. /* Get the bit over, if any. */
  26035. am = a[14] >> 20;
  26036. /* Create mask. */
  26037. am = 0 - am;
  26038. a[0] -= 0x03ffffff & am;
  26039. a[1] -= 0x0000003f & am;
  26040. /* p384_mod[2] is zero */
  26041. a[3] -= 0x03fc0000 & am;
  26042. a[4] -= 0x02ffffff & am;
  26043. a[5] -= 0x03ffffff & am;
  26044. a[6] -= 0x03ffffff & am;
  26045. a[7] -= 0x03ffffff & am;
  26046. a[8] -= 0x03ffffff & am;
  26047. a[9] -= 0x03ffffff & am;
  26048. a[10] -= 0x03ffffff & am;
  26049. a[11] -= 0x03ffffff & am;
  26050. a[12] -= 0x03ffffff & am;
  26051. a[13] -= 0x03ffffff & am;
  26052. a[14] -= 0x000fffff & am;
  26053. a[1] += a[0] >> 26; a[0] &= 0x3ffffff;
  26054. a[2] += a[1] >> 26; a[1] &= 0x3ffffff;
  26055. a[3] += a[2] >> 26; a[2] &= 0x3ffffff;
  26056. a[4] += a[3] >> 26; a[3] &= 0x3ffffff;
  26057. a[5] += a[4] >> 26; a[4] &= 0x3ffffff;
  26058. a[6] += a[5] >> 26; a[5] &= 0x3ffffff;
  26059. a[7] += a[6] >> 26; a[6] &= 0x3ffffff;
  26060. a[8] += a[7] >> 26; a[7] &= 0x3ffffff;
  26061. a[9] += a[8] >> 26; a[8] &= 0x3ffffff;
  26062. a[10] += a[9] >> 26; a[9] &= 0x3ffffff;
  26063. a[11] += a[10] >> 26; a[10] &= 0x3ffffff;
  26064. a[12] += a[11] >> 26; a[11] &= 0x3ffffff;
  26065. a[13] += a[12] >> 26; a[12] &= 0x3ffffff;
  26066. a[14] += a[13] >> 26; a[13] &= 0x3ffffff;
  26067. }
  26068. /* Multiply two Montgomery form numbers mod the modulus (prime).
  26069. * (r = a * b mod m)
  26070. *
  26071. * r Result of multiplication.
  26072. * a First number to multiply in Montgomery form.
  26073. * b Second number to multiply in Montgomery form.
  26074. * m Modulus (prime).
  26075. * mp Montgomery multiplier.
  26076. */
  26077. SP_NOINLINE static void sp_384_mont_mul_15(sp_digit* r, const sp_digit* a,
  26078. const sp_digit* b, const sp_digit* m, sp_digit mp)
  26079. {
  26080. sp_384_mul_15(r, a, b);
  26081. sp_384_mont_reduce_15(r, m, mp);
  26082. }
  26083. /* Square the Montgomery form number. (r = a * a mod m)
  26084. *
  26085. * r Result of squaring.
  26086. * a Number to square in Montgomery form.
  26087. * m Modulus (prime).
  26088. * mp Montgomery multiplier.
  26089. */
  26090. SP_NOINLINE static void sp_384_mont_sqr_15(sp_digit* r, const sp_digit* a,
  26091. const sp_digit* m, sp_digit mp)
  26092. {
  26093. sp_384_sqr_15(r, a);
  26094. sp_384_mont_reduce_15(r, m, mp);
  26095. }
  26096. #if !defined(WOLFSSL_SP_SMALL) || defined(HAVE_COMP_KEY)
  26097. /* Square the Montgomery form number a number of times. (r = a ^ n mod m)
  26098. *
  26099. * r Result of squaring.
  26100. * a Number to square in Montgomery form.
  26101. * n Number of times to square.
  26102. * m Modulus (prime).
  26103. * mp Montgomery multiplier.
  26104. */
  26105. static void sp_384_mont_sqr_n_15(sp_digit* r, const sp_digit* a, int n,
  26106. const sp_digit* m, sp_digit mp)
  26107. {
  26108. sp_384_mont_sqr_15(r, a, m, mp);
  26109. for (; n > 1; n--) {
  26110. sp_384_mont_sqr_15(r, r, m, mp);
  26111. }
  26112. }
  26113. #endif /* !WOLFSSL_SP_SMALL || HAVE_COMP_KEY */
  26114. #ifdef WOLFSSL_SP_SMALL
  26115. /* Mod-2 for the P384 curve. */
  26116. static const uint32_t p384_mod_minus_2[12] = {
  26117. 0xfffffffdU,0x00000000U,0x00000000U,0xffffffffU,0xfffffffeU,0xffffffffU,
  26118. 0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU
  26119. };
  26120. #endif /* !WOLFSSL_SP_SMALL */
  26121. /* Invert the number, in Montgomery form, modulo the modulus (prime) of the
  26122. * P384 curve. (r = 1 / a mod m)
  26123. *
  26124. * r Inverse result.
  26125. * a Number to invert.
  26126. * td Temporary data.
  26127. */
  26128. static void sp_384_mont_inv_15(sp_digit* r, const sp_digit* a, sp_digit* td)
  26129. {
  26130. #ifdef WOLFSSL_SP_SMALL
  26131. sp_digit* t = td;
  26132. int i;
  26133. XMEMCPY(t, a, sizeof(sp_digit) * 15);
  26134. for (i=382; i>=0; i--) {
  26135. sp_384_mont_sqr_15(t, t, p384_mod, p384_mp_mod);
  26136. if (p384_mod_minus_2[i / 32] & ((sp_digit)1 << (i % 32)))
  26137. sp_384_mont_mul_15(t, t, a, p384_mod, p384_mp_mod);
  26138. }
  26139. XMEMCPY(r, t, sizeof(sp_digit) * 15);
  26140. #else
  26141. sp_digit* t1 = td;
  26142. sp_digit* t2 = td + 2 * 15;
  26143. sp_digit* t3 = td + 4 * 15;
  26144. sp_digit* t4 = td + 6 * 15;
  26145. sp_digit* t5 = td + 8 * 15;
  26146. /* 0x2 */
  26147. sp_384_mont_sqr_15(t1, a, p384_mod, p384_mp_mod);
  26148. /* 0x3 */
  26149. sp_384_mont_mul_15(t5, t1, a, p384_mod, p384_mp_mod);
  26150. /* 0xc */
  26151. sp_384_mont_sqr_n_15(t1, t5, 2, p384_mod, p384_mp_mod);
  26152. /* 0xf */
  26153. sp_384_mont_mul_15(t2, t5, t1, p384_mod, p384_mp_mod);
  26154. /* 0x1e */
  26155. sp_384_mont_sqr_15(t1, t2, p384_mod, p384_mp_mod);
  26156. /* 0x1f */
  26157. sp_384_mont_mul_15(t4, t1, a, p384_mod, p384_mp_mod);
  26158. /* 0x3e0 */
  26159. sp_384_mont_sqr_n_15(t1, t4, 5, p384_mod, p384_mp_mod);
  26160. /* 0x3ff */
  26161. sp_384_mont_mul_15(t2, t4, t1, p384_mod, p384_mp_mod);
  26162. /* 0x7fe0 */
  26163. sp_384_mont_sqr_n_15(t1, t2, 5, p384_mod, p384_mp_mod);
  26164. /* 0x7fff */
  26165. sp_384_mont_mul_15(t4, t4, t1, p384_mod, p384_mp_mod);
  26166. /* 0x3fff8000 */
  26167. sp_384_mont_sqr_n_15(t1, t4, 15, p384_mod, p384_mp_mod);
  26168. /* 0x3fffffff */
  26169. sp_384_mont_mul_15(t2, t4, t1, p384_mod, p384_mp_mod);
  26170. /* 0xfffffffc */
  26171. sp_384_mont_sqr_n_15(t3, t2, 2, p384_mod, p384_mp_mod);
  26172. /* 0xfffffffd */
  26173. sp_384_mont_mul_15(r, t3, a, p384_mod, p384_mp_mod);
  26174. /* 0xffffffff */
  26175. sp_384_mont_mul_15(t3, t5, t3, p384_mod, p384_mp_mod);
  26176. /* 0xfffffffc0000000 */
  26177. sp_384_mont_sqr_n_15(t1, t2, 30, p384_mod, p384_mp_mod);
  26178. /* 0xfffffffffffffff */
  26179. sp_384_mont_mul_15(t2, t2, t1, p384_mod, p384_mp_mod);
  26180. /* 0xfffffffffffffff000000000000000 */
  26181. sp_384_mont_sqr_n_15(t1, t2, 60, p384_mod, p384_mp_mod);
  26182. /* 0xffffffffffffffffffffffffffffff */
  26183. sp_384_mont_mul_15(t2, t2, t1, p384_mod, p384_mp_mod);
  26184. /* 0xffffffffffffffffffffffffffffff000000000000000000000000000000 */
  26185. sp_384_mont_sqr_n_15(t1, t2, 120, p384_mod, p384_mp_mod);
  26186. /* 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
  26187. sp_384_mont_mul_15(t2, t2, t1, p384_mod, p384_mp_mod);
  26188. /* 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8000 */
  26189. sp_384_mont_sqr_n_15(t1, t2, 15, p384_mod, p384_mp_mod);
  26190. /* 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
  26191. sp_384_mont_mul_15(t2, t4, t1, p384_mod, p384_mp_mod);
  26192. /* 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe00000000 */
  26193. sp_384_mont_sqr_n_15(t1, t2, 33, p384_mod, p384_mp_mod);
  26194. /* 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff */
  26195. sp_384_mont_mul_15(t2, t3, t1, p384_mod, p384_mp_mod);
  26196. /* 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff000000000000000000000000 */
  26197. sp_384_mont_sqr_n_15(t1, t2, 96, p384_mod, p384_mp_mod);
  26198. /* 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffd */
  26199. sp_384_mont_mul_15(r, r, t1, p384_mod, p384_mp_mod);
  26200. #endif /* WOLFSSL_SP_SMALL */
  26201. }
  26202. /* Map the Montgomery form projective coordinate point to an affine point.
  26203. *
  26204. * r Resulting affine coordinate point.
  26205. * p Montgomery form projective coordinate point.
  26206. * t Temporary ordinate data.
  26207. */
  26208. static void sp_384_map_15(sp_point_384* r, const sp_point_384* p,
  26209. sp_digit* t)
  26210. {
  26211. sp_digit* t1 = t;
  26212. sp_digit* t2 = t + 2*15;
  26213. sp_int32 n;
  26214. sp_384_mont_inv_15(t1, p->z, t + 2*15);
  26215. sp_384_mont_sqr_15(t2, t1, p384_mod, p384_mp_mod);
  26216. sp_384_mont_mul_15(t1, t2, t1, p384_mod, p384_mp_mod);
  26217. /* x /= z^2 */
  26218. sp_384_mont_mul_15(r->x, p->x, t2, p384_mod, p384_mp_mod);
  26219. XMEMSET(r->x + 15, 0, sizeof(sp_digit) * 15U);
  26220. sp_384_mont_reduce_15(r->x, p384_mod, p384_mp_mod);
  26221. /* Reduce x to less than modulus */
  26222. n = sp_384_cmp_15(r->x, p384_mod);
  26223. sp_384_cond_sub_15(r->x, r->x, p384_mod, ~(n >> 25));
  26224. sp_384_norm_15(r->x);
  26225. /* y /= z^3 */
  26226. sp_384_mont_mul_15(r->y, p->y, t1, p384_mod, p384_mp_mod);
  26227. XMEMSET(r->y + 15, 0, sizeof(sp_digit) * 15U);
  26228. sp_384_mont_reduce_15(r->y, p384_mod, p384_mp_mod);
  26229. /* Reduce y to less than modulus */
  26230. n = sp_384_cmp_15(r->y, p384_mod);
  26231. sp_384_cond_sub_15(r->y, r->y, p384_mod, ~(n >> 25));
  26232. sp_384_norm_15(r->y);
  26233. XMEMSET(r->z, 0, sizeof(r->z) / 2);
  26234. r->z[0] = 1;
  26235. }
  26236. /* Add two Montgomery form numbers (r = a + b % m).
  26237. *
  26238. * r Result of addition.
  26239. * a First number to add in Montgomery form.
  26240. * b Second number to add in Montgomery form.
  26241. * m Modulus (prime).
  26242. */
  26243. static void sp_384_mont_add_15(sp_digit* r, const sp_digit* a, const sp_digit* b,
  26244. const sp_digit* m)
  26245. {
  26246. sp_digit over;
  26247. (void)sp_384_add_15(r, a, b);
  26248. sp_384_norm_15(r);
  26249. over = r[14] >> 20;
  26250. sp_384_cond_sub_15(r, r, m, ~((over - 1) >> 31));
  26251. sp_384_norm_15(r);
  26252. }
  26253. /* Double a Montgomery form number (r = a + a % m).
  26254. *
  26255. * r Result of doubling.
  26256. * a Number to double in Montgomery form.
  26257. * m Modulus (prime).
  26258. */
  26259. static void sp_384_mont_dbl_15(sp_digit* r, const sp_digit* a, const sp_digit* m)
  26260. {
  26261. sp_digit over;
  26262. (void)sp_384_add_15(r, a, a);
  26263. sp_384_norm_15(r);
  26264. over = r[14] >> 20;
  26265. sp_384_cond_sub_15(r, r, m, ~((over - 1) >> 31));
  26266. sp_384_norm_15(r);
  26267. }
  26268. /* Triple a Montgomery form number (r = a + a + a % m).
  26269. *
  26270. * r Result of Tripling.
  26271. * a Number to triple in Montgomery form.
  26272. * m Modulus (prime).
  26273. */
  26274. static void sp_384_mont_tpl_15(sp_digit* r, const sp_digit* a, const sp_digit* m)
  26275. {
  26276. sp_digit over;
  26277. (void)sp_384_add_15(r, a, a);
  26278. sp_384_norm_15(r);
  26279. over = r[14] >> 20;
  26280. sp_384_cond_sub_15(r, r, m, ~((over - 1) >> 31));
  26281. sp_384_norm_15(r);
  26282. (void)sp_384_add_15(r, r, a);
  26283. sp_384_norm_15(r);
  26284. over = r[14] >> 20;
  26285. sp_384_cond_sub_15(r, r, m, ~((over - 1) >> 31));
  26286. sp_384_norm_15(r);
  26287. }
  26288. #ifdef WOLFSSL_SP_SMALL
  26289. /* Conditionally add a and b using the mask m.
  26290. * m is -1 to add and 0 when not.
  26291. *
  26292. * r A single precision number representing conditional add result.
  26293. * a A single precision number to add with.
  26294. * b A single precision number to add.
  26295. * m Mask value to apply.
  26296. */
  26297. static void sp_384_cond_add_15(sp_digit* r, const sp_digit* a,
  26298. const sp_digit* b, const sp_digit m)
  26299. {
  26300. int i;
  26301. for (i = 0; i < 15; i++) {
  26302. r[i] = a[i] + (b[i] & m);
  26303. }
  26304. }
  26305. #endif /* WOLFSSL_SP_SMALL */
  26306. #ifndef WOLFSSL_SP_SMALL
  26307. /* Conditionally add a and b using the mask m.
  26308. * m is -1 to add and 0 when not.
  26309. *
  26310. * r A single precision number representing conditional add result.
  26311. * a A single precision number to add with.
  26312. * b A single precision number to add.
  26313. * m Mask value to apply.
  26314. */
  26315. static void sp_384_cond_add_15(sp_digit* r, const sp_digit* a,
  26316. const sp_digit* b, const sp_digit m)
  26317. {
  26318. r[ 0] = a[ 0] + (b[ 0] & m);
  26319. r[ 1] = a[ 1] + (b[ 1] & m);
  26320. r[ 2] = a[ 2] + (b[ 2] & m);
  26321. r[ 3] = a[ 3] + (b[ 3] & m);
  26322. r[ 4] = a[ 4] + (b[ 4] & m);
  26323. r[ 5] = a[ 5] + (b[ 5] & m);
  26324. r[ 6] = a[ 6] + (b[ 6] & m);
  26325. r[ 7] = a[ 7] + (b[ 7] & m);
  26326. r[ 8] = a[ 8] + (b[ 8] & m);
  26327. r[ 9] = a[ 9] + (b[ 9] & m);
  26328. r[10] = a[10] + (b[10] & m);
  26329. r[11] = a[11] + (b[11] & m);
  26330. r[12] = a[12] + (b[12] & m);
  26331. r[13] = a[13] + (b[13] & m);
  26332. r[14] = a[14] + (b[14] & m);
  26333. }
  26334. #endif /* !WOLFSSL_SP_SMALL */
  26335. /* Subtract two Montgomery form numbers (r = a - b % m).
  26336. *
  26337. * r Result of subtration.
  26338. * a Number to subtract from in Montgomery form.
  26339. * b Number to subtract with in Montgomery form.
  26340. * m Modulus (prime).
  26341. */
  26342. static void sp_384_mont_sub_15(sp_digit* r, const sp_digit* a, const sp_digit* b,
  26343. const sp_digit* m)
  26344. {
  26345. (void)sp_384_sub_15(r, a, b);
  26346. sp_384_norm_15(r);
  26347. sp_384_cond_add_15(r, r, m, r[14] >> 20);
  26348. sp_384_norm_15(r);
  26349. }
  26350. /* Shift number left one bit.
  26351. * Bottom bit is lost.
  26352. *
  26353. * r Result of shift.
  26354. * a Number to shift.
  26355. */
  26356. SP_NOINLINE static void sp_384_rshift1_15(sp_digit* r, const sp_digit* a)
  26357. {
  26358. #ifdef WOLFSSL_SP_SMALL
  26359. int i;
  26360. for (i=0; i<14; i++) {
  26361. r[i] = (a[i] >> 1) + ((a[i + 1] << 25) & 0x3ffffff);
  26362. }
  26363. #else
  26364. r[0] = (a[0] >> 1) + ((a[1] << 25) & 0x3ffffff);
  26365. r[1] = (a[1] >> 1) + ((a[2] << 25) & 0x3ffffff);
  26366. r[2] = (a[2] >> 1) + ((a[3] << 25) & 0x3ffffff);
  26367. r[3] = (a[3] >> 1) + ((a[4] << 25) & 0x3ffffff);
  26368. r[4] = (a[4] >> 1) + ((a[5] << 25) & 0x3ffffff);
  26369. r[5] = (a[5] >> 1) + ((a[6] << 25) & 0x3ffffff);
  26370. r[6] = (a[6] >> 1) + ((a[7] << 25) & 0x3ffffff);
  26371. r[7] = (a[7] >> 1) + ((a[8] << 25) & 0x3ffffff);
  26372. r[8] = (a[8] >> 1) + ((a[9] << 25) & 0x3ffffff);
  26373. r[9] = (a[9] >> 1) + ((a[10] << 25) & 0x3ffffff);
  26374. r[10] = (a[10] >> 1) + ((a[11] << 25) & 0x3ffffff);
  26375. r[11] = (a[11] >> 1) + ((a[12] << 25) & 0x3ffffff);
  26376. r[12] = (a[12] >> 1) + ((a[13] << 25) & 0x3ffffff);
  26377. r[13] = (a[13] >> 1) + ((a[14] << 25) & 0x3ffffff);
  26378. #endif
  26379. r[14] = a[14] >> 1;
  26380. }
  26381. /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m)
  26382. *
  26383. * r Result of division by 2.
  26384. * a Number to divide.
  26385. * m Modulus (prime).
  26386. */
  26387. static void sp_384_mont_div2_15(sp_digit* r, const sp_digit* a,
  26388. const sp_digit* m)
  26389. {
  26390. sp_384_cond_add_15(r, a, m, 0 - (a[0] & 1));
  26391. sp_384_norm_15(r);
  26392. sp_384_rshift1_15(r, r);
  26393. }
  26394. /* Double the Montgomery form projective point p.
  26395. *
  26396. * r Result of doubling point.
  26397. * p Point to double.
  26398. * t Temporary ordinate data.
  26399. */
  26400. static void sp_384_proj_point_dbl_15(sp_point_384* r, const sp_point_384* p,
  26401. sp_digit* t)
  26402. {
  26403. sp_digit* t1 = t;
  26404. sp_digit* t2 = t + 2*15;
  26405. sp_digit* x;
  26406. sp_digit* y;
  26407. sp_digit* z;
  26408. x = r->x;
  26409. y = r->y;
  26410. z = r->z;
  26411. /* Put infinity into result. */
  26412. if (r != p) {
  26413. r->infinity = p->infinity;
  26414. }
  26415. /* T1 = Z * Z */
  26416. sp_384_mont_sqr_15(t1, p->z, p384_mod, p384_mp_mod);
  26417. /* Z = Y * Z */
  26418. sp_384_mont_mul_15(z, p->y, p->z, p384_mod, p384_mp_mod);
  26419. /* Z = 2Z */
  26420. sp_384_mont_dbl_15(z, z, p384_mod);
  26421. /* T2 = X - T1 */
  26422. sp_384_mont_sub_15(t2, p->x, t1, p384_mod);
  26423. /* T1 = X + T1 */
  26424. sp_384_mont_add_15(t1, p->x, t1, p384_mod);
  26425. /* T2 = T1 * T2 */
  26426. sp_384_mont_mul_15(t2, t1, t2, p384_mod, p384_mp_mod);
  26427. /* T1 = 3T2 */
  26428. sp_384_mont_tpl_15(t1, t2, p384_mod);
  26429. /* Y = 2Y */
  26430. sp_384_mont_dbl_15(y, p->y, p384_mod);
  26431. /* Y = Y * Y */
  26432. sp_384_mont_sqr_15(y, y, p384_mod, p384_mp_mod);
  26433. /* T2 = Y * Y */
  26434. sp_384_mont_sqr_15(t2, y, p384_mod, p384_mp_mod);
  26435. /* T2 = T2/2 */
  26436. sp_384_mont_div2_15(t2, t2, p384_mod);
  26437. /* Y = Y * X */
  26438. sp_384_mont_mul_15(y, y, p->x, p384_mod, p384_mp_mod);
  26439. /* X = T1 * T1 */
  26440. sp_384_mont_sqr_15(x, t1, p384_mod, p384_mp_mod);
  26441. /* X = X - Y */
  26442. sp_384_mont_sub_15(x, x, y, p384_mod);
  26443. /* X = X - Y */
  26444. sp_384_mont_sub_15(x, x, y, p384_mod);
  26445. /* Y = Y - X */
  26446. sp_384_mont_sub_15(y, y, x, p384_mod);
  26447. /* Y = Y * T1 */
  26448. sp_384_mont_mul_15(y, y, t1, p384_mod, p384_mp_mod);
  26449. /* Y = Y - T2 */
  26450. sp_384_mont_sub_15(y, y, t2, p384_mod);
  26451. }
  26452. #ifdef WOLFSSL_SP_NONBLOCK
  26453. typedef struct sp_384_proj_point_dbl_15_ctx {
  26454. int state;
  26455. sp_digit* t1;
  26456. sp_digit* t2;
  26457. sp_digit* x;
  26458. sp_digit* y;
  26459. sp_digit* z;
  26460. } sp_384_proj_point_dbl_15_ctx;
  26461. /* Double the Montgomery form projective point p.
  26462. *
  26463. * r Result of doubling point.
  26464. * p Point to double.
  26465. * t Temporary ordinate data.
  26466. */
  26467. static int sp_384_proj_point_dbl_15_nb(sp_ecc_ctx_t* sp_ctx, sp_point_384* r,
  26468. const sp_point_384* p, sp_digit* t)
  26469. {
  26470. int err = FP_WOULDBLOCK;
  26471. sp_384_proj_point_dbl_15_ctx* ctx = (sp_384_proj_point_dbl_15_ctx*)sp_ctx->data;
  26472. typedef char ctx_size_test[sizeof(sp_384_proj_point_dbl_15_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  26473. (void)sizeof(ctx_size_test);
  26474. switch (ctx->state) {
  26475. case 0:
  26476. ctx->t1 = t;
  26477. ctx->t2 = t + 2*15;
  26478. ctx->x = r->x;
  26479. ctx->y = r->y;
  26480. ctx->z = r->z;
  26481. /* Put infinity into result. */
  26482. if (r != p) {
  26483. r->infinity = p->infinity;
  26484. }
  26485. ctx->state = 1;
  26486. break;
  26487. case 1:
  26488. /* T1 = Z * Z */
  26489. sp_384_mont_sqr_15(ctx->t1, p->z, p384_mod, p384_mp_mod);
  26490. ctx->state = 2;
  26491. break;
  26492. case 2:
  26493. /* Z = Y * Z */
  26494. sp_384_mont_mul_15(ctx->z, p->y, p->z, p384_mod, p384_mp_mod);
  26495. ctx->state = 3;
  26496. break;
  26497. case 3:
  26498. /* Z = 2Z */
  26499. sp_384_mont_dbl_15(ctx->z, ctx->z, p384_mod);
  26500. ctx->state = 4;
  26501. break;
  26502. case 4:
  26503. /* T2 = X - T1 */
  26504. sp_384_mont_sub_15(ctx->t2, p->x, ctx->t1, p384_mod);
  26505. ctx->state = 5;
  26506. break;
  26507. case 5:
  26508. /* T1 = X + T1 */
  26509. sp_384_mont_add_15(ctx->t1, p->x, ctx->t1, p384_mod);
  26510. ctx->state = 6;
  26511. break;
  26512. case 6:
  26513. /* T2 = T1 * T2 */
  26514. sp_384_mont_mul_15(ctx->t2, ctx->t1, ctx->t2, p384_mod, p384_mp_mod);
  26515. ctx->state = 7;
  26516. break;
  26517. case 7:
  26518. /* T1 = 3T2 */
  26519. sp_384_mont_tpl_15(ctx->t1, ctx->t2, p384_mod);
  26520. ctx->state = 8;
  26521. break;
  26522. case 8:
  26523. /* Y = 2Y */
  26524. sp_384_mont_dbl_15(ctx->y, p->y, p384_mod);
  26525. ctx->state = 9;
  26526. break;
  26527. case 9:
  26528. /* Y = Y * Y */
  26529. sp_384_mont_sqr_15(ctx->y, ctx->y, p384_mod, p384_mp_mod);
  26530. ctx->state = 10;
  26531. break;
  26532. case 10:
  26533. /* T2 = Y * Y */
  26534. sp_384_mont_sqr_15(ctx->t2, ctx->y, p384_mod, p384_mp_mod);
  26535. ctx->state = 11;
  26536. break;
  26537. case 11:
  26538. /* T2 = T2/2 */
  26539. sp_384_mont_div2_15(ctx->t2, ctx->t2, p384_mod);
  26540. ctx->state = 12;
  26541. break;
  26542. case 12:
  26543. /* Y = Y * X */
  26544. sp_384_mont_mul_15(ctx->y, ctx->y, p->x, p384_mod, p384_mp_mod);
  26545. ctx->state = 13;
  26546. break;
  26547. case 13:
  26548. /* X = T1 * T1 */
  26549. sp_384_mont_sqr_15(ctx->x, ctx->t1, p384_mod, p384_mp_mod);
  26550. ctx->state = 14;
  26551. break;
  26552. case 14:
  26553. /* X = X - Y */
  26554. sp_384_mont_sub_15(ctx->x, ctx->x, ctx->y, p384_mod);
  26555. ctx->state = 15;
  26556. break;
  26557. case 15:
  26558. /* X = X - Y */
  26559. sp_384_mont_sub_15(ctx->x, ctx->x, ctx->y, p384_mod);
  26560. ctx->state = 16;
  26561. break;
  26562. case 16:
  26563. /* Y = Y - X */
  26564. sp_384_mont_sub_15(ctx->y, ctx->y, ctx->x, p384_mod);
  26565. ctx->state = 17;
  26566. break;
  26567. case 17:
  26568. /* Y = Y * T1 */
  26569. sp_384_mont_mul_15(ctx->y, ctx->y, ctx->t1, p384_mod, p384_mp_mod);
  26570. ctx->state = 18;
  26571. break;
  26572. case 18:
  26573. /* Y = Y - T2 */
  26574. sp_384_mont_sub_15(ctx->y, ctx->y, ctx->t2, p384_mod);
  26575. ctx->state = 19;
  26576. /* fall-through */
  26577. case 19:
  26578. err = MP_OKAY;
  26579. break;
  26580. }
  26581. if (err == MP_OKAY && ctx->state != 19) {
  26582. err = FP_WOULDBLOCK;
  26583. }
  26584. return err;
  26585. }
  26586. #endif /* WOLFSSL_SP_NONBLOCK */
  26587. /* Compare two numbers to determine if they are equal.
  26588. * Constant time implementation.
  26589. *
  26590. * a First number to compare.
  26591. * b Second number to compare.
  26592. * returns 1 when equal and 0 otherwise.
  26593. */
  26594. static int sp_384_cmp_equal_15(const sp_digit* a, const sp_digit* b)
  26595. {
  26596. return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2]) |
  26597. (a[3] ^ b[3]) | (a[4] ^ b[4]) | (a[5] ^ b[5]) |
  26598. (a[6] ^ b[6]) | (a[7] ^ b[7]) | (a[8] ^ b[8]) |
  26599. (a[9] ^ b[9]) | (a[10] ^ b[10]) | (a[11] ^ b[11]) |
  26600. (a[12] ^ b[12]) | (a[13] ^ b[13]) | (a[14] ^ b[14])) == 0;
  26601. }
  26602. /* Returns 1 if the number of zero.
  26603. * Implementation is constant time.
  26604. *
  26605. * a Number to check.
  26606. * returns 1 if the number is zero and 0 otherwise.
  26607. */
  26608. static int sp_384_iszero_15(const sp_digit* a)
  26609. {
  26610. return (a[0] | a[1] | a[2] | a[3] | a[4] | a[5] | a[6] | a[7] |
  26611. a[8] | a[9] | a[10] | a[11] | a[12] | a[13] | a[14]) == 0;
  26612. }
  26613. /* Add two Montgomery form projective points.
  26614. *
  26615. * r Result of addition.
  26616. * p First point to add.
  26617. * q Second point to add.
  26618. * t Temporary ordinate data.
  26619. */
  26620. static void sp_384_proj_point_add_15(sp_point_384* r,
  26621. const sp_point_384* p, const sp_point_384* q, sp_digit* t)
  26622. {
  26623. sp_digit* t6 = t;
  26624. sp_digit* t1 = t + 2*15;
  26625. sp_digit* t2 = t + 4*15;
  26626. sp_digit* t3 = t + 6*15;
  26627. sp_digit* t4 = t + 8*15;
  26628. sp_digit* t5 = t + 10*15;
  26629. /* U1 = X1*Z2^2 */
  26630. sp_384_mont_sqr_15(t1, q->z, p384_mod, p384_mp_mod);
  26631. sp_384_mont_mul_15(t3, t1, q->z, p384_mod, p384_mp_mod);
  26632. sp_384_mont_mul_15(t1, t1, p->x, p384_mod, p384_mp_mod);
  26633. /* U2 = X2*Z1^2 */
  26634. sp_384_mont_sqr_15(t2, p->z, p384_mod, p384_mp_mod);
  26635. sp_384_mont_mul_15(t4, t2, p->z, p384_mod, p384_mp_mod);
  26636. sp_384_mont_mul_15(t2, t2, q->x, p384_mod, p384_mp_mod);
  26637. /* S1 = Y1*Z2^3 */
  26638. sp_384_mont_mul_15(t3, t3, p->y, p384_mod, p384_mp_mod);
  26639. /* S2 = Y2*Z1^3 */
  26640. sp_384_mont_mul_15(t4, t4, q->y, p384_mod, p384_mp_mod);
  26641. /* Check double */
  26642. if ((~p->infinity) & (~q->infinity) &
  26643. sp_384_cmp_equal_15(t2, t1) &
  26644. sp_384_cmp_equal_15(t4, t3)) {
  26645. sp_384_proj_point_dbl_15(r, p, t);
  26646. }
  26647. else {
  26648. sp_digit* x = t6;
  26649. sp_digit* y = t1;
  26650. sp_digit* z = t2;
  26651. /* H = U2 - U1 */
  26652. sp_384_mont_sub_15(t2, t2, t1, p384_mod);
  26653. /* R = S2 - S1 */
  26654. sp_384_mont_sub_15(t4, t4, t3, p384_mod);
  26655. /* X3 = R^2 - H^3 - 2*U1*H^2 */
  26656. sp_384_mont_sqr_15(t5, t2, p384_mod, p384_mp_mod);
  26657. sp_384_mont_mul_15(y, t1, t5, p384_mod, p384_mp_mod);
  26658. sp_384_mont_mul_15(t5, t5, t2, p384_mod, p384_mp_mod);
  26659. /* Z3 = H*Z1*Z2 */
  26660. sp_384_mont_mul_15(z, p->z, t2, p384_mod, p384_mp_mod);
  26661. sp_384_mont_mul_15(z, z, q->z, p384_mod, p384_mp_mod);
  26662. sp_384_mont_sqr_15(x, t4, p384_mod, p384_mp_mod);
  26663. sp_384_mont_sub_15(x, x, t5, p384_mod);
  26664. sp_384_mont_mul_15(t5, t5, t3, p384_mod, p384_mp_mod);
  26665. sp_384_mont_dbl_15(t3, y, p384_mod);
  26666. sp_384_mont_sub_15(x, x, t3, p384_mod);
  26667. /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
  26668. sp_384_mont_sub_15(y, y, x, p384_mod);
  26669. sp_384_mont_mul_15(y, y, t4, p384_mod, p384_mp_mod);
  26670. sp_384_mont_sub_15(y, y, t5, p384_mod);
  26671. {
  26672. int i;
  26673. sp_digit maskp = 0 - (q->infinity & (!p->infinity));
  26674. sp_digit maskq = 0 - (p->infinity & (!q->infinity));
  26675. sp_digit maskt = ~(maskp | maskq);
  26676. sp_digit inf = (sp_digit)(p->infinity & q->infinity);
  26677. for (i = 0; i < 15; i++) {
  26678. r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
  26679. (x[i] & maskt);
  26680. }
  26681. for (i = 0; i < 15; i++) {
  26682. r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
  26683. (y[i] & maskt);
  26684. }
  26685. for (i = 0; i < 15; i++) {
  26686. r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
  26687. (z[i] & maskt);
  26688. }
  26689. r->z[0] |= inf;
  26690. r->infinity = (word32)inf;
  26691. }
  26692. }
  26693. }
  26694. #ifdef WOLFSSL_SP_NONBLOCK
  26695. typedef struct sp_384_proj_point_add_15_ctx {
  26696. int state;
  26697. sp_384_proj_point_dbl_15_ctx dbl_ctx;
  26698. const sp_point_384* ap[2];
  26699. sp_point_384* rp[2];
  26700. sp_digit* t1;
  26701. sp_digit* t2;
  26702. sp_digit* t3;
  26703. sp_digit* t4;
  26704. sp_digit* t5;
  26705. sp_digit* t6;
  26706. sp_digit* x;
  26707. sp_digit* y;
  26708. sp_digit* z;
  26709. } sp_384_proj_point_add_15_ctx;
  26710. /* Add two Montgomery form projective points.
  26711. *
  26712. * r Result of addition.
  26713. * p First point to add.
  26714. * q Second point to add.
  26715. * t Temporary ordinate data.
  26716. */
  26717. static int sp_384_proj_point_add_15_nb(sp_ecc_ctx_t* sp_ctx, sp_point_384* r,
  26718. const sp_point_384* p, const sp_point_384* q, sp_digit* t)
  26719. {
  26720. int err = FP_WOULDBLOCK;
  26721. sp_384_proj_point_add_15_ctx* ctx = (sp_384_proj_point_add_15_ctx*)sp_ctx->data;
  26722. /* Ensure only the first point is the same as the result. */
  26723. if (q == r) {
  26724. const sp_point_384* a = p;
  26725. p = q;
  26726. q = a;
  26727. }
  26728. typedef char ctx_size_test[sizeof(sp_384_proj_point_add_15_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  26729. (void)sizeof(ctx_size_test);
  26730. switch (ctx->state) {
  26731. case 0: /* INIT */
  26732. ctx->t6 = t;
  26733. ctx->t1 = t + 2*15;
  26734. ctx->t2 = t + 4*15;
  26735. ctx->t3 = t + 6*15;
  26736. ctx->t4 = t + 8*15;
  26737. ctx->t5 = t + 10*15;
  26738. ctx->x = ctx->t6;
  26739. ctx->y = ctx->t1;
  26740. ctx->z = ctx->t2;
  26741. ctx->state = 1;
  26742. break;
  26743. case 1:
  26744. /* U1 = X1*Z2^2 */
  26745. sp_384_mont_sqr_15(ctx->t1, q->z, p384_mod, p384_mp_mod);
  26746. ctx->state = 2;
  26747. break;
  26748. case 2:
  26749. sp_384_mont_mul_15(ctx->t3, ctx->t1, q->z, p384_mod, p384_mp_mod);
  26750. ctx->state = 3;
  26751. break;
  26752. case 3:
  26753. sp_384_mont_mul_15(ctx->t1, ctx->t1, p->x, p384_mod, p384_mp_mod);
  26754. ctx->state = 4;
  26755. break;
  26756. case 4:
  26757. /* U2 = X2*Z1^2 */
  26758. sp_384_mont_sqr_15(ctx->t2, p->z, p384_mod, p384_mp_mod);
  26759. ctx->state = 5;
  26760. break;
  26761. case 5:
  26762. sp_384_mont_mul_15(ctx->t4, ctx->t2, p->z, p384_mod, p384_mp_mod);
  26763. ctx->state = 6;
  26764. break;
  26765. case 6:
  26766. sp_384_mont_mul_15(ctx->t2, ctx->t2, q->x, p384_mod, p384_mp_mod);
  26767. ctx->state = 7;
  26768. break;
  26769. case 7:
  26770. /* S1 = Y1*Z2^3 */
  26771. sp_384_mont_mul_15(ctx->t3, ctx->t3, p->y, p384_mod, p384_mp_mod);
  26772. ctx->state = 8;
  26773. break;
  26774. case 8:
  26775. /* S2 = Y2*Z1^3 */
  26776. sp_384_mont_mul_15(ctx->t4, ctx->t4, q->y, p384_mod, p384_mp_mod);
  26777. ctx->state = 9;
  26778. break;
  26779. case 9:
  26780. /* Check double */
  26781. if ((~p->infinity) & (~q->infinity) &
  26782. sp_384_cmp_equal_15(ctx->t2, ctx->t1) &
  26783. sp_384_cmp_equal_15(ctx->t4, ctx->t3)) {
  26784. XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
  26785. sp_384_proj_point_dbl_15(r, p, t);
  26786. ctx->state = 25;
  26787. }
  26788. else {
  26789. ctx->state = 10;
  26790. }
  26791. break;
  26792. case 10:
  26793. /* H = U2 - U1 */
  26794. sp_384_mont_sub_15(ctx->t2, ctx->t2, ctx->t1, p384_mod);
  26795. ctx->state = 11;
  26796. break;
  26797. case 11:
  26798. /* R = S2 - S1 */
  26799. sp_384_mont_sub_15(ctx->t4, ctx->t4, ctx->t3, p384_mod);
  26800. ctx->state = 12;
  26801. break;
  26802. case 12:
  26803. /* X3 = R^2 - H^3 - 2*U1*H^2 */
  26804. sp_384_mont_sqr_15(ctx->t5, ctx->t2, p384_mod, p384_mp_mod);
  26805. ctx->state = 13;
  26806. break;
  26807. case 13:
  26808. sp_384_mont_mul_15(ctx->y, ctx->t1, ctx->t5, p384_mod, p384_mp_mod);
  26809. ctx->state = 14;
  26810. break;
  26811. case 14:
  26812. sp_384_mont_mul_15(ctx->t5, ctx->t5, ctx->t2, p384_mod, p384_mp_mod);
  26813. ctx->state = 15;
  26814. break;
  26815. case 15:
  26816. /* Z3 = H*Z1*Z2 */
  26817. sp_384_mont_mul_15(ctx->z, p->z, ctx->t2, p384_mod, p384_mp_mod);
  26818. ctx->state = 16;
  26819. break;
  26820. case 16:
  26821. sp_384_mont_mul_15(ctx->z, ctx->z, q->z, p384_mod, p384_mp_mod);
  26822. ctx->state = 17;
  26823. break;
  26824. case 17:
  26825. sp_384_mont_sqr_15(ctx->x, ctx->t4, p384_mod, p384_mp_mod);
  26826. ctx->state = 18;
  26827. break;
  26828. case 18:
  26829. sp_384_mont_sub_15(ctx->x, ctx->x, ctx->t5, p384_mod);
  26830. ctx->state = 19;
  26831. break;
  26832. case 19:
  26833. sp_384_mont_mul_15(ctx->t5, ctx->t5, ctx->t3, p384_mod, p384_mp_mod);
  26834. ctx->state = 20;
  26835. break;
  26836. case 20:
  26837. sp_384_mont_dbl_15(ctx->t3, ctx->y, p384_mod);
  26838. sp_384_mont_sub_15(ctx->x, ctx->x, ctx->t3, p384_mod);
  26839. ctx->state = 21;
  26840. break;
  26841. case 21:
  26842. /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
  26843. sp_384_mont_sub_15(ctx->y, ctx->y, ctx->x, p384_mod);
  26844. ctx->state = 22;
  26845. break;
  26846. case 22:
  26847. sp_384_mont_mul_15(ctx->y, ctx->y, ctx->t4, p384_mod, p384_mp_mod);
  26848. ctx->state = 23;
  26849. break;
  26850. case 23:
  26851. sp_384_mont_sub_15(ctx->y, ctx->y, ctx->t5, p384_mod);
  26852. ctx->state = 24;
  26853. break;
  26854. case 24:
  26855. {
  26856. {
  26857. int i;
  26858. sp_digit maskp = 0 - (q->infinity & (!p->infinity));
  26859. sp_digit maskq = 0 - (p->infinity & (!q->infinity));
  26860. sp_digit maskt = ~(maskp | maskq);
  26861. sp_digit inf = (sp_digit)(p->infinity & q->infinity);
  26862. for (i = 0; i < 15; i++) {
  26863. r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
  26864. (ctx->x[i] & maskt);
  26865. }
  26866. for (i = 0; i < 15; i++) {
  26867. r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
  26868. (ctx->y[i] & maskt);
  26869. }
  26870. for (i = 0; i < 15; i++) {
  26871. r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
  26872. (ctx->z[i] & maskt);
  26873. }
  26874. r->z[0] |= inf;
  26875. r->infinity = (word32)inf;
  26876. }
  26877. ctx->state = 25;
  26878. break;
  26879. }
  26880. case 25:
  26881. err = MP_OKAY;
  26882. break;
  26883. }
  26884. if (err == MP_OKAY && ctx->state != 25) {
  26885. err = FP_WOULDBLOCK;
  26886. }
  26887. return err;
  26888. }
  26889. #endif /* WOLFSSL_SP_NONBLOCK */
  26890. /* Multiply a number by Montgomery normalizer mod modulus (prime).
  26891. *
  26892. * r The resulting Montgomery form number.
  26893. * a The number to convert.
  26894. * m The modulus (prime).
  26895. * returns MEMORY_E when memory allocation fails and MP_OKAY otherwise.
  26896. */
  26897. static int sp_384_mod_mul_norm_15(sp_digit* r, const sp_digit* a, const sp_digit* m)
  26898. {
  26899. #ifdef WOLFSSL_SP_SMALL_STACK
  26900. int64_t* t = NULL;
  26901. #else
  26902. int64_t t[2 * 12];
  26903. #endif
  26904. int64_t* a32 = NULL;
  26905. int64_t o;
  26906. int err = MP_OKAY;
  26907. (void)m;
  26908. #ifdef WOLFSSL_SP_SMALL_STACK
  26909. t = (int64_t*)XMALLOC(sizeof(int64_t) * 2 * 12, NULL, DYNAMIC_TYPE_ECC);
  26910. if (t == NULL)
  26911. err = MEMORY_E;
  26912. #endif
  26913. if (err == MP_OKAY) {
  26914. a32 = t + 12;
  26915. a32[0] = a[0];
  26916. a32[0] |= a[1] << 26U;
  26917. a32[0] &= 0xffffffffL;
  26918. a32[1] = (a[1] >> 6);
  26919. a32[1] |= a[2] << 20U;
  26920. a32[1] &= 0xffffffffL;
  26921. a32[2] = (a[2] >> 12);
  26922. a32[2] |= a[3] << 14U;
  26923. a32[2] &= 0xffffffffL;
  26924. a32[3] = (a[3] >> 18);
  26925. a32[3] |= a[4] << 8U;
  26926. a32[3] &= 0xffffffffL;
  26927. a32[4] = (a[4] >> 24);
  26928. a32[4] |= a[5] << 2U;
  26929. a32[4] |= a[6] << 28U;
  26930. a32[4] &= 0xffffffffL;
  26931. a32[5] = (a[6] >> 4);
  26932. a32[5] |= a[7] << 22U;
  26933. a32[5] &= 0xffffffffL;
  26934. a32[6] = (a[7] >> 10);
  26935. a32[6] |= a[8] << 16U;
  26936. a32[6] &= 0xffffffffL;
  26937. a32[7] = (a[8] >> 16);
  26938. a32[7] |= a[9] << 10U;
  26939. a32[7] &= 0xffffffffL;
  26940. a32[8] = (a[9] >> 22);
  26941. a32[8] |= a[10] << 4U;
  26942. a32[8] |= a[11] << 30U;
  26943. a32[8] &= 0xffffffffL;
  26944. a32[9] = (a[11] >> 2);
  26945. a32[9] |= a[12] << 24U;
  26946. a32[9] &= 0xffffffffL;
  26947. a32[10] = (a[12] >> 8);
  26948. a32[10] |= a[13] << 18U;
  26949. a32[10] &= 0xffffffffL;
  26950. a32[11] = (a[13] >> 14);
  26951. a32[11] |= a[14] << 12U;
  26952. a32[11] &= 0xffffffffL;
  26953. /* 1 0 0 0 0 0 0 0 1 1 0 -1 */
  26954. t[0] = 0 + a32[0] + a32[8] + a32[9] - a32[11];
  26955. /* -1 1 0 0 0 0 0 0 -1 0 1 1 */
  26956. t[1] = 0 - a32[0] + a32[1] - a32[8] + a32[10] + a32[11];
  26957. /* 0 -1 1 0 0 0 0 0 0 -1 0 1 */
  26958. t[2] = 0 - a32[1] + a32[2] - a32[9] + a32[11];
  26959. /* 1 0 -1 1 0 0 0 0 1 1 -1 -1 */
  26960. t[3] = 0 + a32[0] - a32[2] + a32[3] + a32[8] + a32[9] - a32[10] - a32[11];
  26961. /* 1 1 0 -1 1 0 0 0 1 2 1 -2 */
  26962. t[4] = 0 + a32[0] + a32[1] - a32[3] + a32[4] + a32[8] + 2 * a32[9] + a32[10] - 2 * a32[11];
  26963. /* 0 1 1 0 -1 1 0 0 0 1 2 1 */
  26964. t[5] = 0 + a32[1] + a32[2] - a32[4] + a32[5] + a32[9] + 2 * a32[10] + a32[11];
  26965. /* 0 0 1 1 0 -1 1 0 0 0 1 2 */
  26966. t[6] = 0 + a32[2] + a32[3] - a32[5] + a32[6] + a32[10] + 2 * a32[11];
  26967. /* 0 0 0 1 1 0 -1 1 0 0 0 1 */
  26968. t[7] = 0 + a32[3] + a32[4] - a32[6] + a32[7] + a32[11];
  26969. /* 0 0 0 0 1 1 0 -1 1 0 0 0 */
  26970. t[8] = 0 + a32[4] + a32[5] - a32[7] + a32[8];
  26971. /* 0 0 0 0 0 1 1 0 -1 1 0 0 */
  26972. t[9] = 0 + a32[5] + a32[6] - a32[8] + a32[9];
  26973. /* 0 0 0 0 0 0 1 1 0 -1 1 0 */
  26974. t[10] = 0 + a32[6] + a32[7] - a32[9] + a32[10];
  26975. /* 0 0 0 0 0 0 0 1 1 0 -1 1 */
  26976. t[11] = 0 + a32[7] + a32[8] - a32[10] + a32[11];
  26977. t[1] += t[0] >> 32; t[0] &= 0xffffffff;
  26978. t[2] += t[1] >> 32; t[1] &= 0xffffffff;
  26979. t[3] += t[2] >> 32; t[2] &= 0xffffffff;
  26980. t[4] += t[3] >> 32; t[3] &= 0xffffffff;
  26981. t[5] += t[4] >> 32; t[4] &= 0xffffffff;
  26982. t[6] += t[5] >> 32; t[5] &= 0xffffffff;
  26983. t[7] += t[6] >> 32; t[6] &= 0xffffffff;
  26984. t[8] += t[7] >> 32; t[7] &= 0xffffffff;
  26985. t[9] += t[8] >> 32; t[8] &= 0xffffffff;
  26986. t[10] += t[9] >> 32; t[9] &= 0xffffffff;
  26987. t[11] += t[10] >> 32; t[10] &= 0xffffffff;
  26988. o = t[11] >> 32; t[11] &= 0xffffffff;
  26989. t[0] += o;
  26990. t[1] -= o;
  26991. t[3] += o;
  26992. t[4] += o;
  26993. t[1] += t[0] >> 32; t[0] &= 0xffffffff;
  26994. t[2] += t[1] >> 32; t[1] &= 0xffffffff;
  26995. t[3] += t[2] >> 32; t[2] &= 0xffffffff;
  26996. t[4] += t[3] >> 32; t[3] &= 0xffffffff;
  26997. t[5] += t[4] >> 32; t[4] &= 0xffffffff;
  26998. t[6] += t[5] >> 32; t[5] &= 0xffffffff;
  26999. t[7] += t[6] >> 32; t[6] &= 0xffffffff;
  27000. t[8] += t[7] >> 32; t[7] &= 0xffffffff;
  27001. t[9] += t[8] >> 32; t[8] &= 0xffffffff;
  27002. t[10] += t[9] >> 32; t[9] &= 0xffffffff;
  27003. t[11] += t[10] >> 32; t[10] &= 0xffffffff;
  27004. r[0] = (sp_digit)(t[0]) & 0x3ffffffL;
  27005. r[1] = (sp_digit)(t[0] >> 26U);
  27006. r[1] |= (sp_digit)(t[1] << 6U);
  27007. r[1] &= 0x3ffffffL;
  27008. r[2] = (sp_digit)(t[1] >> 20U);
  27009. r[2] |= (sp_digit)(t[2] << 12U);
  27010. r[2] &= 0x3ffffffL;
  27011. r[3] = (sp_digit)(t[2] >> 14U);
  27012. r[3] |= (sp_digit)(t[3] << 18U);
  27013. r[3] &= 0x3ffffffL;
  27014. r[4] = (sp_digit)(t[3] >> 8U);
  27015. r[4] |= (sp_digit)(t[4] << 24U);
  27016. r[4] &= 0x3ffffffL;
  27017. r[5] = (sp_digit)(t[4] >> 2U) & 0x3ffffffL;
  27018. r[6] = (sp_digit)(t[4] >> 28U);
  27019. r[6] |= (sp_digit)(t[5] << 4U);
  27020. r[6] &= 0x3ffffffL;
  27021. r[7] = (sp_digit)(t[5] >> 22U);
  27022. r[7] |= (sp_digit)(t[6] << 10U);
  27023. r[7] &= 0x3ffffffL;
  27024. r[8] = (sp_digit)(t[6] >> 16U);
  27025. r[8] |= (sp_digit)(t[7] << 16U);
  27026. r[8] &= 0x3ffffffL;
  27027. r[9] = (sp_digit)(t[7] >> 10U);
  27028. r[9] |= (sp_digit)(t[8] << 22U);
  27029. r[9] &= 0x3ffffffL;
  27030. r[10] = (sp_digit)(t[8] >> 4U) & 0x3ffffffL;
  27031. r[11] = (sp_digit)(t[8] >> 30U);
  27032. r[11] |= (sp_digit)(t[9] << 2U);
  27033. r[11] &= 0x3ffffffL;
  27034. r[12] = (sp_digit)(t[9] >> 24U);
  27035. r[12] |= (sp_digit)(t[10] << 8U);
  27036. r[12] &= 0x3ffffffL;
  27037. r[13] = (sp_digit)(t[10] >> 18U);
  27038. r[13] |= (sp_digit)(t[11] << 14U);
  27039. r[13] &= 0x3ffffffL;
  27040. r[14] = (sp_digit)(t[11] >> 12U);
  27041. }
  27042. #ifdef WOLFSSL_SP_SMALL_STACK
  27043. if (t != NULL)
  27044. XFREE(t, NULL, DYNAMIC_TYPE_ECC);
  27045. #endif
  27046. return err;
  27047. }
  27048. #ifdef WOLFSSL_SP_SMALL
  27049. /* Multiply the point by the scalar and return the result.
  27050. * If map is true then convert result to affine coordinates.
  27051. *
  27052. * Small implementation using add and double that is cache attack resistant but
  27053. * allocates memory rather than use large stacks.
  27054. * 384 adds and doubles.
  27055. *
  27056. * r Resulting point.
  27057. * g Point to multiply.
  27058. * k Scalar to multiply by.
  27059. * map Indicates whether to convert result to affine.
  27060. * ct Constant time required.
  27061. * heap Heap to use for allocation.
  27062. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  27063. */
  27064. static int sp_384_ecc_mulmod_15(sp_point_384* r, const sp_point_384* g,
  27065. const sp_digit* k, int map, int ct, void* heap)
  27066. {
  27067. #ifdef WOLFSSL_SP_SMALL_STACK
  27068. sp_point_384* t = NULL;
  27069. sp_digit* tmp = NULL;
  27070. #else
  27071. sp_point_384 t[3];
  27072. sp_digit tmp[2 * 15 * 6];
  27073. #endif
  27074. sp_digit n;
  27075. int i;
  27076. int c;
  27077. int y;
  27078. int err = MP_OKAY;
  27079. /* Implementation is constant time. */
  27080. (void)ct;
  27081. (void)heap;
  27082. #ifdef WOLFSSL_SP_SMALL_STACK
  27083. t = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 3, heap,
  27084. DYNAMIC_TYPE_ECC);
  27085. if (t == NULL)
  27086. err = MEMORY_E;
  27087. if (err == MP_OKAY) {
  27088. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 6, heap,
  27089. DYNAMIC_TYPE_ECC);
  27090. if (tmp == NULL)
  27091. err = MEMORY_E;
  27092. }
  27093. #endif
  27094. if (err == MP_OKAY) {
  27095. XMEMSET(t, 0, sizeof(sp_point_384) * 3);
  27096. /* t[0] = {0, 0, 1} * norm */
  27097. t[0].infinity = 1;
  27098. /* t[1] = {g->x, g->y, g->z} * norm */
  27099. err = sp_384_mod_mul_norm_15(t[1].x, g->x, p384_mod);
  27100. }
  27101. if (err == MP_OKAY)
  27102. err = sp_384_mod_mul_norm_15(t[1].y, g->y, p384_mod);
  27103. if (err == MP_OKAY)
  27104. err = sp_384_mod_mul_norm_15(t[1].z, g->z, p384_mod);
  27105. if (err == MP_OKAY) {
  27106. i = 14;
  27107. c = 20;
  27108. n = k[i--] << (26 - c);
  27109. for (; ; c--) {
  27110. if (c == 0) {
  27111. if (i == -1)
  27112. break;
  27113. n = k[i--];
  27114. c = 26;
  27115. }
  27116. y = (n >> 25) & 1;
  27117. n <<= 1;
  27118. sp_384_proj_point_add_15(&t[y^1], &t[0], &t[1], tmp);
  27119. XMEMCPY(&t[2], (void*)(((size_t)&t[0] & addr_mask[y^1]) +
  27120. ((size_t)&t[1] & addr_mask[y])),
  27121. sizeof(sp_point_384));
  27122. sp_384_proj_point_dbl_15(&t[2], &t[2], tmp);
  27123. XMEMCPY((void*)(((size_t)&t[0] & addr_mask[y^1]) +
  27124. ((size_t)&t[1] & addr_mask[y])), &t[2],
  27125. sizeof(sp_point_384));
  27126. }
  27127. if (map != 0) {
  27128. sp_384_map_15(r, &t[0], tmp);
  27129. }
  27130. else {
  27131. XMEMCPY(r, &t[0], sizeof(sp_point_384));
  27132. }
  27133. }
  27134. #ifdef WOLFSSL_SP_SMALL_STACK
  27135. if (tmp != NULL)
  27136. #endif
  27137. {
  27138. ForceZero(tmp, sizeof(sp_digit) * 2 * 15 * 6);
  27139. #ifdef WOLFSSL_SP_SMALL_STACK
  27140. XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
  27141. #endif
  27142. }
  27143. #ifdef WOLFSSL_SP_SMALL_STACK
  27144. if (t != NULL)
  27145. #endif
  27146. {
  27147. ForceZero(t, sizeof(sp_point_384) * 3);
  27148. #ifdef WOLFSSL_SP_SMALL_STACK
  27149. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  27150. #endif
  27151. }
  27152. return err;
  27153. }
  27154. #ifdef WOLFSSL_SP_NONBLOCK
  27155. typedef struct sp_384_ecc_mulmod_15_ctx {
  27156. int state;
  27157. union {
  27158. sp_384_proj_point_dbl_15_ctx dbl_ctx;
  27159. sp_384_proj_point_add_15_ctx add_ctx;
  27160. };
  27161. sp_point_384 t[3];
  27162. sp_digit tmp[2 * 15 * 6];
  27163. sp_digit n;
  27164. int i;
  27165. int c;
  27166. int y;
  27167. } sp_384_ecc_mulmod_15_ctx;
  27168. static int sp_384_ecc_mulmod_15_nb(sp_ecc_ctx_t* sp_ctx, sp_point_384* r,
  27169. const sp_point_384* g, const sp_digit* k, int map, int ct, void* heap)
  27170. {
  27171. int err = FP_WOULDBLOCK;
  27172. sp_384_ecc_mulmod_15_ctx* ctx = (sp_384_ecc_mulmod_15_ctx*)sp_ctx->data;
  27173. typedef char ctx_size_test[sizeof(sp_384_ecc_mulmod_15_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  27174. (void)sizeof(ctx_size_test);
  27175. /* Implementation is constant time. */
  27176. (void)ct;
  27177. switch (ctx->state) {
  27178. case 0: /* INIT */
  27179. XMEMSET(ctx->t, 0, sizeof(sp_point_384) * 3);
  27180. ctx->i = 14;
  27181. ctx->c = 20;
  27182. ctx->n = k[ctx->i--] << (26 - ctx->c);
  27183. /* t[0] = {0, 0, 1} * norm */
  27184. ctx->t[0].infinity = 1;
  27185. ctx->state = 1;
  27186. break;
  27187. case 1: /* T1X */
  27188. /* t[1] = {g->x, g->y, g->z} * norm */
  27189. err = sp_384_mod_mul_norm_15(ctx->t[1].x, g->x, p384_mod);
  27190. ctx->state = 2;
  27191. break;
  27192. case 2: /* T1Y */
  27193. err = sp_384_mod_mul_norm_15(ctx->t[1].y, g->y, p384_mod);
  27194. ctx->state = 3;
  27195. break;
  27196. case 3: /* T1Z */
  27197. err = sp_384_mod_mul_norm_15(ctx->t[1].z, g->z, p384_mod);
  27198. ctx->state = 4;
  27199. break;
  27200. case 4: /* ADDPREP */
  27201. if (ctx->c == 0) {
  27202. if (ctx->i == -1) {
  27203. ctx->state = 7;
  27204. break;
  27205. }
  27206. ctx->n = k[ctx->i--];
  27207. ctx->c = 26;
  27208. }
  27209. ctx->y = (ctx->n >> 25) & 1;
  27210. ctx->n <<= 1;
  27211. XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
  27212. ctx->state = 5;
  27213. break;
  27214. case 5: /* ADD */
  27215. err = sp_384_proj_point_add_15_nb((sp_ecc_ctx_t*)&ctx->add_ctx,
  27216. &ctx->t[ctx->y^1], &ctx->t[0], &ctx->t[1], ctx->tmp);
  27217. if (err == MP_OKAY) {
  27218. XMEMCPY(&ctx->t[2], (void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
  27219. ((size_t)&ctx->t[1] & addr_mask[ctx->y])),
  27220. sizeof(sp_point_384));
  27221. XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
  27222. ctx->state = 6;
  27223. }
  27224. break;
  27225. case 6: /* DBL */
  27226. err = sp_384_proj_point_dbl_15_nb((sp_ecc_ctx_t*)&ctx->dbl_ctx, &ctx->t[2],
  27227. &ctx->t[2], ctx->tmp);
  27228. if (err == MP_OKAY) {
  27229. XMEMCPY((void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
  27230. ((size_t)&ctx->t[1] & addr_mask[ctx->y])), &ctx->t[2],
  27231. sizeof(sp_point_384));
  27232. ctx->state = 4;
  27233. ctx->c--;
  27234. }
  27235. break;
  27236. case 7: /* MAP */
  27237. if (map != 0) {
  27238. sp_384_map_15(r, &ctx->t[0], ctx->tmp);
  27239. }
  27240. else {
  27241. XMEMCPY(r, &ctx->t[0], sizeof(sp_point_384));
  27242. }
  27243. err = MP_OKAY;
  27244. break;
  27245. }
  27246. if (err == MP_OKAY && ctx->state != 7) {
  27247. err = FP_WOULDBLOCK;
  27248. }
  27249. if (err != FP_WOULDBLOCK) {
  27250. ForceZero(ctx->tmp, sizeof(ctx->tmp));
  27251. ForceZero(ctx->t, sizeof(ctx->t));
  27252. }
  27253. (void)heap;
  27254. return err;
  27255. }
  27256. #endif /* WOLFSSL_SP_NONBLOCK */
  27257. #else
  27258. /* A table entry for pre-computed points. */
  27259. typedef struct sp_table_entry_384 {
  27260. sp_digit x[15];
  27261. sp_digit y[15];
  27262. } sp_table_entry_384;
  27263. /* Conditionally copy a into r using the mask m.
  27264. * m is -1 to copy and 0 when not.
  27265. *
  27266. * r A single precision number to copy over.
  27267. * a A single precision number to copy.
  27268. * m Mask value to apply.
  27269. */
  27270. static void sp_384_cond_copy_15(sp_digit* r, const sp_digit* a, const sp_digit m)
  27271. {
  27272. sp_digit t[15];
  27273. #ifdef WOLFSSL_SP_SMALL
  27274. int i;
  27275. for (i = 0; i < 15; i++) {
  27276. t[i] = r[i] ^ a[i];
  27277. }
  27278. for (i = 0; i < 15; i++) {
  27279. r[i] ^= t[i] & m;
  27280. }
  27281. #else
  27282. t[ 0] = r[ 0] ^ a[ 0];
  27283. t[ 1] = r[ 1] ^ a[ 1];
  27284. t[ 2] = r[ 2] ^ a[ 2];
  27285. t[ 3] = r[ 3] ^ a[ 3];
  27286. t[ 4] = r[ 4] ^ a[ 4];
  27287. t[ 5] = r[ 5] ^ a[ 5];
  27288. t[ 6] = r[ 6] ^ a[ 6];
  27289. t[ 7] = r[ 7] ^ a[ 7];
  27290. t[ 8] = r[ 8] ^ a[ 8];
  27291. t[ 9] = r[ 9] ^ a[ 9];
  27292. t[10] = r[10] ^ a[10];
  27293. t[11] = r[11] ^ a[11];
  27294. t[12] = r[12] ^ a[12];
  27295. t[13] = r[13] ^ a[13];
  27296. t[14] = r[14] ^ a[14];
  27297. r[ 0] ^= t[ 0] & m;
  27298. r[ 1] ^= t[ 1] & m;
  27299. r[ 2] ^= t[ 2] & m;
  27300. r[ 3] ^= t[ 3] & m;
  27301. r[ 4] ^= t[ 4] & m;
  27302. r[ 5] ^= t[ 5] & m;
  27303. r[ 6] ^= t[ 6] & m;
  27304. r[ 7] ^= t[ 7] & m;
  27305. r[ 8] ^= t[ 8] & m;
  27306. r[ 9] ^= t[ 9] & m;
  27307. r[10] ^= t[10] & m;
  27308. r[11] ^= t[11] & m;
  27309. r[12] ^= t[12] & m;
  27310. r[13] ^= t[13] & m;
  27311. r[14] ^= t[14] & m;
  27312. #endif /* WOLFSSL_SP_SMALL */
  27313. }
  27314. /* Double the Montgomery form projective point p a number of times.
  27315. *
  27316. * r Result of repeated doubling of point.
  27317. * p Point to double.
  27318. * n Number of times to double
  27319. * t Temporary ordinate data.
  27320. */
  27321. static void sp_384_proj_point_dbl_n_15(sp_point_384* p, int i,
  27322. sp_digit* t)
  27323. {
  27324. sp_digit* w = t;
  27325. sp_digit* a = t + 2*15;
  27326. sp_digit* b = t + 4*15;
  27327. sp_digit* t1 = t + 6*15;
  27328. sp_digit* t2 = t + 8*15;
  27329. sp_digit* x;
  27330. sp_digit* y;
  27331. sp_digit* z;
  27332. volatile int n = i;
  27333. x = p->x;
  27334. y = p->y;
  27335. z = p->z;
  27336. /* Y = 2*Y */
  27337. sp_384_mont_dbl_15(y, y, p384_mod);
  27338. /* W = Z^4 */
  27339. sp_384_mont_sqr_15(w, z, p384_mod, p384_mp_mod);
  27340. sp_384_mont_sqr_15(w, w, p384_mod, p384_mp_mod);
  27341. #ifndef WOLFSSL_SP_SMALL
  27342. while (--n > 0)
  27343. #else
  27344. while (--n >= 0)
  27345. #endif
  27346. {
  27347. /* A = 3*(X^2 - W) */
  27348. sp_384_mont_sqr_15(t1, x, p384_mod, p384_mp_mod);
  27349. sp_384_mont_sub_15(t1, t1, w, p384_mod);
  27350. sp_384_mont_tpl_15(a, t1, p384_mod);
  27351. /* B = X*Y^2 */
  27352. sp_384_mont_sqr_15(t1, y, p384_mod, p384_mp_mod);
  27353. sp_384_mont_mul_15(b, t1, x, p384_mod, p384_mp_mod);
  27354. /* X = A^2 - 2B */
  27355. sp_384_mont_sqr_15(x, a, p384_mod, p384_mp_mod);
  27356. sp_384_mont_dbl_15(t2, b, p384_mod);
  27357. sp_384_mont_sub_15(x, x, t2, p384_mod);
  27358. /* B = 2.(B - X) */
  27359. sp_384_mont_sub_15(t2, b, x, p384_mod);
  27360. sp_384_mont_dbl_15(b, t2, p384_mod);
  27361. /* Z = Z*Y */
  27362. sp_384_mont_mul_15(z, z, y, p384_mod, p384_mp_mod);
  27363. /* t1 = Y^4 */
  27364. sp_384_mont_sqr_15(t1, t1, p384_mod, p384_mp_mod);
  27365. #ifdef WOLFSSL_SP_SMALL
  27366. if (n != 0)
  27367. #endif
  27368. {
  27369. /* W = W*Y^4 */
  27370. sp_384_mont_mul_15(w, w, t1, p384_mod, p384_mp_mod);
  27371. }
  27372. /* y = 2*A*(B - X) - Y^4 */
  27373. sp_384_mont_mul_15(y, b, a, p384_mod, p384_mp_mod);
  27374. sp_384_mont_sub_15(y, y, t1, p384_mod);
  27375. }
  27376. #ifndef WOLFSSL_SP_SMALL
  27377. /* A = 3*(X^2 - W) */
  27378. sp_384_mont_sqr_15(t1, x, p384_mod, p384_mp_mod);
  27379. sp_384_mont_sub_15(t1, t1, w, p384_mod);
  27380. sp_384_mont_tpl_15(a, t1, p384_mod);
  27381. /* B = X*Y^2 */
  27382. sp_384_mont_sqr_15(t1, y, p384_mod, p384_mp_mod);
  27383. sp_384_mont_mul_15(b, t1, x, p384_mod, p384_mp_mod);
  27384. /* X = A^2 - 2B */
  27385. sp_384_mont_sqr_15(x, a, p384_mod, p384_mp_mod);
  27386. sp_384_mont_dbl_15(t2, b, p384_mod);
  27387. sp_384_mont_sub_15(x, x, t2, p384_mod);
  27388. /* B = 2.(B - X) */
  27389. sp_384_mont_sub_15(t2, b, x, p384_mod);
  27390. sp_384_mont_dbl_15(b, t2, p384_mod);
  27391. /* Z = Z*Y */
  27392. sp_384_mont_mul_15(z, z, y, p384_mod, p384_mp_mod);
  27393. /* t1 = Y^4 */
  27394. sp_384_mont_sqr_15(t1, t1, p384_mod, p384_mp_mod);
  27395. /* y = 2*A*(B - X) - Y^4 */
  27396. sp_384_mont_mul_15(y, b, a, p384_mod, p384_mp_mod);
  27397. sp_384_mont_sub_15(y, y, t1, p384_mod);
  27398. #endif /* WOLFSSL_SP_SMALL */
  27399. /* Y = Y/2 */
  27400. sp_384_mont_div2_15(y, y, p384_mod);
  27401. }
  27402. /* Double the Montgomery form projective point p a number of times.
  27403. *
  27404. * r Result of repeated doubling of point.
  27405. * p Point to double.
  27406. * n Number of times to double
  27407. * t Temporary ordinate data.
  27408. */
  27409. static void sp_384_proj_point_dbl_n_store_15(sp_point_384* r,
  27410. const sp_point_384* p, int n, int m, sp_digit* t)
  27411. {
  27412. sp_digit* w = t;
  27413. sp_digit* a = t + 2*15;
  27414. sp_digit* b = t + 4*15;
  27415. sp_digit* t1 = t + 6*15;
  27416. sp_digit* t2 = t + 8*15;
  27417. sp_digit* x = r[2*m].x;
  27418. sp_digit* y = r[(1<<n)*m].y;
  27419. sp_digit* z = r[2*m].z;
  27420. int i;
  27421. int j;
  27422. for (i=0; i<15; i++) {
  27423. x[i] = p->x[i];
  27424. }
  27425. for (i=0; i<15; i++) {
  27426. y[i] = p->y[i];
  27427. }
  27428. for (i=0; i<15; i++) {
  27429. z[i] = p->z[i];
  27430. }
  27431. /* Y = 2*Y */
  27432. sp_384_mont_dbl_15(y, y, p384_mod);
  27433. /* W = Z^4 */
  27434. sp_384_mont_sqr_15(w, z, p384_mod, p384_mp_mod);
  27435. sp_384_mont_sqr_15(w, w, p384_mod, p384_mp_mod);
  27436. j = m;
  27437. for (i=1; i<=n; i++) {
  27438. j *= 2;
  27439. /* A = 3*(X^2 - W) */
  27440. sp_384_mont_sqr_15(t1, x, p384_mod, p384_mp_mod);
  27441. sp_384_mont_sub_15(t1, t1, w, p384_mod);
  27442. sp_384_mont_tpl_15(a, t1, p384_mod);
  27443. /* B = X*Y^2 */
  27444. sp_384_mont_sqr_15(t1, y, p384_mod, p384_mp_mod);
  27445. sp_384_mont_mul_15(b, t1, x, p384_mod, p384_mp_mod);
  27446. x = r[j].x;
  27447. /* X = A^2 - 2B */
  27448. sp_384_mont_sqr_15(x, a, p384_mod, p384_mp_mod);
  27449. sp_384_mont_dbl_15(t2, b, p384_mod);
  27450. sp_384_mont_sub_15(x, x, t2, p384_mod);
  27451. /* B = 2.(B - X) */
  27452. sp_384_mont_sub_15(t2, b, x, p384_mod);
  27453. sp_384_mont_dbl_15(b, t2, p384_mod);
  27454. /* Z = Z*Y */
  27455. sp_384_mont_mul_15(r[j].z, z, y, p384_mod, p384_mp_mod);
  27456. z = r[j].z;
  27457. /* t1 = Y^4 */
  27458. sp_384_mont_sqr_15(t1, t1, p384_mod, p384_mp_mod);
  27459. if (i != n) {
  27460. /* W = W*Y^4 */
  27461. sp_384_mont_mul_15(w, w, t1, p384_mod, p384_mp_mod);
  27462. }
  27463. /* y = 2*A*(B - X) - Y^4 */
  27464. sp_384_mont_mul_15(y, b, a, p384_mod, p384_mp_mod);
  27465. sp_384_mont_sub_15(y, y, t1, p384_mod);
  27466. /* Y = Y/2 */
  27467. sp_384_mont_div2_15(r[j].y, y, p384_mod);
  27468. r[j].infinity = 0;
  27469. }
  27470. }
  27471. /* Add two Montgomery form projective points.
  27472. *
  27473. * ra Result of addition.
  27474. * rs Result of subtraction.
  27475. * p First point to add.
  27476. * q Second point to add.
  27477. * t Temporary ordinate data.
  27478. */
  27479. static void sp_384_proj_point_add_sub_15(sp_point_384* ra,
  27480. sp_point_384* rs, const sp_point_384* p, const sp_point_384* q,
  27481. sp_digit* t)
  27482. {
  27483. sp_digit* t1 = t;
  27484. sp_digit* t2 = t + 2*15;
  27485. sp_digit* t3 = t + 4*15;
  27486. sp_digit* t4 = t + 6*15;
  27487. sp_digit* t5 = t + 8*15;
  27488. sp_digit* t6 = t + 10*15;
  27489. sp_digit* xa = ra->x;
  27490. sp_digit* ya = ra->y;
  27491. sp_digit* za = ra->z;
  27492. sp_digit* xs = rs->x;
  27493. sp_digit* ys = rs->y;
  27494. sp_digit* zs = rs->z;
  27495. XMEMCPY(xa, p->x, sizeof(p->x) / 2);
  27496. XMEMCPY(ya, p->y, sizeof(p->y) / 2);
  27497. XMEMCPY(za, p->z, sizeof(p->z) / 2);
  27498. ra->infinity = 0;
  27499. rs->infinity = 0;
  27500. /* U1 = X1*Z2^2 */
  27501. sp_384_mont_sqr_15(t1, q->z, p384_mod, p384_mp_mod);
  27502. sp_384_mont_mul_15(t3, t1, q->z, p384_mod, p384_mp_mod);
  27503. sp_384_mont_mul_15(t1, t1, xa, p384_mod, p384_mp_mod);
  27504. /* U2 = X2*Z1^2 */
  27505. sp_384_mont_sqr_15(t2, za, p384_mod, p384_mp_mod);
  27506. sp_384_mont_mul_15(t4, t2, za, p384_mod, p384_mp_mod);
  27507. sp_384_mont_mul_15(t2, t2, q->x, p384_mod, p384_mp_mod);
  27508. /* S1 = Y1*Z2^3 */
  27509. sp_384_mont_mul_15(t3, t3, ya, p384_mod, p384_mp_mod);
  27510. /* S2 = Y2*Z1^3 */
  27511. sp_384_mont_mul_15(t4, t4, q->y, p384_mod, p384_mp_mod);
  27512. /* H = U2 - U1 */
  27513. sp_384_mont_sub_15(t2, t2, t1, p384_mod);
  27514. /* RS = S2 + S1 */
  27515. sp_384_mont_add_15(t6, t4, t3, p384_mod);
  27516. /* R = S2 - S1 */
  27517. sp_384_mont_sub_15(t4, t4, t3, p384_mod);
  27518. /* Z3 = H*Z1*Z2 */
  27519. /* ZS = H*Z1*Z2 */
  27520. sp_384_mont_mul_15(za, za, q->z, p384_mod, p384_mp_mod);
  27521. sp_384_mont_mul_15(za, za, t2, p384_mod, p384_mp_mod);
  27522. XMEMCPY(zs, za, sizeof(p->z)/2);
  27523. /* X3 = R^2 - H^3 - 2*U1*H^2 */
  27524. /* XS = RS^2 - H^3 - 2*U1*H^2 */
  27525. sp_384_mont_sqr_15(xa, t4, p384_mod, p384_mp_mod);
  27526. sp_384_mont_sqr_15(xs, t6, p384_mod, p384_mp_mod);
  27527. sp_384_mont_sqr_15(t5, t2, p384_mod, p384_mp_mod);
  27528. sp_384_mont_mul_15(ya, t1, t5, p384_mod, p384_mp_mod);
  27529. sp_384_mont_mul_15(t5, t5, t2, p384_mod, p384_mp_mod);
  27530. sp_384_mont_sub_15(xa, xa, t5, p384_mod);
  27531. sp_384_mont_sub_15(xs, xs, t5, p384_mod);
  27532. sp_384_mont_dbl_15(t1, ya, p384_mod);
  27533. sp_384_mont_sub_15(xa, xa, t1, p384_mod);
  27534. sp_384_mont_sub_15(xs, xs, t1, p384_mod);
  27535. /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
  27536. /* YS = -RS*(U1*H^2 - XS) - S1*H^3 */
  27537. sp_384_mont_sub_15(ys, ya, xs, p384_mod);
  27538. sp_384_mont_sub_15(ya, ya, xa, p384_mod);
  27539. sp_384_mont_mul_15(ya, ya, t4, p384_mod, p384_mp_mod);
  27540. sp_384_sub_15(t6, p384_mod, t6);
  27541. sp_384_mont_mul_15(ys, ys, t6, p384_mod, p384_mp_mod);
  27542. sp_384_mont_mul_15(t5, t5, t3, p384_mod, p384_mp_mod);
  27543. sp_384_mont_sub_15(ya, ya, t5, p384_mod);
  27544. sp_384_mont_sub_15(ys, ys, t5, p384_mod);
  27545. }
  27546. /* Structure used to describe recoding of scalar multiplication. */
  27547. typedef struct ecc_recode_384 {
  27548. /* Index into pre-computation table. */
  27549. uint8_t i;
  27550. /* Use the negative of the point. */
  27551. uint8_t neg;
  27552. } ecc_recode_384;
  27553. /* The index into pre-computation table to use. */
  27554. static const uint8_t recode_index_15_6[66] = {
  27555. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  27556. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  27557. 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
  27558. 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
  27559. 0, 1,
  27560. };
  27561. /* Whether to negate y-ordinate. */
  27562. static const uint8_t recode_neg_15_6[66] = {
  27563. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  27564. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  27565. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  27566. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  27567. 0, 0,
  27568. };
  27569. /* Recode the scalar for multiplication using pre-computed values and
  27570. * subtraction.
  27571. *
  27572. * k Scalar to multiply by.
  27573. * v Vector of operations to perform.
  27574. */
  27575. static void sp_384_ecc_recode_6_15(const sp_digit* k, ecc_recode_384* v)
  27576. {
  27577. int i;
  27578. int j;
  27579. uint8_t y;
  27580. int carry = 0;
  27581. int o;
  27582. sp_digit n;
  27583. j = 0;
  27584. n = k[j];
  27585. o = 0;
  27586. for (i=0; i<65; i++) {
  27587. y = (int8_t)n;
  27588. if (o + 6 < 26) {
  27589. y &= 0x3f;
  27590. n >>= 6;
  27591. o += 6;
  27592. }
  27593. else if (o + 6 == 26) {
  27594. n >>= 6;
  27595. if (++j < 15)
  27596. n = k[j];
  27597. o = 0;
  27598. }
  27599. else if (++j < 15) {
  27600. n = k[j];
  27601. y |= (uint8_t)((n << (26 - o)) & 0x3f);
  27602. o -= 20;
  27603. n >>= o;
  27604. }
  27605. y += (uint8_t)carry;
  27606. v[i].i = recode_index_15_6[y];
  27607. v[i].neg = recode_neg_15_6[y];
  27608. carry = (y >> 6) + v[i].neg;
  27609. }
  27610. }
  27611. #ifndef WC_NO_CACHE_RESISTANT
  27612. /* Touch each possible point that could be being copied.
  27613. *
  27614. * r Point to copy into.
  27615. * table Table - start of the entries to access
  27616. * idx Index of entry to retrieve.
  27617. */
  27618. static void sp_384_get_point_33_15(sp_point_384* r, const sp_point_384* table,
  27619. int idx)
  27620. {
  27621. int i;
  27622. sp_digit mask;
  27623. r->x[0] = 0;
  27624. r->x[1] = 0;
  27625. r->x[2] = 0;
  27626. r->x[3] = 0;
  27627. r->x[4] = 0;
  27628. r->x[5] = 0;
  27629. r->x[6] = 0;
  27630. r->x[7] = 0;
  27631. r->x[8] = 0;
  27632. r->x[9] = 0;
  27633. r->x[10] = 0;
  27634. r->x[11] = 0;
  27635. r->x[12] = 0;
  27636. r->x[13] = 0;
  27637. r->x[14] = 0;
  27638. r->y[0] = 0;
  27639. r->y[1] = 0;
  27640. r->y[2] = 0;
  27641. r->y[3] = 0;
  27642. r->y[4] = 0;
  27643. r->y[5] = 0;
  27644. r->y[6] = 0;
  27645. r->y[7] = 0;
  27646. r->y[8] = 0;
  27647. r->y[9] = 0;
  27648. r->y[10] = 0;
  27649. r->y[11] = 0;
  27650. r->y[12] = 0;
  27651. r->y[13] = 0;
  27652. r->y[14] = 0;
  27653. r->z[0] = 0;
  27654. r->z[1] = 0;
  27655. r->z[2] = 0;
  27656. r->z[3] = 0;
  27657. r->z[4] = 0;
  27658. r->z[5] = 0;
  27659. r->z[6] = 0;
  27660. r->z[7] = 0;
  27661. r->z[8] = 0;
  27662. r->z[9] = 0;
  27663. r->z[10] = 0;
  27664. r->z[11] = 0;
  27665. r->z[12] = 0;
  27666. r->z[13] = 0;
  27667. r->z[14] = 0;
  27668. for (i = 1; i < 33; i++) {
  27669. mask = 0 - (i == idx);
  27670. r->x[0] |= mask & table[i].x[0];
  27671. r->x[1] |= mask & table[i].x[1];
  27672. r->x[2] |= mask & table[i].x[2];
  27673. r->x[3] |= mask & table[i].x[3];
  27674. r->x[4] |= mask & table[i].x[4];
  27675. r->x[5] |= mask & table[i].x[5];
  27676. r->x[6] |= mask & table[i].x[6];
  27677. r->x[7] |= mask & table[i].x[7];
  27678. r->x[8] |= mask & table[i].x[8];
  27679. r->x[9] |= mask & table[i].x[9];
  27680. r->x[10] |= mask & table[i].x[10];
  27681. r->x[11] |= mask & table[i].x[11];
  27682. r->x[12] |= mask & table[i].x[12];
  27683. r->x[13] |= mask & table[i].x[13];
  27684. r->x[14] |= mask & table[i].x[14];
  27685. r->y[0] |= mask & table[i].y[0];
  27686. r->y[1] |= mask & table[i].y[1];
  27687. r->y[2] |= mask & table[i].y[2];
  27688. r->y[3] |= mask & table[i].y[3];
  27689. r->y[4] |= mask & table[i].y[4];
  27690. r->y[5] |= mask & table[i].y[5];
  27691. r->y[6] |= mask & table[i].y[6];
  27692. r->y[7] |= mask & table[i].y[7];
  27693. r->y[8] |= mask & table[i].y[8];
  27694. r->y[9] |= mask & table[i].y[9];
  27695. r->y[10] |= mask & table[i].y[10];
  27696. r->y[11] |= mask & table[i].y[11];
  27697. r->y[12] |= mask & table[i].y[12];
  27698. r->y[13] |= mask & table[i].y[13];
  27699. r->y[14] |= mask & table[i].y[14];
  27700. r->z[0] |= mask & table[i].z[0];
  27701. r->z[1] |= mask & table[i].z[1];
  27702. r->z[2] |= mask & table[i].z[2];
  27703. r->z[3] |= mask & table[i].z[3];
  27704. r->z[4] |= mask & table[i].z[4];
  27705. r->z[5] |= mask & table[i].z[5];
  27706. r->z[6] |= mask & table[i].z[6];
  27707. r->z[7] |= mask & table[i].z[7];
  27708. r->z[8] |= mask & table[i].z[8];
  27709. r->z[9] |= mask & table[i].z[9];
  27710. r->z[10] |= mask & table[i].z[10];
  27711. r->z[11] |= mask & table[i].z[11];
  27712. r->z[12] |= mask & table[i].z[12];
  27713. r->z[13] |= mask & table[i].z[13];
  27714. r->z[14] |= mask & table[i].z[14];
  27715. }
  27716. }
  27717. #endif /* !WC_NO_CACHE_RESISTANT */
  27718. /* Multiply the point by the scalar and return the result.
  27719. * If map is true then convert result to affine coordinates.
  27720. *
  27721. * Window technique of 6 bits. (Add-Sub variation.)
  27722. * Calculate 0..32 times the point. Use function that adds and
  27723. * subtracts the same two points.
  27724. * Recode to add or subtract one of the computed points.
  27725. * Double to push up.
  27726. * NOT a sliding window.
  27727. *
  27728. * r Resulting point.
  27729. * g Point to multiply.
  27730. * k Scalar to multiply by.
  27731. * map Indicates whether to convert result to affine.
  27732. * ct Constant time required.
  27733. * heap Heap to use for allocation.
  27734. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  27735. */
  27736. static int sp_384_ecc_mulmod_win_add_sub_15(sp_point_384* r, const sp_point_384* g,
  27737. const sp_digit* k, int map, int ct, void* heap)
  27738. {
  27739. #ifdef WOLFSSL_SP_SMALL_STACK
  27740. sp_point_384* t = NULL;
  27741. sp_digit* tmp = NULL;
  27742. #else
  27743. sp_point_384 t[33+2];
  27744. sp_digit tmp[2 * 15 * 6];
  27745. #endif
  27746. sp_point_384* rt = NULL;
  27747. sp_point_384* p = NULL;
  27748. sp_digit* negy;
  27749. int i;
  27750. ecc_recode_384 v[65];
  27751. int err = MP_OKAY;
  27752. /* Constant time used for cache attack resistance implementation. */
  27753. (void)ct;
  27754. (void)heap;
  27755. #ifdef WOLFSSL_SP_SMALL_STACK
  27756. t = (sp_point_384*)XMALLOC(sizeof(sp_point_384) *
  27757. (33+2), heap, DYNAMIC_TYPE_ECC);
  27758. if (t == NULL)
  27759. err = MEMORY_E;
  27760. if (err == MP_OKAY) {
  27761. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 6,
  27762. heap, DYNAMIC_TYPE_ECC);
  27763. if (tmp == NULL)
  27764. err = MEMORY_E;
  27765. }
  27766. #endif
  27767. if (err == MP_OKAY) {
  27768. rt = t + 33;
  27769. p = t + 33+1;
  27770. /* t[0] = {0, 0, 1} * norm */
  27771. XMEMSET(&t[0], 0, sizeof(t[0]));
  27772. t[0].infinity = 1;
  27773. /* t[1] = {g->x, g->y, g->z} * norm */
  27774. err = sp_384_mod_mul_norm_15(t[1].x, g->x, p384_mod);
  27775. }
  27776. if (err == MP_OKAY) {
  27777. err = sp_384_mod_mul_norm_15(t[1].y, g->y, p384_mod);
  27778. }
  27779. if (err == MP_OKAY) {
  27780. err = sp_384_mod_mul_norm_15(t[1].z, g->z, p384_mod);
  27781. }
  27782. if (err == MP_OKAY) {
  27783. t[1].infinity = 0;
  27784. /* t[2] ... t[32] */
  27785. sp_384_proj_point_dbl_n_store_15(t, &t[ 1], 5, 1, tmp);
  27786. sp_384_proj_point_add_15(&t[ 3], &t[ 2], &t[ 1], tmp);
  27787. sp_384_proj_point_dbl_15(&t[ 6], &t[ 3], tmp);
  27788. sp_384_proj_point_add_sub_15(&t[ 7], &t[ 5], &t[ 6], &t[ 1], tmp);
  27789. sp_384_proj_point_dbl_15(&t[10], &t[ 5], tmp);
  27790. sp_384_proj_point_add_sub_15(&t[11], &t[ 9], &t[10], &t[ 1], tmp);
  27791. sp_384_proj_point_dbl_15(&t[12], &t[ 6], tmp);
  27792. sp_384_proj_point_dbl_15(&t[14], &t[ 7], tmp);
  27793. sp_384_proj_point_add_sub_15(&t[15], &t[13], &t[14], &t[ 1], tmp);
  27794. sp_384_proj_point_dbl_15(&t[18], &t[ 9], tmp);
  27795. sp_384_proj_point_add_sub_15(&t[19], &t[17], &t[18], &t[ 1], tmp);
  27796. sp_384_proj_point_dbl_15(&t[20], &t[10], tmp);
  27797. sp_384_proj_point_dbl_15(&t[22], &t[11], tmp);
  27798. sp_384_proj_point_add_sub_15(&t[23], &t[21], &t[22], &t[ 1], tmp);
  27799. sp_384_proj_point_dbl_15(&t[24], &t[12], tmp);
  27800. sp_384_proj_point_dbl_15(&t[26], &t[13], tmp);
  27801. sp_384_proj_point_add_sub_15(&t[27], &t[25], &t[26], &t[ 1], tmp);
  27802. sp_384_proj_point_dbl_15(&t[28], &t[14], tmp);
  27803. sp_384_proj_point_dbl_15(&t[30], &t[15], tmp);
  27804. sp_384_proj_point_add_sub_15(&t[31], &t[29], &t[30], &t[ 1], tmp);
  27805. negy = t[0].y;
  27806. sp_384_ecc_recode_6_15(k, v);
  27807. i = 64;
  27808. #ifndef WC_NO_CACHE_RESISTANT
  27809. if (ct) {
  27810. sp_384_get_point_33_15(rt, t, v[i].i);
  27811. rt->infinity = !v[i].i;
  27812. }
  27813. else
  27814. #endif
  27815. {
  27816. XMEMCPY(rt, &t[v[i].i], sizeof(sp_point_384));
  27817. }
  27818. for (--i; i>=0; i--) {
  27819. sp_384_proj_point_dbl_n_15(rt, 6, tmp);
  27820. #ifndef WC_NO_CACHE_RESISTANT
  27821. if (ct) {
  27822. sp_384_get_point_33_15(p, t, v[i].i);
  27823. p->infinity = !v[i].i;
  27824. }
  27825. else
  27826. #endif
  27827. {
  27828. XMEMCPY(p, &t[v[i].i], sizeof(sp_point_384));
  27829. }
  27830. sp_384_sub_15(negy, p384_mod, p->y);
  27831. sp_384_norm_15(negy);
  27832. sp_384_cond_copy_15(p->y, negy, (sp_digit)0 - v[i].neg);
  27833. sp_384_proj_point_add_15(rt, rt, p, tmp);
  27834. }
  27835. if (map != 0) {
  27836. sp_384_map_15(r, rt, tmp);
  27837. }
  27838. else {
  27839. XMEMCPY(r, rt, sizeof(sp_point_384));
  27840. }
  27841. }
  27842. #ifdef WOLFSSL_SP_SMALL_STACK
  27843. if (t != NULL)
  27844. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  27845. if (tmp != NULL)
  27846. XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
  27847. #endif
  27848. return err;
  27849. }
  27850. #ifdef FP_ECC
  27851. #endif /* FP_ECC */
  27852. /* Add two Montgomery form projective points. The second point has a q value of
  27853. * one.
  27854. * Only the first point can be the same pointer as the result point.
  27855. *
  27856. * r Result of addition.
  27857. * p First point to add.
  27858. * q Second point to add.
  27859. * t Temporary ordinate data.
  27860. */
  27861. static void sp_384_proj_point_add_qz1_15(sp_point_384* r,
  27862. const sp_point_384* p, const sp_point_384* q, sp_digit* t)
  27863. {
  27864. sp_digit* t2 = t;
  27865. sp_digit* t3 = t + 2*15;
  27866. sp_digit* t6 = t + 4*15;
  27867. sp_digit* t1 = t + 6*15;
  27868. sp_digit* t4 = t + 8*15;
  27869. sp_digit* t5 = t + 10*15;
  27870. /* Calculate values to subtract from P->x and P->y. */
  27871. /* U2 = X2*Z1^2 */
  27872. sp_384_mont_sqr_15(t2, p->z, p384_mod, p384_mp_mod);
  27873. sp_384_mont_mul_15(t4, t2, p->z, p384_mod, p384_mp_mod);
  27874. sp_384_mont_mul_15(t2, t2, q->x, p384_mod, p384_mp_mod);
  27875. /* S2 = Y2*Z1^3 */
  27876. sp_384_mont_mul_15(t4, t4, q->y, p384_mod, p384_mp_mod);
  27877. if ((~p->infinity) & (~q->infinity) &
  27878. sp_384_cmp_equal_15(p->x, t2) &
  27879. sp_384_cmp_equal_15(p->y, t4)) {
  27880. sp_384_proj_point_dbl_15(r, p, t);
  27881. }
  27882. else {
  27883. sp_digit* x = t2;
  27884. sp_digit* y = t3;
  27885. sp_digit* z = t6;
  27886. /* H = U2 - X1 */
  27887. sp_384_mont_sub_15(t2, t2, p->x, p384_mod);
  27888. /* R = S2 - Y1 */
  27889. sp_384_mont_sub_15(t4, t4, p->y, p384_mod);
  27890. /* Z3 = H*Z1 */
  27891. sp_384_mont_mul_15(z, p->z, t2, p384_mod, p384_mp_mod);
  27892. /* X3 = R^2 - H^3 - 2*X1*H^2 */
  27893. sp_384_mont_sqr_15(t1, t2, p384_mod, p384_mp_mod);
  27894. sp_384_mont_mul_15(t3, p->x, t1, p384_mod, p384_mp_mod);
  27895. sp_384_mont_mul_15(t1, t1, t2, p384_mod, p384_mp_mod);
  27896. sp_384_mont_sqr_15(t2, t4, p384_mod, p384_mp_mod);
  27897. sp_384_mont_sub_15(t2, t2, t1, p384_mod);
  27898. sp_384_mont_dbl_15(t5, t3, p384_mod);
  27899. sp_384_mont_sub_15(x, t2, t5, p384_mod);
  27900. /* Y3 = R*(X1*H^2 - X3) - Y1*H^3 */
  27901. sp_384_mont_sub_15(t3, t3, x, p384_mod);
  27902. sp_384_mont_mul_15(t3, t3, t4, p384_mod, p384_mp_mod);
  27903. sp_384_mont_mul_15(t1, t1, p->y, p384_mod, p384_mp_mod);
  27904. sp_384_mont_sub_15(y, t3, t1, p384_mod);
  27905. {
  27906. int i;
  27907. sp_digit maskp = 0 - (q->infinity & (!p->infinity));
  27908. sp_digit maskq = 0 - (p->infinity & (!q->infinity));
  27909. sp_digit maskt = ~(maskp | maskq);
  27910. sp_digit inf = (sp_digit)(p->infinity & q->infinity);
  27911. for (i = 0; i < 15; i++) {
  27912. r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
  27913. (x[i] & maskt);
  27914. }
  27915. for (i = 0; i < 15; i++) {
  27916. r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
  27917. (y[i] & maskt);
  27918. }
  27919. for (i = 0; i < 15; i++) {
  27920. r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
  27921. (z[i] & maskt);
  27922. }
  27923. r->z[0] |= inf;
  27924. r->infinity = (word32)inf;
  27925. }
  27926. }
  27927. }
  27928. #ifdef FP_ECC
  27929. /* Convert the projective point to affine.
  27930. * Ordinates are in Montgomery form.
  27931. *
  27932. * a Point to convert.
  27933. * t Temporary data.
  27934. */
  27935. static void sp_384_proj_to_affine_15(sp_point_384* a, sp_digit* t)
  27936. {
  27937. sp_digit* t1 = t;
  27938. sp_digit* t2 = t + 2 * 15;
  27939. sp_digit* tmp = t + 4 * 15;
  27940. sp_384_mont_inv_15(t1, a->z, tmp);
  27941. sp_384_mont_sqr_15(t2, t1, p384_mod, p384_mp_mod);
  27942. sp_384_mont_mul_15(t1, t2, t1, p384_mod, p384_mp_mod);
  27943. sp_384_mont_mul_15(a->x, a->x, t2, p384_mod, p384_mp_mod);
  27944. sp_384_mont_mul_15(a->y, a->y, t1, p384_mod, p384_mp_mod);
  27945. XMEMCPY(a->z, p384_norm_mod, sizeof(p384_norm_mod));
  27946. }
  27947. /* Generate the pre-computed table of points for the base point.
  27948. *
  27949. * width = 8
  27950. * 256 entries
  27951. * 48 bits between
  27952. *
  27953. * a The base point.
  27954. * table Place to store generated point data.
  27955. * tmp Temporary data.
  27956. * heap Heap to use for allocation.
  27957. */
  27958. static int sp_384_gen_stripe_table_15(const sp_point_384* a,
  27959. sp_table_entry_384* table, sp_digit* tmp, void* heap)
  27960. {
  27961. #ifdef WOLFSSL_SP_SMALL_STACK
  27962. sp_point_384* t = NULL;
  27963. #else
  27964. sp_point_384 t[3];
  27965. #endif
  27966. sp_point_384* s1 = NULL;
  27967. sp_point_384* s2 = NULL;
  27968. int i;
  27969. int j;
  27970. int err = MP_OKAY;
  27971. (void)heap;
  27972. #ifdef WOLFSSL_SP_SMALL_STACK
  27973. t = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 3, heap,
  27974. DYNAMIC_TYPE_ECC);
  27975. if (t == NULL)
  27976. err = MEMORY_E;
  27977. #endif
  27978. if (err == MP_OKAY) {
  27979. s1 = t + 1;
  27980. s2 = t + 2;
  27981. err = sp_384_mod_mul_norm_15(t->x, a->x, p384_mod);
  27982. }
  27983. if (err == MP_OKAY) {
  27984. err = sp_384_mod_mul_norm_15(t->y, a->y, p384_mod);
  27985. }
  27986. if (err == MP_OKAY) {
  27987. err = sp_384_mod_mul_norm_15(t->z, a->z, p384_mod);
  27988. }
  27989. if (err == MP_OKAY) {
  27990. t->infinity = 0;
  27991. sp_384_proj_to_affine_15(t, tmp);
  27992. XMEMCPY(s1->z, p384_norm_mod, sizeof(p384_norm_mod));
  27993. s1->infinity = 0;
  27994. XMEMCPY(s2->z, p384_norm_mod, sizeof(p384_norm_mod));
  27995. s2->infinity = 0;
  27996. /* table[0] = {0, 0, infinity} */
  27997. XMEMSET(&table[0], 0, sizeof(sp_table_entry_384));
  27998. /* table[1] = Affine version of 'a' in Montgomery form */
  27999. XMEMCPY(table[1].x, t->x, sizeof(table->x));
  28000. XMEMCPY(table[1].y, t->y, sizeof(table->y));
  28001. for (i=1; i<8; i++) {
  28002. sp_384_proj_point_dbl_n_15(t, 48, tmp);
  28003. sp_384_proj_to_affine_15(t, tmp);
  28004. XMEMCPY(table[1<<i].x, t->x, sizeof(table->x));
  28005. XMEMCPY(table[1<<i].y, t->y, sizeof(table->y));
  28006. }
  28007. for (i=1; i<8; i++) {
  28008. XMEMCPY(s1->x, table[1<<i].x, sizeof(table->x));
  28009. XMEMCPY(s1->y, table[1<<i].y, sizeof(table->y));
  28010. for (j=(1<<i)+1; j<(1<<(i+1)); j++) {
  28011. XMEMCPY(s2->x, table[j-(1<<i)].x, sizeof(table->x));
  28012. XMEMCPY(s2->y, table[j-(1<<i)].y, sizeof(table->y));
  28013. sp_384_proj_point_add_qz1_15(t, s1, s2, tmp);
  28014. sp_384_proj_to_affine_15(t, tmp);
  28015. XMEMCPY(table[j].x, t->x, sizeof(table->x));
  28016. XMEMCPY(table[j].y, t->y, sizeof(table->y));
  28017. }
  28018. }
  28019. }
  28020. #ifdef WOLFSSL_SP_SMALL_STACK
  28021. if (t != NULL)
  28022. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  28023. #endif
  28024. return err;
  28025. }
  28026. #endif /* FP_ECC */
  28027. #ifndef WC_NO_CACHE_RESISTANT
  28028. /* Touch each possible entry that could be being copied.
  28029. *
  28030. * r Point to copy into.
  28031. * table Table - start of the entries to access
  28032. * idx Index of entry to retrieve.
  28033. */
  28034. static void sp_384_get_entry_256_15(sp_point_384* r,
  28035. const sp_table_entry_384* table, int idx)
  28036. {
  28037. int i;
  28038. sp_digit mask;
  28039. r->x[0] = 0;
  28040. r->x[1] = 0;
  28041. r->x[2] = 0;
  28042. r->x[3] = 0;
  28043. r->x[4] = 0;
  28044. r->x[5] = 0;
  28045. r->x[6] = 0;
  28046. r->x[7] = 0;
  28047. r->x[8] = 0;
  28048. r->x[9] = 0;
  28049. r->x[10] = 0;
  28050. r->x[11] = 0;
  28051. r->x[12] = 0;
  28052. r->x[13] = 0;
  28053. r->x[14] = 0;
  28054. r->y[0] = 0;
  28055. r->y[1] = 0;
  28056. r->y[2] = 0;
  28057. r->y[3] = 0;
  28058. r->y[4] = 0;
  28059. r->y[5] = 0;
  28060. r->y[6] = 0;
  28061. r->y[7] = 0;
  28062. r->y[8] = 0;
  28063. r->y[9] = 0;
  28064. r->y[10] = 0;
  28065. r->y[11] = 0;
  28066. r->y[12] = 0;
  28067. r->y[13] = 0;
  28068. r->y[14] = 0;
  28069. for (i = 1; i < 256; i++) {
  28070. mask = 0 - (i == idx);
  28071. r->x[0] |= mask & table[i].x[0];
  28072. r->x[1] |= mask & table[i].x[1];
  28073. r->x[2] |= mask & table[i].x[2];
  28074. r->x[3] |= mask & table[i].x[3];
  28075. r->x[4] |= mask & table[i].x[4];
  28076. r->x[5] |= mask & table[i].x[5];
  28077. r->x[6] |= mask & table[i].x[6];
  28078. r->x[7] |= mask & table[i].x[7];
  28079. r->x[8] |= mask & table[i].x[8];
  28080. r->x[9] |= mask & table[i].x[9];
  28081. r->x[10] |= mask & table[i].x[10];
  28082. r->x[11] |= mask & table[i].x[11];
  28083. r->x[12] |= mask & table[i].x[12];
  28084. r->x[13] |= mask & table[i].x[13];
  28085. r->x[14] |= mask & table[i].x[14];
  28086. r->y[0] |= mask & table[i].y[0];
  28087. r->y[1] |= mask & table[i].y[1];
  28088. r->y[2] |= mask & table[i].y[2];
  28089. r->y[3] |= mask & table[i].y[3];
  28090. r->y[4] |= mask & table[i].y[4];
  28091. r->y[5] |= mask & table[i].y[5];
  28092. r->y[6] |= mask & table[i].y[6];
  28093. r->y[7] |= mask & table[i].y[7];
  28094. r->y[8] |= mask & table[i].y[8];
  28095. r->y[9] |= mask & table[i].y[9];
  28096. r->y[10] |= mask & table[i].y[10];
  28097. r->y[11] |= mask & table[i].y[11];
  28098. r->y[12] |= mask & table[i].y[12];
  28099. r->y[13] |= mask & table[i].y[13];
  28100. r->y[14] |= mask & table[i].y[14];
  28101. }
  28102. }
  28103. #endif /* !WC_NO_CACHE_RESISTANT */
  28104. /* Multiply the point by the scalar and return the result.
  28105. * If map is true then convert result to affine coordinates.
  28106. *
  28107. * Stripe implementation.
  28108. * Pre-generated: 2^0, 2^48, ...
  28109. * Pre-generated: products of all combinations of above.
  28110. * 8 doubles and adds (with qz=1)
  28111. *
  28112. * r Resulting point.
  28113. * k Scalar to multiply by.
  28114. * table Pre-computed table.
  28115. * map Indicates whether to convert result to affine.
  28116. * ct Constant time required.
  28117. * heap Heap to use for allocation.
  28118. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  28119. */
  28120. static int sp_384_ecc_mulmod_stripe_15(sp_point_384* r, const sp_point_384* g,
  28121. const sp_table_entry_384* table, const sp_digit* k, int map,
  28122. int ct, void* heap)
  28123. {
  28124. #ifdef WOLFSSL_SP_SMALL_STACK
  28125. sp_point_384* rt = NULL;
  28126. sp_digit* t = NULL;
  28127. #else
  28128. sp_point_384 rt[2];
  28129. sp_digit t[2 * 15 * 6];
  28130. #endif
  28131. sp_point_384* p = NULL;
  28132. int i;
  28133. int j;
  28134. int y;
  28135. int x;
  28136. int err = MP_OKAY;
  28137. (void)g;
  28138. /* Constant time used for cache attack resistance implementation. */
  28139. (void)ct;
  28140. (void)heap;
  28141. #ifdef WOLFSSL_SP_SMALL_STACK
  28142. rt = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, heap,
  28143. DYNAMIC_TYPE_ECC);
  28144. if (rt == NULL)
  28145. err = MEMORY_E;
  28146. if (err == MP_OKAY) {
  28147. t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 6, heap,
  28148. DYNAMIC_TYPE_ECC);
  28149. if (t == NULL)
  28150. err = MEMORY_E;
  28151. }
  28152. #endif
  28153. if (err == MP_OKAY) {
  28154. p = rt + 1;
  28155. XMEMCPY(p->z, p384_norm_mod, sizeof(p384_norm_mod));
  28156. XMEMCPY(rt->z, p384_norm_mod, sizeof(p384_norm_mod));
  28157. y = 0;
  28158. x = 47;
  28159. for (j=0; j<8; j++) {
  28160. y |= (int)(((k[x / 26] >> (x % 26)) & 1) << j);
  28161. x += 48;
  28162. }
  28163. #ifndef WC_NO_CACHE_RESISTANT
  28164. if (ct) {
  28165. sp_384_get_entry_256_15(rt, table, y);
  28166. } else
  28167. #endif
  28168. {
  28169. XMEMCPY(rt->x, table[y].x, sizeof(table[y].x));
  28170. XMEMCPY(rt->y, table[y].y, sizeof(table[y].y));
  28171. }
  28172. rt->infinity = !y;
  28173. for (i=46; i>=0; i--) {
  28174. y = 0;
  28175. x = i;
  28176. for (j=0; j<8; j++) {
  28177. y |= (int)(((k[x / 26] >> (x % 26)) & 1) << j);
  28178. x += 48;
  28179. }
  28180. sp_384_proj_point_dbl_15(rt, rt, t);
  28181. #ifndef WC_NO_CACHE_RESISTANT
  28182. if (ct) {
  28183. sp_384_get_entry_256_15(p, table, y);
  28184. }
  28185. else
  28186. #endif
  28187. {
  28188. XMEMCPY(p->x, table[y].x, sizeof(table[y].x));
  28189. XMEMCPY(p->y, table[y].y, sizeof(table[y].y));
  28190. }
  28191. p->infinity = !y;
  28192. sp_384_proj_point_add_qz1_15(rt, rt, p, t);
  28193. }
  28194. if (map != 0) {
  28195. sp_384_map_15(r, rt, t);
  28196. }
  28197. else {
  28198. XMEMCPY(r, rt, sizeof(sp_point_384));
  28199. }
  28200. }
  28201. #ifdef WOLFSSL_SP_SMALL_STACK
  28202. if (t != NULL)
  28203. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  28204. if (rt != NULL)
  28205. XFREE(rt, heap, DYNAMIC_TYPE_ECC);
  28206. #endif
  28207. return err;
  28208. }
  28209. #ifdef FP_ECC
  28210. #ifndef FP_ENTRIES
  28211. #define FP_ENTRIES 16
  28212. #endif
  28213. /* Cache entry - holds precomputation tables for a point. */
  28214. typedef struct sp_cache_384_t {
  28215. /* X ordinate of point that table was generated from. */
  28216. sp_digit x[15];
  28217. /* Y ordinate of point that table was generated from. */
  28218. sp_digit y[15];
  28219. /* Precomputation table for point. */
  28220. sp_table_entry_384 table[256];
  28221. /* Count of entries in table. */
  28222. uint32_t cnt;
  28223. /* Point and table set in entry. */
  28224. int set;
  28225. } sp_cache_384_t;
  28226. /* Cache of tables. */
  28227. static THREAD_LS_T sp_cache_384_t sp_cache_384[FP_ENTRIES];
  28228. /* Index of last entry in cache. */
  28229. static THREAD_LS_T int sp_cache_384_last = -1;
  28230. /* Cache has been initialized. */
  28231. static THREAD_LS_T int sp_cache_384_inited = 0;
  28232. #ifndef HAVE_THREAD_LS
  28233. static volatile int initCacheMutex_384 = 0;
  28234. static wolfSSL_Mutex sp_cache_384_lock;
  28235. #endif
  28236. /* Get the cache entry for the point.
  28237. *
  28238. * g [in] Point scalar multiplying.
  28239. * cache [out] Cache table to use.
  28240. */
  28241. static void sp_ecc_get_cache_384(const sp_point_384* g, sp_cache_384_t** cache)
  28242. {
  28243. int i;
  28244. int j;
  28245. uint32_t least;
  28246. if (sp_cache_384_inited == 0) {
  28247. for (i=0; i<FP_ENTRIES; i++) {
  28248. sp_cache_384[i].set = 0;
  28249. }
  28250. sp_cache_384_inited = 1;
  28251. }
  28252. /* Compare point with those in cache. */
  28253. for (i=0; i<FP_ENTRIES; i++) {
  28254. if (!sp_cache_384[i].set)
  28255. continue;
  28256. if (sp_384_cmp_equal_15(g->x, sp_cache_384[i].x) &
  28257. sp_384_cmp_equal_15(g->y, sp_cache_384[i].y)) {
  28258. sp_cache_384[i].cnt++;
  28259. break;
  28260. }
  28261. }
  28262. /* No match. */
  28263. if (i == FP_ENTRIES) {
  28264. /* Find empty entry. */
  28265. i = (sp_cache_384_last + 1) % FP_ENTRIES;
  28266. for (; i != sp_cache_384_last; i=(i+1)%FP_ENTRIES) {
  28267. if (!sp_cache_384[i].set) {
  28268. break;
  28269. }
  28270. }
  28271. /* Evict least used. */
  28272. if (i == sp_cache_384_last) {
  28273. least = sp_cache_384[0].cnt;
  28274. for (j=1; j<FP_ENTRIES; j++) {
  28275. if (sp_cache_384[j].cnt < least) {
  28276. i = j;
  28277. least = sp_cache_384[i].cnt;
  28278. }
  28279. }
  28280. }
  28281. XMEMCPY(sp_cache_384[i].x, g->x, sizeof(sp_cache_384[i].x));
  28282. XMEMCPY(sp_cache_384[i].y, g->y, sizeof(sp_cache_384[i].y));
  28283. sp_cache_384[i].set = 1;
  28284. sp_cache_384[i].cnt = 1;
  28285. }
  28286. *cache = &sp_cache_384[i];
  28287. sp_cache_384_last = i;
  28288. }
  28289. #endif /* FP_ECC */
  28290. /* Multiply the base point of P384 by the scalar and return the result.
  28291. * If map is true then convert result to affine coordinates.
  28292. *
  28293. * r Resulting point.
  28294. * g Point to multiply.
  28295. * k Scalar to multiply by.
  28296. * map Indicates whether to convert result to affine.
  28297. * ct Constant time required.
  28298. * heap Heap to use for allocation.
  28299. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  28300. */
  28301. static int sp_384_ecc_mulmod_15(sp_point_384* r, const sp_point_384* g,
  28302. const sp_digit* k, int map, int ct, void* heap)
  28303. {
  28304. #ifndef FP_ECC
  28305. return sp_384_ecc_mulmod_win_add_sub_15(r, g, k, map, ct, heap);
  28306. #else
  28307. #ifdef WOLFSSL_SP_SMALL_STACK
  28308. sp_digit* tmp;
  28309. #else
  28310. sp_digit tmp[2 * 15 * 7];
  28311. #endif
  28312. sp_cache_384_t* cache;
  28313. int err = MP_OKAY;
  28314. #ifdef WOLFSSL_SP_SMALL_STACK
  28315. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 7, heap, DYNAMIC_TYPE_ECC);
  28316. if (tmp == NULL) {
  28317. err = MEMORY_E;
  28318. }
  28319. #endif
  28320. #ifndef HAVE_THREAD_LS
  28321. if (err == MP_OKAY) {
  28322. if (initCacheMutex_384 == 0) {
  28323. wc_InitMutex(&sp_cache_384_lock);
  28324. initCacheMutex_384 = 1;
  28325. }
  28326. if (wc_LockMutex(&sp_cache_384_lock) != 0) {
  28327. err = BAD_MUTEX_E;
  28328. }
  28329. }
  28330. #endif /* HAVE_THREAD_LS */
  28331. if (err == MP_OKAY) {
  28332. sp_ecc_get_cache_384(g, &cache);
  28333. if (cache->cnt == 2)
  28334. sp_384_gen_stripe_table_15(g, cache->table, tmp, heap);
  28335. #ifndef HAVE_THREAD_LS
  28336. wc_UnLockMutex(&sp_cache_384_lock);
  28337. #endif /* HAVE_THREAD_LS */
  28338. if (cache->cnt < 2) {
  28339. err = sp_384_ecc_mulmod_win_add_sub_15(r, g, k, map, ct, heap);
  28340. }
  28341. else {
  28342. err = sp_384_ecc_mulmod_stripe_15(r, g, cache->table, k,
  28343. map, ct, heap);
  28344. }
  28345. }
  28346. #ifdef WOLFSSL_SP_SMALL_STACK
  28347. XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
  28348. #endif
  28349. return err;
  28350. #endif
  28351. }
  28352. #endif
  28353. /* Multiply the point by the scalar and return the result.
  28354. * If map is true then convert result to affine coordinates.
  28355. *
  28356. * km Scalar to multiply by.
  28357. * p Point to multiply.
  28358. * r Resulting point.
  28359. * map Indicates whether to convert result to affine.
  28360. * heap Heap to use for allocation.
  28361. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  28362. */
  28363. int sp_ecc_mulmod_384(const mp_int* km, const ecc_point* gm, ecc_point* r,
  28364. int map, void* heap)
  28365. {
  28366. #ifdef WOLFSSL_SP_SMALL_STACK
  28367. sp_point_384* point = NULL;
  28368. sp_digit* k = NULL;
  28369. #else
  28370. sp_point_384 point[1];
  28371. sp_digit k[15];
  28372. #endif
  28373. int err = MP_OKAY;
  28374. #ifdef WOLFSSL_SP_SMALL_STACK
  28375. point = (sp_point_384*)XMALLOC(sizeof(sp_point_384), heap,
  28376. DYNAMIC_TYPE_ECC);
  28377. if (point == NULL)
  28378. err = MEMORY_E;
  28379. if (err == MP_OKAY) {
  28380. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15, heap,
  28381. DYNAMIC_TYPE_ECC);
  28382. if (k == NULL)
  28383. err = MEMORY_E;
  28384. }
  28385. #endif
  28386. if (err == MP_OKAY) {
  28387. sp_384_from_mp(k, 15, km);
  28388. sp_384_point_from_ecc_point_15(point, gm);
  28389. err = sp_384_ecc_mulmod_15(point, point, k, map, 1, heap);
  28390. }
  28391. if (err == MP_OKAY) {
  28392. err = sp_384_point_to_ecc_point_15(point, r);
  28393. }
  28394. #ifdef WOLFSSL_SP_SMALL_STACK
  28395. if (k != NULL)
  28396. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  28397. if (point != NULL)
  28398. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  28399. #endif
  28400. return err;
  28401. }
  28402. /* Multiply the point by the scalar, add point a and return the result.
  28403. * If map is true then convert result to affine coordinates.
  28404. *
  28405. * km Scalar to multiply by.
  28406. * p Point to multiply.
  28407. * am Point to add to scalar multiply result.
  28408. * inMont Point to add is in montgomery form.
  28409. * r Resulting point.
  28410. * map Indicates whether to convert result to affine.
  28411. * heap Heap to use for allocation.
  28412. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  28413. */
  28414. int sp_ecc_mulmod_add_384(const mp_int* km, const ecc_point* gm,
  28415. const ecc_point* am, int inMont, ecc_point* r, int map, void* heap)
  28416. {
  28417. #ifdef WOLFSSL_SP_SMALL_STACK
  28418. sp_point_384* point = NULL;
  28419. sp_digit* k = NULL;
  28420. #else
  28421. sp_point_384 point[2];
  28422. sp_digit k[15 + 15 * 2 * 6];
  28423. #endif
  28424. sp_point_384* addP = NULL;
  28425. sp_digit* tmp = NULL;
  28426. int err = MP_OKAY;
  28427. #ifdef WOLFSSL_SP_SMALL_STACK
  28428. point = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, heap,
  28429. DYNAMIC_TYPE_ECC);
  28430. if (point == NULL)
  28431. err = MEMORY_E;
  28432. if (err == MP_OKAY) {
  28433. k = (sp_digit*)XMALLOC(
  28434. sizeof(sp_digit) * (15 + 15 * 2 * 6), heap,
  28435. DYNAMIC_TYPE_ECC);
  28436. if (k == NULL)
  28437. err = MEMORY_E;
  28438. }
  28439. #endif
  28440. if (err == MP_OKAY) {
  28441. addP = point + 1;
  28442. tmp = k + 15;
  28443. sp_384_from_mp(k, 15, km);
  28444. sp_384_point_from_ecc_point_15(point, gm);
  28445. sp_384_point_from_ecc_point_15(addP, am);
  28446. }
  28447. if ((err == MP_OKAY) && (!inMont)) {
  28448. err = sp_384_mod_mul_norm_15(addP->x, addP->x, p384_mod);
  28449. }
  28450. if ((err == MP_OKAY) && (!inMont)) {
  28451. err = sp_384_mod_mul_norm_15(addP->y, addP->y, p384_mod);
  28452. }
  28453. if ((err == MP_OKAY) && (!inMont)) {
  28454. err = sp_384_mod_mul_norm_15(addP->z, addP->z, p384_mod);
  28455. }
  28456. if (err == MP_OKAY) {
  28457. err = sp_384_ecc_mulmod_15(point, point, k, 0, 0, heap);
  28458. }
  28459. if (err == MP_OKAY) {
  28460. sp_384_proj_point_add_15(point, point, addP, tmp);
  28461. if (map) {
  28462. sp_384_map_15(point, point, tmp);
  28463. }
  28464. err = sp_384_point_to_ecc_point_15(point, r);
  28465. }
  28466. #ifdef WOLFSSL_SP_SMALL_STACK
  28467. if (k != NULL)
  28468. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  28469. if (point != NULL)
  28470. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  28471. #endif
  28472. return err;
  28473. }
  28474. #ifdef WOLFSSL_SP_SMALL
  28475. /* Multiply the base point of P384 by the scalar and return the result.
  28476. * If map is true then convert result to affine coordinates.
  28477. *
  28478. * r Resulting point.
  28479. * k Scalar to multiply by.
  28480. * map Indicates whether to convert result to affine.
  28481. * heap Heap to use for allocation.
  28482. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  28483. */
  28484. static int sp_384_ecc_mulmod_base_15(sp_point_384* r, const sp_digit* k,
  28485. int map, int ct, void* heap)
  28486. {
  28487. /* No pre-computed values. */
  28488. return sp_384_ecc_mulmod_15(r, &p384_base, k, map, ct, heap);
  28489. }
  28490. #ifdef WOLFSSL_SP_NONBLOCK
  28491. static int sp_384_ecc_mulmod_base_15_nb(sp_ecc_ctx_t* sp_ctx, sp_point_384* r,
  28492. const sp_digit* k, int map, int ct, void* heap)
  28493. {
  28494. /* No pre-computed values. */
  28495. return sp_384_ecc_mulmod_15_nb(sp_ctx, r, &p384_base, k, map, ct, heap);
  28496. }
  28497. #endif /* WOLFSSL_SP_NONBLOCK */
  28498. #else
  28499. /* Striping precomputation table.
  28500. * 8 points combined into a table of 256 points.
  28501. * Distance of 48 between points.
  28502. */
  28503. static const sp_table_entry_384 p384_table[256] = {
  28504. /* 0 */
  28505. { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  28506. 0x00, 0x00, 0x00 },
  28507. { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  28508. 0x00, 0x00, 0x00 } },
  28509. /* 1 */
  28510. { { 0x1c0b528,0x01d5992,0x0e383dd,0x38a835b,0x220e378,0x106d35b,
  28511. 0x1c3afc5,0x03bfe1e,0x28459a3,0x2d91521,0x214ede2,0x0bfdc8d,
  28512. 0x2151381,0x3708a67,0x004d3aa },
  28513. { 0x303a4fe,0x10f6b52,0x29ac230,0x2fdeed2,0x0a1bfa8,0x3a0ec14,
  28514. 0x2de7562,0x3ff662e,0x21968f4,0x031b0d4,0x3969a84,0x2000898,
  28515. 0x1c5e9dd,0x2f09685,0x002b78a } },
  28516. /* 2 */
  28517. { { 0x30c535b,0x191d4ca,0x2296298,0x14dc141,0x090dd69,0x05aae6b,
  28518. 0x0cd6b42,0x35da80e,0x3b7be12,0x2cf7e6d,0x1f347bd,0x3d365e1,
  28519. 0x1448913,0x32704fa,0x00222c5 },
  28520. { 0x280dc64,0x39e5bc9,0x24175f8,0x2dd60d4,0x0120e7c,0x041d02e,
  28521. 0x0b5d8ad,0x37b9895,0x2fb5337,0x1f0e2e3,0x14f0224,0x2230b86,
  28522. 0x1bc4cf6,0x17cdb09,0x007b5c7 } },
  28523. /* 3 */
  28524. { { 0x2dffea5,0x28f30e7,0x29fce26,0x070df5f,0x235bbfd,0x2f78fbd,
  28525. 0x27700d9,0x23d6bc3,0x3471a53,0x0c0e03a,0x05bf9eb,0x276a2ec,
  28526. 0x20c3e2e,0x31cc691,0x00dbb93 },
  28527. { 0x126b605,0x2e8983d,0x153737d,0x23bf5e1,0x295d497,0x35ca812,
  28528. 0x2d793ae,0x16c6893,0x3777600,0x089a520,0x1e681f8,0x3d55ee6,
  28529. 0x154ef99,0x155f592,0x00ae5f9 } },
  28530. /* 4 */
  28531. { { 0x26feef9,0x20315fc,0x1240244,0x250e838,0x3c31a26,0x1cf8af1,
  28532. 0x1002c32,0x3b531cd,0x1c53ef1,0x22310ba,0x3f4948e,0x22eafd9,
  28533. 0x3863202,0x3d0e2a5,0x006a502 },
  28534. { 0x34536fe,0x04e91ad,0x30ebf5f,0x2af62a7,0x01d218b,0x1c8c9da,
  28535. 0x336bcc3,0x23060c3,0x331576e,0x1b14c5e,0x1bbcb76,0x0755e9a,
  28536. 0x3d4dcef,0x24c2cf8,0x00917c4 } },
  28537. /* 5 */
  28538. { { 0x349ddd0,0x09b8bb8,0x0250114,0x3e66cbf,0x29f117e,0x3005d29,
  28539. 0x36b480e,0x2119bfc,0x2761845,0x253d2f7,0x0580604,0x0bb6db4,
  28540. 0x3ca922f,0x1744677,0x008adc7 },
  28541. { 0x3d5a7ce,0x27425ed,0x11e9a61,0x3968d10,0x3874275,0x3692d3b,
  28542. 0x03e0470,0x0763d50,0x3d97790,0x3cbaeab,0x2747170,0x18faf3a,
  28543. 0x180365e,0x2511fe7,0x0012a36 } },
  28544. /* 6 */
  28545. { { 0x3c52870,0x2701e93,0x296128f,0x120694e,0x1ce0b37,0x3860a36,
  28546. 0x10fa180,0x0896b55,0x2f76adb,0x22892ae,0x2e58a34,0x07b4295,
  28547. 0x2cb62d1,0x079a522,0x00f3d81 },
  28548. { 0x061ed22,0x2375dd3,0x3c9d861,0x3e602d1,0x10bb747,0x39ae156,
  28549. 0x3f796fd,0x087a48a,0x06d680a,0x37f7f47,0x2af2c9d,0x36c55dc,
  28550. 0x10f3dc0,0x279b07a,0x00a0937 } },
  28551. /* 7 */
  28552. { { 0x085c629,0x319bbf8,0x089a386,0x184256f,0x15fc2a4,0x00fd2d0,
  28553. 0x13d6312,0x363d44d,0x32b7e4b,0x25f2865,0x27df8ce,0x1dce02a,
  28554. 0x24ea3b0,0x0e27b9f,0x00d8a90 },
  28555. { 0x3b14461,0x1d371f9,0x0f781bc,0x0503271,0x0dc2cb0,0x13bc284,
  28556. 0x34b3a68,0x1ff894a,0x25d2032,0x16f79ba,0x260f961,0x07b10d5,
  28557. 0x18173b7,0x2812e2b,0x00eede5 } },
  28558. /* 8 */
  28559. { { 0x13b9a2d,0x132ece2,0x0c5d558,0x02c0214,0x1820c66,0x37cb50f,
  28560. 0x26d8267,0x3a00504,0x3f00109,0x33756ee,0x38172f1,0x2e4bb8c,
  28561. 0x030d985,0x3e4fcc5,0x00609d4 },
  28562. { 0x2daf9d6,0x16681fa,0x1fb01e0,0x1b03c49,0x370e653,0x183c839,
  28563. 0x2207515,0x0ea6b58,0x1ae7aaf,0x3a96522,0x24bae14,0x1c38bd9,
  28564. 0x082497b,0x1c05db4,0x000dd03 } },
  28565. /* 9 */
  28566. { { 0x110521f,0x04efa21,0x0c174cc,0x2a7dc93,0x387315b,0x14f7098,
  28567. 0x1d83bb3,0x2495ed2,0x2fe0c27,0x1e2d9df,0x093c953,0x0287073,
  28568. 0x02c9951,0x336291c,0x0033e30 },
  28569. { 0x208353f,0x3f22748,0x2b2bf0f,0x2373b50,0x10170fa,0x1b8a97d,
  28570. 0x0851ed2,0x0b25824,0x055ecb5,0x12049d9,0x3fe1adf,0x11b1385,
  28571. 0x28eab06,0x11fac21,0x00513f0 } },
  28572. /* 10 */
  28573. { { 0x35bdf53,0x1847d37,0x1a6dc07,0x29d62c4,0x045d331,0x313b8e5,
  28574. 0x165daf1,0x1e34562,0x3e75a58,0x16ea2fa,0x02dd302,0x3302862,
  28575. 0x3eb8bae,0x2266a48,0x00cf2a3 },
  28576. { 0x24fd048,0x324a074,0x025df98,0x1662eec,0x3841bfb,0x26ae754,
  28577. 0x1df8cec,0x0113ae3,0x0b67fef,0x094e293,0x2323666,0x0ab087c,
  28578. 0x2f06509,0x0e142d9,0x00a919d } },
  28579. /* 11 */
  28580. { { 0x1d480d8,0x00ed021,0x3a7d3db,0x1e46ca1,0x28cd9f4,0x2a3ceeb,
  28581. 0x24dc754,0x0624a3c,0x0003db4,0x1520bae,0x1c56e0f,0x2fe7ace,
  28582. 0x1dc6f38,0x0c826a4,0x008b977 },
  28583. { 0x209cfc2,0x2c16c9c,0x1b70a31,0x21416cb,0x34c49bf,0x186549e,
  28584. 0x062498d,0x146e959,0x0391fac,0x08ff944,0x2b4b834,0x013d57a,
  28585. 0x2eabffb,0x0370131,0x00c07c1 } },
  28586. /* 12 */
  28587. { { 0x332f048,0x0bf9336,0x16dfad2,0x2451d7b,0x35f23bf,0x299adb2,
  28588. 0x0ce0c0a,0x0170294,0x289f034,0x2b7d89e,0x395e2d6,0x1d20df7,
  28589. 0x2e64e36,0x16dae90,0x00081c9 },
  28590. { 0x31d6ceb,0x0f80db9,0x0271eba,0x33db1ac,0x1b45bcc,0x1a11c07,
  28591. 0x347e630,0x148fd9e,0x142e712,0x3183e3e,0x1cd47ad,0x108d1c9,
  28592. 0x09cbb82,0x35e61d9,0x0083027 } },
  28593. /* 13 */
  28594. { { 0x215b0b8,0x0a7a98d,0x2c41b39,0x3f69536,0x0b41441,0x16da8da,
  28595. 0x15d556b,0x3c17a26,0x129167e,0x3ea0351,0x2d25a27,0x2f2d285,
  28596. 0x15b68f6,0x2931ef5,0x00210d6 },
  28597. { 0x1351130,0x012aec9,0x37ebf38,0x26640f8,0x01d2df6,0x2130972,
  28598. 0x201efc0,0x23a457c,0x087a1c6,0x14c68a3,0x163f62a,0x36b494d,
  28599. 0x015d481,0x39c35b1,0x005dd6d } },
  28600. /* 14 */
  28601. { { 0x06612ce,0x11c3f61,0x199729f,0x3b36863,0x2986f3e,0x3cd2be1,
  28602. 0x04c1612,0x2be2dae,0x00846dd,0x3d7bc29,0x249e795,0x1016803,
  28603. 0x37a3714,0x2c5aa8b,0x005f491 },
  28604. { 0x341b38d,0x01eb936,0x3caac7f,0x27863ef,0x1ef7d11,0x1110ec6,
  28605. 0x18e0761,0x26498e8,0x01a79a1,0x390d5a1,0x22226fb,0x3d2a473,
  28606. 0x0872191,0x1230f32,0x00dc772 } },
  28607. /* 15 */
  28608. { { 0x0b1ec9d,0x03fc6b9,0x3706d57,0x03b9fbb,0x221d23e,0x2867821,
  28609. 0x1e40f4c,0x2c9c0f3,0x3c4cd4b,0x31f5948,0x3f13aa6,0x307c1b2,
  28610. 0x04b6016,0x116b453,0x005aa72 },
  28611. { 0x0b74de8,0x20519d1,0x134e37f,0x05d882a,0x1839e7a,0x3a2c6a8,
  28612. 0x0d14e8d,0x1d78bdd,0x251f30d,0x3a1e27e,0x081c261,0x2c9014b,
  28613. 0x165ee09,0x19e0cf1,0x00654e2 } },
  28614. /* 16 */
  28615. { { 0x39fbe67,0x081778b,0x0e44378,0x20dfdca,0x1c4afcb,0x20b803c,
  28616. 0x0ec06c6,0x1508f6f,0x1c3114d,0x3bca851,0x3a52463,0x07661d1,
  28617. 0x17b0aa0,0x16c5f5c,0x00fc093 },
  28618. { 0x0d01f95,0x0ef13f5,0x2d34965,0x2a25582,0x39aa83e,0x3e38fcf,
  28619. 0x3943dca,0x385bbdd,0x210e86f,0x3dc1dd2,0x3f9ffdc,0x18b9bc6,
  28620. 0x345c96b,0x0e79621,0x008a72f } },
  28621. /* 17 */
  28622. { { 0x341c342,0x3793688,0x042273a,0x153a9c1,0x3dd326e,0x1d073bc,
  28623. 0x2c7d983,0x05524cd,0x00d59e6,0x347abe8,0x3d9a3ef,0x0fb624a,
  28624. 0x2c7e4cd,0x09b3171,0x0003faf },
  28625. { 0x045f8ac,0x38bf3cc,0x1e73087,0x0c85d3c,0x314a655,0x382be69,
  28626. 0x384f28f,0x24d6cb3,0x2842cdc,0x1777f5e,0x2929c89,0x03c45ed,
  28627. 0x3cfcc4c,0x0b59322,0x0035657 } },
  28628. /* 18 */
  28629. { { 0x18c1bba,0x2eb005f,0x33d57ec,0x30e42c3,0x36058f9,0x1865f43,
  28630. 0x2116e3f,0x2c4a2bb,0x0684033,0x0f1375c,0x0209b98,0x2136e9b,
  28631. 0x1bc4af0,0x0b3e0c7,0x0097c7c },
  28632. { 0x16010e8,0x398777e,0x2a172f4,0x0814a7e,0x0d97e4e,0x274dfc8,
  28633. 0x2666606,0x1b5c93b,0x1ed3d36,0x3f3304e,0x13488e0,0x02dbb88,
  28634. 0x2d53369,0x3717ce9,0x007cad1 } },
  28635. /* 19 */
  28636. { { 0x257a41f,0x2a6a076,0x39b6660,0x04bb000,0x1e74a04,0x3876b45,
  28637. 0x343c6b5,0x0753108,0x3f54668,0x24a13cf,0x23749e8,0x0421fc5,
  28638. 0x32f13b5,0x0f31be7,0x00070f2 },
  28639. { 0x1186e14,0x0847697,0x0dff542,0x0dff76c,0x084748f,0x2c7d060,
  28640. 0x23aab4d,0x0b43906,0x27ba640,0x1497b59,0x02f5835,0x0a492a4,
  28641. 0x0a6892f,0x39f3e91,0x005844e } },
  28642. /* 20 */
  28643. { { 0x33b236f,0x02181cf,0x21dafab,0x0760788,0x019e9d4,0x249ed0a,
  28644. 0x36571e3,0x3c7dbcf,0x1337550,0x010d22a,0x285e62f,0x19ee65a,
  28645. 0x052bf71,0x1d65fd5,0x0062d43 },
  28646. { 0x2955926,0x3fae7bc,0x0353d85,0x07db7de,0x1440a56,0x328dad6,
  28647. 0x1668ec9,0x28058e2,0x1a1a22d,0x1014afc,0x3609325,0x3effdcb,
  28648. 0x209f3bd,0x3ca3888,0x0094e50 } },
  28649. /* 21 */
  28650. { { 0x062e8af,0x0b96ccc,0x136990b,0x1d7a28f,0x1a85723,0x0076dec,
  28651. 0x21b00b2,0x06a88ff,0x2f0ee65,0x1fa49b7,0x39b10ad,0x10b26fa,
  28652. 0x0be7465,0x026e8bf,0x00098e3 },
  28653. { 0x3f1d63f,0x37bacff,0x1374779,0x02882ff,0x323d0e8,0x1da3de5,
  28654. 0x12bb3b8,0x0a15a11,0x34d1f95,0x2b3dd6e,0x29ea3fa,0x39ad000,
  28655. 0x33a538f,0x390204d,0x0012bd3 } },
  28656. /* 22 */
  28657. { { 0x04cbba5,0x0de0344,0x1d4cc02,0x11fe8d7,0x36207e7,0x32a6da8,
  28658. 0x0239281,0x1ec40d7,0x3e89798,0x213fc66,0x0022eee,0x11daefe,
  28659. 0x3e74db8,0x28534ee,0x00aa0a4 },
  28660. { 0x07d4543,0x250cc46,0x206620f,0x1c1e7db,0x1321538,0x31fa0b8,
  28661. 0x30f74ea,0x01aae0e,0x3a2828f,0x3e9dd22,0x026ef35,0x3c0a62b,
  28662. 0x27dbdc5,0x01c23a6,0x000f0c5 } },
  28663. /* 23 */
  28664. { { 0x2f029dd,0x3091337,0x21b80c5,0x21e1419,0x13dabc6,0x3847660,
  28665. 0x12b865f,0x36eb666,0x38f6274,0x0ba6006,0x098da24,0x1398c64,
  28666. 0x13d08e5,0x246a469,0x009929a },
  28667. { 0x1285887,0x3ff5c8d,0x010237b,0x097c506,0x0bc7594,0x34b9b88,
  28668. 0x00cc35f,0x0bb964a,0x00cfbc4,0x29cd718,0x0837619,0x2b4a192,
  28669. 0x0c57bb7,0x08c69de,0x00a3627 } },
  28670. /* 24 */
  28671. { { 0x1361ed8,0x266d724,0x366cae7,0x1d5b18c,0x247d71b,0x2c9969a,
  28672. 0x0dd5211,0x1edd153,0x25998d7,0x0380856,0x3ab29db,0x09366de,
  28673. 0x1e53644,0x2b31ff6,0x008b0ff },
  28674. { 0x3b5d9ef,0x217448d,0x174746d,0x18afea4,0x15b106d,0x3e66e8b,
  28675. 0x0479f85,0x13793b4,0x1231d10,0x3c39bce,0x25e8983,0x2a13210,
  28676. 0x05a7083,0x382be04,0x00a9507 } },
  28677. /* 25 */
  28678. { { 0x0cf381c,0x1a29b85,0x31ccf6c,0x2f708b8,0x3af9d27,0x2a29732,
  28679. 0x168d4da,0x393488d,0x2c0e338,0x3f90c7b,0x0f52ad1,0x2a0a3fa,
  28680. 0x2cd80f1,0x15e7a1a,0x00db6a0 },
  28681. { 0x107832a,0x159cb91,0x1289288,0x17e21f9,0x073fc27,0x1584342,
  28682. 0x3802780,0x3d6c197,0x154075f,0x16366d1,0x09f712b,0x23a3ec4,
  28683. 0x29cf23a,0x3218baf,0x0039f0a } },
  28684. /* 26 */
  28685. { { 0x052edf5,0x2afde13,0x2e53d8f,0x3969626,0x3dcd737,0x1e46ac5,
  28686. 0x118bf0d,0x01b2652,0x156bcff,0x16d7ef6,0x1ca46d4,0x34c0cbb,
  28687. 0x3e486f6,0x1f85068,0x002cdff },
  28688. { 0x1f47ec8,0x12cee98,0x0608667,0x18fbbe1,0x08a8821,0x31a1fe4,
  28689. 0x17c7054,0x3c89e89,0x2edf6cd,0x1b8c32c,0x3f6ea84,0x1319329,
  28690. 0x3cd3c2c,0x05f331a,0x00186fa } },
  28691. /* 27 */
  28692. { { 0x1fcb91e,0x0fd4d87,0x358a48a,0x04d91b4,0x083595e,0x044a1e6,
  28693. 0x15827b9,0x1d5eaf4,0x2b82187,0x08f3984,0x21bd737,0x0c54285,
  28694. 0x2f56887,0x14c2d98,0x00f4684 },
  28695. { 0x01896f6,0x0e542d0,0x2090883,0x269dfcf,0x1e11cb8,0x239fd29,
  28696. 0x312cac4,0x19dfacb,0x369f606,0x0cc4f75,0x16579f9,0x33c22cc,
  28697. 0x0f22bfd,0x3b251ae,0x006429c } },
  28698. /* 28 */
  28699. { { 0x375f9a4,0x137552e,0x3570498,0x2e4a74e,0x24aef06,0x35b9307,
  28700. 0x384ca23,0x3bcd6d7,0x011b083,0x3c93187,0x392ca9f,0x129ce48,
  28701. 0x0a800ce,0x145d9cc,0x00865d6 },
  28702. { 0x22b4a2b,0x37f9d9c,0x3e0eca3,0x3e5ec20,0x112c04b,0x2e1ae29,
  28703. 0x3ce5b51,0x0f83200,0x32d6a7e,0x10ff1d8,0x081adbe,0x265c30b,
  28704. 0x216b1c8,0x0eb4483,0x003cbcd } },
  28705. /* 29 */
  28706. { { 0x030ce93,0x2d331fb,0x20a2fbf,0x1f6dc9c,0x010ed6c,0x1ed5540,
  28707. 0x275bf74,0x3df0fb1,0x103333f,0x0241c96,0x1075bfc,0x30e5cf9,
  28708. 0x0f31bc7,0x32c01eb,0x00b049e },
  28709. { 0x358839c,0x1dbabd3,0x1e4fb40,0x36a8ac1,0x2101896,0x2d0319b,
  28710. 0x2033b0a,0x192e8fd,0x2ebc8d8,0x2867ba7,0x07bf6d2,0x1b3c555,
  28711. 0x2477deb,0x198fe09,0x008e5a9 } },
  28712. /* 30 */
  28713. { { 0x3fbd5e1,0x18bf77d,0x2b1d69e,0x151da44,0x338ecfe,0x0768efe,
  28714. 0x1a3d56d,0x3c35211,0x10e1c86,0x2012525,0x3bc36ce,0x32b6fe4,
  28715. 0x0c8d183,0x15c93f3,0x0041fce },
  28716. { 0x332c144,0x24e70a0,0x246e05f,0x22c21c7,0x2b17f24,0x1ba2bfd,
  28717. 0x0534e26,0x318a4f6,0x1dc3b85,0x0c741bc,0x23131b7,0x01a8cba,
  28718. 0x364e5db,0x21362cf,0x00f2951 } },
  28719. /* 31 */
  28720. { { 0x2ddc103,0x14ffdcd,0x206fd96,0x0de57bd,0x025f43e,0x381b73a,
  28721. 0x2301fcf,0x3bafc27,0x34130b6,0x0216bc8,0x0ff56b2,0x2c4ad4c,
  28722. 0x23c6b79,0x1267fa6,0x009b4fb },
  28723. { 0x1d27ac2,0x13e2494,0x1389015,0x38d5b29,0x2d33167,0x3f01969,
  28724. 0x28ec1fa,0x1b26de0,0x2587f74,0x1c25668,0x0c44f83,0x23c6f8c,
  28725. 0x32fdbb1,0x045f104,0x00a7946 } },
  28726. /* 32 */
  28727. { { 0x23c647b,0x09addd7,0x1348c04,0x0e633c1,0x1bfcbd9,0x1cb034f,
  28728. 0x1312e31,0x11cdcc7,0x1e6ee75,0x057d27f,0x2da7ee6,0x154c3c1,
  28729. 0x3a5fb89,0x2c2ba2c,0x00cf281 },
  28730. { 0x1b8a543,0x125cd50,0x1d30fd1,0x29cc203,0x341a625,0x14e4233,
  28731. 0x3aae076,0x289e38a,0x036ba02,0x230f405,0x3b21b8f,0x34088b9,
  28732. 0x01297a0,0x03a75fb,0x00fdc27 } },
  28733. /* 33 */
  28734. { { 0x07f41d6,0x1cf032f,0x1641008,0x0f86deb,0x3d97611,0x0e110fe,
  28735. 0x136ff42,0x0b914a9,0x0e241e6,0x180c340,0x1f545fc,0x0ba619d,
  28736. 0x1208c53,0x04223a4,0x00cd033 },
  28737. { 0x397612c,0x0132665,0x34e2d1a,0x00bba99,0x1d4393e,0x065d0a8,
  28738. 0x2fa69ee,0x1643b55,0x08085f0,0x3774aad,0x08a2243,0x33bf149,
  28739. 0x03f41a5,0x1ed950e,0x0048cc6 } },
  28740. /* 34 */
  28741. { { 0x014ab48,0x010c3bf,0x2a744e5,0x13c99c1,0x2195b7f,0x32207fd,
  28742. 0x28a228c,0x004f4bf,0x0e2d945,0x2ec6e5a,0x0b92162,0x1aa95e5,
  28743. 0x2754a93,0x1adcd93,0x004fb76 },
  28744. { 0x1e1ff7f,0x24ef28c,0x269113f,0x32b393c,0x2696eb5,0x0ac2780,
  28745. 0x354bf8a,0x0ffe3fd,0x09ce58e,0x0163c4f,0x1678c0b,0x15cd1bc,
  28746. 0x292b3b7,0x036ea19,0x00d5420 } },
  28747. /* 35 */
  28748. { { 0x1da1265,0x0c2ef5b,0x18dd9a0,0x3f3a25c,0x0f7b4f3,0x0d8196e,
  28749. 0x24931f9,0x090729a,0x1875f72,0x1ef39cb,0x2577585,0x2ed472d,
  28750. 0x136756c,0x20553a6,0x00c7161 },
  28751. { 0x2e32189,0x283de4b,0x00b2e81,0x0989df7,0x3ef2fab,0x1c7d1a7,
  28752. 0x24f6feb,0x3e16679,0x233dfda,0x06d1233,0x3e6b5df,0x1707132,
  28753. 0x05f7b3f,0x2c00779,0x00fb8df } },
  28754. /* 36 */
  28755. { { 0x15bb921,0x117e9d3,0x267ec73,0x2f934ad,0x25c7e04,0x20b5e8f,
  28756. 0x2d3a802,0x2ca911f,0x3f87e47,0x39709dd,0x08488e2,0x2cec400,
  28757. 0x35b4589,0x1f0acba,0x009aad7 },
  28758. { 0x2ac34ae,0x06f29f6,0x3326d68,0x3949abe,0x02452e4,0x0687b85,
  28759. 0x0879244,0x1eb7832,0x0d4c240,0x31d0ec1,0x3c17a2a,0x17a666f,
  28760. 0x01a06cb,0x3e0929c,0x004dca2 } },
  28761. /* 37 */
  28762. { { 0x127bc1a,0x0c72984,0x13be68e,0x26c5fab,0x1a3edd5,0x097d685,
  28763. 0x36b645e,0x385799e,0x394a420,0x39d8885,0x0b1e872,0x13f60ed,
  28764. 0x2ce1b79,0x3c0ecb7,0x007cab3 },
  28765. { 0x29b3586,0x26fc572,0x0bd7711,0x0913494,0x0a55459,0x31af3c9,
  28766. 0x3633eac,0x3e2105c,0x0c2b1b6,0x0e6f4c2,0x047d38c,0x2b81bd5,
  28767. 0x1fe1c3b,0x04d7cd0,0x0054dcc } },
  28768. /* 38 */
  28769. { { 0x03caf0d,0x0d66365,0x313356d,0x2a4897f,0x2ce044e,0x18feb7a,
  28770. 0x1f6a7c5,0x3709e7b,0x14473e8,0x2d8cbae,0x3190dca,0x12d19f8,
  28771. 0x31e3181,0x3cc5b6e,0x002d4f4 },
  28772. { 0x143b7ca,0x2604728,0x39508d6,0x0cb79f3,0x24ec1ac,0x1ed7fa0,
  28773. 0x3ab5fd3,0x3c76488,0x2e49390,0x03a0985,0x3580461,0x3fd2c81,
  28774. 0x308f0ab,0x38561d6,0x0011b9b } },
  28775. /* 39 */
  28776. { { 0x3be682c,0x0c68f4e,0x32dd4ae,0x099d3bb,0x0bc7c5d,0x311f750,
  28777. 0x2fd10a3,0x2e7864a,0x23bc14a,0x13b1f82,0x32e495e,0x1b0f746,
  28778. 0x3cd856a,0x17a4c26,0x00085ee },
  28779. { 0x02e67fd,0x06a4223,0x2af2f38,0x2038987,0x132083a,0x1b7bb85,
  28780. 0x0d6a499,0x131e43f,0x3035e52,0x278ee3e,0x1d5b08b,0x30d8364,
  28781. 0x2719f8d,0x0b21fc9,0x003a06e } },
  28782. /* 40 */
  28783. { { 0x237cac0,0x27d6a1c,0x27945cd,0x2750d61,0x293f0b5,0x253db13,
  28784. 0x04a764e,0x20b4d0e,0x12bb627,0x160c13b,0x0de0601,0x236e2cf,
  28785. 0x2190f0b,0x354d76f,0x004336d },
  28786. { 0x2ab473a,0x10d54e4,0x1046574,0x1d6f97b,0x0031c72,0x06426a9,
  28787. 0x38678c2,0x0b76cf9,0x04f9920,0x152adf8,0x2977e63,0x1234819,
  28788. 0x198be26,0x061024c,0x00d427d } },
  28789. /* 41 */
  28790. { { 0x39b5a31,0x2123d43,0x362a822,0x1a2eab6,0x0bb0034,0x0d5d567,
  28791. 0x3a04723,0x3a10c8c,0x08079ae,0x0d27bda,0x2eb9e1e,0x2619e82,
  28792. 0x39a55a8,0x0c6c7db,0x00c1519 },
  28793. { 0x174251e,0x13ac2eb,0x295ed26,0x18d2afc,0x037b9b2,0x1258344,
  28794. 0x00921b0,0x1f702d8,0x1bc4da7,0x1c3794f,0x12b1869,0x366eacf,
  28795. 0x16ddf01,0x31ebdc5,0x00ad54e } },
  28796. /* 42 */
  28797. { { 0x1efdc58,0x1370d5e,0x0ddb8e7,0x1a53fda,0x1456bd3,0x0c825a9,
  28798. 0x0e74ccd,0x20f41c9,0x3423867,0x139073f,0x3c70d8a,0x131fc85,
  28799. 0x219a2a0,0x34bf986,0x0041199 },
  28800. { 0x1c05dd2,0x268f80a,0x3da9d38,0x1af9f8f,0x0535f2a,0x30ad37e,
  28801. 0x2cf72d7,0x14a509b,0x1f4fe74,0x259e09d,0x1d23f51,0x0672732,
  28802. 0x08fc463,0x00b6201,0x001e05a } },
  28803. /* 43 */
  28804. { { 0x0d5ffe8,0x3238bb5,0x17f275c,0x25b6fa8,0x2f8bb48,0x3b8f2d2,
  28805. 0x059790c,0x18594d4,0x285a47c,0x3d301bb,0x12935d2,0x23ffc96,
  28806. 0x3d7c7f9,0x15c8cbf,0x0034c4a },
  28807. { 0x20376a2,0x05201ba,0x1e02c4b,0x1413c45,0x02ea5e7,0x39575f0,
  28808. 0x2d76e21,0x113694c,0x011f310,0x0da3725,0x31b7799,0x1cb9195,
  28809. 0x0cfd592,0x22ee4ea,0x00adaa3 } },
  28810. /* 44 */
  28811. { { 0x14ed72a,0x031c49f,0x39a34bf,0x192e87d,0x0da0e92,0x130e7a9,
  28812. 0x00258bf,0x144e123,0x2d82a71,0x0294e53,0x3f06c66,0x3d4473a,
  28813. 0x037cd4a,0x3bbfb17,0x00fcebc },
  28814. { 0x39ae8c1,0x2dd6a9d,0x206ef23,0x332b479,0x2deff59,0x09d5720,
  28815. 0x3526fd2,0x33bf7cf,0x344bb32,0x359316a,0x115bdef,0x1b8468a,
  28816. 0x3813ea9,0x11a8450,0x00ab197 } },
  28817. /* 45 */
  28818. { { 0x0837d7d,0x1e1617b,0x0ba443c,0x2f2e3b8,0x2ca5b6f,0x176ed7b,
  28819. 0x2924d9d,0x07294d3,0x104bb4f,0x1cfd3e8,0x398640f,0x1162dc8,
  28820. 0x007ea15,0x2aa75fd,0x004231f },
  28821. { 0x16e6896,0x01987be,0x0f9d53e,0x1a740ec,0x1554e4c,0x31e1634,
  28822. 0x3cb07b9,0x013eb53,0x39352cb,0x1dfa549,0x0974e7f,0x17c55d2,
  28823. 0x157c85f,0x1561adb,0x002e3fa } },
  28824. /* 46 */
  28825. { { 0x29951a8,0x35200da,0x2ad042c,0x22109e4,0x3a8b15b,0x2eca69c,
  28826. 0x28bcf9a,0x0cfa063,0x0924099,0x12ff668,0x2fb88dc,0x028d653,
  28827. 0x2445876,0x218d01c,0x0014418 },
  28828. { 0x1caedc7,0x295bba6,0x01c9162,0x3364744,0x28fb12e,0x24c80b6,
  28829. 0x2719673,0x35e5ba9,0x04aa4cc,0x206ab23,0x1cf185a,0x2c140d8,
  28830. 0x1095a7d,0x1b3633f,0x000c9f8 } },
  28831. /* 47 */
  28832. { { 0x0b2a556,0x0a051c4,0x30b29a7,0x190c9ed,0x3767ca9,0x38de66d,
  28833. 0x2d9e125,0x3aca813,0x2dc22a3,0x319e074,0x0d9450a,0x3445bac,
  28834. 0x3e08a5b,0x07f29fa,0x00eccac },
  28835. { 0x02d6e94,0x21113f7,0x321bde6,0x0a4d7b3,0x03621f4,0x2780e8b,
  28836. 0x22d5432,0x1fc2853,0x0d57d3e,0x254f90b,0x33ed00b,0x289b025,
  28837. 0x12272bb,0x30e715f,0x0000297 } },
  28838. /* 48 */
  28839. { { 0x0243a7d,0x2aac42e,0x0c5b3aa,0x0fa3e96,0x06eeef9,0x2b9fdd9,
  28840. 0x26fca39,0x0134fe1,0x22661ab,0x1990416,0x03945d6,0x15e3628,
  28841. 0x3848ca3,0x0f91e46,0x00b08cd },
  28842. { 0x16d2411,0x3717e1d,0x128c45e,0x3669d54,0x0d4a790,0x2797da8,
  28843. 0x0f09634,0x2faab0b,0x27df649,0x3b19b49,0x0467039,0x39b65a2,
  28844. 0x3816f3c,0x31ad0bd,0x0050046 } },
  28845. /* 49 */
  28846. { { 0x2425043,0x3858099,0x389092a,0x3f7c236,0x11ff66a,0x3c58b39,
  28847. 0x2f5a7f8,0x1663ce1,0x2a0fcf5,0x38634b7,0x1a8ca18,0x0dcace8,
  28848. 0x0e6f778,0x03ae334,0x00df0d2 },
  28849. { 0x1bb4045,0x357875d,0x14b77ed,0x33ae5b6,0x2252a47,0x31899dd,
  28850. 0x3293582,0x040c6f6,0x14340dd,0x3614f0e,0x3d5f47f,0x326fb3d,
  28851. 0x0044a9d,0x00beeb9,0x0027c23 } },
  28852. /* 50 */
  28853. { { 0x32d49ce,0x34822a3,0x30a22d1,0x00858b7,0x10d91aa,0x2681fd9,
  28854. 0x1cce870,0x2404a71,0x38b8433,0x377c1c8,0x019442c,0x0a38b21,
  28855. 0x22aba50,0x0d61c81,0x002dcbd },
  28856. { 0x0680967,0x2f0f2f9,0x172cb5f,0x1167e4b,0x12a7bc6,0x05b0da7,
  28857. 0x2c76e11,0x3a36201,0x37a3177,0x1d71419,0x0569df5,0x0dce7ad,
  28858. 0x3f40b75,0x3bd8db0,0x002d481 } },
  28859. /* 51 */
  28860. { { 0x2a1103e,0x34e7f7f,0x1b171a2,0x24a57e0,0x2eaae55,0x166c992,
  28861. 0x10aa18f,0x0bb836f,0x01acb59,0x0e430e7,0x1750cca,0x18be036,
  28862. 0x3cc6cdf,0x0a0f7e5,0x00da4d8 },
  28863. { 0x2201067,0x374d187,0x1f6b0a6,0x165a7ec,0x31531f8,0x3580487,
  28864. 0x15e5521,0x0724522,0x2b04c04,0x202c86a,0x3cc1ccf,0x225b11a,
  28865. 0x1bde79d,0x0eccc50,0x00d24da } },
  28866. /* 52 */
  28867. { { 0x3b0a354,0x2814dd4,0x1cd8575,0x3d031b7,0x0392ff2,0x1855ee5,
  28868. 0x0e8cff5,0x203442e,0x3bd3b1b,0x141cf95,0x3fedee1,0x1d783c0,
  28869. 0x26f192a,0x0392aa3,0x0075238 },
  28870. { 0x158ffe9,0x3889f19,0x14151f4,0x06067b1,0x13a3486,0x1e65c21,
  28871. 0x382d5ef,0x1ab0aac,0x2ffddc4,0x3179b7a,0x3c8d094,0x05101e3,
  28872. 0x237c6e5,0x3947d83,0x00f674f } },
  28873. /* 53 */
  28874. { { 0x363408f,0x21eb96b,0x27376fb,0x2a735d6,0x1a39c36,0x3d31863,
  28875. 0x33313fc,0x32235e0,0x082f034,0x23ef351,0x39b3528,0x1a69d84,
  28876. 0x1d9c944,0x07159ad,0x0077a71 },
  28877. { 0x04f8d65,0x25771e5,0x2ba84a6,0x194586a,0x1e6da5f,0x118059a,
  28878. 0x14e9c32,0x1d24619,0x3f528ae,0x22f22e4,0x0f5580d,0x0747a0e,
  28879. 0x32cc85f,0x286b3a8,0x008ccf9 } },
  28880. /* 54 */
  28881. { { 0x196fee2,0x2c4431c,0x094528a,0x18e1d32,0x175799d,0x26bb6b7,
  28882. 0x2293482,0x23fd289,0x07b2be8,0x1a5c533,0x158d60d,0x04a4f3f,
  28883. 0x164e9f7,0x32ccca9,0x00da6b6 },
  28884. { 0x1d821c2,0x3f76c4f,0x323df43,0x17e4374,0x0f2f278,0x121227e,
  28885. 0x2464190,0x19d2644,0x326d24c,0x3185983,0x0803c15,0x0767a33,
  28886. 0x1c4c996,0x0563eab,0x00631c6 } },
  28887. /* 55 */
  28888. { { 0x1752366,0x0baf83f,0x288bacf,0x0384e6f,0x2b93c34,0x3c805e7,
  28889. 0x3664850,0x29e1663,0x254ff1d,0x3852080,0x0f85c16,0x1e389d9,
  28890. 0x3191352,0x3915eaa,0x00a246e },
  28891. { 0x3763b33,0x187ad14,0x3c0d438,0x3f11702,0x1c49f03,0x35ac7a8,
  28892. 0x3f16bca,0x27266bf,0x08b6fd4,0x0f38ce4,0x37fde8c,0x147a6ff,
  28893. 0x02c5e5c,0x28e7fc5,0x00076a7 } },
  28894. /* 56 */
  28895. { { 0x2338d10,0x0e77fa7,0x011b046,0x1bfd0ad,0x28ee699,0x21d73bc,
  28896. 0x0461d1a,0x342ea58,0x2d695b4,0x30415ed,0x2906e0b,0x18e494a,
  28897. 0x20f8a27,0x026b870,0x002c19f },
  28898. { 0x2f4c43d,0x3f0fc3b,0x0aa95b8,0x2a01ea1,0x3e2e1b1,0x0d74af6,
  28899. 0x0555288,0x0cb757d,0x24d2071,0x143d2bb,0x3907f67,0x3e0ce30,
  28900. 0x131f0e9,0x3724381,0x007a874 } },
  28901. /* 57 */
  28902. { { 0x3c27050,0x08b5165,0x0bf884b,0x3dd679c,0x3bd0b8d,0x25ce2e6,
  28903. 0x1674057,0x1f13ed3,0x1f5cd91,0x0d1fd35,0x13ce6e3,0x2671338,
  28904. 0x10f8b90,0x34e5487,0x00942bf },
  28905. { 0x03b566d,0x23c3da9,0x37de502,0x1a486ff,0x1af6e86,0x1108cb3,
  28906. 0x36f856c,0x01a6a0f,0x179f915,0x1595a01,0x2cfecb8,0x082568b,
  28907. 0x1ba16d1,0x1abb6c0,0x00cf7f0 } },
  28908. /* 58 */
  28909. { { 0x2f96c80,0x1b8f123,0x209c0f5,0x2ccf76d,0x1d521f2,0x3705143,
  28910. 0x2941027,0x07f88af,0x07102a9,0x38b4868,0x1efa37d,0x1bdd3e8,
  28911. 0x028a12e,0x02e055b,0x009a9a9 },
  28912. { 0x1c7dfcb,0x3aa7aa7,0x1d62c54,0x3f0b0b0,0x3c74e66,0x274f819,
  28913. 0x23f9674,0x0e2b67c,0x24654dd,0x0c71f0e,0x1946cee,0x0016211,
  28914. 0x0045dc7,0x0da1173,0x0089856 } },
  28915. /* 59 */
  28916. { { 0x0e73946,0x29f353f,0x056329d,0x2d48c5a,0x28f697d,0x2ea4bb1,
  28917. 0x235e9cc,0x34faa38,0x15f9f91,0x3557519,0x2a50a6c,0x1a27c8e,
  28918. 0x2a1a0f3,0x3098879,0x00dcf21 },
  28919. { 0x1b818bf,0x2f20b98,0x2243cff,0x25b691e,0x3c74a2f,0x2f06833,
  28920. 0x0e980a8,0x32db48d,0x2b57929,0x33cd7f5,0x2fe17d6,0x11a384b,
  28921. 0x2dafb81,0x2b9562c,0x00ddea6 } },
  28922. /* 60 */
  28923. { { 0x2787b2e,0x37a21df,0x310d294,0x07ce6a4,0x1258acc,0x3050997,
  28924. 0x19714aa,0x122824b,0x11c708b,0x0462d56,0x21abbf7,0x331aec3,
  28925. 0x307b927,0x3e8d5a0,0x00c0581 },
  28926. { 0x24d4d58,0x3d628fc,0x23279e0,0x2e38338,0x2febe9b,0x346f9c0,
  28927. 0x3d6a419,0x3264e47,0x245faca,0x3669f62,0x1e50d66,0x3028232,
  28928. 0x18201ab,0x0bdc192,0x0002c34 } },
  28929. /* 61 */
  28930. { { 0x17bdbc2,0x1c501c5,0x1605ccd,0x31ab438,0x372fa89,0x24a8057,
  28931. 0x13da2bb,0x3f95ac7,0x3cda0a3,0x1e2b679,0x24f0673,0x03b72f4,
  28932. 0x35be616,0x2ccd849,0x0079d4d },
  28933. { 0x33497c4,0x0c7f657,0x2fb0d3d,0x3b81064,0x38cafea,0x0e942bc,
  28934. 0x3ca7451,0x2ab9784,0x1678c85,0x3c62098,0x1eb556f,0x01b3aa2,
  28935. 0x149f3ce,0x2656f6d,0x002eef1 } },
  28936. /* 62 */
  28937. { { 0x0596edc,0x1f4fad4,0x03a28ed,0x18a4149,0x3aa3593,0x12db40a,
  28938. 0x12c2c2a,0x3b1a288,0x327c4fb,0x35847f5,0x384f733,0x02e3fde,
  28939. 0x1af0e8a,0x2e417c3,0x00d85a6 },
  28940. { 0x0091cf7,0x2267d75,0x276860e,0x19cbbfc,0x04fef2b,0x030ce59,
  28941. 0x3195cb1,0x1aa3f07,0x3699362,0x2a09d74,0x0d6c840,0x1e413d0,
  28942. 0x28acdc7,0x1ff5ea1,0x0088d8b } },
  28943. /* 63 */
  28944. { { 0x3d98425,0x08dc8de,0x154e85f,0x24b1c2c,0x2d44639,0x19a1e8b,
  28945. 0x300ee29,0x053f72e,0x3f7c832,0x12417f6,0x1359368,0x0674a4c,
  28946. 0x1218e20,0x0e4fbd4,0x000428c },
  28947. { 0x01e909a,0x1d88fe6,0x12da40c,0x215ef86,0x2925133,0x004241f,
  28948. 0x3e480f4,0x2d16523,0x07c3120,0x3375e86,0x21fd8f3,0x35dc0b6,
  28949. 0x0efc5c9,0x14ef8d6,0x0066e47 } },
  28950. /* 64 */
  28951. { { 0x2973cf4,0x34d3845,0x34f7070,0x22df93c,0x120aee0,0x3ae2b4a,
  28952. 0x1af9b95,0x177689a,0x036a6a4,0x0377828,0x23df41e,0x22d4a39,
  28953. 0x0df2aa1,0x06ca898,0x0003cc7 },
  28954. { 0x06b1dd7,0x19dc2a8,0x35d324a,0x0467499,0x25bfa9c,0x1a1110c,
  28955. 0x01e2a19,0x1b3c1cf,0x18d131a,0x10d9815,0x2ee7945,0x0a2720c,
  28956. 0x0ddcdb0,0x2c071b6,0x00a6aef } },
  28957. /* 65 */
  28958. { { 0x1ab5245,0x1192d00,0x13ffba1,0x1b71236,0x09b8d0b,0x0eb49cb,
  28959. 0x1867dc9,0x371de4e,0x05eae9f,0x36faf82,0x094ea8b,0x2b9440e,
  28960. 0x022e173,0x2268e6b,0x00740fc },
  28961. { 0x0e23b23,0x22c28ca,0x04d05e2,0x0bb84c4,0x1235272,0x0289903,
  28962. 0x267a18b,0x0df0fd1,0x32e49bb,0x2ab1d29,0x281e183,0x3dcd3c3,
  28963. 0x1c0eb79,0x2db0ff6,0x00bffe5 } },
  28964. /* 66 */
  28965. { { 0x2a2123f,0x0d63d71,0x1f6db1a,0x257f8a3,0x1927b2d,0x06674be,
  28966. 0x302753f,0x20b7225,0x14c1a3f,0x0429cdd,0x377affe,0x0f40a75,
  28967. 0x2d34d06,0x05fb6b9,0x0054398 },
  28968. { 0x38b83c4,0x1e7bbda,0x1682f79,0x0527651,0x2615cb2,0x1795fab,
  28969. 0x0e4facc,0x11f763c,0x1b81130,0x2010ae2,0x13f3650,0x20d5b72,
  28970. 0x1f32f88,0x34617f4,0x00bf008 } },
  28971. /* 67 */
  28972. { { 0x28068db,0x0aa8913,0x1a47801,0x10695ca,0x1c72cc6,0x0fc1a47,
  28973. 0x33df2c4,0x0517cf0,0x3471d92,0x1be815c,0x397f794,0x3f03cbe,
  28974. 0x121bfae,0x172cbe0,0x00813d7 },
  28975. { 0x383bba6,0x04f1c90,0x0b3f056,0x1c29089,0x2a924ce,0x3c85e69,
  28976. 0x1cecbe5,0x0ad8796,0x0aa79f6,0x25e38ba,0x13ad807,0x30b30ed,
  28977. 0x0fa963a,0x35c763d,0x0055518 } },
  28978. /* 68 */
  28979. { { 0x0623f3b,0x3ca4880,0x2bff03c,0x0457ca7,0x3095c71,0x02a9a08,
  28980. 0x1722478,0x302c10b,0x3a17458,0x001131e,0x0959ec2,0x18bdfbc,
  28981. 0x2929fca,0x2adfe32,0x0040ae2 },
  28982. { 0x127b102,0x14ddeaa,0x1771b8c,0x283700c,0x2398a86,0x085a901,
  28983. 0x108f9dc,0x0cc0012,0x33a918d,0x26d08e9,0x20b9473,0x12c3fc7,
  28984. 0x1f69763,0x1c94b5a,0x00e29de } },
  28985. /* 69 */
  28986. { { 0x035af04,0x3450021,0x12da744,0x077fb06,0x25f255b,0x0db7150,
  28987. 0x17dc123,0x1a2a07c,0x2a7636a,0x3972430,0x3704ca1,0x0327add,
  28988. 0x3d65a96,0x3c79bec,0x009de8c },
  28989. { 0x11d3d06,0x3fb8354,0x12c7c60,0x04fe7ad,0x0466e23,0x01ac245,
  28990. 0x3c0f5f2,0x2a935d0,0x3ac2191,0x090bd56,0x3febdbc,0x3f1f23f,
  28991. 0x0ed1cce,0x02079ba,0x00d4fa6 } },
  28992. /* 70 */
  28993. { { 0x0ab9645,0x10174ec,0x3711b5e,0x26357c7,0x2aeec7f,0x2170a9b,
  28994. 0x1423115,0x1a5122b,0x39e512c,0x18116b2,0x290db1c,0x041b13a,
  28995. 0x26563ae,0x0f56263,0x00b89f3 },
  28996. { 0x3ed2ce4,0x01f365f,0x1b2043b,0x05f7605,0x1f9934e,0x2a068d2,
  28997. 0x38d4d50,0x201859d,0x2de5291,0x0a7985a,0x17e6711,0x01b6c1b,
  28998. 0x08091fa,0x33c6212,0x001da23 } },
  28999. /* 71 */
  29000. { { 0x2f2c4b5,0x311acd0,0x1e47821,0x3bd9816,0x1931513,0x1bd4334,
  29001. 0x30ae436,0x2c49dc0,0x2c943e7,0x010ed4d,0x1fca536,0x189633d,
  29002. 0x17abf00,0x39e5ad5,0x00e4e3e },
  29003. { 0x0c8b22f,0x2ce4009,0x1054bb6,0x307f2fc,0x32eb5e2,0x19d24ab,
  29004. 0x3b18c95,0x0e55e4d,0x2e4acf5,0x1bc250c,0x1dbf3a5,0x17d6a74,
  29005. 0x087cf58,0x07f6f82,0x00f8675 } },
  29006. /* 72 */
  29007. { { 0x110e0b2,0x0e672e7,0x11b7157,0x1598371,0x01c0d59,0x3d60c24,
  29008. 0x096b8a1,0x0121075,0x0268859,0x219962f,0x03213f2,0x3022adc,
  29009. 0x18de488,0x3dcdeb9,0x008d2e0 },
  29010. { 0x06cfee6,0x26f2552,0x3c579b7,0x31fa796,0x2036a26,0x362ba5e,
  29011. 0x103601c,0x012506b,0x387ff3a,0x101a41f,0x2c7eb58,0x23d2efc,
  29012. 0x10a5a07,0x2fd5fa3,0x00e3731 } },
  29013. /* 73 */
  29014. { { 0x1cd0abe,0x08a0af8,0x2fa272f,0x17a1fbf,0x1d4f901,0x30e0d2f,
  29015. 0x1898066,0x273b674,0x0c1b8a2,0x3272337,0x3ee82eb,0x006e7d3,
  29016. 0x2a75606,0x0af1c81,0x0037105 },
  29017. { 0x2f32562,0x2842491,0x1bb476f,0x1305cd4,0x1daad53,0x0d8daed,
  29018. 0x164c37b,0x138030f,0x05145d5,0x300e2a3,0x32c09e7,0x0798600,
  29019. 0x3515130,0x2b9e55c,0x009764e } },
  29020. /* 74 */
  29021. { { 0x3d5256a,0x06c67f2,0x3a3b879,0x3c9b284,0x04007e0,0x33c1a41,
  29022. 0x3794604,0x1d6240e,0x022b6c1,0x22c62a7,0x01d4590,0x32df5f6,
  29023. 0x368f1a1,0x2a7486e,0x006e13f },
  29024. { 0x31e6e16,0x20f18a9,0x09ed471,0x23b861d,0x15cf0ef,0x397b502,
  29025. 0x1c7f9b2,0x05f84b2,0x2cce6e1,0x3c10bba,0x13fb5a7,0x1b52058,
  29026. 0x1feb1b8,0x03b7279,0x00ea1cf } },
  29027. /* 75 */
  29028. { { 0x2a4cc9b,0x15cf273,0x08f36e6,0x076bf3b,0x2541796,0x10e2dbd,
  29029. 0x0bf02aa,0x3aa2201,0x03cdcd4,0x3ee252c,0x3799571,0x3e01fa4,
  29030. 0x156e8d0,0x1fd6188,0x003466a },
  29031. { 0x2515664,0x166b355,0x2b0b51e,0x0f28f17,0x355b0f9,0x2909e76,
  29032. 0x206b026,0x3823a12,0x179c5fa,0x0972141,0x2663a1a,0x01ee36e,
  29033. 0x3fc8dcf,0x2ef3d1b,0x0049a36 } },
  29034. /* 76 */
  29035. { { 0x2d93106,0x3d6b311,0x3c9ce47,0x382aa25,0x265b7ad,0x0b5f92f,
  29036. 0x0f4c941,0x32aa4df,0x380d4b2,0x0e8aba6,0x260357a,0x1f38273,
  29037. 0x0d5f95e,0x199f23b,0x0029f77 },
  29038. { 0x0a0b1c5,0x21a3d6a,0x0ad8df6,0x33d8a5e,0x1240858,0x30000a8,
  29039. 0x3ac101d,0x2a8143d,0x1d7ffe9,0x1c74a2a,0x1b962c9,0x1261359,
  29040. 0x0c8b274,0x002cf4a,0x00a8a7c } },
  29041. /* 77 */
  29042. { { 0x211a338,0x22a14ab,0x16e77c5,0x3c746be,0x3a78613,0x0d5731c,
  29043. 0x1767d25,0x0b799fa,0x009792a,0x09ae8dc,0x124386b,0x183d860,
  29044. 0x176747d,0x14c4445,0x00ab09b },
  29045. { 0x0eb9dd0,0x0121066,0x032895a,0x330541c,0x1e6c17a,0x2271b92,
  29046. 0x06da454,0x054c2bf,0x20abb21,0x0ead169,0x3d7ea93,0x2359649,
  29047. 0x242c6c5,0x3194255,0x00a3ef3 } },
  29048. /* 78 */
  29049. { { 0x3010879,0x1083a77,0x217989d,0x174e55d,0x29d2525,0x0e544ed,
  29050. 0x1efd50e,0x30c4e73,0x05bd5d1,0x0793bf9,0x3f7af77,0x052779c,
  29051. 0x2b06bc0,0x13d0d02,0x0055a6b },
  29052. { 0x3eaf771,0x094947a,0x0288f13,0x0a21e35,0x22ab441,0x23816bf,
  29053. 0x15832e1,0x2d8aff3,0x348cc1f,0x2bbd4a8,0x01c4792,0x34209d3,
  29054. 0x06dc72b,0x211a1df,0x00345c5 } },
  29055. /* 79 */
  29056. { { 0x2a65e90,0x173ac2f,0x199cde1,0x0ac905b,0x00987f7,0x3618f7b,
  29057. 0x1b578df,0x0d5e113,0x34bac6a,0x27d85ed,0x1b48e99,0x18af5eb,
  29058. 0x1a1be9e,0x3987aac,0x00877ca },
  29059. { 0x2358610,0x3776a8e,0x2b0723a,0x344c978,0x22fc4d6,0x1615d53,
  29060. 0x3198f51,0x2d61225,0x12cb392,0x07dd061,0x355f7de,0x09e0132,
  29061. 0x0efae99,0x13b46aa,0x00e9e6c } },
  29062. /* 80 */
  29063. { { 0x0683186,0x36d8e66,0x0ea9867,0x0937731,0x1fb5cf4,0x13c39ef,
  29064. 0x1a7ffed,0x27dfb32,0x31c7a77,0x09f15fd,0x16b25ef,0x1dd01e7,
  29065. 0x0168090,0x240ed02,0x0090eae },
  29066. { 0x2e1fceb,0x2ab9783,0x1a1fdf2,0x093a1b0,0x33ff1da,0x2864fb7,
  29067. 0x3587d6c,0x275aa03,0x123dc9b,0x0e95a55,0x0592030,0x2102402,
  29068. 0x1bdef7b,0x37f2e9b,0x001efa4 } },
  29069. /* 81 */
  29070. { { 0x0540015,0x20e3e78,0x37dcfbd,0x11b0e41,0x02c3239,0x3586449,
  29071. 0x1fb9e6a,0x0baa22c,0x00c0ca6,0x3e58491,0x2dbe00f,0x366d4b0,
  29072. 0x176439a,0x2a86b86,0x00f52ab },
  29073. { 0x0ac32ad,0x226250b,0x0f91d0e,0x1098aa6,0x3dfb79e,0x1dbd572,
  29074. 0x052ecf2,0x0f84995,0x0d27ad2,0x036c6b0,0x1e4986f,0x2317dab,
  29075. 0x2327df6,0x0dee0b3,0x00389ac } },
  29076. /* 82 */
  29077. { { 0x0e60f5b,0x0622d3e,0x2ada511,0x05522a8,0x27fe670,0x206af28,
  29078. 0x333cb83,0x3f25f6c,0x19ddaf3,0x0ec579b,0x36aabc0,0x093dbac,
  29079. 0x348b44b,0x277dca9,0x00c5978 },
  29080. { 0x1cf5279,0x32e294a,0x1a6c26f,0x3f006b6,0x37a3c6b,0x2e2eb26,
  29081. 0x2cf88d4,0x3410619,0x1899c80,0x23d3226,0x30add14,0x2810905,
  29082. 0x01a41f0,0x11e5176,0x005a02f } },
  29083. /* 83 */
  29084. { { 0x1c90202,0x321df30,0x3570fa5,0x103e2b1,0x3d099d4,0x05e207d,
  29085. 0x0a5b1bd,0x0075d0a,0x3db5b25,0x2d87899,0x32e4465,0x226fc13,
  29086. 0x24cb8f8,0x3821daa,0x004da3a },
  29087. { 0x3e66861,0x03f89b8,0x386d3ef,0x14ccc62,0x35e7729,0x11ce5b7,
  29088. 0x035fbc7,0x3f4df0f,0x29c439f,0x1144568,0x32d7037,0x312f65e,
  29089. 0x06b9dbf,0x03a9589,0x0008863 } },
  29090. /* 84 */
  29091. { { 0x0a9e8c9,0x1a19b6e,0x091ecd9,0x2e16ee0,0x2a11963,0x116cf34,
  29092. 0x390d530,0x194131f,0x2b580f3,0x31d569c,0x21d3751,0x3e2ce64,
  29093. 0x193de46,0x32454f0,0x004bffd },
  29094. { 0x09554e7,0x170126e,0x2be6cd1,0x153de89,0x0353c67,0x350765c,
  29095. 0x202370b,0x1db01e5,0x30b12b1,0x3778591,0x00c8809,0x2e845d5,
  29096. 0x1fb1e56,0x170f90d,0x00e2db3 } },
  29097. /* 85 */
  29098. { { 0x328e33f,0x392aad8,0x36d1d71,0x0aebe04,0x1548678,0x1b55c8c,
  29099. 0x24995f8,0x2a5a01e,0x1bd1651,0x37c7c29,0x36803b6,0x3716c91,
  29100. 0x1a935a5,0x32f10b7,0x005c587 },
  29101. { 0x2e8b4c0,0x336ccae,0x11382b6,0x22ec4cc,0x066d159,0x35fa585,
  29102. 0x23b2d25,0x3017528,0x2a674a8,0x3a4f900,0x1a7ce82,0x2b2539b,
  29103. 0x3d46545,0x0a07918,0x00eb9f8 } },
  29104. /* 86 */
  29105. { { 0x2cf5b9b,0x03e747f,0x166a34e,0x0afc81a,0x0a115b1,0x3aa814d,
  29106. 0x11cf3b1,0x163e556,0x3cbfb15,0x157c0a4,0x1bc703a,0x2141e90,
  29107. 0x01f811c,0x207218b,0x0092e6b },
  29108. { 0x1af24e3,0x3af19b3,0x3c70cc9,0x335cbf3,0x068917e,0x055ee92,
  29109. 0x09a9308,0x2cac9b7,0x008b06a,0x1175097,0x36e929c,0x0be339c,
  29110. 0x0932436,0x15f18ba,0x0009f6f } },
  29111. /* 87 */
  29112. { { 0x29375fb,0x35ade34,0x11571c7,0x07b8d74,0x3fabd85,0x090fa91,
  29113. 0x362dcd4,0x02c3fdb,0x0608fe3,0x2477649,0x3fc6e70,0x059b7eb,
  29114. 0x1e6a708,0x1a4c220,0x00c6c4c },
  29115. { 0x2a53fb0,0x1a3e1f5,0x11f9203,0x27e7ad3,0x038718e,0x3f5f9e4,
  29116. 0x308acda,0x0a8700f,0x34472fe,0x3420d7a,0x08076e5,0x014240e,
  29117. 0x0e7317e,0x197a98e,0x00538f7 } },
  29118. /* 88 */
  29119. { { 0x2663b4b,0x0927670,0x38dd0e0,0x16d1f34,0x3e700ab,0x3119567,
  29120. 0x12559d2,0x399b6c6,0x0a84bcd,0x163e7dd,0x3e2aced,0x058548c,
  29121. 0x03a5bad,0x011cf74,0x00c155c },
  29122. { 0x3e454eb,0x2a1e64e,0x1ccd346,0x36e0edf,0x266ee94,0x2e74aaf,
  29123. 0x2d8378a,0x3cd547d,0x1d27733,0x0928e5b,0x353553c,0x26f502b,
  29124. 0x1d94341,0x2635cc7,0x00d0ead } },
  29125. /* 89 */
  29126. { { 0x0142408,0x382c3bb,0x3310908,0x2e50452,0x398943c,0x1d0ac75,
  29127. 0x1bf7d81,0x04bd00f,0x36b6934,0x3349c37,0x0f69e20,0x0195252,
  29128. 0x243a1c5,0x030da5f,0x00a76a9 },
  29129. { 0x224825a,0x28ce111,0x34c2e0f,0x02e2b30,0x382e48c,0x26853ca,
  29130. 0x24bd14e,0x0200dec,0x1e24db3,0x0d3d775,0x132da0a,0x1dea79e,
  29131. 0x253dc0c,0x03c9d31,0x0020db9 } },
  29132. /* 90 */
  29133. { { 0x26c5fd9,0x05e6dc3,0x2eea261,0x08db260,0x2f8bec1,0x1255edf,
  29134. 0x283338d,0x3d9a91d,0x2640a72,0x03311f9,0x1bad935,0x152fda8,
  29135. 0x0e95abd,0x31abd15,0x00dfbf4 },
  29136. { 0x107f4fa,0x29ebe9a,0x27353f7,0x3821972,0x27311fa,0x2925ab6,
  29137. 0x337ab82,0x2de6c91,0x1f115fe,0x044f909,0x21b93c2,0x3a5f142,
  29138. 0x13eb5e9,0x3ab1377,0x00b26b6 } },
  29139. /* 91 */
  29140. { { 0x22e5f2b,0x2ae7d4a,0x1ac481c,0x0a6fce1,0x2f93caf,0x242658e,
  29141. 0x3f35c3c,0x050f3d2,0x30074c9,0x142079c,0x0281b4c,0x295fea3,
  29142. 0x007413e,0x01726cd,0x00e4979 },
  29143. { 0x1ab3cfb,0x1b76295,0x36adf55,0x1ad4636,0x1d444b9,0x3bd2e55,
  29144. 0x35425a5,0x1aa8cd3,0x3acecd2,0x1f769e8,0x1a655e9,0x1f6846f,
  29145. 0x24c70b5,0x3bff080,0x0002da3 } },
  29146. /* 92 */
  29147. { { 0x081d0d9,0x2c00d99,0x1fe2e24,0x396063f,0x03740db,0x243f680,
  29148. 0x3c1f451,0x1ff7b07,0x2803cf2,0x38ca724,0x2934f43,0x0d72d4d,
  29149. 0x0e8fe74,0x2975e21,0x002b505 },
  29150. { 0x11adcc9,0x331a99c,0x21e16cf,0x1714c78,0x1f03432,0x2caa2a6,
  29151. 0x34a9679,0x2f7fe8b,0x0423c21,0x1a757ce,0x31b57d6,0x171e044,
  29152. 0x093b9b2,0x13602e0,0x00db534 } },
  29153. /* 93 */
  29154. { { 0x250a2f5,0x0b999eb,0x21d10d7,0x22b92a1,0x39b7f8d,0x0c37c72,
  29155. 0x29f70f3,0x3bf0e84,0x1d7e04f,0x07a42a9,0x272c3ae,0x1587b2f,
  29156. 0x155faff,0x10a336e,0x000d8fb },
  29157. { 0x3663784,0x0d7dcf5,0x056ad22,0x319f8b1,0x0c05bae,0x2b6ff33,
  29158. 0x0292e42,0x0435797,0x188efb1,0x0d3f45e,0x119d49f,0x395dcd3,
  29159. 0x279fe27,0x133a13d,0x00188ac } },
  29160. /* 94 */
  29161. { { 0x396c53e,0x0d133e9,0x009b7ee,0x13421a0,0x1bbf607,0x1d284a5,
  29162. 0x1594f74,0x18cb47c,0x2dcac11,0x2999ddb,0x04e2fa5,0x1889e2c,
  29163. 0x0a89a18,0x33cb215,0x0052665 },
  29164. { 0x104ab58,0x1d91920,0x3d6d7e3,0x04dc813,0x1167759,0x13a8466,
  29165. 0x0a06a54,0x103761b,0x25b1c92,0x26a8fdd,0x2474614,0x21406a4,
  29166. 0x251d75f,0x38c3734,0x007b982 } },
  29167. /* 95 */
  29168. { { 0x15f3060,0x3a7bf30,0x3be6e44,0x0baa1fa,0x05ad62f,0x1e54035,
  29169. 0x099d41c,0x2a744d9,0x1c0336f,0x3e99b5b,0x1afd3b1,0x2bf1255,
  29170. 0x1822bf8,0x2c93972,0x001d8cc },
  29171. { 0x1d7584b,0x0508ade,0x20dd403,0x203a8fc,0x1c54a05,0x1611a31,
  29172. 0x037c8f9,0x1dcd4fe,0x110fbea,0x30f60bc,0x3dffe2f,0x26a1de1,
  29173. 0x0480367,0x18ec81c,0x0048eba } },
  29174. /* 96 */
  29175. { { 0x346e2f6,0x0435077,0x036789b,0x3e06545,0x313ab57,0x351a721,
  29176. 0x3372b91,0x15e6019,0x2fa4f6c,0x3c30656,0x272c9ac,0x10e84a8,
  29177. 0x2bdacea,0x232d9e2,0x009dadd },
  29178. { 0x182579a,0x15b1af8,0x02d8cce,0x36cb49b,0x086feba,0x2911d17,
  29179. 0x268ee12,0x011e871,0x18698dc,0x35602b3,0x11b9ec2,0x0ade731,
  29180. 0x0f6a05a,0x1821015,0x00007da } },
  29181. /* 97 */
  29182. { { 0x3b00dd0,0x328d485,0x27a69e3,0x32c3a06,0x1046779,0x120b61c,
  29183. 0x19fef3d,0x0fef2e6,0x134d923,0x039bce0,0x348cd0e,0x0b0c007,
  29184. 0x066ae11,0x15d8f1b,0x00934e7 },
  29185. { 0x33234dc,0x353f0f5,0x2fc1b44,0x18a193a,0x2fcae20,0x1afbc86,
  29186. 0x3afe252,0x17f7e10,0x107f3b7,0x2d84d54,0x394c2e6,0x19e96a9,
  29187. 0x0a37283,0x26c6152,0x003d262 } },
  29188. /* 98 */
  29189. { { 0x37cfaf8,0x01863d0,0x0299623,0x32c80cb,0x25b8742,0x0a4d90e,
  29190. 0x1f72472,0x13de652,0x31a0946,0x0ee0103,0x0f25414,0x2518b49,
  29191. 0x07e7604,0x1488d9b,0x00abd6b },
  29192. { 0x1338f55,0x2ce4af5,0x1a0c119,0x3380525,0x21a80a9,0x235d4df,
  29193. 0x118ca7f,0x2dd8bcc,0x1c26bf4,0x32dc56b,0x28482b6,0x1418596,
  29194. 0x3c84d24,0x1f1a5a9,0x00d958d } },
  29195. /* 99 */
  29196. { { 0x1c21f31,0x22aa1ef,0x258c9ad,0x2d2018f,0x0adb3ca,0x01f75ee,
  29197. 0x186283b,0x31ad3bf,0x3621be7,0x3b1ee6d,0x015582d,0x3d61d04,
  29198. 0x2ddf32e,0x14b8a66,0x00c970c },
  29199. { 0x2f24d66,0x00b8a88,0x100a78f,0x041d330,0x2efec1d,0x24c5b86,
  29200. 0x2a6a390,0x37526bc,0x2055849,0x3339f08,0x16bffc4,0x07f9d72,
  29201. 0x06ec09c,0x3f49ee8,0x00cad98 } },
  29202. /* 100 */
  29203. { { 0x248b73e,0x1b8b42d,0x285eed7,0x39473f4,0x1a9f92c,0x3b44f78,
  29204. 0x086c062,0x06a4ea3,0x34ea519,0x3c74e95,0x1ad1b8b,0x1737e2c,
  29205. 0x2cfe338,0x0a291f4,0x00bbecc },
  29206. { 0x1cec548,0x0c9b01a,0x20b298d,0x377c902,0x24f5bc1,0x2415c8d,
  29207. 0x1a70622,0x2529090,0x1c5c682,0x283f1ba,0x2319f17,0x0120e2e,
  29208. 0x01c6f4d,0x33c67ff,0x008b612 } },
  29209. /* 101 */
  29210. { { 0x03830eb,0x02d4053,0x10c59bb,0x0f23b83,0x13d08f8,0x26ea4e2,
  29211. 0x2626427,0x0a45292,0x0449cbc,0x0175750,0x074c46f,0x27ae0f8,
  29212. 0x2d7d6ae,0x163dd3a,0x0063bb7 },
  29213. { 0x2bb29e0,0x034bab1,0x341e1c4,0x21d2c0b,0x295aa2d,0x0f2c666,
  29214. 0x1891755,0x13db64a,0x2fe5158,0x337646e,0x31a1aae,0x057bee4,
  29215. 0x00f9e37,0x396d19e,0x00c1b6a } },
  29216. /* 102 */
  29217. { { 0x2772f41,0x34f92d0,0x39d1cde,0x174ef2d,0x03a700d,0x03fbb98,
  29218. 0x30d50e8,0x352ed10,0x1fcf5e5,0x3d113bc,0x26e358f,0x180653f,
  29219. 0x1b43cc6,0x3cc9aa4,0x00e68a2 },
  29220. { 0x37fe4d2,0x09dd725,0x01eb584,0x171f8a9,0x278fdef,0x3e37c03,
  29221. 0x3bec02f,0x149757c,0x0cd5852,0x37d2e10,0x0e6988b,0x1c120e9,
  29222. 0x0b83708,0x38e7319,0x0039499 } },
  29223. /* 103 */
  29224. { { 0x08df5fe,0x177a02c,0x0362fc0,0x1f18ee8,0x00c1295,0x173c50a,
  29225. 0x379414d,0x1885ba8,0x32a54ef,0x2315644,0x39e65cf,0x357c4be,
  29226. 0x1d66333,0x09e05a5,0x0009c60 },
  29227. { 0x1f7a2fb,0x073b518,0x2eb83ac,0x11353d7,0x1dd8384,0x0c63f2b,
  29228. 0x238c6c8,0x2a1920a,0x2e5e9f1,0x1cc56f8,0x042daf4,0x1ed5dc5,
  29229. 0x25f9e31,0x012a56a,0x0081b59 } },
  29230. /* 104 */
  29231. { { 0x321d232,0x2c71422,0x3a756b6,0x30230b2,0x387f3db,0x3a7c3eb,
  29232. 0x274b46a,0x201e69f,0x185bb7b,0x140da82,0x0d974a2,0x0616e42,
  29233. 0x35ec94f,0x3bc366b,0x005aa7c },
  29234. { 0x3dcfffc,0x19a9c15,0x3225e05,0x36ae114,0x16ea311,0x0cda2aa,
  29235. 0x2a1a8d2,0x154b5cb,0x08348cd,0x17b66c8,0x080ea43,0x21e59f3,
  29236. 0x04173b9,0x31d5b04,0x00ad735 } },
  29237. /* 105 */
  29238. { { 0x2e76ef4,0x216acf3,0x2b93aea,0x112bc74,0x3449974,0x2b2e48f,
  29239. 0x11929be,0x2f03021,0x19051e3,0x0ac202d,0x19be68a,0x3b87619,
  29240. 0x26cdac4,0x086592c,0x00f00de },
  29241. { 0x2e90d4d,0x3ed703c,0x2c648d7,0x29ddf67,0x000e219,0x3471247,
  29242. 0x26febd5,0x1161713,0x3541a8f,0x302038d,0x08d2af9,0x26e1b21,
  29243. 0x398514a,0x36dad99,0x002ed70 } },
  29244. /* 106 */
  29245. { { 0x06f25cb,0x1104596,0x370faee,0x07e83f3,0x0f7b686,0x228d43a,
  29246. 0x12cd201,0x0a1bd57,0x3e592dc,0x1e186fc,0x2226aba,0x2c63fe9,
  29247. 0x17b039a,0x1efaa61,0x00d1582 },
  29248. { 0x2e6acef,0x07d51e4,0x3ac326c,0x322b07e,0x1422c63,0x32ff5c7,
  29249. 0x18760df,0x048928b,0x139b251,0x04d7da9,0x048d1a2,0x2a23e84,
  29250. 0x199dbba,0x2fa7afe,0x0049f1a } },
  29251. /* 107 */
  29252. { { 0x3492b73,0x27d3d3d,0x2b1a16f,0x07b2ce4,0x0cf28ec,0x2729bff,
  29253. 0x3130d46,0x3e96116,0x140b72e,0x14a2ea3,0x1ca066f,0x3a61f1d,
  29254. 0x022ebac,0x09192b4,0x003e399 },
  29255. { 0x12555bb,0x0b6139d,0x239463a,0x12a70ab,0x2aaa93b,0x2254e72,
  29256. 0x00424ec,0x26a6736,0x26daa11,0x25b5ad6,0x379f262,0x140cd30,
  29257. 0x0c7d3bd,0x097bbcf,0x00899e9 } },
  29258. /* 108 */
  29259. { { 0x3825dc4,0x3cd946f,0x0462b7f,0x31102e7,0x30f741c,0x3313ed6,
  29260. 0x1ff5a95,0x15bf9dc,0x09b47fd,0x0f2e7a7,0x1626c0d,0x3c14f6d,
  29261. 0x14098bd,0x19d7df8,0x00a97ce },
  29262. { 0x0934f5e,0x3f968db,0x046f68a,0x12333bf,0x26cd5e1,0x1ea2161,
  29263. 0x358570d,0x235031d,0x35edd55,0x05265e3,0x24ae00c,0x3542229,
  29264. 0x25bb2a1,0x1c83c75,0x0058f2a } },
  29265. /* 109 */
  29266. { { 0x24daedb,0x376928f,0x305266f,0x0499746,0x038318c,0x312efd7,
  29267. 0x1910a24,0x33450a3,0x1c478a9,0x39d8bf9,0x12cc0ae,0x397aeab,
  29268. 0x0654c08,0x095f283,0x00d2cdf },
  29269. { 0x0b717d2,0x1f162c2,0x107a48f,0x128e1b3,0x2380718,0x39f4044,
  29270. 0x00f626a,0x05ec0c9,0x21bc439,0x200fa4d,0x20aea01,0x186a1d8,
  29271. 0x26372f2,0x1a91f87,0x0053f55 } },
  29272. /* 110 */
  29273. { { 0x3512a90,0x33b958b,0x29f1c84,0x0106c3a,0x224b3c0,0x09b307a,
  29274. 0x215d2de,0x3bdf43b,0x22cf0c9,0x176121d,0x1534143,0x09ba717,
  29275. 0x16b3110,0x0f73f6c,0x008f5b7 },
  29276. { 0x2c75d95,0x26fbcb4,0x0dda1f6,0x206f819,0x28d33d5,0x1fb4d79,
  29277. 0x024c125,0x30a0630,0x1f9c309,0x0fe350d,0x1696019,0x0a54187,
  29278. 0x09541fd,0x35e3a79,0x0066618 } },
  29279. /* 111 */
  29280. { { 0x0e382de,0x33f5163,0x0dde571,0x3bb7a40,0x1175806,0x12ae8ed,
  29281. 0x0499653,0x3b25586,0x38ade7a,0x3fa265d,0x3f4aa97,0x3c03dbb,
  29282. 0x30c6de8,0x32d4042,0x00ae971 },
  29283. { 0x2f788f1,0x1fbaf0e,0x3e2d182,0x3ff904f,0x0d46229,0x1d0726d,
  29284. 0x15455b4,0x093ae28,0x290f8e4,0x097c0b9,0x1ae8771,0x28480bb,
  29285. 0x04f6d40,0x3689925,0x0049b3b } },
  29286. /* 112 */
  29287. { { 0x35b2d69,0x31819c0,0x11b0d63,0x035afb6,0x2b50715,0x2bece6c,
  29288. 0x35f82f7,0x0ad987c,0x0011601,0x02e6f67,0x2d0a5f5,0x365e583,
  29289. 0x2f7c900,0x11449c5,0x00ed705 },
  29290. { 0x27abdb4,0x1bbfd04,0x301c157,0x263c079,0x36850d6,0x3f21f8b,
  29291. 0x27d7493,0x0f9227e,0x06fb0ce,0x002daf3,0x37d8c1c,0x3ef87d7,
  29292. 0x19cc6f4,0x0c3809c,0x00cf752 } },
  29293. /* 113 */
  29294. { { 0x22d94ed,0x075b09c,0x020e676,0x084dc62,0x2d1ec3f,0x17439f1,
  29295. 0x240b702,0x33cc596,0x30ebaf3,0x0359fe0,0x393ea43,0x0ece01e,
  29296. 0x16c6963,0x03a82f2,0x0017faa },
  29297. { 0x3866b98,0x3cd20b7,0x12d4e6b,0x3a6a76d,0x1205c1e,0x3e6ae1a,
  29298. 0x2f9bbdf,0x2e61547,0x2d175ee,0x28e18f6,0x13cf442,0x085b0ef,
  29299. 0x0e321ef,0x238fe72,0x003fb22 } },
  29300. /* 114 */
  29301. { { 0x360ac07,0x26dc301,0x3f4d94f,0x2ba75e6,0x1f3c9cc,0x17ff20f,
  29302. 0x0ea084c,0x30e39cf,0x143dc49,0x03bd43e,0x3c9e733,0x19e8aba,
  29303. 0x27fbaf4,0x12d913a,0x005ee53 },
  29304. { 0x3609e7f,0x2d89c80,0x09f020c,0x1558bf7,0x3098443,0x3c515fd,
  29305. 0x1c8e580,0x16506bd,0x26cb4b2,0x1747d42,0x2ec8239,0x32c91f0,
  29306. 0x1ca3377,0x079768f,0x00a5f3e } },
  29307. /* 115 */
  29308. { { 0x185fa94,0x122759f,0x0e47023,0x0dcb6e7,0x10ba405,0x3b5eab4,
  29309. 0x1f7a1fa,0x32d003f,0x1739a4c,0x3295ec3,0x1b18967,0x3f3b265,
  29310. 0x34d2448,0x2dbadc9,0x00f30b5 },
  29311. { 0x01c5338,0x2d1dcf2,0x2bd07cc,0x39a8fb5,0x2b85639,0x355bab6,
  29312. 0x1df95f1,0x01eb5f6,0x17f0a16,0x1b895b5,0x157574d,0x29fff72,
  29313. 0x3a8c46d,0x0118071,0x0065f84 } },
  29314. /* 116 */
  29315. { { 0x3a1e7f1,0x17432f2,0x1f648d4,0x3000ad5,0x2ef0a08,0x1f86624,
  29316. 0x1ca31b1,0x241f9dc,0x2cb4885,0x2b8610f,0x364ce16,0x1e5faf0,
  29317. 0x0b33867,0x2cb637d,0x00816d2 },
  29318. { 0x1aa8671,0x02c394e,0x35f5e87,0x393040a,0x39f0db3,0x1c831a5,
  29319. 0x2966591,0x034a8d0,0x09e613c,0x042b532,0x018ddd6,0x3e402c9,
  29320. 0x2e20e1a,0x29cb4cd,0x00e087c } },
  29321. /* 117 */
  29322. { { 0x3a10079,0x20c7fea,0x3ff2222,0x1edb593,0x00dc5f8,0x3a32ccc,
  29323. 0x1479073,0x0cfed11,0x2a2702a,0x17a056a,0x1fba321,0x235acb9,
  29324. 0x149c833,0x172de7d,0x000f753 },
  29325. { 0x2e95923,0x3b365cb,0x009f471,0x0df1b47,0x21e868b,0x199bbd3,
  29326. 0x07b8ecc,0x12ff0af,0x189808a,0x3bd5059,0x3fbc4d2,0x0fa7b88,
  29327. 0x1125bf2,0x0db0b5d,0x0043572 } },
  29328. /* 118 */
  29329. { { 0x29cdb1b,0x1db656e,0x391efe1,0x004be09,0x245a1ca,0x3793328,
  29330. 0x254af24,0x2f2e65d,0x10e5cc4,0x2af6fe7,0x2d97ac0,0x29f7d42,
  29331. 0x19fd6f6,0x0ac184d,0x00c5211 },
  29332. { 0x305eae3,0x36738d3,0x2c2b696,0x00ba50e,0x3903adc,0x2122f85,
  29333. 0x0753470,0x1cf96a4,0x1702a39,0x247883c,0x2feb67e,0x2ab3071,
  29334. 0x3c6b9e1,0x30cb85a,0x002ca0a } },
  29335. /* 119 */
  29336. { { 0x3871eb5,0x284b93b,0x0a7affe,0x176a2fc,0x294c2f2,0x204d3aa,
  29337. 0x1e4c2a7,0x3ec4134,0x2fb0360,0x3847b45,0x05fc11b,0x0a6db6e,
  29338. 0x390fa40,0x2adfd34,0x005e9f7 },
  29339. { 0x0646612,0x1b5cbcc,0x10d8507,0x0777687,0x3a0afed,0x1687440,
  29340. 0x0222578,0x1af34a4,0x2174e27,0x372d267,0x11246c3,0x34769c5,
  29341. 0x2044316,0x1b4d626,0x00c72d5 } },
  29342. /* 120 */
  29343. { { 0x2e5bb45,0x3ff1d36,0x16dcdf5,0x128986f,0x399068c,0x2a63b1e,
  29344. 0x0afa7aa,0x3a5b770,0x200f121,0x33b74bb,0x1414045,0x0f31ef8,
  29345. 0x2f50e16,0x2f38cd6,0x00b0b1b },
  29346. { 0x1a06293,0x035e140,0x2644d44,0x1f1954b,0x2cdebab,0x31d5f91,
  29347. 0x0b8dbc8,0x38f2d23,0x3783cab,0x2a07e73,0x3123f59,0x3409846,
  29348. 0x3784ddd,0x223bbac,0x003dc7b } },
  29349. /* 121 */
  29350. { { 0x0741456,0x234e631,0x2121e1b,0x00980ca,0x3a9dfa9,0x098c916,
  29351. 0x3fc86d1,0x1c63072,0x3625244,0x13d0471,0x05b0fc5,0x1487550,
  29352. 0x2498596,0x11bb6ea,0x001afab },
  29353. { 0x274b4ad,0x240aea1,0x3d12a75,0x2b56b61,0x1486b43,0x1b83426,
  29354. 0x31c7363,0x35b59ca,0x207bb6c,0x38e6243,0x19bace4,0x0a26671,
  29355. 0x35e3381,0x0c2ded4,0x00d8da4 } },
  29356. /* 122 */
  29357. { { 0x2b75791,0x19590b1,0x2bfb39f,0x2988601,0x0050947,0x0d8bbe1,
  29358. 0x23e3701,0x08e4432,0x2ed8c3d,0x326f182,0x332e1dd,0x12219c5,
  29359. 0x2e0779b,0x367aa63,0x0012d10 },
  29360. { 0x251b7dc,0x0a08b4d,0x1138b6f,0x2ea02af,0x06345a5,0x1cb4f21,
  29361. 0x0332624,0x1d49d88,0x140acc5,0x2f55287,0x024447c,0x291ace9,
  29362. 0x1a4966e,0x015cbec,0x005bc41 } },
  29363. /* 123 */
  29364. { { 0x351cd0e,0x315e8e9,0x07d6e70,0x067ae8f,0x2190d84,0x351f556,
  29365. 0x03bee79,0x31b62c7,0x266f912,0x1b6a504,0x007a6ad,0x3a6ab31,
  29366. 0x3891112,0x3c45ba0,0x00d6ce5 },
  29367. { 0x0e1f2ce,0x32a5edc,0x1434063,0x1ca084f,0x2a3e47c,0x137e042,
  29368. 0x16e2418,0x2069280,0x3b0dfd8,0x35a22b5,0x289bf0a,0x1f667f2,
  29369. 0x02d23a3,0x0ce688f,0x00d8e3f } },
  29370. /* 124 */
  29371. { { 0x10bed6f,0x14c58dd,0x0b0abdf,0x0ca0f9a,0x3808abc,0x2ec228c,
  29372. 0x2366275,0x12afa16,0x20f6b0e,0x37dca8e,0x3af0c6a,0x1c5b467,
  29373. 0x1b25ff7,0x00814de,0x0022dcc },
  29374. { 0x1a56e11,0x02fe37e,0x3f21740,0x35d5a91,0x06cb8ba,0x29bad91,
  29375. 0x17176f7,0x2d919f2,0x0f7d1f5,0x13a3f61,0x04ddb05,0x0c82a51,
  29376. 0x286f598,0x2e8c777,0x0007071 } },
  29377. /* 125 */
  29378. { { 0x0f8fcb9,0x3e83966,0x170c6fd,0x3825343,0x089cec8,0x01b482a,
  29379. 0x0993971,0x3327282,0x39aba8a,0x32456fe,0x1507e01,0x1c3252d,
  29380. 0x21ffb13,0x29822a0,0x0083246 },
  29381. { 0x23c378f,0x1cea7ef,0x1be9a82,0x224d689,0x37e5447,0x3764a75,
  29382. 0x3a49724,0x361e1b3,0x19d365b,0x3a61ffb,0x1c29a7a,0x20ab251,
  29383. 0x17ec549,0x175d777,0x004589a } },
  29384. /* 126 */
  29385. { { 0x15540a9,0x2ec5d2a,0x05b09fa,0x1bc058b,0x07cfb88,0x28f7b86,
  29386. 0x3e766be,0x189305e,0x01fe88e,0x23fdf69,0x0b919c3,0x02dc7ae,
  29387. 0x3f9a9ad,0x0b83cc7,0x0086a52 },
  29388. { 0x28bc259,0x39bdca1,0x39e4bc8,0x0e0f33b,0x16130c6,0x2919955,
  29389. 0x31f4549,0x2fed027,0x30919b2,0x0a39b03,0x0ca7bb2,0x1711b24,
  29390. 0x3b67b94,0x05a136b,0x00acd87 } },
  29391. /* 127 */
  29392. { { 0x0c53841,0x31cb284,0x3ced090,0x06d5693,0x1c20ae0,0x0408d2b,
  29393. 0x37ebd5e,0x081900f,0x26a8589,0x0acfd0a,0x34a1472,0x2f0c302,
  29394. 0x124ccbd,0x10de328,0x00971bc },
  29395. { 0x17ff2ff,0x27d1b54,0x147b6f7,0x38bb2ea,0x26a9c96,0x0a49448,
  29396. 0x39f2f46,0x247c579,0x3b16a4e,0x28c2a5a,0x2d4c72d,0x11f248c,
  29397. 0x1e4df11,0x047d604,0x0065bc3 } },
  29398. /* 128 */
  29399. { { 0x39b3239,0x1f75f44,0x3bae87c,0x139360c,0x18b5782,0x3ffc005,
  29400. 0x3c48789,0x2bc6af2,0x38b909e,0x223ff3b,0x31443a7,0x017d3bb,
  29401. 0x0bfed99,0x128b857,0x00020dd },
  29402. { 0x306d695,0x25a7b28,0x2f60ca2,0x2b6e4f2,0x1df940c,0x1fa9b8e,
  29403. 0x37fab78,0x13f959f,0x10ff98c,0x38343b8,0x019cb91,0x11a1e6b,
  29404. 0x17ab4c6,0x1431f47,0x004b4ea } },
  29405. /* 129 */
  29406. { { 0x20db57e,0x102515e,0x170219e,0x2b66a32,0x1e6017c,0x2f973fe,
  29407. 0x3739e51,0x0e28b6f,0x3cda7a9,0x30d91ac,0x28350df,0x1444215,
  29408. 0x098b504,0x1bcd5b8,0x00ad3bd },
  29409. { 0x22e3e3e,0x3aeaffb,0x26cb935,0x0091ce4,0x2fbd017,0x3a7ed6a,
  29410. 0x335b029,0x3bfc1f1,0x3852e3f,0x2b14a86,0x046b405,0x266af4c,
  29411. 0x3997191,0x33b0e40,0x00e306f } },
  29412. /* 130 */
  29413. { { 0x3e4712c,0x26bb208,0x18eed6d,0x1b30f06,0x27ca837,0x06faf62,
  29414. 0x1831873,0x3fbcf9b,0x3f3d88b,0x1fb55eb,0x0f44edc,0x29917bb,
  29415. 0x3151772,0x342d72e,0x00d4e63 },
  29416. { 0x2ee0ecf,0x39e8733,0x2e8e98c,0x0cd4e0f,0x08f0126,0x1ad157a,
  29417. 0x079078a,0x23018ee,0x196c765,0x2b2f34f,0x0783336,0x075bf9c,
  29418. 0x3713672,0x098d699,0x00f21a7 } },
  29419. /* 131 */
  29420. { { 0x186ba11,0x22cf365,0x048019d,0x2ca2970,0x0d9e0ae,0x08c3bd7,
  29421. 0x261dbf2,0x2fc2790,0x1ee02e6,0x10256a7,0x00dc778,0x18dc8f2,
  29422. 0x157b189,0x2ebc514,0x005c97d },
  29423. { 0x3c4503e,0x1d10d12,0x337097e,0x0c6169a,0x30fb1cb,0x3481752,
  29424. 0x0df2bec,0x19768fa,0x1bcf8f7,0x2925f74,0x2c988a1,0x3be571d,
  29425. 0x04cfa92,0x2ea9937,0x003f924 } },
  29426. /* 132 */
  29427. { { 0x268b448,0x06e375c,0x1b946bf,0x287bf5e,0x3d4c28b,0x138d547,
  29428. 0x21f8c8e,0x21ea4be,0x2d45c91,0x35da78e,0x00326c0,0x210ed35,
  29429. 0x1d66928,0x0251435,0x00fefc8 },
  29430. { 0x0339366,0x216ff64,0x2c3a30c,0x3c5733d,0x04eeb56,0x2333477,
  29431. 0x32b1492,0x25e3839,0x1b5f2ce,0x0dcfba1,0x3165bb2,0x3acafcc,
  29432. 0x10abfcd,0x248d390,0x008106c } },
  29433. /* 133 */
  29434. { { 0x102f4ee,0x3c0585f,0x1225c8d,0x11c6388,0x08a7815,0x2b3e790,
  29435. 0x2895eb6,0x18cf53a,0x0b56e5a,0x2e2c003,0x3e981ff,0x0761b55,
  29436. 0x1bc32f3,0x0a7111d,0x00f5c80 },
  29437. { 0x3568973,0x1587386,0x16ec764,0x20698a6,0x02f809b,0x2821502,
  29438. 0x113d64d,0x38c2679,0x15de61c,0x0309f60,0x272999e,0x29bfe64,
  29439. 0x173f70d,0x1de7fab,0x00bd284 } },
  29440. /* 134 */
  29441. { { 0x31cdf2b,0x0f0be66,0x2151603,0x01af17e,0x32a99cf,0x085dece,
  29442. 0x27d2591,0x1520df4,0x273c448,0x1ec7c54,0x102e229,0x355f604,
  29443. 0x2acb75f,0x005f1fd,0x003d43e },
  29444. { 0x270eb28,0x22ec2ce,0x306b41a,0x238fa02,0x167de2d,0x030a379,
  29445. 0x245a417,0x1808c24,0x0b1a7b2,0x3ab5f6f,0x2cbc6c1,0x2c228d4,
  29446. 0x3041f70,0x2d9a6cc,0x00b504f } },
  29447. /* 135 */
  29448. { { 0x17a27c2,0x216ad7e,0x011ba8e,0x22f0428,0x16ac5ec,0x3ef3c58,
  29449. 0x345533f,0x0298155,0x2856579,0x0005e03,0x19ee75b,0x146fe16,
  29450. 0x29881e4,0x18ece70,0x008907a },
  29451. { 0x20189ed,0x119ce09,0x35cb76d,0x0d91ef4,0x2284a44,0x032ad87,
  29452. 0x0e8c402,0x3c82b5d,0x38c416c,0x398992f,0x1fd820c,0x169b255,
  29453. 0x3b5fcfa,0x1343c92,0x00fa715 } },
  29454. /* 136 */
  29455. { { 0x33f5034,0x20b3b26,0x28fd184,0x16b3679,0x3962d44,0x15d1bc8,
  29456. 0x2fb1d69,0x1292c99,0x25a58c9,0x1b19ab7,0x2d68a5b,0x2f6a09b,
  29457. 0x0d6aedb,0x2935eac,0x0005664 },
  29458. { 0x25e32fc,0x13f9440,0x3252bcd,0x2fea5b7,0x161a5ae,0x0564a8c,
  29459. 0x0a07e23,0x1545f62,0x0de9890,0x1d76765,0x1fd440e,0x2ed0041,
  29460. 0x3db4c96,0x1e8ba01,0x001b0c4 } },
  29461. /* 137 */
  29462. { { 0x0223878,0x29ab202,0x15585c2,0x1a79969,0x1ba08c2,0x2ef09ff,
  29463. 0x2b1b9b9,0x181f748,0x1bf72b9,0x224645c,0x2588dc5,0x2d157e7,
  29464. 0x22d939a,0x05b88d9,0x006d549 },
  29465. { 0x31de0c1,0x23a4e0e,0x278f8da,0x1aa013c,0x1a84d18,0x0d185a5,
  29466. 0x0988ccd,0x2c32efd,0x3bee10e,0x37d7ab8,0x3f2a66e,0x3e2da3e,
  29467. 0x1b5701f,0x3d9f0c1,0x00a68da } },
  29468. /* 138 */
  29469. { { 0x0b2e045,0x0133fd1,0x05d4c10,0x0d92c70,0x391b5e1,0x2292281,
  29470. 0x2e40908,0x2ec694e,0x195ea11,0x29cfeca,0x3d93a4e,0x01215c0,
  29471. 0x08a5f32,0x37a0eff,0x00cce45 },
  29472. { 0x2b3106e,0x12a5fb0,0x0b4faff,0x0c2da12,0x09069c6,0x35d8907,
  29473. 0x2837a6e,0x3db3fb6,0x3136cc3,0x222836b,0x3da018a,0x2741274,
  29474. 0x13ba319,0x1ac7642,0x00f867c } },
  29475. /* 139 */
  29476. { { 0x2527296,0x10a9595,0x178de4d,0x0f739c4,0x0ae26c7,0x3094599,
  29477. 0x20adac6,0x2b875c2,0x3ae5dc0,0x3e04d20,0x1aab2da,0x1d3ab37,
  29478. 0x15f4f75,0x0b730b5,0x00c56b5 },
  29479. { 0x1f32923,0x2f059e5,0x2a89872,0x2056f74,0x04be175,0x1da67c0,
  29480. 0x17f1e7a,0x3780a6d,0x0723ac2,0x257f367,0x1237773,0x2bcee86,
  29481. 0x0b97f83,0x38aff14,0x00a64d4 } },
  29482. /* 140 */
  29483. { { 0x2552b40,0x0b6b883,0x12e8217,0x0974d35,0x062f497,0x1e563e6,
  29484. 0x30ee400,0x375d1e4,0x290751f,0x0d5b68a,0x353e48c,0x064a0d3,
  29485. 0x3c343f1,0x309a394,0x0034d2a },
  29486. { 0x3111286,0x0f08604,0x1827107,0x0536a76,0x0201dac,0x3a574de,
  29487. 0x2c29dbe,0x382c7b0,0x1191f3e,0x324c5bc,0x144ce71,0x24327c1,
  29488. 0x1212778,0x22bc9d8,0x00d7713 } },
  29489. /* 141 */
  29490. { { 0x34ad1cd,0x1179b4e,0x1bc1780,0x1392a92,0x2cd86b9,0x359de85,
  29491. 0x251f1df,0x0da5d5f,0x135fa61,0x0f64a42,0x34f4d89,0x0fe564c,
  29492. 0x3cf9b7a,0x122d757,0x008c9c2 },
  29493. { 0x370d4e9,0x0e9209b,0x0ae99f2,0x1518c64,0x0172734,0x2c20692,
  29494. 0x1d7c135,0x149c52f,0x38928d6,0x3c78b78,0x25841d1,0x2eaa897,
  29495. 0x372e50b,0x29e5d19,0x00c4c18 } },
  29496. /* 142 */
  29497. { { 0x13375ac,0x389a056,0x211310e,0x2f9f757,0x04f3288,0x103cd4e,
  29498. 0x17b2fb2,0x2c78a6a,0x09f1de6,0x23e8442,0x1351bc5,0x1b69588,
  29499. 0x285b551,0x0464b7e,0x00573b6 },
  29500. { 0x0ba7df5,0x259a0db,0x2b4089e,0x05630a2,0x3f299be,0x350ff2f,
  29501. 0x1c9348a,0x3becfa4,0x3cc9a1c,0x17a6ef1,0x338b277,0x2b761d9,
  29502. 0x2aa01c8,0x3cb9dd7,0x006e3b1 } },
  29503. /* 143 */
  29504. { { 0x277788b,0x16a222d,0x173c036,0x310ff58,0x2634ae8,0x392636f,
  29505. 0x0987619,0x1e6acc1,0x26dc8f7,0x242310f,0x0c09aca,0x22b8e11,
  29506. 0x0d17006,0x1c2c806,0x002380c },
  29507. { 0x297c5ec,0x1fef0e8,0x3948cf7,0x14f2915,0x2dacbc8,0x0dafb1f,
  29508. 0x10de043,0x31184da,0x06414ee,0x3c9aeeb,0x1f713ab,0x308f1f8,
  29509. 0x1569ed1,0x3f379bf,0x00f08bb } },
  29510. /* 144 */
  29511. { { 0x0770ee3,0x058fd21,0x17065f8,0x251d128,0x10e0c7f,0x06cb51b,
  29512. 0x0f05f7e,0x3666a72,0x3e7d01f,0x2d05fab,0x11440e5,0x28577d4,
  29513. 0x2fbcf2b,0x14aa469,0x00dc5c5 },
  29514. { 0x270f721,0x1c75d28,0x085b862,0x1d68011,0x132c0a0,0x37be81d,
  29515. 0x1a87e38,0x083fa74,0x3acbf0d,0x16d6429,0x0feda1f,0x031070a,
  29516. 0x2ec2443,0x21e563d,0x00454d2 } },
  29517. /* 145 */
  29518. { { 0x0525435,0x1e98d5f,0x3dbc52b,0x1fcdf12,0x13d9ef5,0x3ff311d,
  29519. 0x393e9ed,0x3cef8ae,0x2987710,0x3bdee2e,0x21b727d,0x3ba1b68,
  29520. 0x10d0142,0x3c64b92,0x0055ac3 },
  29521. { 0x0c1c390,0x38e9bb0,0x1e7b487,0x11511b3,0x1036fb3,0x25aba54,
  29522. 0x1eb2764,0x048d022,0x0d971ed,0x1bb7fb5,0x100f0b4,0x06c3756,
  29523. 0x2f0d366,0x3c6e160,0x0011bd6 } },
  29524. /* 146 */
  29525. { { 0x36bc9d1,0x24d43c1,0x12c35cf,0x2fb3cf3,0x015d903,0x16bc0c7,
  29526. 0x0fc8c22,0x3195c87,0x2488b1c,0x1f82b4c,0x30014e8,0x27ee58d,
  29527. 0x31658dd,0x1684a5f,0x00f0f3a },
  29528. { 0x1f703aa,0x023eebc,0x20babb9,0x080bd9d,0x12f9cc4,0x1a8e2d4,
  29529. 0x0eec666,0x1176803,0x33005d6,0x1137b68,0x37de339,0x33d71cb,
  29530. 0x0c906b9,0x14086b5,0x00aeef6 } },
  29531. /* 147 */
  29532. { { 0x219045d,0x0f22c5e,0x024c058,0x00b414a,0x0ae7c31,0x3db3e96,
  29533. 0x234979f,0x0cf00a8,0x3c962c7,0x27fa77f,0x1c0c4b0,0x1fe8942,
  29534. 0x218053a,0x1eed3f8,0x0051643 },
  29535. { 0x2a23ddb,0x138f570,0x104e945,0x21ca270,0x30726d8,0x3f45490,
  29536. 0x37d9184,0x242ea25,0x33f6d77,0x3f15679,0x065af85,0x34fa1f5,
  29537. 0x2e46b8f,0x31d17fb,0x00a2615 } },
  29538. /* 148 */
  29539. { { 0x335167d,0x181ea10,0x0887c8d,0x01383d7,0x18b42d8,0x263447e,
  29540. 0x1f13df3,0x0319d7e,0x0872074,0x2d6aa94,0x23d9234,0x36a69aa,
  29541. 0x0bad183,0x3138a95,0x00bd3a5 },
  29542. { 0x1b0f658,0x0e4530b,0x373add1,0x1b968fc,0x329dcb6,0x09169ca,
  29543. 0x162df55,0x0211eff,0x02391e4,0x3867460,0x3136b1a,0x37dd36e,
  29544. 0x3bc5bd9,0x2dacfe4,0x0072a06 } },
  29545. /* 149 */
  29546. { { 0x119d96f,0x067b0eb,0x00996da,0x293eca9,0x2b342da,0x1889c7a,
  29547. 0x21633a6,0x0152c39,0x281ce8c,0x18ef3b3,0x0bd62dc,0x3238186,
  29548. 0x38d8b7c,0x3867b95,0x00ae189 },
  29549. { 0x0ed1eed,0x1e89777,0x13ab73e,0x029e1d7,0x2c1257f,0x33fbc09,
  29550. 0x32d5a21,0x3d870b2,0x39bb1fd,0x33663bc,0x24e83e6,0x239bda4,
  29551. 0x3088bcd,0x01db1ed,0x00d71e7 } },
  29552. /* 150 */
  29553. { { 0x14245bf,0x0da0c27,0x153b339,0x05cab0a,0x122d962,0x1b0f0f3,
  29554. 0x3f5a825,0x267a2ce,0x2910d06,0x254326f,0x0f36645,0x025118e,
  29555. 0x37c35ec,0x36e944e,0x006c056 },
  29556. { 0x05ab0e3,0x29aa0c1,0x1295687,0x1fd1172,0x08d40b5,0x05bd655,
  29557. 0x345048a,0x02a1c3c,0x2393d8f,0x0992d71,0x1f71c5e,0x18d4e8a,
  29558. 0x30dd410,0x11d61d3,0x00dd58b } },
  29559. /* 151 */
  29560. { { 0x2230c72,0x30213d8,0x05e367e,0x329204e,0x0f14f6c,0x3369ddd,
  29561. 0x0bb4074,0x2edafd6,0x1b1aa2d,0x0785404,0x0c035ab,0x220da74,
  29562. 0x1f2fdd4,0x092a091,0x00ef83c },
  29563. { 0x3dc2538,0x1cca3e7,0x246afb5,0x24c647f,0x0798082,0x0bb7952,
  29564. 0x0f5c443,0x008b38a,0x299ea1a,0x3c6cf36,0x3df2ec7,0x398e6dc,
  29565. 0x29a1839,0x1cadd83,0x0077b62 } },
  29566. /* 152 */
  29567. { { 0x25d56d5,0x3546f69,0x16e02b1,0x3e5fa9a,0x03a9b71,0x2413d31,
  29568. 0x250ecc9,0x1d2de54,0x2ebe757,0x2a2f135,0x2aeeb9a,0x0d0fe2b,
  29569. 0x204cb0e,0x07464c3,0x00c473c },
  29570. { 0x24cd8ae,0x0c86c41,0x221c282,0x0795588,0x1f4b437,0x06fc488,
  29571. 0x0c81ecd,0x020bf07,0x3a9e2c8,0x2294a81,0x3a64a95,0x0363966,
  29572. 0x32c9a35,0x0f79bec,0x0029e4f } },
  29573. /* 153 */
  29574. { { 0x289aaa5,0x2755b2e,0x059e0aa,0x3031318,0x0f0208a,0x35b7729,
  29575. 0x00d9c6b,0x3dd29d0,0x075f2c2,0x0ece139,0x31562dd,0x04187f2,
  29576. 0x13b8d4c,0x0920b85,0x003924e },
  29577. { 0x09808ab,0x2e36621,0x2a36f38,0x1829246,0x229bf32,0x20883b7,
  29578. 0x159ada8,0x3108a14,0x15bbe5b,0x1e2d1e4,0x1730096,0x0d35cbb,
  29579. 0x15d0da9,0x0e60b94,0x00c4f30 } },
  29580. /* 154 */
  29581. { { 0x31de38b,0x27b9086,0x2760e3e,0x169098d,0x2a124e2,0x00596c6,
  29582. 0x3f73c09,0x0d31642,0x2341464,0x248600a,0x2e1fa10,0x2aa0fc8,
  29583. 0x051e954,0x00f3b67,0x001d4bd },
  29584. { 0x18751e6,0x25a8e1e,0x07f5c2d,0x17e30d4,0x0ed2723,0x23093e2,
  29585. 0x3b80e2c,0x13de2d7,0x2fad37f,0x1be1cfb,0x3224ba9,0x0a7f5d3,
  29586. 0x1714972,0x06667b7,0x009dcd9 } },
  29587. /* 155 */
  29588. { { 0x294f22a,0x3e06993,0x0341ee9,0x24bdc7b,0x2e56098,0x2660a13,
  29589. 0x018ddda,0x2c261b2,0x2953b54,0x267f51c,0x0e8a7cc,0x29ab00c,
  29590. 0x3a38247,0x397ac81,0x00de684 },
  29591. { 0x36b956b,0x347b34a,0x35834bd,0x053c06c,0x0090844,0x148cec5,
  29592. 0x380b325,0x2f17b8b,0x054ef5e,0x09683fb,0x3f8b29a,0x33c979a,
  29593. 0x1e01474,0x3e81fca,0x001c757 } },
  29594. /* 156 */
  29595. { { 0x30fdfe4,0x2d712ba,0x13671bc,0x2cfc226,0x3d7c649,0x16f020e,
  29596. 0x368e3f0,0x2981ebb,0x246a78a,0x115e81b,0x21223a4,0x04dbb30,
  29597. 0x1a50ba2,0x12114bd,0x0089bd6 },
  29598. { 0x055f15a,0x1046e51,0x00fd724,0x1c022a7,0x323dfa9,0x36d8efb,
  29599. 0x0da4d16,0x0910dec,0x2c1fb16,0x2dbe29f,0x298284f,0x2b273bb,
  29600. 0x26022c1,0x20accd5,0x00085a5 } },
  29601. /* 157 */
  29602. { { 0x01f138a,0x2d87e7b,0x0c2815c,0x0c19a3c,0x311c9a2,0x3e4fce3,
  29603. 0x029729d,0x21236b2,0x2984048,0x3f3bc95,0x2bba8fb,0x1a1b680,
  29604. 0x0619a3f,0x29e0447,0x00ed5fe },
  29605. { 0x2d1c833,0x3dcef35,0x3f809b4,0x01a1b9e,0x1509516,0x10ac754,
  29606. 0x2735080,0x27b0a8a,0x2495fb8,0x0a7bdba,0x1ef8b89,0x00233a5,
  29607. 0x0568bf1,0x1a126ba,0x0078a7e } },
  29608. /* 158 */
  29609. { { 0x0470cd8,0x20e9f04,0x30003fe,0x20be1b7,0x1927346,0x2a5026d,
  29610. 0x1ac06bd,0x2717ed7,0x2609493,0x3079ea5,0x1cc116d,0x31b0541,
  29611. 0x2c8ccde,0x10219ae,0x001a52b },
  29612. { 0x2864045,0x0e8d95b,0x2fc1530,0x0aa44e7,0x345eae7,0x3cc7553,
  29613. 0x3ec6466,0x229b60e,0x06f6e95,0x00bed2a,0x0ff4403,0x181c639,
  29614. 0x2e0df67,0x1f8fa46,0x0000811 } },
  29615. /* 159 */
  29616. { { 0x04310a2,0x20cee8e,0x09fc5d5,0x3707f5b,0x0bdfb4e,0x12713ee,
  29617. 0x24f1028,0x0787ee6,0x39a581c,0x3797ec8,0x10a9746,0x112cb9f,
  29618. 0x142b9ba,0x1da0ef6,0x0078f7b },
  29619. { 0x07607ae,0x3232872,0x2a7e076,0x0bb572a,0x182b23c,0x1d8f918,
  29620. 0x181f392,0x37c45a9,0x24a3886,0x0b2a297,0x264e7f2,0x1fa433c,
  29621. 0x0fcfcc8,0x21c0857,0x0004f74 } },
  29622. /* 160 */
  29623. { { 0x01d161c,0x1744585,0x2d17528,0x03a4f13,0x267cd2e,0x30d861f,
  29624. 0x062a647,0x213284b,0x139ed25,0x27d4ca5,0x02fbbd6,0x31ddf11,
  29625. 0x3c50ac4,0x1dd86f7,0x00107de },
  29626. { 0x16beebd,0x1b7317a,0x2151997,0x256a196,0x3be2aff,0x3621cab,
  29627. 0x0a9da19,0x05f3038,0x23da63c,0x3178d5e,0x215cc67,0x07f7f63,
  29628. 0x0c6d8d3,0x3bf5e5c,0x00c44bb } },
  29629. /* 161 */
  29630. { { 0x00c62f1,0x3e0f893,0x1572703,0x3b93865,0x19b1e28,0x389b33b,
  29631. 0x02858bf,0x0e3e9aa,0x04bc436,0x234e072,0x25ba43d,0x3dca19e,
  29632. 0x0274394,0x20f442e,0x003b4a7 },
  29633. { 0x176451e,0x2b5ed5d,0x35c8ee1,0x25c52da,0x0c3d0b5,0x32b306e,
  29634. 0x030954f,0x275ecf7,0x10e472c,0x21577c4,0x02f8a32,0x321bb5c,
  29635. 0x0098f97,0x104e237,0x00d0433 } },
  29636. /* 162 */
  29637. { { 0x0a8f2fe,0x034548b,0x141f1a6,0x121246f,0x1616409,0x237f80d,
  29638. 0x2e29a55,0x1218db6,0x3ea278e,0x1669856,0x1ad7c8e,0x36d11de,
  29639. 0x2c2fcbb,0x18c0b3a,0x001c706 },
  29640. { 0x1699b4b,0x2d531a6,0x17e85e2,0x1b48e78,0x2b509ca,0x2818ea0,
  29641. 0x0165fee,0x0b809ca,0x09db6a2,0x3dad798,0x326ee1d,0x204e416,
  29642. 0x091fa12,0x1c890e5,0x0007b9f } },
  29643. /* 163 */
  29644. { { 0x0ff4e49,0x0bb0512,0x0129159,0x05db591,0x03e4e9f,0x055ab30,
  29645. 0x0f82881,0x0ac2deb,0x3a8bb09,0x356a8d2,0x3d38393,0x03e4089,
  29646. 0x38187cd,0x1377a93,0x0041672 },
  29647. { 0x0139e73,0x3990730,0x187d3c4,0x33e4793,0x2e0fe46,0x2ad87e2,
  29648. 0x33c792c,0x21d4fb6,0x1e4d386,0x2932d1b,0x20f1098,0x1270874,
  29649. 0x0ea6ee4,0x0167d6e,0x005e5fd } },
  29650. /* 164 */
  29651. { { 0x1856031,0x2b7519d,0x3bd07fc,0x337abcb,0x089c7a4,0x2a1f120,
  29652. 0x3523ce7,0x2ba406b,0x09561d9,0x1797f04,0x3cdb95f,0x2d6193e,
  29653. 0x32c7d3f,0x223aed6,0x00beb51 },
  29654. { 0x2e65825,0x158f0ce,0x16413d1,0x310395f,0x3116854,0x250baf4,
  29655. 0x373d341,0x156cc47,0x104c069,0x0893716,0x195a0a6,0x035320e,
  29656. 0x37b7d8a,0x21b5755,0x00fb26b } },
  29657. /* 165 */
  29658. { { 0x286ae17,0x04239f1,0x1a56c53,0x0e74707,0x29090d7,0x2bb142b,
  29659. 0x03b0139,0x1aac916,0x08ba49a,0x0376682,0x3382f85,0x064bbab,
  29660. 0x2910e28,0x1d5bd7f,0x00cc8df },
  29661. { 0x0ab7630,0x208e8e7,0x3fc1877,0x26bee39,0x264984a,0x192ff05,
  29662. 0x08ef9c3,0x0aa6951,0x071c44e,0x26eed3e,0x035c95e,0x06906ad,
  29663. 0x10a0690,0x397eaa9,0x00c6c23 } },
  29664. /* 166 */
  29665. { { 0x034d8dd,0x005b064,0x279bb78,0x12c2c4f,0x1856bb4,0x0c90681,
  29666. 0x06409ab,0x3b48617,0x19a2d78,0x0a34bf8,0x326eddf,0x31f09b5,
  29667. 0x04f04dc,0x3d7c944,0x003ccaf },
  29668. { 0x321f843,0x35fb71a,0x1e4c397,0x377a5d7,0x2da88e4,0x3d6ada7,
  29669. 0x33d3964,0x1b30149,0x0e39aae,0x054dda0,0x3e6f946,0x1273394,
  29670. 0x3ffd3f7,0x2f6655e,0x00021dd } },
  29671. /* 167 */
  29672. { { 0x37233cf,0x11617dd,0x26f07b6,0x3d8250a,0x0fe6771,0x3f9bbbc,
  29673. 0x2aba7ad,0x200a58d,0x3568603,0x198eefa,0x1e8fcf3,0x3b9610b,
  29674. 0x20524ac,0x2a67528,0x0048d9a },
  29675. { 0x1a5e57a,0x1e9d303,0x16c9cff,0x0f39527,0x3c23259,0x03c8a1e,
  29676. 0x104bccf,0x182d5a1,0x18dbc83,0x05b5f42,0x1b402f4,0x317c525,
  29677. 0x11bf1ea,0x3c46e1f,0x0061936 } },
  29678. /* 168 */
  29679. { { 0x0153a9d,0x36859ee,0x2cf0aa9,0x2b27a0f,0x0a49fe3,0x2d984e1,
  29680. 0x018f8e1,0x1378453,0x1ab3843,0x1987093,0x283dae9,0x25cf0e8,
  29681. 0x14fc93d,0x280609d,0x00c99ba },
  29682. { 0x026b1e3,0x34663d3,0x2202477,0x21a9d45,0x212e8e1,0x18ab77e,
  29683. 0x2e52f63,0x0a14ce1,0x295c396,0x00c7a3d,0x2aaedb6,0x30abc4d,
  29684. 0x374acde,0x1318a73,0x00fcfdb } },
  29685. /* 169 */
  29686. { { 0x0a40298,0x3ba5633,0x11956b3,0x14fcbd7,0x3c38781,0x34bab96,
  29687. 0x165630e,0x1f3c831,0x37e3a69,0x2b4226c,0x2d5029e,0x3b4ab1e,
  29688. 0x1da6ac2,0x3eb43c3,0x007e5cd },
  29689. { 0x1b86202,0x109b7f6,0x2054f98,0x2c50cd7,0x2ed1960,0x3c518e7,
  29690. 0x1b02463,0x319c07f,0x1c30db6,0x045fdc2,0x373421e,0x31a1eb9,
  29691. 0x1a8acbf,0x31289b0,0x0013fef } },
  29692. /* 170 */
  29693. { { 0x3fa0a5f,0x068661f,0x2109e36,0x00b18ff,0x1f4b261,0x31d3844,
  29694. 0x0acbc56,0x3aebc99,0x1fa77ab,0x152bd11,0x24cddb7,0x2313f74,
  29695. 0x06eea44,0x15f5114,0x000b131 },
  29696. { 0x2e9993d,0x1ac565c,0x2cbe22a,0x3921797,0x12c3c57,0x360f868,
  29697. 0x33560bf,0x320ee99,0x382c3b8,0x39af88f,0x00bbe38,0x2c4ea59,
  29698. 0x3399b40,0x00ceb45,0x0066eea } },
  29699. /* 171 */
  29700. { { 0x0c6c693,0x31ba56d,0x3d3849f,0x378dabd,0x0efc735,0x17f90bf,
  29701. 0x13343d3,0x2df0f81,0x27c6a9a,0x13c2a90,0x0a0fcb2,0x27c10d9,
  29702. 0x3bc50c7,0x090e4fa,0x0016287 },
  29703. { 0x2927e1e,0x35af405,0x184c5c3,0x3499cee,0x240158e,0x33522e6,
  29704. 0x386fc84,0x0a0b69f,0x1a660ea,0x34590fb,0x22a1bee,0x2ce4fab,
  29705. 0x31a9445,0x0e78655,0x00664c8 } },
  29706. /* 172 */
  29707. { { 0x3eeaf94,0x115d409,0x21e7577,0x097aa67,0x22875c9,0x021ab7a,
  29708. 0x27e7ba5,0x1093f04,0x2a086fe,0x05d9494,0x2b6c028,0x10f31b0,
  29709. 0x1312d11,0x262759c,0x00c9bb2 },
  29710. { 0x1acb0a5,0x30cdf14,0x0f78880,0x0574f18,0x1a37109,0x098adbb,
  29711. 0x2113c09,0x2060925,0x1f89ce4,0x1974976,0x3381358,0x2dab5ca,
  29712. 0x2159c53,0x3af1303,0x000ea3b } },
  29713. /* 173 */
  29714. { { 0x1e49bea,0x29142b1,0x1a59cab,0x055f017,0x0684e54,0x39eb0db,
  29715. 0x29cab9d,0x255ee8b,0x35f2e6f,0x05329e6,0x09b817b,0x1ec091c,
  29716. 0x1df0fef,0x2641f62,0x00eb304 },
  29717. { 0x2fe5096,0x3dcc1d1,0x2aaf508,0x3a0b813,0x0695810,0x144bddb,
  29718. 0x2f1bd93,0x281ae23,0x3513ebc,0x1ddd984,0x0cf158b,0x35218eb,
  29719. 0x257daf7,0x391253b,0x00b2a81 } },
  29720. /* 174 */
  29721. { { 0x153e6ba,0x22396db,0x0ea2ff2,0x2a45121,0x0a90de1,0x34cf23b,
  29722. 0x2db60ce,0x1a900be,0x2f328b6,0x355e75b,0x2c24372,0x0b75b77,
  29723. 0x2ec7d4f,0x3f24759,0x00e9e33 },
  29724. { 0x39eab6e,0x2267480,0x3b5e110,0x1e8fa5e,0x2a31a66,0x3f739a3,
  29725. 0x00166dc,0x3552d88,0x3ae5137,0x3efa0fa,0x0800acd,0x17df61d,
  29726. 0x38c8608,0x04cc31b,0x00cf4ab } },
  29727. /* 175 */
  29728. { { 0x31e08fb,0x1961164,0x22c003f,0x078541b,0x3643855,0x30da587,
  29729. 0x11f0dc9,0x324595e,0x329e3dc,0x29a041e,0x3495d2c,0x0908dd3,
  29730. 0x1895b83,0x198dbb9,0x00d8cfb },
  29731. { 0x0349b1b,0x383c5a8,0x2b86525,0x1b1283e,0x133cd2c,0x2be376a,
  29732. 0x012ee82,0x1eb4d1b,0x0ba71e9,0x01f3109,0x37621eb,0x1d9b77c,
  29733. 0x0d39069,0x3d5a97c,0x0095565 } },
  29734. /* 176 */
  29735. { { 0x20f5e94,0x1eefc86,0x1327e0e,0x054760b,0x2f771e1,0x3ac447e,
  29736. 0x033e3dc,0x198e040,0x04dd342,0x1b49a5d,0x00d01ef,0x3cb6768,
  29737. 0x1ceafbd,0x31c6812,0x001cb80 },
  29738. { 0x221c677,0x060ca27,0x398b17f,0x0146723,0x36452af,0x02d9e65,
  29739. 0x39c5f78,0x3cf50d6,0x0be40f8,0x2970b87,0x26d667c,0x3e45959,
  29740. 0x16e7943,0x01673e7,0x009faaa } },
  29741. /* 177 */
  29742. { { 0x2078fe6,0x0918602,0x11dd8ad,0x399193f,0x0f6cc73,0x0f8dd12,
  29743. 0x2ce34dc,0x06d7d34,0x0c5e327,0x0989254,0x2fc5af7,0x2443d7b,
  29744. 0x32bc662,0x2fe2a84,0x008b585 },
  29745. { 0x039327f,0x08e616a,0x252f117,0x1f52ab0,0x234e2d2,0x0a5b313,
  29746. 0x2f59ef6,0x0f7a500,0x15c4705,0x2c02b81,0x28b4f09,0x08aa5c8,
  29747. 0x0180efc,0x0993e83,0x00a9e86 } },
  29748. /* 178 */
  29749. { { 0x0310ecc,0x2d8892f,0x14ed0b7,0x3c59fe8,0x08a1a74,0x0850e57,
  29750. 0x1d09607,0x044a21f,0x109f5c9,0x237c6cf,0x06b264a,0x3fc8f1a,
  29751. 0x0d4c539,0x2740f96,0x00dc2d4 },
  29752. { 0x1d6f501,0x0adf4ea,0x14f7215,0x0930102,0x3f4c32e,0x24e2643,
  29753. 0x366596d,0x081ff18,0x38f94fb,0x2c21341,0x328594c,0x267c75c,
  29754. 0x196b3fd,0x29932cb,0x0036def } },
  29755. /* 179 */
  29756. { { 0x3ed7cbe,0x26de044,0x3d0e461,0x0565e12,0x295e500,0x31dc17f,
  29757. 0x32251c2,0x3420ca8,0x3995f0d,0x2e8ddab,0x0361a45,0x10971b0,
  29758. 0x11e7b55,0x33bc7ca,0x00812d2 },
  29759. { 0x3d94972,0x1606817,0x0383ccf,0x0e795b7,0x026e20e,0x0f6fefc,
  29760. 0x13685d6,0x315d402,0x0cc36b8,0x1c7f059,0x390ef5e,0x316ae04,
  29761. 0x08c66b9,0x2fac9a4,0x0040086 } },
  29762. /* 180 */
  29763. { { 0x3e3c115,0x153de4d,0x1a8ae5e,0x2330511,0x169b8ee,0x1d965c2,
  29764. 0x2edff2b,0x3ef99e6,0x1631b46,0x1f8a238,0x118d7bb,0x12113c3,
  29765. 0x26424db,0x0f4122a,0x00e0ea2 },
  29766. { 0x3d80a73,0x30393bc,0x0f98714,0x278ef59,0x087a0aa,0x3b18c20,
  29767. 0x04b8a82,0x2068e21,0x030255d,0x3382b27,0x055397f,0x05448dd,
  29768. 0x2015586,0x1190be0,0x000b979 } },
  29769. /* 181 */
  29770. { { 0x2e03080,0x2895692,0x09fb127,0x2d1602a,0x1232306,0x105bd4e,
  29771. 0x28cd6a6,0x0a83813,0x1ee13b0,0x2abadc3,0x0c09684,0x00e33e1,
  29772. 0x033eea3,0x30f0a39,0x00a710e },
  29773. { 0x01b1f7d,0x1c959da,0x017077a,0x254bf0a,0x086fbce,0x15cd6b2,
  29774. 0x008683f,0x23a4f4d,0x22a6bd6,0x14e8c93,0x0027d15,0x31d0d4f,
  29775. 0x271777e,0x1533510,0x00ab603 } },
  29776. /* 182 */
  29777. { { 0x34c209d,0x14d0abb,0x270432a,0x1d02358,0x22ba752,0x209757f,
  29778. 0x34af6fc,0x1ffc52e,0x1ced28e,0x1870e46,0x1e0340f,0x3f0bf73,
  29779. 0x33ba91d,0x2ebca7c,0x00c6580 },
  29780. { 0x1d442cb,0x0879d50,0x24e4ae1,0x3f4e91c,0x04c7727,0x093cd1d,
  29781. 0x16d6a45,0x10a8b95,0x0c77856,0x361f84f,0x217845f,0x0bbeec6,
  29782. 0x0485718,0x33c5385,0x00dcec0 } },
  29783. /* 183 */
  29784. { { 0x1539819,0x225507a,0x1bf11cb,0x13e7653,0x0c8cb3b,0x05f695e,
  29785. 0x353f634,0x2827874,0x3fb8053,0x22de9a5,0x035d8b7,0x2105cc7,
  29786. 0x2a7a98d,0x35bed95,0x0085748 },
  29787. { 0x1859c5d,0x00e51f0,0x22a21fd,0x3054d74,0x06ce965,0x328eab7,
  29788. 0x26a13e0,0x13bfc65,0x01d4fb1,0x36600b9,0x36dd3fc,0x01232ed,
  29789. 0x15bbaa9,0x0ad7a51,0x0089b18 } },
  29790. /* 184 */
  29791. { { 0x3360710,0x1eb5a90,0x136bd77,0x3bd57a6,0x0841287,0x12886c9,
  29792. 0x35c6700,0x21bc6eb,0x25f35ad,0x3bcb01c,0x0707e72,0x23e9943,
  29793. 0x03e5233,0x34bb622,0x002bf8e },
  29794. { 0x16e0d6a,0x04b3d2d,0x290cb02,0x049a10c,0x350537e,0x22cf71b,
  29795. 0x3184a19,0x2dc8b62,0x2350210,0x3b4afa6,0x159781e,0x1d01b6d,
  29796. 0x1853440,0x16442f0,0x005a78d } },
  29797. /* 185 */
  29798. { { 0x348b02c,0x1ea8ab5,0x3b954d5,0x14684ac,0x0be5b34,0x11c4496,
  29799. 0x0a7a456,0x14f6eb7,0x11a3221,0x2d65f82,0x32eb1ea,0x09c4018,
  29800. 0x3f301f3,0x32e8a1c,0x00bd9ad },
  29801. { 0x0543f7f,0x31e744e,0x1fefd1d,0x24a486c,0x1000220,0x3977e3b,
  29802. 0x1b3ef51,0x2512a1b,0x2049e6b,0x122232b,0x391a32b,0x2f4a7b1,
  29803. 0x1c13e71,0x081a9b4,0x00d3516 } },
  29804. /* 186 */
  29805. { { 0x1924f43,0x1ae5495,0x28d52ef,0x2b93e77,0x2d2f401,0x371a010,
  29806. 0x33e8d7a,0x06ed3f1,0x30c0d9d,0x2589fa9,0x3bf3567,0x2ecf8fa,
  29807. 0x2dee4c3,0x152b620,0x007e8a2 },
  29808. { 0x1924407,0x01bd42d,0x044a089,0x18686b5,0x2f14a0e,0x17cdce3,
  29809. 0x0efa216,0x3c586a8,0x1d6ae71,0x375831f,0x3175894,0x20e43eb,
  29810. 0x34c009e,0x3480527,0x00d115c } },
  29811. /* 187 */
  29812. { { 0x12abf77,0x38b0769,0x25682f2,0x295508c,0x0c2a0dc,0x1259b73,
  29813. 0x023ea25,0x340e7b5,0x3c7cd0d,0x1f92324,0x176405c,0x1528894,
  29814. 0x18f2e1e,0x2c59c35,0x001efb5 },
  29815. { 0x0fb1471,0x07e7665,0x141da75,0x07d9f4a,0x0fdb31e,0x0dccda6,
  29816. 0x074eb25,0x3d92a9b,0x11189a0,0x1b4c557,0x24b8d2b,0x0533f92,
  29817. 0x0e9e344,0x2fa3dea,0x008d5a4 } },
  29818. /* 188 */
  29819. { { 0x2669e98,0x1ad3514,0x2a035c9,0x08a3f50,0x24547f9,0x0a145d3,
  29820. 0x1c1319d,0x3fe833d,0x1ae064b,0x1e01734,0x246d27e,0x3a2f13c,
  29821. 0x01e1150,0x263f55e,0x00f89ef },
  29822. { 0x2e0b63f,0x3e57db7,0x23a4b4f,0x11c8899,0x0ad8500,0x348f3a7,
  29823. 0x2918604,0x27d6409,0x1ce5001,0x38f94c2,0x29a508a,0x39bdc89,
  29824. 0x3a52c27,0x194899e,0x00e9376 } },
  29825. /* 189 */
  29826. { { 0x0368708,0x34a2730,0x2e1da04,0x0bd78c1,0x2c45887,0x0c44bfa,
  29827. 0x3a23de3,0x390b9db,0x1746efd,0x05c638e,0x1d20609,0x3263370,
  29828. 0x31987f0,0x2988529,0x005fa3c },
  29829. { 0x0aa9f2a,0x20622f7,0x060deee,0x0c9626a,0x3312cc7,0x18ebac7,
  29830. 0x008dd6c,0x0ad4fe6,0x3db4ea6,0x1dc3f50,0x090b6e9,0x0aff8d2,
  29831. 0x26aa62c,0x18f3e90,0x00105f8 } },
  29832. /* 190 */
  29833. { { 0x38059ad,0x25e576c,0x3ea00b2,0x1fa4191,0x25686b7,0x2d1ce8f,
  29834. 0x30470ed,0x3478bbf,0x340f9b6,0x1c9e348,0x3d594ec,0x2ffe56e,
  29835. 0x3f23deb,0x0cd34e9,0x00f4b72 },
  29836. { 0x1a83f0b,0x2166029,0x28b32a2,0x06a5c5a,0x20786c4,0x0944604,
  29837. 0x0901bd2,0x379b84e,0x221e2fe,0x0346d54,0x1f4eb59,0x01b8993,
  29838. 0x2462e08,0x25f9d8b,0x006c4c8 } },
  29839. /* 191 */
  29840. { { 0x0b41d9d,0x2e417ed,0x265bd10,0x199148e,0x3826ca4,0x1a67e8d,
  29841. 0x1bbd13b,0x23e414d,0x3d773bc,0x356e64c,0x0d2118a,0x0cb587f,
  29842. 0x25fd093,0x24fb529,0x00158c6 },
  29843. { 0x2806e63,0x3ecaa39,0x251b4dd,0x3b2d779,0x2e31ed3,0x066f1a6,
  29844. 0x060e518,0x2c7e3e5,0x0d62c76,0x0d88a70,0x101970a,0x1e3c8c6,
  29845. 0x272b8bb,0x083e73b,0x0031f38 } },
  29846. /* 192 */
  29847. { { 0x09e1c72,0x072bcb0,0x0cf4e93,0x2604a64,0x00715f2,0x10c98b6,
  29848. 0x2ad81d9,0x234fcce,0x37a7304,0x1974a4a,0x1c7415f,0x14aaa93,
  29849. 0x19587b1,0x3f643f4,0x00c3d10 },
  29850. { 0x1ddadd0,0x2cd715d,0x294cf76,0x14479ed,0x19f5f4a,0x0198c09,
  29851. 0x1ab7ebc,0x182c0bc,0x0879202,0x1807273,0x05d39da,0x2c7d868,
  29852. 0x29c4ec4,0x1b13ad2,0x006dcd7 } },
  29853. /* 193 */
  29854. { { 0x1c83f01,0x0245bff,0x24f90ba,0x112554f,0x2354c8b,0x3f17988,
  29855. 0x0c511af,0x39e1e9b,0x26ae95b,0x0ae551c,0x35b41a6,0x0120455,
  29856. 0x1e989cb,0x1b37aff,0x00fa2ae },
  29857. { 0x324659a,0x1aef1c3,0x1c43637,0x3f530a2,0x313a999,0x326af62,
  29858. 0x134184e,0x2ac131c,0x3f6a789,0x30a300a,0x13e526e,0x2107af3,
  29859. 0x093a8ff,0x2479902,0x00442b1 } },
  29860. /* 194 */
  29861. { { 0x22b6e20,0x31b18be,0x18614ca,0x26fdb5a,0x197f29e,0x325b44b,
  29862. 0x0ab1dbb,0x042348a,0x3275e8e,0x15bae44,0x0077124,0x2cf5345,
  29863. 0x2803ad4,0x188f2a2,0x0061b20 },
  29864. { 0x2a560b1,0x3ced069,0x3cf42c2,0x100e167,0x3879e1d,0x0936ff0,
  29865. 0x1b51450,0x14c55f3,0x3153bfa,0x2957423,0x2a93823,0x15f5dce,
  29866. 0x2c9a22f,0x16731a8,0x00a97f2 } },
  29867. /* 195 */
  29868. { { 0x18edbbb,0x18c5ef9,0x1f13c30,0x071e77f,0x225ade5,0x1b60f75,
  29869. 0x1beaf11,0x3e495ad,0x2441dd8,0x2fa00e2,0x32a87b6,0x00050f2,
  29870. 0x038de7f,0x0037d6d,0x00a885d },
  29871. { 0x39e48bd,0x1d9e433,0x2768e9f,0x3c29458,0x3f0bdf9,0x35ed5f2,
  29872. 0x36709fa,0x176dc10,0x012f7c1,0x2df8547,0x1d90ee3,0x053c089,
  29873. 0x21a8d35,0x200cb0d,0x002e84e } },
  29874. /* 196 */
  29875. { { 0x23ec8d8,0x1d81f55,0x0cb7227,0x07f8e4d,0x2a66181,0x163f577,
  29876. 0x272e7af,0x131a8f2,0x2046229,0x25e6276,0x36bbefe,0x2cdc22f,
  29877. 0x17c8288,0x33dd4fb,0x000d524 },
  29878. { 0x330c073,0x1a6728b,0x1cf369f,0x12e7707,0x2f0fa26,0x17c2abd,
  29879. 0x0a45680,0x26ebd13,0x3c7d19b,0x1c3d6c8,0x2abd110,0x064fd07,
  29880. 0x09b8339,0x02b4a9f,0x009e3e1 } },
  29881. /* 197 */
  29882. { { 0x0ae972f,0x2093c35,0x06e7a90,0x0af1ba1,0x243eef0,0x2748582,
  29883. 0x0606122,0x13a45f9,0x0acfe60,0x08a685e,0x0eb184b,0x015bc11,
  29884. 0x0cdf423,0x157fad5,0x004fcad },
  29885. { 0x2728d15,0x3e5bceb,0x0331a0f,0x31b1a80,0x28a2680,0x3b94955,
  29886. 0x04cae07,0x176b57e,0x03ac5a6,0x3d7918b,0x22d23f4,0x0ae077f,
  29887. 0x1eb075d,0x006f16c,0x006e473 } },
  29888. /* 198 */
  29889. { { 0x38219b9,0x0475a2b,0x107a774,0x39946c6,0x1cb883c,0x004e0ed,
  29890. 0x087e571,0x25c3497,0x059982f,0x0a71f66,0x118305d,0x1aaf294,
  29891. 0x3a5dbaa,0x34be404,0x00725fe },
  29892. { 0x3abd109,0x336ebea,0x2528487,0x15a1d61,0x0c0f8cf,0x2b56095,
  29893. 0x2591e68,0x3549a80,0x1d1debb,0x0701c6c,0x161e7e3,0x1f7fa2e,
  29894. 0x3dfe192,0x17e6498,0x0055f89 } },
  29895. /* 199 */
  29896. { { 0x175645b,0x26c036c,0x0b92f89,0x09ed96d,0x351f3a6,0x19ce67b,
  29897. 0x33ac8db,0x2f0828b,0x27fe400,0x0b9c5e1,0x1967b95,0x3324080,
  29898. 0x11de142,0x1d44fb3,0x003d596 },
  29899. { 0x3979775,0x3af37b6,0x3e88d41,0x2f1a8b9,0x299ba61,0x085413c,
  29900. 0x1149a53,0x0beb40e,0x31427ba,0x239f708,0x357d836,0x1558c22,
  29901. 0x280a79f,0x1b255f6,0x002b6d1 } },
  29902. /* 200 */
  29903. { { 0x39ad982,0x3d79d89,0x01a684a,0x0b6722e,0x39bb4c9,0x39a6399,
  29904. 0x1ad44e0,0x3059f5e,0x048265f,0x33a2fa4,0x0c3a4cc,0x0d7df98,
  29905. 0x23a33f1,0x34e2e21,0x00a0a10 },
  29906. { 0x386efd9,0x1c91f34,0x06c2e19,0x3e6d48d,0x00eefd3,0x2181ef2,
  29907. 0x2415f97,0x1d33b08,0x0625086,0x1e8aa3e,0x08c9d60,0x0ab427b,
  29908. 0x2764fa7,0x3b7943e,0x00cd9f0 } },
  29909. /* 201 */
  29910. { { 0x1a46d4d,0x0e471f4,0x1693063,0x0467ac0,0x22df51c,0x127a0f7,
  29911. 0x0498008,0x20e0b16,0x1aa8ad0,0x1923f42,0x2a74273,0x01761ce,
  29912. 0x1600ca4,0x187b87e,0x00ee49e },
  29913. { 0x0c76f73,0x19daf92,0x0b2ad76,0x3d8049d,0x1d9c100,0x0fe1c63,
  29914. 0x0bb67c8,0x035cc44,0x02002fc,0x37b2169,0x344656a,0x1127879,
  29915. 0x1939bc0,0x0dd8df6,0x0028ce7 } },
  29916. /* 202 */
  29917. { { 0x0544ac7,0x26bdc91,0x042697e,0x356e804,0x1f2c658,0x2ceb7ef,
  29918. 0x2dec39f,0x02c1dcc,0x391a2df,0x2344beb,0x2171e20,0x3099c94,
  29919. 0x0fa548a,0x37216c9,0x00f820c },
  29920. { 0x0f4cf77,0x29bbaa5,0x33c6307,0x34a5128,0x118c783,0x2dd06b1,
  29921. 0x139d4c0,0x2db912e,0x1153ffb,0x1075eb3,0x3a255e4,0x2892161,
  29922. 0x36d5006,0x125338c,0x0014fbc } },
  29923. /* 203 */
  29924. { { 0x1584e3c,0x0830314,0x00279b9,0x167df95,0x2c7733c,0x2108aef,
  29925. 0x0ce1398,0x35aaf89,0x012523b,0x3c46b6a,0x388e6de,0x01a2002,
  29926. 0x0582dde,0x19c7fa3,0x007b872 },
  29927. { 0x1e53510,0x11bca1f,0x19684e7,0x267de5c,0x2492f8b,0x364a2b0,
  29928. 0x080bc77,0x2c6d47b,0x248432e,0x3ace44f,0x32028f6,0x0212198,
  29929. 0x2f38bad,0x20d63f0,0x00122bb } },
  29930. /* 204 */
  29931. { { 0x30b29c3,0x3cec78e,0x01510a9,0x0c93e91,0x3837b64,0x1eca3a9,
  29932. 0x105c921,0x05d42e6,0x1379845,0x07ce6f2,0x0e8b6da,0x0e0f093,
  29933. 0x220b2cd,0x1f6c041,0x00299f5 },
  29934. { 0x0afdce3,0x2b0e596,0x2f477b6,0x2ccf417,0x3a15206,0x26ec0bf,
  29935. 0x2e37e2b,0x2593282,0x0ab9db3,0x2841dd8,0x27954be,0x277a681,
  29936. 0x03f82e2,0x2b610c7,0x00446a1 } },
  29937. /* 205 */
  29938. { { 0x06b8195,0x3b3a817,0x31b9c6f,0x317d279,0x3d744a7,0x1de9eb9,
  29939. 0x296acc1,0x1ce9ea3,0x06c3587,0x246815d,0x3756736,0x0588518,
  29940. 0x1c971a4,0x1fde1f4,0x00aa021 },
  29941. { 0x3fd3226,0x274561d,0x00be61e,0x01393d8,0x30f6f23,0x29b7fc1,
  29942. 0x04cebc7,0x0a892a7,0x20109f1,0x27456be,0x0c863ee,0x2eb6c8a,
  29943. 0x38c782b,0x039397a,0x00a2829 } },
  29944. /* 206 */
  29945. { { 0x29de330,0x21fe80f,0x145b55b,0x1986570,0x012b260,0x2482fbc,
  29946. 0x0536e0a,0x16b7382,0x32c4d19,0x1deffdb,0x145f418,0x0c67a76,
  29947. 0x2ce477f,0x218fe24,0x00f9848 },
  29948. { 0x3e37657,0x3f074d3,0x245ad0e,0x20973c3,0x23c58de,0x2c332ef,
  29949. 0x2ad21a8,0x0bf1589,0x208af95,0x1f4a8c4,0x2b43735,0x1e46657,
  29950. 0x15d4f81,0x0c3e63a,0x005f19d } },
  29951. /* 207 */
  29952. { { 0x26865bb,0x20f6683,0x16a672e,0x0efd8d1,0x222f5af,0x18f2367,
  29953. 0x1e9c734,0x25c3902,0x178dfe6,0x2903a79,0x311b91c,0x1adbbe9,
  29954. 0x225a387,0x0b3e509,0x0089551 },
  29955. { 0x34e462b,0x23b6a32,0x27c884c,0x129104b,0x384c015,0x3adedc7,
  29956. 0x325db1c,0x021dc10,0x1e366f7,0x3054df7,0x1992b9a,0x2824e64,
  29957. 0x0ae77f3,0x181b526,0x00a7316 } },
  29958. /* 208 */
  29959. { { 0x2d260f5,0x2434bf2,0x28c0139,0x0a7bb03,0x176c3be,0x3def5f5,
  29960. 0x05bee00,0x3692df7,0x3d2efeb,0x3a6f859,0x1122b87,0x38f779a,
  29961. 0x1415ccc,0x2c260ad,0x0075a28 },
  29962. { 0x04607a6,0x042f37a,0x3f0df68,0x0a1bd36,0x3c6d581,0x2d36bfa,
  29963. 0x2d577d1,0x0a3affa,0x0b2066b,0x2e6f110,0x0b17e84,0x3c76a5e,
  29964. 0x1a57553,0x012f36a,0x0004595 } },
  29965. /* 209 */
  29966. { { 0x29e5836,0x0e6808c,0x269d13e,0x147dc5c,0x32c9e7d,0x09b258e,
  29967. 0x2c58d6f,0x1efd716,0x0437996,0x34ec31b,0x15908d9,0x2efa8fd,
  29968. 0x09ad160,0x079fc1f,0x00d8481 },
  29969. { 0x3d20e4a,0x18269d6,0x3aa8fe7,0x34829c2,0x2e4325d,0x0d800e1,
  29970. 0x11f370b,0x10c08dc,0x22fd092,0x1a5fe55,0x0acc443,0x037030d,
  29971. 0x1cdd404,0x097379e,0x00fd6d7 } },
  29972. /* 210 */
  29973. { { 0x313eafb,0x3f438f3,0x2e5fb3e,0x2ed6a82,0x121009c,0x240889e,
  29974. 0x00c5537,0x269b792,0x334b2fc,0x1dd573c,0x07096ae,0x19296fc,
  29975. 0x3813985,0x2742f48,0x00ddd64 },
  29976. { 0x2045041,0x3842c62,0x1572d0d,0x04f255f,0x06e05b4,0x383ec97,
  29977. 0x1ff8064,0x18bed71,0x39b6411,0x2764cc5,0x257439f,0x3521217,
  29978. 0x172aa42,0x342a2a3,0x0070c5b } },
  29979. /* 211 */
  29980. { { 0x3bdf646,0x1c5ce25,0x1f7ca76,0x2d2acca,0x3aa1485,0x23c97f7,
  29981. 0x3e11d6f,0x0609338,0x07ec622,0x01da8ff,0x3392474,0x17ca07f,
  29982. 0x13a9a04,0x353a5b4,0x0024557 },
  29983. { 0x14c27cd,0x32012f7,0x3fea875,0x3d03d71,0x211c5f0,0x3157fdf,
  29984. 0x0c880bd,0x3c406b2,0x2c51103,0x24ab377,0x399faa8,0x0d06887,
  29985. 0x16b5738,0x28b33a7,0x00c7b67 } },
  29986. /* 212 */
  29987. { { 0x2357586,0x35c93e3,0x0da09a0,0x3d77d92,0x11d7f4f,0x37b98a9,
  29988. 0x3e6c9bf,0x2cdca70,0x2f00389,0x2412673,0x18eab87,0x0101436,
  29989. 0x11617e9,0x06d9b01,0x00e8eef },
  29990. { 0x37e3ca9,0x16ffaf0,0x391debf,0x1b69382,0x07c5e94,0x312fa8a,
  29991. 0x0973142,0x2cadde4,0x109ee67,0x3a07db0,0x1afc5ed,0x08df66f,
  29992. 0x304c7af,0x0804aae,0x00d2e60 } },
  29993. /* 213 */
  29994. { { 0x24f57bf,0x1818322,0x182a615,0x25bfc44,0x0f97586,0x0a5bbc0,
  29995. 0x36773c6,0x1a2660c,0x3ceff66,0x3270152,0x319cd11,0x2845845,
  29996. 0x1acfad6,0x19076f8,0x009824a },
  29997. { 0x289fd01,0x2de97ee,0x39d80b7,0x026227d,0x0f8d3b8,0x15e0a17,
  29998. 0x21ea08f,0x20a2317,0x136ae6d,0x3deb1d1,0x3521ef5,0x0de8801,
  29999. 0x0a25d5d,0x0612c98,0x005ecc4 } },
  30000. /* 214 */
  30001. { { 0x308c8d3,0x3aec669,0x01ecddc,0x13f18fe,0x1e63ed0,0x061cfe5,
  30002. 0x05f5a01,0x1db5741,0x14479f2,0x0ced6b5,0x025ae5b,0x09ca8f5,
  30003. 0x2160581,0x1404433,0x008bfeb },
  30004. { 0x08228bf,0x0e02722,0x37df423,0x33ecabf,0x34bd82a,0x32f529f,
  30005. 0x28f1800,0x0c8f671,0x1246b44,0x1ff35dc,0x091db95,0x303f3da,
  30006. 0x28f7f60,0x3624136,0x00cfbb4 } },
  30007. /* 215 */
  30008. { { 0x326139a,0x2977e4e,0x3eb89a6,0x20ecb31,0x13e076a,0x2a592f3,
  30009. 0x28e82d5,0x235ad1e,0x239b927,0x262938a,0x2444354,0x141b263,
  30010. 0x0d56693,0x2a3fc78,0x0006497 },
  30011. { 0x31efa05,0x3a3664a,0x3e333de,0x2a114e4,0x12da63c,0x3c15e6b,
  30012. 0x2f7277c,0x363aa92,0x2393236,0x16bd2d1,0x32b617f,0x32b656c,
  30013. 0x3b1246c,0x22e2e22,0x00ce76d } },
  30014. /* 216 */
  30015. { { 0x03843dc,0x094de82,0x13b463d,0x0507905,0x089eb35,0x2a6bf25,
  30016. 0x35ebc4e,0x2bb5d45,0x1808ed1,0x1de9949,0x185e829,0x0a55847,
  30017. 0x0b73d67,0x1a2ed61,0x008dd2d },
  30018. { 0x133c3a4,0x04e7980,0x38ea237,0x2ad2f49,0x19de838,0x018bf36,
  30019. 0x29b072c,0x21c1ba0,0x14f63ba,0x31c1cc3,0x13cd05e,0x20120ff,
  30020. 0x1f84d60,0x16e0321,0x00872ab } },
  30021. /* 217 */
  30022. { { 0x19d4d49,0x1ddb4e6,0x05e7fc0,0x37bb0fd,0x1a3eb59,0x36b87f0,
  30023. 0x190e440,0x1c7fef2,0x31ea153,0x14cd65a,0x1bc7ab2,0x11f72ca,
  30024. 0x39582d4,0x0fa4d65,0x00cd5b6 },
  30025. { 0x3d1ff11,0x0d9be9d,0x2903ae3,0x017b7b9,0x259f28f,0x110cefc,
  30026. 0x03fed1a,0x38039bd,0x09bdf9c,0x3055027,0x2ca9c5d,0x2d737b6,
  30027. 0x3bdb421,0x16560b5,0x00f9f33 } },
  30028. /* 218 */
  30029. { { 0x022c792,0x110de25,0x38bf959,0x08f2562,0x1239ea9,0x3c1d950,
  30030. 0x21a247d,0x315112d,0x285bb9f,0x2534a73,0x0b42455,0x1a4a99c,
  30031. 0x069009a,0x1680392,0x006e0ca },
  30032. { 0x1b3bece,0x269e0a1,0x18926b7,0x0e7187e,0x241f35e,0x39d1fe0,
  30033. 0x02099aa,0x1675bfe,0x23fd0ca,0x3d6322b,0x19406b5,0x324c38a,
  30034. 0x242434a,0x3ae677c,0x002ce04 } },
  30035. /* 219 */
  30036. { { 0x2c37b82,0x1ae6506,0x0d83436,0x23496c1,0x0ff0c72,0x2711edf,
  30037. 0x1513611,0x04f9c7d,0x1edbeff,0x376fcb5,0x212a683,0x23bf547,
  30038. 0x0f9c4f7,0x16e6627,0x0082cd8 },
  30039. { 0x0cb5d37,0x31b6db8,0x1a15e23,0x2f5cbb8,0x0818aee,0x21dc6c5,
  30040. 0x12aafd2,0x205f608,0x1d91def,0x3def088,0x1445c51,0x3100e8a,
  30041. 0x3746bda,0x145c4b0,0x00711b0 } },
  30042. /* 220 */
  30043. { { 0x2a99ecc,0x27b5217,0x35e10ed,0x036e32a,0x0f79950,0x15c32f7,
  30044. 0x2c87dcb,0x3ebb2a3,0x2c2d35d,0x114b3ec,0x2e4d80a,0x0c7eb89,
  30045. 0x2abe58d,0x3727737,0x00e6a37 },
  30046. { 0x1eca452,0x1968d07,0x344e5d3,0x29435a2,0x109a5f8,0x181d12c,
  30047. 0x238ea5a,0x127a564,0x00dbb42,0x0fcbfb7,0x2909b2e,0x2571d3a,
  30048. 0x08250e3,0x0694e4e,0x00e156d } },
  30049. /* 221 */
  30050. { { 0x3181ae9,0x1acf411,0x3808d79,0x2a11065,0x0baf44b,0x133cfeb,
  30051. 0x1330943,0x1711b9a,0x2dec3bd,0x1906a9a,0x2ed947c,0x369d763,
  30052. 0x1a5254f,0x104a7a9,0x00acd9d },
  30053. { 0x030301b,0x31568f5,0x2a4965c,0x33ded4b,0x03c9a5b,0x16541fc,
  30054. 0x1319cf1,0x2a3748b,0x1b5de74,0x18bb82e,0x077ac2b,0x309a87a,
  30055. 0x3c31420,0x0f6a4b9,0x00387d7 } },
  30056. /* 222 */
  30057. { { 0x0d3fdac,0x120cfa3,0x1b8e13c,0x1ccccb9,0x376fcd4,0x0bf87f4,
  30058. 0x271b4be,0x363b3fd,0x28b5d98,0x0535cd3,0x114bbc1,0x3ab4f19,
  30059. 0x10494b1,0x2161ece,0x00d14ca },
  30060. { 0x12d37e9,0x110ebd7,0x062295a,0x1cc0119,0x073c6ea,0x15d5411,
  30061. 0x0aeb4b1,0x23fba91,0x175fab5,0x3ee8fe1,0x1c680a6,0x1e76f27,
  30062. 0x3ddfc97,0x3d69ecd,0x00e1ee5 } },
  30063. /* 223 */
  30064. { { 0x2d29f46,0x2d19204,0x3137cd0,0x02c3b54,0x193295b,0x02fbdb2,
  30065. 0x2260948,0x22c02ff,0x3885424,0x1299595,0x00e7f9c,0x310ff2a,
  30066. 0x01ea169,0x0deef85,0x0021908 },
  30067. { 0x1b26cfb,0x38566a8,0x2852875,0x21debff,0x290ca9f,0x0b29663,
  30068. 0x26550d9,0x2b44457,0x05d1938,0x1f8f825,0x366ef93,0x1d8daec,
  30069. 0x069e5ef,0x342ece6,0x00b6034 } },
  30070. /* 224 */
  30071. { { 0x2d8356e,0x1578c09,0x226f4d2,0x3b74c51,0x0f83666,0x0323b59,
  30072. 0x1ddf61d,0x1ed8508,0x3c52667,0x0e5b91c,0x1e9b18b,0x352bdfa,
  30073. 0x13f75da,0x352aa4e,0x00fceff },
  30074. { 0x1c731d5,0x04e2844,0x01d9843,0x286cbc5,0x105bcb3,0x05edd9c,
  30075. 0x21fa956,0x3b1ec83,0x01288cc,0x22fbf3a,0x10f1b56,0x081cf72,
  30076. 0x15cb758,0x18687c1,0x00f5722 } },
  30077. /* 225 */
  30078. { { 0x2973088,0x1209dcd,0x3980f31,0x0221aa7,0x1c008e7,0x011b098,
  30079. 0x395947e,0x2f2806d,0x27dca76,0x037c79a,0x31acddf,0x2bf6219,
  30080. 0x0d8f4ab,0x13644d9,0x00ff705 },
  30081. { 0x2260594,0x18d51f8,0x277e2cf,0x1cb5cec,0x2468a53,0x3e6f4d7,
  30082. 0x019e24e,0x0f30f1d,0x0202404,0x34ad287,0x090b39c,0x23c11ea,
  30083. 0x1a2e3a2,0x3a851be,0x00dca2c } },
  30084. /* 226 */
  30085. { { 0x3277538,0x221cd94,0x3738ab7,0x0973da5,0x1a734e2,0x2c8b8b0,
  30086. 0x2e1d1e6,0x348499b,0x389ebe1,0x18b1854,0x02bb076,0x1b2b500,
  30087. 0x0f207f3,0x170cf99,0x0012088 },
  30088. { 0x0fbfec2,0x1df55a4,0x34ae59e,0x2ab5e95,0x3f9e781,0x3411794,
  30089. 0x1410b05,0x17c3a00,0x0aaa91b,0x074ed7c,0x3fbb352,0x3477c01,
  30090. 0x3ee9ab3,0x0cfb1ca,0x0011c4b } },
  30091. /* 227 */
  30092. { { 0x3c3a7f3,0x2e60ca0,0x2354d32,0x33e2362,0x28083ab,0x03d3b16,
  30093. 0x3164045,0x0a41f7a,0x3f0641e,0x38635d1,0x31bbf03,0x225e2bb,
  30094. 0x0cd894e,0x1f72228,0x0093244 },
  30095. { 0x33d5897,0x383faf3,0x0e6d561,0x0bc4d80,0x3fc3a68,0x05a9adc,
  30096. 0x0b9d73d,0x3d6031e,0x2ded29b,0x339c4ff,0x08d69e5,0x089488c,
  30097. 0x3fda40a,0x295c7fd,0x003a924 } },
  30098. /* 228 */
  30099. { { 0x0093bee,0x115532d,0x2ec0fb6,0x0969631,0x3a6d65a,0x0f43b4d,
  30100. 0x26994d4,0x0b51104,0x2515515,0x3695a26,0x284caa8,0x397aa30,
  30101. 0x25538b8,0x353f47c,0x0033f05 },
  30102. { 0x3615d6e,0x37f8246,0x07dae0f,0x23dc154,0x02ded7e,0x1eef320,
  30103. 0x1631e51,0x3447f75,0x13e267f,0x353e1d1,0x3f89d62,0x369c8ff,
  30104. 0x1a21dc6,0x2b8b8f3,0x0055cbc } },
  30105. /* 229 */
  30106. { { 0x34e84f3,0x2f2539a,0x2c35336,0x0c53bdc,0x1728630,0x3ad5fe6,
  30107. 0x05fdeee,0x3386db6,0x272a42e,0x29fd38c,0x36f0320,0x21b2ed4,
  30108. 0x331e67f,0x28ae48c,0x00f09b6 },
  30109. { 0x2778435,0x0fb3c55,0x32d221d,0x2660c8e,0x32977ba,0x1c12f03,
  30110. 0x1b57fb1,0x01229a8,0x38b389f,0x375ddf3,0x2c6b42c,0x3885d3e,
  30111. 0x2c55a9c,0x2ffc279,0x00404e2 } },
  30112. /* 230 */
  30113. { { 0x04c5ddb,0x2c4d788,0x150e9b9,0x110fbfd,0x29dbfe0,0x30ef83d,
  30114. 0x2ab4bfe,0x395bcd7,0x30d0a43,0x0e2d30f,0x0e73f9b,0x07199cc,
  30115. 0x0c9054c,0x22f4b1e,0x0092ed3 },
  30116. { 0x386e27c,0x00fdaa8,0x0507c70,0x1beb3b6,0x0b9c4f4,0x277d519,
  30117. 0x024ec85,0x1cbaba8,0x1524295,0x112be58,0x21fc119,0x273578b,
  30118. 0x2358c27,0x280ca07,0x00aa376 } },
  30119. /* 231 */
  30120. { { 0x0dbc95c,0x16488cf,0x337a078,0x1abbcb8,0x0aae1aa,0x1caa151,
  30121. 0x00108d4,0x1edf701,0x3e68d03,0x1203214,0x0c7eee2,0x084c572,
  30122. 0x07752d2,0x215a3b9,0x00195d3 },
  30123. { 0x2cd7fbe,0x06e80f6,0x052bd4b,0x07b4f83,0x24b5ac6,0x2aaded4,
  30124. 0x13c0526,0x0ffa9a3,0x08c660e,0x13c35c9,0x3145efb,0x36cfe24,
  30125. 0x0936daf,0x268e3d0,0x00a73fd } },
  30126. /* 232 */
  30127. { { 0x31b17ce,0x2e7bcee,0x3f31891,0x19f1849,0x1140236,0x015487f,
  30128. 0x32e58d3,0x202204a,0x049e350,0x1ce91f9,0x3f75150,0x27f212f,
  30129. 0x0d16ee4,0x1c894c4,0x004023f },
  30130. { 0x33399fa,0x2397b6d,0x2a3ea60,0x36354ca,0x1f12632,0x117a105,
  30131. 0x22758e8,0x361844e,0x3851fc2,0x0ab92db,0x339d02f,0x1e7d6c4,
  30132. 0x19ebd38,0x0a9a036,0x00446d2 } },
  30133. /* 233 */
  30134. { { 0x3e164f1,0x008c092,0x19200f5,0x35a22e0,0x38d09d2,0x212b3bf,
  30135. 0x0056f19,0x3a03545,0x1f075e9,0x0e97137,0x1f496a9,0x32d1f9b,
  30136. 0x36bf738,0x35ace37,0x00899e1 },
  30137. { 0x19eb2a6,0x21fa22d,0x338b69e,0x18e6d1f,0x1280d9d,0x1953a55,
  30138. 0x1411ea3,0x2960566,0x0fd969a,0x1f3e375,0x130742a,0x170aebd,
  30139. 0x33085ff,0x14d868d,0x00a4391 } },
  30140. /* 234 */
  30141. { { 0x0a4bdd2,0x39ca8ea,0x37026ac,0x346da3b,0x0c656cd,0x03136b6,
  30142. 0x233e7e9,0x0714352,0x08a9d95,0x192bb38,0x085d68e,0x20016b8,
  30143. 0x102b8ea,0x1f5dbdd,0x00fdd7a },
  30144. { 0x0d6fa45,0x3ec29a6,0x2b8cce6,0x1c84413,0x0228f86,0x28275f7,
  30145. 0x3d8787d,0x0c19748,0x28b2ae9,0x1954850,0x2a56c36,0x3eae8f7,
  30146. 0x0aca595,0x00e42a2,0x00edbe5 } },
  30147. /* 235 */
  30148. { { 0x3b26c82,0x3682b6f,0x2f9cd64,0x0f254b0,0x0e5d70b,0x1f9dfda,
  30149. 0x28f365f,0x35a57d7,0x00208f2,0x19c8d38,0x112e7be,0x3e403bb,
  30150. 0x3734efa,0x24d12b3,0x0027dc6 },
  30151. { 0x260a46a,0x13fd7b0,0x1c2880e,0x338b70c,0x27da5eb,0x29a7d54,
  30152. 0x1c5d73c,0x2130921,0x32969cc,0x2b37eda,0x2d6d4ec,0x0716bfb,
  30153. 0x0763703,0x1320889,0x00c7bbf } },
  30154. /* 236 */
  30155. { { 0x1fe01b2,0x2dcb1d2,0x11b89d5,0x219e4ea,0x0347851,0x3d1810e,
  30156. 0x3a3c54c,0x06dbe8e,0x03d3ab2,0x2dcfa39,0x3e57b8a,0x337a382,
  30157. 0x0426450,0x0e9f748,0x006488b },
  30158. { 0x1dc4582,0x0e62cf7,0x06fea9e,0x2a56fb1,0x31698c1,0x15b4e10,
  30159. 0x1446ef1,0x0a689fc,0x1d87703,0x20ff497,0x2c71066,0x2c48868,
  30160. 0x2e6cf05,0x30aa9cb,0x0065b2d } },
  30161. /* 237 */
  30162. { { 0x1021d63,0x2217df3,0x1f0821a,0x057fa98,0x23f344b,0x173dcf9,
  30163. 0x1ba6ddc,0x22c8eb5,0x18f227a,0x0455343,0x1c55931,0x1d0dcf3,
  30164. 0x20fa19b,0x1c56618,0x004feab },
  30165. { 0x19ec924,0x224e39f,0x2550509,0x179b51f,0x284d54a,0x2d85d41,
  30166. 0x2d1bdc1,0x1a29068,0x3826158,0x1267f85,0x3005a92,0x0769e00,
  30167. 0x379b617,0x17b5f63,0x00a70bf } },
  30168. /* 238 */
  30169. { { 0x22216c5,0x049437f,0x33510bc,0x141d806,0x22c37e2,0x1bc1adf,
  30170. 0x300175d,0x2e6ded8,0x0a18bfe,0x35377a3,0x382f843,0x08410ca,
  30171. 0x00afd4f,0x0be6c6b,0x008d70e },
  30172. { 0x2e91abb,0x1cede2a,0x28f225c,0x28e18c0,0x30230dc,0x173cc2d,
  30173. 0x123ecfe,0x3c9962e,0x2c25506,0x27b5d53,0x329a5e3,0x106e231,
  30174. 0x3889b8e,0x3b0aeaf,0x00ee67c } },
  30175. /* 239 */
  30176. { { 0x3e46c65,0x0eb3d46,0x1d7ae18,0x23f9d59,0x2978953,0x2589ed3,
  30177. 0x073391d,0x2461e1e,0x0c19f1d,0x22fd2b1,0x0691f5c,0x2e67d8d,
  30178. 0x1fb985d,0x200dd28,0x00a68df },
  30179. { 0x392b5fa,0x123b46f,0x1c323c4,0x104f82f,0x0a098c8,0x26fc05b,
  30180. 0x34cd557,0x0913639,0x09c115e,0x3977c34,0x3410b66,0x062b404,
  30181. 0x0213094,0x132c5e8,0x008b612 } },
  30182. /* 240 */
  30183. { { 0x26e3392,0x3b0ebf0,0x2e00425,0x1c285c8,0x3c07f84,0x08d5ad0,
  30184. 0x028190e,0x1669b73,0x1ffb1ef,0x053b65f,0x063028c,0x0aceb47,
  30185. 0x18988c2,0x0f09a30,0x0007072 },
  30186. { 0x0f49e7d,0x28c0bd3,0x252270d,0x24cfc4a,0x0c5e87c,0x2165052,
  30187. 0x2cdd1d1,0x04931d2,0x3abca74,0x22b57dc,0x169fd47,0x0b928fb,
  30188. 0x17cc3e7,0x21a1ec4,0x0061593 } },
  30189. /* 241 */
  30190. { { 0x1aa0486,0x2e55dea,0x15577b7,0x0d6818f,0x36e41fb,0x2a411f5,
  30191. 0x17d5c7d,0x1eea6c0,0x28068a8,0x0e31d20,0x1f08ad9,0x117e973,
  30192. 0x08a28ab,0x085d30a,0x00cd9fb },
  30193. { 0x347843d,0x1119095,0x11e3595,0x1b29584,0x134d64c,0x2ff3a35,
  30194. 0x247ea14,0x099fc4b,0x2056169,0x145dd03,0x2ed03fb,0x1250e3b,
  30195. 0x3f5135c,0x2b753f0,0x009da30 } },
  30196. /* 242 */
  30197. { { 0x0fa5200,0x214a0b3,0x313dc4e,0x23da866,0x3270760,0x15c9b8b,
  30198. 0x39a53df,0x1f79772,0x3c9e942,0x2984901,0x154d582,0x1685f87,
  30199. 0x2e1183e,0x1f79956,0x00b9987 },
  30200. { 0x15254de,0x3a5cac0,0x37c56f0,0x2c7c29b,0x292a56d,0x195be2c,
  30201. 0x17e4e1a,0x0660f4a,0x052ad98,0x1267f80,0x07cfed8,0x194b4bc,
  30202. 0x01738d3,0x14ba10f,0x00c7843 } },
  30203. /* 243 */
  30204. { { 0x29b2d8a,0x242bc1f,0x19646ee,0x0615f3c,0x0ac8d70,0x07ca3bf,
  30205. 0x2d90317,0x2c83bdb,0x1a96812,0x39fdc35,0x31c61ee,0x2d55fd3,
  30206. 0x2375827,0x355f189,0x00f1c9b },
  30207. { 0x21a6194,0x1f4050a,0x2b845cf,0x02c6242,0x2dd614e,0x3a4f0a9,
  30208. 0x39de100,0x24714fb,0x175e0cd,0x0be633d,0x14befc3,0x13b0318,
  30209. 0x1d68c50,0x299989e,0x00d0513 } },
  30210. /* 244 */
  30211. { { 0x059fb6a,0x2b6eb6a,0x3666a8e,0x39f6ca0,0x1cf8346,0x388b8d5,
  30212. 0x35e61a3,0x271adec,0x22c9963,0x20a4fb3,0x16f241c,0x0058b89,
  30213. 0x21ddafa,0x1ee6fde,0x00d2e6c },
  30214. { 0x0075e63,0x39894d0,0x0286d0d,0x187e7b2,0x02405aa,0x3f91525,
  30215. 0x37830a8,0x2723088,0x2c7364e,0x013f406,0x104ba75,0x270f486,
  30216. 0x3520b4d,0x3852bc6,0x00d589b } },
  30217. /* 245 */
  30218. { { 0x262e53b,0x1da93d1,0x3676135,0x147e41d,0x335ec2f,0x1f02be5,
  30219. 0x297d139,0x22d6198,0x1fe9e59,0x13b4c80,0x1e70f60,0x2f1d4a9,
  30220. 0x2d95149,0x14d6ec4,0x00b54af },
  30221. { 0x12c1c76,0x2930ac8,0x0dfd36e,0x31fac94,0x218f5bb,0x2828691,
  30222. 0x1466cc9,0x3645e83,0x1a4dac2,0x1549593,0x0e95fab,0x19567d2,
  30223. 0x27a3320,0x0642729,0x007487c } },
  30224. /* 246 */
  30225. { { 0x1e98e9c,0x2ff8df7,0x119975a,0x098a904,0x099b90b,0x336c7df,
  30226. 0x010996d,0x159d46d,0x3118b3b,0x3aacd1b,0x31f8ae1,0x214864f,
  30227. 0x398c104,0x089dae2,0x001ec4d },
  30228. { 0x1452baa,0x2f24991,0x2572ba3,0x162b312,0x2387d18,0x147c5c7,
  30229. 0x38eff6e,0x0700251,0x37d931e,0x23cd5c1,0x254c8ca,0x3b9df37,
  30230. 0x1c9a4ff,0x0bfd547,0x00fb489 } },
  30231. /* 247 */
  30232. { { 0x1b8dff8,0x2f6b40b,0x05a25b1,0x3f5688a,0x1d462f4,0x2802d18,
  30233. 0x2aad8ed,0x1b46c75,0x3cf4130,0x250fefb,0x2a13fe1,0x23a1bcd,
  30234. 0x0940442,0x04605fe,0x00c8b2f },
  30235. { 0x0d51afb,0x14a2abc,0x1d06762,0x291526c,0x2a3e2fe,0x28f77d9,
  30236. 0x3ad8f2e,0x3481a1b,0x04b4fbd,0x2836733,0x0189ff5,0x3a5f533,
  30237. 0x319a6cd,0x0f58667,0x00c3679 } },
  30238. /* 248 */
  30239. { { 0x1b85197,0x22426d4,0x2895ea3,0x342d324,0x3ffb17d,0x376cfcf,
  30240. 0x30878b1,0x3c3c83a,0x0ffc57c,0x0ac174a,0x1abd57e,0x2f78b9c,
  30241. 0x01b20d8,0x0a37103,0x007f2be },
  30242. { 0x19a2d48,0x137288a,0x182d655,0x0ba0dde,0x25130ba,0x01c65c6,
  30243. 0x23205f1,0x2097621,0x2827cf2,0x2c57b98,0x03748f2,0x2db15fc,
  30244. 0x385a0d4,0x13690c0,0x00a9e3f } },
  30245. /* 249 */
  30246. { { 0x3fbc9c6,0x2df3b20,0x377e33e,0x31d1505,0x024a311,0x3c1d9ff,
  30247. 0x1377f74,0x00b6b20,0x2364ab7,0x184ab6b,0x2a77969,0x3f2db6c,
  30248. 0x2a6adb7,0x0a10073,0x004a6fb },
  30249. { 0x1fc73de,0x2c74ab3,0x3d325e8,0x2346c0b,0x1d0efae,0x2076146,
  30250. 0x19c190d,0x225c4fe,0x3fafc80,0x2cf063d,0x11b7ae7,0x3dc4f9d,
  30251. 0x3c3f841,0x10d7c1f,0x000a4b3 } },
  30252. /* 250 */
  30253. { { 0x19b7d2e,0x28f1300,0x0b897dd,0x06b5371,0x0631c8d,0x336cc4f,
  30254. 0x09cd6e1,0x2ec1952,0x1104c07,0x07512bb,0x35f000d,0x25f84e9,
  30255. 0x1df4d8f,0x193f769,0x000e9ee },
  30256. { 0x2346910,0x267cecf,0x0ad7eaa,0x087e8a5,0x1622f69,0x342cbfa,
  30257. 0x2aa20d0,0x206e88a,0x3991e58,0x093fb4b,0x0157180,0x3cecb5b,
  30258. 0x2e17c9a,0x1ea371f,0x00919e6 } },
  30259. /* 251 */
  30260. { { 0x2250533,0x13f931d,0x3ef8c72,0x395f605,0x18a2080,0x1cb25d4,
  30261. 0x2fb0f41,0x1c0ba8a,0x1eb17c0,0x266c433,0x09b7e3e,0x0e5d78f,
  30262. 0x0cdc5bf,0x1f7c734,0x0020611 },
  30263. { 0x205ebd5,0x127986f,0x02c0fb0,0x1705b1e,0x1eb0bb5,0x2dffb42,
  30264. 0x2331b8a,0x18fc04e,0x31d6328,0x17db162,0x0d3b619,0x193bdb9,
  30265. 0x3f11662,0x2d8e694,0x0092c51 } },
  30266. /* 252 */
  30267. { { 0x08b364d,0x31ef20a,0x25c4a57,0x021ed07,0x14a562e,0x262a684,
  30268. 0x1d21c66,0x126e5a6,0x181f3f8,0x2a93b65,0x1eb726b,0x08fbbce,
  30269. 0x084f9a2,0x308f30a,0x0013159 },
  30270. { 0x23f4963,0x0c7960e,0x2a81739,0x2242b69,0x3965003,0x2aca542,
  30271. 0x28a1c65,0x2ad48fb,0x149775f,0x1bbb7d2,0x0f2671b,0x3594b85,
  30272. 0x22f5563,0x2470f13,0x00fed44 } },
  30273. /* 253 */
  30274. { { 0x0eb453e,0x3ab70fd,0x1a5b335,0x18f2b74,0x25ff74b,0x3612a46,
  30275. 0x33d0d75,0x28cdda4,0x2b9b49b,0x22728fb,0x004c15b,0x1beb33b,
  30276. 0x1a7e41f,0x0c9b702,0x004ef19 },
  30277. { 0x1ca3233,0x0b4c90f,0x1d4b53d,0x2428896,0x20ee405,0x151bc00,
  30278. 0x022edb5,0x1adc463,0x00109ea,0x06490a6,0x30e91e6,0x3682b76,
  30279. 0x23c50aa,0x3bd2665,0x005fe53 } },
  30280. /* 254 */
  30281. { { 0x0c28c65,0x3741ae4,0x247d372,0x0b04673,0x2176524,0x2c8bf20,
  30282. 0x01fb806,0x3330701,0x307b0a7,0x3999fb7,0x1261bec,0x256679c,
  30283. 0x3f22ac7,0x26e8673,0x00bc69d },
  30284. { 0x3c06819,0x35df344,0x379d009,0x2bb8a0a,0x0635a66,0x096c6fa,
  30285. 0x1ac4a62,0x023e53b,0x0e45240,0x115f53d,0x3056af8,0x0a66b16,
  30286. 0x3c386ee,0x1130e82,0x00cc384 } },
  30287. /* 255 */
  30288. { { 0x14c2356,0x190ec73,0x07be490,0x145d415,0x0740a48,0x1251301,
  30289. 0x3eaf29d,0x2628190,0x079299a,0x26e95c9,0x2e05fdf,0x2ca7c5b,
  30290. 0x32d7b48,0x3d84226,0x0033fb4 },
  30291. { 0x150f955,0x01240aa,0x3ddf867,0x137fb70,0x297e103,0x17eeda8,
  30292. 0x1320b60,0x266ec84,0x13f4322,0x0c8f5ee,0x0590e4a,0x386815e,
  30293. 0x00ce61f,0x161bd63,0x008e1d0 } },
  30294. };
  30295. /* Multiply the base point of P384 by the scalar and return the result.
  30296. * If map is true then convert result to affine coordinates.
  30297. *
  30298. * Stripe implementation.
  30299. * Pre-generated: 2^0, 2^48, ...
  30300. * Pre-generated: products of all combinations of above.
  30301. * 8 doubles and adds (with qz=1)
  30302. *
  30303. * r Resulting point.
  30304. * k Scalar to multiply by.
  30305. * map Indicates whether to convert result to affine.
  30306. * ct Constant time required.
  30307. * heap Heap to use for allocation.
  30308. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  30309. */
  30310. static int sp_384_ecc_mulmod_base_15(sp_point_384* r, const sp_digit* k,
  30311. int map, int ct, void* heap)
  30312. {
  30313. return sp_384_ecc_mulmod_stripe_15(r, &p384_base, p384_table,
  30314. k, map, ct, heap);
  30315. }
  30316. #endif
  30317. /* Multiply the base point of P384 by the scalar and return the result.
  30318. * If map is true then convert result to affine coordinates.
  30319. *
  30320. * km Scalar to multiply by.
  30321. * r Resulting point.
  30322. * map Indicates whether to convert result to affine.
  30323. * heap Heap to use for allocation.
  30324. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  30325. */
  30326. int sp_ecc_mulmod_base_384(const mp_int* km, ecc_point* r, int map, void* heap)
  30327. {
  30328. #ifdef WOLFSSL_SP_SMALL_STACK
  30329. sp_point_384* point = NULL;
  30330. sp_digit* k = NULL;
  30331. #else
  30332. sp_point_384 point[1];
  30333. sp_digit k[15];
  30334. #endif
  30335. int err = MP_OKAY;
  30336. #ifdef WOLFSSL_SP_SMALL_STACK
  30337. point = (sp_point_384*)XMALLOC(sizeof(sp_point_384), heap,
  30338. DYNAMIC_TYPE_ECC);
  30339. if (point == NULL)
  30340. err = MEMORY_E;
  30341. if (err == MP_OKAY) {
  30342. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15, heap,
  30343. DYNAMIC_TYPE_ECC);
  30344. if (k == NULL)
  30345. err = MEMORY_E;
  30346. }
  30347. #endif
  30348. if (err == MP_OKAY) {
  30349. sp_384_from_mp(k, 15, km);
  30350. err = sp_384_ecc_mulmod_base_15(point, k, map, 1, heap);
  30351. }
  30352. if (err == MP_OKAY) {
  30353. err = sp_384_point_to_ecc_point_15(point, r);
  30354. }
  30355. #ifdef WOLFSSL_SP_SMALL_STACK
  30356. if (k != NULL)
  30357. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  30358. if (point != NULL)
  30359. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  30360. #endif
  30361. return err;
  30362. }
  30363. /* Multiply the base point of P384 by the scalar, add point a and return
  30364. * the result. If map is true then convert result to affine coordinates.
  30365. *
  30366. * km Scalar to multiply by.
  30367. * am Point to add to scalar multiply result.
  30368. * inMont Point to add is in montgomery form.
  30369. * r Resulting point.
  30370. * map Indicates whether to convert result to affine.
  30371. * heap Heap to use for allocation.
  30372. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  30373. */
  30374. int sp_ecc_mulmod_base_add_384(const mp_int* km, const ecc_point* am,
  30375. int inMont, ecc_point* r, int map, void* heap)
  30376. {
  30377. #ifdef WOLFSSL_SP_SMALL_STACK
  30378. sp_point_384* point = NULL;
  30379. sp_digit* k = NULL;
  30380. #else
  30381. sp_point_384 point[2];
  30382. sp_digit k[15 + 15 * 2 * 6];
  30383. #endif
  30384. sp_point_384* addP = NULL;
  30385. sp_digit* tmp = NULL;
  30386. int err = MP_OKAY;
  30387. #ifdef WOLFSSL_SP_SMALL_STACK
  30388. point = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, heap,
  30389. DYNAMIC_TYPE_ECC);
  30390. if (point == NULL)
  30391. err = MEMORY_E;
  30392. if (err == MP_OKAY) {
  30393. k = (sp_digit*)XMALLOC(
  30394. sizeof(sp_digit) * (15 + 15 * 2 * 6),
  30395. heap, DYNAMIC_TYPE_ECC);
  30396. if (k == NULL)
  30397. err = MEMORY_E;
  30398. }
  30399. #endif
  30400. if (err == MP_OKAY) {
  30401. addP = point + 1;
  30402. tmp = k + 15;
  30403. sp_384_from_mp(k, 15, km);
  30404. sp_384_point_from_ecc_point_15(addP, am);
  30405. }
  30406. if ((err == MP_OKAY) && (!inMont)) {
  30407. err = sp_384_mod_mul_norm_15(addP->x, addP->x, p384_mod);
  30408. }
  30409. if ((err == MP_OKAY) && (!inMont)) {
  30410. err = sp_384_mod_mul_norm_15(addP->y, addP->y, p384_mod);
  30411. }
  30412. if ((err == MP_OKAY) && (!inMont)) {
  30413. err = sp_384_mod_mul_norm_15(addP->z, addP->z, p384_mod);
  30414. }
  30415. if (err == MP_OKAY) {
  30416. err = sp_384_ecc_mulmod_base_15(point, k, 0, 0, heap);
  30417. }
  30418. if (err == MP_OKAY) {
  30419. sp_384_proj_point_add_15(point, point, addP, tmp);
  30420. if (map) {
  30421. sp_384_map_15(point, point, tmp);
  30422. }
  30423. err = sp_384_point_to_ecc_point_15(point, r);
  30424. }
  30425. #ifdef WOLFSSL_SP_SMALL_STACK
  30426. if (k != NULL)
  30427. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  30428. if (point)
  30429. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  30430. #endif
  30431. return err;
  30432. }
  30433. #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
  30434. defined(HAVE_ECC_VERIFY)
  30435. #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN | HAVE_ECC_SIGN | HAVE_ECC_VERIFY */
  30436. /* Add 1 to a. (a = a + 1)
  30437. *
  30438. * r A single precision integer.
  30439. * a A single precision integer.
  30440. */
  30441. SP_NOINLINE static void sp_384_add_one_15(sp_digit* a)
  30442. {
  30443. a[0]++;
  30444. sp_384_norm_15(a);
  30445. }
  30446. /* Read big endian unsigned byte array into r.
  30447. *
  30448. * r A single precision integer.
  30449. * size Maximum number of bytes to convert
  30450. * a Byte array.
  30451. * n Number of bytes in array to read.
  30452. */
  30453. static void sp_384_from_bin(sp_digit* r, int size, const byte* a, int n)
  30454. {
  30455. int i;
  30456. int j = 0;
  30457. word32 s = 0;
  30458. r[0] = 0;
  30459. for (i = n-1; i >= 0; i--) {
  30460. r[j] |= (((sp_digit)a[i]) << s);
  30461. if (s >= 18U) {
  30462. r[j] &= 0x3ffffff;
  30463. s = 26U - s;
  30464. if (j + 1 >= size) {
  30465. break;
  30466. }
  30467. r[++j] = (sp_digit)a[i] >> s;
  30468. s = 8U - s;
  30469. }
  30470. else {
  30471. s += 8U;
  30472. }
  30473. }
  30474. for (j++; j < size; j++) {
  30475. r[j] = 0;
  30476. }
  30477. }
  30478. /* Generates a scalar that is in the range 1..order-1.
  30479. *
  30480. * rng Random number generator.
  30481. * k Scalar value.
  30482. * returns RNG failures, MEMORY_E when memory allocation fails and
  30483. * MP_OKAY on success.
  30484. */
  30485. static int sp_384_ecc_gen_k_15(WC_RNG* rng, sp_digit* k)
  30486. {
  30487. int err;
  30488. byte buf[48];
  30489. do {
  30490. err = wc_RNG_GenerateBlock(rng, buf, sizeof(buf));
  30491. if (err == 0) {
  30492. sp_384_from_bin(k, 15, buf, (int)sizeof(buf));
  30493. if (sp_384_cmp_15(k, p384_order2) <= 0) {
  30494. sp_384_add_one_15(k);
  30495. break;
  30496. }
  30497. }
  30498. }
  30499. while (err == 0);
  30500. return err;
  30501. }
  30502. /* Makes a random EC key pair.
  30503. *
  30504. * rng Random number generator.
  30505. * priv Generated private value.
  30506. * pub Generated public point.
  30507. * heap Heap to use for allocation.
  30508. * returns ECC_INF_E when the point does not have the correct order, RNG
  30509. * failures, MEMORY_E when memory allocation fails and MP_OKAY on success.
  30510. */
  30511. int sp_ecc_make_key_384(WC_RNG* rng, mp_int* priv, ecc_point* pub, void* heap)
  30512. {
  30513. #ifdef WOLFSSL_SP_SMALL_STACK
  30514. sp_point_384* point = NULL;
  30515. sp_digit* k = NULL;
  30516. #else
  30517. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  30518. sp_point_384 point[2];
  30519. #else
  30520. sp_point_384 point[1];
  30521. #endif
  30522. sp_digit k[15];
  30523. #endif
  30524. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  30525. sp_point_384* infinity = NULL;
  30526. #endif
  30527. int err = MP_OKAY;
  30528. (void)heap;
  30529. #ifdef WOLFSSL_SP_SMALL_STACK
  30530. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  30531. point = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, heap, DYNAMIC_TYPE_ECC);
  30532. #else
  30533. point = (sp_point_384*)XMALLOC(sizeof(sp_point_384), heap, DYNAMIC_TYPE_ECC);
  30534. #endif
  30535. if (point == NULL)
  30536. err = MEMORY_E;
  30537. if (err == MP_OKAY) {
  30538. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15, heap,
  30539. DYNAMIC_TYPE_ECC);
  30540. if (k == NULL)
  30541. err = MEMORY_E;
  30542. }
  30543. #endif
  30544. if (err == MP_OKAY) {
  30545. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  30546. infinity = point + 1;
  30547. #endif
  30548. err = sp_384_ecc_gen_k_15(rng, k);
  30549. }
  30550. if (err == MP_OKAY) {
  30551. err = sp_384_ecc_mulmod_base_15(point, k, 1, 1, NULL);
  30552. }
  30553. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  30554. if (err == MP_OKAY) {
  30555. err = sp_384_ecc_mulmod_15(infinity, point, p384_order, 1, 1, NULL);
  30556. }
  30557. if (err == MP_OKAY) {
  30558. if (sp_384_iszero_15(point->x) || sp_384_iszero_15(point->y)) {
  30559. err = ECC_INF_E;
  30560. }
  30561. }
  30562. #endif
  30563. if (err == MP_OKAY) {
  30564. err = sp_384_to_mp(k, priv);
  30565. }
  30566. if (err == MP_OKAY) {
  30567. err = sp_384_point_to_ecc_point_15(point, pub);
  30568. }
  30569. #ifdef WOLFSSL_SP_SMALL_STACK
  30570. if (k != NULL)
  30571. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  30572. if (point != NULL) {
  30573. /* point is not sensitive, so no need to zeroize */
  30574. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  30575. }
  30576. #endif
  30577. return err;
  30578. }
  30579. #ifdef WOLFSSL_SP_NONBLOCK
  30580. typedef struct sp_ecc_key_gen_384_ctx {
  30581. int state;
  30582. sp_384_ecc_mulmod_15_ctx mulmod_ctx;
  30583. sp_digit k[15];
  30584. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  30585. sp_point_384 point[2];
  30586. #else
  30587. sp_point_384 point[1];
  30588. #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
  30589. } sp_ecc_key_gen_384_ctx;
  30590. int sp_ecc_make_key_384_nb(sp_ecc_ctx_t* sp_ctx, WC_RNG* rng, mp_int* priv,
  30591. ecc_point* pub, void* heap)
  30592. {
  30593. int err = FP_WOULDBLOCK;
  30594. sp_ecc_key_gen_384_ctx* ctx = (sp_ecc_key_gen_384_ctx*)sp_ctx->data;
  30595. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  30596. sp_point_384* infinity = ctx->point + 1;
  30597. #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
  30598. typedef char ctx_size_test[sizeof(sp_ecc_key_gen_384_ctx)
  30599. >= sizeof(*sp_ctx) ? -1 : 1];
  30600. (void)sizeof(ctx_size_test);
  30601. switch (ctx->state) {
  30602. case 0:
  30603. err = sp_384_ecc_gen_k_15(rng, ctx->k);
  30604. if (err == MP_OKAY) {
  30605. err = FP_WOULDBLOCK;
  30606. ctx->state = 1;
  30607. }
  30608. break;
  30609. case 1:
  30610. err = sp_384_ecc_mulmod_base_15_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
  30611. ctx->point, ctx->k, 1, 1, heap);
  30612. if (err == MP_OKAY) {
  30613. err = FP_WOULDBLOCK;
  30614. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  30615. XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
  30616. ctx->state = 2;
  30617. #else
  30618. ctx->state = 3;
  30619. #endif
  30620. }
  30621. break;
  30622. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  30623. case 2:
  30624. err = sp_384_ecc_mulmod_15_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
  30625. infinity, ctx->point, p384_order, 1, 1);
  30626. if (err == MP_OKAY) {
  30627. if (sp_384_iszero_15(ctx->point->x) ||
  30628. sp_384_iszero_15(ctx->point->y)) {
  30629. err = ECC_INF_E;
  30630. }
  30631. else {
  30632. err = FP_WOULDBLOCK;
  30633. ctx->state = 3;
  30634. }
  30635. }
  30636. break;
  30637. #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
  30638. case 3:
  30639. err = sp_384_to_mp(ctx->k, priv);
  30640. if (err == MP_OKAY) {
  30641. err = sp_384_point_to_ecc_point_15(ctx->point, pub);
  30642. }
  30643. break;
  30644. }
  30645. if (err != FP_WOULDBLOCK) {
  30646. XMEMSET(ctx, 0, sizeof(sp_ecc_key_gen_384_ctx));
  30647. }
  30648. return err;
  30649. }
  30650. #endif /* WOLFSSL_SP_NONBLOCK */
  30651. #ifdef HAVE_ECC_DHE
  30652. /* Write r as big endian to byte array.
  30653. * Fixed length number of bytes written: 48
  30654. *
  30655. * r A single precision integer.
  30656. * a Byte array.
  30657. */
  30658. static void sp_384_to_bin_15(sp_digit* r, byte* a)
  30659. {
  30660. int i;
  30661. int j;
  30662. int s = 0;
  30663. int b;
  30664. for (i=0; i<14; i++) {
  30665. r[i+1] += r[i] >> 26;
  30666. r[i] &= 0x3ffffff;
  30667. }
  30668. j = 391 / 8 - 1;
  30669. a[j] = 0;
  30670. for (i=0; i<15 && j>=0; i++) {
  30671. b = 0;
  30672. /* lint allow cast of mismatch sp_digit and int */
  30673. a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
  30674. b += 8 - s;
  30675. if (j < 0) {
  30676. break;
  30677. }
  30678. while (b < 26) {
  30679. a[j--] = (byte)(r[i] >> b);
  30680. b += 8;
  30681. if (j < 0) {
  30682. break;
  30683. }
  30684. }
  30685. s = 8 - (b - 26);
  30686. if (j >= 0) {
  30687. a[j] = 0;
  30688. }
  30689. if (s != 0) {
  30690. j++;
  30691. }
  30692. }
  30693. }
  30694. /* Multiply the point by the scalar and serialize the X ordinate.
  30695. * The number is 0 padded to maximum size on output.
  30696. *
  30697. * priv Scalar to multiply the point by.
  30698. * pub Point to multiply.
  30699. * out Buffer to hold X ordinate.
  30700. * outLen On entry, size of the buffer in bytes.
  30701. * On exit, length of data in buffer in bytes.
  30702. * heap Heap to use for allocation.
  30703. * returns BUFFER_E if the buffer is to small for output size,
  30704. * MEMORY_E when memory allocation fails and MP_OKAY on success.
  30705. */
  30706. int sp_ecc_secret_gen_384(const mp_int* priv, const ecc_point* pub, byte* out,
  30707. word32* outLen, void* heap)
  30708. {
  30709. #ifdef WOLFSSL_SP_SMALL_STACK
  30710. sp_point_384* point = NULL;
  30711. sp_digit* k = NULL;
  30712. #else
  30713. sp_point_384 point[1];
  30714. sp_digit k[15];
  30715. #endif
  30716. int err = MP_OKAY;
  30717. if (*outLen < 48U) {
  30718. err = BUFFER_E;
  30719. }
  30720. #ifdef WOLFSSL_SP_SMALL_STACK
  30721. if (err == MP_OKAY) {
  30722. point = (sp_point_384*)XMALLOC(sizeof(sp_point_384), heap,
  30723. DYNAMIC_TYPE_ECC);
  30724. if (point == NULL)
  30725. err = MEMORY_E;
  30726. }
  30727. if (err == MP_OKAY) {
  30728. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15, heap,
  30729. DYNAMIC_TYPE_ECC);
  30730. if (k == NULL)
  30731. err = MEMORY_E;
  30732. }
  30733. #endif
  30734. if (err == MP_OKAY) {
  30735. sp_384_from_mp(k, 15, priv);
  30736. sp_384_point_from_ecc_point_15(point, pub);
  30737. err = sp_384_ecc_mulmod_15(point, point, k, 1, 1, heap);
  30738. }
  30739. if (err == MP_OKAY) {
  30740. sp_384_to_bin_15(point->x, out);
  30741. *outLen = 48;
  30742. }
  30743. #ifdef WOLFSSL_SP_SMALL_STACK
  30744. if (k != NULL)
  30745. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  30746. if (point != NULL)
  30747. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  30748. #endif
  30749. return err;
  30750. }
  30751. #ifdef WOLFSSL_SP_NONBLOCK
  30752. typedef struct sp_ecc_sec_gen_384_ctx {
  30753. int state;
  30754. union {
  30755. sp_384_ecc_mulmod_15_ctx mulmod_ctx;
  30756. };
  30757. sp_digit k[15];
  30758. sp_point_384 point;
  30759. } sp_ecc_sec_gen_384_ctx;
  30760. int sp_ecc_secret_gen_384_nb(sp_ecc_ctx_t* sp_ctx, const mp_int* priv,
  30761. const ecc_point* pub, byte* out, word32* outLen, void* heap)
  30762. {
  30763. int err = FP_WOULDBLOCK;
  30764. sp_ecc_sec_gen_384_ctx* ctx = (sp_ecc_sec_gen_384_ctx*)sp_ctx->data;
  30765. typedef char ctx_size_test[sizeof(sp_ecc_sec_gen_384_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  30766. (void)sizeof(ctx_size_test);
  30767. if (*outLen < 32U) {
  30768. err = BUFFER_E;
  30769. }
  30770. switch (ctx->state) {
  30771. case 0:
  30772. sp_384_from_mp(ctx->k, 15, priv);
  30773. sp_384_point_from_ecc_point_15(&ctx->point, pub);
  30774. ctx->state = 1;
  30775. break;
  30776. case 1:
  30777. err = sp_384_ecc_mulmod_15_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
  30778. &ctx->point, &ctx->point, ctx->k, 1, 1, heap);
  30779. if (err == MP_OKAY) {
  30780. sp_384_to_bin_15(ctx->point.x, out);
  30781. *outLen = 48;
  30782. }
  30783. break;
  30784. }
  30785. if (err == MP_OKAY && ctx->state != 1) {
  30786. err = FP_WOULDBLOCK;
  30787. }
  30788. if (err != FP_WOULDBLOCK) {
  30789. XMEMSET(ctx, 0, sizeof(sp_ecc_sec_gen_384_ctx));
  30790. }
  30791. return err;
  30792. }
  30793. #endif /* WOLFSSL_SP_NONBLOCK */
  30794. #endif /* HAVE_ECC_DHE */
  30795. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  30796. #endif
  30797. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  30798. SP_NOINLINE static void sp_384_rshift_15(sp_digit* r, const sp_digit* a,
  30799. byte n)
  30800. {
  30801. int i;
  30802. #ifdef WOLFSSL_SP_SMALL
  30803. for (i=0; i<14; i++) {
  30804. r[i] = ((a[i] >> n) | (a[i + 1] << (26 - n))) & 0x3ffffff;
  30805. }
  30806. #else
  30807. for (i=0; i<8; i += 8) {
  30808. r[i+0] = (a[i+0] >> n) | ((a[i+1] << (26 - n)) & 0x3ffffff);
  30809. r[i+1] = (a[i+1] >> n) | ((a[i+2] << (26 - n)) & 0x3ffffff);
  30810. r[i+2] = (a[i+2] >> n) | ((a[i+3] << (26 - n)) & 0x3ffffff);
  30811. r[i+3] = (a[i+3] >> n) | ((a[i+4] << (26 - n)) & 0x3ffffff);
  30812. r[i+4] = (a[i+4] >> n) | ((a[i+5] << (26 - n)) & 0x3ffffff);
  30813. r[i+5] = (a[i+5] >> n) | ((a[i+6] << (26 - n)) & 0x3ffffff);
  30814. r[i+6] = (a[i+6] >> n) | ((a[i+7] << (26 - n)) & 0x3ffffff);
  30815. r[i+7] = (a[i+7] >> n) | ((a[i+8] << (26 - n)) & 0x3ffffff);
  30816. }
  30817. r[8] = (a[8] >> n) | ((a[9] << (26 - n)) & 0x3ffffff);
  30818. r[9] = (a[9] >> n) | ((a[10] << (26 - n)) & 0x3ffffff);
  30819. r[10] = (a[10] >> n) | ((a[11] << (26 - n)) & 0x3ffffff);
  30820. r[11] = (a[11] >> n) | ((a[12] << (26 - n)) & 0x3ffffff);
  30821. r[12] = (a[12] >> n) | ((a[13] << (26 - n)) & 0x3ffffff);
  30822. r[13] = (a[13] >> n) | ((a[14] << (26 - n)) & 0x3ffffff);
  30823. #endif /* WOLFSSL_SP_SMALL */
  30824. r[14] = a[14] >> n;
  30825. }
  30826. /* Multiply a by scalar b into r. (r = a * b)
  30827. *
  30828. * r A single precision integer.
  30829. * a A single precision integer.
  30830. * b A scalar.
  30831. */
  30832. SP_NOINLINE static void sp_384_mul_d_15(sp_digit* r, const sp_digit* a,
  30833. sp_digit b)
  30834. {
  30835. #ifdef WOLFSSL_SP_SMALL
  30836. sp_int64 tb = b;
  30837. sp_int64 t = 0;
  30838. int i;
  30839. for (i = 0; i < 15; i++) {
  30840. t += tb * a[i];
  30841. r[i] = (sp_digit)(t & 0x3ffffff);
  30842. t >>= 26;
  30843. }
  30844. r[15] = (sp_digit)t;
  30845. #else
  30846. sp_int64 tb = b;
  30847. sp_int64 t[15];
  30848. t[ 0] = tb * a[ 0];
  30849. t[ 1] = tb * a[ 1];
  30850. t[ 2] = tb * a[ 2];
  30851. t[ 3] = tb * a[ 3];
  30852. t[ 4] = tb * a[ 4];
  30853. t[ 5] = tb * a[ 5];
  30854. t[ 6] = tb * a[ 6];
  30855. t[ 7] = tb * a[ 7];
  30856. t[ 8] = tb * a[ 8];
  30857. t[ 9] = tb * a[ 9];
  30858. t[10] = tb * a[10];
  30859. t[11] = tb * a[11];
  30860. t[12] = tb * a[12];
  30861. t[13] = tb * a[13];
  30862. t[14] = tb * a[14];
  30863. r[ 0] = (sp_digit) (t[ 0] & 0x3ffffff);
  30864. r[ 1] = (sp_digit)((t[ 0] >> 26) + (t[ 1] & 0x3ffffff));
  30865. r[ 2] = (sp_digit)((t[ 1] >> 26) + (t[ 2] & 0x3ffffff));
  30866. r[ 3] = (sp_digit)((t[ 2] >> 26) + (t[ 3] & 0x3ffffff));
  30867. r[ 4] = (sp_digit)((t[ 3] >> 26) + (t[ 4] & 0x3ffffff));
  30868. r[ 5] = (sp_digit)((t[ 4] >> 26) + (t[ 5] & 0x3ffffff));
  30869. r[ 6] = (sp_digit)((t[ 5] >> 26) + (t[ 6] & 0x3ffffff));
  30870. r[ 7] = (sp_digit)((t[ 6] >> 26) + (t[ 7] & 0x3ffffff));
  30871. r[ 8] = (sp_digit)((t[ 7] >> 26) + (t[ 8] & 0x3ffffff));
  30872. r[ 9] = (sp_digit)((t[ 8] >> 26) + (t[ 9] & 0x3ffffff));
  30873. r[10] = (sp_digit)((t[ 9] >> 26) + (t[10] & 0x3ffffff));
  30874. r[11] = (sp_digit)((t[10] >> 26) + (t[11] & 0x3ffffff));
  30875. r[12] = (sp_digit)((t[11] >> 26) + (t[12] & 0x3ffffff));
  30876. r[13] = (sp_digit)((t[12] >> 26) + (t[13] & 0x3ffffff));
  30877. r[14] = (sp_digit)((t[13] >> 26) + (t[14] & 0x3ffffff));
  30878. r[15] = (sp_digit) (t[14] >> 26);
  30879. #endif /* WOLFSSL_SP_SMALL */
  30880. }
  30881. SP_NOINLINE static void sp_384_lshift_30(sp_digit* r, const sp_digit* a,
  30882. byte n)
  30883. {
  30884. #ifdef WOLFSSL_SP_SMALL
  30885. int i;
  30886. r[30] = a[29] >> (26 - n);
  30887. for (i=29; i>0; i--) {
  30888. r[i] = ((a[i] << n) | (a[i-1] >> (26 - n))) & 0x3ffffff;
  30889. }
  30890. #else
  30891. sp_int_digit s;
  30892. sp_int_digit t;
  30893. s = (sp_int_digit)a[29];
  30894. r[30] = s >> (26U - n);
  30895. s = (sp_int_digit)(a[29]); t = (sp_int_digit)(a[28]);
  30896. r[29] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30897. s = (sp_int_digit)(a[28]); t = (sp_int_digit)(a[27]);
  30898. r[28] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30899. s = (sp_int_digit)(a[27]); t = (sp_int_digit)(a[26]);
  30900. r[27] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30901. s = (sp_int_digit)(a[26]); t = (sp_int_digit)(a[25]);
  30902. r[26] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30903. s = (sp_int_digit)(a[25]); t = (sp_int_digit)(a[24]);
  30904. r[25] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30905. s = (sp_int_digit)(a[24]); t = (sp_int_digit)(a[23]);
  30906. r[24] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30907. s = (sp_int_digit)(a[23]); t = (sp_int_digit)(a[22]);
  30908. r[23] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30909. s = (sp_int_digit)(a[22]); t = (sp_int_digit)(a[21]);
  30910. r[22] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30911. s = (sp_int_digit)(a[21]); t = (sp_int_digit)(a[20]);
  30912. r[21] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30913. s = (sp_int_digit)(a[20]); t = (sp_int_digit)(a[19]);
  30914. r[20] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30915. s = (sp_int_digit)(a[19]); t = (sp_int_digit)(a[18]);
  30916. r[19] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30917. s = (sp_int_digit)(a[18]); t = (sp_int_digit)(a[17]);
  30918. r[18] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30919. s = (sp_int_digit)(a[17]); t = (sp_int_digit)(a[16]);
  30920. r[17] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30921. s = (sp_int_digit)(a[16]); t = (sp_int_digit)(a[15]);
  30922. r[16] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30923. s = (sp_int_digit)(a[15]); t = (sp_int_digit)(a[14]);
  30924. r[15] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30925. s = (sp_int_digit)(a[14]); t = (sp_int_digit)(a[13]);
  30926. r[14] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30927. s = (sp_int_digit)(a[13]); t = (sp_int_digit)(a[12]);
  30928. r[13] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30929. s = (sp_int_digit)(a[12]); t = (sp_int_digit)(a[11]);
  30930. r[12] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30931. s = (sp_int_digit)(a[11]); t = (sp_int_digit)(a[10]);
  30932. r[11] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30933. s = (sp_int_digit)(a[10]); t = (sp_int_digit)(a[9]);
  30934. r[10] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30935. s = (sp_int_digit)(a[9]); t = (sp_int_digit)(a[8]);
  30936. r[9] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30937. s = (sp_int_digit)(a[8]); t = (sp_int_digit)(a[7]);
  30938. r[8] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30939. s = (sp_int_digit)(a[7]); t = (sp_int_digit)(a[6]);
  30940. r[7] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30941. s = (sp_int_digit)(a[6]); t = (sp_int_digit)(a[5]);
  30942. r[6] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30943. s = (sp_int_digit)(a[5]); t = (sp_int_digit)(a[4]);
  30944. r[5] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30945. s = (sp_int_digit)(a[4]); t = (sp_int_digit)(a[3]);
  30946. r[4] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30947. s = (sp_int_digit)(a[3]); t = (sp_int_digit)(a[2]);
  30948. r[3] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30949. s = (sp_int_digit)(a[2]); t = (sp_int_digit)(a[1]);
  30950. r[2] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30951. s = (sp_int_digit)(a[1]); t = (sp_int_digit)(a[0]);
  30952. r[1] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
  30953. #endif /* WOLFSSL_SP_SMALL */
  30954. r[0] = (a[0] << n) & 0x3ffffff;
  30955. }
  30956. /* Divide d in a and put remainder into r (m*d + r = a)
  30957. * m is not calculated as it is not needed at this time.
  30958. *
  30959. * Simplified based on top word of divisor being (1 << 26) - 1
  30960. *
  30961. * a Number to be divided.
  30962. * d Number to divide with.
  30963. * m Multiplier result.
  30964. * r Remainder from the division.
  30965. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  30966. */
  30967. static int sp_384_div_15(const sp_digit* a, const sp_digit* d,
  30968. const sp_digit* m, sp_digit* r)
  30969. {
  30970. int i;
  30971. sp_digit r1;
  30972. sp_digit mask;
  30973. #ifdef WOLFSSL_SP_SMALL_STACK
  30974. sp_digit* t1 = NULL;
  30975. #else
  30976. sp_digit t1[4 * 15 + 3];
  30977. #endif
  30978. sp_digit* t2 = NULL;
  30979. sp_digit* sd = NULL;
  30980. int err = MP_OKAY;
  30981. (void)m;
  30982. #ifdef WOLFSSL_SP_SMALL_STACK
  30983. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 15 + 3), NULL,
  30984. DYNAMIC_TYPE_TMP_BUFFER);
  30985. if (t1 == NULL)
  30986. err = MEMORY_E;
  30987. #endif
  30988. (void)m;
  30989. if (err == MP_OKAY) {
  30990. t2 = t1 + 30 + 1;
  30991. sd = t2 + 15 + 1;
  30992. sp_384_mul_d_15(sd, d, (sp_digit)1 << 6);
  30993. sp_384_lshift_30(t1, a, 6);
  30994. t1[15 + 15] += t1[15 + 15 - 1] >> 26;
  30995. t1[15 + 15 - 1] &= 0x3ffffff;
  30996. for (i=14; i>=0; i--) {
  30997. r1 = t1[15 + i];
  30998. sp_384_mul_d_15(t2, sd, r1);
  30999. (void)sp_384_sub_15(&t1[i], &t1[i], t2);
  31000. t1[15 + i] -= t2[15];
  31001. sp_384_norm_15(&t1[i + 1]);
  31002. mask = ~((t1[15 + i] - 1) >> 31);
  31003. sp_384_cond_sub_15(t1 + i, t1 + i, sd, mask);
  31004. sp_384_norm_15(&t1[i + 1]);
  31005. }
  31006. sp_384_norm_15(t1);
  31007. sp_384_rshift_15(r, t1, 6);
  31008. }
  31009. #ifdef WOLFSSL_SP_SMALL_STACK
  31010. if (t1 != NULL)
  31011. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  31012. #endif
  31013. return err;
  31014. }
  31015. /* Reduce a modulo m into r. (r = a mod m)
  31016. *
  31017. * r A single precision number that is the reduced result.
  31018. * a A single precision number that is to be reduced.
  31019. * m A single precision number that is the modulus to reduce with.
  31020. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  31021. */
  31022. static int sp_384_mod_15(sp_digit* r, const sp_digit* a, const sp_digit* m)
  31023. {
  31024. return sp_384_div_15(a, m, NULL, r);
  31025. }
  31026. #endif
  31027. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  31028. /* Multiply two number mod the order of P384 curve. (r = a * b mod order)
  31029. *
  31030. * r Result of the multiplication.
  31031. * a First operand of the multiplication.
  31032. * b Second operand of the multiplication.
  31033. */
  31034. static void sp_384_mont_mul_order_15(sp_digit* r, const sp_digit* a, const sp_digit* b)
  31035. {
  31036. sp_384_mul_15(r, a, b);
  31037. sp_384_mont_reduce_order_15(r, p384_order, p384_mp_order);
  31038. }
  31039. #if defined(HAVE_ECC_SIGN) || (defined(HAVE_ECC_VERIFY) && defined(WOLFSSL_SP_SMALL))
  31040. #ifdef WOLFSSL_SP_SMALL
  31041. /* Order-2 for the P384 curve. */
  31042. static const uint32_t p384_order_minus_2[12] = {
  31043. 0xccc52971U,0xecec196aU,0x48b0a77aU,0x581a0db2U,0xf4372ddfU,0xc7634d81U,
  31044. 0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU
  31045. };
  31046. #else
  31047. /* The low half of the order-2 of the P384 curve. */
  31048. static const uint32_t p384_order_low[6] = {
  31049. 0xccc52971U,0xecec196aU,0x48b0a77aU,0x581a0db2U,0xf4372ddfU,0xc7634d81U
  31050. };
  31051. #endif /* WOLFSSL_SP_SMALL */
  31052. /* Square number mod the order of P384 curve. (r = a * a mod order)
  31053. *
  31054. * r Result of the squaring.
  31055. * a Number to square.
  31056. */
  31057. static void sp_384_mont_sqr_order_15(sp_digit* r, const sp_digit* a)
  31058. {
  31059. sp_384_sqr_15(r, a);
  31060. sp_384_mont_reduce_order_15(r, p384_order, p384_mp_order);
  31061. }
  31062. #ifndef WOLFSSL_SP_SMALL
  31063. /* Square number mod the order of P384 curve a number of times.
  31064. * (r = a ^ n mod order)
  31065. *
  31066. * r Result of the squaring.
  31067. * a Number to square.
  31068. */
  31069. static void sp_384_mont_sqr_n_order_15(sp_digit* r, const sp_digit* a, int n)
  31070. {
  31071. int i;
  31072. sp_384_mont_sqr_order_15(r, a);
  31073. for (i=1; i<n; i++) {
  31074. sp_384_mont_sqr_order_15(r, r);
  31075. }
  31076. }
  31077. #endif /* !WOLFSSL_SP_SMALL */
  31078. /* Invert the number, in Montgomery form, modulo the order of the P384 curve.
  31079. * (r = 1 / a mod order)
  31080. *
  31081. * r Inverse result.
  31082. * a Number to invert.
  31083. * td Temporary data.
  31084. */
  31085. #ifdef WOLFSSL_SP_NONBLOCK
  31086. typedef struct sp_384_mont_inv_order_15_ctx {
  31087. int state;
  31088. int i;
  31089. } sp_384_mont_inv_order_15_ctx;
  31090. static int sp_384_mont_inv_order_15_nb(sp_ecc_ctx_t* sp_ctx, sp_digit* r, const sp_digit* a,
  31091. sp_digit* t)
  31092. {
  31093. int err = FP_WOULDBLOCK;
  31094. sp_384_mont_inv_order_15_ctx* ctx = (sp_384_mont_inv_order_15_ctx*)sp_ctx;
  31095. typedef char ctx_size_test[sizeof(sp_384_mont_inv_order_15_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  31096. (void)sizeof(ctx_size_test);
  31097. switch (ctx->state) {
  31098. case 0:
  31099. XMEMCPY(t, a, sizeof(sp_digit) * 15);
  31100. ctx->i = 382;
  31101. ctx->state = 1;
  31102. break;
  31103. case 1:
  31104. sp_384_mont_sqr_order_15(t, t);
  31105. ctx->state = 2;
  31106. break;
  31107. case 2:
  31108. if ((p384_order_minus_2[ctx->i / 32] & ((sp_int_digit)1 << (ctx->i % 32))) != 0) {
  31109. sp_384_mont_mul_order_15(t, t, a);
  31110. }
  31111. ctx->i--;
  31112. ctx->state = (ctx->i == 0) ? 3 : 1;
  31113. break;
  31114. case 3:
  31115. XMEMCPY(r, t, sizeof(sp_digit) * 15U);
  31116. err = MP_OKAY;
  31117. break;
  31118. }
  31119. return err;
  31120. }
  31121. #endif /* WOLFSSL_SP_NONBLOCK */
  31122. static void sp_384_mont_inv_order_15(sp_digit* r, const sp_digit* a,
  31123. sp_digit* td)
  31124. {
  31125. #ifdef WOLFSSL_SP_SMALL
  31126. sp_digit* t = td;
  31127. int i;
  31128. XMEMCPY(t, a, sizeof(sp_digit) * 15);
  31129. for (i=382; i>=0; i--) {
  31130. sp_384_mont_sqr_order_15(t, t);
  31131. if ((p384_order_minus_2[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
  31132. sp_384_mont_mul_order_15(t, t, a);
  31133. }
  31134. }
  31135. XMEMCPY(r, t, sizeof(sp_digit) * 15U);
  31136. #else
  31137. sp_digit* t = td;
  31138. sp_digit* t2 = td + 2 * 15;
  31139. sp_digit* t3 = td + 4 * 15;
  31140. int i;
  31141. /* t = a^2 */
  31142. sp_384_mont_sqr_order_15(t, a);
  31143. /* t = a^3 = t * a */
  31144. sp_384_mont_mul_order_15(t, t, a);
  31145. /* t2= a^c = t ^ 2 ^ 2 */
  31146. sp_384_mont_sqr_n_order_15(t2, t, 2);
  31147. /* t = a^f = t2 * t */
  31148. sp_384_mont_mul_order_15(t, t2, t);
  31149. /* t2= a^f0 = t ^ 2 ^ 4 */
  31150. sp_384_mont_sqr_n_order_15(t2, t, 4);
  31151. /* t = a^ff = t2 * t */
  31152. sp_384_mont_mul_order_15(t, t2, t);
  31153. /* t2= a^ff00 = t ^ 2 ^ 8 */
  31154. sp_384_mont_sqr_n_order_15(t2, t, 8);
  31155. /* t3= a^ffff = t2 * t */
  31156. sp_384_mont_mul_order_15(t3, t2, t);
  31157. /* t2= a^ffff0000 = t3 ^ 2 ^ 16 */
  31158. sp_384_mont_sqr_n_order_15(t2, t3, 16);
  31159. /* t = a^ffffffff = t2 * t3 */
  31160. sp_384_mont_mul_order_15(t, t2, t3);
  31161. /* t2= a^ffffffff0000 = t ^ 2 ^ 16 */
  31162. sp_384_mont_sqr_n_order_15(t2, t, 16);
  31163. /* t = a^ffffffffffff = t2 * t3 */
  31164. sp_384_mont_mul_order_15(t, t2, t3);
  31165. /* t2= a^ffffffffffff000000000000 = t ^ 2 ^ 48 */
  31166. sp_384_mont_sqr_n_order_15(t2, t, 48);
  31167. /* t= a^fffffffffffffffffffffffff = t2 * t */
  31168. sp_384_mont_mul_order_15(t, t2, t);
  31169. /* t2= a^ffffffffffffffffffffffff000000000000000000000000 */
  31170. sp_384_mont_sqr_n_order_15(t2, t, 96);
  31171. /* t2= a^ffffffffffffffffffffffffffffffffffffffffffffffff = t2 * t */
  31172. sp_384_mont_mul_order_15(t2, t2, t);
  31173. for (i=191; i>=1; i--) {
  31174. sp_384_mont_sqr_order_15(t2, t2);
  31175. if ((p384_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
  31176. sp_384_mont_mul_order_15(t2, t2, a);
  31177. }
  31178. }
  31179. sp_384_mont_sqr_order_15(t2, t2);
  31180. sp_384_mont_mul_order_15(r, t2, a);
  31181. #endif /* WOLFSSL_SP_SMALL */
  31182. }
  31183. #endif /* HAVE_ECC_SIGN || (HAVE_ECC_VERIFY && WOLFSSL_SP_SMALL) */
  31184. #endif /* HAVE_ECC_SIGN | HAVE_ECC_VERIFY */
  31185. #ifdef HAVE_ECC_SIGN
  31186. #ifndef SP_ECC_MAX_SIG_GEN
  31187. #define SP_ECC_MAX_SIG_GEN 64
  31188. #endif
  31189. /* Calculate second signature value S from R, k and private value.
  31190. *
  31191. * s = (r * x + e) / k
  31192. *
  31193. * s Signature value.
  31194. * r First signature value.
  31195. * k Ephemeral private key.
  31196. * x Private key as a number.
  31197. * e Hash of message as a number.
  31198. * tmp Temporary storage for intermediate numbers.
  31199. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  31200. */
  31201. static int sp_384_calc_s_15(sp_digit* s, const sp_digit* r, sp_digit* k,
  31202. sp_digit* x, const sp_digit* e, sp_digit* tmp)
  31203. {
  31204. int err;
  31205. sp_digit carry;
  31206. sp_int32 c;
  31207. sp_digit* kInv = k;
  31208. /* Conv k to Montgomery form (mod order) */
  31209. sp_384_mul_15(k, k, p384_norm_order);
  31210. err = sp_384_mod_15(k, k, p384_order);
  31211. if (err == MP_OKAY) {
  31212. sp_384_norm_15(k);
  31213. /* kInv = 1/k mod order */
  31214. sp_384_mont_inv_order_15(kInv, k, tmp);
  31215. sp_384_norm_15(kInv);
  31216. /* s = r * x + e */
  31217. sp_384_mul_15(x, x, r);
  31218. err = sp_384_mod_15(x, x, p384_order);
  31219. }
  31220. if (err == MP_OKAY) {
  31221. sp_384_norm_15(x);
  31222. carry = sp_384_add_15(s, e, x);
  31223. sp_384_cond_sub_15(s, s, p384_order, 0 - carry);
  31224. sp_384_norm_15(s);
  31225. c = sp_384_cmp_15(s, p384_order);
  31226. sp_384_cond_sub_15(s, s, p384_order,
  31227. (sp_digit)0 - (sp_digit)(c >= 0));
  31228. sp_384_norm_15(s);
  31229. /* s = s * k^-1 mod order */
  31230. sp_384_mont_mul_order_15(s, s, kInv);
  31231. sp_384_norm_15(s);
  31232. }
  31233. return err;
  31234. }
  31235. /* Sign the hash using the private key.
  31236. * e = [hash, 384 bits] from binary
  31237. * r = (k.G)->x mod order
  31238. * s = (r * x + e) / k mod order
  31239. * The hash is truncated to the first 384 bits.
  31240. *
  31241. * hash Hash to sign.
  31242. * hashLen Length of the hash data.
  31243. * rng Random number generator.
  31244. * priv Private part of key - scalar.
  31245. * rm First part of result as an mp_int.
  31246. * sm Sirst part of result as an mp_int.
  31247. * heap Heap to use for allocation.
  31248. * returns RNG failures, MEMORY_E when memory allocation fails and
  31249. * MP_OKAY on success.
  31250. */
  31251. int sp_ecc_sign_384(const byte* hash, word32 hashLen, WC_RNG* rng,
  31252. const mp_int* priv, mp_int* rm, mp_int* sm, mp_int* km, void* heap)
  31253. {
  31254. #ifdef WOLFSSL_SP_SMALL_STACK
  31255. sp_digit* e = NULL;
  31256. sp_point_384* point = NULL;
  31257. #else
  31258. sp_digit e[7 * 2 * 15];
  31259. sp_point_384 point[1];
  31260. #endif
  31261. sp_digit* x = NULL;
  31262. sp_digit* k = NULL;
  31263. sp_digit* r = NULL;
  31264. sp_digit* tmp = NULL;
  31265. sp_digit* s = NULL;
  31266. sp_int32 c;
  31267. int err = MP_OKAY;
  31268. int i;
  31269. (void)heap;
  31270. #ifdef WOLFSSL_SP_SMALL_STACK
  31271. if (err == MP_OKAY) {
  31272. point = (sp_point_384*)XMALLOC(sizeof(sp_point_384), heap,
  31273. DYNAMIC_TYPE_ECC);
  31274. if (point == NULL)
  31275. err = MEMORY_E;
  31276. }
  31277. if (err == MP_OKAY) {
  31278. e = (sp_digit*)XMALLOC(sizeof(sp_digit) * 7 * 2 * 15, heap,
  31279. DYNAMIC_TYPE_ECC);
  31280. if (e == NULL)
  31281. err = MEMORY_E;
  31282. }
  31283. #endif
  31284. if (err == MP_OKAY) {
  31285. x = e + 2 * 15;
  31286. k = e + 4 * 15;
  31287. r = e + 6 * 15;
  31288. tmp = e + 8 * 15;
  31289. s = e;
  31290. if (hashLen > 48U) {
  31291. hashLen = 48U;
  31292. }
  31293. }
  31294. for (i = SP_ECC_MAX_SIG_GEN; err == MP_OKAY && i > 0; i--) {
  31295. /* New random point. */
  31296. if (km == NULL || mp_iszero(km)) {
  31297. err = sp_384_ecc_gen_k_15(rng, k);
  31298. }
  31299. else {
  31300. sp_384_from_mp(k, 15, km);
  31301. mp_zero(km);
  31302. }
  31303. if (err == MP_OKAY) {
  31304. err = sp_384_ecc_mulmod_base_15(point, k, 1, 1, heap);
  31305. }
  31306. if (err == MP_OKAY) {
  31307. /* r = point->x mod order */
  31308. XMEMCPY(r, point->x, sizeof(sp_digit) * 15U);
  31309. sp_384_norm_15(r);
  31310. c = sp_384_cmp_15(r, p384_order);
  31311. sp_384_cond_sub_15(r, r, p384_order,
  31312. (sp_digit)0 - (sp_digit)(c >= 0));
  31313. sp_384_norm_15(r);
  31314. if (!sp_384_iszero_15(r)) {
  31315. /* x is modified in calculation of s. */
  31316. sp_384_from_mp(x, 15, priv);
  31317. /* s ptr == e ptr, e is modified in calculation of s. */
  31318. sp_384_from_bin(e, 15, hash, (int)hashLen);
  31319. err = sp_384_calc_s_15(s, r, k, x, e, tmp);
  31320. /* Check that signature is usable. */
  31321. if ((err == MP_OKAY) && (!sp_384_iszero_15(s))) {
  31322. break;
  31323. }
  31324. }
  31325. }
  31326. #ifdef WOLFSSL_ECDSA_SET_K_ONE_LOOP
  31327. i = 1;
  31328. #endif
  31329. }
  31330. if (i == 0) {
  31331. err = RNG_FAILURE_E;
  31332. }
  31333. if (err == MP_OKAY) {
  31334. err = sp_384_to_mp(r, rm);
  31335. }
  31336. if (err == MP_OKAY) {
  31337. err = sp_384_to_mp(s, sm);
  31338. }
  31339. #ifdef WOLFSSL_SP_SMALL_STACK
  31340. if (e != NULL)
  31341. #endif
  31342. {
  31343. ForceZero(e, sizeof(sp_digit) * 7 * 2 * 15);
  31344. #ifdef WOLFSSL_SP_SMALL_STACK
  31345. XFREE(e, heap, DYNAMIC_TYPE_ECC);
  31346. #endif
  31347. }
  31348. #ifdef WOLFSSL_SP_SMALL_STACK
  31349. if (point != NULL)
  31350. #endif
  31351. {
  31352. ForceZero(point, sizeof(sp_point_384));
  31353. #ifdef WOLFSSL_SP_SMALL_STACK
  31354. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  31355. #endif
  31356. }
  31357. return err;
  31358. }
  31359. #ifdef WOLFSSL_SP_NONBLOCK
  31360. typedef struct sp_ecc_sign_384_ctx {
  31361. int state;
  31362. union {
  31363. sp_384_ecc_mulmod_15_ctx mulmod_ctx;
  31364. sp_384_mont_inv_order_15_ctx mont_inv_order_ctx;
  31365. };
  31366. sp_digit e[2*15];
  31367. sp_digit x[2*15];
  31368. sp_digit k[2*15];
  31369. sp_digit r[2*15];
  31370. sp_digit tmp[3 * 2*15];
  31371. sp_point_384 point;
  31372. sp_digit* s;
  31373. sp_digit* kInv;
  31374. int i;
  31375. } sp_ecc_sign_384_ctx;
  31376. int sp_ecc_sign_384_nb(sp_ecc_ctx_t* sp_ctx, const byte* hash, word32 hashLen, WC_RNG* rng,
  31377. mp_int* priv, mp_int* rm, mp_int* sm, mp_int* km, void* heap)
  31378. {
  31379. int err = FP_WOULDBLOCK;
  31380. sp_ecc_sign_384_ctx* ctx = (sp_ecc_sign_384_ctx*)sp_ctx->data;
  31381. typedef char ctx_size_test[sizeof(sp_ecc_sign_384_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  31382. (void)sizeof(ctx_size_test);
  31383. switch (ctx->state) {
  31384. case 0: /* INIT */
  31385. ctx->s = ctx->e;
  31386. ctx->kInv = ctx->k;
  31387. ctx->i = SP_ECC_MAX_SIG_GEN;
  31388. ctx->state = 1;
  31389. break;
  31390. case 1: /* GEN */
  31391. /* New random point. */
  31392. if (km == NULL || mp_iszero(km)) {
  31393. err = sp_384_ecc_gen_k_15(rng, ctx->k);
  31394. }
  31395. else {
  31396. sp_384_from_mp(ctx->k, 15, km);
  31397. mp_zero(km);
  31398. }
  31399. XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
  31400. ctx->state = 2;
  31401. break;
  31402. case 2: /* MULMOD */
  31403. err = sp_384_ecc_mulmod_15_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
  31404. &ctx->point, &p384_base, ctx->k, 1, 1, heap);
  31405. if (err == MP_OKAY) {
  31406. ctx->state = 3;
  31407. }
  31408. break;
  31409. case 3: /* MODORDER */
  31410. {
  31411. sp_int32 c;
  31412. /* r = point->x mod order */
  31413. XMEMCPY(ctx->r, ctx->point.x, sizeof(sp_digit) * 15U);
  31414. sp_384_norm_15(ctx->r);
  31415. c = sp_384_cmp_15(ctx->r, p384_order);
  31416. sp_384_cond_sub_15(ctx->r, ctx->r, p384_order,
  31417. (sp_digit)0 - (sp_digit)(c >= 0));
  31418. sp_384_norm_15(ctx->r);
  31419. if (hashLen > 48U) {
  31420. hashLen = 48U;
  31421. }
  31422. sp_384_from_mp(ctx->x, 15, priv);
  31423. sp_384_from_bin(ctx->e, 15, hash, (int)hashLen);
  31424. ctx->state = 4;
  31425. break;
  31426. }
  31427. case 4: /* KMODORDER */
  31428. /* Conv k to Montgomery form (mod order) */
  31429. sp_384_mul_15(ctx->k, ctx->k, p384_norm_order);
  31430. err = sp_384_mod_15(ctx->k, ctx->k, p384_order);
  31431. if (err == MP_OKAY) {
  31432. sp_384_norm_15(ctx->k);
  31433. XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
  31434. ctx->state = 5;
  31435. }
  31436. break;
  31437. case 5: /* KINV */
  31438. /* kInv = 1/k mod order */
  31439. err = sp_384_mont_inv_order_15_nb((sp_ecc_ctx_t*)&ctx->mont_inv_order_ctx, ctx->kInv, ctx->k, ctx->tmp);
  31440. if (err == MP_OKAY) {
  31441. XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
  31442. ctx->state = 6;
  31443. }
  31444. break;
  31445. case 6: /* KINVNORM */
  31446. sp_384_norm_15(ctx->kInv);
  31447. ctx->state = 7;
  31448. break;
  31449. case 7: /* R */
  31450. /* s = r * x + e */
  31451. sp_384_mul_15(ctx->x, ctx->x, ctx->r);
  31452. ctx->state = 8;
  31453. break;
  31454. case 8: /* S1 */
  31455. err = sp_384_mod_15(ctx->x, ctx->x, p384_order);
  31456. if (err == MP_OKAY)
  31457. ctx->state = 9;
  31458. break;
  31459. case 9: /* S2 */
  31460. {
  31461. sp_digit carry;
  31462. sp_int32 c;
  31463. sp_384_norm_15(ctx->x);
  31464. carry = sp_384_add_15(ctx->s, ctx->e, ctx->x);
  31465. sp_384_cond_sub_15(ctx->s, ctx->s,
  31466. p384_order, 0 - carry);
  31467. sp_384_norm_15(ctx->s);
  31468. c = sp_384_cmp_15(ctx->s, p384_order);
  31469. sp_384_cond_sub_15(ctx->s, ctx->s, p384_order,
  31470. (sp_digit)0 - (sp_digit)(c >= 0));
  31471. sp_384_norm_15(ctx->s);
  31472. /* s = s * k^-1 mod order */
  31473. sp_384_mont_mul_order_15(ctx->s, ctx->s, ctx->kInv);
  31474. sp_384_norm_15(ctx->s);
  31475. /* Check that signature is usable. */
  31476. if (sp_384_iszero_15(ctx->s) == 0) {
  31477. ctx->state = 10;
  31478. break;
  31479. }
  31480. #ifdef WOLFSSL_ECDSA_SET_K_ONE_LOOP
  31481. ctx->i = 1;
  31482. #endif
  31483. /* not usable gen, try again */
  31484. ctx->i--;
  31485. if (ctx->i == 0) {
  31486. err = RNG_FAILURE_E;
  31487. }
  31488. ctx->state = 1;
  31489. break;
  31490. }
  31491. case 10: /* RES */
  31492. err = sp_384_to_mp(ctx->r, rm);
  31493. if (err == MP_OKAY) {
  31494. err = sp_384_to_mp(ctx->s, sm);
  31495. }
  31496. break;
  31497. }
  31498. if (err == MP_OKAY && ctx->state != 10) {
  31499. err = FP_WOULDBLOCK;
  31500. }
  31501. if (err != FP_WOULDBLOCK) {
  31502. XMEMSET(ctx->e, 0, sizeof(sp_digit) * 2U * 15U);
  31503. XMEMSET(ctx->x, 0, sizeof(sp_digit) * 2U * 15U);
  31504. XMEMSET(ctx->k, 0, sizeof(sp_digit) * 2U * 15U);
  31505. XMEMSET(ctx->r, 0, sizeof(sp_digit) * 2U * 15U);
  31506. XMEMSET(ctx->tmp, 0, sizeof(sp_digit) * 3U * 2U * 15U);
  31507. }
  31508. return err;
  31509. }
  31510. #endif /* WOLFSSL_SP_NONBLOCK */
  31511. #endif /* HAVE_ECC_SIGN */
  31512. #ifndef WOLFSSL_SP_SMALL
  31513. static const char sp_384_tab32_15[32] = {
  31514. 1, 10, 2, 11, 14, 22, 3, 30,
  31515. 12, 15, 17, 19, 23, 26, 4, 31,
  31516. 9, 13, 21, 29, 16, 18, 25, 8,
  31517. 20, 28, 24, 7, 27, 6, 5, 32};
  31518. static int sp_384_num_bits_26_15(sp_digit v)
  31519. {
  31520. v |= v >> 1;
  31521. v |= v >> 2;
  31522. v |= v >> 4;
  31523. v |= v >> 8;
  31524. v |= v >> 16;
  31525. return sp_384_tab32_15[(uint32_t)(v*0x07C4ACDD) >> 27];
  31526. }
  31527. static int sp_384_num_bits_15(const sp_digit* a)
  31528. {
  31529. int i;
  31530. int r = 0;
  31531. for (i = 14; i >= 0; i--) {
  31532. if (a[i] != 0) {
  31533. r = sp_384_num_bits_26_15(a[i]);
  31534. r += i * 26;
  31535. break;
  31536. }
  31537. }
  31538. return r;
  31539. }
  31540. /* Non-constant time modular inversion.
  31541. *
  31542. * @param [out] r Resulting number.
  31543. * @param [in] a Number to invert.
  31544. * @param [in] m Modulus.
  31545. * @return MP_OKAY on success.
  31546. * @return MEMEORY_E when dynamic memory allocation fails.
  31547. */
  31548. static int sp_384_mod_inv_15(sp_digit* r, const sp_digit* a, const sp_digit* m)
  31549. {
  31550. int err = MP_OKAY;
  31551. #ifdef WOLFSSL_SP_SMALL_STACK
  31552. sp_digit* u = NULL;
  31553. #else
  31554. sp_digit u[15 * 4];
  31555. #endif
  31556. sp_digit* v = NULL;
  31557. sp_digit* b = NULL;
  31558. sp_digit* d = NULL;
  31559. int ut;
  31560. int vt;
  31561. #ifdef WOLFSSL_SP_SMALL_STACK
  31562. u = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15 * 4, NULL,
  31563. DYNAMIC_TYPE_ECC);
  31564. if (u == NULL)
  31565. err = MEMORY_E;
  31566. #endif
  31567. if (err == MP_OKAY) {
  31568. v = u + 15;
  31569. b = u + 2 * 15;
  31570. d = u + 3 * 15;
  31571. XMEMCPY(u, m, sizeof(sp_digit) * 15);
  31572. XMEMCPY(v, a, sizeof(sp_digit) * 15);
  31573. ut = sp_384_num_bits_15(u);
  31574. vt = sp_384_num_bits_15(v);
  31575. XMEMSET(b, 0, sizeof(sp_digit) * 15);
  31576. if ((v[0] & 1) == 0) {
  31577. sp_384_rshift1_15(v, v);
  31578. XMEMCPY(d, m, sizeof(sp_digit) * 15);
  31579. d[0]++;
  31580. sp_384_rshift1_15(d, d);
  31581. vt--;
  31582. while ((v[0] & 1) == 0) {
  31583. sp_384_rshift1_15(v, v);
  31584. if (d[0] & 1)
  31585. sp_384_add_15(d, d, m);
  31586. sp_384_rshift1_15(d, d);
  31587. vt--;
  31588. }
  31589. }
  31590. else {
  31591. XMEMSET(d+1, 0, sizeof(sp_digit) * (15 - 1));
  31592. d[0] = 1;
  31593. }
  31594. while (ut > 1 && vt > 1) {
  31595. if ((ut > vt) || ((ut == vt) &&
  31596. (sp_384_cmp_15(u, v) >= 0))) {
  31597. sp_384_sub_15(u, u, v);
  31598. sp_384_norm_15(u);
  31599. sp_384_sub_15(b, b, d);
  31600. sp_384_norm_15(b);
  31601. if (b[14] < 0)
  31602. sp_384_add_15(b, b, m);
  31603. sp_384_norm_15(b);
  31604. ut = sp_384_num_bits_15(u);
  31605. do {
  31606. sp_384_rshift1_15(u, u);
  31607. if (b[0] & 1)
  31608. sp_384_add_15(b, b, m);
  31609. sp_384_rshift1_15(b, b);
  31610. ut--;
  31611. }
  31612. while (ut > 0 && (u[0] & 1) == 0);
  31613. }
  31614. else {
  31615. sp_384_sub_15(v, v, u);
  31616. sp_384_norm_15(v);
  31617. sp_384_sub_15(d, d, b);
  31618. sp_384_norm_15(d);
  31619. if (d[14] < 0)
  31620. sp_384_add_15(d, d, m);
  31621. sp_384_norm_15(d);
  31622. vt = sp_384_num_bits_15(v);
  31623. do {
  31624. sp_384_rshift1_15(v, v);
  31625. if (d[0] & 1)
  31626. sp_384_add_15(d, d, m);
  31627. sp_384_rshift1_15(d, d);
  31628. vt--;
  31629. }
  31630. while (vt > 0 && (v[0] & 1) == 0);
  31631. }
  31632. }
  31633. if (ut == 1)
  31634. XMEMCPY(r, b, sizeof(sp_digit) * 15);
  31635. else
  31636. XMEMCPY(r, d, sizeof(sp_digit) * 15);
  31637. }
  31638. #ifdef WOLFSSL_SP_SMALL_STACK
  31639. if (u != NULL)
  31640. XFREE(u, NULL, DYNAMIC_TYPE_ECC);
  31641. #endif
  31642. return err;
  31643. }
  31644. #endif /* WOLFSSL_SP_SMALL */
  31645. /* Add point p1 into point p2. Handles p1 == p2 and result at infinity.
  31646. *
  31647. * p1 First point to add and holds result.
  31648. * p2 Second point to add.
  31649. * tmp Temporary storage for intermediate numbers.
  31650. */
  31651. static void sp_384_add_points_15(sp_point_384* p1, const sp_point_384* p2,
  31652. sp_digit* tmp)
  31653. {
  31654. sp_384_proj_point_add_15(p1, p1, p2, tmp);
  31655. if (sp_384_iszero_15(p1->z)) {
  31656. if (sp_384_iszero_15(p1->x) && sp_384_iszero_15(p1->y)) {
  31657. sp_384_proj_point_dbl_15(p1, p2, tmp);
  31658. }
  31659. else {
  31660. /* Y ordinate is not used from here - don't set. */
  31661. p1->x[0] = 0;
  31662. p1->x[1] = 0;
  31663. p1->x[2] = 0;
  31664. p1->x[3] = 0;
  31665. p1->x[4] = 0;
  31666. p1->x[5] = 0;
  31667. p1->x[6] = 0;
  31668. p1->x[7] = 0;
  31669. p1->x[8] = 0;
  31670. p1->x[9] = 0;
  31671. p1->x[10] = 0;
  31672. p1->x[11] = 0;
  31673. p1->x[12] = 0;
  31674. p1->x[13] = 0;
  31675. p1->x[14] = 0;
  31676. XMEMCPY(p1->z, p384_norm_mod, sizeof(p384_norm_mod));
  31677. }
  31678. }
  31679. }
  31680. /* Calculate the verification point: [e/s]G + [r/s]Q
  31681. *
  31682. * p1 Calculated point.
  31683. * p2 Public point and temporary.
  31684. * s Second part of signature as a number.
  31685. * u1 Temporary number.
  31686. * u2 Temporary number.
  31687. * heap Heap to use for allocation.
  31688. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  31689. */
  31690. static int sp_384_calc_vfy_point_15(sp_point_384* p1, sp_point_384* p2,
  31691. sp_digit* s, sp_digit* u1, sp_digit* u2, sp_digit* tmp, void* heap)
  31692. {
  31693. int err;
  31694. #ifndef WOLFSSL_SP_SMALL
  31695. err = sp_384_mod_inv_15(s, s, p384_order);
  31696. if (err == MP_OKAY)
  31697. #endif /* !WOLFSSL_SP_SMALL */
  31698. {
  31699. sp_384_mul_15(s, s, p384_norm_order);
  31700. err = sp_384_mod_15(s, s, p384_order);
  31701. }
  31702. if (err == MP_OKAY) {
  31703. sp_384_norm_15(s);
  31704. #ifdef WOLFSSL_SP_SMALL
  31705. {
  31706. sp_384_mont_inv_order_15(s, s, tmp);
  31707. sp_384_mont_mul_order_15(u1, u1, s);
  31708. sp_384_mont_mul_order_15(u2, u2, s);
  31709. }
  31710. #else
  31711. {
  31712. sp_384_mont_mul_order_15(u1, u1, s);
  31713. sp_384_mont_mul_order_15(u2, u2, s);
  31714. }
  31715. #endif /* WOLFSSL_SP_SMALL */
  31716. {
  31717. err = sp_384_ecc_mulmod_base_15(p1, u1, 0, 0, heap);
  31718. }
  31719. }
  31720. if ((err == MP_OKAY) && sp_384_iszero_15(p1->z)) {
  31721. p1->infinity = 1;
  31722. }
  31723. if (err == MP_OKAY) {
  31724. err = sp_384_ecc_mulmod_15(p2, p2, u2, 0, 0, heap);
  31725. }
  31726. if ((err == MP_OKAY) && sp_384_iszero_15(p2->z)) {
  31727. p2->infinity = 1;
  31728. }
  31729. if (err == MP_OKAY) {
  31730. sp_384_add_points_15(p1, p2, tmp);
  31731. }
  31732. return err;
  31733. }
  31734. #ifdef HAVE_ECC_VERIFY
  31735. /* Verify the signature values with the hash and public key.
  31736. * e = Truncate(hash, 384)
  31737. * u1 = e/s mod order
  31738. * u2 = r/s mod order
  31739. * r == (u1.G + u2.Q)->x mod order
  31740. * Optimization: Leave point in projective form.
  31741. * (x, y, 1) == (x' / z'*z', y' / z'*z'*z', z' / z')
  31742. * (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x'
  31743. * The hash is truncated to the first 384 bits.
  31744. *
  31745. * hash Hash to sign.
  31746. * hashLen Length of the hash data.
  31747. * rng Random number generator.
  31748. * priv Private part of key - scalar.
  31749. * rm First part of result as an mp_int.
  31750. * sm Sirst part of result as an mp_int.
  31751. * heap Heap to use for allocation.
  31752. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  31753. */
  31754. int sp_ecc_verify_384(const byte* hash, word32 hashLen, const mp_int* pX,
  31755. const mp_int* pY, const mp_int* pZ, const mp_int* rm, const mp_int* sm,
  31756. int* res, void* heap)
  31757. {
  31758. #ifdef WOLFSSL_SP_SMALL_STACK
  31759. sp_digit* u1 = NULL;
  31760. sp_point_384* p1 = NULL;
  31761. #else
  31762. sp_digit u1[18 * 15];
  31763. sp_point_384 p1[2];
  31764. #endif
  31765. sp_digit* u2 = NULL;
  31766. sp_digit* s = NULL;
  31767. sp_digit* tmp = NULL;
  31768. sp_point_384* p2 = NULL;
  31769. sp_digit carry;
  31770. sp_int32 c = 0;
  31771. int err = MP_OKAY;
  31772. #ifdef WOLFSSL_SP_SMALL_STACK
  31773. if (err == MP_OKAY) {
  31774. p1 = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, heap,
  31775. DYNAMIC_TYPE_ECC);
  31776. if (p1 == NULL)
  31777. err = MEMORY_E;
  31778. }
  31779. if (err == MP_OKAY) {
  31780. u1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 18 * 15, heap,
  31781. DYNAMIC_TYPE_ECC);
  31782. if (u1 == NULL)
  31783. err = MEMORY_E;
  31784. }
  31785. #endif
  31786. if (err == MP_OKAY) {
  31787. u2 = u1 + 2 * 15;
  31788. s = u1 + 4 * 15;
  31789. tmp = u1 + 6 * 15;
  31790. p2 = p1 + 1;
  31791. if (hashLen > 48U) {
  31792. hashLen = 48U;
  31793. }
  31794. sp_384_from_bin(u1, 15, hash, (int)hashLen);
  31795. sp_384_from_mp(u2, 15, rm);
  31796. sp_384_from_mp(s, 15, sm);
  31797. sp_384_from_mp(p2->x, 15, pX);
  31798. sp_384_from_mp(p2->y, 15, pY);
  31799. sp_384_from_mp(p2->z, 15, pZ);
  31800. err = sp_384_calc_vfy_point_15(p1, p2, s, u1, u2, tmp, heap);
  31801. }
  31802. if (err == MP_OKAY) {
  31803. /* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
  31804. /* Reload r and convert to Montgomery form. */
  31805. sp_384_from_mp(u2, 15, rm);
  31806. err = sp_384_mod_mul_norm_15(u2, u2, p384_mod);
  31807. }
  31808. if (err == MP_OKAY) {
  31809. /* u1 = r.z'.z' mod prime */
  31810. sp_384_mont_sqr_15(p1->z, p1->z, p384_mod, p384_mp_mod);
  31811. sp_384_mont_mul_15(u1, u2, p1->z, p384_mod, p384_mp_mod);
  31812. *res = (int)(sp_384_cmp_15(p1->x, u1) == 0);
  31813. if (*res == 0) {
  31814. /* Reload r and add order. */
  31815. sp_384_from_mp(u2, 15, rm);
  31816. carry = sp_384_add_15(u2, u2, p384_order);
  31817. /* Carry means result is greater than mod and is not valid. */
  31818. if (carry == 0) {
  31819. sp_384_norm_15(u2);
  31820. /* Compare with mod and if greater or equal then not valid. */
  31821. c = sp_384_cmp_15(u2, p384_mod);
  31822. }
  31823. }
  31824. if ((*res == 0) && (c < 0)) {
  31825. /* Convert to Montogomery form */
  31826. err = sp_384_mod_mul_norm_15(u2, u2, p384_mod);
  31827. if (err == MP_OKAY) {
  31828. /* u1 = (r + 1*order).z'.z' mod prime */
  31829. {
  31830. sp_384_mont_mul_15(u1, u2, p1->z, p384_mod, p384_mp_mod);
  31831. }
  31832. *res = (sp_384_cmp_15(p1->x, u1) == 0);
  31833. }
  31834. }
  31835. }
  31836. #ifdef WOLFSSL_SP_SMALL_STACK
  31837. if (u1 != NULL)
  31838. XFREE(u1, heap, DYNAMIC_TYPE_ECC);
  31839. if (p1 != NULL)
  31840. XFREE(p1, heap, DYNAMIC_TYPE_ECC);
  31841. #endif
  31842. return err;
  31843. }
  31844. #ifdef WOLFSSL_SP_NONBLOCK
  31845. typedef struct sp_ecc_verify_384_ctx {
  31846. int state;
  31847. union {
  31848. sp_384_ecc_mulmod_15_ctx mulmod_ctx;
  31849. sp_384_mont_inv_order_15_ctx mont_inv_order_ctx;
  31850. sp_384_proj_point_dbl_15_ctx dbl_ctx;
  31851. sp_384_proj_point_add_15_ctx add_ctx;
  31852. };
  31853. sp_digit u1[2*15];
  31854. sp_digit u2[2*15];
  31855. sp_digit s[2*15];
  31856. sp_digit tmp[2*15 * 6];
  31857. sp_point_384 p1;
  31858. sp_point_384 p2;
  31859. } sp_ecc_verify_384_ctx;
  31860. int sp_ecc_verify_384_nb(sp_ecc_ctx_t* sp_ctx, const byte* hash,
  31861. word32 hashLen, const mp_int* pX, const mp_int* pY, const mp_int* pZ,
  31862. const mp_int* rm, const mp_int* sm, int* res, void* heap)
  31863. {
  31864. int err = FP_WOULDBLOCK;
  31865. sp_ecc_verify_384_ctx* ctx = (sp_ecc_verify_384_ctx*)sp_ctx->data;
  31866. typedef char ctx_size_test[sizeof(sp_ecc_verify_384_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  31867. (void)sizeof(ctx_size_test);
  31868. switch (ctx->state) {
  31869. case 0: /* INIT */
  31870. if (hashLen > 48U) {
  31871. hashLen = 48U;
  31872. }
  31873. sp_384_from_bin(ctx->u1, 15, hash, (int)hashLen);
  31874. sp_384_from_mp(ctx->u2, 15, rm);
  31875. sp_384_from_mp(ctx->s, 15, sm);
  31876. sp_384_from_mp(ctx->p2.x, 15, pX);
  31877. sp_384_from_mp(ctx->p2.y, 15, pY);
  31878. sp_384_from_mp(ctx->p2.z, 15, pZ);
  31879. ctx->state = 1;
  31880. break;
  31881. case 1: /* NORMS0 */
  31882. sp_384_mul_15(ctx->s, ctx->s, p384_norm_order);
  31883. err = sp_384_mod_15(ctx->s, ctx->s, p384_order);
  31884. if (err == MP_OKAY)
  31885. ctx->state = 2;
  31886. break;
  31887. case 2: /* NORMS1 */
  31888. sp_384_norm_15(ctx->s);
  31889. XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
  31890. ctx->state = 3;
  31891. break;
  31892. case 3: /* NORMS2 */
  31893. err = sp_384_mont_inv_order_15_nb((sp_ecc_ctx_t*)&ctx->mont_inv_order_ctx, ctx->s, ctx->s, ctx->tmp);
  31894. if (err == MP_OKAY) {
  31895. ctx->state = 4;
  31896. }
  31897. break;
  31898. case 4: /* NORMS3 */
  31899. sp_384_mont_mul_order_15(ctx->u1, ctx->u1, ctx->s);
  31900. ctx->state = 5;
  31901. break;
  31902. case 5: /* NORMS4 */
  31903. sp_384_mont_mul_order_15(ctx->u2, ctx->u2, ctx->s);
  31904. XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
  31905. ctx->state = 6;
  31906. break;
  31907. case 6: /* MULBASE */
  31908. err = sp_384_ecc_mulmod_15_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx, &ctx->p1, &p384_base, ctx->u1, 0, 0, heap);
  31909. if (err == MP_OKAY) {
  31910. if (sp_384_iszero_15(ctx->p1.z)) {
  31911. ctx->p1.infinity = 1;
  31912. }
  31913. XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
  31914. ctx->state = 7;
  31915. }
  31916. break;
  31917. case 7: /* MULMOD */
  31918. err = sp_384_ecc_mulmod_15_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx, &ctx->p2, &ctx->p2, ctx->u2, 0, 0, heap);
  31919. if (err == MP_OKAY) {
  31920. if (sp_384_iszero_15(ctx->p2.z)) {
  31921. ctx->p2.infinity = 1;
  31922. }
  31923. XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
  31924. ctx->state = 8;
  31925. }
  31926. break;
  31927. case 8: /* ADD */
  31928. err = sp_384_proj_point_add_15_nb((sp_ecc_ctx_t*)&ctx->add_ctx, &ctx->p1, &ctx->p1, &ctx->p2, ctx->tmp);
  31929. if (err == MP_OKAY)
  31930. ctx->state = 9;
  31931. break;
  31932. case 9: /* MONT */
  31933. /* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
  31934. /* Reload r and convert to Montgomery form. */
  31935. sp_384_from_mp(ctx->u2, 15, rm);
  31936. err = sp_384_mod_mul_norm_15(ctx->u2, ctx->u2, p384_mod);
  31937. if (err == MP_OKAY)
  31938. ctx->state = 10;
  31939. break;
  31940. case 10: /* SQR */
  31941. /* u1 = r.z'.z' mod prime */
  31942. sp_384_mont_sqr_15(ctx->p1.z, ctx->p1.z, p384_mod, p384_mp_mod);
  31943. ctx->state = 11;
  31944. break;
  31945. case 11: /* MUL */
  31946. sp_384_mont_mul_15(ctx->u1, ctx->u2, ctx->p1.z, p384_mod, p384_mp_mod);
  31947. ctx->state = 12;
  31948. break;
  31949. case 12: /* RES */
  31950. {
  31951. sp_int32 c = 0;
  31952. err = MP_OKAY; /* math okay, now check result */
  31953. *res = (int)(sp_384_cmp_15(ctx->p1.x, ctx->u1) == 0);
  31954. if (*res == 0) {
  31955. sp_digit carry;
  31956. /* Reload r and add order. */
  31957. sp_384_from_mp(ctx->u2, 15, rm);
  31958. carry = sp_384_add_15(ctx->u2, ctx->u2, p384_order);
  31959. /* Carry means result is greater than mod and is not valid. */
  31960. if (carry == 0) {
  31961. sp_384_norm_15(ctx->u2);
  31962. /* Compare with mod and if greater or equal then not valid. */
  31963. c = sp_384_cmp_15(ctx->u2, p384_mod);
  31964. }
  31965. }
  31966. if ((*res == 0) && (c < 0)) {
  31967. /* Convert to Montogomery form */
  31968. err = sp_384_mod_mul_norm_15(ctx->u2, ctx->u2, p384_mod);
  31969. if (err == MP_OKAY) {
  31970. /* u1 = (r + 1*order).z'.z' mod prime */
  31971. sp_384_mont_mul_15(ctx->u1, ctx->u2, ctx->p1.z, p384_mod,
  31972. p384_mp_mod);
  31973. *res = (int)(sp_384_cmp_15(ctx->p1.x, ctx->u1) == 0);
  31974. }
  31975. }
  31976. break;
  31977. }
  31978. } /* switch */
  31979. if (err == MP_OKAY && ctx->state != 12) {
  31980. err = FP_WOULDBLOCK;
  31981. }
  31982. return err;
  31983. }
  31984. #endif /* WOLFSSL_SP_NONBLOCK */
  31985. #endif /* HAVE_ECC_VERIFY */
  31986. #ifdef HAVE_ECC_CHECK_KEY
  31987. /* Check that the x and y oridinates are a valid point on the curve.
  31988. *
  31989. * point EC point.
  31990. * heap Heap to use if dynamically allocating.
  31991. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
  31992. * not on the curve and MP_OKAY otherwise.
  31993. */
  31994. static int sp_384_ecc_is_point_15(const sp_point_384* point,
  31995. void* heap)
  31996. {
  31997. #ifdef WOLFSSL_SP_SMALL_STACK
  31998. sp_digit* t1 = NULL;
  31999. #else
  32000. sp_digit t1[15 * 4];
  32001. #endif
  32002. sp_digit* t2 = NULL;
  32003. int err = MP_OKAY;
  32004. #ifdef WOLFSSL_SP_SMALL_STACK
  32005. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15 * 4, heap, DYNAMIC_TYPE_ECC);
  32006. if (t1 == NULL)
  32007. err = MEMORY_E;
  32008. #endif
  32009. (void)heap;
  32010. if (err == MP_OKAY) {
  32011. t2 = t1 + 2 * 15;
  32012. /* y^2 - x^3 - a.x = b */
  32013. sp_384_sqr_15(t1, point->y);
  32014. (void)sp_384_mod_15(t1, t1, p384_mod);
  32015. sp_384_sqr_15(t2, point->x);
  32016. (void)sp_384_mod_15(t2, t2, p384_mod);
  32017. sp_384_mul_15(t2, t2, point->x);
  32018. (void)sp_384_mod_15(t2, t2, p384_mod);
  32019. sp_384_mont_sub_15(t1, t1, t2, p384_mod);
  32020. /* y^2 - x^3 + 3.x = b, when a = -3 */
  32021. sp_384_mont_add_15(t1, t1, point->x, p384_mod);
  32022. sp_384_mont_add_15(t1, t1, point->x, p384_mod);
  32023. sp_384_mont_add_15(t1, t1, point->x, p384_mod);
  32024. if (sp_384_cmp_15(t1, p384_b) != 0) {
  32025. err = MP_VAL;
  32026. }
  32027. }
  32028. #ifdef WOLFSSL_SP_SMALL_STACK
  32029. if (t1 != NULL)
  32030. XFREE(t1, heap, DYNAMIC_TYPE_ECC);
  32031. #endif
  32032. return err;
  32033. }
  32034. /* Check that the x and y oridinates are a valid point on the curve.
  32035. *
  32036. * pX X ordinate of EC point.
  32037. * pY Y ordinate of EC point.
  32038. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
  32039. * not on the curve and MP_OKAY otherwise.
  32040. */
  32041. int sp_ecc_is_point_384(const mp_int* pX, const mp_int* pY)
  32042. {
  32043. #ifdef WOLFSSL_SP_SMALL_STACK
  32044. sp_point_384* pub = NULL;
  32045. #else
  32046. sp_point_384 pub[1];
  32047. #endif
  32048. const byte one[1] = { 1 };
  32049. int err = MP_OKAY;
  32050. #ifdef WOLFSSL_SP_SMALL_STACK
  32051. pub = (sp_point_384*)XMALLOC(sizeof(sp_point_384), NULL,
  32052. DYNAMIC_TYPE_ECC);
  32053. if (pub == NULL)
  32054. err = MEMORY_E;
  32055. #endif
  32056. if (err == MP_OKAY) {
  32057. sp_384_from_mp(pub->x, 15, pX);
  32058. sp_384_from_mp(pub->y, 15, pY);
  32059. sp_384_from_bin(pub->z, 15, one, (int)sizeof(one));
  32060. err = sp_384_ecc_is_point_15(pub, NULL);
  32061. }
  32062. #ifdef WOLFSSL_SP_SMALL_STACK
  32063. if (pub != NULL)
  32064. XFREE(pub, NULL, DYNAMIC_TYPE_ECC);
  32065. #endif
  32066. return err;
  32067. }
  32068. /* Check that the private scalar generates the EC point (px, py), the point is
  32069. * on the curve and the point has the correct order.
  32070. *
  32071. * pX X ordinate of EC point.
  32072. * pY Y ordinate of EC point.
  32073. * privm Private scalar that generates EC point.
  32074. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
  32075. * not on the curve, ECC_INF_E if the point does not have the correct order,
  32076. * ECC_PRIV_KEY_E when the private scalar doesn't generate the EC point and
  32077. * MP_OKAY otherwise.
  32078. */
  32079. int sp_ecc_check_key_384(const mp_int* pX, const mp_int* pY,
  32080. const mp_int* privm, void* heap)
  32081. {
  32082. #ifdef WOLFSSL_SP_SMALL_STACK
  32083. sp_digit* priv = NULL;
  32084. sp_point_384* pub = NULL;
  32085. #else
  32086. sp_digit priv[15];
  32087. sp_point_384 pub[2];
  32088. #endif
  32089. sp_point_384* p = NULL;
  32090. const byte one[1] = { 1 };
  32091. int err = MP_OKAY;
  32092. /* Quick check the lengs of public key ordinates and private key are in
  32093. * range. Proper check later.
  32094. */
  32095. if (((mp_count_bits(pX) > 384) ||
  32096. (mp_count_bits(pY) > 384) ||
  32097. ((privm != NULL) && (mp_count_bits(privm) > 384)))) {
  32098. err = ECC_OUT_OF_RANGE_E;
  32099. }
  32100. #ifdef WOLFSSL_SP_SMALL_STACK
  32101. if (err == MP_OKAY) {
  32102. pub = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, heap,
  32103. DYNAMIC_TYPE_ECC);
  32104. if (pub == NULL)
  32105. err = MEMORY_E;
  32106. }
  32107. if (err == MP_OKAY && privm) {
  32108. priv = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15, heap,
  32109. DYNAMIC_TYPE_ECC);
  32110. if (priv == NULL)
  32111. err = MEMORY_E;
  32112. }
  32113. #endif
  32114. if (err == MP_OKAY) {
  32115. p = pub + 1;
  32116. sp_384_from_mp(pub->x, 15, pX);
  32117. sp_384_from_mp(pub->y, 15, pY);
  32118. sp_384_from_bin(pub->z, 15, one, (int)sizeof(one));
  32119. if (privm)
  32120. sp_384_from_mp(priv, 15, privm);
  32121. /* Check point at infinitiy. */
  32122. if ((sp_384_iszero_15(pub->x) != 0) &&
  32123. (sp_384_iszero_15(pub->y) != 0)) {
  32124. err = ECC_INF_E;
  32125. }
  32126. }
  32127. /* Check range of X and Y */
  32128. if ((err == MP_OKAY) &&
  32129. ((sp_384_cmp_15(pub->x, p384_mod) >= 0) ||
  32130. (sp_384_cmp_15(pub->y, p384_mod) >= 0))) {
  32131. err = ECC_OUT_OF_RANGE_E;
  32132. }
  32133. if (err == MP_OKAY) {
  32134. /* Check point is on curve */
  32135. err = sp_384_ecc_is_point_15(pub, heap);
  32136. }
  32137. if (err == MP_OKAY) {
  32138. /* Point * order = infinity */
  32139. err = sp_384_ecc_mulmod_15(p, pub, p384_order, 1, 1, heap);
  32140. }
  32141. /* Check result is infinity */
  32142. if ((err == MP_OKAY) && ((sp_384_iszero_15(p->x) == 0) ||
  32143. (sp_384_iszero_15(p->y) == 0))) {
  32144. err = ECC_INF_E;
  32145. }
  32146. if (privm) {
  32147. if (err == MP_OKAY) {
  32148. /* Base * private = point */
  32149. err = sp_384_ecc_mulmod_base_15(p, priv, 1, 1, heap);
  32150. }
  32151. /* Check result is public key */
  32152. if ((err == MP_OKAY) &&
  32153. ((sp_384_cmp_15(p->x, pub->x) != 0) ||
  32154. (sp_384_cmp_15(p->y, pub->y) != 0))) {
  32155. err = ECC_PRIV_KEY_E;
  32156. }
  32157. }
  32158. #ifdef WOLFSSL_SP_SMALL_STACK
  32159. if (pub != NULL)
  32160. XFREE(pub, heap, DYNAMIC_TYPE_ECC);
  32161. if (priv != NULL)
  32162. XFREE(priv, heap, DYNAMIC_TYPE_ECC);
  32163. #endif
  32164. return err;
  32165. }
  32166. #endif
  32167. #ifdef WOLFSSL_PUBLIC_ECC_ADD_DBL
  32168. /* Add two projective EC points together.
  32169. * (pX, pY, pZ) + (qX, qY, qZ) = (rX, rY, rZ)
  32170. *
  32171. * pX First EC point's X ordinate.
  32172. * pY First EC point's Y ordinate.
  32173. * pZ First EC point's Z ordinate.
  32174. * qX Second EC point's X ordinate.
  32175. * qY Second EC point's Y ordinate.
  32176. * qZ Second EC point's Z ordinate.
  32177. * rX Resultant EC point's X ordinate.
  32178. * rY Resultant EC point's Y ordinate.
  32179. * rZ Resultant EC point's Z ordinate.
  32180. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  32181. */
  32182. int sp_ecc_proj_add_point_384(mp_int* pX, mp_int* pY, mp_int* pZ,
  32183. mp_int* qX, mp_int* qY, mp_int* qZ,
  32184. mp_int* rX, mp_int* rY, mp_int* rZ)
  32185. {
  32186. #ifdef WOLFSSL_SP_SMALL_STACK
  32187. sp_digit* tmp = NULL;
  32188. sp_point_384* p = NULL;
  32189. #else
  32190. sp_digit tmp[2 * 15 * 6];
  32191. sp_point_384 p[2];
  32192. #endif
  32193. sp_point_384* q = NULL;
  32194. int err = MP_OKAY;
  32195. #ifdef WOLFSSL_SP_SMALL_STACK
  32196. if (err == MP_OKAY) {
  32197. p = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, NULL,
  32198. DYNAMIC_TYPE_ECC);
  32199. if (p == NULL)
  32200. err = MEMORY_E;
  32201. }
  32202. if (err == MP_OKAY) {
  32203. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 6, NULL,
  32204. DYNAMIC_TYPE_ECC);
  32205. if (tmp == NULL) {
  32206. err = MEMORY_E;
  32207. }
  32208. }
  32209. #endif
  32210. if (err == MP_OKAY) {
  32211. q = p + 1;
  32212. sp_384_from_mp(p->x, 15, pX);
  32213. sp_384_from_mp(p->y, 15, pY);
  32214. sp_384_from_mp(p->z, 15, pZ);
  32215. sp_384_from_mp(q->x, 15, qX);
  32216. sp_384_from_mp(q->y, 15, qY);
  32217. sp_384_from_mp(q->z, 15, qZ);
  32218. p->infinity = sp_384_iszero_15(p->x) &
  32219. sp_384_iszero_15(p->y);
  32220. q->infinity = sp_384_iszero_15(q->x) &
  32221. sp_384_iszero_15(q->y);
  32222. sp_384_proj_point_add_15(p, p, q, tmp);
  32223. }
  32224. if (err == MP_OKAY) {
  32225. err = sp_384_to_mp(p->x, rX);
  32226. }
  32227. if (err == MP_OKAY) {
  32228. err = sp_384_to_mp(p->y, rY);
  32229. }
  32230. if (err == MP_OKAY) {
  32231. err = sp_384_to_mp(p->z, rZ);
  32232. }
  32233. #ifdef WOLFSSL_SP_SMALL_STACK
  32234. if (tmp != NULL)
  32235. XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
  32236. if (p != NULL)
  32237. XFREE(p, NULL, DYNAMIC_TYPE_ECC);
  32238. #endif
  32239. return err;
  32240. }
  32241. /* Double a projective EC point.
  32242. * (pX, pY, pZ) + (pX, pY, pZ) = (rX, rY, rZ)
  32243. *
  32244. * pX EC point's X ordinate.
  32245. * pY EC point's Y ordinate.
  32246. * pZ EC point's Z ordinate.
  32247. * rX Resultant EC point's X ordinate.
  32248. * rY Resultant EC point's Y ordinate.
  32249. * rZ Resultant EC point's Z ordinate.
  32250. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  32251. */
  32252. int sp_ecc_proj_dbl_point_384(mp_int* pX, mp_int* pY, mp_int* pZ,
  32253. mp_int* rX, mp_int* rY, mp_int* rZ)
  32254. {
  32255. #ifdef WOLFSSL_SP_SMALL_STACK
  32256. sp_digit* tmp = NULL;
  32257. sp_point_384* p = NULL;
  32258. #else
  32259. sp_digit tmp[2 * 15 * 2];
  32260. sp_point_384 p[1];
  32261. #endif
  32262. int err = MP_OKAY;
  32263. #ifdef WOLFSSL_SP_SMALL_STACK
  32264. if (err == MP_OKAY) {
  32265. p = (sp_point_384*)XMALLOC(sizeof(sp_point_384), NULL,
  32266. DYNAMIC_TYPE_ECC);
  32267. if (p == NULL)
  32268. err = MEMORY_E;
  32269. }
  32270. if (err == MP_OKAY) {
  32271. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 2, NULL,
  32272. DYNAMIC_TYPE_ECC);
  32273. if (tmp == NULL)
  32274. err = MEMORY_E;
  32275. }
  32276. #endif
  32277. if (err == MP_OKAY) {
  32278. sp_384_from_mp(p->x, 15, pX);
  32279. sp_384_from_mp(p->y, 15, pY);
  32280. sp_384_from_mp(p->z, 15, pZ);
  32281. p->infinity = sp_384_iszero_15(p->x) &
  32282. sp_384_iszero_15(p->y);
  32283. sp_384_proj_point_dbl_15(p, p, tmp);
  32284. }
  32285. if (err == MP_OKAY) {
  32286. err = sp_384_to_mp(p->x, rX);
  32287. }
  32288. if (err == MP_OKAY) {
  32289. err = sp_384_to_mp(p->y, rY);
  32290. }
  32291. if (err == MP_OKAY) {
  32292. err = sp_384_to_mp(p->z, rZ);
  32293. }
  32294. #ifdef WOLFSSL_SP_SMALL_STACK
  32295. if (tmp != NULL)
  32296. XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
  32297. if (p != NULL)
  32298. XFREE(p, NULL, DYNAMIC_TYPE_ECC);
  32299. #endif
  32300. return err;
  32301. }
  32302. /* Map a projective EC point to affine in place.
  32303. * pZ will be one.
  32304. *
  32305. * pX EC point's X ordinate.
  32306. * pY EC point's Y ordinate.
  32307. * pZ EC point's Z ordinate.
  32308. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  32309. */
  32310. int sp_ecc_map_384(mp_int* pX, mp_int* pY, mp_int* pZ)
  32311. {
  32312. #ifdef WOLFSSL_SP_SMALL_STACK
  32313. sp_digit* tmp = NULL;
  32314. sp_point_384* p = NULL;
  32315. #else
  32316. sp_digit tmp[2 * 15 * 6];
  32317. sp_point_384 p[1];
  32318. #endif
  32319. int err = MP_OKAY;
  32320. #ifdef WOLFSSL_SP_SMALL_STACK
  32321. if (err == MP_OKAY) {
  32322. p = (sp_point_384*)XMALLOC(sizeof(sp_point_384), NULL,
  32323. DYNAMIC_TYPE_ECC);
  32324. if (p == NULL)
  32325. err = MEMORY_E;
  32326. }
  32327. if (err == MP_OKAY) {
  32328. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 6, NULL,
  32329. DYNAMIC_TYPE_ECC);
  32330. if (tmp == NULL)
  32331. err = MEMORY_E;
  32332. }
  32333. #endif
  32334. if (err == MP_OKAY) {
  32335. sp_384_from_mp(p->x, 15, pX);
  32336. sp_384_from_mp(p->y, 15, pY);
  32337. sp_384_from_mp(p->z, 15, pZ);
  32338. p->infinity = sp_384_iszero_15(p->x) &
  32339. sp_384_iszero_15(p->y);
  32340. sp_384_map_15(p, p, tmp);
  32341. }
  32342. if (err == MP_OKAY) {
  32343. err = sp_384_to_mp(p->x, pX);
  32344. }
  32345. if (err == MP_OKAY) {
  32346. err = sp_384_to_mp(p->y, pY);
  32347. }
  32348. if (err == MP_OKAY) {
  32349. err = sp_384_to_mp(p->z, pZ);
  32350. }
  32351. #ifdef WOLFSSL_SP_SMALL_STACK
  32352. if (tmp != NULL)
  32353. XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
  32354. if (p != NULL)
  32355. XFREE(p, NULL, DYNAMIC_TYPE_ECC);
  32356. #endif
  32357. return err;
  32358. }
  32359. #endif /* WOLFSSL_PUBLIC_ECC_ADD_DBL */
  32360. #ifdef HAVE_COMP_KEY
  32361. /* Find the square root of a number mod the prime of the curve.
  32362. *
  32363. * y The number to operate on and the result.
  32364. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  32365. */
  32366. static int sp_384_mont_sqrt_15(sp_digit* y)
  32367. {
  32368. #ifdef WOLFSSL_SP_SMALL_STACK
  32369. sp_digit* t1 = NULL;
  32370. #else
  32371. sp_digit t1[5 * 2 * 15];
  32372. #endif
  32373. sp_digit* t2 = NULL;
  32374. sp_digit* t3 = NULL;
  32375. sp_digit* t4 = NULL;
  32376. sp_digit* t5 = NULL;
  32377. int err = MP_OKAY;
  32378. #ifdef WOLFSSL_SP_SMALL_STACK
  32379. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 5 * 2 * 15, NULL, DYNAMIC_TYPE_ECC);
  32380. if (t1 == NULL)
  32381. err = MEMORY_E;
  32382. #endif
  32383. if (err == MP_OKAY) {
  32384. t2 = t1 + 2 * 15;
  32385. t3 = t1 + 4 * 15;
  32386. t4 = t1 + 6 * 15;
  32387. t5 = t1 + 8 * 15;
  32388. {
  32389. /* t2 = y ^ 0x2 */
  32390. sp_384_mont_sqr_15(t2, y, p384_mod, p384_mp_mod);
  32391. /* t1 = y ^ 0x3 */
  32392. sp_384_mont_mul_15(t1, t2, y, p384_mod, p384_mp_mod);
  32393. /* t5 = y ^ 0xc */
  32394. sp_384_mont_sqr_n_15(t5, t1, 2, p384_mod, p384_mp_mod);
  32395. /* t1 = y ^ 0xf */
  32396. sp_384_mont_mul_15(t1, t1, t5, p384_mod, p384_mp_mod);
  32397. /* t2 = y ^ 0x1e */
  32398. sp_384_mont_sqr_15(t2, t1, p384_mod, p384_mp_mod);
  32399. /* t3 = y ^ 0x1f */
  32400. sp_384_mont_mul_15(t3, t2, y, p384_mod, p384_mp_mod);
  32401. /* t2 = y ^ 0x3e0 */
  32402. sp_384_mont_sqr_n_15(t2, t3, 5, p384_mod, p384_mp_mod);
  32403. /* t1 = y ^ 0x3ff */
  32404. sp_384_mont_mul_15(t1, t3, t2, p384_mod, p384_mp_mod);
  32405. /* t2 = y ^ 0x7fe0 */
  32406. sp_384_mont_sqr_n_15(t2, t1, 5, p384_mod, p384_mp_mod);
  32407. /* t3 = y ^ 0x7fff */
  32408. sp_384_mont_mul_15(t3, t3, t2, p384_mod, p384_mp_mod);
  32409. /* t2 = y ^ 0x3fff800 */
  32410. sp_384_mont_sqr_n_15(t2, t3, 15, p384_mod, p384_mp_mod);
  32411. /* t4 = y ^ 0x3ffffff */
  32412. sp_384_mont_mul_15(t4, t3, t2, p384_mod, p384_mp_mod);
  32413. /* t2 = y ^ 0xffffffc000000 */
  32414. sp_384_mont_sqr_n_15(t2, t4, 30, p384_mod, p384_mp_mod);
  32415. /* t1 = y ^ 0xfffffffffffff */
  32416. sp_384_mont_mul_15(t1, t4, t2, p384_mod, p384_mp_mod);
  32417. /* t2 = y ^ 0xfffffffffffffff000000000000000 */
  32418. sp_384_mont_sqr_n_15(t2, t1, 60, p384_mod, p384_mp_mod);
  32419. /* t1 = y ^ 0xffffffffffffffffffffffffffffff */
  32420. sp_384_mont_mul_15(t1, t1, t2, p384_mod, p384_mp_mod);
  32421. /* t2 = y ^ 0xffffffffffffffffffffffffffffff000000000000000000000000000000 */
  32422. sp_384_mont_sqr_n_15(t2, t1, 120, p384_mod, p384_mp_mod);
  32423. /* t1 = y ^ 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
  32424. sp_384_mont_mul_15(t1, t1, t2, p384_mod, p384_mp_mod);
  32425. /* t2 = y ^ 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8000 */
  32426. sp_384_mont_sqr_n_15(t2, t1, 15, p384_mod, p384_mp_mod);
  32427. /* t1 = y ^ 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
  32428. sp_384_mont_mul_15(t1, t3, t2, p384_mod, p384_mp_mod);
  32429. /* t2 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80000000 */
  32430. sp_384_mont_sqr_n_15(t2, t1, 31, p384_mod, p384_mp_mod);
  32431. /* t1 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffff */
  32432. sp_384_mont_mul_15(t1, t4, t2, p384_mod, p384_mp_mod);
  32433. /* t2 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffff0 */
  32434. sp_384_mont_sqr_n_15(t2, t1, 4, p384_mod, p384_mp_mod);
  32435. /* t1 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffffc */
  32436. sp_384_mont_mul_15(t1, t5, t2, p384_mod, p384_mp_mod);
  32437. /* t2 = y ^ 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000 */
  32438. sp_384_mont_sqr_n_15(t2, t1, 62, p384_mod, p384_mp_mod);
  32439. /* t1 = y ^ 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000001 */
  32440. sp_384_mont_mul_15(t1, y, t2, p384_mod, p384_mp_mod);
  32441. /* t2 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffffc00000000000000040000000 */
  32442. sp_384_mont_sqr_n_15(y, t1, 30, p384_mod, p384_mp_mod);
  32443. }
  32444. }
  32445. #ifdef WOLFSSL_SP_SMALL_STACK
  32446. if (t1 != NULL)
  32447. XFREE(t1, NULL, DYNAMIC_TYPE_ECC);
  32448. #endif
  32449. return err;
  32450. }
  32451. /* Uncompress the point given the X ordinate.
  32452. *
  32453. * xm X ordinate.
  32454. * odd Whether the Y ordinate is odd.
  32455. * ym Calculated Y ordinate.
  32456. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  32457. */
  32458. int sp_ecc_uncompress_384(mp_int* xm, int odd, mp_int* ym)
  32459. {
  32460. #ifdef WOLFSSL_SP_SMALL_STACK
  32461. sp_digit* x = NULL;
  32462. #else
  32463. sp_digit x[4 * 15];
  32464. #endif
  32465. sp_digit* y = NULL;
  32466. int err = MP_OKAY;
  32467. #ifdef WOLFSSL_SP_SMALL_STACK
  32468. x = (sp_digit*)XMALLOC(sizeof(sp_digit) * 4 * 15, NULL, DYNAMIC_TYPE_ECC);
  32469. if (x == NULL)
  32470. err = MEMORY_E;
  32471. #endif
  32472. if (err == MP_OKAY) {
  32473. y = x + 2 * 15;
  32474. sp_384_from_mp(x, 15, xm);
  32475. err = sp_384_mod_mul_norm_15(x, x, p384_mod);
  32476. }
  32477. if (err == MP_OKAY) {
  32478. /* y = x^3 */
  32479. {
  32480. sp_384_mont_sqr_15(y, x, p384_mod, p384_mp_mod);
  32481. sp_384_mont_mul_15(y, y, x, p384_mod, p384_mp_mod);
  32482. }
  32483. /* y = x^3 - 3x */
  32484. sp_384_mont_sub_15(y, y, x, p384_mod);
  32485. sp_384_mont_sub_15(y, y, x, p384_mod);
  32486. sp_384_mont_sub_15(y, y, x, p384_mod);
  32487. /* y = x^3 - 3x + b */
  32488. err = sp_384_mod_mul_norm_15(x, p384_b, p384_mod);
  32489. }
  32490. if (err == MP_OKAY) {
  32491. sp_384_mont_add_15(y, y, x, p384_mod);
  32492. /* y = sqrt(x^3 - 3x + b) */
  32493. err = sp_384_mont_sqrt_15(y);
  32494. }
  32495. if (err == MP_OKAY) {
  32496. XMEMSET(y + 15, 0, 15U * sizeof(sp_digit));
  32497. sp_384_mont_reduce_15(y, p384_mod, p384_mp_mod);
  32498. if ((((word32)y[0] ^ (word32)odd) & 1U) != 0U) {
  32499. sp_384_mont_sub_15(y, p384_mod, y, p384_mod);
  32500. }
  32501. err = sp_384_to_mp(y, ym);
  32502. }
  32503. #ifdef WOLFSSL_SP_SMALL_STACK
  32504. if (x != NULL)
  32505. XFREE(x, NULL, DYNAMIC_TYPE_ECC);
  32506. #endif
  32507. return err;
  32508. }
  32509. #endif
  32510. #endif /* WOLFSSL_SP_384 */
  32511. #ifdef WOLFSSL_SP_521
  32512. /* Point structure to use. */
  32513. typedef struct sp_point_521 {
  32514. /* X ordinate of point. */
  32515. sp_digit x[2 * 21];
  32516. /* Y ordinate of point. */
  32517. sp_digit y[2 * 21];
  32518. /* Z ordinate of point. */
  32519. sp_digit z[2 * 21];
  32520. /* Indicates point is at infinity. */
  32521. int infinity;
  32522. } sp_point_521;
  32523. /* The modulus (prime) of the curve P521. */
  32524. static const sp_digit p521_mod[21] = {
  32525. 0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,
  32526. 0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,
  32527. 0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x01fffff
  32528. };
  32529. /* The Montgomery normalizer for modulus of the curve P521. */
  32530. static const sp_digit p521_norm_mod[21] = {
  32531. 0x0000001,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  32532. 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  32533. 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000
  32534. };
  32535. /* The Montgomery multiplier for modulus of the curve P521. */
  32536. static sp_digit p521_mp_mod = 0x000001;
  32537. #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
  32538. defined(HAVE_ECC_VERIFY)
  32539. /* The order of the curve P521. */
  32540. static const sp_digit p521_order[21] = {
  32541. 0x1386409,0x1db8f48,0x1ebaedb,0x1113388,0x1bb5c9b,0x04d2e81,0x00523dc,
  32542. 0x0d6ff98,0x1bf2f96,0x0c343c1,0x1fffe94,0x1ffffff,0x1ffffff,0x1ffffff,
  32543. 0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x01fffff
  32544. };
  32545. #endif
  32546. /* The order of the curve P521 minus 2. */
  32547. static const sp_digit p521_order2[21] = {
  32548. 0x1386407,0x1db8f48,0x1ebaedb,0x1113388,0x1bb5c9b,0x04d2e81,0x00523dc,
  32549. 0x0d6ff98,0x1bf2f96,0x0c343c1,0x1fffe94,0x1ffffff,0x1ffffff,0x1ffffff,
  32550. 0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x01fffff
  32551. };
  32552. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  32553. /* The Montgomery normalizer for order of the curve P521. */
  32554. static const sp_digit p521_norm_order[21] = {
  32555. 0x0c79bf7,0x02470b7,0x0145124,0x0eecc77,0x044a364,0x1b2d17e,0x1fadc23,
  32556. 0x1290067,0x040d069,0x13cbc3e,0x000016b,0x0000000,0x0000000,0x0000000,
  32557. 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000
  32558. };
  32559. #endif
  32560. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  32561. /* The Montgomery multiplier for order of the curve P521. */
  32562. static sp_digit p521_mp_order = 0x1a995c7;
  32563. #endif
  32564. /* The base point of curve P521. */
  32565. static const sp_point_521 p521_base = {
  32566. /* X ordinate */
  32567. {
  32568. 0x0e5bd66,0x13f18e1,0x0a6fe5f,0x030ad48,0x1348b3c,0x1fd46f1,0x1049e8b,
  32569. 0x051fc3b,0x1efe759,0x0a5af3b,0x14f6ea8,0x1ec0d69,0x01f828a,0x029fda9,
  32570. 0x19204e4,0x1688538,0x1662395,0x0cf1f65,0x1013a73,0x1c0d6e0,0x00c6858,
  32571. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  32572. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  32573. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  32574. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  32575. (sp_digit)0
  32576. },
  32577. /* Y ordinate */
  32578. {
  32579. 0x1d16650,0x14a3b4f,0x090222f,0x0d44e58,0x153c708,0x1683b09,0x0e404fe,
  32580. 0x0818aa1,0x15ef426,0x1f7394c,0x1998b25,0x1a2e4e7,0x0817afb,0x0bcda23,
  32581. 0x1d51125,0x037b331,0x1b42c7d,0x02e452f,0x08ef001,0x12d4f13,0x0118392,
  32582. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  32583. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  32584. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  32585. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  32586. (sp_digit)0
  32587. },
  32588. /* Z ordinate */
  32589. {
  32590. 0x0000001,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  32591. 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  32592. 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  32593. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  32594. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  32595. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  32596. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  32597. (sp_digit)0
  32598. },
  32599. /* infinity */
  32600. 0
  32601. };
  32602. #if defined(HAVE_ECC_CHECK_KEY) || defined(HAVE_COMP_KEY)
  32603. static const sp_digit p521_b[21] = {
  32604. 0x1503f00,0x08fea35,0x13c7bd1,0x107a586,0x1573df8,0x18df839,0x102f4ee,
  32605. 0x0f62ca5,0x1ec7e93,0x10c9ca8,0x0427855,0x13231de,0x13b8b48,0x0cd98af,
  32606. 0x169c96e,0x081dd45,0x1a0b685,0x1c94d10,0x1872687,0x1d72c31,0x0051953
  32607. };
  32608. #endif
  32609. #ifdef WOLFSSL_SP_SMALL
  32610. /* Multiply a and b into r. (r = a * b)
  32611. *
  32612. * r A single precision integer.
  32613. * a A single precision integer.
  32614. * b A single precision integer.
  32615. */
  32616. SP_NOINLINE static void sp_521_mul_21(sp_digit* r, const sp_digit* a,
  32617. const sp_digit* b)
  32618. {
  32619. int i;
  32620. int imax;
  32621. int k;
  32622. sp_uint64 c;
  32623. sp_uint64 lo;
  32624. c = ((sp_uint64)a[20]) * b[20];
  32625. r[41] = (sp_digit)(c >> 25);
  32626. c &= 0x1ffffff;
  32627. for (k = 39; k >= 0; k--) {
  32628. if (k >= 21) {
  32629. i = k - 20;
  32630. imax = 20;
  32631. }
  32632. else {
  32633. i = 0;
  32634. imax = k;
  32635. }
  32636. lo = 0;
  32637. for (; i <= imax; i++) {
  32638. lo += ((sp_uint64)a[i]) * b[k - i];
  32639. }
  32640. c += lo >> 25;
  32641. r[k + 2] += (sp_digit)(c >> 25);
  32642. r[k + 1] = (sp_digit)(c & 0x1ffffff);
  32643. c = lo & 0x1ffffff;
  32644. }
  32645. r[0] = (sp_digit)c;
  32646. }
  32647. #else
  32648. /* Multiply a and b into r. (r = a * b)
  32649. *
  32650. * r A single precision integer.
  32651. * a A single precision integer.
  32652. * b A single precision integer.
  32653. */
  32654. SP_NOINLINE static void sp_521_mul_21(sp_digit* r, const sp_digit* a,
  32655. const sp_digit* b)
  32656. {
  32657. int i;
  32658. int j;
  32659. sp_int64 t[42];
  32660. XMEMSET(t, 0, sizeof(t));
  32661. for (i=0; i<21; i++) {
  32662. for (j=0; j<21; j++) {
  32663. t[i+j] += ((sp_int64)a[i]) * b[j];
  32664. }
  32665. }
  32666. for (i=0; i<41; i++) {
  32667. r[i] = t[i] & 0x1ffffff;
  32668. t[i+1] += t[i] >> 25;
  32669. }
  32670. r[41] = (sp_digit)t[41];
  32671. }
  32672. #endif /* WOLFSSL_SP_SMALL */
  32673. #ifdef WOLFSSL_SP_SMALL
  32674. /* Square a and put result in r. (r = a * a)
  32675. *
  32676. * r A single precision integer.
  32677. * a A single precision integer.
  32678. */
  32679. SP_NOINLINE static void sp_521_sqr_21(sp_digit* r, const sp_digit* a)
  32680. {
  32681. int i;
  32682. int imax;
  32683. int k;
  32684. sp_uint64 c;
  32685. sp_uint64 t;
  32686. c = ((sp_uint64)a[20]) * a[20];
  32687. r[41] = (sp_digit)(c >> 25);
  32688. c = (c & 0x1ffffff) << 25;
  32689. for (k = 39; k >= 0; k--) {
  32690. i = (k + 1) / 2;
  32691. if ((k & 1) == 0) {
  32692. c += ((sp_uint64)a[i]) * a[i];
  32693. i++;
  32694. }
  32695. if (k < 20) {
  32696. imax = k;
  32697. }
  32698. else {
  32699. imax = 20;
  32700. }
  32701. t = 0;
  32702. for (; i <= imax; i++) {
  32703. t += ((sp_uint64)a[i]) * a[k - i];
  32704. }
  32705. c += t * 2;
  32706. r[k + 2] += (sp_digit) (c >> 50);
  32707. r[k + 1] = (sp_digit)((c >> 25) & 0x1ffffff);
  32708. c = (c & 0x1ffffff) << 25;
  32709. }
  32710. r[0] = (sp_digit)(c >> 25);
  32711. }
  32712. #else
  32713. /* Square a and put result in r. (r = a * a)
  32714. *
  32715. * r A single precision integer.
  32716. * a A single precision integer.
  32717. */
  32718. SP_NOINLINE static void sp_521_sqr_21(sp_digit* r, const sp_digit* a)
  32719. {
  32720. int i;
  32721. int j;
  32722. sp_int64 t[42];
  32723. XMEMSET(t, 0, sizeof(t));
  32724. for (i=0; i<21; i++) {
  32725. for (j=0; j<i; j++) {
  32726. t[i+j] += (((sp_int64)a[i]) * a[j]) * 2;
  32727. }
  32728. t[i+i] += ((sp_int64)a[i]) * a[i];
  32729. }
  32730. for (i=0; i<41; i++) {
  32731. r[i] = t[i] & 0x1ffffff;
  32732. t[i+1] += t[i] >> 25;
  32733. }
  32734. r[41] = (sp_digit)t[41];
  32735. }
  32736. #endif /* WOLFSSL_SP_SMALL */
  32737. #ifdef WOLFSSL_SP_SMALL
  32738. /* Add b to a into r. (r = a + b)
  32739. *
  32740. * r A single precision integer.
  32741. * a A single precision integer.
  32742. * b A single precision integer.
  32743. */
  32744. SP_NOINLINE static int sp_521_add_21(sp_digit* r, const sp_digit* a,
  32745. const sp_digit* b)
  32746. {
  32747. int i;
  32748. for (i = 0; i < 21; i++) {
  32749. r[i] = a[i] + b[i];
  32750. }
  32751. return 0;
  32752. }
  32753. #else
  32754. /* Add b to a into r. (r = a + b)
  32755. *
  32756. * r A single precision integer.
  32757. * a A single precision integer.
  32758. * b A single precision integer.
  32759. */
  32760. SP_NOINLINE static int sp_521_add_21(sp_digit* r, const sp_digit* a,
  32761. const sp_digit* b)
  32762. {
  32763. int i;
  32764. for (i = 0; i < 16; i += 8) {
  32765. r[i + 0] = a[i + 0] + b[i + 0];
  32766. r[i + 1] = a[i + 1] + b[i + 1];
  32767. r[i + 2] = a[i + 2] + b[i + 2];
  32768. r[i + 3] = a[i + 3] + b[i + 3];
  32769. r[i + 4] = a[i + 4] + b[i + 4];
  32770. r[i + 5] = a[i + 5] + b[i + 5];
  32771. r[i + 6] = a[i + 6] + b[i + 6];
  32772. r[i + 7] = a[i + 7] + b[i + 7];
  32773. }
  32774. r[16] = a[16] + b[16];
  32775. r[17] = a[17] + b[17];
  32776. r[18] = a[18] + b[18];
  32777. r[19] = a[19] + b[19];
  32778. r[20] = a[20] + b[20];
  32779. return 0;
  32780. }
  32781. #endif /* WOLFSSL_SP_SMALL */
  32782. #ifdef WOLFSSL_SP_SMALL
  32783. /* Sub b from a into r. (r = a - b)
  32784. *
  32785. * r A single precision integer.
  32786. * a A single precision integer.
  32787. * b A single precision integer.
  32788. */
  32789. SP_NOINLINE static int sp_521_sub_21(sp_digit* r, const sp_digit* a,
  32790. const sp_digit* b)
  32791. {
  32792. int i;
  32793. for (i = 0; i < 21; i++) {
  32794. r[i] = a[i] - b[i];
  32795. }
  32796. return 0;
  32797. }
  32798. #else
  32799. /* Sub b from a into r. (r = a - b)
  32800. *
  32801. * r A single precision integer.
  32802. * a A single precision integer.
  32803. * b A single precision integer.
  32804. */
  32805. SP_NOINLINE static int sp_521_sub_21(sp_digit* r, const sp_digit* a,
  32806. const sp_digit* b)
  32807. {
  32808. int i;
  32809. for (i = 0; i < 16; i += 8) {
  32810. r[i + 0] = a[i + 0] - b[i + 0];
  32811. r[i + 1] = a[i + 1] - b[i + 1];
  32812. r[i + 2] = a[i + 2] - b[i + 2];
  32813. r[i + 3] = a[i + 3] - b[i + 3];
  32814. r[i + 4] = a[i + 4] - b[i + 4];
  32815. r[i + 5] = a[i + 5] - b[i + 5];
  32816. r[i + 6] = a[i + 6] - b[i + 6];
  32817. r[i + 7] = a[i + 7] - b[i + 7];
  32818. }
  32819. r[16] = a[16] - b[16];
  32820. r[17] = a[17] - b[17];
  32821. r[18] = a[18] - b[18];
  32822. r[19] = a[19] - b[19];
  32823. r[20] = a[20] - b[20];
  32824. return 0;
  32825. }
  32826. #endif /* WOLFSSL_SP_SMALL */
  32827. /* Convert an mp_int to an array of sp_digit.
  32828. *
  32829. * r A single precision integer.
  32830. * size Maximum number of bytes to convert
  32831. * a A multi-precision integer.
  32832. */
  32833. static void sp_521_from_mp(sp_digit* r, int size, const mp_int* a)
  32834. {
  32835. #if DIGIT_BIT == 25
  32836. int i;
  32837. sp_digit j = (sp_digit)0 - (sp_digit)a->used;
  32838. int o = 0;
  32839. for (i = 0; i < size; i++) {
  32840. sp_digit mask = (sp_digit)0 - (j >> 24);
  32841. r[i] = a->dp[o] & mask;
  32842. j++;
  32843. o += (int)(j >> 24);
  32844. }
  32845. #elif DIGIT_BIT > 25
  32846. unsigned int i;
  32847. int j = 0;
  32848. word32 s = 0;
  32849. r[0] = 0;
  32850. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  32851. r[j] |= ((sp_digit)a->dp[i] << s);
  32852. r[j] &= 0x1ffffff;
  32853. s = 25U - s;
  32854. if (j + 1 >= size) {
  32855. break;
  32856. }
  32857. /* lint allow cast of mismatch word32 and mp_digit */
  32858. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  32859. while ((s + 25U) <= (word32)DIGIT_BIT) {
  32860. s += 25U;
  32861. r[j] &= 0x1ffffff;
  32862. if (j + 1 >= size) {
  32863. break;
  32864. }
  32865. if (s < (word32)DIGIT_BIT) {
  32866. /* lint allow cast of mismatch word32 and mp_digit */
  32867. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  32868. }
  32869. else {
  32870. r[++j] = (sp_digit)0;
  32871. }
  32872. }
  32873. s = (word32)DIGIT_BIT - s;
  32874. }
  32875. for (j++; j < size; j++) {
  32876. r[j] = 0;
  32877. }
  32878. #else
  32879. unsigned int i;
  32880. int j = 0;
  32881. int s = 0;
  32882. r[0] = 0;
  32883. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  32884. r[j] |= ((sp_digit)a->dp[i]) << s;
  32885. if (s + DIGIT_BIT >= 25) {
  32886. r[j] &= 0x1ffffff;
  32887. if (j + 1 >= size) {
  32888. break;
  32889. }
  32890. s = 25 - s;
  32891. if (s == DIGIT_BIT) {
  32892. r[++j] = 0;
  32893. s = 0;
  32894. }
  32895. else {
  32896. r[++j] = a->dp[i] >> s;
  32897. s = DIGIT_BIT - s;
  32898. }
  32899. }
  32900. else {
  32901. s += DIGIT_BIT;
  32902. }
  32903. }
  32904. for (j++; j < size; j++) {
  32905. r[j] = 0;
  32906. }
  32907. #endif
  32908. }
  32909. /* Convert a point of type ecc_point to type sp_point_521.
  32910. *
  32911. * p Point of type sp_point_521 (result).
  32912. * pm Point of type ecc_point.
  32913. */
  32914. static void sp_521_point_from_ecc_point_21(sp_point_521* p,
  32915. const ecc_point* pm)
  32916. {
  32917. XMEMSET(p->x, 0, sizeof(p->x));
  32918. XMEMSET(p->y, 0, sizeof(p->y));
  32919. XMEMSET(p->z, 0, sizeof(p->z));
  32920. sp_521_from_mp(p->x, 21, pm->x);
  32921. sp_521_from_mp(p->y, 21, pm->y);
  32922. sp_521_from_mp(p->z, 21, pm->z);
  32923. p->infinity = 0;
  32924. }
  32925. /* Convert an array of sp_digit to an mp_int.
  32926. *
  32927. * a A single precision integer.
  32928. * r A multi-precision integer.
  32929. */
  32930. static int sp_521_to_mp(const sp_digit* a, mp_int* r)
  32931. {
  32932. int err;
  32933. err = mp_grow(r, (521 + DIGIT_BIT - 1) / DIGIT_BIT);
  32934. if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
  32935. #if DIGIT_BIT == 25
  32936. XMEMCPY(r->dp, a, sizeof(sp_digit) * 21);
  32937. r->used = 21;
  32938. mp_clamp(r);
  32939. #elif DIGIT_BIT < 25
  32940. int i;
  32941. int j = 0;
  32942. int s = 0;
  32943. r->dp[0] = 0;
  32944. for (i = 0; i < 21; i++) {
  32945. r->dp[j] |= (mp_digit)(a[i] << s);
  32946. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  32947. s = DIGIT_BIT - s;
  32948. r->dp[++j] = (mp_digit)(a[i] >> s);
  32949. while (s + DIGIT_BIT <= 25) {
  32950. s += DIGIT_BIT;
  32951. r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  32952. if (s == SP_WORD_SIZE) {
  32953. r->dp[j] = 0;
  32954. }
  32955. else {
  32956. r->dp[j] = (mp_digit)(a[i] >> s);
  32957. }
  32958. }
  32959. s = 25 - s;
  32960. }
  32961. r->used = (521 + DIGIT_BIT - 1) / DIGIT_BIT;
  32962. mp_clamp(r);
  32963. #else
  32964. int i;
  32965. int j = 0;
  32966. int s = 0;
  32967. r->dp[0] = 0;
  32968. for (i = 0; i < 21; i++) {
  32969. r->dp[j] |= ((mp_digit)a[i]) << s;
  32970. if (s + 25 >= DIGIT_BIT) {
  32971. #if DIGIT_BIT != 32 && DIGIT_BIT != 64
  32972. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  32973. #endif
  32974. s = DIGIT_BIT - s;
  32975. r->dp[++j] = a[i] >> s;
  32976. s = 25 - s;
  32977. }
  32978. else {
  32979. s += 25;
  32980. }
  32981. }
  32982. r->used = (521 + DIGIT_BIT - 1) / DIGIT_BIT;
  32983. mp_clamp(r);
  32984. #endif
  32985. }
  32986. return err;
  32987. }
  32988. /* Convert a point of type sp_point_521 to type ecc_point.
  32989. *
  32990. * p Point of type sp_point_521.
  32991. * pm Point of type ecc_point (result).
  32992. * returns MEMORY_E when allocation of memory in ecc_point fails otherwise
  32993. * MP_OKAY.
  32994. */
  32995. static int sp_521_point_to_ecc_point_21(const sp_point_521* p, ecc_point* pm)
  32996. {
  32997. int err;
  32998. err = sp_521_to_mp(p->x, pm->x);
  32999. if (err == MP_OKAY) {
  33000. err = sp_521_to_mp(p->y, pm->y);
  33001. }
  33002. if (err == MP_OKAY) {
  33003. err = sp_521_to_mp(p->z, pm->z);
  33004. }
  33005. return err;
  33006. }
  33007. /* Normalize the values in each word to 25 bits.
  33008. *
  33009. * a Array of sp_digit to normalize.
  33010. */
  33011. static void sp_521_norm_21(sp_digit* a)
  33012. {
  33013. #ifdef WOLFSSL_SP_SMALL
  33014. int i;
  33015. for (i = 0; i < 20; i++) {
  33016. a[i+1] += a[i] >> 25;
  33017. a[i] &= 0x1ffffff;
  33018. }
  33019. #else
  33020. int i;
  33021. for (i = 0; i < 16; i += 8) {
  33022. a[i+1] += a[i+0] >> 25; a[i+0] &= 0x1ffffff;
  33023. a[i+2] += a[i+1] >> 25; a[i+1] &= 0x1ffffff;
  33024. a[i+3] += a[i+2] >> 25; a[i+2] &= 0x1ffffff;
  33025. a[i+4] += a[i+3] >> 25; a[i+3] &= 0x1ffffff;
  33026. a[i+5] += a[i+4] >> 25; a[i+4] &= 0x1ffffff;
  33027. a[i+6] += a[i+5] >> 25; a[i+5] &= 0x1ffffff;
  33028. a[i+7] += a[i+6] >> 25; a[i+6] &= 0x1ffffff;
  33029. a[i+8] += a[i+7] >> 25; a[i+7] &= 0x1ffffff;
  33030. }
  33031. a[17] += a[16] >> 25; a[16] &= 0x1ffffff;
  33032. a[18] += a[17] >> 25; a[17] &= 0x1ffffff;
  33033. a[19] += a[18] >> 25; a[18] &= 0x1ffffff;
  33034. a[20] += a[19] >> 25; a[19] &= 0x1ffffff;
  33035. #endif /* WOLFSSL_SP_SMALL */
  33036. }
  33037. /* Reduce the number back to 521 bits using Montgomery reduction.
  33038. *
  33039. * a A single precision number to reduce in place.
  33040. * m The single precision number representing the modulus.
  33041. * mp The digit representing the negative inverse of m mod 2^n.
  33042. */
  33043. static void sp_521_mont_reduce_21(sp_digit* a, const sp_digit* m, sp_digit mp)
  33044. {
  33045. int i;
  33046. (void)m;
  33047. (void)mp;
  33048. for (i = 0; i < 20; i++) {
  33049. a[i] += ((a[20 + i] >> 21) + (a[20 + i + 1] << 4)) & 0x1ffffff;
  33050. }
  33051. a[20] &= 0x1fffff;
  33052. a[20] += ((a[40] >> 21) + (a[41] << 4)) & 0x1ffffff;
  33053. sp_521_norm_21(a);
  33054. a[0] += a[20] >> 21;
  33055. a[20] &= 0x1fffff;
  33056. }
  33057. /* Compare a with b in constant time.
  33058. *
  33059. * a A single precision integer.
  33060. * b A single precision integer.
  33061. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  33062. * respectively.
  33063. */
  33064. static sp_digit sp_521_cmp_21(const sp_digit* a, const sp_digit* b)
  33065. {
  33066. sp_digit r = 0;
  33067. #ifdef WOLFSSL_SP_SMALL
  33068. int i;
  33069. for (i=20; i>=0; i--) {
  33070. r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 24);
  33071. }
  33072. #else
  33073. int i;
  33074. r |= (a[20] - b[20]) & (0 - (sp_digit)1);
  33075. r |= (a[19] - b[19]) & ~(((sp_digit)0 - r) >> 24);
  33076. r |= (a[18] - b[18]) & ~(((sp_digit)0 - r) >> 24);
  33077. r |= (a[17] - b[17]) & ~(((sp_digit)0 - r) >> 24);
  33078. r |= (a[16] - b[16]) & ~(((sp_digit)0 - r) >> 24);
  33079. for (i = 8; i >= 0; i -= 8) {
  33080. r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 24);
  33081. r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 24);
  33082. r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 24);
  33083. r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 24);
  33084. r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 24);
  33085. r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 24);
  33086. r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 24);
  33087. r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 24);
  33088. }
  33089. #endif /* WOLFSSL_SP_SMALL */
  33090. return r;
  33091. }
  33092. /* Conditionally subtract b from a using the mask m.
  33093. * m is -1 to subtract and 0 when not.
  33094. *
  33095. * r A single precision number representing condition subtract result.
  33096. * a A single precision number to subtract from.
  33097. * b A single precision number to subtract.
  33098. * m Mask value to apply.
  33099. */
  33100. static void sp_521_cond_sub_21(sp_digit* r, const sp_digit* a,
  33101. const sp_digit* b, const sp_digit m)
  33102. {
  33103. #ifdef WOLFSSL_SP_SMALL
  33104. int i;
  33105. for (i = 0; i < 21; i++) {
  33106. r[i] = a[i] - (b[i] & m);
  33107. }
  33108. #else
  33109. int i;
  33110. for (i = 0; i < 16; i += 8) {
  33111. r[i + 0] = a[i + 0] - (b[i + 0] & m);
  33112. r[i + 1] = a[i + 1] - (b[i + 1] & m);
  33113. r[i + 2] = a[i + 2] - (b[i + 2] & m);
  33114. r[i + 3] = a[i + 3] - (b[i + 3] & m);
  33115. r[i + 4] = a[i + 4] - (b[i + 4] & m);
  33116. r[i + 5] = a[i + 5] - (b[i + 5] & m);
  33117. r[i + 6] = a[i + 6] - (b[i + 6] & m);
  33118. r[i + 7] = a[i + 7] - (b[i + 7] & m);
  33119. }
  33120. r[16] = a[16] - (b[16] & m);
  33121. r[17] = a[17] - (b[17] & m);
  33122. r[18] = a[18] - (b[18] & m);
  33123. r[19] = a[19] - (b[19] & m);
  33124. r[20] = a[20] - (b[20] & m);
  33125. #endif /* WOLFSSL_SP_SMALL */
  33126. }
  33127. /* Mul a by scalar b and add into r. (r += a * b)
  33128. *
  33129. * r A single precision integer.
  33130. * a A single precision integer.
  33131. * b A scalar.
  33132. */
  33133. SP_NOINLINE static void sp_521_mul_add_21(sp_digit* r, const sp_digit* a,
  33134. const sp_digit b)
  33135. {
  33136. #ifdef WOLFSSL_SP_SMALL
  33137. sp_int64 tb = b;
  33138. sp_int64 t[4];
  33139. int i;
  33140. t[0] = 0;
  33141. for (i = 0; i < 20; i += 4) {
  33142. t[0] += (tb * a[i+0]) + r[i+0];
  33143. t[1] = (tb * a[i+1]) + r[i+1];
  33144. t[2] = (tb * a[i+2]) + r[i+2];
  33145. t[3] = (tb * a[i+3]) + r[i+3];
  33146. r[i+0] = t[0] & 0x1ffffff;
  33147. t[1] += t[0] >> 25;
  33148. r[i+1] = t[1] & 0x1ffffff;
  33149. t[2] += t[1] >> 25;
  33150. r[i+2] = t[2] & 0x1ffffff;
  33151. t[3] += t[2] >> 25;
  33152. r[i+3] = t[3] & 0x1ffffff;
  33153. t[0] = t[3] >> 25;
  33154. }
  33155. t[0] += (tb * a[20]) + r[20];
  33156. r[20] = t[0] & 0x1ffffff;
  33157. r[21] += (sp_digit)(t[0] >> 25);
  33158. #else
  33159. sp_int64 tb = b;
  33160. sp_int64 t[8];
  33161. int i;
  33162. t[0] = tb * a[0]; r[0] += (sp_digit)(t[0] & 0x1ffffff);
  33163. for (i = 0; i < 16; i += 8) {
  33164. t[1] = tb * a[i+1];
  33165. r[i+1] += (sp_digit)((t[0] >> 25) + (t[1] & 0x1ffffff));
  33166. t[2] = tb * a[i+2];
  33167. r[i+2] += (sp_digit)((t[1] >> 25) + (t[2] & 0x1ffffff));
  33168. t[3] = tb * a[i+3];
  33169. r[i+3] += (sp_digit)((t[2] >> 25) + (t[3] & 0x1ffffff));
  33170. t[4] = tb * a[i+4];
  33171. r[i+4] += (sp_digit)((t[3] >> 25) + (t[4] & 0x1ffffff));
  33172. t[5] = tb * a[i+5];
  33173. r[i+5] += (sp_digit)((t[4] >> 25) + (t[5] & 0x1ffffff));
  33174. t[6] = tb * a[i+6];
  33175. r[i+6] += (sp_digit)((t[5] >> 25) + (t[6] & 0x1ffffff));
  33176. t[7] = tb * a[i+7];
  33177. r[i+7] += (sp_digit)((t[6] >> 25) + (t[7] & 0x1ffffff));
  33178. t[0] = tb * a[i+8];
  33179. r[i+8] += (sp_digit)((t[7] >> 25) + (t[0] & 0x1ffffff));
  33180. }
  33181. t[1] = tb * a[17];
  33182. r[17] += (sp_digit)((t[0] >> 25) + (t[1] & 0x1ffffff));
  33183. t[2] = tb * a[18];
  33184. r[18] += (sp_digit)((t[1] >> 25) + (t[2] & 0x1ffffff));
  33185. t[3] = tb * a[19];
  33186. r[19] += (sp_digit)((t[2] >> 25) + (t[3] & 0x1ffffff));
  33187. t[4] = tb * a[20];
  33188. r[20] += (sp_digit)((t[3] >> 25) + (t[4] & 0x1ffffff));
  33189. r[21] += (sp_digit)(t[4] >> 25);
  33190. #endif /* WOLFSSL_SP_SMALL */
  33191. }
  33192. /* Shift the result in the high 521 bits down to the bottom.
  33193. *
  33194. * r A single precision number.
  33195. * a A single precision number.
  33196. */
  33197. static void sp_521_mont_shift_21(sp_digit* r, const sp_digit* a)
  33198. {
  33199. #ifdef WOLFSSL_SP_SMALL
  33200. int i;
  33201. sp_digit n;
  33202. sp_digit s;
  33203. s = a[21];
  33204. n = a[20] >> 21;
  33205. for (i = 0; i < 20; i++) {
  33206. n += (s & 0x1ffffff) << 4;
  33207. r[i] = n & 0x1ffffff;
  33208. n >>= 25;
  33209. s = a[22 + i] + (s >> 25);
  33210. }
  33211. n += s << 4;
  33212. r[20] = n;
  33213. #else
  33214. sp_digit n;
  33215. sp_digit s;
  33216. int i;
  33217. s = a[21]; n = a[20] >> 21;
  33218. for (i = 0; i < 16; i += 8) {
  33219. n += (s & 0x1ffffff) << 4; r[i+0] = n & 0x1ffffff;
  33220. n >>= 25; s = a[i+22] + (s >> 25);
  33221. n += (s & 0x1ffffff) << 4; r[i+1] = n & 0x1ffffff;
  33222. n >>= 25; s = a[i+23] + (s >> 25);
  33223. n += (s & 0x1ffffff) << 4; r[i+2] = n & 0x1ffffff;
  33224. n >>= 25; s = a[i+24] + (s >> 25);
  33225. n += (s & 0x1ffffff) << 4; r[i+3] = n & 0x1ffffff;
  33226. n >>= 25; s = a[i+25] + (s >> 25);
  33227. n += (s & 0x1ffffff) << 4; r[i+4] = n & 0x1ffffff;
  33228. n >>= 25; s = a[i+26] + (s >> 25);
  33229. n += (s & 0x1ffffff) << 4; r[i+5] = n & 0x1ffffff;
  33230. n >>= 25; s = a[i+27] + (s >> 25);
  33231. n += (s & 0x1ffffff) << 4; r[i+6] = n & 0x1ffffff;
  33232. n >>= 25; s = a[i+28] + (s >> 25);
  33233. n += (s & 0x1ffffff) << 4; r[i+7] = n & 0x1ffffff;
  33234. n >>= 25; s = a[i+29] + (s >> 25);
  33235. }
  33236. n += (s & 0x1ffffff) << 4; r[16] = n & 0x1ffffff;
  33237. n >>= 25; s = a[38] + (s >> 25);
  33238. n += (s & 0x1ffffff) << 4; r[17] = n & 0x1ffffff;
  33239. n >>= 25; s = a[39] + (s >> 25);
  33240. n += (s & 0x1ffffff) << 4; r[18] = n & 0x1ffffff;
  33241. n >>= 25; s = a[40] + (s >> 25);
  33242. n += (s & 0x1ffffff) << 4; r[19] = n & 0x1ffffff;
  33243. n >>= 25; s = a[41] + (s >> 25);
  33244. n += s << 4; r[20] = n;
  33245. #endif /* WOLFSSL_SP_SMALL */
  33246. XMEMSET(&r[21], 0, sizeof(*r) * 21U);
  33247. }
  33248. /* Reduce the number back to 521 bits using Montgomery reduction.
  33249. *
  33250. * a A single precision number to reduce in place.
  33251. * m The single precision number representing the modulus.
  33252. * mp The digit representing the negative inverse of m mod 2^n.
  33253. */
  33254. static void sp_521_mont_reduce_order_21(sp_digit* a, const sp_digit* m, sp_digit mp)
  33255. {
  33256. int i;
  33257. sp_digit mu;
  33258. sp_digit over;
  33259. sp_521_norm_21(a + 21);
  33260. for (i=0; i<20; i++) {
  33261. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1ffffff;
  33262. sp_521_mul_add_21(a+i, m, mu);
  33263. a[i+1] += a[i] >> 25;
  33264. }
  33265. mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffL;
  33266. sp_521_mul_add_21(a+i, m, mu);
  33267. a[i+1] += a[i] >> 25;
  33268. a[i] &= 0x1ffffff;
  33269. sp_521_mont_shift_21(a, a);
  33270. over = a[20] >> 21;
  33271. sp_521_cond_sub_21(a, a, m, ~((over - 1) >> 31));
  33272. sp_521_norm_21(a);
  33273. }
  33274. /* Multiply two Montgomery form numbers mod the modulus (prime).
  33275. * (r = a * b mod m)
  33276. *
  33277. * r Result of multiplication.
  33278. * a First number to multiply in Montgomery form.
  33279. * b Second number to multiply in Montgomery form.
  33280. * m Modulus (prime).
  33281. * mp Montgomery multiplier.
  33282. */
  33283. SP_NOINLINE static void sp_521_mont_mul_21(sp_digit* r, const sp_digit* a,
  33284. const sp_digit* b, const sp_digit* m, sp_digit mp)
  33285. {
  33286. sp_521_mul_21(r, a, b);
  33287. sp_521_mont_reduce_21(r, m, mp);
  33288. }
  33289. /* Square the Montgomery form number. (r = a * a mod m)
  33290. *
  33291. * r Result of squaring.
  33292. * a Number to square in Montgomery form.
  33293. * m Modulus (prime).
  33294. * mp Montgomery multiplier.
  33295. */
  33296. SP_NOINLINE static void sp_521_mont_sqr_21(sp_digit* r, const sp_digit* a,
  33297. const sp_digit* m, sp_digit mp)
  33298. {
  33299. sp_521_sqr_21(r, a);
  33300. sp_521_mont_reduce_21(r, m, mp);
  33301. }
  33302. #ifndef WOLFSSL_SP_SMALL
  33303. /* Square the Montgomery form number a number of times. (r = a ^ n mod m)
  33304. *
  33305. * r Result of squaring.
  33306. * a Number to square in Montgomery form.
  33307. * n Number of times to square.
  33308. * m Modulus (prime).
  33309. * mp Montgomery multiplier.
  33310. */
  33311. static void sp_521_mont_sqr_n_21(sp_digit* r, const sp_digit* a, int n,
  33312. const sp_digit* m, sp_digit mp)
  33313. {
  33314. sp_521_mont_sqr_21(r, a, m, mp);
  33315. for (; n > 1; n--) {
  33316. sp_521_mont_sqr_21(r, r, m, mp);
  33317. }
  33318. }
  33319. #endif /* !WOLFSSL_SP_SMALL */
  33320. #ifdef WOLFSSL_SP_SMALL
  33321. /* Mod-2 for the P521 curve. */
  33322. static const uint32_t p521_mod_minus_2[17] = {
  33323. 0xfffffffdU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,
  33324. 0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,
  33325. 0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0x000001ffU
  33326. };
  33327. #endif /* !WOLFSSL_SP_SMALL */
  33328. /* Invert the number, in Montgomery form, modulo the modulus (prime) of the
  33329. * P521 curve. (r = 1 / a mod m)
  33330. *
  33331. * r Inverse result.
  33332. * a Number to invert.
  33333. * td Temporary data.
  33334. */
  33335. static void sp_521_mont_inv_21(sp_digit* r, const sp_digit* a, sp_digit* td)
  33336. {
  33337. #ifdef WOLFSSL_SP_SMALL
  33338. sp_digit* t = td;
  33339. int i;
  33340. XMEMCPY(t, a, sizeof(sp_digit) * 21);
  33341. for (i=519; i>=0; i--) {
  33342. sp_521_mont_sqr_21(t, t, p521_mod, p521_mp_mod);
  33343. if (p521_mod_minus_2[i / 32] & ((sp_digit)1 << (i % 32)))
  33344. sp_521_mont_mul_21(t, t, a, p521_mod, p521_mp_mod);
  33345. }
  33346. XMEMCPY(r, t, sizeof(sp_digit) * 21);
  33347. #else
  33348. sp_digit* t1 = td;
  33349. sp_digit* t2 = td + 2 * 21;
  33350. sp_digit* t3 = td + 4 * 21;
  33351. /* 0x2 */
  33352. sp_521_mont_sqr_21(t1, a, p521_mod, p521_mp_mod);
  33353. /* 0x3 */
  33354. sp_521_mont_mul_21(t2, t1, a, p521_mod, p521_mp_mod);
  33355. /* 0x6 */
  33356. sp_521_mont_sqr_21(t1, t2, p521_mod, p521_mp_mod);
  33357. /* 0x7 */
  33358. sp_521_mont_mul_21(t3, t1, a, p521_mod, p521_mp_mod);
  33359. /* 0xc */
  33360. sp_521_mont_sqr_n_21(t1, t2, 2, p521_mod, p521_mp_mod);
  33361. /* 0xf */
  33362. sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
  33363. /* 0x78 */
  33364. sp_521_mont_sqr_n_21(t1, t2, 3, p521_mod, p521_mp_mod);
  33365. /* 0x7f */
  33366. sp_521_mont_mul_21(t3, t3, t1, p521_mod, p521_mp_mod);
  33367. /* 0xf0 */
  33368. sp_521_mont_sqr_n_21(t1, t2, 4, p521_mod, p521_mp_mod);
  33369. /* 0xff */
  33370. sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
  33371. /* 0xff00 */
  33372. sp_521_mont_sqr_n_21(t1, t2, 8, p521_mod, p521_mp_mod);
  33373. /* 0xffff */
  33374. sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
  33375. /* 0xffff0000 */
  33376. sp_521_mont_sqr_n_21(t1, t2, 16, p521_mod, p521_mp_mod);
  33377. /* 0xffffffff */
  33378. sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
  33379. /* 0xffffffff00000000 */
  33380. sp_521_mont_sqr_n_21(t1, t2, 32, p521_mod, p521_mp_mod);
  33381. /* 0xffffffffffffffff */
  33382. sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
  33383. /* 0xffffffffffffffff0000000000000000 */
  33384. sp_521_mont_sqr_n_21(t1, t2, 64, p521_mod, p521_mp_mod);
  33385. /* 0xffffffffffffffffffffffffffffffff */
  33386. sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
  33387. /* 0xffffffffffffffffffffffffffffffff00000000000000000000000000000000 */
  33388. sp_521_mont_sqr_n_21(t1, t2, 128, p521_mod, p521_mp_mod);
  33389. /* 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
  33390. sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
  33391. /* 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0000000000000000000000000000000000000000000000000000000000000000 */
  33392. sp_521_mont_sqr_n_21(t1, t2, 256, p521_mod, p521_mp_mod);
  33393. /* 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
  33394. sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
  33395. /* 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80 */
  33396. sp_521_mont_sqr_n_21(t1, t2, 7, p521_mod, p521_mp_mod);
  33397. /* 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
  33398. sp_521_mont_mul_21(t2, t3, t1, p521_mod, p521_mp_mod);
  33399. /* 0x1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc */
  33400. sp_521_mont_sqr_n_21(t1, t2, 2, p521_mod, p521_mp_mod);
  33401. /* 0x1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd */
  33402. sp_521_mont_mul_21(r, t1, a, p521_mod, p521_mp_mod);
  33403. #endif /* WOLFSSL_SP_SMALL */
  33404. }
  33405. /* Map the Montgomery form projective coordinate point to an affine point.
  33406. *
  33407. * r Resulting affine coordinate point.
  33408. * p Montgomery form projective coordinate point.
  33409. * t Temporary ordinate data.
  33410. */
  33411. static void sp_521_map_21(sp_point_521* r, const sp_point_521* p,
  33412. sp_digit* t)
  33413. {
  33414. sp_digit* t1 = t;
  33415. sp_digit* t2 = t + 2*21;
  33416. sp_int32 n;
  33417. sp_521_mont_inv_21(t1, p->z, t + 2*21);
  33418. sp_521_mont_sqr_21(t2, t1, p521_mod, p521_mp_mod);
  33419. sp_521_mont_mul_21(t1, t2, t1, p521_mod, p521_mp_mod);
  33420. /* x /= z^2 */
  33421. sp_521_mont_mul_21(r->x, p->x, t2, p521_mod, p521_mp_mod);
  33422. XMEMSET(r->x + 21, 0, sizeof(sp_digit) * 21U);
  33423. sp_521_mont_reduce_21(r->x, p521_mod, p521_mp_mod);
  33424. /* Reduce x to less than modulus */
  33425. n = sp_521_cmp_21(r->x, p521_mod);
  33426. sp_521_cond_sub_21(r->x, r->x, p521_mod, ~(n >> 24));
  33427. sp_521_norm_21(r->x);
  33428. /* y /= z^3 */
  33429. sp_521_mont_mul_21(r->y, p->y, t1, p521_mod, p521_mp_mod);
  33430. XMEMSET(r->y + 21, 0, sizeof(sp_digit) * 21U);
  33431. sp_521_mont_reduce_21(r->y, p521_mod, p521_mp_mod);
  33432. /* Reduce y to less than modulus */
  33433. n = sp_521_cmp_21(r->y, p521_mod);
  33434. sp_521_cond_sub_21(r->y, r->y, p521_mod, ~(n >> 24));
  33435. sp_521_norm_21(r->y);
  33436. XMEMSET(r->z, 0, sizeof(r->z) / 2);
  33437. r->z[0] = 1;
  33438. }
  33439. /* Add two Montgomery form numbers (r = a + b % m).
  33440. *
  33441. * r Result of addition.
  33442. * a First number to add in Montgomery form.
  33443. * b Second number to add in Montgomery form.
  33444. * m Modulus (prime).
  33445. */
  33446. static void sp_521_mont_add_21(sp_digit* r, const sp_digit* a, const sp_digit* b,
  33447. const sp_digit* m)
  33448. {
  33449. sp_digit over;
  33450. (void)sp_521_add_21(r, a, b);
  33451. sp_521_norm_21(r);
  33452. over = r[20] >> 21;
  33453. sp_521_cond_sub_21(r, r, m, ~((over - 1) >> 31));
  33454. sp_521_norm_21(r);
  33455. }
  33456. /* Double a Montgomery form number (r = a + a % m).
  33457. *
  33458. * r Result of doubling.
  33459. * a Number to double in Montgomery form.
  33460. * m Modulus (prime).
  33461. */
  33462. static void sp_521_mont_dbl_21(sp_digit* r, const sp_digit* a, const sp_digit* m)
  33463. {
  33464. sp_digit over;
  33465. (void)sp_521_add_21(r, a, a);
  33466. sp_521_norm_21(r);
  33467. over = r[20] >> 21;
  33468. sp_521_cond_sub_21(r, r, m, ~((over - 1) >> 31));
  33469. sp_521_norm_21(r);
  33470. }
  33471. /* Triple a Montgomery form number (r = a + a + a % m).
  33472. *
  33473. * r Result of Tripling.
  33474. * a Number to triple in Montgomery form.
  33475. * m Modulus (prime).
  33476. */
  33477. static void sp_521_mont_tpl_21(sp_digit* r, const sp_digit* a, const sp_digit* m)
  33478. {
  33479. sp_digit over;
  33480. (void)sp_521_add_21(r, a, a);
  33481. sp_521_norm_21(r);
  33482. over = r[20] >> 21;
  33483. sp_521_cond_sub_21(r, r, m, ~((over - 1) >> 31));
  33484. sp_521_norm_21(r);
  33485. (void)sp_521_add_21(r, r, a);
  33486. sp_521_norm_21(r);
  33487. over = r[20] >> 21;
  33488. sp_521_cond_sub_21(r, r, m, ~((over - 1) >> 31));
  33489. sp_521_norm_21(r);
  33490. }
  33491. #ifdef WOLFSSL_SP_SMALL
  33492. /* Conditionally add a and b using the mask m.
  33493. * m is -1 to add and 0 when not.
  33494. *
  33495. * r A single precision number representing conditional add result.
  33496. * a A single precision number to add with.
  33497. * b A single precision number to add.
  33498. * m Mask value to apply.
  33499. */
  33500. static void sp_521_cond_add_21(sp_digit* r, const sp_digit* a,
  33501. const sp_digit* b, const sp_digit m)
  33502. {
  33503. int i;
  33504. for (i = 0; i < 21; i++) {
  33505. r[i] = a[i] + (b[i] & m);
  33506. }
  33507. }
  33508. #endif /* WOLFSSL_SP_SMALL */
  33509. #ifndef WOLFSSL_SP_SMALL
  33510. /* Conditionally add a and b using the mask m.
  33511. * m is -1 to add and 0 when not.
  33512. *
  33513. * r A single precision number representing conditional add result.
  33514. * a A single precision number to add with.
  33515. * b A single precision number to add.
  33516. * m Mask value to apply.
  33517. */
  33518. static void sp_521_cond_add_21(sp_digit* r, const sp_digit* a,
  33519. const sp_digit* b, const sp_digit m)
  33520. {
  33521. int i;
  33522. for (i = 0; i < 16; i += 8) {
  33523. r[i + 0] = a[i + 0] + (b[i + 0] & m);
  33524. r[i + 1] = a[i + 1] + (b[i + 1] & m);
  33525. r[i + 2] = a[i + 2] + (b[i + 2] & m);
  33526. r[i + 3] = a[i + 3] + (b[i + 3] & m);
  33527. r[i + 4] = a[i + 4] + (b[i + 4] & m);
  33528. r[i + 5] = a[i + 5] + (b[i + 5] & m);
  33529. r[i + 6] = a[i + 6] + (b[i + 6] & m);
  33530. r[i + 7] = a[i + 7] + (b[i + 7] & m);
  33531. }
  33532. r[16] = a[16] + (b[16] & m);
  33533. r[17] = a[17] + (b[17] & m);
  33534. r[18] = a[18] + (b[18] & m);
  33535. r[19] = a[19] + (b[19] & m);
  33536. r[20] = a[20] + (b[20] & m);
  33537. }
  33538. #endif /* !WOLFSSL_SP_SMALL */
  33539. /* Subtract two Montgomery form numbers (r = a - b % m).
  33540. *
  33541. * r Result of subtration.
  33542. * a Number to subtract from in Montgomery form.
  33543. * b Number to subtract with in Montgomery form.
  33544. * m Modulus (prime).
  33545. */
  33546. static void sp_521_mont_sub_21(sp_digit* r, const sp_digit* a, const sp_digit* b,
  33547. const sp_digit* m)
  33548. {
  33549. (void)sp_521_sub_21(r, a, b);
  33550. sp_521_norm_21(r);
  33551. sp_521_cond_add_21(r, r, m, r[20] >> 21);
  33552. sp_521_norm_21(r);
  33553. }
  33554. /* Shift number left one bit.
  33555. * Bottom bit is lost.
  33556. *
  33557. * r Result of shift.
  33558. * a Number to shift.
  33559. */
  33560. SP_NOINLINE static void sp_521_rshift1_21(sp_digit* r, const sp_digit* a)
  33561. {
  33562. #ifdef WOLFSSL_SP_SMALL
  33563. int i;
  33564. for (i=0; i<20; i++) {
  33565. r[i] = (a[i] >> 1) + ((a[i + 1] << 24) & 0x1ffffff);
  33566. }
  33567. #else
  33568. r[0] = (a[0] >> 1) + ((a[1] << 24) & 0x1ffffff);
  33569. r[1] = (a[1] >> 1) + ((a[2] << 24) & 0x1ffffff);
  33570. r[2] = (a[2] >> 1) + ((a[3] << 24) & 0x1ffffff);
  33571. r[3] = (a[3] >> 1) + ((a[4] << 24) & 0x1ffffff);
  33572. r[4] = (a[4] >> 1) + ((a[5] << 24) & 0x1ffffff);
  33573. r[5] = (a[5] >> 1) + ((a[6] << 24) & 0x1ffffff);
  33574. r[6] = (a[6] >> 1) + ((a[7] << 24) & 0x1ffffff);
  33575. r[7] = (a[7] >> 1) + ((a[8] << 24) & 0x1ffffff);
  33576. r[8] = (a[8] >> 1) + ((a[9] << 24) & 0x1ffffff);
  33577. r[9] = (a[9] >> 1) + ((a[10] << 24) & 0x1ffffff);
  33578. r[10] = (a[10] >> 1) + ((a[11] << 24) & 0x1ffffff);
  33579. r[11] = (a[11] >> 1) + ((a[12] << 24) & 0x1ffffff);
  33580. r[12] = (a[12] >> 1) + ((a[13] << 24) & 0x1ffffff);
  33581. r[13] = (a[13] >> 1) + ((a[14] << 24) & 0x1ffffff);
  33582. r[14] = (a[14] >> 1) + ((a[15] << 24) & 0x1ffffff);
  33583. r[15] = (a[15] >> 1) + ((a[16] << 24) & 0x1ffffff);
  33584. r[16] = (a[16] >> 1) + ((a[17] << 24) & 0x1ffffff);
  33585. r[17] = (a[17] >> 1) + ((a[18] << 24) & 0x1ffffff);
  33586. r[18] = (a[18] >> 1) + ((a[19] << 24) & 0x1ffffff);
  33587. r[19] = (a[19] >> 1) + ((a[20] << 24) & 0x1ffffff);
  33588. #endif
  33589. r[20] = a[20] >> 1;
  33590. }
  33591. /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m)
  33592. *
  33593. * r Result of division by 2.
  33594. * a Number to divide.
  33595. * m Modulus (prime).
  33596. */
  33597. static void sp_521_mont_div2_21(sp_digit* r, const sp_digit* a,
  33598. const sp_digit* m)
  33599. {
  33600. sp_521_cond_add_21(r, a, m, 0 - (a[0] & 1));
  33601. sp_521_norm_21(r);
  33602. sp_521_rshift1_21(r, r);
  33603. }
  33604. /* Double the Montgomery form projective point p.
  33605. *
  33606. * r Result of doubling point.
  33607. * p Point to double.
  33608. * t Temporary ordinate data.
  33609. */
  33610. static void sp_521_proj_point_dbl_21(sp_point_521* r, const sp_point_521* p,
  33611. sp_digit* t)
  33612. {
  33613. sp_digit* t1 = t;
  33614. sp_digit* t2 = t + 2*21;
  33615. sp_digit* x;
  33616. sp_digit* y;
  33617. sp_digit* z;
  33618. x = r->x;
  33619. y = r->y;
  33620. z = r->z;
  33621. /* Put infinity into result. */
  33622. if (r != p) {
  33623. r->infinity = p->infinity;
  33624. }
  33625. /* T1 = Z * Z */
  33626. sp_521_mont_sqr_21(t1, p->z, p521_mod, p521_mp_mod);
  33627. /* Z = Y * Z */
  33628. sp_521_mont_mul_21(z, p->y, p->z, p521_mod, p521_mp_mod);
  33629. /* Z = 2Z */
  33630. sp_521_mont_dbl_21(z, z, p521_mod);
  33631. /* T2 = X - T1 */
  33632. sp_521_mont_sub_21(t2, p->x, t1, p521_mod);
  33633. /* T1 = X + T1 */
  33634. sp_521_mont_add_21(t1, p->x, t1, p521_mod);
  33635. /* T2 = T1 * T2 */
  33636. sp_521_mont_mul_21(t2, t1, t2, p521_mod, p521_mp_mod);
  33637. /* T1 = 3T2 */
  33638. sp_521_mont_tpl_21(t1, t2, p521_mod);
  33639. /* Y = 2Y */
  33640. sp_521_mont_dbl_21(y, p->y, p521_mod);
  33641. /* Y = Y * Y */
  33642. sp_521_mont_sqr_21(y, y, p521_mod, p521_mp_mod);
  33643. /* T2 = Y * Y */
  33644. sp_521_mont_sqr_21(t2, y, p521_mod, p521_mp_mod);
  33645. /* T2 = T2/2 */
  33646. sp_521_mont_div2_21(t2, t2, p521_mod);
  33647. /* Y = Y * X */
  33648. sp_521_mont_mul_21(y, y, p->x, p521_mod, p521_mp_mod);
  33649. /* X = T1 * T1 */
  33650. sp_521_mont_sqr_21(x, t1, p521_mod, p521_mp_mod);
  33651. /* X = X - Y */
  33652. sp_521_mont_sub_21(x, x, y, p521_mod);
  33653. /* X = X - Y */
  33654. sp_521_mont_sub_21(x, x, y, p521_mod);
  33655. /* Y = Y - X */
  33656. sp_521_mont_sub_21(y, y, x, p521_mod);
  33657. /* Y = Y * T1 */
  33658. sp_521_mont_mul_21(y, y, t1, p521_mod, p521_mp_mod);
  33659. /* Y = Y - T2 */
  33660. sp_521_mont_sub_21(y, y, t2, p521_mod);
  33661. }
  33662. #ifdef WOLFSSL_SP_NONBLOCK
  33663. typedef struct sp_521_proj_point_dbl_21_ctx {
  33664. int state;
  33665. sp_digit* t1;
  33666. sp_digit* t2;
  33667. sp_digit* x;
  33668. sp_digit* y;
  33669. sp_digit* z;
  33670. } sp_521_proj_point_dbl_21_ctx;
  33671. /* Double the Montgomery form projective point p.
  33672. *
  33673. * r Result of doubling point.
  33674. * p Point to double.
  33675. * t Temporary ordinate data.
  33676. */
  33677. static int sp_521_proj_point_dbl_21_nb(sp_ecc_ctx_t* sp_ctx, sp_point_521* r,
  33678. const sp_point_521* p, sp_digit* t)
  33679. {
  33680. int err = FP_WOULDBLOCK;
  33681. sp_521_proj_point_dbl_21_ctx* ctx = (sp_521_proj_point_dbl_21_ctx*)sp_ctx->data;
  33682. typedef char ctx_size_test[sizeof(sp_521_proj_point_dbl_21_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  33683. (void)sizeof(ctx_size_test);
  33684. switch (ctx->state) {
  33685. case 0:
  33686. ctx->t1 = t;
  33687. ctx->t2 = t + 2*21;
  33688. ctx->x = r->x;
  33689. ctx->y = r->y;
  33690. ctx->z = r->z;
  33691. /* Put infinity into result. */
  33692. if (r != p) {
  33693. r->infinity = p->infinity;
  33694. }
  33695. ctx->state = 1;
  33696. break;
  33697. case 1:
  33698. /* T1 = Z * Z */
  33699. sp_521_mont_sqr_21(ctx->t1, p->z, p521_mod, p521_mp_mod);
  33700. ctx->state = 2;
  33701. break;
  33702. case 2:
  33703. /* Z = Y * Z */
  33704. sp_521_mont_mul_21(ctx->z, p->y, p->z, p521_mod, p521_mp_mod);
  33705. ctx->state = 3;
  33706. break;
  33707. case 3:
  33708. /* Z = 2Z */
  33709. sp_521_mont_dbl_21(ctx->z, ctx->z, p521_mod);
  33710. ctx->state = 4;
  33711. break;
  33712. case 4:
  33713. /* T2 = X - T1 */
  33714. sp_521_mont_sub_21(ctx->t2, p->x, ctx->t1, p521_mod);
  33715. ctx->state = 5;
  33716. break;
  33717. case 5:
  33718. /* T1 = X + T1 */
  33719. sp_521_mont_add_21(ctx->t1, p->x, ctx->t1, p521_mod);
  33720. ctx->state = 6;
  33721. break;
  33722. case 6:
  33723. /* T2 = T1 * T2 */
  33724. sp_521_mont_mul_21(ctx->t2, ctx->t1, ctx->t2, p521_mod, p521_mp_mod);
  33725. ctx->state = 7;
  33726. break;
  33727. case 7:
  33728. /* T1 = 3T2 */
  33729. sp_521_mont_tpl_21(ctx->t1, ctx->t2, p521_mod);
  33730. ctx->state = 8;
  33731. break;
  33732. case 8:
  33733. /* Y = 2Y */
  33734. sp_521_mont_dbl_21(ctx->y, p->y, p521_mod);
  33735. ctx->state = 9;
  33736. break;
  33737. case 9:
  33738. /* Y = Y * Y */
  33739. sp_521_mont_sqr_21(ctx->y, ctx->y, p521_mod, p521_mp_mod);
  33740. ctx->state = 10;
  33741. break;
  33742. case 10:
  33743. /* T2 = Y * Y */
  33744. sp_521_mont_sqr_21(ctx->t2, ctx->y, p521_mod, p521_mp_mod);
  33745. ctx->state = 11;
  33746. break;
  33747. case 11:
  33748. /* T2 = T2/2 */
  33749. sp_521_mont_div2_21(ctx->t2, ctx->t2, p521_mod);
  33750. ctx->state = 12;
  33751. break;
  33752. case 12:
  33753. /* Y = Y * X */
  33754. sp_521_mont_mul_21(ctx->y, ctx->y, p->x, p521_mod, p521_mp_mod);
  33755. ctx->state = 13;
  33756. break;
  33757. case 13:
  33758. /* X = T1 * T1 */
  33759. sp_521_mont_sqr_21(ctx->x, ctx->t1, p521_mod, p521_mp_mod);
  33760. ctx->state = 14;
  33761. break;
  33762. case 14:
  33763. /* X = X - Y */
  33764. sp_521_mont_sub_21(ctx->x, ctx->x, ctx->y, p521_mod);
  33765. ctx->state = 15;
  33766. break;
  33767. case 15:
  33768. /* X = X - Y */
  33769. sp_521_mont_sub_21(ctx->x, ctx->x, ctx->y, p521_mod);
  33770. ctx->state = 16;
  33771. break;
  33772. case 16:
  33773. /* Y = Y - X */
  33774. sp_521_mont_sub_21(ctx->y, ctx->y, ctx->x, p521_mod);
  33775. ctx->state = 17;
  33776. break;
  33777. case 17:
  33778. /* Y = Y * T1 */
  33779. sp_521_mont_mul_21(ctx->y, ctx->y, ctx->t1, p521_mod, p521_mp_mod);
  33780. ctx->state = 18;
  33781. break;
  33782. case 18:
  33783. /* Y = Y - T2 */
  33784. sp_521_mont_sub_21(ctx->y, ctx->y, ctx->t2, p521_mod);
  33785. ctx->state = 19;
  33786. /* fall-through */
  33787. case 19:
  33788. err = MP_OKAY;
  33789. break;
  33790. }
  33791. if (err == MP_OKAY && ctx->state != 19) {
  33792. err = FP_WOULDBLOCK;
  33793. }
  33794. return err;
  33795. }
  33796. #endif /* WOLFSSL_SP_NONBLOCK */
  33797. /* Compare two numbers to determine if they are equal.
  33798. * Constant time implementation.
  33799. *
  33800. * a First number to compare.
  33801. * b Second number to compare.
  33802. * returns 1 when equal and 0 otherwise.
  33803. */
  33804. static int sp_521_cmp_equal_21(const sp_digit* a, const sp_digit* b)
  33805. {
  33806. return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2]) |
  33807. (a[3] ^ b[3]) | (a[4] ^ b[4]) | (a[5] ^ b[5]) |
  33808. (a[6] ^ b[6]) | (a[7] ^ b[7]) | (a[8] ^ b[8]) |
  33809. (a[9] ^ b[9]) | (a[10] ^ b[10]) | (a[11] ^ b[11]) |
  33810. (a[12] ^ b[12]) | (a[13] ^ b[13]) | (a[14] ^ b[14]) |
  33811. (a[15] ^ b[15]) | (a[16] ^ b[16]) | (a[17] ^ b[17]) |
  33812. (a[18] ^ b[18]) | (a[19] ^ b[19]) | (a[20] ^ b[20])) == 0;
  33813. }
  33814. /* Returns 1 if the number of zero.
  33815. * Implementation is constant time.
  33816. *
  33817. * a Number to check.
  33818. * returns 1 if the number is zero and 0 otherwise.
  33819. */
  33820. static int sp_521_iszero_21(const sp_digit* a)
  33821. {
  33822. return (a[0] | a[1] | a[2] | a[3] | a[4] | a[5] | a[6] | a[7] |
  33823. a[8] | a[9] | a[10] | a[11] | a[12] | a[13] | a[14] | a[15] |
  33824. a[16] | a[17] | a[18] | a[19] | a[20]) == 0;
  33825. }
  33826. /* Add two Montgomery form projective points.
  33827. *
  33828. * r Result of addition.
  33829. * p First point to add.
  33830. * q Second point to add.
  33831. * t Temporary ordinate data.
  33832. */
  33833. static void sp_521_proj_point_add_21(sp_point_521* r,
  33834. const sp_point_521* p, const sp_point_521* q, sp_digit* t)
  33835. {
  33836. sp_digit* t6 = t;
  33837. sp_digit* t1 = t + 2*21;
  33838. sp_digit* t2 = t + 4*21;
  33839. sp_digit* t3 = t + 6*21;
  33840. sp_digit* t4 = t + 8*21;
  33841. sp_digit* t5 = t + 10*21;
  33842. /* U1 = X1*Z2^2 */
  33843. sp_521_mont_sqr_21(t1, q->z, p521_mod, p521_mp_mod);
  33844. sp_521_mont_mul_21(t3, t1, q->z, p521_mod, p521_mp_mod);
  33845. sp_521_mont_mul_21(t1, t1, p->x, p521_mod, p521_mp_mod);
  33846. /* U2 = X2*Z1^2 */
  33847. sp_521_mont_sqr_21(t2, p->z, p521_mod, p521_mp_mod);
  33848. sp_521_mont_mul_21(t4, t2, p->z, p521_mod, p521_mp_mod);
  33849. sp_521_mont_mul_21(t2, t2, q->x, p521_mod, p521_mp_mod);
  33850. /* S1 = Y1*Z2^3 */
  33851. sp_521_mont_mul_21(t3, t3, p->y, p521_mod, p521_mp_mod);
  33852. /* S2 = Y2*Z1^3 */
  33853. sp_521_mont_mul_21(t4, t4, q->y, p521_mod, p521_mp_mod);
  33854. /* Check double */
  33855. if ((~p->infinity) & (~q->infinity) &
  33856. sp_521_cmp_equal_21(t2, t1) &
  33857. sp_521_cmp_equal_21(t4, t3)) {
  33858. sp_521_proj_point_dbl_21(r, p, t);
  33859. }
  33860. else {
  33861. sp_digit* x = t6;
  33862. sp_digit* y = t1;
  33863. sp_digit* z = t2;
  33864. /* H = U2 - U1 */
  33865. sp_521_mont_sub_21(t2, t2, t1, p521_mod);
  33866. /* R = S2 - S1 */
  33867. sp_521_mont_sub_21(t4, t4, t3, p521_mod);
  33868. /* X3 = R^2 - H^3 - 2*U1*H^2 */
  33869. sp_521_mont_sqr_21(t5, t2, p521_mod, p521_mp_mod);
  33870. sp_521_mont_mul_21(y, t1, t5, p521_mod, p521_mp_mod);
  33871. sp_521_mont_mul_21(t5, t5, t2, p521_mod, p521_mp_mod);
  33872. /* Z3 = H*Z1*Z2 */
  33873. sp_521_mont_mul_21(z, p->z, t2, p521_mod, p521_mp_mod);
  33874. sp_521_mont_mul_21(z, z, q->z, p521_mod, p521_mp_mod);
  33875. sp_521_mont_sqr_21(x, t4, p521_mod, p521_mp_mod);
  33876. sp_521_mont_sub_21(x, x, t5, p521_mod);
  33877. sp_521_mont_mul_21(t5, t5, t3, p521_mod, p521_mp_mod);
  33878. sp_521_mont_dbl_21(t3, y, p521_mod);
  33879. sp_521_mont_sub_21(x, x, t3, p521_mod);
  33880. /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
  33881. sp_521_mont_sub_21(y, y, x, p521_mod);
  33882. sp_521_mont_mul_21(y, y, t4, p521_mod, p521_mp_mod);
  33883. sp_521_mont_sub_21(y, y, t5, p521_mod);
  33884. {
  33885. int i;
  33886. sp_digit maskp = 0 - (q->infinity & (!p->infinity));
  33887. sp_digit maskq = 0 - (p->infinity & (!q->infinity));
  33888. sp_digit maskt = ~(maskp | maskq);
  33889. sp_digit inf = (sp_digit)(p->infinity & q->infinity);
  33890. for (i = 0; i < 21; i++) {
  33891. r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
  33892. (x[i] & maskt);
  33893. }
  33894. for (i = 0; i < 21; i++) {
  33895. r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
  33896. (y[i] & maskt);
  33897. }
  33898. for (i = 0; i < 21; i++) {
  33899. r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
  33900. (z[i] & maskt);
  33901. }
  33902. r->z[0] |= inf;
  33903. r->infinity = (word32)inf;
  33904. }
  33905. }
  33906. }
  33907. #ifdef WOLFSSL_SP_NONBLOCK
  33908. typedef struct sp_521_proj_point_add_21_ctx {
  33909. int state;
  33910. sp_521_proj_point_dbl_21_ctx dbl_ctx;
  33911. const sp_point_521* ap[2];
  33912. sp_point_521* rp[2];
  33913. sp_digit* t1;
  33914. sp_digit* t2;
  33915. sp_digit* t3;
  33916. sp_digit* t4;
  33917. sp_digit* t5;
  33918. sp_digit* t6;
  33919. sp_digit* x;
  33920. sp_digit* y;
  33921. sp_digit* z;
  33922. } sp_521_proj_point_add_21_ctx;
  33923. /* Add two Montgomery form projective points.
  33924. *
  33925. * r Result of addition.
  33926. * p First point to add.
  33927. * q Second point to add.
  33928. * t Temporary ordinate data.
  33929. */
  33930. static int sp_521_proj_point_add_21_nb(sp_ecc_ctx_t* sp_ctx, sp_point_521* r,
  33931. const sp_point_521* p, const sp_point_521* q, sp_digit* t)
  33932. {
  33933. int err = FP_WOULDBLOCK;
  33934. sp_521_proj_point_add_21_ctx* ctx = (sp_521_proj_point_add_21_ctx*)sp_ctx->data;
  33935. /* Ensure only the first point is the same as the result. */
  33936. if (q == r) {
  33937. const sp_point_521* a = p;
  33938. p = q;
  33939. q = a;
  33940. }
  33941. typedef char ctx_size_test[sizeof(sp_521_proj_point_add_21_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  33942. (void)sizeof(ctx_size_test);
  33943. switch (ctx->state) {
  33944. case 0: /* INIT */
  33945. ctx->t6 = t;
  33946. ctx->t1 = t + 2*21;
  33947. ctx->t2 = t + 4*21;
  33948. ctx->t3 = t + 6*21;
  33949. ctx->t4 = t + 8*21;
  33950. ctx->t5 = t + 10*21;
  33951. ctx->x = ctx->t6;
  33952. ctx->y = ctx->t1;
  33953. ctx->z = ctx->t2;
  33954. ctx->state = 1;
  33955. break;
  33956. case 1:
  33957. /* U1 = X1*Z2^2 */
  33958. sp_521_mont_sqr_21(ctx->t1, q->z, p521_mod, p521_mp_mod);
  33959. ctx->state = 2;
  33960. break;
  33961. case 2:
  33962. sp_521_mont_mul_21(ctx->t3, ctx->t1, q->z, p521_mod, p521_mp_mod);
  33963. ctx->state = 3;
  33964. break;
  33965. case 3:
  33966. sp_521_mont_mul_21(ctx->t1, ctx->t1, p->x, p521_mod, p521_mp_mod);
  33967. ctx->state = 4;
  33968. break;
  33969. case 4:
  33970. /* U2 = X2*Z1^2 */
  33971. sp_521_mont_sqr_21(ctx->t2, p->z, p521_mod, p521_mp_mod);
  33972. ctx->state = 5;
  33973. break;
  33974. case 5:
  33975. sp_521_mont_mul_21(ctx->t4, ctx->t2, p->z, p521_mod, p521_mp_mod);
  33976. ctx->state = 6;
  33977. break;
  33978. case 6:
  33979. sp_521_mont_mul_21(ctx->t2, ctx->t2, q->x, p521_mod, p521_mp_mod);
  33980. ctx->state = 7;
  33981. break;
  33982. case 7:
  33983. /* S1 = Y1*Z2^3 */
  33984. sp_521_mont_mul_21(ctx->t3, ctx->t3, p->y, p521_mod, p521_mp_mod);
  33985. ctx->state = 8;
  33986. break;
  33987. case 8:
  33988. /* S2 = Y2*Z1^3 */
  33989. sp_521_mont_mul_21(ctx->t4, ctx->t4, q->y, p521_mod, p521_mp_mod);
  33990. ctx->state = 9;
  33991. break;
  33992. case 9:
  33993. /* Check double */
  33994. if ((~p->infinity) & (~q->infinity) &
  33995. sp_521_cmp_equal_21(ctx->t2, ctx->t1) &
  33996. sp_521_cmp_equal_21(ctx->t4, ctx->t3)) {
  33997. XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
  33998. sp_521_proj_point_dbl_21(r, p, t);
  33999. ctx->state = 25;
  34000. }
  34001. else {
  34002. ctx->state = 10;
  34003. }
  34004. break;
  34005. case 10:
  34006. /* H = U2 - U1 */
  34007. sp_521_mont_sub_21(ctx->t2, ctx->t2, ctx->t1, p521_mod);
  34008. ctx->state = 11;
  34009. break;
  34010. case 11:
  34011. /* R = S2 - S1 */
  34012. sp_521_mont_sub_21(ctx->t4, ctx->t4, ctx->t3, p521_mod);
  34013. ctx->state = 12;
  34014. break;
  34015. case 12:
  34016. /* X3 = R^2 - H^3 - 2*U1*H^2 */
  34017. sp_521_mont_sqr_21(ctx->t5, ctx->t2, p521_mod, p521_mp_mod);
  34018. ctx->state = 13;
  34019. break;
  34020. case 13:
  34021. sp_521_mont_mul_21(ctx->y, ctx->t1, ctx->t5, p521_mod, p521_mp_mod);
  34022. ctx->state = 14;
  34023. break;
  34024. case 14:
  34025. sp_521_mont_mul_21(ctx->t5, ctx->t5, ctx->t2, p521_mod, p521_mp_mod);
  34026. ctx->state = 15;
  34027. break;
  34028. case 15:
  34029. /* Z3 = H*Z1*Z2 */
  34030. sp_521_mont_mul_21(ctx->z, p->z, ctx->t2, p521_mod, p521_mp_mod);
  34031. ctx->state = 16;
  34032. break;
  34033. case 16:
  34034. sp_521_mont_mul_21(ctx->z, ctx->z, q->z, p521_mod, p521_mp_mod);
  34035. ctx->state = 17;
  34036. break;
  34037. case 17:
  34038. sp_521_mont_sqr_21(ctx->x, ctx->t4, p521_mod, p521_mp_mod);
  34039. ctx->state = 18;
  34040. break;
  34041. case 18:
  34042. sp_521_mont_sub_21(ctx->x, ctx->x, ctx->t5, p521_mod);
  34043. ctx->state = 19;
  34044. break;
  34045. case 19:
  34046. sp_521_mont_mul_21(ctx->t5, ctx->t5, ctx->t3, p521_mod, p521_mp_mod);
  34047. ctx->state = 20;
  34048. break;
  34049. case 20:
  34050. sp_521_mont_dbl_21(ctx->t3, ctx->y, p521_mod);
  34051. sp_521_mont_sub_21(ctx->x, ctx->x, ctx->t3, p521_mod);
  34052. ctx->state = 21;
  34053. break;
  34054. case 21:
  34055. /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
  34056. sp_521_mont_sub_21(ctx->y, ctx->y, ctx->x, p521_mod);
  34057. ctx->state = 22;
  34058. break;
  34059. case 22:
  34060. sp_521_mont_mul_21(ctx->y, ctx->y, ctx->t4, p521_mod, p521_mp_mod);
  34061. ctx->state = 23;
  34062. break;
  34063. case 23:
  34064. sp_521_mont_sub_21(ctx->y, ctx->y, ctx->t5, p521_mod);
  34065. ctx->state = 24;
  34066. break;
  34067. case 24:
  34068. {
  34069. {
  34070. int i;
  34071. sp_digit maskp = 0 - (q->infinity & (!p->infinity));
  34072. sp_digit maskq = 0 - (p->infinity & (!q->infinity));
  34073. sp_digit maskt = ~(maskp | maskq);
  34074. sp_digit inf = (sp_digit)(p->infinity & q->infinity);
  34075. for (i = 0; i < 21; i++) {
  34076. r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
  34077. (ctx->x[i] & maskt);
  34078. }
  34079. for (i = 0; i < 21; i++) {
  34080. r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
  34081. (ctx->y[i] & maskt);
  34082. }
  34083. for (i = 0; i < 21; i++) {
  34084. r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
  34085. (ctx->z[i] & maskt);
  34086. }
  34087. r->z[0] |= inf;
  34088. r->infinity = (word32)inf;
  34089. }
  34090. ctx->state = 25;
  34091. break;
  34092. }
  34093. case 25:
  34094. err = MP_OKAY;
  34095. break;
  34096. }
  34097. if (err == MP_OKAY && ctx->state != 25) {
  34098. err = FP_WOULDBLOCK;
  34099. }
  34100. return err;
  34101. }
  34102. #endif /* WOLFSSL_SP_NONBLOCK */
  34103. /* Multiply a number by Montgomery normalizer mod modulus (prime).
  34104. *
  34105. * r The resulting Montgomery form number.
  34106. * a The number to convert.
  34107. * m The modulus (prime).
  34108. * returns MEMORY_E when memory allocation fails and MP_OKAY otherwise.
  34109. */
  34110. static int sp_521_mod_mul_norm_21(sp_digit* r, const sp_digit* a, const sp_digit* m)
  34111. {
  34112. (void)m;
  34113. if (r != a) {
  34114. XMEMCPY(r, a, 21 * sizeof(sp_digit));
  34115. }
  34116. return MP_OKAY;
  34117. }
  34118. #ifdef WOLFSSL_SP_SMALL
  34119. /* Multiply the point by the scalar and return the result.
  34120. * If map is true then convert result to affine coordinates.
  34121. *
  34122. * Small implementation using add and double that is cache attack resistant but
  34123. * allocates memory rather than use large stacks.
  34124. * 521 adds and doubles.
  34125. *
  34126. * r Resulting point.
  34127. * g Point to multiply.
  34128. * k Scalar to multiply by.
  34129. * map Indicates whether to convert result to affine.
  34130. * ct Constant time required.
  34131. * heap Heap to use for allocation.
  34132. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  34133. */
  34134. static int sp_521_ecc_mulmod_21(sp_point_521* r, const sp_point_521* g,
  34135. const sp_digit* k, int map, int ct, void* heap)
  34136. {
  34137. #ifdef WOLFSSL_SP_SMALL_STACK
  34138. sp_point_521* t = NULL;
  34139. sp_digit* tmp = NULL;
  34140. #else
  34141. sp_point_521 t[3];
  34142. sp_digit tmp[2 * 21 * 6];
  34143. #endif
  34144. sp_digit n;
  34145. int i;
  34146. int c;
  34147. int y;
  34148. int err = MP_OKAY;
  34149. /* Implementation is constant time. */
  34150. (void)ct;
  34151. (void)heap;
  34152. #ifdef WOLFSSL_SP_SMALL_STACK
  34153. t = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 3, heap,
  34154. DYNAMIC_TYPE_ECC);
  34155. if (t == NULL)
  34156. err = MEMORY_E;
  34157. if (err == MP_OKAY) {
  34158. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 6, heap,
  34159. DYNAMIC_TYPE_ECC);
  34160. if (tmp == NULL)
  34161. err = MEMORY_E;
  34162. }
  34163. #endif
  34164. if (err == MP_OKAY) {
  34165. XMEMSET(t, 0, sizeof(sp_point_521) * 3);
  34166. /* t[0] = {0, 0, 1} * norm */
  34167. t[0].infinity = 1;
  34168. /* t[1] = {g->x, g->y, g->z} * norm */
  34169. err = sp_521_mod_mul_norm_21(t[1].x, g->x, p521_mod);
  34170. }
  34171. if (err == MP_OKAY)
  34172. err = sp_521_mod_mul_norm_21(t[1].y, g->y, p521_mod);
  34173. if (err == MP_OKAY)
  34174. err = sp_521_mod_mul_norm_21(t[1].z, g->z, p521_mod);
  34175. if (err == MP_OKAY) {
  34176. i = 20;
  34177. c = 21;
  34178. n = k[i--] << (25 - c);
  34179. for (; ; c--) {
  34180. if (c == 0) {
  34181. if (i == -1)
  34182. break;
  34183. n = k[i--];
  34184. c = 25;
  34185. }
  34186. y = (n >> 24) & 1;
  34187. n <<= 1;
  34188. sp_521_proj_point_add_21(&t[y^1], &t[0], &t[1], tmp);
  34189. XMEMCPY(&t[2], (void*)(((size_t)&t[0] & addr_mask[y^1]) +
  34190. ((size_t)&t[1] & addr_mask[y])),
  34191. sizeof(sp_point_521));
  34192. sp_521_proj_point_dbl_21(&t[2], &t[2], tmp);
  34193. XMEMCPY((void*)(((size_t)&t[0] & addr_mask[y^1]) +
  34194. ((size_t)&t[1] & addr_mask[y])), &t[2],
  34195. sizeof(sp_point_521));
  34196. }
  34197. if (map != 0) {
  34198. sp_521_map_21(r, &t[0], tmp);
  34199. }
  34200. else {
  34201. XMEMCPY(r, &t[0], sizeof(sp_point_521));
  34202. }
  34203. }
  34204. #ifdef WOLFSSL_SP_SMALL_STACK
  34205. if (tmp != NULL)
  34206. #endif
  34207. {
  34208. ForceZero(tmp, sizeof(sp_digit) * 2 * 21 * 6);
  34209. #ifdef WOLFSSL_SP_SMALL_STACK
  34210. XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
  34211. #endif
  34212. }
  34213. #ifdef WOLFSSL_SP_SMALL_STACK
  34214. if (t != NULL)
  34215. #endif
  34216. {
  34217. ForceZero(t, sizeof(sp_point_521) * 3);
  34218. #ifdef WOLFSSL_SP_SMALL_STACK
  34219. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  34220. #endif
  34221. }
  34222. return err;
  34223. }
  34224. #ifdef WOLFSSL_SP_NONBLOCK
  34225. typedef struct sp_521_ecc_mulmod_21_ctx {
  34226. int state;
  34227. union {
  34228. sp_521_proj_point_dbl_21_ctx dbl_ctx;
  34229. sp_521_proj_point_add_21_ctx add_ctx;
  34230. };
  34231. sp_point_521 t[3];
  34232. sp_digit tmp[2 * 21 * 6];
  34233. sp_digit n;
  34234. int i;
  34235. int c;
  34236. int y;
  34237. } sp_521_ecc_mulmod_21_ctx;
  34238. static int sp_521_ecc_mulmod_21_nb(sp_ecc_ctx_t* sp_ctx, sp_point_521* r,
  34239. const sp_point_521* g, const sp_digit* k, int map, int ct, void* heap)
  34240. {
  34241. int err = FP_WOULDBLOCK;
  34242. sp_521_ecc_mulmod_21_ctx* ctx = (sp_521_ecc_mulmod_21_ctx*)sp_ctx->data;
  34243. typedef char ctx_size_test[sizeof(sp_521_ecc_mulmod_21_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  34244. (void)sizeof(ctx_size_test);
  34245. /* Implementation is constant time. */
  34246. (void)ct;
  34247. switch (ctx->state) {
  34248. case 0: /* INIT */
  34249. XMEMSET(ctx->t, 0, sizeof(sp_point_521) * 3);
  34250. ctx->i = 20;
  34251. ctx->c = 21;
  34252. ctx->n = k[ctx->i--] << (25 - ctx->c);
  34253. /* t[0] = {0, 0, 1} * norm */
  34254. ctx->t[0].infinity = 1;
  34255. ctx->state = 1;
  34256. break;
  34257. case 1: /* T1X */
  34258. /* t[1] = {g->x, g->y, g->z} * norm */
  34259. err = sp_521_mod_mul_norm_21(ctx->t[1].x, g->x, p521_mod);
  34260. ctx->state = 2;
  34261. break;
  34262. case 2: /* T1Y */
  34263. err = sp_521_mod_mul_norm_21(ctx->t[1].y, g->y, p521_mod);
  34264. ctx->state = 3;
  34265. break;
  34266. case 3: /* T1Z */
  34267. err = sp_521_mod_mul_norm_21(ctx->t[1].z, g->z, p521_mod);
  34268. ctx->state = 4;
  34269. break;
  34270. case 4: /* ADDPREP */
  34271. if (ctx->c == 0) {
  34272. if (ctx->i == -1) {
  34273. ctx->state = 7;
  34274. break;
  34275. }
  34276. ctx->n = k[ctx->i--];
  34277. ctx->c = 25;
  34278. }
  34279. ctx->y = (ctx->n >> 24) & 1;
  34280. ctx->n <<= 1;
  34281. XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
  34282. ctx->state = 5;
  34283. break;
  34284. case 5: /* ADD */
  34285. err = sp_521_proj_point_add_21_nb((sp_ecc_ctx_t*)&ctx->add_ctx,
  34286. &ctx->t[ctx->y^1], &ctx->t[0], &ctx->t[1], ctx->tmp);
  34287. if (err == MP_OKAY) {
  34288. XMEMCPY(&ctx->t[2], (void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
  34289. ((size_t)&ctx->t[1] & addr_mask[ctx->y])),
  34290. sizeof(sp_point_521));
  34291. XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
  34292. ctx->state = 6;
  34293. }
  34294. break;
  34295. case 6: /* DBL */
  34296. err = sp_521_proj_point_dbl_21_nb((sp_ecc_ctx_t*)&ctx->dbl_ctx, &ctx->t[2],
  34297. &ctx->t[2], ctx->tmp);
  34298. if (err == MP_OKAY) {
  34299. XMEMCPY((void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
  34300. ((size_t)&ctx->t[1] & addr_mask[ctx->y])), &ctx->t[2],
  34301. sizeof(sp_point_521));
  34302. ctx->state = 4;
  34303. ctx->c--;
  34304. }
  34305. break;
  34306. case 7: /* MAP */
  34307. if (map != 0) {
  34308. sp_521_map_21(r, &ctx->t[0], ctx->tmp);
  34309. }
  34310. else {
  34311. XMEMCPY(r, &ctx->t[0], sizeof(sp_point_521));
  34312. }
  34313. err = MP_OKAY;
  34314. break;
  34315. }
  34316. if (err == MP_OKAY && ctx->state != 7) {
  34317. err = FP_WOULDBLOCK;
  34318. }
  34319. if (err != FP_WOULDBLOCK) {
  34320. ForceZero(ctx->tmp, sizeof(ctx->tmp));
  34321. ForceZero(ctx->t, sizeof(ctx->t));
  34322. }
  34323. (void)heap;
  34324. return err;
  34325. }
  34326. #endif /* WOLFSSL_SP_NONBLOCK */
  34327. #else
  34328. /* A table entry for pre-computed points. */
  34329. typedef struct sp_table_entry_521 {
  34330. sp_digit x[21];
  34331. sp_digit y[21];
  34332. } sp_table_entry_521;
  34333. /* Conditionally copy a into r using the mask m.
  34334. * m is -1 to copy and 0 when not.
  34335. *
  34336. * r A single precision number to copy over.
  34337. * a A single precision number to copy.
  34338. * m Mask value to apply.
  34339. */
  34340. static void sp_521_cond_copy_21(sp_digit* r, const sp_digit* a, const sp_digit m)
  34341. {
  34342. sp_digit t[21];
  34343. #ifdef WOLFSSL_SP_SMALL
  34344. int i;
  34345. for (i = 0; i < 21; i++) {
  34346. t[i] = r[i] ^ a[i];
  34347. }
  34348. for (i = 0; i < 21; i++) {
  34349. r[i] ^= t[i] & m;
  34350. }
  34351. #else
  34352. t[ 0] = r[ 0] ^ a[ 0];
  34353. t[ 1] = r[ 1] ^ a[ 1];
  34354. t[ 2] = r[ 2] ^ a[ 2];
  34355. t[ 3] = r[ 3] ^ a[ 3];
  34356. t[ 4] = r[ 4] ^ a[ 4];
  34357. t[ 5] = r[ 5] ^ a[ 5];
  34358. t[ 6] = r[ 6] ^ a[ 6];
  34359. t[ 7] = r[ 7] ^ a[ 7];
  34360. t[ 8] = r[ 8] ^ a[ 8];
  34361. t[ 9] = r[ 9] ^ a[ 9];
  34362. t[10] = r[10] ^ a[10];
  34363. t[11] = r[11] ^ a[11];
  34364. t[12] = r[12] ^ a[12];
  34365. t[13] = r[13] ^ a[13];
  34366. t[14] = r[14] ^ a[14];
  34367. t[15] = r[15] ^ a[15];
  34368. t[16] = r[16] ^ a[16];
  34369. t[17] = r[17] ^ a[17];
  34370. t[18] = r[18] ^ a[18];
  34371. t[19] = r[19] ^ a[19];
  34372. t[20] = r[20] ^ a[20];
  34373. r[ 0] ^= t[ 0] & m;
  34374. r[ 1] ^= t[ 1] & m;
  34375. r[ 2] ^= t[ 2] & m;
  34376. r[ 3] ^= t[ 3] & m;
  34377. r[ 4] ^= t[ 4] & m;
  34378. r[ 5] ^= t[ 5] & m;
  34379. r[ 6] ^= t[ 6] & m;
  34380. r[ 7] ^= t[ 7] & m;
  34381. r[ 8] ^= t[ 8] & m;
  34382. r[ 9] ^= t[ 9] & m;
  34383. r[10] ^= t[10] & m;
  34384. r[11] ^= t[11] & m;
  34385. r[12] ^= t[12] & m;
  34386. r[13] ^= t[13] & m;
  34387. r[14] ^= t[14] & m;
  34388. r[15] ^= t[15] & m;
  34389. r[16] ^= t[16] & m;
  34390. r[17] ^= t[17] & m;
  34391. r[18] ^= t[18] & m;
  34392. r[19] ^= t[19] & m;
  34393. r[20] ^= t[20] & m;
  34394. #endif /* WOLFSSL_SP_SMALL */
  34395. }
  34396. /* Double the Montgomery form projective point p a number of times.
  34397. *
  34398. * r Result of repeated doubling of point.
  34399. * p Point to double.
  34400. * n Number of times to double
  34401. * t Temporary ordinate data.
  34402. */
  34403. static void sp_521_proj_point_dbl_n_21(sp_point_521* p, int i,
  34404. sp_digit* t)
  34405. {
  34406. sp_digit* w = t;
  34407. sp_digit* a = t + 2*21;
  34408. sp_digit* b = t + 4*21;
  34409. sp_digit* t1 = t + 6*21;
  34410. sp_digit* t2 = t + 8*21;
  34411. sp_digit* x;
  34412. sp_digit* y;
  34413. sp_digit* z;
  34414. volatile int n = i;
  34415. x = p->x;
  34416. y = p->y;
  34417. z = p->z;
  34418. /* Y = 2*Y */
  34419. sp_521_mont_dbl_21(y, y, p521_mod);
  34420. /* W = Z^4 */
  34421. sp_521_mont_sqr_21(w, z, p521_mod, p521_mp_mod);
  34422. sp_521_mont_sqr_21(w, w, p521_mod, p521_mp_mod);
  34423. #ifndef WOLFSSL_SP_SMALL
  34424. while (--n > 0)
  34425. #else
  34426. while (--n >= 0)
  34427. #endif
  34428. {
  34429. /* A = 3*(X^2 - W) */
  34430. sp_521_mont_sqr_21(t1, x, p521_mod, p521_mp_mod);
  34431. sp_521_mont_sub_21(t1, t1, w, p521_mod);
  34432. sp_521_mont_tpl_21(a, t1, p521_mod);
  34433. /* B = X*Y^2 */
  34434. sp_521_mont_sqr_21(t1, y, p521_mod, p521_mp_mod);
  34435. sp_521_mont_mul_21(b, t1, x, p521_mod, p521_mp_mod);
  34436. /* X = A^2 - 2B */
  34437. sp_521_mont_sqr_21(x, a, p521_mod, p521_mp_mod);
  34438. sp_521_mont_dbl_21(t2, b, p521_mod);
  34439. sp_521_mont_sub_21(x, x, t2, p521_mod);
  34440. /* B = 2.(B - X) */
  34441. sp_521_mont_sub_21(t2, b, x, p521_mod);
  34442. sp_521_mont_dbl_21(b, t2, p521_mod);
  34443. /* Z = Z*Y */
  34444. sp_521_mont_mul_21(z, z, y, p521_mod, p521_mp_mod);
  34445. /* t1 = Y^4 */
  34446. sp_521_mont_sqr_21(t1, t1, p521_mod, p521_mp_mod);
  34447. #ifdef WOLFSSL_SP_SMALL
  34448. if (n != 0)
  34449. #endif
  34450. {
  34451. /* W = W*Y^4 */
  34452. sp_521_mont_mul_21(w, w, t1, p521_mod, p521_mp_mod);
  34453. }
  34454. /* y = 2*A*(B - X) - Y^4 */
  34455. sp_521_mont_mul_21(y, b, a, p521_mod, p521_mp_mod);
  34456. sp_521_mont_sub_21(y, y, t1, p521_mod);
  34457. }
  34458. #ifndef WOLFSSL_SP_SMALL
  34459. /* A = 3*(X^2 - W) */
  34460. sp_521_mont_sqr_21(t1, x, p521_mod, p521_mp_mod);
  34461. sp_521_mont_sub_21(t1, t1, w, p521_mod);
  34462. sp_521_mont_tpl_21(a, t1, p521_mod);
  34463. /* B = X*Y^2 */
  34464. sp_521_mont_sqr_21(t1, y, p521_mod, p521_mp_mod);
  34465. sp_521_mont_mul_21(b, t1, x, p521_mod, p521_mp_mod);
  34466. /* X = A^2 - 2B */
  34467. sp_521_mont_sqr_21(x, a, p521_mod, p521_mp_mod);
  34468. sp_521_mont_dbl_21(t2, b, p521_mod);
  34469. sp_521_mont_sub_21(x, x, t2, p521_mod);
  34470. /* B = 2.(B - X) */
  34471. sp_521_mont_sub_21(t2, b, x, p521_mod);
  34472. sp_521_mont_dbl_21(b, t2, p521_mod);
  34473. /* Z = Z*Y */
  34474. sp_521_mont_mul_21(z, z, y, p521_mod, p521_mp_mod);
  34475. /* t1 = Y^4 */
  34476. sp_521_mont_sqr_21(t1, t1, p521_mod, p521_mp_mod);
  34477. /* y = 2*A*(B - X) - Y^4 */
  34478. sp_521_mont_mul_21(y, b, a, p521_mod, p521_mp_mod);
  34479. sp_521_mont_sub_21(y, y, t1, p521_mod);
  34480. #endif /* WOLFSSL_SP_SMALL */
  34481. /* Y = Y/2 */
  34482. sp_521_mont_div2_21(y, y, p521_mod);
  34483. }
  34484. /* Double the Montgomery form projective point p a number of times.
  34485. *
  34486. * r Result of repeated doubling of point.
  34487. * p Point to double.
  34488. * n Number of times to double
  34489. * t Temporary ordinate data.
  34490. */
  34491. static void sp_521_proj_point_dbl_n_store_21(sp_point_521* r,
  34492. const sp_point_521* p, int n, int m, sp_digit* t)
  34493. {
  34494. sp_digit* w = t;
  34495. sp_digit* a = t + 2*21;
  34496. sp_digit* b = t + 4*21;
  34497. sp_digit* t1 = t + 6*21;
  34498. sp_digit* t2 = t + 8*21;
  34499. sp_digit* x = r[2*m].x;
  34500. sp_digit* y = r[(1<<n)*m].y;
  34501. sp_digit* z = r[2*m].z;
  34502. int i;
  34503. int j;
  34504. for (i=0; i<21; i++) {
  34505. x[i] = p->x[i];
  34506. }
  34507. for (i=0; i<21; i++) {
  34508. y[i] = p->y[i];
  34509. }
  34510. for (i=0; i<21; i++) {
  34511. z[i] = p->z[i];
  34512. }
  34513. /* Y = 2*Y */
  34514. sp_521_mont_dbl_21(y, y, p521_mod);
  34515. /* W = Z^4 */
  34516. sp_521_mont_sqr_21(w, z, p521_mod, p521_mp_mod);
  34517. sp_521_mont_sqr_21(w, w, p521_mod, p521_mp_mod);
  34518. j = m;
  34519. for (i=1; i<=n; i++) {
  34520. j *= 2;
  34521. /* A = 3*(X^2 - W) */
  34522. sp_521_mont_sqr_21(t1, x, p521_mod, p521_mp_mod);
  34523. sp_521_mont_sub_21(t1, t1, w, p521_mod);
  34524. sp_521_mont_tpl_21(a, t1, p521_mod);
  34525. /* B = X*Y^2 */
  34526. sp_521_mont_sqr_21(t1, y, p521_mod, p521_mp_mod);
  34527. sp_521_mont_mul_21(b, t1, x, p521_mod, p521_mp_mod);
  34528. x = r[j].x;
  34529. /* X = A^2 - 2B */
  34530. sp_521_mont_sqr_21(x, a, p521_mod, p521_mp_mod);
  34531. sp_521_mont_dbl_21(t2, b, p521_mod);
  34532. sp_521_mont_sub_21(x, x, t2, p521_mod);
  34533. /* B = 2.(B - X) */
  34534. sp_521_mont_sub_21(t2, b, x, p521_mod);
  34535. sp_521_mont_dbl_21(b, t2, p521_mod);
  34536. /* Z = Z*Y */
  34537. sp_521_mont_mul_21(r[j].z, z, y, p521_mod, p521_mp_mod);
  34538. z = r[j].z;
  34539. /* t1 = Y^4 */
  34540. sp_521_mont_sqr_21(t1, t1, p521_mod, p521_mp_mod);
  34541. if (i != n) {
  34542. /* W = W*Y^4 */
  34543. sp_521_mont_mul_21(w, w, t1, p521_mod, p521_mp_mod);
  34544. }
  34545. /* y = 2*A*(B - X) - Y^4 */
  34546. sp_521_mont_mul_21(y, b, a, p521_mod, p521_mp_mod);
  34547. sp_521_mont_sub_21(y, y, t1, p521_mod);
  34548. /* Y = Y/2 */
  34549. sp_521_mont_div2_21(r[j].y, y, p521_mod);
  34550. r[j].infinity = 0;
  34551. }
  34552. }
  34553. /* Add two Montgomery form projective points.
  34554. *
  34555. * ra Result of addition.
  34556. * rs Result of subtraction.
  34557. * p First point to add.
  34558. * q Second point to add.
  34559. * t Temporary ordinate data.
  34560. */
  34561. static void sp_521_proj_point_add_sub_21(sp_point_521* ra,
  34562. sp_point_521* rs, const sp_point_521* p, const sp_point_521* q,
  34563. sp_digit* t)
  34564. {
  34565. sp_digit* t1 = t;
  34566. sp_digit* t2 = t + 2*21;
  34567. sp_digit* t3 = t + 4*21;
  34568. sp_digit* t4 = t + 6*21;
  34569. sp_digit* t5 = t + 8*21;
  34570. sp_digit* t6 = t + 10*21;
  34571. sp_digit* xa = ra->x;
  34572. sp_digit* ya = ra->y;
  34573. sp_digit* za = ra->z;
  34574. sp_digit* xs = rs->x;
  34575. sp_digit* ys = rs->y;
  34576. sp_digit* zs = rs->z;
  34577. XMEMCPY(xa, p->x, sizeof(p->x) / 2);
  34578. XMEMCPY(ya, p->y, sizeof(p->y) / 2);
  34579. XMEMCPY(za, p->z, sizeof(p->z) / 2);
  34580. ra->infinity = 0;
  34581. rs->infinity = 0;
  34582. /* U1 = X1*Z2^2 */
  34583. sp_521_mont_sqr_21(t1, q->z, p521_mod, p521_mp_mod);
  34584. sp_521_mont_mul_21(t3, t1, q->z, p521_mod, p521_mp_mod);
  34585. sp_521_mont_mul_21(t1, t1, xa, p521_mod, p521_mp_mod);
  34586. /* U2 = X2*Z1^2 */
  34587. sp_521_mont_sqr_21(t2, za, p521_mod, p521_mp_mod);
  34588. sp_521_mont_mul_21(t4, t2, za, p521_mod, p521_mp_mod);
  34589. sp_521_mont_mul_21(t2, t2, q->x, p521_mod, p521_mp_mod);
  34590. /* S1 = Y1*Z2^3 */
  34591. sp_521_mont_mul_21(t3, t3, ya, p521_mod, p521_mp_mod);
  34592. /* S2 = Y2*Z1^3 */
  34593. sp_521_mont_mul_21(t4, t4, q->y, p521_mod, p521_mp_mod);
  34594. /* H = U2 - U1 */
  34595. sp_521_mont_sub_21(t2, t2, t1, p521_mod);
  34596. /* RS = S2 + S1 */
  34597. sp_521_mont_add_21(t6, t4, t3, p521_mod);
  34598. /* R = S2 - S1 */
  34599. sp_521_mont_sub_21(t4, t4, t3, p521_mod);
  34600. /* Z3 = H*Z1*Z2 */
  34601. /* ZS = H*Z1*Z2 */
  34602. sp_521_mont_mul_21(za, za, q->z, p521_mod, p521_mp_mod);
  34603. sp_521_mont_mul_21(za, za, t2, p521_mod, p521_mp_mod);
  34604. XMEMCPY(zs, za, sizeof(p->z)/2);
  34605. /* X3 = R^2 - H^3 - 2*U1*H^2 */
  34606. /* XS = RS^2 - H^3 - 2*U1*H^2 */
  34607. sp_521_mont_sqr_21(xa, t4, p521_mod, p521_mp_mod);
  34608. sp_521_mont_sqr_21(xs, t6, p521_mod, p521_mp_mod);
  34609. sp_521_mont_sqr_21(t5, t2, p521_mod, p521_mp_mod);
  34610. sp_521_mont_mul_21(ya, t1, t5, p521_mod, p521_mp_mod);
  34611. sp_521_mont_mul_21(t5, t5, t2, p521_mod, p521_mp_mod);
  34612. sp_521_mont_sub_21(xa, xa, t5, p521_mod);
  34613. sp_521_mont_sub_21(xs, xs, t5, p521_mod);
  34614. sp_521_mont_dbl_21(t1, ya, p521_mod);
  34615. sp_521_mont_sub_21(xa, xa, t1, p521_mod);
  34616. sp_521_mont_sub_21(xs, xs, t1, p521_mod);
  34617. /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
  34618. /* YS = -RS*(U1*H^2 - XS) - S1*H^3 */
  34619. sp_521_mont_sub_21(ys, ya, xs, p521_mod);
  34620. sp_521_mont_sub_21(ya, ya, xa, p521_mod);
  34621. sp_521_mont_mul_21(ya, ya, t4, p521_mod, p521_mp_mod);
  34622. sp_521_sub_21(t6, p521_mod, t6);
  34623. sp_521_mont_mul_21(ys, ys, t6, p521_mod, p521_mp_mod);
  34624. sp_521_mont_mul_21(t5, t5, t3, p521_mod, p521_mp_mod);
  34625. sp_521_mont_sub_21(ya, ya, t5, p521_mod);
  34626. sp_521_mont_sub_21(ys, ys, t5, p521_mod);
  34627. }
  34628. /* Structure used to describe recoding of scalar multiplication. */
  34629. typedef struct ecc_recode_521 {
  34630. /* Index into pre-computation table. */
  34631. uint8_t i;
  34632. /* Use the negative of the point. */
  34633. uint8_t neg;
  34634. } ecc_recode_521;
  34635. /* The index into pre-computation table to use. */
  34636. static const uint8_t recode_index_21_6[66] = {
  34637. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  34638. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  34639. 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
  34640. 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
  34641. 0, 1,
  34642. };
  34643. /* Whether to negate y-ordinate. */
  34644. static const uint8_t recode_neg_21_6[66] = {
  34645. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  34646. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  34647. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  34648. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  34649. 0, 0,
  34650. };
  34651. /* Recode the scalar for multiplication using pre-computed values and
  34652. * subtraction.
  34653. *
  34654. * k Scalar to multiply by.
  34655. * v Vector of operations to perform.
  34656. */
  34657. static void sp_521_ecc_recode_6_21(const sp_digit* k, ecc_recode_521* v)
  34658. {
  34659. int i;
  34660. int j;
  34661. uint8_t y;
  34662. int carry = 0;
  34663. int o;
  34664. sp_digit n;
  34665. j = 0;
  34666. n = k[j];
  34667. o = 0;
  34668. for (i=0; i<87; i++) {
  34669. y = (int8_t)n;
  34670. if (o + 6 < 25) {
  34671. y &= 0x3f;
  34672. n >>= 6;
  34673. o += 6;
  34674. }
  34675. else if (o + 6 == 25) {
  34676. n >>= 6;
  34677. if (++j < 21)
  34678. n = k[j];
  34679. o = 0;
  34680. }
  34681. else if (++j < 21) {
  34682. n = k[j];
  34683. y |= (uint8_t)((n << (25 - o)) & 0x3f);
  34684. o -= 19;
  34685. n >>= o;
  34686. }
  34687. y += (uint8_t)carry;
  34688. v[i].i = recode_index_21_6[y];
  34689. v[i].neg = recode_neg_21_6[y];
  34690. carry = (y >> 6) + v[i].neg;
  34691. }
  34692. }
  34693. #ifndef WC_NO_CACHE_RESISTANT
  34694. /* Touch each possible point that could be being copied.
  34695. *
  34696. * r Point to copy into.
  34697. * table Table - start of the entries to access
  34698. * idx Index of entry to retrieve.
  34699. */
  34700. static void sp_521_get_point_33_21(sp_point_521* r, const sp_point_521* table,
  34701. int idx)
  34702. {
  34703. int i;
  34704. sp_digit mask;
  34705. r->x[0] = 0;
  34706. r->x[1] = 0;
  34707. r->x[2] = 0;
  34708. r->x[3] = 0;
  34709. r->x[4] = 0;
  34710. r->x[5] = 0;
  34711. r->x[6] = 0;
  34712. r->x[7] = 0;
  34713. r->x[8] = 0;
  34714. r->x[9] = 0;
  34715. r->x[10] = 0;
  34716. r->x[11] = 0;
  34717. r->x[12] = 0;
  34718. r->x[13] = 0;
  34719. r->x[14] = 0;
  34720. r->x[15] = 0;
  34721. r->x[16] = 0;
  34722. r->x[17] = 0;
  34723. r->x[18] = 0;
  34724. r->x[19] = 0;
  34725. r->x[20] = 0;
  34726. r->y[0] = 0;
  34727. r->y[1] = 0;
  34728. r->y[2] = 0;
  34729. r->y[3] = 0;
  34730. r->y[4] = 0;
  34731. r->y[5] = 0;
  34732. r->y[6] = 0;
  34733. r->y[7] = 0;
  34734. r->y[8] = 0;
  34735. r->y[9] = 0;
  34736. r->y[10] = 0;
  34737. r->y[11] = 0;
  34738. r->y[12] = 0;
  34739. r->y[13] = 0;
  34740. r->y[14] = 0;
  34741. r->y[15] = 0;
  34742. r->y[16] = 0;
  34743. r->y[17] = 0;
  34744. r->y[18] = 0;
  34745. r->y[19] = 0;
  34746. r->y[20] = 0;
  34747. r->z[0] = 0;
  34748. r->z[1] = 0;
  34749. r->z[2] = 0;
  34750. r->z[3] = 0;
  34751. r->z[4] = 0;
  34752. r->z[5] = 0;
  34753. r->z[6] = 0;
  34754. r->z[7] = 0;
  34755. r->z[8] = 0;
  34756. r->z[9] = 0;
  34757. r->z[10] = 0;
  34758. r->z[11] = 0;
  34759. r->z[12] = 0;
  34760. r->z[13] = 0;
  34761. r->z[14] = 0;
  34762. r->z[15] = 0;
  34763. r->z[16] = 0;
  34764. r->z[17] = 0;
  34765. r->z[18] = 0;
  34766. r->z[19] = 0;
  34767. r->z[20] = 0;
  34768. for (i = 1; i < 33; i++) {
  34769. mask = 0 - (i == idx);
  34770. r->x[0] |= mask & table[i].x[0];
  34771. r->x[1] |= mask & table[i].x[1];
  34772. r->x[2] |= mask & table[i].x[2];
  34773. r->x[3] |= mask & table[i].x[3];
  34774. r->x[4] |= mask & table[i].x[4];
  34775. r->x[5] |= mask & table[i].x[5];
  34776. r->x[6] |= mask & table[i].x[6];
  34777. r->x[7] |= mask & table[i].x[7];
  34778. r->x[8] |= mask & table[i].x[8];
  34779. r->x[9] |= mask & table[i].x[9];
  34780. r->x[10] |= mask & table[i].x[10];
  34781. r->x[11] |= mask & table[i].x[11];
  34782. r->x[12] |= mask & table[i].x[12];
  34783. r->x[13] |= mask & table[i].x[13];
  34784. r->x[14] |= mask & table[i].x[14];
  34785. r->x[15] |= mask & table[i].x[15];
  34786. r->x[16] |= mask & table[i].x[16];
  34787. r->x[17] |= mask & table[i].x[17];
  34788. r->x[18] |= mask & table[i].x[18];
  34789. r->x[19] |= mask & table[i].x[19];
  34790. r->x[20] |= mask & table[i].x[20];
  34791. r->y[0] |= mask & table[i].y[0];
  34792. r->y[1] |= mask & table[i].y[1];
  34793. r->y[2] |= mask & table[i].y[2];
  34794. r->y[3] |= mask & table[i].y[3];
  34795. r->y[4] |= mask & table[i].y[4];
  34796. r->y[5] |= mask & table[i].y[5];
  34797. r->y[6] |= mask & table[i].y[6];
  34798. r->y[7] |= mask & table[i].y[7];
  34799. r->y[8] |= mask & table[i].y[8];
  34800. r->y[9] |= mask & table[i].y[9];
  34801. r->y[10] |= mask & table[i].y[10];
  34802. r->y[11] |= mask & table[i].y[11];
  34803. r->y[12] |= mask & table[i].y[12];
  34804. r->y[13] |= mask & table[i].y[13];
  34805. r->y[14] |= mask & table[i].y[14];
  34806. r->y[15] |= mask & table[i].y[15];
  34807. r->y[16] |= mask & table[i].y[16];
  34808. r->y[17] |= mask & table[i].y[17];
  34809. r->y[18] |= mask & table[i].y[18];
  34810. r->y[19] |= mask & table[i].y[19];
  34811. r->y[20] |= mask & table[i].y[20];
  34812. r->z[0] |= mask & table[i].z[0];
  34813. r->z[1] |= mask & table[i].z[1];
  34814. r->z[2] |= mask & table[i].z[2];
  34815. r->z[3] |= mask & table[i].z[3];
  34816. r->z[4] |= mask & table[i].z[4];
  34817. r->z[5] |= mask & table[i].z[5];
  34818. r->z[6] |= mask & table[i].z[6];
  34819. r->z[7] |= mask & table[i].z[7];
  34820. r->z[8] |= mask & table[i].z[8];
  34821. r->z[9] |= mask & table[i].z[9];
  34822. r->z[10] |= mask & table[i].z[10];
  34823. r->z[11] |= mask & table[i].z[11];
  34824. r->z[12] |= mask & table[i].z[12];
  34825. r->z[13] |= mask & table[i].z[13];
  34826. r->z[14] |= mask & table[i].z[14];
  34827. r->z[15] |= mask & table[i].z[15];
  34828. r->z[16] |= mask & table[i].z[16];
  34829. r->z[17] |= mask & table[i].z[17];
  34830. r->z[18] |= mask & table[i].z[18];
  34831. r->z[19] |= mask & table[i].z[19];
  34832. r->z[20] |= mask & table[i].z[20];
  34833. }
  34834. }
  34835. #endif /* !WC_NO_CACHE_RESISTANT */
  34836. /* Multiply the point by the scalar and return the result.
  34837. * If map is true then convert result to affine coordinates.
  34838. *
  34839. * Window technique of 6 bits. (Add-Sub variation.)
  34840. * Calculate 0..32 times the point. Use function that adds and
  34841. * subtracts the same two points.
  34842. * Recode to add or subtract one of the computed points.
  34843. * Double to push up.
  34844. * NOT a sliding window.
  34845. *
  34846. * r Resulting point.
  34847. * g Point to multiply.
  34848. * k Scalar to multiply by.
  34849. * map Indicates whether to convert result to affine.
  34850. * ct Constant time required.
  34851. * heap Heap to use for allocation.
  34852. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  34853. */
  34854. static int sp_521_ecc_mulmod_win_add_sub_21(sp_point_521* r, const sp_point_521* g,
  34855. const sp_digit* k, int map, int ct, void* heap)
  34856. {
  34857. #ifdef WOLFSSL_SP_SMALL_STACK
  34858. sp_point_521* t = NULL;
  34859. sp_digit* tmp = NULL;
  34860. #else
  34861. sp_point_521 t[33+2];
  34862. sp_digit tmp[2 * 21 * 6];
  34863. #endif
  34864. sp_point_521* rt = NULL;
  34865. sp_point_521* p = NULL;
  34866. sp_digit* negy;
  34867. int i;
  34868. ecc_recode_521 v[87];
  34869. int err = MP_OKAY;
  34870. /* Constant time used for cache attack resistance implementation. */
  34871. (void)ct;
  34872. (void)heap;
  34873. #ifdef WOLFSSL_SP_SMALL_STACK
  34874. t = (sp_point_521*)XMALLOC(sizeof(sp_point_521) *
  34875. (33+2), heap, DYNAMIC_TYPE_ECC);
  34876. if (t == NULL)
  34877. err = MEMORY_E;
  34878. if (err == MP_OKAY) {
  34879. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 6,
  34880. heap, DYNAMIC_TYPE_ECC);
  34881. if (tmp == NULL)
  34882. err = MEMORY_E;
  34883. }
  34884. #endif
  34885. if (err == MP_OKAY) {
  34886. rt = t + 33;
  34887. p = t + 33+1;
  34888. /* t[0] = {0, 0, 1} * norm */
  34889. XMEMSET(&t[0], 0, sizeof(t[0]));
  34890. t[0].infinity = 1;
  34891. /* t[1] = {g->x, g->y, g->z} * norm */
  34892. err = sp_521_mod_mul_norm_21(t[1].x, g->x, p521_mod);
  34893. }
  34894. if (err == MP_OKAY) {
  34895. err = sp_521_mod_mul_norm_21(t[1].y, g->y, p521_mod);
  34896. }
  34897. if (err == MP_OKAY) {
  34898. err = sp_521_mod_mul_norm_21(t[1].z, g->z, p521_mod);
  34899. }
  34900. if (err == MP_OKAY) {
  34901. t[1].infinity = 0;
  34902. /* t[2] ... t[32] */
  34903. sp_521_proj_point_dbl_n_store_21(t, &t[ 1], 5, 1, tmp);
  34904. sp_521_proj_point_add_21(&t[ 3], &t[ 2], &t[ 1], tmp);
  34905. sp_521_proj_point_dbl_21(&t[ 6], &t[ 3], tmp);
  34906. sp_521_proj_point_add_sub_21(&t[ 7], &t[ 5], &t[ 6], &t[ 1], tmp);
  34907. sp_521_proj_point_dbl_21(&t[10], &t[ 5], tmp);
  34908. sp_521_proj_point_add_sub_21(&t[11], &t[ 9], &t[10], &t[ 1], tmp);
  34909. sp_521_proj_point_dbl_21(&t[12], &t[ 6], tmp);
  34910. sp_521_proj_point_dbl_21(&t[14], &t[ 7], tmp);
  34911. sp_521_proj_point_add_sub_21(&t[15], &t[13], &t[14], &t[ 1], tmp);
  34912. sp_521_proj_point_dbl_21(&t[18], &t[ 9], tmp);
  34913. sp_521_proj_point_add_sub_21(&t[19], &t[17], &t[18], &t[ 1], tmp);
  34914. sp_521_proj_point_dbl_21(&t[20], &t[10], tmp);
  34915. sp_521_proj_point_dbl_21(&t[22], &t[11], tmp);
  34916. sp_521_proj_point_add_sub_21(&t[23], &t[21], &t[22], &t[ 1], tmp);
  34917. sp_521_proj_point_dbl_21(&t[24], &t[12], tmp);
  34918. sp_521_proj_point_dbl_21(&t[26], &t[13], tmp);
  34919. sp_521_proj_point_add_sub_21(&t[27], &t[25], &t[26], &t[ 1], tmp);
  34920. sp_521_proj_point_dbl_21(&t[28], &t[14], tmp);
  34921. sp_521_proj_point_dbl_21(&t[30], &t[15], tmp);
  34922. sp_521_proj_point_add_sub_21(&t[31], &t[29], &t[30], &t[ 1], tmp);
  34923. negy = t[0].y;
  34924. sp_521_ecc_recode_6_21(k, v);
  34925. i = 86;
  34926. #ifndef WC_NO_CACHE_RESISTANT
  34927. if (ct) {
  34928. sp_521_get_point_33_21(rt, t, v[i].i);
  34929. rt->infinity = !v[i].i;
  34930. }
  34931. else
  34932. #endif
  34933. {
  34934. XMEMCPY(rt, &t[v[i].i], sizeof(sp_point_521));
  34935. }
  34936. for (--i; i>=0; i--) {
  34937. sp_521_proj_point_dbl_n_21(rt, 6, tmp);
  34938. #ifndef WC_NO_CACHE_RESISTANT
  34939. if (ct) {
  34940. sp_521_get_point_33_21(p, t, v[i].i);
  34941. p->infinity = !v[i].i;
  34942. }
  34943. else
  34944. #endif
  34945. {
  34946. XMEMCPY(p, &t[v[i].i], sizeof(sp_point_521));
  34947. }
  34948. sp_521_sub_21(negy, p521_mod, p->y);
  34949. sp_521_norm_21(negy);
  34950. sp_521_cond_copy_21(p->y, negy, (sp_digit)0 - v[i].neg);
  34951. sp_521_proj_point_add_21(rt, rt, p, tmp);
  34952. }
  34953. if (map != 0) {
  34954. sp_521_map_21(r, rt, tmp);
  34955. }
  34956. else {
  34957. XMEMCPY(r, rt, sizeof(sp_point_521));
  34958. }
  34959. }
  34960. #ifdef WOLFSSL_SP_SMALL_STACK
  34961. if (t != NULL)
  34962. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  34963. if (tmp != NULL)
  34964. XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
  34965. #endif
  34966. return err;
  34967. }
  34968. #ifdef FP_ECC
  34969. #endif /* FP_ECC */
  34970. /* Add two Montgomery form projective points. The second point has a q value of
  34971. * one.
  34972. * Only the first point can be the same pointer as the result point.
  34973. *
  34974. * r Result of addition.
  34975. * p First point to add.
  34976. * q Second point to add.
  34977. * t Temporary ordinate data.
  34978. */
  34979. static void sp_521_proj_point_add_qz1_21(sp_point_521* r,
  34980. const sp_point_521* p, const sp_point_521* q, sp_digit* t)
  34981. {
  34982. sp_digit* t2 = t;
  34983. sp_digit* t3 = t + 2*21;
  34984. sp_digit* t6 = t + 4*21;
  34985. sp_digit* t1 = t + 6*21;
  34986. sp_digit* t4 = t + 8*21;
  34987. sp_digit* t5 = t + 10*21;
  34988. /* Calculate values to subtract from P->x and P->y. */
  34989. /* U2 = X2*Z1^2 */
  34990. sp_521_mont_sqr_21(t2, p->z, p521_mod, p521_mp_mod);
  34991. sp_521_mont_mul_21(t4, t2, p->z, p521_mod, p521_mp_mod);
  34992. sp_521_mont_mul_21(t2, t2, q->x, p521_mod, p521_mp_mod);
  34993. /* S2 = Y2*Z1^3 */
  34994. sp_521_mont_mul_21(t4, t4, q->y, p521_mod, p521_mp_mod);
  34995. if ((~p->infinity) & (~q->infinity) &
  34996. sp_521_cmp_equal_21(p->x, t2) &
  34997. sp_521_cmp_equal_21(p->y, t4)) {
  34998. sp_521_proj_point_dbl_21(r, p, t);
  34999. }
  35000. else {
  35001. sp_digit* x = t2;
  35002. sp_digit* y = t3;
  35003. sp_digit* z = t6;
  35004. /* H = U2 - X1 */
  35005. sp_521_mont_sub_21(t2, t2, p->x, p521_mod);
  35006. /* R = S2 - Y1 */
  35007. sp_521_mont_sub_21(t4, t4, p->y, p521_mod);
  35008. /* Z3 = H*Z1 */
  35009. sp_521_mont_mul_21(z, p->z, t2, p521_mod, p521_mp_mod);
  35010. /* X3 = R^2 - H^3 - 2*X1*H^2 */
  35011. sp_521_mont_sqr_21(t1, t2, p521_mod, p521_mp_mod);
  35012. sp_521_mont_mul_21(t3, p->x, t1, p521_mod, p521_mp_mod);
  35013. sp_521_mont_mul_21(t1, t1, t2, p521_mod, p521_mp_mod);
  35014. sp_521_mont_sqr_21(t2, t4, p521_mod, p521_mp_mod);
  35015. sp_521_mont_sub_21(t2, t2, t1, p521_mod);
  35016. sp_521_mont_dbl_21(t5, t3, p521_mod);
  35017. sp_521_mont_sub_21(x, t2, t5, p521_mod);
  35018. /* Y3 = R*(X1*H^2 - X3) - Y1*H^3 */
  35019. sp_521_mont_sub_21(t3, t3, x, p521_mod);
  35020. sp_521_mont_mul_21(t3, t3, t4, p521_mod, p521_mp_mod);
  35021. sp_521_mont_mul_21(t1, t1, p->y, p521_mod, p521_mp_mod);
  35022. sp_521_mont_sub_21(y, t3, t1, p521_mod);
  35023. {
  35024. int i;
  35025. sp_digit maskp = 0 - (q->infinity & (!p->infinity));
  35026. sp_digit maskq = 0 - (p->infinity & (!q->infinity));
  35027. sp_digit maskt = ~(maskp | maskq);
  35028. sp_digit inf = (sp_digit)(p->infinity & q->infinity);
  35029. for (i = 0; i < 21; i++) {
  35030. r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
  35031. (x[i] & maskt);
  35032. }
  35033. for (i = 0; i < 21; i++) {
  35034. r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
  35035. (y[i] & maskt);
  35036. }
  35037. for (i = 0; i < 21; i++) {
  35038. r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
  35039. (z[i] & maskt);
  35040. }
  35041. r->z[0] |= inf;
  35042. r->infinity = (word32)inf;
  35043. }
  35044. }
  35045. }
  35046. #ifdef FP_ECC
  35047. /* Convert the projective point to affine.
  35048. * Ordinates are in Montgomery form.
  35049. *
  35050. * a Point to convert.
  35051. * t Temporary data.
  35052. */
  35053. static void sp_521_proj_to_affine_21(sp_point_521* a, sp_digit* t)
  35054. {
  35055. sp_digit* t1 = t;
  35056. sp_digit* t2 = t + 2 * 21;
  35057. sp_digit* tmp = t + 4 * 21;
  35058. sp_521_mont_inv_21(t1, a->z, tmp);
  35059. sp_521_mont_sqr_21(t2, t1, p521_mod, p521_mp_mod);
  35060. sp_521_mont_mul_21(t1, t2, t1, p521_mod, p521_mp_mod);
  35061. sp_521_mont_mul_21(a->x, a->x, t2, p521_mod, p521_mp_mod);
  35062. sp_521_mont_mul_21(a->y, a->y, t1, p521_mod, p521_mp_mod);
  35063. XMEMCPY(a->z, p521_norm_mod, sizeof(p521_norm_mod));
  35064. }
  35065. /* Generate the pre-computed table of points for the base point.
  35066. *
  35067. * width = 8
  35068. * 256 entries
  35069. * 65 bits between
  35070. *
  35071. * a The base point.
  35072. * table Place to store generated point data.
  35073. * tmp Temporary data.
  35074. * heap Heap to use for allocation.
  35075. */
  35076. static int sp_521_gen_stripe_table_21(const sp_point_521* a,
  35077. sp_table_entry_521* table, sp_digit* tmp, void* heap)
  35078. {
  35079. #ifdef WOLFSSL_SP_SMALL_STACK
  35080. sp_point_521* t = NULL;
  35081. #else
  35082. sp_point_521 t[3];
  35083. #endif
  35084. sp_point_521* s1 = NULL;
  35085. sp_point_521* s2 = NULL;
  35086. int i;
  35087. int j;
  35088. int err = MP_OKAY;
  35089. (void)heap;
  35090. #ifdef WOLFSSL_SP_SMALL_STACK
  35091. t = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 3, heap,
  35092. DYNAMIC_TYPE_ECC);
  35093. if (t == NULL)
  35094. err = MEMORY_E;
  35095. #endif
  35096. if (err == MP_OKAY) {
  35097. s1 = t + 1;
  35098. s2 = t + 2;
  35099. err = sp_521_mod_mul_norm_21(t->x, a->x, p521_mod);
  35100. }
  35101. if (err == MP_OKAY) {
  35102. err = sp_521_mod_mul_norm_21(t->y, a->y, p521_mod);
  35103. }
  35104. if (err == MP_OKAY) {
  35105. err = sp_521_mod_mul_norm_21(t->z, a->z, p521_mod);
  35106. }
  35107. if (err == MP_OKAY) {
  35108. t->infinity = 0;
  35109. sp_521_proj_to_affine_21(t, tmp);
  35110. XMEMCPY(s1->z, p521_norm_mod, sizeof(p521_norm_mod));
  35111. s1->infinity = 0;
  35112. XMEMCPY(s2->z, p521_norm_mod, sizeof(p521_norm_mod));
  35113. s2->infinity = 0;
  35114. /* table[0] = {0, 0, infinity} */
  35115. XMEMSET(&table[0], 0, sizeof(sp_table_entry_521));
  35116. /* table[1] = Affine version of 'a' in Montgomery form */
  35117. XMEMCPY(table[1].x, t->x, sizeof(table->x));
  35118. XMEMCPY(table[1].y, t->y, sizeof(table->y));
  35119. for (i=1; i<8; i++) {
  35120. sp_521_proj_point_dbl_n_21(t, 66, tmp);
  35121. sp_521_proj_to_affine_21(t, tmp);
  35122. XMEMCPY(table[1<<i].x, t->x, sizeof(table->x));
  35123. XMEMCPY(table[1<<i].y, t->y, sizeof(table->y));
  35124. }
  35125. for (i=1; i<8; i++) {
  35126. XMEMCPY(s1->x, table[1<<i].x, sizeof(table->x));
  35127. XMEMCPY(s1->y, table[1<<i].y, sizeof(table->y));
  35128. for (j=(1<<i)+1; j<(1<<(i+1)); j++) {
  35129. XMEMCPY(s2->x, table[j-(1<<i)].x, sizeof(table->x));
  35130. XMEMCPY(s2->y, table[j-(1<<i)].y, sizeof(table->y));
  35131. sp_521_proj_point_add_qz1_21(t, s1, s2, tmp);
  35132. sp_521_proj_to_affine_21(t, tmp);
  35133. XMEMCPY(table[j].x, t->x, sizeof(table->x));
  35134. XMEMCPY(table[j].y, t->y, sizeof(table->y));
  35135. }
  35136. }
  35137. }
  35138. #ifdef WOLFSSL_SP_SMALL_STACK
  35139. if (t != NULL)
  35140. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  35141. #endif
  35142. return err;
  35143. }
  35144. #endif /* FP_ECC */
  35145. #ifndef WC_NO_CACHE_RESISTANT
  35146. /* Touch each possible entry that could be being copied.
  35147. *
  35148. * r Point to copy into.
  35149. * table Table - start of the entries to access
  35150. * idx Index of entry to retrieve.
  35151. */
  35152. static void sp_521_get_entry_256_21(sp_point_521* r,
  35153. const sp_table_entry_521* table, int idx)
  35154. {
  35155. int i;
  35156. sp_digit mask;
  35157. r->x[0] = 0;
  35158. r->x[1] = 0;
  35159. r->x[2] = 0;
  35160. r->x[3] = 0;
  35161. r->x[4] = 0;
  35162. r->x[5] = 0;
  35163. r->x[6] = 0;
  35164. r->x[7] = 0;
  35165. r->x[8] = 0;
  35166. r->x[9] = 0;
  35167. r->x[10] = 0;
  35168. r->x[11] = 0;
  35169. r->x[12] = 0;
  35170. r->x[13] = 0;
  35171. r->x[14] = 0;
  35172. r->x[15] = 0;
  35173. r->x[16] = 0;
  35174. r->x[17] = 0;
  35175. r->x[18] = 0;
  35176. r->x[19] = 0;
  35177. r->x[20] = 0;
  35178. r->y[0] = 0;
  35179. r->y[1] = 0;
  35180. r->y[2] = 0;
  35181. r->y[3] = 0;
  35182. r->y[4] = 0;
  35183. r->y[5] = 0;
  35184. r->y[6] = 0;
  35185. r->y[7] = 0;
  35186. r->y[8] = 0;
  35187. r->y[9] = 0;
  35188. r->y[10] = 0;
  35189. r->y[11] = 0;
  35190. r->y[12] = 0;
  35191. r->y[13] = 0;
  35192. r->y[14] = 0;
  35193. r->y[15] = 0;
  35194. r->y[16] = 0;
  35195. r->y[17] = 0;
  35196. r->y[18] = 0;
  35197. r->y[19] = 0;
  35198. r->y[20] = 0;
  35199. for (i = 1; i < 256; i++) {
  35200. mask = 0 - (i == idx);
  35201. r->x[0] |= mask & table[i].x[0];
  35202. r->x[1] |= mask & table[i].x[1];
  35203. r->x[2] |= mask & table[i].x[2];
  35204. r->x[3] |= mask & table[i].x[3];
  35205. r->x[4] |= mask & table[i].x[4];
  35206. r->x[5] |= mask & table[i].x[5];
  35207. r->x[6] |= mask & table[i].x[6];
  35208. r->x[7] |= mask & table[i].x[7];
  35209. r->x[8] |= mask & table[i].x[8];
  35210. r->x[9] |= mask & table[i].x[9];
  35211. r->x[10] |= mask & table[i].x[10];
  35212. r->x[11] |= mask & table[i].x[11];
  35213. r->x[12] |= mask & table[i].x[12];
  35214. r->x[13] |= mask & table[i].x[13];
  35215. r->x[14] |= mask & table[i].x[14];
  35216. r->x[15] |= mask & table[i].x[15];
  35217. r->x[16] |= mask & table[i].x[16];
  35218. r->x[17] |= mask & table[i].x[17];
  35219. r->x[18] |= mask & table[i].x[18];
  35220. r->x[19] |= mask & table[i].x[19];
  35221. r->x[20] |= mask & table[i].x[20];
  35222. r->y[0] |= mask & table[i].y[0];
  35223. r->y[1] |= mask & table[i].y[1];
  35224. r->y[2] |= mask & table[i].y[2];
  35225. r->y[3] |= mask & table[i].y[3];
  35226. r->y[4] |= mask & table[i].y[4];
  35227. r->y[5] |= mask & table[i].y[5];
  35228. r->y[6] |= mask & table[i].y[6];
  35229. r->y[7] |= mask & table[i].y[7];
  35230. r->y[8] |= mask & table[i].y[8];
  35231. r->y[9] |= mask & table[i].y[9];
  35232. r->y[10] |= mask & table[i].y[10];
  35233. r->y[11] |= mask & table[i].y[11];
  35234. r->y[12] |= mask & table[i].y[12];
  35235. r->y[13] |= mask & table[i].y[13];
  35236. r->y[14] |= mask & table[i].y[14];
  35237. r->y[15] |= mask & table[i].y[15];
  35238. r->y[16] |= mask & table[i].y[16];
  35239. r->y[17] |= mask & table[i].y[17];
  35240. r->y[18] |= mask & table[i].y[18];
  35241. r->y[19] |= mask & table[i].y[19];
  35242. r->y[20] |= mask & table[i].y[20];
  35243. }
  35244. }
  35245. #endif /* !WC_NO_CACHE_RESISTANT */
  35246. /* Multiply the point by the scalar and return the result.
  35247. * If map is true then convert result to affine coordinates.
  35248. *
  35249. * Stripe implementation.
  35250. * Pre-generated: 2^0, 2^65, ...
  35251. * Pre-generated: products of all combinations of above.
  35252. * 8 doubles and adds (with qz=1)
  35253. *
  35254. * r Resulting point.
  35255. * k Scalar to multiply by.
  35256. * table Pre-computed table.
  35257. * map Indicates whether to convert result to affine.
  35258. * ct Constant time required.
  35259. * heap Heap to use for allocation.
  35260. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  35261. */
  35262. static int sp_521_ecc_mulmod_stripe_21(sp_point_521* r, const sp_point_521* g,
  35263. const sp_table_entry_521* table, const sp_digit* k, int map,
  35264. int ct, void* heap)
  35265. {
  35266. #ifdef WOLFSSL_SP_SMALL_STACK
  35267. sp_point_521* rt = NULL;
  35268. sp_digit* t = NULL;
  35269. #else
  35270. sp_point_521 rt[2];
  35271. sp_digit t[2 * 21 * 6];
  35272. #endif
  35273. sp_point_521* p = NULL;
  35274. int i;
  35275. int j;
  35276. int y;
  35277. int x;
  35278. int err = MP_OKAY;
  35279. (void)g;
  35280. /* Constant time used for cache attack resistance implementation. */
  35281. (void)ct;
  35282. (void)heap;
  35283. #ifdef WOLFSSL_SP_SMALL_STACK
  35284. rt = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, heap,
  35285. DYNAMIC_TYPE_ECC);
  35286. if (rt == NULL)
  35287. err = MEMORY_E;
  35288. if (err == MP_OKAY) {
  35289. t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 6, heap,
  35290. DYNAMIC_TYPE_ECC);
  35291. if (t == NULL)
  35292. err = MEMORY_E;
  35293. }
  35294. #endif
  35295. if (err == MP_OKAY) {
  35296. p = rt + 1;
  35297. XMEMCPY(p->z, p521_norm_mod, sizeof(p521_norm_mod));
  35298. XMEMCPY(rt->z, p521_norm_mod, sizeof(p521_norm_mod));
  35299. y = 0;
  35300. x = 65;
  35301. for (j=0; j<8 && x<521; j++) {
  35302. y |= (int)(((k[x / 25] >> (x % 25)) & 1) << j);
  35303. x += 66;
  35304. }
  35305. #ifndef WC_NO_CACHE_RESISTANT
  35306. if (ct) {
  35307. sp_521_get_entry_256_21(rt, table, y);
  35308. } else
  35309. #endif
  35310. {
  35311. XMEMCPY(rt->x, table[y].x, sizeof(table[y].x));
  35312. XMEMCPY(rt->y, table[y].y, sizeof(table[y].y));
  35313. }
  35314. rt->infinity = !y;
  35315. for (i=64; i>=0; i--) {
  35316. y = 0;
  35317. x = i;
  35318. for (j=0; j<8 && x<521; j++) {
  35319. y |= (int)(((k[x / 25] >> (x % 25)) & 1) << j);
  35320. x += 66;
  35321. }
  35322. sp_521_proj_point_dbl_21(rt, rt, t);
  35323. #ifndef WC_NO_CACHE_RESISTANT
  35324. if (ct) {
  35325. sp_521_get_entry_256_21(p, table, y);
  35326. }
  35327. else
  35328. #endif
  35329. {
  35330. XMEMCPY(p->x, table[y].x, sizeof(table[y].x));
  35331. XMEMCPY(p->y, table[y].y, sizeof(table[y].y));
  35332. }
  35333. p->infinity = !y;
  35334. sp_521_proj_point_add_qz1_21(rt, rt, p, t);
  35335. }
  35336. if (map != 0) {
  35337. sp_521_map_21(r, rt, t);
  35338. }
  35339. else {
  35340. XMEMCPY(r, rt, sizeof(sp_point_521));
  35341. }
  35342. }
  35343. #ifdef WOLFSSL_SP_SMALL_STACK
  35344. if (t != NULL)
  35345. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  35346. if (rt != NULL)
  35347. XFREE(rt, heap, DYNAMIC_TYPE_ECC);
  35348. #endif
  35349. return err;
  35350. }
  35351. #ifdef FP_ECC
  35352. #ifndef FP_ENTRIES
  35353. #define FP_ENTRIES 16
  35354. #endif
  35355. /* Cache entry - holds precomputation tables for a point. */
  35356. typedef struct sp_cache_521_t {
  35357. /* X ordinate of point that table was generated from. */
  35358. sp_digit x[21];
  35359. /* Y ordinate of point that table was generated from. */
  35360. sp_digit y[21];
  35361. /* Precomputation table for point. */
  35362. sp_table_entry_521 table[256];
  35363. /* Count of entries in table. */
  35364. uint32_t cnt;
  35365. /* Point and table set in entry. */
  35366. int set;
  35367. } sp_cache_521_t;
  35368. /* Cache of tables. */
  35369. static THREAD_LS_T sp_cache_521_t sp_cache_521[FP_ENTRIES];
  35370. /* Index of last entry in cache. */
  35371. static THREAD_LS_T int sp_cache_521_last = -1;
  35372. /* Cache has been initialized. */
  35373. static THREAD_LS_T int sp_cache_521_inited = 0;
  35374. #ifndef HAVE_THREAD_LS
  35375. static volatile int initCacheMutex_521 = 0;
  35376. static wolfSSL_Mutex sp_cache_521_lock;
  35377. #endif
  35378. /* Get the cache entry for the point.
  35379. *
  35380. * g [in] Point scalar multiplying.
  35381. * cache [out] Cache table to use.
  35382. */
  35383. static void sp_ecc_get_cache_521(const sp_point_521* g, sp_cache_521_t** cache)
  35384. {
  35385. int i;
  35386. int j;
  35387. uint32_t least;
  35388. if (sp_cache_521_inited == 0) {
  35389. for (i=0; i<FP_ENTRIES; i++) {
  35390. sp_cache_521[i].set = 0;
  35391. }
  35392. sp_cache_521_inited = 1;
  35393. }
  35394. /* Compare point with those in cache. */
  35395. for (i=0; i<FP_ENTRIES; i++) {
  35396. if (!sp_cache_521[i].set)
  35397. continue;
  35398. if (sp_521_cmp_equal_21(g->x, sp_cache_521[i].x) &
  35399. sp_521_cmp_equal_21(g->y, sp_cache_521[i].y)) {
  35400. sp_cache_521[i].cnt++;
  35401. break;
  35402. }
  35403. }
  35404. /* No match. */
  35405. if (i == FP_ENTRIES) {
  35406. /* Find empty entry. */
  35407. i = (sp_cache_521_last + 1) % FP_ENTRIES;
  35408. for (; i != sp_cache_521_last; i=(i+1)%FP_ENTRIES) {
  35409. if (!sp_cache_521[i].set) {
  35410. break;
  35411. }
  35412. }
  35413. /* Evict least used. */
  35414. if (i == sp_cache_521_last) {
  35415. least = sp_cache_521[0].cnt;
  35416. for (j=1; j<FP_ENTRIES; j++) {
  35417. if (sp_cache_521[j].cnt < least) {
  35418. i = j;
  35419. least = sp_cache_521[i].cnt;
  35420. }
  35421. }
  35422. }
  35423. XMEMCPY(sp_cache_521[i].x, g->x, sizeof(sp_cache_521[i].x));
  35424. XMEMCPY(sp_cache_521[i].y, g->y, sizeof(sp_cache_521[i].y));
  35425. sp_cache_521[i].set = 1;
  35426. sp_cache_521[i].cnt = 1;
  35427. }
  35428. *cache = &sp_cache_521[i];
  35429. sp_cache_521_last = i;
  35430. }
  35431. #endif /* FP_ECC */
  35432. /* Multiply the base point of P521 by the scalar and return the result.
  35433. * If map is true then convert result to affine coordinates.
  35434. *
  35435. * r Resulting point.
  35436. * g Point to multiply.
  35437. * k Scalar to multiply by.
  35438. * map Indicates whether to convert result to affine.
  35439. * ct Constant time required.
  35440. * heap Heap to use for allocation.
  35441. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  35442. */
  35443. static int sp_521_ecc_mulmod_21(sp_point_521* r, const sp_point_521* g,
  35444. const sp_digit* k, int map, int ct, void* heap)
  35445. {
  35446. #ifndef FP_ECC
  35447. return sp_521_ecc_mulmod_win_add_sub_21(r, g, k, map, ct, heap);
  35448. #else
  35449. #ifdef WOLFSSL_SP_SMALL_STACK
  35450. sp_digit* tmp;
  35451. #else
  35452. sp_digit tmp[2 * 21 * 6];
  35453. #endif
  35454. sp_cache_521_t* cache;
  35455. int err = MP_OKAY;
  35456. #ifdef WOLFSSL_SP_SMALL_STACK
  35457. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 6, heap, DYNAMIC_TYPE_ECC);
  35458. if (tmp == NULL) {
  35459. err = MEMORY_E;
  35460. }
  35461. #endif
  35462. #ifndef HAVE_THREAD_LS
  35463. if (err == MP_OKAY) {
  35464. if (initCacheMutex_521 == 0) {
  35465. wc_InitMutex(&sp_cache_521_lock);
  35466. initCacheMutex_521 = 1;
  35467. }
  35468. if (wc_LockMutex(&sp_cache_521_lock) != 0) {
  35469. err = BAD_MUTEX_E;
  35470. }
  35471. }
  35472. #endif /* HAVE_THREAD_LS */
  35473. if (err == MP_OKAY) {
  35474. sp_ecc_get_cache_521(g, &cache);
  35475. if (cache->cnt == 2)
  35476. sp_521_gen_stripe_table_21(g, cache->table, tmp, heap);
  35477. #ifndef HAVE_THREAD_LS
  35478. wc_UnLockMutex(&sp_cache_521_lock);
  35479. #endif /* HAVE_THREAD_LS */
  35480. if (cache->cnt < 2) {
  35481. err = sp_521_ecc_mulmod_win_add_sub_21(r, g, k, map, ct, heap);
  35482. }
  35483. else {
  35484. err = sp_521_ecc_mulmod_stripe_21(r, g, cache->table, k,
  35485. map, ct, heap);
  35486. }
  35487. }
  35488. #ifdef WOLFSSL_SP_SMALL_STACK
  35489. XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
  35490. #endif
  35491. return err;
  35492. #endif
  35493. }
  35494. #endif
  35495. /* Multiply the point by the scalar and return the result.
  35496. * If map is true then convert result to affine coordinates.
  35497. *
  35498. * km Scalar to multiply by.
  35499. * p Point to multiply.
  35500. * r Resulting point.
  35501. * map Indicates whether to convert result to affine.
  35502. * heap Heap to use for allocation.
  35503. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  35504. */
  35505. int sp_ecc_mulmod_521(const mp_int* km, const ecc_point* gm, ecc_point* r,
  35506. int map, void* heap)
  35507. {
  35508. #ifdef WOLFSSL_SP_SMALL_STACK
  35509. sp_point_521* point = NULL;
  35510. sp_digit* k = NULL;
  35511. #else
  35512. sp_point_521 point[1];
  35513. sp_digit k[21];
  35514. #endif
  35515. int err = MP_OKAY;
  35516. #ifdef WOLFSSL_SP_SMALL_STACK
  35517. point = (sp_point_521*)XMALLOC(sizeof(sp_point_521), heap,
  35518. DYNAMIC_TYPE_ECC);
  35519. if (point == NULL)
  35520. err = MEMORY_E;
  35521. if (err == MP_OKAY) {
  35522. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21, heap,
  35523. DYNAMIC_TYPE_ECC);
  35524. if (k == NULL)
  35525. err = MEMORY_E;
  35526. }
  35527. #endif
  35528. if (err == MP_OKAY) {
  35529. sp_521_from_mp(k, 21, km);
  35530. sp_521_point_from_ecc_point_21(point, gm);
  35531. err = sp_521_ecc_mulmod_21(point, point, k, map, 1, heap);
  35532. }
  35533. if (err == MP_OKAY) {
  35534. err = sp_521_point_to_ecc_point_21(point, r);
  35535. }
  35536. #ifdef WOLFSSL_SP_SMALL_STACK
  35537. if (k != NULL)
  35538. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  35539. if (point != NULL)
  35540. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  35541. #endif
  35542. return err;
  35543. }
  35544. /* Multiply the point by the scalar, add point a and return the result.
  35545. * If map is true then convert result to affine coordinates.
  35546. *
  35547. * km Scalar to multiply by.
  35548. * p Point to multiply.
  35549. * am Point to add to scalar multiply result.
  35550. * inMont Point to add is in montgomery form.
  35551. * r Resulting point.
  35552. * map Indicates whether to convert result to affine.
  35553. * heap Heap to use for allocation.
  35554. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  35555. */
  35556. int sp_ecc_mulmod_add_521(const mp_int* km, const ecc_point* gm,
  35557. const ecc_point* am, int inMont, ecc_point* r, int map, void* heap)
  35558. {
  35559. #ifdef WOLFSSL_SP_SMALL_STACK
  35560. sp_point_521* point = NULL;
  35561. sp_digit* k = NULL;
  35562. #else
  35563. sp_point_521 point[2];
  35564. sp_digit k[21 + 21 * 2 * 6];
  35565. #endif
  35566. sp_point_521* addP = NULL;
  35567. sp_digit* tmp = NULL;
  35568. int err = MP_OKAY;
  35569. #ifdef WOLFSSL_SP_SMALL_STACK
  35570. point = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, heap,
  35571. DYNAMIC_TYPE_ECC);
  35572. if (point == NULL)
  35573. err = MEMORY_E;
  35574. if (err == MP_OKAY) {
  35575. k = (sp_digit*)XMALLOC(
  35576. sizeof(sp_digit) * (21 + 21 * 2 * 6), heap,
  35577. DYNAMIC_TYPE_ECC);
  35578. if (k == NULL)
  35579. err = MEMORY_E;
  35580. }
  35581. #endif
  35582. if (err == MP_OKAY) {
  35583. addP = point + 1;
  35584. tmp = k + 21;
  35585. sp_521_from_mp(k, 21, km);
  35586. sp_521_point_from_ecc_point_21(point, gm);
  35587. sp_521_point_from_ecc_point_21(addP, am);
  35588. }
  35589. if ((err == MP_OKAY) && (!inMont)) {
  35590. err = sp_521_mod_mul_norm_21(addP->x, addP->x, p521_mod);
  35591. }
  35592. if ((err == MP_OKAY) && (!inMont)) {
  35593. err = sp_521_mod_mul_norm_21(addP->y, addP->y, p521_mod);
  35594. }
  35595. if ((err == MP_OKAY) && (!inMont)) {
  35596. err = sp_521_mod_mul_norm_21(addP->z, addP->z, p521_mod);
  35597. }
  35598. if (err == MP_OKAY) {
  35599. err = sp_521_ecc_mulmod_21(point, point, k, 0, 0, heap);
  35600. }
  35601. if (err == MP_OKAY) {
  35602. sp_521_proj_point_add_21(point, point, addP, tmp);
  35603. if (map) {
  35604. sp_521_map_21(point, point, tmp);
  35605. }
  35606. err = sp_521_point_to_ecc_point_21(point, r);
  35607. }
  35608. #ifdef WOLFSSL_SP_SMALL_STACK
  35609. if (k != NULL)
  35610. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  35611. if (point != NULL)
  35612. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  35613. #endif
  35614. return err;
  35615. }
  35616. #ifdef WOLFSSL_SP_SMALL
  35617. /* Multiply the base point of P521 by the scalar and return the result.
  35618. * If map is true then convert result to affine coordinates.
  35619. *
  35620. * r Resulting point.
  35621. * k Scalar to multiply by.
  35622. * map Indicates whether to convert result to affine.
  35623. * heap Heap to use for allocation.
  35624. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  35625. */
  35626. static int sp_521_ecc_mulmod_base_21(sp_point_521* r, const sp_digit* k,
  35627. int map, int ct, void* heap)
  35628. {
  35629. /* No pre-computed values. */
  35630. return sp_521_ecc_mulmod_21(r, &p521_base, k, map, ct, heap);
  35631. }
  35632. #ifdef WOLFSSL_SP_NONBLOCK
  35633. static int sp_521_ecc_mulmod_base_21_nb(sp_ecc_ctx_t* sp_ctx, sp_point_521* r,
  35634. const sp_digit* k, int map, int ct, void* heap)
  35635. {
  35636. /* No pre-computed values. */
  35637. return sp_521_ecc_mulmod_21_nb(sp_ctx, r, &p521_base, k, map, ct, heap);
  35638. }
  35639. #endif /* WOLFSSL_SP_NONBLOCK */
  35640. #else
  35641. /* Striping precomputation table.
  35642. * 8 points combined into a table of 256 points.
  35643. * Distance of 66 between points.
  35644. */
  35645. static const sp_table_entry_521 p521_table[256] = {
  35646. /* 0 */
  35647. { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  35648. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
  35649. { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  35650. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } },
  35651. /* 1 */
  35652. { { 0x0e5bd66,0x13f18e1,0x0a6fe5f,0x030ad48,0x1348b3c,0x1fd46f1,
  35653. 0x1049e8b,0x051fc3b,0x1efe759,0x0a5af3b,0x14f6ea8,0x1ec0d69,
  35654. 0x01f828a,0x029fda9,0x19204e4,0x1688538,0x1662395,0x0cf1f65,
  35655. 0x1013a73,0x1c0d6e0,0x00c6858 },
  35656. { 0x1d16650,0x14a3b4f,0x090222f,0x0d44e58,0x153c708,0x1683b09,
  35657. 0x0e404fe,0x0818aa1,0x15ef426,0x1f7394c,0x1998b25,0x1a2e4e7,
  35658. 0x0817afb,0x0bcda23,0x1d51125,0x037b331,0x1b42c7d,0x02e452f,
  35659. 0x08ef001,0x12d4f13,0x0118392 } },
  35660. /* 2 */
  35661. { { 0x10ccb51,0x0c33387,0x1d2a00e,0x026ca92,0x187e1d0,0x194f6cd,
  35662. 0x13c86ca,0x06efeb1,0x0a3add3,0x16074d5,0x023fec1,0x0ba1d3a,
  35663. 0x07f13b3,0x0b3b0b1,0x02fd132,0x07de9bb,0x014758a,0x1d250c6,
  35664. 0x0010eb6,0x0aedbb4,0x013e96a },
  35665. { 0x12d95a3,0x1127c31,0x00a4af7,0x0298a49,0x19f15ef,0x0d5d0cb,
  35666. 0x018fa6f,0x00f55bb,0x0a962b7,0x0f029fa,0x1636637,0x05bc284,
  35667. 0x1cc598a,0x030e11a,0x0968674,0x1a6593f,0x110e8ff,0x0076a32,
  35668. 0x1de33ab,0x153ba3d,0x01852ae } },
  35669. /* 3 */
  35670. { { 0x0af1fe3,0x08eec75,0x14af42a,0x0488016,0x0db3866,0x15f8690,
  35671. 0x01aa486,0x081fed4,0x0a768c9,0x00943cd,0x1bb0de5,0x1579343,
  35672. 0x1cf3791,0x139c1a1,0x04fef98,0x1578392,0x0abe222,0x1b945a1,
  35673. 0x0e7bcc4,0x18150c5,0x0157874 },
  35674. { 0x0f03d49,0x078c273,0x180c2b2,0x083c917,0x09c357e,0x0e5ef7d,
  35675. 0x17bce05,0x078059c,0x15fd8dc,0x120e3d5,0x0c4275e,0x0f93f5d,
  35676. 0x184bef6,0x1427a69,0x0633286,0x0155c5f,0x07d672f,0x1bf01ea,
  35677. 0x15625a2,0x0356b03,0x000724b } },
  35678. /* 4 */
  35679. { { 0x19314e0,0x196a5ef,0x0ab2413,0x1bcf401,0x1aae850,0x177d81e,
  35680. 0x0420d60,0x1a4f246,0x1ec7fe6,0x078e141,0x15d2a20,0x132c333,
  35681. 0x072d5b3,0x1ca803f,0x0482e6c,0x1e07cbe,0x1734773,0x118691b,
  35682. 0x0de2da1,0x0324e67,0x0121f4c },
  35683. { 0x08b51f0,0x1ffb6fd,0x17c3c40,0x0281c57,0x0e7afb5,0x12a0b8d,
  35684. 0x0e03a0c,0x12a2260,0x0cda10d,0x01a80dc,0x0a3007a,0x0e3c9e7,
  35685. 0x0910577,0x1640383,0x14865aa,0x070431e,0x0aaa562,0x09b04d8,
  35686. 0x12829fc,0x0af20d2,0x01db8c2 } },
  35687. /* 5 */
  35688. { { 0x0c0958d,0x1b86659,0x0e1cc00,0x0cd34f6,0x09aef16,0x064d9c4,
  35689. 0x1cf3d20,0x0924f25,0x0fab3e1,0x194c279,0x12259c2,0x086ca0e,
  35690. 0x0a9751e,0x1699ed9,0x0ae6756,0x09b5539,0x132b44a,0x0a6ca2e,
  35691. 0x1b1dcc9,0x1994a42,0x000aa26 },
  35692. { 0x1e66d18,0x10ea0fc,0x19eb36f,0x0d5422f,0x00aeef9,0x186925c,
  35693. 0x0528b76,0x17e0a64,0x15c98b7,0x0e7d913,0x0f2121b,0x086dbfa,
  35694. 0x0c613e7,0x1e526a9,0x1c0fe84,0x03cc8dc,0x1771855,0x0864714,
  35695. 0x1ea149f,0x121d597,0x01c6f5e } },
  35696. /* 6 */
  35697. { { 0x0b2d58f,0x178f3a5,0x000a8b0,0x185412f,0x01bbf82,0x05dbb56,
  35698. 0x1ac91dc,0x17acb07,0x15667f7,0x1276cf6,0x1a25fa3,0x1b0dfb2,
  35699. 0x15d8c01,0x1fdf078,0x0e5684c,0x1b962cc,0x19dd99c,0x0a8f279,
  35700. 0x0837ac9,0x108494e,0x0082de0 },
  35701. { 0x0ea91af,0x129d930,0x1f765ea,0x0ef463b,0x04384af,0x084ddf5,
  35702. 0x1c8e573,0x1c39b05,0x0f30058,0x0be0ced,0x1e3a5e6,0x018dcb8,
  35703. 0x05443b6,0x0bad8c2,0x0ba6d7d,0x19c2df5,0x13308c2,0x12e7437,
  35704. 0x1d8fea1,0x19cb1e9,0x0073983 } },
  35705. /* 7 */
  35706. { { 0x017609d,0x09898c1,0x1002bba,0x084825f,0x1f8a9dd,0x163194b,
  35707. 0x19930a1,0x0bdc22f,0x07bf1c6,0x01bc16b,0x0fbb973,0x09b71a0,
  35708. 0x19e8c14,0x0d5c9bc,0x0b2b2ca,0x1098e03,0x1b5b077,0x190af58,
  35709. 0x0bff361,0x013f503,0x00f82c4 },
  35710. { 0x18139a4,0x09bb31b,0x0a4c01f,0x176ab7d,0x06d969e,0x045e4ee,
  35711. 0x035bda3,0x0858f8c,0x15f93f2,0x0274230,0x1c5f661,0x1454e82,
  35712. 0x0e8461c,0x185f890,0x04c39e7,0x133af1d,0x0026b56,0x170aaa5,
  35713. 0x093edb7,0x18ee04d,0x007de69 } },
  35714. /* 8 */
  35715. { { 0x1ee80d7,0x08dd825,0x19a586d,0x1eed25b,0x0e1f6a1,0x15e1de8,
  35716. 0x191b283,0x1e106f3,0x1930644,0x005ffd3,0x16c1dc7,0x170e721,
  35717. 0x0997c67,0x1d6d0e7,0x170cf87,0x16a2412,0x0ddac54,0x11e2805,
  35718. 0x0c46195,0x03a6c1a,0x00b0c23 },
  35719. { 0x1bcab2f,0x0494c1c,0x082818a,0x00c9ba4,0x00c0678,0x1ee1506,
  35720. 0x18211d8,0x1c60c5e,0x11938c3,0x074ed39,0x11bae62,0x1e5aa5c,
  35721. 0x1d69be8,0x152ef07,0x17234b5,0x01c4dca,0x163db2c,0x1f9d1fe,
  35722. 0x192ffd5,0x18db3e3,0x014a899 } },
  35723. /* 9 */
  35724. { { 0x005ce88,0x171d0f6,0x080a7fd,0x0d6d5fa,0x18fc249,0x1f5803f,
  35725. 0x081ddbe,0x080173a,0x1eebded,0x087605e,0x1c03ded,0x0e84d26,
  35726. 0x0eaef97,0x1fbd818,0x1b8de84,0x03eef00,0x1171b90,0x1ae78be,
  35727. 0x0a56b83,0x0dcbbf9,0x0159903 },
  35728. { 0x00e8e0c,0x1b25a80,0x17e402b,0x080df69,0x13f2ae0,0x0f91dd6,
  35729. 0x1699d12,0x152bec3,0x0255b25,0x0548c21,0x0f19403,0x07cd1c6,
  35730. 0x01fa6af,0x016013e,0x0dcf003,0x0814a28,0x1a19728,0x04cf9e6,
  35731. 0x03a1090,0x0c56f3a,0x00e798c } },
  35732. /* 10 */
  35733. { { 0x04d0f28,0x1e25457,0x01bba31,0x1eacda0,0x1a8a55e,0x1720119,
  35734. 0x17d9419,0x0ec6f30,0x15d321b,0x0f6655a,0x146c1e3,0x0dad706,
  35735. 0x0b38b96,0x0beaa45,0x022794d,0x156165d,0x02fe631,0x1bd4f47,
  35736. 0x1d714de,0x0c1f2bc,0x005945c },
  35737. { 0x067d79c,0x13e9a3c,0x0602f28,0x0b03903,0x1f460b1,0x15c628b,
  35738. 0x166ae5d,0x1b2fd85,0x061b91e,0x0682243,0x07457ff,0x144bb38,
  35739. 0x19730a7,0x1ca64ed,0x0b3c967,0x0b47714,0x1875dec,0x1473c25,
  35740. 0x1944c7b,0x0a4c0e7,0x0004062 } },
  35741. /* 11 */
  35742. { { 0x1631bba,0x0272e78,0x14937b8,0x1e2ade8,0x00e6c1d,0x0184c82,
  35743. 0x0fcc393,0x18e0cc0,0x16b6abe,0x1b24d21,0x053dbb6,0x0139ed7,
  35744. 0x15354f5,0x1b5bf05,0x1b3d1a4,0x0dba4ff,0x07eba1e,0x153d388,
  35745. 0x0251432,0x1db58ad,0x0022889 },
  35746. { 0x05596f2,0x148b768,0x0e2e404,0x1960479,0x03901da,0x0a55f0f,
  35747. 0x14fb39f,0x0264a03,0x0a9c903,0x140a820,0x051b42c,0x07e38da,
  35748. 0x169dbcd,0x1a770c4,0x08756c5,0x04df6df,0x161a912,0x024d750,
  35749. 0x02a0261,0x19ddbf7,0x0154754 } },
  35750. /* 12 */
  35751. { { 0x070b2f0,0x113d821,0x135ed93,0x117e9ae,0x04b34e4,0x13915d4,
  35752. 0x0fa2c30,0x039630d,0x19ff9b7,0x0a52c4e,0x15af13d,0x09be69f,
  35753. 0x1d9887e,0x1a097a4,0x119a7f5,0x13a2d6f,0x1bb77f8,0x020046c,
  35754. 0x040b81d,0x1284d79,0x01cfafb },
  35755. { 0x02935ca,0x07968b3,0x111b329,0x0732fb9,0x0847c70,0x1e3cfc1,
  35756. 0x1a794d4,0x1e98113,0x15215f0,0x16c6cc4,0x046e767,0x1179012,
  35757. 0x0359cf0,0x16f13d5,0x00d5039,0x0641a96,0x03ef69e,0x1a97a6b,
  35758. 0x13bc64e,0x02ffad2,0x00e6a02 } },
  35759. /* 13 */
  35760. { { 0x0214780,0x0f313ba,0x07aaddf,0x0e40e8b,0x0a06681,0x03fd80e,
  35761. 0x1e6dfa7,0x18fef0a,0x1d6d4b7,0x0aaa460,0x12a8e79,0x03214cd,
  35762. 0x0f45756,0x0c282d2,0x0506c0e,0x0c9d7f0,0x17c4c88,0x1d2e506,
  35763. 0x184a74f,0x15f2a13,0x0053bf8 },
  35764. { 0x1285092,0x194ec42,0x197ef26,0x151ddab,0x02f31da,0x0c555cc,
  35765. 0x1a43bd8,0x1a33866,0x0d2626e,0x1770a7a,0x1638243,0x0e160fd,
  35766. 0x0042295,0x039b682,0x1de483a,0x1a03a32,0x1ffede7,0x1a3f712,
  35767. 0x11eadce,0x0438757,0x01b93c9 } },
  35768. /* 14 */
  35769. { { 0x08b2b14,0x103e650,0x11fc2da,0x177e2e9,0x0a978de,0x0659525,
  35770. 0x0e0a310,0x0705239,0x090adc8,0x0e3c139,0x1b779a5,0x1655183,
  35771. 0x0008da8,0x087de91,0x073acbe,0x1729ce8,0x1e5322d,0x12fc4e4,
  35772. 0x1cf1523,0x0cc10b6,0x007d182 },
  35773. { 0x1efd012,0x1fc1516,0x1fbda7a,0x08b42a6,0x01ecb09,0x18408e8,
  35774. 0x1d4d4fb,0x1d478aa,0x1b2bd4d,0x0e44153,0x05a7216,0x12e4f7f,
  35775. 0x1b00a1f,0x0592d68,0x0eb7d78,0x0c00a0c,0x106f253,0x0260ff9,
  35776. 0x044bf86,0x02b7d88,0x01178e5 } },
  35777. /* 15 */
  35778. { { 0x1e3d3d5,0x03c3ff7,0x089e4c5,0x0b3b12e,0x09e76f6,0x1b567a9,
  35779. 0x1fb4782,0x1b22b8e,0x01c5e8d,0x015bd90,0x199ebe7,0x11e2bea,
  35780. 0x1478803,0x19abb77,0x031d9bf,0x02a95e7,0x1c80040,0x1cf8311,
  35781. 0x1a20ed4,0x078897b,0x009647d },
  35782. { 0x01b21a4,0x1ab1c6f,0x0704c81,0x02ae210,0x1b6399c,0x001accd,
  35783. 0x1819dd7,0x1ea645c,0x1ade60c,0x03fef3f,0x0641657,0x0881df8,
  35784. 0x001b195,0x0ebd9cb,0x1c2b233,0x14e7cfc,0x03d6a6f,0x02552d4,
  35785. 0x0c201d9,0x119f58c,0x004234f } },
  35786. /* 16 */
  35787. { { 0x06492ad,0x0f38d14,0x0b13b8c,0x08cbf0d,0x08f3de4,0x189e5a0,
  35788. 0x0035369,0x009d12e,0x1a86b71,0x1687af4,0x0b0585e,0x1c9e4ae,
  35789. 0x19d9a62,0x12e60e4,0x1488fbc,0x05c18ef,0x1613b96,0x0f6ffb4,
  35790. 0x0762c81,0x1a51e70,0x008e818 },
  35791. { 0x0df1f60,0x118e7c6,0x183dc84,0x16ce2ee,0x0b640f2,0x02d201c,
  35792. 0x1be3381,0x13f7ce4,0x0037068,0x11142ee,0x08372d0,0x1f1ee5d,
  35793. 0x037196b,0x0404331,0x1bde157,0x1fc9142,0x1c7c326,0x06a70cf,
  35794. 0x1da2fd1,0x190add1,0x013efdb } },
  35795. /* 17 */
  35796. { { 0x0a3ace5,0x06827f3,0x070778d,0x1d12c32,0x0dbb603,0x0f687a0,
  35797. 0x0001fdd,0x16b69b8,0x095b259,0x0f0735e,0x17c0805,0x14cc4c2,
  35798. 0x18dfbcb,0x098f51f,0x1b150cf,0x1f04965,0x0e4103f,0x1215858,
  35799. 0x1200ccb,0x02a0c18,0x0111193 },
  35800. { 0x05452f1,0x1f51402,0x1cee665,0x1ee3e7e,0x00b678c,0x1499474,
  35801. 0x0f77107,0x04694a5,0x0e6af1c,0x1f932b7,0x08579ed,0x0b73688,
  35802. 0x0bc4380,0x1852014,0x09cd3cb,0x0edc475,0x0794224,0x1f1e392,
  35803. 0x031833d,0x05d160d,0x01f16dc } },
  35804. /* 18 */
  35805. { { 0x1fc0de5,0x1d737ff,0x1c92f37,0x1f5694b,0x0801814,0x15546ed,
  35806. 0x0d963a8,0x0823202,0x1da4f04,0x1d8e57a,0x001847c,0x19b6682,
  35807. 0x08f24b9,0x0b7067c,0x10c93b6,0x0b90491,0x1342305,0x0a5bf51,
  35808. 0x0424b8a,0x06b6c91,0x01d36e8 },
  35809. { 0x1372f27,0x1bd7383,0x0669fad,0x150775c,0x0779b4f,0x014f5da,
  35810. 0x16b8595,0x07f42eb,0x0fc03ef,0x0176133,0x071f125,0x0d52d32,
  35811. 0x1c0e5fc,0x0b129e9,0x1d8793d,0x1ce7141,0x158de74,0x0bd08ff,
  35812. 0x0937a46,0x0499a8c,0x0002605 } },
  35813. /* 19 */
  35814. { { 0x1342e08,0x0e86500,0x02bd16d,0x016e93e,0x109ed4f,0x14ec022,
  35815. 0x00b6594,0x139d6aa,0x16d8035,0x15843ed,0x0120017,0x150e987,
  35816. 0x04eaa66,0x03ad43c,0x1cb1e83,0x062fdd2,0x0216874,0x0460b4f,
  35817. 0x1727efd,0x0aadc1c,0x014f81c },
  35818. { 0x120674d,0x05895f0,0x02b09ac,0x12433e0,0x06bf09b,0x0c65536,
  35819. 0x1ccb759,0x13c3c3c,0x18292d9,0x1b8e2d7,0x16fe031,0x0a524bf,
  35820. 0x1d5d813,0x1b3361b,0x06f5e60,0x1ed01cc,0x06a1d0d,0x1c6d64a,
  35821. 0x0e7c260,0x19ed098,0x009f58d } },
  35822. /* 20 */
  35823. { { 0x17dc837,0x148813d,0x0710505,0x096a1d6,0x0d71975,0x133a0d9,
  35824. 0x024ab5f,0x07009e8,0x1bc824a,0x0853f8e,0x082f3c7,0x00ad91c,
  35825. 0x10570b2,0x0d0c0ed,0x0cb8ee7,0x0a114ce,0x16e0a7b,0x13c4031,
  35826. 0x07dc124,0x1ea0599,0x004511a },
  35827. { 0x16f4ffa,0x106ca62,0x03e82e0,0x0589e18,0x1c6205a,0x1030350,
  35828. 0x0f53a86,0x1f733e6,0x079b316,0x1d5b233,0x0903f06,0x10a5c9e,
  35829. 0x0305aa0,0x096bee2,0x14e6de2,0x180e644,0x11206e3,0x181b2bf,
  35830. 0x1b6d98c,0x00a5019,0x0059284 } },
  35831. /* 21 */
  35832. { { 0x197760c,0x04388a1,0x141a434,0x0c393f9,0x19020b7,0x1f127bd,
  35833. 0x11fea61,0x1418ffd,0x0522335,0x119dc50,0x0728403,0x15fb5c4,
  35834. 0x0073dbe,0x1d81911,0x0301828,0x0bb4c8b,0x1b8ee14,0x1cdce39,
  35835. 0x1ffd8bb,0x0cc3ca4,0x00aa31c },
  35836. { 0x1430b5e,0x0c75840,0x15a6bd4,0x14a1dc1,0x132f9ce,0x175f45d,
  35837. 0x0c2d6a9,0x1121d9b,0x09fe1d6,0x18afbf9,0x0732687,0x11e634b,
  35838. 0x03ce5d6,0x0455953,0x159e650,0x19ca9e9,0x0ef4347,0x1742d8e,
  35839. 0x01b41dd,0x0847805,0x01768ff } },
  35840. /* 22 */
  35841. { { 0x1dcec23,0x0082619,0x1466159,0x179ba0e,0x1af0d61,0x07984d5,
  35842. 0x0bd4531,0x02a90db,0x1de4887,0x00de47a,0x0e6e8fc,0x15e3a6a,
  35843. 0x0cddd6b,0x1d1df47,0x1f99974,0x10cbf76,0x0c3cb5d,0x07c8ced,
  35844. 0x0485268,0x007b47e,0x0173fe2 },
  35845. { 0x0d4a3d1,0x174d0bc,0x1b6010e,0x110ca62,0x04d5cf5,0x0bb231d,
  35846. 0x09b0104,0x089d5e0,0x1f84afa,0x0b631c7,0x0908b4c,0x072fffd,
  35847. 0x13512f2,0x13115b0,0x07aa811,0x00d1ad2,0x0a397e7,0x02442b7,
  35848. 0x1286ccf,0x0365c7e,0x01b542d } },
  35849. /* 23 */
  35850. { { 0x1487402,0x196af0f,0x1757d46,0x0cf55e3,0x036016e,0x14e1057,
  35851. 0x1c7d5b6,0x1fa3d67,0x1ece45b,0x0dbe9b0,0x0a78609,0x0c6604f,
  35852. 0x0942db0,0x14208b2,0x08a1ddf,0x0e7a17e,0x0c44587,0x07afe70,
  35853. 0x175e97c,0x062a3a5,0x001fb2b },
  35854. { 0x1aa096a,0x1b9f47d,0x01e0409,0x17c1275,0x152726e,0x1f8bc08,
  35855. 0x1341cb1,0x0ecb8a7,0x0ab5dca,0x069efe8,0x1cb528e,0x1b0b0fd,
  35856. 0x02bb4a7,0x1bf588e,0x070804e,0x1445eb9,0x0340b6d,0x0af1a9e,
  35857. 0x0c97b2b,0x1aa14b4,0x0039846 } },
  35858. /* 24 */
  35859. { { 0x077df58,0x13b9b0b,0x15b1db6,0x0e396a1,0x164bd56,0x0407f91,
  35860. 0x11f5c28,0x0600887,0x1865324,0x0542a14,0x04079e8,0x1ba586a,
  35861. 0x1682002,0x0462e6b,0x0f1850d,0x1e27f7d,0x1aeca6c,0x07f8ac8,
  35862. 0x02fe370,0x0f85cd3,0x00fb91c },
  35863. { 0x0de14d5,0x02e5689,0x0089a9f,0x1ecac39,0x1c448c5,0x0dd9ed5,
  35864. 0x190c1f3,0x1af3f1b,0x1c76811,0x02c7808,0x1881267,0x00dcea8,
  35865. 0x091e898,0x04d3a72,0x0ab428b,0x06f87ca,0x05cb2be,0x0901a34,
  35866. 0x082f1cb,0x0c648a1,0x00ec7a8 } },
  35867. /* 25 */
  35868. { { 0x086786e,0x0c610c5,0x0b20ce0,0x08426fc,0x0d537f7,0x1375907,
  35869. 0x043469f,0x006bb2d,0x05cdc48,0x1c87638,0x1ef5d65,0x059049e,
  35870. 0x1446916,0x070f878,0x19fbe75,0x02b9413,0x08bce99,0x1e98609,
  35871. 0x11c489b,0x028becd,0x002d810 },
  35872. { 0x11d87e5,0x1a4fadb,0x1b68c49,0x02f6059,0x05f3b14,0x1d7f8b1,
  35873. 0x1b4bb82,0x04e048a,0x1fcae66,0x1fbd9d4,0x16617e5,0x1f1e6f7,
  35874. 0x010d6eb,0x1fd3686,0x0aa06e5,0x1e26e41,0x00121f2,0x0d94f8d,
  35875. 0x130376c,0x0d45f0b,0x003de32 } },
  35876. /* 26 */
  35877. { { 0x0c2ee78,0x19cc59c,0x0fb89bc,0x034eb41,0x00c3d10,0x0d3fc72,
  35878. 0x05c1959,0x0ba6b46,0x104019e,0x094c2f1,0x1d2dbb4,0x0c85702,
  35879. 0x0a21e2a,0x17c0529,0x0857ba2,0x1b01c4b,0x1e68518,0x12e8f07,
  35880. 0x13dbaa6,0x1782700,0x00848cb },
  35881. { 0x1d45169,0x143486f,0x0341da0,0x10b3a7d,0x18d7e09,0x1c5fe11,
  35882. 0x0204736,0x09046eb,0x0162cf6,0x04caa3d,0x056e321,0x167769a,
  35883. 0x06494ba,0x03024cd,0x0b2f15f,0x19fdb04,0x04ea8a1,0x1d62191,
  35884. 0x1f19662,0x0c68d2a,0x00d9435 } },
  35885. /* 27 */
  35886. { { 0x0271323,0x14929b4,0x135cac1,0x10939a0,0x04d9e0a,0x18e63e9,
  35887. 0x17efcac,0x0c355c6,0x157a3e3,0x07b25a7,0x13a1591,0x0d0c052,
  35888. 0x0e14904,0x01e76a5,0x120bb9d,0x1b48fbb,0x0a57e2c,0x065c953,
  35889. 0x1f07e5a,0x1885df7,0x013f989 },
  35890. { 0x0651600,0x0c5efdc,0x0bbafb6,0x08f479f,0x0c36343,0x18d1134,
  35891. 0x0950cd6,0x00f2742,0x1d58255,0x0c6d3ee,0x1ac7a55,0x16470a5,
  35892. 0x05a5173,0x114afaa,0x16b9614,0x1a203be,0x0ef6646,0x172a371,
  35893. 0x1627e18,0x02d458b,0x01faf7e } },
  35894. /* 28 */
  35895. { { 0x1ec136d,0x0364763,0x146c35d,0x0f9a226,0x18e1d82,0x03d08b7,
  35896. 0x0eb4fc6,0x0caec94,0x1136e84,0x18dcb47,0x060f08b,0x05290a1,
  35897. 0x19d41aa,0x1f38b92,0x08fb312,0x0293842,0x152763c,0x0ee6e55,
  35898. 0x008ae0b,0x0a16302,0x016da7f },
  35899. { 0x0a5e258,0x1299686,0x09efe67,0x0f2f6c5,0x0148ad1,0x1feef7d,
  35900. 0x090bb1d,0x1891a14,0x174f9b6,0x028c5e6,0x048b516,0x0170ffa,
  35901. 0x17c53b3,0x1da8596,0x033464f,0x155d377,0x0eebc01,0x08d0b4d,
  35902. 0x1789b82,0x1362143,0x01c57e4 } },
  35903. /* 29 */
  35904. { { 0x1210716,0x1f33a90,0x1000b2a,0x060fc04,0x01a296a,0x01bcadc,
  35905. 0x1047632,0x0d5295f,0x0dd9efa,0x079019a,0x15a1bda,0x13d6cef,
  35906. 0x155be2f,0x1fae713,0x04fc9de,0x0f8b8d4,0x041b975,0x07bec91,
  35907. 0x1d3d2e3,0x07a5e98,0x013270c },
  35908. { 0x1209aa4,0x0304e46,0x10dbe72,0x05b656a,0x06f413a,0x091a2ea,
  35909. 0x0b468a6,0x09f2d6e,0x19487c3,0x0379575,0x028dd46,0x02ed688,
  35910. 0x0e4fa72,0x1ed29ac,0x10824d9,0x1662074,0x1e3ff25,0x0788f56,
  35911. 0x017582e,0x0e02a6a,0x01a99a5 } },
  35912. /* 30 */
  35913. { { 0x07495bb,0x089c9b7,0x0746b85,0x109210f,0x0bd2fd2,0x1ebb7e7,
  35914. 0x0ac2ca7,0x0393846,0x1c60e72,0x0d06a4d,0x08278a8,0x1706a2f,
  35915. 0x189f582,0x0ec5d6f,0x0de027a,0x1176958,0x09e0ad4,0x1a5526f,
  35916. 0x0db3121,0x0826259,0x0027fd0 },
  35917. { 0x0d4fb6d,0x0817775,0x12fb015,0x1a14c05,0x160c25e,0x1fa503b,
  35918. 0x1a106f5,0x028b174,0x054edce,0x145b019,0x1d85330,0x1c72072,
  35919. 0x13b9d41,0x0c0f76c,0x086dc74,0x0961684,0x1c2332d,0x0e80871,
  35920. 0x0ac3906,0x0b144fb,0x0096dfe } },
  35921. /* 31 */
  35922. { { 0x1ebd24e,0x17e6b3e,0x01d5335,0x0135c56,0x1e3fca6,0x0be1365,
  35923. 0x108bbc8,0x07f4fb1,0x0b9620e,0x01681f0,0x07e1f75,0x042d8ff,
  35924. 0x0e634bf,0x04b97ff,0x0c7b14e,0x07cee45,0x1c1d60d,0x141d4ab,
  35925. 0x1da94df,0x1cbf0c1,0x0162edf },
  35926. { 0x0ea20b8,0x02a0078,0x0401028,0x1c3af2d,0x0872ac7,0x0d86561,
  35927. 0x097243b,0x14eeecb,0x0b62939,0x0fadc98,0x12dc227,0x0edd5e5,
  35928. 0x12f78a6,0x097f5e0,0x01ccafd,0x015a606,0x0deba19,0x09d3320,
  35929. 0x0f9f8d0,0x15c2bf2,0x00d536e } },
  35930. /* 32 */
  35931. { { 0x1c88f3c,0x08cfb50,0x1129b18,0x185d8d2,0x124e5fe,0x017f954,
  35932. 0x0b1815d,0x0f89915,0x0ddb22c,0x056ef0f,0x1496ed8,0x0719f4b,
  35933. 0x0097289,0x1608bef,0x16b13df,0x05383f4,0x0b74829,0x0a0f9ad,
  35934. 0x0bf657d,0x09d1f21,0x0180d1c },
  35935. { 0x1cd8358,0x0739ed3,0x0480bf1,0x0fe5439,0x19361a5,0x0a69441,
  35936. 0x1c4c2b6,0x1c5ede5,0x02b6a78,0x1bf1233,0x098b378,0x1f16f38,
  35937. 0x190babf,0x10dacbd,0x0b807bd,0x09cc8d9,0x1f0a60d,0x0ce0f19,
  35938. 0x1407e11,0x084501b,0x000e52a } },
  35939. /* 33 */
  35940. { { 0x1013755,0x1205207,0x03a5cb5,0x0ff7070,0x0b6dce7,0x1b25988,
  35941. 0x139e5fa,0x06c4f13,0x193ca5a,0x1382585,0x17ff263,0x01feb17,
  35942. 0x1218c36,0x191861b,0x0c7cc8e,0x10ba2a7,0x0885a73,0x1eb59c8,
  35943. 0x1ae4efd,0x0261eaa,0x004a071 },
  35944. { 0x0ef3f88,0x104b5ff,0x0514a68,0x1370567,0x02eba86,0x1332539,
  35945. 0x0612a1c,0x084ffc4,0x1858ff9,0x06e05d0,0x03276a8,0x1d6ae92,
  35946. 0x0833799,0x00ac467,0x0d5bd8a,0x19dc43a,0x07fa7b2,0x0beecde,
  35947. 0x0f3ebba,0x0349d14,0x00d21e6 } },
  35948. /* 34 */
  35949. { { 0x1068656,0x0db14f4,0x137fb17,0x193fdbc,0x023bd70,0x0a2aa33,
  35950. 0x156f7f3,0x0838f15,0x06291a7,0x1cc0ee9,0x19a23bd,0x1b24ec3,
  35951. 0x0f3ac53,0x0adc939,0x05a24a9,0x0dfd8d5,0x1b80654,0x1210bf3,
  35952. 0x0e78bd5,0x1807975,0x015e793 },
  35953. { 0x0ff39be,0x0caa1b7,0x1da023f,0x1db7fe9,0x1a1af07,0x120b0b2,
  35954. 0x1eaf6c0,0x05307a8,0x1d47980,0x1e2e97e,0x0b9becd,0x12f0c16,
  35955. 0x189d86d,0x0746dcc,0x18ca13b,0x17377c7,0x0b5d868,0x1cf824f,
  35956. 0x16b462c,0x1d14f13,0x018e3b3 } },
  35957. /* 35 */
  35958. { { 0x11e61f0,0x1362b72,0x1d5d5c0,0x0660fe4,0x1ddbcaa,0x1757a0e,
  35959. 0x09baec6,0x1752540,0x0e2d7f5,0x19f49be,0x1ab6468,0x003d78b,
  35960. 0x1d1f7cc,0x1723403,0x0ad9974,0x12a3321,0x1555341,0x0e15227,
  35961. 0x0599012,0x18394cf,0x00aa099 },
  35962. { 0x197e387,0x0d484c7,0x15a6d58,0x108bc3b,0x1605177,0x18eb55f,
  35963. 0x144adff,0x1123ff4,0x0d09a9c,0x16d2ad2,0x00b8ad0,0x18e3a45,
  35964. 0x0d5e5a7,0x13a0c2d,0x096880f,0x15dffbf,0x09dea0b,0x10cd89b,
  35965. 0x1b30285,0x1df2283,0x01a3a5e } },
  35966. /* 36 */
  35967. { { 0x0573b81,0x106853d,0x13bcabc,0x10cc329,0x1eac1ca,0x188e1a3,
  35968. 0x0b6342d,0x085de1a,0x0ba099d,0x17500b6,0x1ea329a,0x1a50a0c,
  35969. 0x0fa6609,0x1d09a8f,0x14b1801,0x04c68d4,0x018b11c,0x06d5c2c,
  35970. 0x0c700cf,0x1f48bb7,0x0121f17 },
  35971. { 0x03279d6,0x05c3d7e,0x07867ee,0x178403e,0x030e76a,0x1610eef,
  35972. 0x1aa0e01,0x09e055e,0x1c63f82,0x17ebf15,0x14694fa,0x1c4c8d7,
  35973. 0x047b074,0x1109c8b,0x1bd24c6,0x1b37f9a,0x139c172,0x0d5967e,
  35974. 0x16d673c,0x07d6969,0x010a62f } },
  35975. /* 37 */
  35976. { { 0x0689a1b,0x16f1b70,0x19cb900,0x1afb95f,0x1dccc9f,0x0e85fdc,
  35977. 0x0b5f895,0x1b3c9bd,0x04ada04,0x1f743f7,0x0b9dd35,0x073d7fa,
  35978. 0x1b5a850,0x1b8595c,0x0b1995d,0x0777450,0x026ba10,0x0d3d654,
  35979. 0x1f3541c,0x0051758,0x011aac7 },
  35980. { 0x00c8f04,0x0e9ce34,0x0d78b98,0x1969167,0x0f09c4c,0x1a279e1,
  35981. 0x026f655,0x126262c,0x0aaccb5,0x0b9725a,0x1ec825b,0x0194b5b,
  35982. 0x0fdb706,0x0fe9f66,0x1f6790c,0x054e78c,0x06fe175,0x00a43d1,
  35983. 0x134215f,0x0a6cc6c,0x01e33d9 } },
  35984. /* 38 */
  35985. { { 0x0ec9e7f,0x02835a6,0x063f999,0x0861557,0x044564b,0x1fd1425,
  35986. 0x1407c5c,0x0e4bc36,0x015c974,0x1dbdebf,0x1b00cf9,0x0f5105b,
  35987. 0x02d6cc6,0x0531dbb,0x18ba4d0,0x05f9a3f,0x01b3f8e,0x11d0427,
  35988. 0x0b9b9d4,0x1c9b513,0x00fdccc },
  35989. { 0x12fd820,0x1fc7760,0x1ccc1e5,0x152db48,0x125f892,0x0cbdfa1,
  35990. 0x0907556,0x19eb2fa,0x002b753,0x1779ad6,0x1f3ae8e,0x12bbece,
  35991. 0x0c8a73f,0x08ddd63,0x0a24adf,0x0f160b6,0x183cc52,0x1483a8a,
  35992. 0x11fd17d,0x1daa7f4,0x001c2f5 } },
  35993. /* 39 */
  35994. { { 0x140b79c,0x00b2f55,0x06a0e45,0x104b691,0x1fb6eed,0x16083fd,
  35995. 0x1adf629,0x117b426,0x18e01f2,0x018edc5,0x1e641f5,0x01bb49a,
  35996. 0x0584e5d,0x1238f34,0x0a451ca,0x0dff0d3,0x1699837,0x0ac6834,
  35997. 0x118c47f,0x0d36e98,0x0006ce3 },
  35998. { 0x0dd1452,0x1b9e88d,0x08a9b01,0x0bdb1d3,0x0e4e9c9,0x0ad2061,
  35999. 0x038cb28,0x11fd1ff,0x0af62f1,0x1e5be9b,0x05212cf,0x0ddddd9,
  36000. 0x1b2ca33,0x1d90202,0x15b9ea4,0x106a549,0x031956d,0x1b6c868,
  36001. 0x07280f9,0x0eac07b,0x00e5dd3 } },
  36002. /* 40 */
  36003. { { 0x1481bf7,0x194bec5,0x00f3317,0x0854267,0x06a2a3e,0x005cb60,
  36004. 0x14a3371,0x0793c28,0x11189da,0x115f9af,0x15fe9e6,0x1312d9a,
  36005. 0x0bb8adb,0x09abe99,0x0924d72,0x0df5b83,0x180c2d7,0x0a8fd92,
  36006. 0x13c8f78,0x043d684,0x01ba987 },
  36007. { 0x0a4b397,0x16d57a9,0x1952300,0x181a169,0x03c5f4c,0x1f3ce6e,
  36008. 0x136cded,0x16c537c,0x0b33970,0x1a19b76,0x0231ffc,0x16f9250,
  36009. 0x11ed3dc,0x011446d,0x0a43bfc,0x1ab35d8,0x151e96e,0x19523ce,
  36010. 0x1b63e97,0x1db0e0e,0x00929d7 } },
  36011. /* 41 */
  36012. { { 0x060043c,0x0d785f3,0x1d3763b,0x1602dc0,0x04aa2cc,0x061d9ec,
  36013. 0x1a39f8b,0x1893a46,0x05c269f,0x1da8098,0x0cf8d91,0x1dc27bc,
  36014. 0x04d0194,0x1c4e528,0x0cd86e5,0x1623bb6,0x033984d,0x0466a8c,
  36015. 0x03b24bc,0x1003d99,0x00c6d5b },
  36016. { 0x1ab9887,0x08e0aa3,0x0044cfe,0x14d6b56,0x0f285e2,0x1fe40c1,
  36017. 0x139684c,0x05936e6,0x038d869,0x021ad3a,0x00ba057,0x08f8865,
  36018. 0x0a3c92b,0x0e3de6d,0x048c7d6,0x1190c32,0x1c34d15,0x11d7212,
  36019. 0x1688f32,0x0d1fd78,0x00117f5 } },
  36020. /* 42 */
  36021. { { 0x15caa87,0x1eceadf,0x1276332,0x1ed1bb1,0x17bfc60,0x0a6f6f0,
  36022. 0x136ef1f,0x17ec7d6,0x18270b5,0x1b72ca2,0x063f9ef,0x0f4b981,
  36023. 0x1588713,0x02ebdc7,0x17ada1c,0x14a6794,0x0ee4b25,0x025bef7,
  36024. 0x09c029b,0x08b8649,0x00ef8e0 },
  36025. { 0x0cf52bc,0x00e4938,0x0a60583,0x152198c,0x0bf3f63,0x18147da,
  36026. 0x10872fc,0x1e2bffe,0x1523bef,0x140816b,0x1384142,0x1347173,
  36027. 0x1eff330,0x03310d8,0x0769340,0x0f00f1d,0x09fcc0a,0x14bbafc,
  36028. 0x005e184,0x0890ca0,0x00eb590 } },
  36029. /* 43 */
  36030. { { 0x1bd33ec,0x1327ef5,0x15e6299,0x019cb5a,0x0cf9a66,0x1dab768,
  36031. 0x1b01543,0x0ddd9a0,0x11d5aaa,0x0652fd6,0x09fc1ed,0x1cb7291,
  36032. 0x1a36dae,0x17f0e08,0x18de21f,0x0a897a5,0x0c491d2,0x120fb0d,
  36033. 0x0fff63a,0x1ee0e25,0x00be49d },
  36034. { 0x1acdb56,0x178fab2,0x0f79838,0x08bcbcb,0x12f13c8,0x1d02097,
  36035. 0x14d5385,0x1df72ff,0x1d9c93b,0x11433e7,0x055f922,0x02d64b5,
  36036. 0x1f9ca9d,0x050c31a,0x157066d,0x15ce23e,0x0f58d26,0x0cd9c34,
  36037. 0x1251507,0x0900829,0x0000ac4 } },
  36038. /* 44 */
  36039. { { 0x0ad38db,0x1e7c4ea,0x1445b06,0x027ae28,0x1180f38,0x18121d0,
  36040. 0x09d672d,0x0d8b698,0x1163a71,0x0eb26b1,0x122f6d7,0x1fd426c,
  36041. 0x09bbd2e,0x126f4cb,0x1c61fe7,0x1188b48,0x112e2de,0x1b2ef34,
  36042. 0x0f6b429,0x0be5389,0x0048e07 },
  36043. { 0x04dd88d,0x1aa3a2f,0x0bf000c,0x1100aef,0x1828363,0x19447b8,
  36044. 0x1700489,0x1bdc966,0x1e68989,0x0047ec8,0x1dc6eb4,0x062b9a7,
  36045. 0x0242142,0x1f26d0f,0x0c08ffc,0x05762b9,0x035b566,0x0bf35ce,
  36046. 0x1ec13f9,0x1e82caf,0x0072143 } },
  36047. /* 45 */
  36048. { { 0x0f40f2c,0x1823613,0x0c76c1a,0x18d9af8,0x1d5d246,0x09d4dbd,
  36049. 0x189c065,0x0df554a,0x08f0043,0x16494dc,0x0198356,0x125843a,
  36050. 0x0619373,0x0deb6df,0x1e7b456,0x087f3a4,0x15ad17c,0x09bbe26,
  36051. 0x03f3409,0x1db4a17,0x0179800 },
  36052. { 0x0132f31,0x0ee059b,0x0e8ee23,0x0255bce,0x0f8f4f0,0x1ef15cb,
  36053. 0x07b0c80,0x066710b,0x0231b65,0x0d81c0a,0x024f2bb,0x1a41428,
  36054. 0x19ad08c,0x0e15f17,0x1e1b511,0x1813f73,0x132f6eb,0x0fe9eca,
  36055. 0x0bbd1e3,0x16b1323,0x013d757 } },
  36056. /* 46 */
  36057. { { 0x00f894b,0x168802c,0x11bdf66,0x15b24bc,0x1612488,0x0d3432d,
  36058. 0x1f850b9,0x0268a92,0x117f9a8,0x0370829,0x0cd5072,0x0415f14,
  36059. 0x18d8aa8,0x1d336ab,0x1e41981,0x11c474c,0x0ae5f75,0x023efb0,
  36060. 0x1fe2ad7,0x1a99214,0x0107cad },
  36061. { 0x164ad0e,0x18227b3,0x06ccd5a,0x024a031,0x169fe0e,0x0a6db57,
  36062. 0x129897c,0x0a85bd5,0x11bd77d,0x0f93bcf,0x0a2573a,0x03e4b9f,
  36063. 0x0397991,0x1b78cd6,0x1a533b6,0x08963a9,0x01701af,0x0e1a99a,
  36064. 0x031c9fd,0x087ffea,0x003bcac } },
  36065. /* 47 */
  36066. { { 0x1c1d4cf,0x14a8e41,0x0d3c5d0,0x01648b8,0x003791d,0x16e638f,
  36067. 0x03bda70,0x0cfd51f,0x12a3107,0x152bd14,0x0522f4b,0x0d77625,
  36068. 0x03255b4,0x07f575c,0x1707824,0x17eb255,0x18c449a,0x0d06968,
  36069. 0x12a29a2,0x193feb8,0x00199e8 },
  36070. { 0x128171a,0x1dce6f5,0x01ef27d,0x07aaed3,0x0fd7840,0x1fc1267,
  36071. 0x1cefc8b,0x18ab169,0x1bf333c,0x104d9c9,0x13adcbb,0x0745603,
  36072. 0x0debff8,0x11014ce,0x0cd3114,0x1eea2b7,0x0a066eb,0x1d1e1f4,
  36073. 0x074173c,0x1c0f769,0x01a65de } },
  36074. /* 48 */
  36075. { { 0x114257b,0x0ac6b58,0x18c026a,0x03a92eb,0x129afd4,0x173d88b,
  36076. 0x1e6d4ea,0x1060e50,0x1edd1ac,0x1c8d849,0x19e5d41,0x0fa23d6,
  36077. 0x0acfefc,0x1133ada,0x152f4df,0x0a2fe1c,0x17e8d69,0x1c4d316,
  36078. 0x0084268,0x100bb04,0x006b96f },
  36079. { 0x1b5f9f4,0x0ea8bab,0x1345205,0x0c80b68,0x05c9e43,0x0380b07,
  36080. 0x1778392,0x1f06885,0x11ef6b3,0x09ff7ca,0x05febe5,0x19ebee9,
  36081. 0x17919e4,0x00b7785,0x18f3134,0x1ddda49,0x0872512,0x1fe2e55,
  36082. 0x0ef45c0,0x1480534,0x01b6f1b } },
  36083. /* 49 */
  36084. { { 0x09252ac,0x1421aa9,0x0360a99,0x00e9cf6,0x1da626c,0x1f43559,
  36085. 0x0330782,0x0a6aa10,0x14ed5dc,0x1a529fb,0x107f414,0x028019a,
  36086. 0x1ca9eff,0x0b3a448,0x1f25171,0x16b5a1c,0x095ec53,0x06f525c,
  36087. 0x1454262,0x0cf7de2,0x01ffefc },
  36088. { 0x06033fd,0x0e08498,0x1766623,0x13e6d0e,0x1b28797,0x019ae28,
  36089. 0x0bc9b8f,0x1ac9a73,0x1124e29,0x0392cfe,0x16f7f29,0x0ae1883,
  36090. 0x155d60c,0x06606c4,0x0892d84,0x1ff0c0c,0x0e5eea8,0x1d020ea,
  36091. 0x19361c1,0x01c2b95,0x01fd292 } },
  36092. /* 50 */
  36093. { { 0x167da85,0x0af8666,0x08559b4,0x08b58a9,0x0e98b6f,0x1638e1d,
  36094. 0x18087c6,0x0485e0b,0x0475592,0x1f59113,0x015b707,0x0ac2cdd,
  36095. 0x072a2f1,0x17da5d2,0x1ac5159,0x12416cb,0x1d2a29d,0x19a3445,
  36096. 0x07532e6,0x19d0ddf,0x0061943 },
  36097. { 0x0c91174,0x0b10c55,0x08d2d1a,0x1883bb2,0x05b519e,0x03b1d24,
  36098. 0x0b7ca7c,0x0676fdf,0x1712c8b,0x028bf93,0x0e18c26,0x1d8760a,
  36099. 0x04a02e7,0x0ff9f1f,0x0f116ec,0x0c90c8d,0x16f2949,0x1a35744,
  36100. 0x0f4ae4f,0x162c93d,0x01462ae } },
  36101. /* 51 */
  36102. { { 0x0e4d3c3,0x07a0ff4,0x076c7cd,0x1eb76fd,0x080d87f,0x085abce,
  36103. 0x1b02b64,0x15de042,0x1b87349,0x1125bb0,0x09b300a,0x0a50561,
  36104. 0x17054bc,0x17968ca,0x131c0a6,0x0d9ba76,0x0e2adbe,0x00725c8,
  36105. 0x181828d,0x0e9f024,0x00cf8e7 },
  36106. { 0x0229950,0x1cede17,0x0dc0f1f,0x0db3f05,0x0b11f84,0x0602f9d,
  36107. 0x1668fc4,0x19456f5,0x10f1820,0x01f56a7,0x1eccc88,0x1791997,
  36108. 0x1151dbc,0x0333837,0x1672bc0,0x13abc77,0x0250605,0x12d1cdf,
  36109. 0x12bf993,0x070f91b,0x014c984 } },
  36110. /* 52 */
  36111. { { 0x0011531,0x13abfc7,0x15f1c22,0x0587b9a,0x1f45b17,0x0ccf14b,
  36112. 0x127f70b,0x02b51d5,0x1b93b64,0x0a7740f,0x023a1a7,0x16a94a9,
  36113. 0x10a5833,0x05dbd5b,0x155870c,0x1e753bb,0x184b3bd,0x1daded1,
  36114. 0x177ccca,0x13f1c03,0x0124f90 },
  36115. { 0x141e782,0x0554255,0x0e1f16e,0x0d0a3bb,0x1de2012,0x0415e90,
  36116. 0x0a9f665,0x077e937,0x1f4b641,0x0cb1ef5,0x0788901,0x1f76f9a,
  36117. 0x0eed369,0x0dd6b07,0x1d25774,0x061dbb9,0x093892e,0x0f5a3ab,
  36118. 0x1c2884b,0x0237b15,0x010baaf } },
  36119. /* 53 */
  36120. { { 0x0ec64e2,0x100ba0b,0x1af9c51,0x1efaf8d,0x1fd14ac,0x05b8bb5,
  36121. 0x0128d9a,0x0383c6a,0x1741b04,0x171f9f9,0x0d9ec1c,0x0a945a7,
  36122. 0x0d651fa,0x12bec94,0x0fb728f,0x1e832c4,0x08b72c8,0x194dba7,
  36123. 0x09eaebb,0x13968e6,0x00383d9 },
  36124. { 0x0342a3f,0x0e859ed,0x0552023,0x05bde95,0x1200246,0x1ad4300,
  36125. 0x190bbaa,0x0da3638,0x106e54b,0x10f1502,0x1b3c697,0x021e218,
  36126. 0x109ba17,0x07c81e6,0x13f0d98,0x0cdea66,0x0011341,0x1cb4f00,
  36127. 0x15710d4,0x04c0e82,0x00fafaa } },
  36128. /* 54 */
  36129. { { 0x12de285,0x0687338,0x1717217,0x010d3eb,0x0d2ff8b,0x0769c4e,
  36130. 0x0ae4b7d,0x1086e54,0x055b99c,0x1a92698,0x0800cd8,0x0b45c0f,
  36131. 0x1346fef,0x0b704a4,0x0b20b6b,0x12a5614,0x02172a8,0x159b133,
  36132. 0x1c85fad,0x1963115,0x002c9af },
  36133. { 0x064c5b5,0x0ea3b4d,0x1f874ee,0x1c89899,0x00d8d5d,0x036dffd,
  36134. 0x163bc47,0x1daac10,0x141c14a,0x10ecbc7,0x1fa1533,0x1ce46bd,
  36135. 0x1d251f9,0x023a2ba,0x1430530,0x13807f3,0x18ebda8,0x0069641,
  36136. 0x1b32770,0x1e08166,0x016fa25 } },
  36137. /* 55 */
  36138. { { 0x0ad682d,0x0cef54e,0x0e46c8f,0x068c6d2,0x07acb1b,0x07926bc,
  36139. 0x0662170,0x19d3eb8,0x1d41883,0x1fb17e3,0x15791b7,0x13bea6a,
  36140. 0x05d1ab2,0x048e6d0,0x06c72ca,0x067daad,0x1c452c6,0x06d8a6d,
  36141. 0x08d150a,0x1770d85,0x01941ac },
  36142. { 0x0db8127,0x1386412,0x1d6f61a,0x1e836f9,0x04a6563,0x046cda4,
  36143. 0x16afae4,0x0151b09,0x1899c26,0x1755731,0x0da55ea,0x1656888,
  36144. 0x0d13ed6,0x0854964,0x1253e67,0x1972e77,0x02bd04b,0x1cbc797,
  36145. 0x05a9597,0x0711dee,0x007456a } },
  36146. /* 56 */
  36147. { { 0x0fc1f77,0x16ff24b,0x15a9820,0x1e268f5,0x104c435,0x15f22bd,
  36148. 0x0537097,0x155e84d,0x1b6f764,0x050b834,0x00f6859,0x07aa09b,
  36149. 0x10e0387,0x1064119,0x0e76d4b,0x1367d61,0x14ed423,0x14c4359,
  36150. 0x0620536,0x10fe54b,0x016a765 },
  36151. { 0x1c71a5d,0x07c7475,0x08cda46,0x050a80a,0x09141a4,0x0165e62,
  36152. 0x0273306,0x14fac7e,0x1e09057,0x17f2ce9,0x0763ad2,0x161bc47,
  36153. 0x12e633d,0x1eca4a5,0x12160b7,0x1fac375,0x0414704,0x0c5c8ad,
  36154. 0x13abbf6,0x0cd53bf,0x010ee08 } },
  36155. /* 57 */
  36156. { { 0x0e07a4d,0x0623829,0x1740ad4,0x11cbae8,0x1f6d38b,0x1789133,
  36157. 0x111f386,0x1ef6829,0x139c505,0x1f25a25,0x1ce6f80,0x0f2b0de,
  36158. 0x1c59f3d,0x13e178d,0x066f29f,0x1f5a994,0x01ec063,0x18e28e0,
  36159. 0x1d0a2be,0x126f4af,0x0080da3 },
  36160. { 0x02369fa,0x0654e88,0x18d7a76,0x16e0d81,0x0009bff,0x1aaec07,
  36161. 0x0669e5a,0x0985c14,0x0ac0d09,0x107216f,0x1061eb6,0x058af0f,
  36162. 0x166c1be,0x0e7d025,0x12b8b32,0x0e680da,0x0607657,0x0ad8675,
  36163. 0x1f258a1,0x04a48b8,0x00d82d5 } },
  36164. /* 58 */
  36165. { { 0x093de69,0x191c657,0x1a6db72,0x0677fb5,0x0963c83,0x1bcc1b2,
  36166. 0x07d37a2,0x15c6790,0x0ae8bf8,0x09d1122,0x1aeb338,0x0f0c987,
  36167. 0x160bc6e,0x0aad2d6,0x0de94f1,0x128b350,0x135bc7e,0x0c3aec6,
  36168. 0x07d1bf3,0x00aa69f,0x001fb37 },
  36169. { 0x1b974a1,0x093863f,0x1205e3a,0x01d3da4,0x03448fa,0x1ffdea1,
  36170. 0x1b0f592,0x078282c,0x1d79f4b,0x02d5221,0x1cca828,0x09e2773,
  36171. 0x1ed855a,0x164811a,0x1af3e36,0x0569097,0x1878db5,0x0b2c24c,
  36172. 0x1234274,0x1ab3e3c,0x0183aa4 } },
  36173. /* 59 */
  36174. { { 0x1ffad9f,0x02ebaed,0x03f3b96,0x09e833b,0x04df617,0x0349a2b,
  36175. 0x0fd679b,0x018dee7,0x183d59b,0x003c9e8,0x122542e,0x1f87253,
  36176. 0x0b6baf4,0x14cb15d,0x1116a54,0x024e77a,0x145eaa9,0x1a95b0c,
  36177. 0x1471e16,0x19bffe7,0x01be4fc },
  36178. { 0x0b2857f,0x1c26cbe,0x0fd0170,0x100d6f5,0x0cf8305,0x1673592,
  36179. 0x1745d0e,0x16dea51,0x0bc43d6,0x03dc7d1,0x1592e4b,0x117e29c,
  36180. 0x1a8f0e2,0x095cf80,0x1a6f1cf,0x107cc36,0x1403dd3,0x1d5c5f5,
  36181. 0x1e4651a,0x1d418b2,0x00aeacc } },
  36182. /* 60 */
  36183. { { 0x163c2de,0x05d7700,0x029269a,0x17d64ed,0x042d0b2,0x0d73b3e,
  36184. 0x1c493ff,0x086ad0d,0x10aaca9,0x136d2ea,0x02473e4,0x099dc02,
  36185. 0x0d699c3,0x09925f6,0x0951501,0x141527a,0x0f14193,0x08db5ac,
  36186. 0x1847327,0x0924bda,0x014ff14 },
  36187. { 0x1ed9259,0x0d30660,0x09fdfd8,0x065e3ab,0x1be37aa,0x177a188,
  36188. 0x1c4f41e,0x1740708,0x14e6fa7,0x0f99ea4,0x0dcc326,0x182d17a,
  36189. 0x1c43928,0x0dcaabe,0x13e333d,0x17dcae7,0x060d1a2,0x005e36a,
  36190. 0x0ec5584,0x1a32870,0x014527c } },
  36191. /* 61 */
  36192. { { 0x027af4e,0x1289a9a,0x0df52f9,0x02621b2,0x0e6c0bb,0x1338e19,
  36193. 0x09dab2a,0x0ed7b1d,0x0d3a9c3,0x0bd9fea,0x1c26aa7,0x10c68e2,
  36194. 0x00124ce,0x00c028e,0x1739074,0x1dc3844,0x04ff9e8,0x02a4494,
  36195. 0x0d713b2,0x105392a,0x013d22d },
  36196. { 0x1b15e02,0x0f6ced0,0x01a1ac0,0x18603cb,0x1d092ba,0x1209ad8,
  36197. 0x0860d5d,0x1497f4f,0x16f7159,0x0772cdb,0x0434370,0x00a2301,
  36198. 0x169171a,0x1c0290c,0x054c6ee,0x0f208b8,0x0fc2092,0x0ba0498,
  36199. 0x18cdda1,0x169198e,0x0008963 } },
  36200. /* 62 */
  36201. { { 0x0aaaed5,0x05b107a,0x1ba03fa,0x1bfd0e3,0x1068de7,0x1fe5a58,
  36202. 0x00c3ffa,0x0b65644,0x1c3a215,0x06fdf73,0x06e0175,0x15184ed,
  36203. 0x10a7a26,0x169cf57,0x1f79dc1,0x1e0646e,0x047f615,0x0f8d492,
  36204. 0x0b66dcc,0x1035088,0x012aa1b },
  36205. { 0x1152e8f,0x133e858,0x0530a67,0x0f256bc,0x0e773d9,0x05abd11,
  36206. 0x041cfc7,0x145c1b0,0x0bf1da4,0x1d7854e,0x0d12680,0x0c1d845,
  36207. 0x1d169b1,0x0e96be8,0x0b06b23,0x11dc970,0x0a6bfc9,0x0ba8456,
  36208. 0x0f2fa85,0x124881c,0x0150549 } },
  36209. /* 63 */
  36210. { { 0x13a4602,0x0250550,0x1839c00,0x07a1a58,0x105c71a,0x0bcde2a,
  36211. 0x0918e9b,0x1e949fc,0x0d54d9d,0x03c759d,0x0f1ee3a,0x120ee7a,
  36212. 0x057ecca,0x122767d,0x0eec9e0,0x1a2f2b6,0x01fb124,0x045187b,
  36213. 0x1d8cabc,0x1ca0029,0x01155b7 },
  36214. { 0x0f0021a,0x017664f,0x07518b1,0x0ff0ad9,0x18017fd,0x123c5e2,
  36215. 0x10ee0b9,0x1b621c4,0x11505a4,0x183a334,0x1fba96b,0x143899a,
  36216. 0x0ad9bb0,0x0a95768,0x0e8e68b,0x1e13bd1,0x09ab549,0x003a3a2,
  36217. 0x195fe99,0x11ef7b3,0x013fd5c } },
  36218. /* 64 */
  36219. { { 0x053c22b,0x0673dad,0x11a86f6,0x1af9568,0x18733fc,0x1659ca3,
  36220. 0x0938922,0x01f8899,0x0a38c79,0x0c4458f,0x0d08dea,0x0dd62b8,
  36221. 0x0336afb,0x1db8103,0x04ee2a3,0x011f572,0x0c59175,0x19a5bbe,
  36222. 0x0791cca,0x03af4ff,0x0050a93 },
  36223. { 0x0d21d18,0x121482b,0x0286a42,0x0eab682,0x0266630,0x053582c,
  36224. 0x12a2e25,0x0b968d0,0x1828cf7,0x10d6f31,0x1c0a8e2,0x10b424e,
  36225. 0x094fb2f,0x16fbdb8,0x1fdf416,0x03b6d07,0x092a68d,0x00e9fad,
  36226. 0x024f357,0x19c3b78,0x00f5243 } },
  36227. /* 65 */
  36228. { { 0x17d7891,0x0c1e1e9,0x1b2a3f0,0x13fb0cb,0x17b5014,0x10c2208,
  36229. 0x10f5a3c,0x0b01edc,0x15a07f6,0x1a8f612,0x00c80ab,0x0d975a6,
  36230. 0x158fe5a,0x0833b77,0x179a3cc,0x000192b,0x11fca4e,0x03a8471,
  36231. 0x1dcd495,0x1cb52ae,0x0159783 },
  36232. { 0x0537ad9,0x0dab897,0x13def07,0x1a6b7d3,0x1e87112,0x1fcde5a,
  36233. 0x0ad2355,0x18f76a4,0x0a8b3cb,0x17fbc48,0x136d707,0x1c23cbd,
  36234. 0x0d4f306,0x19c3f3f,0x16a0e48,0x03c7a61,0x0f47232,0x026c8fe,
  36235. 0x104a99f,0x0f76c5c,0x009f848 } },
  36236. /* 66 */
  36237. { { 0x0b8e08e,0x0fc07c6,0x1b5a1bd,0x02492df,0x1cfd2c4,0x1bee6fb,
  36238. 0x0dd0d82,0x0be00c3,0x157f4d0,0x0dd7fef,0x0187c93,0x18548b0,
  36239. 0x04b1993,0x0ef4ca6,0x1b2a342,0x1c0c4d8,0x04d2747,0x077b869,
  36240. 0x066572f,0x0ba9c77,0x00ffd4e },
  36241. { 0x0f40077,0x0f122e3,0x1418c5c,0x0a0e47c,0x1592e04,0x15fec40,
  36242. 0x1bdf9a9,0x1c06b90,0x16d9d9c,0x104ace8,0x15dc32e,0x1fd07d6,
  36243. 0x1d2e7f8,0x0206b1e,0x1ac2207,0x08832b1,0x1daeb9e,0x0ab199d,
  36244. 0x0bf47d3,0x072fbe7,0x0034fb0 } },
  36245. /* 67 */
  36246. { { 0x158815c,0x0702f59,0x1f65ee1,0x09c8210,0x1abcb2d,0x182ebd1,
  36247. 0x162241f,0x0390f4e,0x17a9d48,0x083bc6a,0x1932f4d,0x1ff085a,
  36248. 0x1e9d34c,0x067944f,0x167356b,0x058dc10,0x191dd2b,0x141b96a,
  36249. 0x02d02d8,0x1a905c3,0x006bc06 },
  36250. { 0x04ed375,0x14ad06d,0x0bab441,0x10531b5,0x11baf58,0x1b84962,
  36251. 0x086d3d2,0x06b6051,0x07a335b,0x15c3ed7,0x1fbf622,0x06c40ac,
  36252. 0x14a7359,0x199061b,0x127f040,0x11660f4,0x0c4a355,0x1b9bd65,
  36253. 0x103f3a6,0x0d2d469,0x001ed30 } },
  36254. /* 68 */
  36255. { { 0x13902fe,0x085585e,0x0ecf655,0x170d53a,0x1bba4b4,0x0e561bc,
  36256. 0x182a65d,0x1b874b3,0x1333605,0x02f4398,0x10b1601,0x118435f,
  36257. 0x11f2c59,0x177ce5f,0x1fe35bf,0x0788503,0x1d09bf8,0x0c15f6a,
  36258. 0x0a04c75,0x1b3ab6a,0x01579d1 },
  36259. { 0x119258e,0x0d182aa,0x0aa1a1f,0x1204fbc,0x13f539f,0x11186b3,
  36260. 0x05d1f5a,0x108d3f5,0x15f5d16,0x18d7591,0x1907d6a,0x128ebef,
  36261. 0x135bbfe,0x0b53ff5,0x151aaec,0x0a30f7a,0x0e8e16d,0x0957dea,
  36262. 0x13254f7,0x0f7c277,0x0160743 } },
  36263. /* 69 */
  36264. { { 0x09755a3,0x0b2d4f7,0x0ac557c,0x1570593,0x0c8d5a1,0x15cbf30,
  36265. 0x1916aad,0x0e2cb43,0x0ab05e2,0x00266d8,0x020c3cc,0x16a4db6,
  36266. 0x0b9e0c3,0x1ad65ef,0x187b069,0x1093155,0x084761e,0x1209ea2,
  36267. 0x06e718b,0x1c13776,0x01e9589 },
  36268. { 0x072258d,0x09040ce,0x0f519d4,0x08b82b2,0x01dcd73,0x008fedb,
  36269. 0x1e9ee47,0x11cd8c4,0x1885790,0x0e9f4df,0x0f1a3b4,0x0dfca61,
  36270. 0x1f9aac0,0x15ada27,0x1705aed,0x1dbaa24,0x1b6db90,0x01c4305,
  36271. 0x0efb6d7,0x1d1611f,0x01aa96f } },
  36272. /* 70 */
  36273. { { 0x057c0f8,0x12eec79,0x0364c8e,0x05ba742,0x0884dc9,0x1c6701a,
  36274. 0x1e73aee,0x15207e6,0x1a47262,0x10bd6a9,0x01b1b58,0x002ea5c,
  36275. 0x0da1df2,0x0192146,0x0dc8f83,0x18c59eb,0x0892c30,0x00f2e9c,
  36276. 0x1dfe0b3,0x121e3e8,0x01fdd9a },
  36277. { 0x163ab59,0x093dd0b,0x0fa60c3,0x1ce46f0,0x0f27d93,0x0cb4556,
  36278. 0x0099251,0x1ab02ab,0x01700d5,0x1928d19,0x11b67d8,0x1ce6062,
  36279. 0x12cf6bb,0x132df87,0x173d157,0x047f6d9,0x0ce6323,0x0405500,
  36280. 0x05a91d1,0x13cc59b,0x01496e4 } },
  36281. /* 71 */
  36282. { { 0x0574c09,0x185bf20,0x1a5afbf,0x067fd01,0x176f264,0x11bec8d,
  36283. 0x14d4bac,0x0041677,0x17edc31,0x006315b,0x08db70f,0x1296849,
  36284. 0x1ef9893,0x1e3621a,0x1a99309,0x1a0edd3,0x1c4e388,0x196fe10,
  36285. 0x139a792,0x10a5ed4,0x0139cc3 },
  36286. { 0x1096b91,0x051ffdd,0x10f948e,0x0ae7b1a,0x0e72c9e,0x0bbaac7,
  36287. 0x16c4631,0x169822d,0x0dc47d4,0x07644e9,0x06557d5,0x1a6a85c,
  36288. 0x1c2006d,0x1a1ba3a,0x12bb5a9,0x1208200,0x12a2bee,0x0e0eee1,
  36289. 0x164ccb2,0x082f45d,0x01fb597 } },
  36290. /* 72 */
  36291. { { 0x19bae66,0x18cc0c2,0x106cf03,0x0308baf,0x0b48e9b,0x151e0f5,
  36292. 0x0700d14,0x0738d9d,0x0ff8103,0x1c25006,0x035bf88,0x1c22bf3,
  36293. 0x1bcd7ed,0x1c506ea,0x08038f4,0x0380def,0x08a3c7e,0x1ab6eca,
  36294. 0x194e987,0x034fa31,0x00d09d2 },
  36295. { 0x00eb3fb,0x1edd7c4,0x1f27e73,0x0ebd07e,0x04cfd29,0x053a5a3,
  36296. 0x1f5be8a,0x006c374,0x1dfb13e,0x01006af,0x0984a2e,0x1e96465,
  36297. 0x0e03bc8,0x00d46c3,0x1ee4b0a,0x0dd4fa3,0x1ae706d,0x13433af,
  36298. 0x1eac630,0x10c115d,0x011d9b0 } },
  36299. /* 73 */
  36300. { { 0x1d2f539,0x1b0a35d,0x0e885f3,0x00edc4d,0x16052fc,0x1f2533c,
  36301. 0x0746352,0x1506d04,0x09f3f39,0x1c11a11,0x1e1cea3,0x0d72867,
  36302. 0x0868b84,0x18b7a2b,0x074fcd9,0x0eea0f4,0x0282fd4,0x16fb01f,
  36303. 0x05d7889,0x16058ad,0x000377c },
  36304. { 0x001dd59,0x0d6e9c6,0x0debc9d,0x1d73834,0x1c213a9,0x1e2a01c,
  36305. 0x1441137,0x10cd215,0x007ee0d,0x0177103,0x1f10388,0x1d2acc3,
  36306. 0x16896ed,0x085817a,0x135ce63,0x03448d6,0x191e5af,0x0e65cb4,
  36307. 0x04fdc49,0x05035f8,0x009fd5c } },
  36308. /* 74 */
  36309. { { 0x1073a5a,0x062a5eb,0x11f7216,0x190c3d5,0x07c81a5,0x10100d4,
  36310. 0x128e79c,0x19ca3f0,0x040e003,0x0954fc7,0x06677a5,0x0956b1e,
  36311. 0x0b76bdc,0x0ab6601,0x1c48c8b,0x0c5e639,0x06383f1,0x0db31a7,
  36312. 0x1e5a784,0x002fdd1,0x016984c },
  36313. { 0x089f1fa,0x019b12e,0x01e3c7d,0x016d2f6,0x0a02a63,0x02dbfa2,
  36314. 0x079712c,0x1986662,0x14fede4,0x1e65728,0x096a929,0x10e8960,
  36315. 0x0d0d26e,0x1c26dbd,0x16ddeef,0x183fcfa,0x0a8f571,0x01cf78d,
  36316. 0x0633348,0x1752508,0x018d65e } },
  36317. /* 75 */
  36318. { { 0x0bb2537,0x03355c5,0x05be8de,0x16cb661,0x14ac4cb,0x0145698,
  36319. 0x09fb4a9,0x12d04ff,0x010e9e1,0x0e8cfb1,0x006d3a5,0x0f41130,
  36320. 0x0331eb9,0x15745c1,0x19de98a,0x12c8555,0x02a5f5c,0x04b49eb,
  36321. 0x18da2e1,0x17fd2e7,0x00adff5 },
  36322. { 0x12b0dee,0x1d710a4,0x0b3a8fb,0x1d2c058,0x0143e9e,0x1dccf29,
  36323. 0x1f265bc,0x0b2426c,0x0e93b8f,0x0bc5958,0x1304fb7,0x187020c,
  36324. 0x1a8d541,0x1ab9c73,0x0e5c36b,0x16349cd,0x0168373,0x1d7b766,
  36325. 0x12b8823,0x147e9ee,0x0180dbf } },
  36326. /* 76 */
  36327. { { 0x07a6aa0,0x0310d48,0x07dac09,0x1080f0f,0x0f56cb6,0x14549a7,
  36328. 0x02da205,0x0908987,0x19b9a90,0x06b1c69,0x107c81c,0x154104a,
  36329. 0x106968c,0x0fe445a,0x165c14c,0x0af0818,0x0d5af63,0x1aab26f,
  36330. 0x1352533,0x11318f8,0x0097e7e },
  36331. { 0x16ebb2f,0x04c6cb5,0x049b877,0x18f553c,0x092a17f,0x1516341,
  36332. 0x03f6fe8,0x0376c1e,0x0b2e185,0x0319386,0x0933fa7,0x04cb039,
  36333. 0x15898db,0x188cace,0x02098e2,0x11a3328,0x08ea54b,0x0722798,
  36334. 0x1398c25,0x133d708,0x00d6963 } },
  36335. /* 77 */
  36336. { { 0x03769ee,0x079b15c,0x12cfe80,0x187df89,0x12d040a,0x15eb43b,
  36337. 0x0e2255e,0x0518726,0x1940a71,0x1132212,0x10a8c58,0x191fd84,
  36338. 0x11909c4,0x12d0d2a,0x1923c79,0x042e5a3,0x0f1049c,0x0345eb8,
  36339. 0x026dff5,0x125a56e,0x0041c86 },
  36340. { 0x1816784,0x04550ef,0x173938e,0x0a037ce,0x0a58c8a,0x133c092,
  36341. 0x17fec0a,0x1c13693,0x0eda721,0x1994cf0,0x0997b29,0x03ebccf,
  36342. 0x168a0bd,0x02b638d,0x07a47a2,0x15461b0,0x0f4c005,0x11bd771,
  36343. 0x1656efc,0x000ea00,0x0073d94 } },
  36344. /* 78 */
  36345. { { 0x10c0ef3,0x1562500,0x0682a44,0x109d036,0x0e654bd,0x1a9a848,
  36346. 0x18f713c,0x1351e0a,0x1b47d18,0x06e20f9,0x0302704,0x1a0de47,
  36347. 0x07122ed,0x020d67b,0x1305abf,0x10a4044,0x1348375,0x18e65c9,
  36348. 0x09d6b9b,0x16be524,0x01271a4 },
  36349. { 0x0e688b5,0x1ea399e,0x1a2de4b,0x0fb9538,0x14566d3,0x0b88e80,
  36350. 0x0c9b950,0x151f9d2,0x03cc341,0x1dd0a77,0x0b047f8,0x0998424,
  36351. 0x156b8ab,0x1ae9bcd,0x1e9d8ef,0x05f2381,0x0aef152,0x0caf169,
  36352. 0x073e569,0x04367a6,0x00acd4e } },
  36353. /* 79 */
  36354. { { 0x18e061a,0x1d3bc8e,0x08c1004,0x0159909,0x02707e7,0x17b1b53,
  36355. 0x0099bac,0x13ad581,0x177b25c,0x08bf510,0x1cd73fa,0x177ae1f,
  36356. 0x1eddb78,0x020c4c5,0x0236cac,0x1c88aa0,0x0fcce0a,0x187ac52,
  36357. 0x095f439,0x12472e4,0x0043ed0 },
  36358. { 0x0e129e6,0x0bbd9f1,0x135cb2b,0x0e1e37c,0x1b8c4a8,0x02b199f,
  36359. 0x037fc80,0x0875dca,0x12a6915,0x0132c60,0x189902f,0x199571f,
  36360. 0x0f95dc0,0x0cb2d05,0x13ad610,0x1b33cd2,0x053edd1,0x1be9dd5,
  36361. 0x087b721,0x0276411,0x00832df } },
  36362. /* 80 */
  36363. { { 0x181c3f2,0x09123e8,0x08fffab,0x1de66f6,0x115d35b,0x0483394,
  36364. 0x1f2e9d2,0x143b699,0x1fda7a3,0x07b86c7,0x1d5a1b9,0x0832f24,
  36365. 0x1e226b6,0x17f8fbc,0x010218d,0x149d1d0,0x139cf5f,0x04c7425,
  36366. 0x02827d8,0x1417d3b,0x00da57a },
  36367. { 0x0fcea66,0x0767aa7,0x1ebb503,0x195f8ed,0x18df2ae,0x0ac2d44,
  36368. 0x0692324,0x14ac7e3,0x113f00a,0x088ded3,0x172e7ec,0x1f56896,
  36369. 0x116687a,0x1293106,0x157ec49,0x06b578d,0x11bbacb,0x157ca9f,
  36370. 0x1e53134,0x0126e1f,0x00ed997 } },
  36371. /* 81 */
  36372. { { 0x0b54c89,0x1ab7034,0x108ab27,0x1b9ce6f,0x08ecc17,0x044da98,
  36373. 0x1a0feac,0x036411d,0x1543fbd,0x079d094,0x175c1ac,0x19f1089,
  36374. 0x0d1b204,0x0f61720,0x05d7227,0x1229501,0x1ae9399,0x1845808,
  36375. 0x119d37d,0x1742e0e,0x00176b4 },
  36376. { 0x1dfc175,0x0b754c7,0x0c31c48,0x06fc1eb,0x17b7fc6,0x199d1a3,
  36377. 0x0a17f3a,0x16f11a0,0x10223ea,0x13cc0a7,0x1b648ad,0x0416a38,
  36378. 0x1d90787,0x0e09fa8,0x1675692,0x0c16ab0,0x10bfaed,0x1734fc2,
  36379. 0x14332ac,0x135088d,0x005c249 } },
  36380. /* 82 */
  36381. { { 0x1e7bcf1,0x0c0fdb9,0x1ef9075,0x19ba782,0x16dde61,0x0ccfec8,
  36382. 0x05fb3e8,0x12f8c53,0x1c159db,0x13ac439,0x0ca0c06,0x112cc82,
  36383. 0x184ed77,0x14a1548,0x1cb3a24,0x149772c,0x187816b,0x1f9f722,
  36384. 0x195375f,0x0f42919,0x01234fb },
  36385. { 0x009be8c,0x0c057f8,0x0e87c17,0x0ef1be3,0x02e938d,0x16f3103,
  36386. 0x0ba10c4,0x1734fc4,0x16070c4,0x0694f3f,0x1768dd2,0x07d7436,
  36387. 0x135cd9c,0x1238ba2,0x146f4be,0x13cce3c,0x0b056ab,0x0ca04c5,
  36388. 0x07df1a8,0x1095789,0x0049bb5 } },
  36389. /* 83 */
  36390. { { 0x0a470f7,0x12a980f,0x18c2a7c,0x11d24a9,0x001bf80,0x1001c6d,
  36391. 0x1a7a9c6,0x10e130a,0x15913ca,0x0959770,0x007f6c3,0x0097705,
  36392. 0x0aae170,0x08c72e1,0x171bac0,0x08757b6,0x04c1fa9,0x0d2b563,
  36393. 0x0a4b540,0x1ec8ee3,0x00531aa },
  36394. { 0x0345730,0x0f7a483,0x1f0a59e,0x1d08de6,0x146aaa4,0x1e1d55c,
  36395. 0x09ac069,0x09df02e,0x08166df,0x1c046d1,0x1370fb2,0x1f849c0,
  36396. 0x14e9fb3,0x1b760cd,0x02d876d,0x1a27d3c,0x05eeed6,0x0373fb3,
  36397. 0x1a9d4e1,0x1b180f0,0x00e570e } },
  36398. /* 84 */
  36399. { { 0x08ce13f,0x0b72c08,0x004d991,0x1a1c72f,0x15bfc58,0x1ca4f4d,
  36400. 0x0a12fa8,0x0fa096d,0x075af66,0x14db35e,0x0559afa,0x0db9512,
  36401. 0x1a7cb4d,0x1fb0aca,0x0f3b3c2,0x04a4036,0x13d002e,0x1218963,
  36402. 0x04d697e,0x0ed130c,0x014b81d },
  36403. { 0x01078ec,0x1de12c2,0x1535011,0x0c2f388,0x15aa9c9,0x08fc7e3,
  36404. 0x0182521,0x03ed42c,0x0ce3409,0x0c6a71f,0x15040a6,0x0e0911c,
  36405. 0x1e9a9f6,0x0ed4562,0x0a03e21,0x046197e,0x0a08fec,0x0e32656,
  36406. 0x0252ddd,0x10c960a,0x002b0ac } },
  36407. /* 85 */
  36408. { { 0x15daf7f,0x0371cc7,0x1419ad8,0x122124e,0x0838548,0x02c5392,
  36409. 0x1717023,0x1c7444a,0x0c90f3e,0x19b17e8,0x057c08b,0x15e810f,
  36410. 0x0ac9633,0x0212fad,0x1c42f44,0x1b7f6e2,0x005ec06,0x0e100bf,
  36411. 0x06e2ef3,0x0fb9058,0x01c8d9c },
  36412. { 0x0b8bed9,0x00fef8c,0x0495f6d,0x11c7446,0x0948330,0x08e25df,
  36413. 0x0779dca,0x15f79f2,0x141448a,0x185cb95,0x16918a6,0x0c67889,
  36414. 0x0295dfc,0x00dfa85,0x0e7118c,0x0626321,0x177869e,0x08c5b37,
  36415. 0x086eab6,0x09c5f42,0x00f5a8a } },
  36416. /* 86 */
  36417. { { 0x00251ea,0x0a884e5,0x06c2329,0x164f4d9,0x12aeed8,0x107a947,
  36418. 0x02fad58,0x0ad2035,0x0ae13fc,0x14210f4,0x04f01e6,0x03890b3,
  36419. 0x171349f,0x068d586,0x1820d64,0x1b21253,0x09baeb5,0x1cb7149,
  36420. 0x166699b,0x05e3f1e,0x00ce96c },
  36421. { 0x0be8bd7,0x025a889,0x066f92f,0x1e78cfd,0x14846a0,0x1d1c327,
  36422. 0x11f4d34,0x103b139,0x073f439,0x1b23889,0x13959c7,0x06484db,
  36423. 0x0bc32bc,0x181584b,0x04d3aff,0x1056fee,0x00b0d06,0x0ab0278,
  36424. 0x0f3a2d6,0x07afd5c,0x011cfd2 } },
  36425. /* 87 */
  36426. { { 0x07689a6,0x1236651,0x1cafe25,0x06aac82,0x16a7dc4,0x1e5fe66,
  36427. 0x0923ad5,0x1ca617b,0x15b1adf,0x188fffd,0x162fd26,0x01b6e23,
  36428. 0x1b9f2d8,0x1b872d2,0x1e7f7c2,0x1143bd0,0x1836bd1,0x04ba9a0,
  36429. 0x12ff541,0x0a4d7b1,0x0114c8c },
  36430. { 0x17388bd,0x1392df7,0x1a9f57f,0x1fcfff5,0x11c3dbd,0x16f1567,
  36431. 0x16e25f9,0x1f6f072,0x09ebf1b,0x0d3964d,0x01451a0,0x0e0ed2f,
  36432. 0x0f65265,0x1a93385,0x097b367,0x0fa9072,0x1d283d5,0x121bde6,
  36433. 0x003b2c0,0x0e654f9,0x01ceb5d } },
  36434. /* 88 */
  36435. { { 0x1d376d7,0x0fe6767,0x01369fe,0x1d4cd61,0x0b4eab3,0x1c8dec3,
  36436. 0x0342356,0x1b0d592,0x08aa304,0x11eadbf,0x19a93ea,0x0856ff0,
  36437. 0x0127f3d,0x1dc09d7,0x1467ea2,0x1240d2b,0x0d7e34a,0x0e9c3cc,
  36438. 0x0cb0737,0x1814d34,0x0073df7 },
  36439. { 0x0315b16,0x000dd9c,0x03e6f8b,0x133c319,0x1daa7c8,0x1b5c298,
  36440. 0x0fed022,0x10347a8,0x068092a,0x0acf246,0x1eab52c,0x1b3d06d,
  36441. 0x1077e93,0x1234cb9,0x1b58d86,0x1c8eda9,0x1f66297,0x12b4e59,
  36442. 0x1e047e9,0x1b0307c,0x0185b69 } },
  36443. /* 89 */
  36444. { { 0x19cb764,0x13f59d5,0x15b463c,0x031d783,0x1bbefc2,0x1cd53cd,
  36445. 0x0376c11,0x1ea8eec,0x009e542,0x068b692,0x066e5ad,0x11a378d,
  36446. 0x0ae35c3,0x0646c64,0x0cab896,0x148ba27,0x15267a3,0x042bce0,
  36447. 0x1155301,0x16e6aed,0x00d9773 },
  36448. { 0x018c299,0x0523981,0x08ce588,0x0733ef1,0x09be29b,0x07a0a7b,
  36449. 0x0802521,0x1a88d09,0x19a2ca4,0x163a49b,0x0deacec,0x0e7cd1b,
  36450. 0x1f09c07,0x09ae1ab,0x007c166,0x1c7e4c3,0x03d8b7d,0x0049898,
  36451. 0x03edb82,0x1ff9a1c,0x0060f3e } },
  36452. /* 90 */
  36453. { { 0x05d6530,0x00a5f59,0x103dc8f,0x13352fa,0x1e015b3,0x1bfb112,
  36454. 0x0f12fef,0x1e24138,0x014b4f0,0x1ec62ce,0x1a3b3e0,0x1fbc7ef,
  36455. 0x0fcf002,0x0f58f78,0x14d4f24,0x018c06b,0x0a5201f,0x01ca621,
  36456. 0x0fa3b8d,0x025156f,0x01b5787 },
  36457. { 0x10110cd,0x1be9d5b,0x06d6824,0x188ef22,0x00fa4ef,0x1d260cf,
  36458. 0x0bd6f14,0x1e58d59,0x138d509,0x0980879,0x0b071af,0x1057ca9,
  36459. 0x1f3ee2a,0x127951d,0x1a99f0f,0x18f7263,0x06ef089,0x1bd2653,
  36460. 0x1288d8b,0x14589e6,0x00b05bd } },
  36461. /* 91 */
  36462. { { 0x1f575cd,0x05038e8,0x060ad09,0x034a46e,0x15693b0,0x164ea00,
  36463. 0x0d80a68,0x0c02826,0x19c914a,0x0621a45,0x0cc7054,0x0e7a12b,
  36464. 0x0290245,0x117ea4b,0x05d7f48,0x164eedf,0x086e210,0x1d0b824,
  36465. 0x16ea4de,0x137026d,0x01f6ac2 },
  36466. { 0x15da491,0x0f7aabb,0x160827b,0x1c56d55,0x05953f9,0x1a06ad9,
  36467. 0x084186e,0x1b0cd2d,0x14d5127,0x1e22988,0x0b418b3,0x195303d,
  36468. 0x032f21d,0x179db89,0x0f93c1e,0x1e41a7e,0x0b89646,0x1896683,
  36469. 0x0443d6e,0x06c6d2d,0x015e241 } },
  36470. /* 92 */
  36471. { { 0x0cfc44e,0x027e81f,0x0f54321,0x10a0876,0x0095f2c,0x1e82cd2,
  36472. 0x19f6f26,0x1bf34bf,0x0f65bec,0x1c9947d,0x0587348,0x08e34cf,
  36473. 0x1de3102,0x1ddaefe,0x078e6fe,0x18b75d5,0x0d0133d,0x0c0115b,
  36474. 0x1c4b0de,0x0f5536b,0x0141bed },
  36475. { 0x194d941,0x1802cfe,0x006025b,0x00fa9fe,0x1c6e9f0,0x0f82f1f,
  36476. 0x1d661de,0x133cc75,0x100483c,0x0207859,0x0661c13,0x1ddee54,
  36477. 0x1104d2f,0x0325253,0x1dced6d,0x0fe3db6,0x10f4936,0x1005b3b,
  36478. 0x0a7ef4a,0x1c06025,0x01694f7 } },
  36479. /* 93 */
  36480. { { 0x09095fd,0x0eeb9c5,0x15e837d,0x03a79d0,0x04b7a02,0x16e3b3e,
  36481. 0x1e5af97,0x0112154,0x1180a08,0x124bf7f,0x042aad5,0x1c3ecde,
  36482. 0x06b9856,0x1cc3cbb,0x0a62090,0x00c0262,0x0f73ba8,0x0b0ba46,
  36483. 0x1576a4a,0x120ed8a,0x001207d },
  36484. { 0x044394d,0x04d008e,0x19142c1,0x0e19c93,0x15f25ef,0x14a132f,
  36485. 0x027c2c5,0x1f03c74,0x0109b33,0x02decff,0x04cb90b,0x087f461,
  36486. 0x1207f2a,0x0367c57,0x1aaff2b,0x0ce44e6,0x004f336,0x056fbfd,
  36487. 0x0a749ac,0x1d25f7f,0x00e02f1 } },
  36488. /* 94 */
  36489. { { 0x1be4d4a,0x0725331,0x1246549,0x1acde79,0x1fa57be,0x1d3e668,
  36490. 0x04fe9f9,0x1a7baf9,0x088c5d1,0x07467b5,0x147c79c,0x12f47e4,
  36491. 0x15b2579,0x11aaa67,0x17b163b,0x0e21214,0x0d7065a,0x1346934,
  36492. 0x014227a,0x07a9a41,0x004c7c2 },
  36493. { 0x152d132,0x12badde,0x13158eb,0x0e71903,0x0fb8daa,0x131dcc8,
  36494. 0x1b94793,0x10e12d4,0x0b239d3,0x0eb59b3,0x127fb54,0x10e94ba,
  36495. 0x1aed5f8,0x01d4603,0x1424765,0x0d5c404,0x05ae468,0x10807c2,
  36496. 0x1ad3bd6,0x0b3ae8f,0x01c21af } },
  36497. /* 95 */
  36498. { { 0x1441308,0x1e00f6e,0x02417de,0x090c611,0x0dc3494,0x0b08e68,
  36499. 0x029d1d6,0x0cc55e7,0x14c23ce,0x0d38930,0x0bfb484,0x0f6bf17,
  36500. 0x1937f31,0x0649f03,0x1eee7fd,0x0a59e9d,0x0dd8ecc,0x1440787,
  36501. 0x172760a,0x19ba59b,0x0028480 },
  36502. { 0x1f807ac,0x0e506e1,0x1527a3c,0x057a0e0,0x0a3e4fc,0x1c5db63,
  36503. 0x0285247,0x19b5a7a,0x13d6dfa,0x1f70e7e,0x11bfef8,0x0372bf6,
  36504. 0x1cee46b,0x1eeae7d,0x01eceb1,0x1d16ea4,0x0d9b1b8,0x16ac060,
  36505. 0x1ef7446,0x0cd3e98,0x008452c } },
  36506. /* 96 */
  36507. { { 0x0ace6d5,0x1a3a3e0,0x1eb690a,0x177ce50,0x15acb64,0x1e130a6,
  36508. 0x1226626,0x03de660,0x0ff05c7,0x0bff41b,0x0b11420,0x048da6b,
  36509. 0x1c772eb,0x1bad4e1,0x17f0858,0x1adfafe,0x01acbc0,0x1fdb7cf,
  36510. 0x083a5cc,0x07862ae,0x009a764 },
  36511. { 0x1845ccf,0x10b5a79,0x16f52c8,0x0121780,0x1c174e8,0x02481bc,
  36512. 0x031d358,0x00cf4aa,0x16358c8,0x0b91050,0x1dedb6f,0x188354c,
  36513. 0x0e838f9,0x1371704,0x0ccb065,0x0db4a6e,0x15e496f,0x0d81943,
  36514. 0x10c18c3,0x04e99f3,0x000c52b } },
  36515. /* 97 */
  36516. { { 0x0a58beb,0x173c147,0x0921bb0,0x1a6ccbf,0x0b404c1,0x1a07f81,
  36517. 0x17eb482,0x14aa8da,0x029d3e6,0x1aefbdb,0x006647e,0x08dacd9,
  36518. 0x1ef1868,0x17167f1,0x1a42f79,0x1a2d77c,0x1a01410,0x14bd75c,
  36519. 0x0b323a4,0x102a917,0x00cb59d },
  36520. { 0x0f66a23,0x0e9d6dd,0x0207641,0x0e81bf6,0x0333738,0x007a196,
  36521. 0x0d7792c,0x07cdaaa,0x007d3a0,0x0bff474,0x0f2a038,0x1fee0cd,
  36522. 0x1529544,0x1d6ffd2,0x10ae5b2,0x0dd48c1,0x19445a2,0x04f80c6,
  36523. 0x128d3ff,0x0702ce4,0x011ed54 } },
  36524. /* 98 */
  36525. { { 0x17f8a61,0x039fdde,0x02ed8aa,0x0377cb0,0x1e18cd7,0x1fb4c02,
  36526. 0x07acd99,0x181fab9,0x1571d3d,0x1c6a7b0,0x1e6f22a,0x042af07,
  36527. 0x14e2e45,0x121cc58,0x10ddd2c,0x0236a6d,0x16374d8,0x196da51,
  36528. 0x17af8f0,0x1e252e5,0x01389f7 },
  36529. { 0x18fefb2,0x1f90e3c,0x09caee5,0x0a20f75,0x1c76fcb,0x0ddab44,
  36530. 0x1dd83eb,0x18a25f7,0x1d33ea6,0x13245f3,0x04d2946,0x132646c,
  36531. 0x1b412a2,0x04c2c49,0x0f605a6,0x15b4894,0x18f3e66,0x1b0a24a,
  36532. 0x1a1ed15,0x1f8f36e,0x0140b4d } },
  36533. /* 99 */
  36534. { { 0x0be5bb9,0x0a2b83d,0x06fa0ec,0x11ca3b0,0x0e0cbfd,0x013d7fd,
  36535. 0x17d2726,0x0a841b5,0x0a687b5,0x1d392a4,0x105ccf0,0x07f7dd6,
  36536. 0x0308026,0x09c13e3,0x053f70f,0x16e1ce0,0x184b5e3,0x03e80c7,
  36537. 0x0f3dc5a,0x107c01f,0x00151d4 },
  36538. { 0x1578aa3,0x11e3e35,0x16b8553,0x0ba6087,0x111ce9b,0x004080a,
  36539. 0x07a6ed8,0x0deabf1,0x0f405ac,0x1618889,0x02b1ed3,0x09b0401,
  36540. 0x067e66a,0x12e297d,0x10034e4,0x185d6e7,0x1988aca,0x1f70dcc,
  36541. 0x02d5d14,0x063b2ac,0x008fdfa } },
  36542. /* 100 */
  36543. { { 0x11cf8d8,0x0507012,0x0f4b31d,0x1a083e5,0x14d8949,0x15e7296,
  36544. 0x12924cf,0x15c16e6,0x15c5bcd,0x0d62fa8,0x002e4f8,0x1f982c4,
  36545. 0x0ed3ecd,0x13c9b9b,0x01a899a,0x0d2804a,0x08bea6e,0x0ac2d0e,
  36546. 0x0643e4d,0x19baa72,0x000e081 },
  36547. { 0x1e28412,0x1ccab29,0x192c157,0x05b64e2,0x0d1526f,0x19d6e38,
  36548. 0x097ac77,0x1bb9aac,0x0dd35de,0x16229e5,0x03ff8b4,0x1093507,
  36549. 0x09ed442,0x0e0672c,0x08304dd,0x16c135a,0x081bd99,0x196afdd,
  36550. 0x08bbec1,0x083b98c,0x01ad5be } },
  36551. /* 101 */
  36552. { { 0x1850756,0x17b33c7,0x165d58e,0x1ca5e76,0x06d37aa,0x14217ac,
  36553. 0x0294de5,0x12e21a7,0x1f743f9,0x0d57ccf,0x06a2eb3,0x0bcb27e,
  36554. 0x192fa75,0x004fbe6,0x1c13855,0x0ca1635,0x00ad6d0,0x131dfcd,
  36555. 0x16aff66,0x039d5aa,0x000e67b },
  36556. { 0x1f43178,0x054705a,0x0cccd98,0x1b3986b,0x16bd412,0x07b4042,
  36557. 0x1e98e20,0x0e27af7,0x02e622c,0x19b96b3,0x009115f,0x17cedff,
  36558. 0x11ad7b7,0x06d8272,0x0af7a02,0x0b91a1e,0x1fe4bd1,0x170f3c0,
  36559. 0x03940bc,0x0eb7f77,0x01941f4 } },
  36560. /* 102 */
  36561. { { 0x03543ec,0x015fceb,0x1cf9e52,0x19422fd,0x185cb67,0x066631c,
  36562. 0x018e058,0x03d158a,0x1729bdc,0x0b65f6a,0x1a1b7d5,0x12fb444,
  36563. 0x1cd62ed,0x040f5bb,0x0932d7f,0x05db362,0x16672fa,0x126bda7,
  36564. 0x00cd6e5,0x05354ef,0x017260b },
  36565. { 0x03df7c6,0x1e3db52,0x01b086f,0x077840e,0x05acac2,0x0ecac04,
  36566. 0x0def0d1,0x179d6de,0x0a32a08,0x0c79069,0x14f17a7,0x09eda32,
  36567. 0x10f0892,0x027b406,0x0975f1b,0x12258fa,0x0372de9,0x0327351,
  36568. 0x0b39913,0x180d88a,0x00ebda1 } },
  36569. /* 103 */
  36570. { { 0x11dd110,0x1be2e20,0x1128999,0x1459323,0x0d6787a,0x0b336b0,
  36571. 0x1a90691,0x02aa77c,0x0c15f9f,0x1f38b55,0x131ec9c,0x0c7e1c1,
  36572. 0x10a93b8,0x1531255,0x015c45c,0x184c148,0x16e1a39,0x072f3b2,
  36573. 0x1bdbc4c,0x1af16a5,0x0046af8 },
  36574. { 0x0f38dff,0x10a58b8,0x0415e58,0x1024742,0x1e35d82,0x1f6c091,
  36575. 0x1135255,0x0c208d4,0x00da601,0x0c7d4dd,0x01104d8,0x054aa9f,
  36576. 0x0be7cdd,0x0cf54ad,0x10958f8,0x06169e3,0x014cb2a,0x0e222cf,
  36577. 0x07fe6aa,0x115bacc,0x0183c74 } },
  36578. /* 104 */
  36579. { { 0x1e58caf,0x00f9cce,0x0990ca6,0x1b0ea7d,0x05bb80f,0x08ca430,
  36580. 0x07c90b4,0x015907f,0x003eeb0,0x0486783,0x0f5e73d,0x04a2f8e,
  36581. 0x1b4037f,0x1926a30,0x10827f5,0x0419f08,0x0d22724,0x13581fb,
  36582. 0x0d0e3e8,0x17a53d6,0x01526f4 },
  36583. { 0x189e51c,0x081a561,0x063a593,0x12db6fb,0x0cda55e,0x09e2c1d,
  36584. 0x05f7ba4,0x081655d,0x1feb034,0x1c983bd,0x1878a41,0x06f13a8,
  36585. 0x1eaa16e,0x021dfc5,0x099d4cc,0x1187f61,0x042ba7d,0x04eba4d,
  36586. 0x0ee4977,0x03cdacd,0x00ec7c4 } },
  36587. /* 105 */
  36588. { { 0x1da8398,0x19a2ee2,0x10c0ba6,0x1f76718,0x1c66841,0x1dda3d5,
  36589. 0x11589f0,0x1bb9c75,0x1738d2c,0x1df5895,0x0c46163,0x15aed0e,
  36590. 0x14d4bc2,0x1dea7a7,0x0876c72,0x0361d2a,0x0aefe4e,0x1153486,
  36591. 0x0ffaf8f,0x042bd6f,0x0194375 },
  36592. { 0x0dfd661,0x11a7897,0x07d132c,0x1ddaa58,0x0149984,0x1c7cc60,
  36593. 0x1c98363,0x12065a4,0x07be385,0x13b7272,0x02d9cbf,0x0e7b2bd,
  36594. 0x0254358,0x1958074,0x1b0e5ff,0x03d7122,0x105bad6,0x11dcdfb,
  36595. 0x184c6ef,0x1203055,0x00007ee } },
  36596. /* 106 */
  36597. { { 0x1fbcb5c,0x1f54f49,0x0a6f4db,0x073f50a,0x182be58,0x108dd01,
  36598. 0x0c497f5,0x06e1648,0x1cd8a26,0x0cd71bf,0x151c129,0x0c1c7b1,
  36599. 0x19ab78c,0x02620db,0x0b090f5,0x1398a37,0x1eaeda4,0x1e2000f,
  36600. 0x0f71fa7,0x1d48950,0x00f6988 },
  36601. { 0x077f79e,0x0655278,0x0435364,0x03b3c4b,0x14d1760,0x0da5bbf,
  36602. 0x0eecf48,0x16c23bd,0x09037e1,0x18d9fb0,0x0fb3c00,0x1b0426b,
  36603. 0x1af113e,0x19481ee,0x1004de7,0x1252ded,0x1caa6f1,0x09b5ef3,
  36604. 0x16eeb61,0x076d093,0x006c57d } },
  36605. /* 107 */
  36606. { { 0x0bfccb0,0x1f71c4d,0x198e58f,0x0972ced,0x0c6e2a2,0x1d3693b,
  36607. 0x03c0a12,0x1a3f0ed,0x0465853,0x1c5d1dd,0x0ae6db0,0x06da371,
  36608. 0x116e3ab,0x03d0399,0x1f25d09,0x07e6403,0x1182523,0x17eea0b,
  36609. 0x118779e,0x19f5035,0x00214da },
  36610. { 0x0a3198c,0x14f9bf5,0x0754d96,0x0bf9173,0x0be8a34,0x1af65e6,
  36611. 0x1c4ab53,0x029484f,0x00c2375,0x020ffb0,0x09ec17a,0x18b4514,
  36612. 0x135d9e8,0x1142cff,0x0ddd111,0x1bc6e5a,0x0ffea8b,0x00e0230,
  36613. 0x073d6fe,0x1c93425,0x01810a0 } },
  36614. /* 108 */
  36615. { { 0x1843c3e,0x101d7a2,0x0b9da20,0x07557d7,0x0601e30,0x06fb15a,
  36616. 0x023cd89,0x15072f6,0x0d21e5a,0x1439a45,0x10ac395,0x18e7344,
  36617. 0x0d2cf12,0x1953b63,0x123b404,0x0a34590,0x1c2f527,0x0db9550,
  36618. 0x0b00b41,0x052d872,0x00f3b63 },
  36619. { 0x0f3d1f0,0x1a156e3,0x0e53392,0x065ea65,0x0f0dcc5,0x021ece1,
  36620. 0x0ccd60d,0x196af02,0x0dc8dd9,0x0808c77,0x1c64bed,0x034bdd0,
  36621. 0x023039e,0x0aba0ce,0x1dc99f5,0x0d61932,0x04c30f9,0x123177d,
  36622. 0x134f0d6,0x1f6f2c7,0x01f7454 } },
  36623. /* 109 */
  36624. { { 0x1153926,0x140ca4e,0x152043c,0x03056ae,0x02e28c9,0x0f4a64a,
  36625. 0x0ecc142,0x0ae9684,0x0de9d6b,0x0d66295,0x128c531,0x1873167,
  36626. 0x05aa746,0x031eade,0x13a8c1f,0x193121e,0x1a2e1cc,0x0212aa9,
  36627. 0x1db6465,0x03317fe,0x008e271 },
  36628. { 0x08e672b,0x007231e,0x109f1e4,0x1a7e5bf,0x103675c,0x10b1e4b,
  36629. 0x147debc,0x160e092,0x07aceaa,0x06b4c84,0x148da5d,0x0352fd1,
  36630. 0x15482f2,0x009ee08,0x1ef0772,0x19a27b9,0x08004f6,0x106715e,
  36631. 0x0afebfc,0x08cc590,0x003f2a5 } },
  36632. /* 110 */
  36633. { { 0x188a8bc,0x1a0f30a,0x0b2c373,0x1c4218a,0x0f48cd0,0x073d22b,
  36634. 0x18af5d6,0x0ae670a,0x148b9b9,0x1006aa5,0x026e785,0x10174d7,
  36635. 0x0f461df,0x04c6641,0x1f53c5c,0x0e28fef,0x1cd1497,0x08b3f80,
  36636. 0x045b17e,0x070a22c,0x0048b13 },
  36637. { 0x12617f0,0x1b199ae,0x181b7ad,0x04dd970,0x1f9a577,0x08fe749,
  36638. 0x00cb46e,0x12f5278,0x16c84b9,0x1d21c45,0x1296fbd,0x044b047,
  36639. 0x0bbfe80,0x1ad197b,0x06700a0,0x0b8b0de,0x1ade3cb,0x0f9366a,
  36640. 0x1430776,0x1bb8eed,0x01e77f5 } },
  36641. /* 111 */
  36642. { { 0x0e764c9,0x1f76437,0x0b30f27,0x0d60f90,0x11bec83,0x02d8a16,
  36643. 0x0cb9a80,0x1d4d7e3,0x129e8a5,0x077a8d1,0x189071c,0x131c7ff,
  36644. 0x08517d2,0x194b361,0x0e278a1,0x198ed76,0x0a92c7a,0x09d16d4,
  36645. 0x0ca886d,0x19224ce,0x004a902 },
  36646. { 0x17ce110,0x08dce47,0x1bc65b1,0x0f5d606,0x1cc33a8,0x152cf16,
  36647. 0x1426029,0x00104d2,0x1e78db5,0x1579353,0x0ec0c33,0x070992b,
  36648. 0x0282f3c,0x126217a,0x15ba7dc,0x09414db,0x02970ac,0x03b46ef,
  36649. 0x0f48bbf,0x1b9c960,0x016f4ae } },
  36650. /* 112 */
  36651. { { 0x1ed03c0,0x1819576,0x15341df,0x04b11bb,0x0684a05,0x02df079,
  36652. 0x0f13e6a,0x176da13,0x1e0b9b6,0x0ed063f,0x0d621ef,0x18fde5f,
  36653. 0x1e19689,0x161e673,0x0a5a583,0x055cbf1,0x1d5768d,0x15821ec,
  36654. 0x0c84866,0x101037b,0x006829c },
  36655. { 0x059f006,0x0397d6f,0x1d69afe,0x0d972fd,0x02b9ffc,0x173f7c6,
  36656. 0x0576d62,0x03e6e32,0x1f4ccaa,0x1711e50,0x09f3130,0x0c1d138,
  36657. 0x061af8c,0x0435ee6,0x1975f9f,0x1bc87dd,0x07f9bd8,0x1c912da,
  36658. 0x0c93c22,0x0fe8c69,0x00b453e } },
  36659. /* 113 */
  36660. { { 0x1048bda,0x04b6871,0x1939531,0x128787b,0x02b6749,0x16a84f7,
  36661. 0x127dd30,0x1135840,0x0543c50,0x00fb48f,0x08d96ec,0x014620b,
  36662. 0x09cd996,0x1c58b82,0x164fff9,0x128ce69,0x1b3f82c,0x0814fcc,
  36663. 0x05869d5,0x18bd440,0x0091785 },
  36664. { 0x13dbdb6,0x0fcbc4a,0x067ed15,0x132fd94,0x0a9e84d,0x0a6bad7,
  36665. 0x140a4db,0x1f48e77,0x0c15276,0x0e0be54,0x1d8d5aa,0x02668f8,
  36666. 0x129cf66,0x01cb9c6,0x1a0d82c,0x06c1294,0x0a86973,0x0e9f218,
  36667. 0x0ac9fc8,0x0a65bdc,0x01b40ae } },
  36668. /* 114 */
  36669. { { 0x164cb8b,0x0874128,0x19f5a04,0x1e4aa54,0x0979af4,0x0c2a93b,
  36670. 0x1b43a34,0x189c21a,0x1fb64ea,0x1b62bc3,0x09164b3,0x0c77588,
  36671. 0x1084081,0x1e706c0,0x03ffcdf,0x182b8bb,0x049da84,0x0c59427,
  36672. 0x0998fb2,0x00aace6,0x0010ed8 },
  36673. { 0x1f3ee9e,0x1a01828,0x1c7841b,0x136715b,0x0e8e3ee,0x1eb2249,
  36674. 0x1e9ba84,0x163a790,0x180e1ab,0x1da4fa2,0x15ca609,0x02f217f,
  36675. 0x1fc283d,0x17e3d1a,0x1943e96,0x15a9f1f,0x145ade3,0x13b9ed2,
  36676. 0x068877c,0x1f55c9b,0x01f878b } },
  36677. /* 115 */
  36678. { { 0x1ad5678,0x06c7455,0x096eb98,0x1dcc018,0x0afa72c,0x1447108,
  36679. 0x182d130,0x13f73a9,0x0d254cf,0x0223fbb,0x18ae959,0x17892b3,
  36680. 0x0c1fb36,0x14b0899,0x0f1135c,0x01e3272,0x01ffc14,0x06bd444,
  36681. 0x1425992,0x10c2511,0x009127a },
  36682. { 0x09e690c,0x16010c5,0x0856d4d,0x03d569f,0x05dcc52,0x0772a64,
  36683. 0x1108ec0,0x090135e,0x1af3a8e,0x1bc9a92,0x0c7616c,0x06116ee,
  36684. 0x15e1f36,0x0a0e7da,0x0d875e0,0x08a536a,0x09eeffc,0x07520f9,
  36685. 0x1df498d,0x0eab633,0x00e8cf5 } },
  36686. /* 116 */
  36687. { { 0x012b398,0x0dc06e9,0x0dcc07b,0x03aa7ba,0x1039618,0x097d4ae,
  36688. 0x1811e29,0x0da1c10,0x0a7825e,0x08f3219,0x1b393eb,0x178a661,
  36689. 0x0fe0185,0x183c49b,0x03dcc4e,0x0dd46a1,0x0fd9e7f,0x00ee4c1,
  36690. 0x1555ad8,0x074c05a,0x00e8dbf },
  36691. { 0x19e05bc,0x1191a13,0x0f4f0dd,0x19e888a,0x1f5f40e,0x1183c9b,
  36692. 0x17d35fe,0x0446218,0x0108d7e,0x07fd69b,0x062ef17,0x1de7855,
  36693. 0x00f2f01,0x0bea3fc,0x0ac5c67,0x05c3861,0x118a9b2,0x03de4fc,
  36694. 0x00d37e5,0x1b8a55d,0x01f9f53 } },
  36695. /* 117 */
  36696. { { 0x183f89b,0x15a4f60,0x1b53c99,0x04beb00,0x13fb5f0,0x1618406,
  36697. 0x10ad653,0x02fa614,0x0371cd9,0x1b58ca0,0x1f89b52,0x15576fe,
  36698. 0x04f7541,0x16adbdb,0x149a7ac,0x06d8bca,0x1c17f80,0x0870d42,
  36699. 0x097c99d,0x1e1e45b,0x01cea0f },
  36700. { 0x08e11f8,0x1eab51d,0x0d5180a,0x03ebf35,0x0986402,0x06496b9,
  36701. 0x0b16833,0x0178ce8,0x0523f65,0x122b4f3,0x0afed35,0x1037eff,
  36702. 0x0bc8e46,0x01e4f36,0x09d651f,0x1fe4168,0x0d538f5,0x1159ca9,
  36703. 0x1c12ba8,0x1f1c703,0x01b0818 } },
  36704. /* 118 */
  36705. { { 0x10d90f0,0x0dffd72,0x1370ef9,0x17ea023,0x0cb3b11,0x08efd62,
  36706. 0x09c469a,0x0e7c219,0x14ea1a7,0x176108e,0x1bbad98,0x1d77cb0,
  36707. 0x1d5a979,0x106178f,0x1c5aac6,0x17fd49b,0x17ec57b,0x17f4f1f,
  36708. 0x0b949bd,0x0b2c1cb,0x015e1b0 },
  36709. { 0x030e62e,0x10252c3,0x06dc723,0x1cc88fc,0x1d00310,0x1a223d1,
  36710. 0x1ad850e,0x1479e3c,0x17462e7,0x155dc28,0x09c9364,0x1410000,
  36711. 0x1f8309e,0x12294b6,0x00175c3,0x1b0243b,0x1b33d4e,0x1079c24,
  36712. 0x00d3513,0x17ff78d,0x00962d6 } },
  36713. /* 119 */
  36714. { { 0x0e07711,0x1f2c6a4,0x0ecb44f,0x11a4e14,0x10f8364,0x0ff8263,
  36715. 0x024b633,0x0282a2f,0x051411f,0x0ddb2bc,0x1e29545,0x1b207c9,
  36716. 0x0f6c31c,0x02099b1,0x1e1c548,0x0da9ae7,0x1eeeca0,0x197f012,
  36717. 0x1538c5f,0x0dc82f2,0x00ad32a },
  36718. { 0x1d147df,0x0631fb4,0x0dedf8e,0x1ce217e,0x169bb06,0x0a8a6f5,
  36719. 0x1afbca3,0x1b3729b,0x18d11c3,0x19183fd,0x1718112,0x1bf2070,
  36720. 0x033b369,0x13c0074,0x1a8bd27,0x03838d1,0x0587d50,0x0781459,
  36721. 0x13bde06,0x0f0442b,0x0055970 } },
  36722. /* 120 */
  36723. { { 0x0c1d751,0x1a8edaa,0x1448430,0x03741f2,0x0144530,0x0e45f6c,
  36724. 0x0cd3eff,0x0154efd,0x0cf2368,0x0c6c09c,0x1ca1812,0x0949c09,
  36725. 0x1a928c1,0x0b52db6,0x064b6e8,0x122072c,0x15b5f9a,0x124ef54,
  36726. 0x05c9040,0x1a8af00,0x008580d },
  36727. { 0x009221c,0x1928007,0x015ba41,0x03e43bc,0x02e05b2,0x1304a83,
  36728. 0x0be8783,0x0528919,0x16f7751,0x0bfdcbd,0x0d2b299,0x037be3e,
  36729. 0x165d299,0x04ff8ae,0x1b356b1,0x1d8f34c,0x097d049,0x06e0eb4,
  36730. 0x1caebaa,0x1f9509c,0x0067388 } },
  36731. /* 121 */
  36732. { { 0x0ef1dd3,0x05a4ed3,0x15d9948,0x1c774d9,0x191a045,0x1eafa41,
  36733. 0x0602bcc,0x0953909,0x0ef0747,0x09e7ad9,0x1ec7ab9,0x1d34f17,
  36734. 0x1aa35b2,0x16d4837,0x0a5ff5b,0x059e9d9,0x1891b9f,0x0f8d49b,
  36735. 0x0aca162,0x0a66d27,0x010d667 },
  36736. { 0x1691faf,0x0824b39,0x18616d4,0x13aafd8,0x1c73d3a,0x054292e,
  36737. 0x086ee4c,0x0d2fc52,0x040b05b,0x0a7ab8f,0x0fb7282,0x002e827,
  36738. 0x185e96a,0x068d35c,0x1f53dca,0x1d16f3c,0x1da3ead,0x0aa8a1f,
  36739. 0x05b9153,0x170889a,0x00fb859 } },
  36740. /* 122 */
  36741. { { 0x0667aaf,0x1041f3e,0x12e9f08,0x1295239,0x13545cb,0x1074a51,
  36742. 0x064c632,0x18f943d,0x1e4eaa0,0x1d7ff91,0x15a1130,0x086c85e,
  36743. 0x0ba21ac,0x106a968,0x11a2a2d,0x003a9f9,0x05b6a93,0x0a00d2c,
  36744. 0x01eaf38,0x1eec592,0x00a3547 },
  36745. { 0x1e260ce,0x09f69fd,0x07e98f7,0x1b01b80,0x0717752,0x0ed1f21,
  36746. 0x0dd75bc,0x01dabf5,0x05261f1,0x18b4325,0x135aed7,0x1ec7a41,
  36747. 0x16be7b1,0x110d632,0x18e3040,0x1231d3a,0x0f6673b,0x0189bdc,
  36748. 0x0b68bee,0x1688709,0x017423e } },
  36749. /* 123 */
  36750. { { 0x01fbcf4,0x113e215,0x17b8653,0x16bf59a,0x0c0d285,0x0f3303a,
  36751. 0x1af7645,0x134eb85,0x0ef0a6a,0x134b288,0x13d1607,0x1f420cf,
  36752. 0x1a13c5a,0x1df70fd,0x1804f05,0x0f3ce57,0x0d6dad2,0x0c2d203,
  36753. 0x050b3d6,0x052a3aa,0x0031004 },
  36754. { 0x02bbc45,0x1af60d1,0x1361a9c,0x14feade,0x0ee5391,0x1000ef2,
  36755. 0x1e7408d,0x04a60b5,0x1aa2f8d,0x0590c28,0x16de2aa,0x0db030f,
  36756. 0x030e2c3,0x10d4446,0x13020fe,0x0fab79f,0x17fbd3e,0x1dc8ed5,
  36757. 0x13f7408,0x10a8c1e,0x00f462d } },
  36758. /* 124 */
  36759. { { 0x172d703,0x05d0124,0x080fd5a,0x1a72131,0x1c44ca1,0x14642af,
  36760. 0x1950ab8,0x06dd371,0x05b1b45,0x1ea79b0,0x1df9213,0x00f698f,
  36761. 0x1d2e08b,0x1118411,0x0bcee60,0x1fa2608,0x1131889,0x0e4ffe9,
  36762. 0x1b1a0d6,0x1e0ca58,0x01bb56a },
  36763. { 0x0e0f16a,0x182f103,0x1297b6f,0x15ae8c8,0x1c1ac2f,0x09638d7,
  36764. 0x02a603e,0x143cb34,0x136c800,0x1d71beb,0x05e3704,0x1f8c46c,
  36765. 0x105f20e,0x15a3778,0x0e962e0,0x013c888,0x1cf4425,0x064a8be,
  36766. 0x103b66c,0x17682ac,0x01667d0 } },
  36767. /* 125 */
  36768. { { 0x122842d,0x185309e,0x1380ea8,0x0b6789d,0x0c6e00f,0x1c15bcc,
  36769. 0x13e1db7,0x18b0ec9,0x178d208,0x1496c36,0x02152b6,0x0723cf1,
  36770. 0x140a52d,0x12cd84c,0x06c9bee,0x1f93493,0x1ad04c5,0x02ee099,
  36771. 0x138fc4d,0x0124d26,0x01dda5c },
  36772. { 0x0d6d673,0x0e5617d,0x0ff9bc3,0x0a01e76,0x0d8fdf0,0x0bab74b,
  36773. 0x065058c,0x1c7d9ce,0x10a4d80,0x0c87a49,0x04c004e,0x126c63a,
  36774. 0x18f2aca,0x1aac0b1,0x04659b1,0x0acf3dd,0x174e6dd,0x136f87a,
  36775. 0x135c736,0x0490d19,0x0111be1 } },
  36776. /* 126 */
  36777. { { 0x15cc1b4,0x0639323,0x1e33d91,0x1256e72,0x115fc2f,0x1ebf5bc,
  36778. 0x19b4438,0x1c0cb4f,0x0f40c38,0x1a2710d,0x1493f2e,0x0573c35,
  36779. 0x0598866,0x01ab037,0x02e9377,0x127ee4e,0x02c1a4f,0x1e1c1a5,
  36780. 0x0d8a935,0x0193446,0x002193d },
  36781. { 0x169fd7f,0x1bdc67b,0x0ee78b2,0x0f13442,0x1815da9,0x0887f78,
  36782. 0x03159ae,0x070f69f,0x1269314,0x0445984,0x0cdf008,0x037b24b,
  36783. 0x05477b7,0x1353207,0x126a484,0x18ddf40,0x1bdfd21,0x169eef8,
  36784. 0x0ca95ac,0x1f3afa4,0x00649b5 } },
  36785. /* 127 */
  36786. { { 0x19a9c35,0x056fc33,0x1e5b590,0x0796e9a,0x0dad98e,0x074ed7e,
  36787. 0x03aed7e,0x0788c97,0x0ad4a07,0x19c30a7,0x17955d1,0x01dc5db,
  36788. 0x19bd86c,0x0bb6705,0x0cc5ce1,0x1f72cee,0x1274095,0x0cdae99,
  36789. 0x1826bab,0x015d67d,0x013672f },
  36790. { 0x0e54ba5,0x063b6b2,0x14868e2,0x03b88e9,0x03fe7af,0x13b840b,
  36791. 0x1a746ca,0x15aff47,0x0de1240,0x023da4f,0x00c0e81,0x16cd8e4,
  36792. 0x13d9f64,0x135e810,0x11e00a7,0x07d4b63,0x0700aa0,0x18e578e,
  36793. 0x0ee174a,0x0301d67,0x0103179 } },
  36794. /* 128 */
  36795. { { 0x12ed12f,0x1a7cfd7,0x162ab6f,0x09e701f,0x0e1d19e,0x0f40d76,
  36796. 0x0f6d68e,0x17812af,0x1626ef6,0x0c19990,0x16ca37e,0x0bd419e,
  36797. 0x14110ae,0x101c966,0x0565140,0x0f0ab56,0x0876bc6,0x133e24c,
  36798. 0x0ff5871,0x1cb2714,0x004ace7 },
  36799. { 0x0c7dea9,0x0dcf794,0x0611671,0x1414d4e,0x102f95b,0x013b4e6,
  36800. 0x1095e08,0x12c069b,0x094dd68,0x09d8584,0x1aa5688,0x16ff6bb,
  36801. 0x0903730,0x10be544,0x090fb41,0x140a5fc,0x117fb1b,0x10b67a6,
  36802. 0x09be5b6,0x123ad64,0x01c0d86 } },
  36803. /* 129 */
  36804. { { 0x18015c2,0x16f9fdf,0x0b62a8b,0x1b892a0,0x07f8236,0x1218abf,
  36805. 0x1db829a,0x019d121,0x1a2d04b,0x0c77992,0x076eacc,0x0d1b501,
  36806. 0x019cc06,0x0d33e51,0x09a4deb,0x17893ba,0x12c83fe,0x04793e0,
  36807. 0x126e611,0x07b65e7,0x002987b },
  36808. { 0x12e3dc7,0x1d7687e,0x1554df9,0x16e82bf,0x098e8bd,0x122f92a,
  36809. 0x1b26962,0x1a1f81a,0x0209c85,0x1eadd5d,0x0787ba0,0x1b8daaf,
  36810. 0x0d31ec8,0x12815ff,0x132b42e,0x17de23e,0x0ce1f41,0x0e21973,
  36811. 0x0fff299,0x015f557,0x01913b1 } },
  36812. /* 130 */
  36813. { { 0x1053af7,0x1bef829,0x13d2f67,0x0b65143,0x0030476,0x14821c3,
  36814. 0x1e3f1f3,0x1ba882e,0x0ac8c5d,0x1df69b7,0x07b1863,0x0277f6b,
  36815. 0x0f27b13,0x10d8df6,0x0995bfe,0x0e7533a,0x1459459,0x099a709,
  36816. 0x0d8ad65,0x0311198,0x018c326 },
  36817. { 0x07f6ff8,0x1d20a55,0x11ebd04,0x107f56f,0x092aeb8,0x0183dd0,
  36818. 0x021adf3,0x01df43b,0x1234610,0x040e092,0x10324f7,0x04e6042,
  36819. 0x1593d4d,0x1308241,0x1b5f8f3,0x12be743,0x0cfdf17,0x1715c8f,
  36820. 0x1a7b505,0x1b82346,0x0191160 } },
  36821. /* 131 */
  36822. { { 0x157d7cc,0x17a3745,0x0e1a69c,0x0a97e04,0x1140b0e,0x19d48e9,
  36823. 0x0e5b816,0x1c110d8,0x1a4ec26,0x1cd59d4,0x1d63a46,0x15d78a1,
  36824. 0x10742fe,0x0af1357,0x04b1821,0x1b3ee2b,0x076bb1c,0x0ca1e6a,
  36825. 0x1fc0b22,0x12ffa98,0x017c3ed },
  36826. { 0x0d54964,0x01281f3,0x03014ec,0x058d463,0x19bd116,0x0146116,
  36827. 0x1b3d273,0x08031fe,0x0035346,0x02e3c20,0x1019a29,0x06bd699,
  36828. 0x038ea33,0x1a16df0,0x15c9fe3,0x1879af5,0x111fdf6,0x158abf4,
  36829. 0x1264b5d,0x112993d,0x01b3a7f } },
  36830. /* 132 */
  36831. { { 0x109ea77,0x171cbd7,0x1716479,0x12ebb84,0x06a760b,0x050cbd9,
  36832. 0x03022e5,0x0331808,0x0b68ce6,0x00dd654,0x08d5901,0x1a2ab7a,
  36833. 0x1fa19a0,0x0cbbd99,0x1296e53,0x1a0530d,0x1f8e5fb,0x0f98fc3,
  36834. 0x06407e6,0x18ab4d6,0x00b8f76 },
  36835. { 0x046ec9f,0x1fc619c,0x09185d6,0x193bd59,0x1462205,0x0846f87,
  36836. 0x17b028c,0x0512596,0x1cfaed9,0x1ced941,0x127eca1,0x0008ca0,
  36837. 0x11477dc,0x0b77281,0x1492eb2,0x19c8a91,0x11656ad,0x1d3edb5,
  36838. 0x0c71a13,0x019b575,0x00fc011 } },
  36839. /* 133 */
  36840. { { 0x1308bf2,0x1b36c26,0x0010546,0x1facc70,0x19013c9,0x1c1dfcc,
  36841. 0x17e4bf4,0x1f8d125,0x03ffc8e,0x0877ec2,0x1a8a1e8,0x02d8627,
  36842. 0x00527e3,0x1d06fba,0x1db8f34,0x1a5431d,0x030f6eb,0x165cb72,
  36843. 0x1c3b933,0x17d9e54,0x018cc1e },
  36844. { 0x070404c,0x0a56b8d,0x08c2034,0x01f39c5,0x0ad21dd,0x11f0393,
  36845. 0x0f378ea,0x1217299,0x16363a6,0x15acb08,0x078ad02,0x1e8b8d6,
  36846. 0x1be70bf,0x1367762,0x05b742d,0x0af8025,0x0747477,0x06a6595,
  36847. 0x15f647a,0x11194c7,0x00aa089 } },
  36848. /* 134 */
  36849. { { 0x0db0396,0x0e7e57c,0x09daa8b,0x0f6845b,0x08ae8f3,0x042b927,
  36850. 0x00d2659,0x07eca5f,0x07bf149,0x123e1e2,0x11e93bd,0x168d604,
  36851. 0x0e8b600,0x1d75ed4,0x1cf90e5,0x11be157,0x11fa795,0x1170e91,
  36852. 0x0206eac,0x0d2563f,0x00ef38e },
  36853. { 0x0cf3047,0x00b4493,0x01607cf,0x08b2a73,0x1ad14f9,0x1f905b6,
  36854. 0x17470a4,0x02ffbd0,0x0f57abb,0x152a1b7,0x1378e0b,0x1ff82f2,
  36855. 0x0f0d1a8,0x15ff669,0x0942388,0x0c08537,0x07fdb78,0x0088785,
  36856. 0x1378c7e,0x1cdec8f,0x01962ad } },
  36857. /* 135 */
  36858. { { 0x0c78898,0x1529bff,0x1dff265,0x05bc1f4,0x0b39de7,0x0658478,
  36859. 0x1dab34d,0x0a7eda0,0x0da78d3,0x06c5dc1,0x04b306b,0x09a7407,
  36860. 0x1d5fe80,0x12c0aa4,0x1eb7b7b,0x18db356,0x1a0c067,0x1c41c80,
  36861. 0x1b64fcd,0x0bff449,0x0191585 },
  36862. { 0x19ebef3,0x1871b5f,0x05dca55,0x0bbe966,0x021046a,0x00b5ae7,
  36863. 0x06a569a,0x023f371,0x1288d0e,0x0f9c940,0x04566ab,0x17ca72f,
  36864. 0x12d6baa,0x0e47d5d,0x06bfb81,0x15e2082,0x1afe5c7,0x1f8c961,
  36865. 0x1f738de,0x05d039a,0x00f7aa7 } },
  36866. /* 136 */
  36867. { { 0x0c386ee,0x11e078b,0x00e483e,0x13a9813,0x133b046,0x15189b5,
  36868. 0x15c8a1d,0x00cf3c1,0x03c406c,0x01e0549,0x0f89f4d,0x1c7c9bd,
  36869. 0x0aef220,0x0cb7807,0x15ec784,0x1b9fe13,0x1d824a9,0x0a507ae,
  36870. 0x0707421,0x105d8b3,0x01e2535 },
  36871. { 0x138c7ed,0x1793128,0x0237323,0x08ca8ff,0x1ec4319,0x054a446,
  36872. 0x14eb774,0x1b856dc,0x08257eb,0x1cf8f7d,0x032627a,0x0dd63e1,
  36873. 0x08c583c,0x000b1bb,0x1cda445,0x01c7be2,0x18bdbc2,0x131417f,
  36874. 0x12f5453,0x10200b3,0x00d526b } },
  36875. /* 137 */
  36876. { { 0x0025949,0x0a917d0,0x0514912,0x1e177b1,0x126d888,0x1b90b7d,
  36877. 0x0bd7f98,0x1ec6688,0x0472827,0x0761db2,0x109a076,0x034733f,
  36878. 0x0d91d8a,0x1463b88,0x08cbab5,0x04ec4da,0x02fe51b,0x1c72dff,
  36879. 0x14427e9,0x1e9fdbf,0x00040f9 },
  36880. { 0x14a05e0,0x17528b5,0x03ac654,0x1de438f,0x0b0d48e,0x0befede,
  36881. 0x1986466,0x1fac9a6,0x08b4c21,0x088d902,0x08c0e83,0x136d7d2,
  36882. 0x09a6f56,0x1c62f40,0x03d8259,0x0bb1c57,0x1ab3680,0x139135a,
  36883. 0x0cd2728,0x1fe301b,0x01bdd6c } },
  36884. /* 138 */
  36885. { { 0x03cc612,0x1c2bb4a,0x071e927,0x1d06566,0x0914319,0x056f5ee,
  36886. 0x18a5f33,0x043244b,0x0b06198,0x08c7da1,0x0731f12,0x01084b6,
  36887. 0x10accb3,0x132372f,0x074cd1e,0x07c44ea,0x0ae590e,0x0757da5,
  36888. 0x1128002,0x08c0705,0x0151821 },
  36889. { 0x196a461,0x040eddf,0x0e90f09,0x136a547,0x11c122e,0x06d845a,
  36890. 0x0163919,0x03a4385,0x06d6a08,0x080a5bc,0x0f3bdec,0x1da9ea6,
  36891. 0x1c167d3,0x00aa2fb,0x1ecca52,0x0f73ed9,0x11c449b,0x0f52369,
  36892. 0x18870a6,0x1aec272,0x0081cfa } },
  36893. /* 139 */
  36894. { { 0x18a7f0e,0x0b193a3,0x0177bde,0x05bc2ee,0x114183e,0x108bf44,
  36895. 0x09b7d5c,0x19fa494,0x1b7cd52,0x06d8d84,0x0f0580f,0x13f75b0,
  36896. 0x099e42b,0x184f7c6,0x1c74ba9,0x0999ad2,0x05b8ee5,0x00c4a7e,
  36897. 0x129483f,0x0f69ca6,0x00fcf75 },
  36898. { 0x0b62347,0x08c6643,0x04a1695,0x04f7855,0x0c51c9d,0x13393ff,
  36899. 0x0ac14a5,0x0de5dd4,0x00ae43e,0x045471d,0x0819aef,0x16bc0b9,
  36900. 0x0d80535,0x0419cc3,0x1ff36c6,0x099bb23,0x1ba3237,0x197a52d,
  36901. 0x1480890,0x0c74921,0x0124087 } },
  36902. /* 140 */
  36903. { { 0x0fac14d,0x05cb927,0x14f3926,0x1b4f353,0x16f4bf8,0x103e14d,
  36904. 0x036f75b,0x0701e3d,0x1717715,0x161867e,0x00c98fe,0x1a44e36,
  36905. 0x154c91e,0x0cda2af,0x04e0cd4,0x1257f7f,0x1891270,0x0bb52f3,
  36906. 0x1204ef6,0x0ce9c36,0x0128a97 },
  36907. { 0x03e5924,0x11e20ac,0x1418a6d,0x031e2e3,0x01f9aff,0x113d143,
  36908. 0x0cf36ac,0x0e0568b,0x08a11ab,0x1ceaeed,0x0da5c64,0x0f61d1b,
  36909. 0x052bfb4,0x0760840,0x08de77c,0x03002ac,0x08124ce,0x157ad32,
  36910. 0x13e52ae,0x1188686,0x01508d9 } },
  36911. /* 141 */
  36912. { { 0x1ffc80f,0x0ff39e7,0x0fdb7aa,0x17a868e,0x023e2e9,0x09bdd3f,
  36913. 0x0fb4f27,0x0ae4ff6,0x07a3fc3,0x19bb369,0x1280f5c,0x19e71c0,
  36914. 0x03d0db4,0x15df07a,0x1805d48,0x0de9f19,0x119da98,0x1ec3f5b,
  36915. 0x1f9ac0d,0x16a15c5,0x01536d1 },
  36916. { 0x040bab1,0x1aef7ed,0x098cdc7,0x1f3657b,0x07d6a8a,0x0565438,
  36917. 0x1722435,0x156bd14,0x1643ff8,0x0b9787f,0x03b0bd3,0x01b297f,
  36918. 0x029c4c1,0x075c9f1,0x0c3aae8,0x1fa026d,0x08f1d2d,0x15e2587,
  36919. 0x14d2820,0x0a5cb53,0x01429f2 } },
  36920. /* 142 */
  36921. { { 0x10e7020,0x1ea60be,0x05a12bf,0x156a904,0x1b169aa,0x079a47c,
  36922. 0x05c2162,0x177b7c0,0x1885986,0x175fb7f,0x070e076,0x0fea2bf,
  36923. 0x1bb3398,0x0254a53,0x1157cb0,0x0d092fc,0x042a0ed,0x01cd20a,
  36924. 0x1bdde63,0x15a94c3,0x01541c1 },
  36925. { 0x12709c4,0x1db1403,0x17f9d91,0x171021c,0x1330d68,0x1707b1d,
  36926. 0x021d3a4,0x175a37b,0x1f8bea9,0x02727dc,0x0260685,0x1831063,
  36927. 0x07c15af,0x1b46350,0x071720a,0x016cdc3,0x1a236e0,0x042c62b,
  36928. 0x1f2debb,0x0aa2200,0x00119b2 } },
  36929. /* 143 */
  36930. { { 0x087027d,0x07693e4,0x0a18487,0x0a57f56,0x0050f33,0x0a88f13,
  36931. 0x0f07067,0x1eadc6e,0x17f4c69,0x16a61d4,0x09aed00,0x0d5e4a4,
  36932. 0x10e6f35,0x01f3d61,0x040470e,0x1fbf677,0x03d33d8,0x1a1d861,
  36933. 0x1cba8d8,0x0721ef5,0x000ba8c },
  36934. { 0x0851bac,0x061eb3f,0x13f310c,0x134bea8,0x0991c38,0x1dd030c,
  36935. 0x0f1919f,0x1e800d7,0x097cbdb,0x04e8127,0x12b6b75,0x0fbaee6,
  36936. 0x0a4539b,0x1465b69,0x0ea3e7c,0x1675b21,0x0304de4,0x03d490c,
  36937. 0x1ee5a4a,0x0e65df4,0x006ab28 } },
  36938. /* 144 */
  36939. { { 0x0ed5986,0x15a9691,0x1819c76,0x14b0a67,0x1eee627,0x0aaff1e,
  36940. 0x18deb3c,0x065d1fd,0x17ae8b1,0x0b0a486,0x022e533,0x030a694,
  36941. 0x102706e,0x1ce0ae1,0x17ff54b,0x15a8d50,0x0f351a5,0x1ead112,
  36942. 0x135c02e,0x036daaa,0x01e644d },
  36943. { 0x02e4e9c,0x1834343,0x1f925a0,0x1890ec7,0x1e5cd76,0x01ce557,
  36944. 0x059e702,0x05ac061,0x18d83d6,0x07265f5,0x112b8b0,0x0a9c237,
  36945. 0x02911e2,0x127e503,0x0835f21,0x0e08b2d,0x1d5e9a2,0x07abc2e,
  36946. 0x0f8104b,0x0cefa1e,0x01be2f4 } },
  36947. /* 145 */
  36948. { { 0x101a6dc,0x0096ed5,0x0da5300,0x035c35b,0x191bd6c,0x18283c9,
  36949. 0x16bb2e6,0x03e75cf,0x062a106,0x138a7cf,0x14dadf0,0x1dcf52c,
  36950. 0x0b71978,0x0f0bb2a,0x1046f41,0x07ba9dd,0x0e0efab,0x0e388b3,
  36951. 0x1fb6fd8,0x154ae50,0x01d70f7 },
  36952. { 0x1eb5932,0x137bea8,0x12909ba,0x14bf105,0x154ea0a,0x1cfbee1,
  36953. 0x1825ddc,0x0682eb6,0x09be579,0x19a8c95,0x117b334,0x0846f0a,
  36954. 0x1d9801f,0x1db21e4,0x0e38959,0x157d865,0x1d723e3,0x0dca08e,
  36955. 0x1c71942,0x1bd4d19,0x00ee656 } },
  36956. /* 146 */
  36957. { { 0x0890deb,0x070a050,0x12f534e,0x1b79d70,0x1f7bd87,0x020ef65,
  36958. 0x1fdcae8,0x1d2a3e1,0x0a6820b,0x1f76385,0x018a62b,0x0147189,
  36959. 0x0475519,0x1380876,0x16e9563,0x0f363d9,0x1b88c78,0x0676c8e,
  36960. 0x1d78857,0x1c7c99d,0x014c08d },
  36961. { 0x0266da2,0x09a768b,0x0026705,0x16f6992,0x1ce322e,0x093b444,
  36962. 0x12bbda6,0x09a6fbd,0x105c284,0x09284bf,0x1466ad9,0x1c26358,
  36963. 0x06d23b7,0x12d1e64,0x0baedc9,0x08aead0,0x1b9628c,0x186298e,
  36964. 0x0e014dc,0x01d170e,0x00be2e0 } },
  36965. /* 147 */
  36966. { { 0x1ed32e9,0x1e4002b,0x065ce01,0x1ef8049,0x027e40c,0x1aa4182,
  36967. 0x1aaeeae,0x1e8b0a0,0x1ce820b,0x124bbb7,0x10fa055,0x0527658,
  36968. 0x08b5353,0x07f7b32,0x07a0d4f,0x1b94ace,0x13f903b,0x09390be,
  36969. 0x004ff5e,0x1382135,0x01dc40a },
  36970. { 0x1b21a38,0x153619e,0x1f91afa,0x03ae7de,0x0ae222e,0x0ea83fe,
  36971. 0x0139ef4,0x1563fed,0x0587a77,0x0dd6332,0x12935bd,0x1ec418c,
  36972. 0x0a58c74,0x153e1bc,0x0a0df65,0x1c81299,0x1313e42,0x1fa1efa,
  36973. 0x0d27853,0x14868ff,0x013f8a9 } },
  36974. /* 148 */
  36975. { { 0x12f8923,0x1a76fcc,0x07ce16a,0x00dfa41,0x024aa5e,0x09a0777,
  36976. 0x06e1c6c,0x0804f7d,0x191e0bb,0x0abe88f,0x1318b0a,0x15a5e7a,
  36977. 0x0f425af,0x03ffbd5,0x08c4a1b,0x197d25a,0x12b0114,0x0cb2095,
  36978. 0x0f88d4a,0x0d44638,0x019f670 },
  36979. { 0x05c02af,0x1dde911,0x06341ac,0x0c7f47d,0x13ebc16,0x07a4172,
  36980. 0x0add6e1,0x1bf4dbe,0x12bfc55,0x095a290,0x09cf6a4,0x1a80a25,
  36981. 0x0430bdb,0x1ea9f55,0x03d0f64,0x1faa758,0x1e40c27,0x07e1ac7,
  36982. 0x065092d,0x03077d2,0x00a32cb } },
  36983. /* 149 */
  36984. { { 0x1a6a746,0x186169f,0x12a38e6,0x043ab44,0x084a792,0x06f95af,
  36985. 0x02451e3,0x166e14b,0x130666c,0x144033e,0x1c741a2,0x013deda,
  36986. 0x04b09a7,0x0032e8c,0x001e8f8,0x12890a0,0x14bb8dc,0x0382357,
  36987. 0x19524eb,0x1462538,0x01fd2b6 },
  36988. { 0x05f2771,0x0eadef2,0x16574f5,0x15e865d,0x0542b08,0x19535dc,
  36989. 0x103efc8,0x1645d9a,0x1e8becc,0x1e5b0a1,0x1891fc3,0x02757f1,
  36990. 0x1bcecc5,0x06d181c,0x1755bde,0x141bf2a,0x01956c2,0x148abe3,
  36991. 0x00c7f8a,0x06b97e6,0x018ca6d } },
  36992. /* 150 */
  36993. { { 0x00c4923,0x0058ddf,0x01ef760,0x00d2052,0x046ae74,0x1de8638,
  36994. 0x0cdfe55,0x1704731,0x19655f8,0x1470d4e,0x1d0542a,0x0ff4a01,
  36995. 0x0ecd292,0x10173d7,0x1aa71b4,0x0d25d04,0x0b39f29,0x05a67ac,
  36996. 0x1d055df,0x070d197,0x011f309 },
  36997. { 0x13ed442,0x1af3d19,0x1deeb72,0x1f20dfd,0x0e5c8e2,0x0c79145,
  36998. 0x0048cf6,0x0b85b36,0x07ffe12,0x119796d,0x0c60d51,0x0e63744,
  36999. 0x1259487,0x0969628,0x12ab96c,0x1b38941,0x0589857,0x15f8073,
  37000. 0x13c803d,0x02010ca,0x0172c5d } },
  37001. /* 151 */
  37002. { { 0x1c283e0,0x0a02317,0x0039625,0x08fdc11,0x1763398,0x1e8b117,
  37003. 0x0d03adf,0x1dbf5e3,0x0f598c5,0x07a8a8f,0x0366efb,0x05eefc0,
  37004. 0x146b4d9,0x14621fe,0x10f8ece,0x1a3a4ea,0x12c6511,0x19cca70,
  37005. 0x1c16db4,0x08343b5,0x00c6dd8 },
  37006. { 0x1b991ad,0x10bf011,0x14508f6,0x06e3f74,0x0ab2b21,0x0e0c3cd,
  37007. 0x1b16837,0x1b9682f,0x15f63ac,0x19de456,0x09f5405,0x04203c5,
  37008. 0x082fcf5,0x1083680,0x0dcff41,0x0259ec6,0x1de7db0,0x18f4108,
  37009. 0x1d9517b,0x0ecdb2a,0x018ca07 } },
  37010. /* 152 */
  37011. { { 0x180dfaf,0x1a3dcd7,0x1fce390,0x1f388cc,0x080b631,0x0de11c5,
  37012. 0x16c99b7,0x140dfe3,0x1aa8718,0x0b0f1b2,0x070d7d8,0x19215e6,
  37013. 0x08e7f7a,0x1e34237,0x0e0c747,0x0eb6980,0x1106841,0x10f334e,
  37014. 0x0d2dcc6,0x13ac412,0x00c76da },
  37015. { 0x1e4e78b,0x1acbdd1,0x1e6a607,0x18aa133,0x0c14ded,0x0446309,
  37016. 0x0e6564c,0x0b17e6e,0x19b2074,0x02b4183,0x1da401f,0x188f444,
  37017. 0x13c4440,0x1bf36d7,0x17c8f23,0x122076d,0x0254292,0x1a7b316,
  37018. 0x0cede58,0x14db631,0x00f9f4e } },
  37019. /* 153 */
  37020. { { 0x0d36049,0x0f5c467,0x07e319a,0x03e8373,0x07a4ffe,0x1970844,
  37021. 0x1d58da9,0x114d216,0x065a0bb,0x1eeb546,0x10a5559,0x18b12dc,
  37022. 0x0d42cf8,0x0d55ffd,0x01ad7cc,0x04d48a5,0x0f28f6f,0x18fbefd,
  37023. 0x186b940,0x13c1581,0x0120c5d },
  37024. { 0x0c10da7,0x171ffd6,0x1b96bef,0x1328928,0x07e2d5f,0x01107fb,
  37025. 0x1fa18f1,0x05d1d82,0x0bd6f63,0x137ba0a,0x127bd3f,0x181f87f,
  37026. 0x104a9e3,0x01dfdc3,0x1fcf2e8,0x0685a4b,0x000bb03,0x10c7e9b,
  37027. 0x014334b,0x07cea60,0x01ac1e6 } },
  37028. /* 154 */
  37029. { { 0x13d6a02,0x1e83e47,0x0347760,0x18fde9a,0x11fc143,0x03d7b0b,
  37030. 0x12fc353,0x1e19532,0x0827c5c,0x0549f4c,0x05e20b2,0x18f656d,
  37031. 0x1a4a102,0x052af45,0x0f21f56,0x0c9e0c6,0x02fcc2d,0x00d7441,
  37032. 0x01b407f,0x136a7f3,0x01c12ce },
  37033. { 0x1dc1b79,0x11cfeca,0x05aa165,0x087e9cc,0x0728f75,0x117dcf9,
  37034. 0x0f133b7,0x13cdce0,0x0d50fae,0x017bb40,0x14c3b41,0x187785a,
  37035. 0x0c0546b,0x06eacc5,0x09001af,0x0922001,0x0c9e129,0x09f9943,
  37036. 0x1afe58a,0x1044ab6,0x0146777 } },
  37037. /* 155 */
  37038. { { 0x10c98fe,0x0a10f71,0x1c16be0,0x01f859a,0x1eb0feb,0x0fb5696,
  37039. 0x1329853,0x1d13658,0x09ba314,0x1c09a6f,0x12c5b74,0x1d709e0,
  37040. 0x08a443d,0x183fc65,0x155bb83,0x0722ff8,0x1bb3a4f,0x09e0e41,
  37041. 0x06b7350,0x0fba496,0x0199839 },
  37042. { 0x14781e6,0x0f0bf6f,0x0407280,0x128de3f,0x12d7c31,0x18486d1,
  37043. 0x0984ed4,0x00f444f,0x0a7c8c6,0x04ad8ee,0x1a5c249,0x17ddbb8,
  37044. 0x181cf2f,0x02b0404,0x0f60aed,0x069ae3a,0x1a30851,0x0e7e6ee,
  37045. 0x19e6310,0x02e36b2,0x00d23dd } },
  37046. /* 156 */
  37047. { { 0x0dd7e96,0x007c26a,0x10325e9,0x150813f,0x1114c8e,0x0889c9b,
  37048. 0x0a79aa7,0x1ad8ade,0x18fd8c6,0x1b03310,0x1a79f0e,0x150c004,
  37049. 0x1fad3ba,0x02c94ea,0x04f1ac0,0x06cb628,0x040222e,0x060d6bf,
  37050. 0x1e62abb,0x04c4348,0x01d36a8 },
  37051. { 0x1003c81,0x022e260,0x180abab,0x15e87b0,0x1ef9ef5,0x1bba34c,
  37052. 0x17d7983,0x0b06d4c,0x1bf5d28,0x18973d5,0x0b3bc7c,0x1903909,
  37053. 0x122f53e,0x0e9245a,0x18cb28a,0x0b8c0c7,0x1c581e6,0x1ff4d53,
  37054. 0x0a1065c,0x10d934a,0x0017e36 } },
  37055. /* 157 */
  37056. { { 0x090de99,0x17f32cf,0x0d8c2cb,0x195a0b5,0x1e4485b,0x0724495,
  37057. 0x1a94b85,0x10f8914,0x0226286,0x16c2a18,0x0f6d50a,0x1d2abd6,
  37058. 0x01261f0,0x0a2f2c2,0x1a0618f,0x0ae7291,0x00f8ed7,0x067f0e7,
  37059. 0x1612b79,0x1e3feaf,0x003fbd6 },
  37060. { 0x1bf968c,0x188eee8,0x11cb50d,0x1a91bf4,0x1558d7c,0x12d2b36,
  37061. 0x0488f90,0x08293e1,0x05c26d0,0x07c199c,0x105d0c3,0x03e2f85,
  37062. 0x19be7b8,0x08a1ece,0x0f70cf9,0x07f5dc7,0x03594fd,0x179c2d6,
  37063. 0x1f46046,0x039e853,0x0113755 } },
  37064. /* 158 */
  37065. { { 0x0193bb2,0x07aad90,0x01c924a,0x00e6217,0x16e579d,0x02e93b4,
  37066. 0x18c274d,0x114bdc0,0x0a87186,0x121f219,0x0e1a0e6,0x07c2220,
  37067. 0x0828c11,0x1199788,0x01bb3ce,0x1976905,0x0370385,0x199a455,
  37068. 0x1c5636b,0x1ff955d,0x00c6698 },
  37069. { 0x0908745,0x062a57b,0x0fee811,0x08d466a,0x06b336e,0x10f410d,
  37070. 0x0a14b55,0x0fed298,0x0363491,0x194bcb8,0x184c546,0x077303e,
  37071. 0x0f6e102,0x17a352f,0x05f70af,0x09efed0,0x0af8e11,0x1c9ef50,
  37072. 0x15cb16f,0x1e79abd,0x0136c3c } },
  37073. /* 159 */
  37074. { { 0x1080de4,0x1ccd5bd,0x0e5aee1,0x1bad3b0,0x1b8f781,0x17c7b19,
  37075. 0x0aaaa61,0x194ed68,0x0a54bc5,0x0ba601c,0x0beee57,0x0c0b538,
  37076. 0x1076fcb,0x000bc49,0x146d102,0x0de1b08,0x0389d28,0x1a07806,
  37077. 0x1150c98,0x11d2a41,0x014c303 },
  37078. { 0x177aad9,0x1e1c0b4,0x0f8f252,0x05ae10f,0x0dbfd08,0x0ff6845,
  37079. 0x008321d,0x1f80da1,0x0345656,0x0e7426a,0x1b753b8,0x11c01fa,
  37080. 0x0071c4d,0x152fd5a,0x0ce2c89,0x1d6de46,0x0c10bae,0x06a3bf5,
  37081. 0x1e0309b,0x161176b,0x0078e4d } },
  37082. /* 160 */
  37083. { { 0x078342a,0x0e89508,0x0190044,0x1cab342,0x0534725,0x09ffee8,
  37084. 0x075643f,0x03fd48b,0x106f0ac,0x1b4a54f,0x06f1a73,0x15b67c3,
  37085. 0x00f6d24,0x1ceee68,0x18e3d7a,0x1ba9c79,0x166b632,0x09c2007,
  37086. 0x0578715,0x11fbf7c,0x0085cab },
  37087. { 0x109422f,0x01fb5c6,0x10ec2a5,0x0c1f311,0x17d2975,0x19726c8,
  37088. 0x107e8bb,0x07eab48,0x135f7c1,0x1a1a91d,0x0b4ffd9,0x080fdb5,
  37089. 0x0d274d3,0x09a3921,0x10450d6,0x0c2bab2,0x1013bb8,0x08e5939,
  37090. 0x15de533,0x06e0097,0x007da04 } },
  37091. /* 161 */
  37092. { { 0x1712c44,0x1ccd316,0x15de092,0x114d2c4,0x148368f,0x0f11438,
  37093. 0x010cb59,0x1f11dad,0x06f5bc5,0x0014183,0x0d1e745,0x02429d8,
  37094. 0x10e6cf3,0x09936db,0x16dbd12,0x126d72d,0x098ca32,0x1e52d60,
  37095. 0x1fa886b,0x04918e5,0x004d69e },
  37096. { 0x11269fb,0x0484953,0x0d802aa,0x1030ca1,0x0f6bdba,0x1aaed91,
  37097. 0x10a8e7e,0x1a03b39,0x16311e9,0x1e7586f,0x10b0743,0x0f39215,
  37098. 0x0a6faeb,0x058f9b9,0x04ec88b,0x0832647,0x1dfbc8c,0x0315379,
  37099. 0x1fa399d,0x1461645,0x00019de } },
  37100. /* 162 */
  37101. { { 0x0b3118b,0x144d609,0x0959f7d,0x1ad96dd,0x106ee39,0x1e6cbc6,
  37102. 0x08b0861,0x10f9f98,0x18d537d,0x0c2db40,0x15b6cae,0x02a5d3e,
  37103. 0x1575845,0x0f04c60,0x00e61c5,0x059a41f,0x1c83b21,0x1df4b52,
  37104. 0x06b0711,0x140671b,0x01fb3dd },
  37105. { 0x1a0a9b8,0x1bff067,0x1dd7c1a,0x0fc45b9,0x1478bac,0x1443e44,
  37106. 0x178104d,0x179e702,0x0914c54,0x0c08eef,0x07a993b,0x02c01ea,
  37107. 0x17c8c24,0x064382b,0x045360d,0x17968c7,0x152a8ab,0x1769272,
  37108. 0x1913d4b,0x1d73d04,0x00019e5 } },
  37109. /* 163 */
  37110. { { 0x0d52313,0x0d02733,0x0af47d9,0x0a9a7ee,0x1d69454,0x1bd708f,
  37111. 0x176be9a,0x08e5781,0x0571ab2,0x10fbcec,0x0a35a24,0x12cd5cb,
  37112. 0x13d4c5f,0x1762e70,0x185dc5a,0x17a73fb,0x1a4b764,0x1b87376,
  37113. 0x04359e0,0x12810b3,0x01efffe },
  37114. { 0x08f92e8,0x10713ec,0x08f3cfe,0x1b38ee2,0x021ef0f,0x13a6dd5,
  37115. 0x05d3224,0x0c4c4b3,0x1b9ba27,0x067d252,0x0f2bdb5,0x13a48dd,
  37116. 0x1010c90,0x07c7143,0x05e8436,0x1dd4406,0x1e1453a,0x1d83b8e,
  37117. 0x031ac28,0x188f22d,0x00eadf0 } },
  37118. /* 164 */
  37119. { { 0x0854477,0x00f2426,0x11f046f,0x090c71c,0x0bec25b,0x0e2a6c9,
  37120. 0x180ae1a,0x1a487a9,0x0be1e7e,0x18c6f19,0x18312b8,0x1d60d68,
  37121. 0x1ef5471,0x1521357,0x0b9efce,0x05b8271,0x0ddd845,0x091d713,
  37122. 0x1e0b7a7,0x1f83aaa,0x01649d3 },
  37123. { 0x0de1979,0x0571885,0x1ca361f,0x1a76978,0x0847041,0x01e4df5,
  37124. 0x0f1015b,0x0ce7124,0x0d74ae4,0x17f0c15,0x1926b8d,0x0de9d97,
  37125. 0x1592bff,0x0e20fcf,0x0036e03,0x00e2acd,0x06fe463,0x19add60,
  37126. 0x1b41cc1,0x11698fa,0x00c06d6 } },
  37127. /* 165 */
  37128. { { 0x14dfcf2,0x115f3c2,0x0f436f8,0x1f4d5c7,0x0e21a7d,0x10f6237,
  37129. 0x0eb4694,0x099e8c6,0x041a948,0x14a293d,0x048fcfb,0x1736554,
  37130. 0x121145e,0x0571e54,0x0d2a0ab,0x1b24aac,0x0a0fc85,0x070bb56,
  37131. 0x0420b63,0x19eff83,0x0078504 },
  37132. { 0x199793c,0x073e21b,0x1ed75d3,0x116aa33,0x14ddd61,0x1fcc043,
  37133. 0x17e4e57,0x1cc59ed,0x1b8bf61,0x07522e8,0x13d53c0,0x0c27b9f,
  37134. 0x1026863,0x01801ad,0x108edd8,0x15396ce,0x1344028,0x14fde3a,
  37135. 0x14681df,0x059c6e0,0x00f47b5 } },
  37136. /* 166 */
  37137. { { 0x0bec962,0x1ec56cb,0x01ebafd,0x0c2fc02,0x11cc81f,0x07082c6,
  37138. 0x1142485,0x13ec988,0x142394c,0x014c621,0x18144db,0x0a5a34c,
  37139. 0x03d9100,0x086fc12,0x190dd52,0x1bd4986,0x01efe5c,0x09189df,
  37140. 0x09fedec,0x14c1efa,0x0076249 },
  37141. { 0x0f593a0,0x1ac1c0e,0x1679d25,0x1706c98,0x0c9ceef,0x0e4cc88,
  37142. 0x04ccf81,0x1c65eb4,0x1421808,0x0752f0f,0x1a3d3cc,0x149e9eb,
  37143. 0x0756fb3,0x1b6065a,0x0b9b8ba,0x198d459,0x1fd08bd,0x1b05983,
  37144. 0x1fe3045,0x0f20381,0x001aee1 } },
  37145. /* 167 */
  37146. { { 0x1aa9e14,0x019b5c4,0x003f012,0x03ecece,0x0663427,0x15b4c03,
  37147. 0x010ce41,0x0469b54,0x1ebb7ab,0x0123f70,0x06814cc,0x154fd6b,
  37148. 0x15969b4,0x00007a6,0x03be096,0x0d6b7af,0x0eb4602,0x072ed9c,
  37149. 0x15a15b1,0x087cbaf,0x003b06a },
  37150. { 0x12a0ee7,0x1741c76,0x004ea82,0x11e2dd1,0x04bbe52,0x13209b8,
  37151. 0x17d713a,0x0cf156d,0x006e298,0x1f4065b,0x07b4ad6,0x16e5e8b,
  37152. 0x1af19b1,0x0bb0a90,0x0733934,0x0de76f5,0x194aa51,0x09cd7fc,
  37153. 0x0d05a49,0x125d0d6,0x000797d } },
  37154. /* 168 */
  37155. { { 0x0f3a8ca,0x176f0ad,0x07b096b,0x054b86a,0x1392478,0x1f60401,
  37156. 0x08fefe4,0x16883cf,0x0e6f425,0x027c9e2,0x1d8026c,0x05d903c,
  37157. 0x06e4ec1,0x08c07fe,0x1cd9b51,0x1de74f2,0x1b50e0a,0x0e949e5,
  37158. 0x035c764,0x12d288d,0x0061a14 },
  37159. { 0x15a67a1,0x02a0e33,0x041bd4b,0x011ebfd,0x07d38d3,0x1f4c473,
  37160. 0x0f333da,0x10c54e1,0x0185898,0x101f65f,0x1c116eb,0x0c2ce0c,
  37161. 0x16ecd02,0x086546c,0x0b37664,0x0e6ba3f,0x08230c0,0x03d5085,
  37162. 0x0ca3c87,0x0fcaa86,0x00152a2 } },
  37163. /* 169 */
  37164. { { 0x0057e27,0x104f073,0x1368f75,0x0f8f48a,0x07e8b6a,0x196eadc,
  37165. 0x045147c,0x1c5feb3,0x0d0ef51,0x11cbd44,0x19d51ba,0x0d424aa,
  37166. 0x00c4986,0x19145a4,0x11722c4,0x132f5d4,0x077dd01,0x11edf07,
  37167. 0x14619f4,0x1d451f8,0x01f80e2 },
  37168. { 0x1d0820b,0x0a096b4,0x08618a5,0x0e3d4cb,0x0317312,0x031c068,
  37169. 0x00887ac,0x00d84f9,0x075fe97,0x1fea77e,0x074941f,0x14aeb4e,
  37170. 0x037b396,0x03e5baa,0x1200147,0x17dc6c3,0x0d7ad4d,0x0f03eda,
  37171. 0x0c64b51,0x0903e93,0x01431c7 } },
  37172. /* 170 */
  37173. { { 0x0e1cc4d,0x1968204,0x07b97aa,0x075a5b8,0x093758d,0x0e39c9f,
  37174. 0x1f7f972,0x10619d6,0x1d33796,0x186c354,0x1e1b5d4,0x0795c49,
  37175. 0x0bef528,0x1858dd8,0x1746993,0x09c7956,0x01f54db,0x0cb555e,
  37176. 0x0f00316,0x1b0f987,0x01443e3 },
  37177. { 0x160e7b0,0x141098e,0x0063942,0x16ba67a,0x1c9b629,0x0299c6f,
  37178. 0x1b90bf4,0x1d58a95,0x0e821c6,0x13c7960,0x10272c1,0x0ebe0d5,
  37179. 0x16e5c9d,0x0980c6f,0x0d5d44d,0x18ccf06,0x1ac0bf8,0x0c0e537,
  37180. 0x142b8b7,0x10041d3,0x00e17fc } },
  37181. /* 171 */
  37182. { { 0x1aaa5eb,0x0a3a08d,0x00da2b7,0x12f37b0,0x02cbb75,0x1ff6910,
  37183. 0x0310337,0x083b0d0,0x04e0911,0x011d478,0x122e1c7,0x03da40e,
  37184. 0x0965d14,0x12cf494,0x1a855d5,0x1b7fcb0,0x1cd5006,0x03e346b,
  37185. 0x095a69d,0x15a1be4,0x0148da0 },
  37186. { 0x19069d7,0x062edbf,0x069323f,0x0ab80a6,0x0487d24,0x116d9d1,
  37187. 0x12267a6,0x0418b56,0x0b4fe97,0x15fea9c,0x1cd7914,0x1949a4f,
  37188. 0x1373a04,0x1716d64,0x0ef1527,0x1cfc4f9,0x09dff3e,0x0014391,
  37189. 0x036a4d8,0x130f1a5,0x00d0317 } },
  37190. /* 172 */
  37191. { { 0x166c047,0x1f4dd9d,0x187626d,0x12c0547,0x02e6586,0x0dce001,
  37192. 0x08a5f23,0x14689f0,0x1d08a74,0x13b5651,0x0e63783,0x0e3bf9a,
  37193. 0x0afbf1a,0x0190733,0x0edbaaa,0x13f8a5f,0x0bc179c,0x0541687,
  37194. 0x19eacad,0x019ede9,0x000f4e0 },
  37195. { 0x090c439,0x0074d24,0x1ac9093,0x17786b4,0x17564a2,0x1ba4be9,
  37196. 0x11e7766,0x0852b48,0x1612de9,0x0ff9f86,0x1400ce8,0x0ff9cc1,
  37197. 0x1a35862,0x09120be,0x176a301,0x1070b02,0x0d4ef6b,0x1283082,
  37198. 0x05ba5aa,0x0e51a5e,0x0120800 } },
  37199. /* 173 */
  37200. { { 0x1039042,0x191b955,0x13b65db,0x193f410,0x10e6978,0x1f60a18,
  37201. 0x174bd62,0x187a07f,0x1fe2045,0x1006080,0x16a4a0c,0x1ef5614,
  37202. 0x18e6868,0x130fd7f,0x1257477,0x044ca4d,0x127b7b1,0x1d0f100,
  37203. 0x0a97b45,0x07baf18,0x00898e6 },
  37204. { 0x0bba4ee,0x099ed11,0x15d2ed9,0x0fe92d4,0x1eff639,0x19535c9,
  37205. 0x0a7dc53,0x07e8126,0x11dfdd7,0x041245e,0x1286c68,0x1e5cd37,
  37206. 0x0762f33,0x1d17019,0x05df992,0x1ee8334,0x19375dd,0x05e2874,
  37207. 0x095af47,0x152f3e9,0x0095b87 } },
  37208. /* 174 */
  37209. { { 0x1c1f177,0x19b54b3,0x0f27a0d,0x10c0026,0x1b6d350,0x164d2d8,
  37210. 0x0ee49ba,0x0392849,0x0c27ef3,0x14e00d3,0x0d21c1e,0x174a245,
  37211. 0x05ad93b,0x0e8d64c,0x0e538aa,0x02eb73d,0x006d53f,0x0288e01,
  37212. 0x040b645,0x1d64a4a,0x00b1d13 },
  37213. { 0x15a1171,0x1edf5b3,0x0ac73f9,0x182d81a,0x1228295,0x1e44655,
  37214. 0x16d6815,0x19f1b64,0x0d300e9,0x1f54f4b,0x154badc,0x06fe4d2,
  37215. 0x1fb0e00,0x0f07cc6,0x0740d72,0x0901fd5,0x1b8d290,0x0c30724,
  37216. 0x00dacc6,0x1d2a258,0x0037a35 } },
  37217. /* 175 */
  37218. { { 0x100df48,0x194f747,0x0c13159,0x0c23590,0x189ca7b,0x1d4091d,
  37219. 0x15fe62c,0x1d492f4,0x1c21ca3,0x0218d8c,0x0cf39f8,0x1bd7c57,
  37220. 0x1945a73,0x16e3bc0,0x01b30ae,0x07be25f,0x1e4e5eb,0x02ff802,
  37221. 0x149f73c,0x0bbaf5b,0x005ef95 },
  37222. { 0x0ee402f,0x117fd00,0x0d33830,0x1476617,0x1b335e2,0x1e5880a,
  37223. 0x1474190,0x110a84a,0x13cd196,0x10c1fa2,0x1952d31,0x1e45e17,
  37224. 0x04c6664,0x061066f,0x1d33fb9,0x188eb4b,0x12f80a4,0x0ee554b,
  37225. 0x04447b6,0x15e400b,0x019cde4 } },
  37226. /* 176 */
  37227. { { 0x171f428,0x085e46b,0x0e0a7a7,0x13c8794,0x1ac1ecd,0x09d6781,
  37228. 0x19203ae,0x07f1abd,0x1065a2a,0x11197c0,0x0e29cc5,0x1f545e1,
  37229. 0x021fc04,0x012a3a5,0x037df9c,0x0bede95,0x1f23bb1,0x128d627,
  37230. 0x0254394,0x0436e7c,0x006b66e },
  37231. { 0x1a41dee,0x0c24033,0x0cfd672,0x1cf67c5,0x0cfa95a,0x0a2a709,
  37232. 0x00e1a24,0x148a9b3,0x1eefca6,0x06eedef,0x072dd7c,0x164823d,
  37233. 0x035f691,0x1f79046,0x0e79d9b,0x079ed53,0x00018b3,0x0f46f88,
  37234. 0x0705d2a,0x0ab593a,0x01c4b8a } },
  37235. /* 177 */
  37236. { { 0x04cccb8,0x1ac312e,0x0fbea67,0x125de9a,0x10bf520,0x17e43c3,
  37237. 0x195da27,0x0dc51e9,0x0da1420,0x11b37cb,0x0841f68,0x1400f8a,
  37238. 0x1090331,0x0a50787,0x03533ab,0x08f608f,0x0e2472a,0x0d944cf,
  37239. 0x1081d52,0x0ca69cc,0x0110ae9 },
  37240. { 0x0ed05b0,0x0eb2ae6,0x150cb30,0x1202eb2,0x0bac3f0,0x0bbe6bd,
  37241. 0x1c29239,0x0db75d6,0x140e98d,0x0580449,0x1493c61,0x0ca6c07,
  37242. 0x1d26983,0x12b90b9,0x051620c,0x083bcdc,0x1266111,0x00e9a45,
  37243. 0x1e89fcd,0x04afb9d,0x006be52 } },
  37244. /* 178 */
  37245. { { 0x147e655,0x1c799e4,0x1e56499,0x1411246,0x1f0fb76,0x011ce8f,
  37246. 0x19d15e4,0x19d65bf,0x03cdbb7,0x1043a49,0x1b5073a,0x1b720be,
  37247. 0x0821326,0x1cee2ac,0x06ba6b9,0x02e04b6,0x00ce9c3,0x070a29a,
  37248. 0x0b0e2a7,0x0058534,0x00c3075 },
  37249. { 0x156ace2,0x12788e0,0x14a4304,0x0ef3fe4,0x0c170fe,0x08b8d91,
  37250. 0x06a05b8,0x12ec1bf,0x155de27,0x0cde541,0x131e768,0x0fd4f8d,
  37251. 0x101ad92,0x0eb0fbb,0x1640448,0x00d7650,0x026261c,0x1ff4064,
  37252. 0x08990ae,0x01a6715,0x015e405 } },
  37253. /* 179 */
  37254. { { 0x0ad87bc,0x0bc14f5,0x12f724e,0x0f03d09,0x00ac936,0x0f27ef7,
  37255. 0x10935ab,0x0ad6af3,0x1690d7f,0x05cd5d2,0x1ec2e54,0x13a7a29,
  37256. 0x16f09b2,0x12d073d,0x1a13c8c,0x09fe7a0,0x1d3606f,0x1828a74,
  37257. 0x02b5cce,0x17ba4dd,0x0077e63 },
  37258. { 0x0d25c6d,0x0837670,0x173c2bf,0x1401745,0x1d90021,0x0dd9cc6,
  37259. 0x15dc231,0x1f83604,0x0198ff8,0x1bf836c,0x0b35a01,0x1fe36fc,
  37260. 0x1287d50,0x131d1ab,0x1d7815c,0x0b535de,0x092fa92,0x0df92bc,
  37261. 0x0e743a5,0x1a7be0e,0x0111847 } },
  37262. /* 180 */
  37263. { { 0x0c82924,0x1ce63ff,0x15a54aa,0x134e441,0x1c76dd6,0x1778710,
  37264. 0x09f7a81,0x0094c6a,0x0271839,0x19f28e1,0x001f22a,0x0bd4e2d,
  37265. 0x06f4db3,0x1a47892,0x0fb7829,0x0c12b1e,0x0444115,0x178a49b,
  37266. 0x1d2ce37,0x0b07a30,0x00f75f6 },
  37267. { 0x1927eb7,0x0c4f085,0x049e8e4,0x1385c5e,0x087c635,0x14b37a5,
  37268. 0x108cdff,0x10a16e5,0x0105e55,0x015c1c1,0x10e7e44,0x000dcb1,
  37269. 0x0963fee,0x0c8da99,0x014bb8e,0x1f2f67e,0x14ccbaf,0x03fadc2,
  37270. 0x1e01418,0x1cbed8b,0x016a935 } },
  37271. /* 181 */
  37272. { { 0x1d88d38,0x101aaef,0x1d03c66,0x078a93b,0x155cd8e,0x080370a,
  37273. 0x0a78c13,0x1cc644e,0x0fd0b0c,0x0b5b836,0x0ab4c7c,0x18126be,
  37274. 0x1ff156d,0x1bd1efc,0x031484f,0x0bf6b66,0x092a55e,0x14f94e6,
  37275. 0x0e16368,0x19fba85,0x0144a0e },
  37276. { 0x0658a92,0x08aefa9,0x185ad70,0x0f88502,0x1ce3ed1,0x0c9548d,
  37277. 0x17dc1ff,0x12d4ab2,0x19cd5d8,0x11e45fe,0x11cac59,0x087eb52,
  37278. 0x1d07763,0x1819f0d,0x19132a2,0x005f629,0x1861e5c,0x113d0e4,
  37279. 0x113fecc,0x01e5899,0x01b5ece } },
  37280. /* 182 */
  37281. { { 0x1211943,0x13dd598,0x09705c4,0x0cad086,0x04a8cac,0x0afe1f2,
  37282. 0x02e2361,0x14ba5fc,0x0ce91ee,0x1d5d586,0x11f4491,0x1b88f1d,
  37283. 0x1a5d23d,0x066cff7,0x061b79c,0x0aecd47,0x0678265,0x11963dc,
  37284. 0x1abb1fe,0x080317d,0x00873e5 },
  37285. { 0x18d17c1,0x1437959,0x103725b,0x18e3f40,0x1cbfbd0,0x024ce5c,
  37286. 0x0ade7e2,0x017c223,0x0f71ec8,0x0a3e2e7,0x025a487,0x17828d9,
  37287. 0x11acaa3,0x1e98b19,0x0487038,0x0ecb6bf,0x01ee768,0x018fd04,
  37288. 0x07bfc9c,0x15fabe8,0x00fed5d } },
  37289. /* 183 */
  37290. { { 0x0da1348,0x085cea6,0x04ea2bc,0x044b860,0x10769fd,0x0be115d,
  37291. 0x096c625,0x1888a15,0x1f5acf1,0x057eb63,0x1e00a57,0x02813fd,
  37292. 0x1dcf71a,0x17044fa,0x080a7d7,0x05751c2,0x0fb0fbd,0x04ba954,
  37293. 0x1dc32d6,0x044ebed,0x009061e },
  37294. { 0x1bda16a,0x125628f,0x0a8adc2,0x13e3bf4,0x19910e7,0x0a2fb7b,
  37295. 0x184cb66,0x1df7459,0x0eb4ba4,0x086acd7,0x0b54f51,0x136697e,
  37296. 0x086a8e0,0x131063d,0x0040813,0x18de8ec,0x03d0a53,0x131fc4a,
  37297. 0x1fabd5a,0x123a330,0x013214c } },
  37298. /* 184 */
  37299. { { 0x10d66c3,0x1d89024,0x0813953,0x1141b90,0x0aed732,0x1a14a6f,
  37300. 0x130e012,0x0cf7402,0x131ddc4,0x197d155,0x0bb444f,0x0bd5068,
  37301. 0x0e70ff5,0x1181a70,0x0369cbc,0x1c78363,0x1bebd8a,0x156e186,
  37302. 0x1a51680,0x17bede7,0x009c179 },
  37303. { 0x084c26f,0x09477ba,0x0ec51b2,0x03de55b,0x006b7db,0x0c6ed39,
  37304. 0x1d520fd,0x16c110f,0x04bc7ed,0x0f27106,0x12bf73f,0x043b2eb,
  37305. 0x00484d1,0x035f761,0x0d659c2,0x1b6cf8b,0x088a6d6,0x05abcd5,
  37306. 0x0461d22,0x0db0fc8,0x001522c } },
  37307. /* 185 */
  37308. { { 0x071d4ae,0x083abe2,0x09d82a2,0x0a8743b,0x1ef4b1a,0x1380d0f,
  37309. 0x0c609aa,0x1277125,0x059c65f,0x1a6a729,0x077cd6f,0x1253af1,
  37310. 0x12923af,0x05bce1f,0x12d1b18,0x1e26079,0x0e7cf4c,0x04aac16,
  37311. 0x15fc3b1,0x0103684,0x011c7da },
  37312. { 0x0eef274,0x03572cd,0x020fe4b,0x1e286f8,0x06c5bf4,0x1e4357f,
  37313. 0x0c08f84,0x0c154e9,0x02a2253,0x10ed673,0x027e974,0x057044b,
  37314. 0x0fb3d57,0x0fd3a58,0x128e45b,0x123527a,0x0dcb128,0x0f3b66c,
  37315. 0x07d33ef,0x12347eb,0x019aa03 } },
  37316. /* 186 */
  37317. { { 0x03fc3f1,0x1d34f10,0x08a4152,0x16c420d,0x09168cc,0x0afd4f8,
  37318. 0x01502ab,0x0df6103,0x0bff7ed,0x05c7907,0x052bf7b,0x0c317df,
  37319. 0x1b2c80a,0x1855e8e,0x1763282,0x014f9c4,0x041028e,0x13af33d,
  37320. 0x1ba56e6,0x0cc5bba,0x01b2dd7 },
  37321. { 0x089d7ee,0x1f93cf9,0x01721f7,0x13dd444,0x0d755d5,0x056d632,
  37322. 0x1f55306,0x0335d61,0x17ec010,0x1462367,0x15c290e,0x1cfd691,
  37323. 0x186fc90,0x0859cf7,0x1714f04,0x0b4412c,0x1cc3854,0x122abbb,
  37324. 0x1f7408f,0x0861eea,0x016ea33 } },
  37325. /* 187 */
  37326. { { 0x1f53d2c,0x19ca487,0x06e7ea7,0x0d60069,0x0dc9159,0x0cbcb3c,
  37327. 0x1405356,0x115e214,0x1a8a6b7,0x0eb96d5,0x05ec413,0x0a8116a,
  37328. 0x00ef5de,0x1369cdf,0x0ae42f2,0x0fee028,0x1e9eda1,0x0657551,
  37329. 0x1acc446,0x0d13ac0,0x016da01 },
  37330. { 0x06afff7,0x052b1fa,0x17cfa9b,0x14694bc,0x1945c7b,0x0cc7ec1,
  37331. 0x19322aa,0x0bd83ff,0x0b63f53,0x15300a3,0x1427950,0x1111a3e,
  37332. 0x1b50816,0x0fc6686,0x04636aa,0x0cee5a3,0x0bb78a3,0x13282f3,
  37333. 0x131b719,0x0075033,0x01ef4ab } },
  37334. /* 188 */
  37335. { { 0x176d986,0x04e8a69,0x16c0182,0x0f45b86,0x10f4e07,0x1f96436,
  37336. 0x1c2694f,0x1903822,0x1123c3f,0x17a5d22,0x15bf0bf,0x0b4e36c,
  37337. 0x1b852cd,0x0ff7d45,0x1f1d224,0x016ef6a,0x03e4811,0x0c7829c,
  37338. 0x0b1684a,0x0ba75aa,0x004c4b5 },
  37339. { 0x1827633,0x067f9f9,0x1a59444,0x0bc015f,0x086784d,0x16997d0,
  37340. 0x1e208fa,0x10d9670,0x02b91cd,0x0e7a68b,0x0d8e28f,0x14b1cde,
  37341. 0x02078b6,0x145bfea,0x1e4844b,0x107ce66,0x04dee56,0x1b4b202,
  37342. 0x038a10c,0x08421e5,0x01223b8 } },
  37343. /* 189 */
  37344. { { 0x1ebeb27,0x054d4e1,0x03e1b0a,0x0a7deb2,0x17bcdcb,0x173f9be,
  37345. 0x0b84536,0x193d114,0x0726ea7,0x19a9172,0x104e200,0x070d182,
  37346. 0x1599d50,0x10b10ab,0x0c6bb29,0x0c9b0b3,0x1ebfcc5,0x138cfe7,
  37347. 0x0bae38d,0x0ef5e23,0x00433a5 },
  37348. { 0x1eba922,0x1367037,0x1a4f0fc,0x1c8eb4a,0x1f6c83e,0x1f9bc72,
  37349. 0x19d00a2,0x1e2fef2,0x0bdc3f6,0x152f1b4,0x1642bb4,0x14154dd,
  37350. 0x153d034,0x0523e5e,0x070e931,0x0579076,0x06e4dce,0x1d27855,
  37351. 0x132803a,0x0f5e86e,0x01c097c } },
  37352. /* 190 */
  37353. { { 0x1c28de7,0x1b8bc3c,0x0c3000d,0x1557386,0x017aa2a,0x1e30f5b,
  37354. 0x060999a,0x0088610,0x14d78b5,0x05adae7,0x03f1cb8,0x0a5b30e,
  37355. 0x05d76a7,0x0a05bde,0x11a27d7,0x1a07476,0x06787f2,0x0d4bfec,
  37356. 0x158182a,0x0f6bddf,0x01c06ab },
  37357. { 0x1b71704,0x156d8ff,0x0ec7a67,0x16721fc,0x036e58b,0x078cd52,
  37358. 0x0e0b2ad,0x1b9dd95,0x0e0f3d9,0x12496fd,0x02b44b6,0x097adc4,
  37359. 0x022a0f5,0x1edde93,0x027e83d,0x1d6a95f,0x01ae8d2,0x06e6285,
  37360. 0x1df41d6,0x13f02dd,0x00b7979 } },
  37361. /* 191 */
  37362. { { 0x04f98cc,0x0323108,0x1aba7b1,0x04e55db,0x0511592,0x110c37a,
  37363. 0x0f741f9,0x16cf5d2,0x08d6d69,0x0be7013,0x0ea3cf4,0x0c11fa8,
  37364. 0x17b5347,0x1e055bc,0x1fc704d,0x1323bd0,0x1a8139f,0x11dfacb,
  37365. 0x151f835,0x0750b7c,0x008de29 },
  37366. { 0x0f668b1,0x156e9c7,0x1d90260,0x1ac2392,0x054e6b2,0x0ea131e,
  37367. 0x1ac4870,0x0e679ce,0x0eff64e,0x09a5947,0x0584a8c,0x135850e,
  37368. 0x14af71a,0x1d049ac,0x1222bca,0x011d063,0x112ba91,0x105b248,
  37369. 0x13d0df6,0x178b8ab,0x01138fe } },
  37370. /* 192 */
  37371. { { 0x0a2daa2,0x052c4e2,0x0231fa7,0x18801ec,0x18ea703,0x0ba8818,
  37372. 0x1416354,0x052df19,0x04abb6f,0x1249a39,0x05aad09,0x07c3285,
  37373. 0x1d0be55,0x1628b2b,0x1e4e63e,0x01d5135,0x0ec4f88,0x0f1196f,
  37374. 0x1ec786c,0x02ec3cc,0x01372f8 },
  37375. { 0x020f662,0x0a5e39d,0x1409440,0x1893db2,0x1fb7e77,0x15cb290,
  37376. 0x025bed8,0x0fd13ea,0x1a2e8d3,0x132ce33,0x105c38e,0x144cb00,
  37377. 0x140f2b2,0x0f6a851,0x1d3f39a,0x1801e2c,0x17efdc3,0x1d55229,
  37378. 0x13a6764,0x077fb49,0x0198f3c } },
  37379. /* 193 */
  37380. { { 0x1614189,0x0fae6c0,0x07deeac,0x0a4964b,0x07d56c4,0x1da0af6,
  37381. 0x092c917,0x1f38f75,0x07af6be,0x015e46e,0x123a08c,0x01c0e96,
  37382. 0x1f91b77,0x0db68d8,0x04cdb82,0x0192e94,0x157e668,0x0942e09,
  37383. 0x1f32d89,0x1970278,0x012d59b },
  37384. { 0x0019927,0x0c1da3e,0x156f76b,0x0ec61bf,0x010f266,0x102e91f,
  37385. 0x1b168c7,0x0c02bb7,0x0456ac4,0x15372fd,0x12b208a,0x0a52487,
  37386. 0x0946956,0x06e464f,0x07271fd,0x080cb8d,0x009e24a,0x1d6d93f,
  37387. 0x1904c06,0x0f469d5,0x01ccdfa } },
  37388. /* 194 */
  37389. { { 0x1cb1a7d,0x14326ac,0x03b85da,0x06d5df7,0x0d864ca,0x11586c2,
  37390. 0x0eb2c70,0x03a1dd0,0x1d980df,0x1405375,0x133b65f,0x1988ff2,
  37391. 0x15f582a,0x1d39608,0x073448c,0x0f76f45,0x0a8c710,0x0670951,
  37392. 0x1b6028c,0x1394ac9,0x0150022 },
  37393. { 0x11c180b,0x05d6a97,0x08425dd,0x11ae935,0x108be99,0x0de8dd6,
  37394. 0x122ad5b,0x1352f18,0x00afbea,0x169f1f2,0x1717f1b,0x12f62a7,
  37395. 0x108a8be,0x0df49f6,0x11fc256,0x0477b5b,0x1082cee,0x1469214,
  37396. 0x109ca77,0x0a478db,0x0016417 } },
  37397. /* 195 */
  37398. { { 0x014a31e,0x16678b6,0x10b5d3b,0x0965bc7,0x088e253,0x1621e1a,
  37399. 0x0d665f3,0x06df376,0x1916ac9,0x10822ce,0x1910010,0x18053ef,
  37400. 0x0371d15,0x022a9ac,0x071f049,0x148cf19,0x08dec94,0x0e64baa,
  37401. 0x059eeb6,0x0cf0306,0x014e4ca },
  37402. { 0x10312bf,0x1782ac6,0x19980ce,0x0aa82c3,0x1d1bf4f,0x00bc0ed,
  37403. 0x1169fe9,0x1aa4b32,0x000eef1,0x1a4a6d4,0x0ee340c,0x1d80f38,
  37404. 0x096c505,0x0e4fb73,0x0b86b78,0x01554e1,0x0c17683,0x0014478,
  37405. 0x18a8183,0x19fc774,0x000c7f4 } },
  37406. /* 196 */
  37407. { { 0x17d6006,0x1a23e82,0x02c0362,0x0dfae39,0x18b976e,0x07a07a9,
  37408. 0x180a6af,0x106bcef,0x0f103a7,0x1df71c3,0x1cb12c4,0x1840bc8,
  37409. 0x1420a6a,0x18fe58c,0x0c117d8,0x17e9287,0x19fc00a,0x0f2ee0e,
  37410. 0x1555ade,0x0178e14,0x01b528c },
  37411. { 0x08640b8,0x083f745,0x004aea7,0x07a1c68,0x0561102,0x1257449,
  37412. 0x1956ef8,0x19b8f9c,0x0fa579d,0x1ac7292,0x0eff978,0x0e2a6ef,
  37413. 0x0457ce2,0x1e04a3f,0x19471b0,0x0f04cc8,0x150f4a9,0x12fdec6,
  37414. 0x0b87056,0x1ba51fc,0x008d6fc } },
  37415. /* 197 */
  37416. { { 0x07202c8,0x0517b2e,0x0362d59,0x04b4a96,0x1d63405,0x1a7dfab,
  37417. 0x159c850,0x1470829,0x01d9830,0x08a10af,0x03ef860,0x11aabde,
  37418. 0x1fc7a75,0x137abfc,0x01773e3,0x0d3a6ae,0x056d922,0x1aeea4d,
  37419. 0x16d27e5,0x02baf57,0x00f18f0 },
  37420. { 0x0799ce6,0x188885a,0x1f6c1c4,0x1259796,0x15bbfb9,0x1d10f11,
  37421. 0x0327fde,0x1fd83e0,0x1b18f49,0x04eb489,0x1e566c0,0x12a3579,
  37422. 0x0e8da61,0x06a10a3,0x1a1c84c,0x047e21c,0x017ae5f,0x1aac194,
  37423. 0x0b9ce1a,0x0b76d13,0x0143c9b } },
  37424. /* 198 */
  37425. { { 0x0c74424,0x1946da4,0x0bad08c,0x03a3396,0x12616e1,0x0b710b9,
  37426. 0x064a903,0x0a5ca68,0x00cbdc7,0x0c1d4a6,0x0eec077,0x00a1ae6,
  37427. 0x005c623,0x0dbd229,0x0358c69,0x023919a,0x0259a40,0x0e66e05,
  37428. 0x11b9f35,0x022598c,0x01e622f },
  37429. { 0x01e4c4b,0x1714d1f,0x12291f5,0x113f62a,0x15f8253,0x09f18ce,
  37430. 0x016d53f,0x0ccfc6e,0x00a08b9,0x02672cd,0x0fa36e3,0x13cfb19,
  37431. 0x15bca74,0x17761eb,0x1125baa,0x0627b98,0x03a8a1a,0x00bee39,
  37432. 0x13ae4d8,0x1feef51,0x01a5250 } },
  37433. /* 199 */
  37434. { { 0x029bd79,0x103937f,0x0cd2956,0x009f321,0x0574a81,0x0ab4c1b,
  37435. 0x051b6ab,0x1ded20d,0x150d41f,0x12c055c,0x1dfd143,0x0a28dcd,
  37436. 0x0abc75b,0x1879b8c,0x03325ef,0x0810ea1,0x0a4a563,0x028dd16,
  37437. 0x1936244,0x0720efc,0x017275c },
  37438. { 0x17ca6bd,0x06657fb,0x17d7cdf,0x037b631,0x00a0df4,0x0f00fbf,
  37439. 0x13fe006,0x0573e8d,0x0aa65d7,0x1279ea2,0x198fa6f,0x1158dc6,
  37440. 0x0d7822d,0x1f7cedb,0x0dfe488,0x15354be,0x19dabe4,0x13f8569,
  37441. 0x1a7322e,0x0af8e1e,0x0098a0a } },
  37442. /* 200 */
  37443. { { 0x0fd5286,0x0867a00,0x00f3671,0x0ae5496,0x1ea5b9d,0x0d739f0,
  37444. 0x03e7814,0x049ebcc,0x0951b38,0x14da8a1,0x13599ff,0x05a13f6,
  37445. 0x16b034b,0x16e2842,0x14dea03,0x0045c96,0x0128cb0,0x134f708,
  37446. 0x09522bb,0x173cb8d,0x00ed7c8 },
  37447. { 0x133619b,0x003de6c,0x1865d18,0x1c573bf,0x0ce7668,0x1715170,
  37448. 0x1574f31,0x05f53dd,0x17eebf3,0x0d0a7af,0x113d90d,0x131acf9,
  37449. 0x0c75cb8,0x1c2860b,0x08617f1,0x1392d96,0x07645f7,0x004c3a5,
  37450. 0x1f6d1d1,0x11f15c4,0x0139746 } },
  37451. /* 201 */
  37452. { { 0x08684f6,0x13456e4,0x16ff177,0x16c334f,0x1c1edaa,0x1d0c7ab,
  37453. 0x05cd6c9,0x1d64b1a,0x18ecd89,0x13f3db2,0x07dfaac,0x138db0f,
  37454. 0x1b3d888,0x13eadf7,0x1f725b5,0x1ae7951,0x0ae37ba,0x1e426c3,
  37455. 0x1a395b5,0x1232ed9,0x01a4c7e },
  37456. { 0x119ffa6,0x0d2a031,0x0131400,0x18269d8,0x0cae64e,0x0092160,
  37457. 0x0a5b355,0x1dc3ed3,0x0bf2cae,0x0d12cf7,0x1ba0167,0x0f18517,
  37458. 0x0488e79,0x1c74487,0x1212fae,0x0ffb3d2,0x0d0fb22,0x0072923,
  37459. 0x09758c6,0x054a94c,0x01b78be } },
  37460. /* 202 */
  37461. { { 0x072f13a,0x1aaa57a,0x0472888,0x0eae67d,0x1ac993b,0x00b4517,
  37462. 0x1a7c25b,0x06a4d5f,0x14b1275,0x07f3b0e,0x01c329f,0x10e7cee,
  37463. 0x1684301,0x03f3e6f,0x0daaab7,0x05da8cd,0x1eaa156,0x06d16ea,
  37464. 0x07ebe36,0x145c007,0x0016a81 },
  37465. { 0x03de3bf,0x03ace27,0x022aa20,0x02a5e61,0x0c1e2e1,0x1f5d2d8,
  37466. 0x1b66aa9,0x195965b,0x19f9c11,0x032eaa9,0x1170653,0x1b0f61b,
  37467. 0x010ab9b,0x051fa5b,0x0be325b,0x0bf3fa6,0x1cc28cb,0x1a4c217,
  37468. 0x0438877,0x1c4f997,0x00f431a } },
  37469. /* 203 */
  37470. { { 0x00ccd0a,0x10506b5,0x1554eca,0x04b3276,0x03eeec8,0x1339535,
  37471. 0x01bf677,0x19f6269,0x00da05d,0x0ce28a4,0x061d363,0x089ace7,
  37472. 0x09c4aa4,0x114d1ae,0x13cd6cb,0x0fd5bb3,0x15f8917,0x0eb5ecd,
  37473. 0x0811c28,0x01eb3a5,0x01d69af },
  37474. { 0x07535fd,0x02263dd,0x1ce6cbe,0x1b5085f,0x05bd4c3,0x08cba5a,
  37475. 0x127b7a5,0x1d8bfc2,0x1fd4453,0x0c174cb,0x0df039a,0x00bbcd8,
  37476. 0x0aa63f7,0x0961f7b,0x0c3daa7,0x151ac13,0x1861776,0x05f6e9a,
  37477. 0x17846de,0x1148d5d,0x0176404 } },
  37478. /* 204 */
  37479. { { 0x1a251d1,0x03772a8,0x17f691f,0x041a4f3,0x1ef4bf1,0x08c5145,
  37480. 0x14e33b1,0x0dc985a,0x13880be,0x195bc43,0x06c82c6,0x1f1c37d,
  37481. 0x1ec69cc,0x1bcb50c,0x077fab8,0x17bd5c8,0x1c9fb50,0x012b3b7,
  37482. 0x0f86030,0x02b40a0,0x016a8b8 },
  37483. { 0x1f5ef65,0x042fb29,0x0414b28,0x12ef64a,0x01dfbbf,0x1a37f33,
  37484. 0x01f8e8c,0x1df11d5,0x01b95f7,0x0eefef7,0x17abb09,0x1cd2b6c,
  37485. 0x1b22074,0x0617011,0x01a6855,0x0776a23,0x17742e8,0x0c300da,
  37486. 0x0a1df9f,0x08ca59f,0x0015146 } },
  37487. /* 205 */
  37488. { { 0x1fa58f1,0x029e42b,0x19c0942,0x1099498,0x158a4e6,0x00fa06d,
  37489. 0x1b4286e,0x17a0f72,0x0558e8c,0x0328f08,0x0e233e9,0x08dc85c,
  37490. 0x081a640,0x0221b04,0x0c354e5,0x11fa0a3,0x1b3e26b,0x1615f9a,
  37491. 0x1c0b3f3,0x0f0e12a,0x00fd4ae },
  37492. { 0x153d498,0x0de14ef,0x1890f1e,0x1c226fe,0x0cf31c4,0x11e76fa,
  37493. 0x015b05e,0x0bb276d,0x06cd911,0x030898e,0x03376c9,0x08a7245,
  37494. 0x11ab30a,0x069015f,0x1dd5eda,0x10c25d2,0x07ce610,0x053336f,
  37495. 0x1d809ad,0x01fcca9,0x0051c20 } },
  37496. /* 206 */
  37497. { { 0x1a2b4b5,0x1081e58,0x05a3aa5,0x1d08781,0x18dccbf,0x17fdadc,
  37498. 0x01cb661,0x184d46e,0x0169d3a,0x1d03d79,0x0dc7c4b,0x1734ee2,
  37499. 0x0f8bb85,0x13e14cf,0x18434d3,0x05df9d5,0x069e237,0x09ea5ee,
  37500. 0x17615bc,0x1beebb1,0x0039378 },
  37501. { 0x07ff5d9,0x0817fef,0x0728c7a,0x0464b41,0x0e9a85d,0x0c97e68,
  37502. 0x04e9bd0,0x167ae37,0x115b076,0x0952b9b,0x047473d,0x150cdce,
  37503. 0x19d726a,0x1614940,0x186c77c,0x0bbcc16,0x15cc801,0x191272b,
  37504. 0x02de791,0x1127c23,0x01dc68e } },
  37505. /* 207 */
  37506. { { 0x1feda73,0x127fcb7,0x0062de4,0x0d41b44,0x0709f40,0x0ac26ff,
  37507. 0x083abe2,0x0806d1c,0x08355a0,0x04a8897,0x1df5f00,0x0a51fae,
  37508. 0x08259d4,0x15fc796,0x1125594,0x0623761,0x12844c5,0x0bfb18c,
  37509. 0x119b675,0x1a1c9f0,0x00d5698 },
  37510. { 0x15d204d,0x0b27d00,0x114f843,0x14dba21,0x1b626bf,0x14c64a3,
  37511. 0x0398e9d,0x0ac10ff,0x105337a,0x12d32a3,0x11e0bd4,0x0489beb,
  37512. 0x1f558e2,0x02afdd7,0x0a87906,0x0706091,0x18e47ee,0x1a47910,
  37513. 0x0e118f4,0x0472b22,0x004df25 } },
  37514. /* 208 */
  37515. { { 0x0695310,0x07eb4ec,0x03a9dbd,0x1efd0ed,0x028eb09,0x0a99547,
  37516. 0x0604b83,0x0f20738,0x0c572ac,0x0d33ba2,0x158a4f7,0x01c0f0b,
  37517. 0x121f980,0x1ed3b5d,0x1f8a968,0x0e42e57,0x190a2bc,0x13768ad,
  37518. 0x05e22a3,0x1cc37fa,0x004cd80 },
  37519. { 0x0730056,0x001b80b,0x150ee7d,0x1fb9da7,0x06f45fe,0x1283a12,
  37520. 0x1d8f06a,0x0e615fa,0x0ff92ae,0x0f2e329,0x0818fc8,0x061a376,
  37521. 0x006ef08,0x096912a,0x0c1bb30,0x0003830,0x13a1f15,0x0276ecd,
  37522. 0x0331509,0x164b718,0x01f4e4e } },
  37523. /* 209 */
  37524. { { 0x1db5c18,0x0d38a50,0x1d33b58,0x1cecee0,0x1454e61,0x1b42ef4,
  37525. 0x1ef95ef,0x1cbd2e1,0x1d2145b,0x10d8629,0x0697c88,0x1037dc9,
  37526. 0x03b9318,0x0a588e8,0x0e46be8,0x0426e01,0x0493ec2,0x1e3577f,
  37527. 0x098802b,0x0a9d28a,0x013c505 },
  37528. { 0x164c92e,0x022f3b9,0x03a350b,0x0ae6a43,0x0050026,0x09f9e2f,
  37529. 0x1680a13,0x0d7a503,0x0dbf764,0x097c212,0x1cc13cc,0x1e5490b,
  37530. 0x13e1a88,0x0893d28,0x0fd58c4,0x1c178b0,0x0c71a60,0x076bca8,
  37531. 0x0dedc29,0x0abc209,0x00c6928 } },
  37532. /* 210 */
  37533. { { 0x04614e7,0x10c2e32,0x1092341,0x1c8e934,0x0e906ca,0x03f2941,
  37534. 0x04ba896,0x19ab0a8,0x0d12857,0x1b1cc85,0x164ed4d,0x1ee174a,
  37535. 0x06770c7,0x0eae952,0x13db713,0x1437585,0x0563b69,0x12b26d2,
  37536. 0x01e2576,0x1efc283,0x01c8639 },
  37537. { 0x0589620,0x0b5817c,0x0150172,0x0683c88,0x0fe468a,0x15684e1,
  37538. 0x1684425,0x1dd7e45,0x09c652a,0x039e14c,0x186e3ef,0x1f16a8f,
  37539. 0x13cdef9,0x0bbedfb,0x1cde16a,0x0aa5ae0,0x1aa7e13,0x1854950,
  37540. 0x08e4f4f,0x0c22807,0x015b227 } },
  37541. /* 211 */
  37542. { { 0x1bfaf32,0x0d3d80f,0x1486269,0x017ccc3,0x1c5a62d,0x11da26a,
  37543. 0x03d7bd7,0x0c48f2e,0x1f43bbf,0x15000f6,0x0b9680f,0x050a4c1,
  37544. 0x0ca8e74,0x134be31,0x0267af4,0x0ec87d7,0x1e6751a,0x11b5001,
  37545. 0x081c969,0x0f18a37,0x00eaef1 },
  37546. { 0x1d51f28,0x1c74fcd,0x0112ab3,0x1750e24,0x19febbd,0x1e41b29,
  37547. 0x0b4e96f,0x11f0f01,0x110e6f0,0x0451a66,0x06ac390,0x1421048,
  37548. 0x018104c,0x0c53315,0x0f9c73a,0x091ad08,0x1142320,0x1cee742,
  37549. 0x13cf461,0x14477c3,0x01fa5cb } },
  37550. /* 212 */
  37551. { { 0x173a15c,0x064e914,0x07ccbfa,0x1ba852f,0x06fec8d,0x157d9f3,
  37552. 0x128e42d,0x044735e,0x0ab65ef,0x1d8f21b,0x17f36c2,0x003ccd8,
  37553. 0x0b8f262,0x0d7a438,0x1ffa28d,0x09c4879,0x06f2bb4,0x132d714,
  37554. 0x07745c8,0x1c5074a,0x0114da2 },
  37555. { 0x1e3d708,0x04d2b60,0x1e992a7,0x1e3961d,0x0fe62d3,0x143aa02,
  37556. 0x0a6125f,0x1f5e0e0,0x13cea46,0x1c5beb5,0x01898c4,0x069d071,
  37557. 0x0907806,0x18e1848,0x1a10a01,0x10c8e4f,0x1d7e583,0x1f857bc,
  37558. 0x08da899,0x10cb056,0x0104c1b } },
  37559. /* 213 */
  37560. { { 0x126c894,0x184f6d2,0x148ccbf,0x002958f,0x15abf12,0x0c949a4,
  37561. 0x13734f3,0x0ad6df2,0x092e6b5,0x1d57589,0x1b0c6ff,0x0dd4206,
  37562. 0x0e19379,0x183ff99,0x148df9d,0x0cf7153,0x10d829d,0x1eb2d2d,
  37563. 0x0ca4922,0x1b6aadb,0x01b348e },
  37564. { 0x0d46575,0x0fcd96f,0x0b3dbba,0x15ff4d3,0x096ca08,0x169be8a,
  37565. 0x0ce87c5,0x003ab5d,0x1789e5d,0x1283ed8,0x1f31152,0x1c53904,
  37566. 0x1705e2c,0x14b2733,0x0db9294,0x08de453,0x0ba4c0e,0x082b1d8,
  37567. 0x0f11921,0x1848909,0x00a3e75 } },
  37568. /* 214 */
  37569. { { 0x0f6615d,0x1a3b7e9,0x06a43f2,0x11b31b5,0x0b7f9b7,0x1ef883a,
  37570. 0x17c734a,0x063c5fb,0x09b956f,0x1ed1843,0x1bab7ca,0x05ef6b2,
  37571. 0x18f3cca,0x1aad929,0x1027e2c,0x08db723,0x0f3c6c8,0x12379fb,
  37572. 0x085190b,0x12731c5,0x01ff9bb },
  37573. { 0x17bd645,0x06a7ad0,0x1549446,0x17b7ada,0x17033ea,0x0684aba,
  37574. 0x01bf1cd,0x06a00fd,0x15f53c4,0x065032f,0x1f74666,0x137ffa4,
  37575. 0x0a9949d,0x14a968e,0x1138c11,0x02039bb,0x0fb81ac,0x1c2655a,
  37576. 0x095ac01,0x00f3f29,0x000346d } },
  37577. /* 215 */
  37578. { { 0x0bfdedd,0x1c727d3,0x1be657a,0x1cf4e98,0x193a285,0x04d1294,
  37579. 0x15344f4,0x0cf17ab,0x019a5f7,0x15085f3,0x0ecd03a,0x107c19d,
  37580. 0x03d3db0,0x0edfbd4,0x0ce9e2c,0x047c38c,0x03ec30f,0x093325e,
  37581. 0x1e820de,0x01f1e20,0x01c9663 },
  37582. { 0x0f86a80,0x065a5ef,0x06aeefd,0x107f04b,0x1fa4ec7,0x0a99640,
  37583. 0x1d81182,0x125497e,0x08b909e,0x0ddbd66,0x010581c,0x062e2f1,
  37584. 0x08ca1d7,0x050d5c9,0x1fc52fb,0x0ab4afe,0x16e5f84,0x0dff500,
  37585. 0x1c87a26,0x18ed737,0x002d7b8 } },
  37586. /* 216 */
  37587. { { 0x19f8e7d,0x102b1a5,0x02a11a1,0x0ec7f8b,0x001176b,0x176b451,
  37588. 0x169f8bf,0x121cf4b,0x0651831,0x033bb1f,0x1deb5b3,0x0205d26,
  37589. 0x017d7d0,0x1b81919,0x1f11c81,0x16a0b99,0x031534b,0x0ab9f70,
  37590. 0x1c689da,0x03df181,0x00f31bf },
  37591. { 0x0935667,0x1ae2586,0x0e2d8d7,0x120c1a5,0x14152c3,0x01d2ba3,
  37592. 0x0b0b8df,0x19bdff5,0x00b72e0,0x0afe626,0x18091ff,0x1373e9e,
  37593. 0x13b743f,0x1cf0b79,0x10b8d51,0x1df380b,0x0473074,0x1d111a6,
  37594. 0x056ab38,0x05e4f29,0x0124409 } },
  37595. /* 217 */
  37596. { { 0x10f9170,0x0bc28d9,0x16c56ff,0x126ff9c,0x115aa1e,0x021bdcb,
  37597. 0x157824a,0x0e79ffa,0x1c32f12,0x056692c,0x1878d22,0x19e4917,
  37598. 0x0b5a145,0x1d2de31,0x0d02181,0x0de8c74,0x1151815,0x1b14b75,
  37599. 0x1dd3870,0x1f5a324,0x01e7397 },
  37600. { 0x08225b5,0x1ccfa4e,0x1134d8b,0x128d6ef,0x13efce4,0x00f48d9,
  37601. 0x1d4c215,0x1268a3b,0x038f3d6,0x1e96c9a,0x1ed5382,0x05adce4,
  37602. 0x000b5de,0x1b116ca,0x164a709,0x1529685,0x12356f6,0x09b5673,
  37603. 0x132bc81,0x0319abf,0x004464a } },
  37604. /* 218 */
  37605. { { 0x1a95d63,0x10555d5,0x11b636f,0x02f6966,0x12780c6,0x06c0a14,
  37606. 0x1e18c38,0x098c861,0x0b56ef0,0x1adf015,0x18d8ce1,0x172af0b,
  37607. 0x04c28fe,0x009649f,0x1005e57,0x10547aa,0x1c1e36f,0x144ffa8,
  37608. 0x03babf5,0x11912a2,0x016b3c4 },
  37609. { 0x0f064be,0x03f5d6a,0x0a65e4a,0x0aa9d7b,0x1a77d55,0x1b93f50,
  37610. 0x17bc988,0x18c8ce8,0x189f366,0x088fac8,0x15baf6a,0x0b9b8b3,
  37611. 0x137e543,0x1a92690,0x0136ba9,0x1671a75,0x11c4395,0x0e3d8ee,
  37612. 0x0a08f12,0x07ce083,0x001cca1 } },
  37613. /* 219 */
  37614. { { 0x14d64b0,0x0c30643,0x18318e6,0x042ca79,0x1375b09,0x108cc31,
  37615. 0x00003aa,0x0ba2ce0,0x1621cd1,0x1633c84,0x1c37358,0x1bacefa,
  37616. 0x0dbe1d7,0x182dea6,0x1c3c9c0,0x11e61df,0x021362f,0x003b763,
  37617. 0x19116de,0x00902cf,0x01d8812 },
  37618. { 0x01f9758,0x04d070b,0x138a05d,0x1d4789f,0x060915f,0x0eec57f,
  37619. 0x1390644,0x013ea6f,0x079a51a,0x11b5456,0x173e3bf,0x0968594,
  37620. 0x1567fb5,0x12482bf,0x172b81f,0x096c837,0x0c5a424,0x1db8ff8,
  37621. 0x0d81960,0x0b4a6c9,0x0106481 } },
  37622. /* 220 */
  37623. { { 0x139cc39,0x14e1f77,0x1b45e31,0x09f4c6a,0x1830456,0x17dcc84,
  37624. 0x0d50904,0x14b7a78,0x179dbb2,0x0ea98e9,0x1d78f68,0x0311cfc,
  37625. 0x114865f,0x0580a3d,0x0b13888,0x135605b,0x1ca33d2,0x1facf28,
  37626. 0x1ec1d3b,0x09effc6,0x00f1c96 },
  37627. { 0x0301262,0x0605307,0x08b5c20,0x00a7214,0x1a45806,0x054814c,
  37628. 0x1fe6b32,0x185b4ce,0x114c0f1,0x1d7482b,0x1b67df7,0x1e2cdcc,
  37629. 0x043665f,0x03c2349,0x19b7631,0x060f990,0x18fc4cc,0x062d7f4,
  37630. 0x02fd439,0x0774c7c,0x003960e } },
  37631. /* 221 */
  37632. { { 0x19ecdb3,0x0289b4a,0x06f869e,0x0ff3d2b,0x089af61,0x106e441,
  37633. 0x0cae337,0x02aa28b,0x07c079e,0x1483858,0x089057f,0x09a6a1c,
  37634. 0x02f77f0,0x1ac6b6a,0x0adcdc8,0x0c53567,0x1b9ba7b,0x08a7ea0,
  37635. 0x1003f49,0x05b01ce,0x01937b3 },
  37636. { 0x147886f,0x006a6b8,0x072b976,0x02aed90,0x008ced6,0x138bddf,
  37637. 0x01a4990,0x043c29d,0x0abb4bd,0x0e6f8cc,0x00c22e7,0x0c8cca6,
  37638. 0x07658be,0x0cce8ce,0x1c64b6b,0x1624df7,0x1b3304a,0x0aad1e8,
  37639. 0x089378c,0x1e97cbf,0x000e943 } },
  37640. /* 222 */
  37641. { { 0x1e9ea48,0x1202c3f,0x121b150,0x0ac36ae,0x0f24f82,0x18cba05,
  37642. 0x104f1e1,0x09b3a58,0x170eb87,0x1d4df3c,0x0e8ea89,0x11c16c5,
  37643. 0x0c43fef,0x160df85,0x08fca18,0x061c214,0x0f34af1,0x1a8e13b,
  37644. 0x19573af,0x1a3d355,0x0185f6c },
  37645. { 0x0369093,0x17d3fa0,0x1828937,0x0cb0b03,0x11f1d9d,0x0976cf0,
  37646. 0x0fccf94,0x12d3201,0x1ed1208,0x1c5422c,0x0f0e66f,0x0abd16e,
  37647. 0x1e83245,0x07b7aa7,0x08c15a6,0x046aaa9,0x1a53c25,0x0954eb6,
  37648. 0x0824ecc,0x0df2085,0x016ae6a } },
  37649. /* 223 */
  37650. { { 0x12cdd35,0x091e48a,0x1bc6cb8,0x110c805,0x0e6e43a,0x072dead,
  37651. 0x1c37ee7,0x0291257,0x0758049,0x0565c25,0x0bbb0ad,0x0bffea0,
  37652. 0x0e8c7f5,0x1519f7a,0x029ee4e,0x0400339,0x157fd9d,0x1835881,
  37653. 0x0e8ef3a,0x033fe01,0x00273e3 },
  37654. { 0x1e360a3,0x017bbd5,0x129860b,0x095bfdf,0x17ef5c8,0x05b7e62,
  37655. 0x0329994,0x005349e,0x0aaf0b2,0x1a7c72b,0x1bc558f,0x1141449,
  37656. 0x135c850,0x0f522f8,0x1d8bf64,0x0db7db1,0x1a02803,0x1f96491,
  37657. 0x093440e,0x1949803,0x018a4a9 } },
  37658. /* 224 */
  37659. { { 0x048e339,0x1dbcc2a,0x05d8a8f,0x1e31473,0x1e8770c,0x148b866,
  37660. 0x15d35e9,0x15822c0,0x12b6067,0x1d82e2c,0x04e2ad2,0x1b61090,
  37661. 0x14de0d2,0x0484f3c,0x076ae49,0x02bee29,0x0b67903,0x041d19b,
  37662. 0x0cd6896,0x00e9b34,0x013ccd9 },
  37663. { 0x01b784d,0x0e2f056,0x0b87a0e,0x0ddca4f,0x0b65c8c,0x0447605,
  37664. 0x1851a87,0x0b1a790,0x046c1bf,0x100fbc8,0x0940a88,0x0c4e7fb,
  37665. 0x0571cec,0x112dc83,0x0fe23ac,0x1bf9bfe,0x098c556,0x0360f86,
  37666. 0x013e973,0x0445549,0x00acaa3 } },
  37667. /* 225 */
  37668. { { 0x1b4dfd6,0x1a5e1e4,0x0a4c5f9,0x07f1cec,0x05ba805,0x061a901,
  37669. 0x1701676,0x168060f,0x0b85a20,0x0481b66,0x1c4d647,0x1e14470,
  37670. 0x0ef2c63,0x054afda,0x0676763,0x18d8c35,0x1399850,0x01ebe27,
  37671. 0x00a659a,0x12d392d,0x0169162 },
  37672. { 0x163ee53,0x1e133e5,0x0d4df44,0x02ebd58,0x07b12e6,0x0d5fe53,
  37673. 0x0684464,0x13f666d,0x1ee1af6,0x168324e,0x10479d6,0x1e0023b,
  37674. 0x054d7a6,0x0dcfcbb,0x1c0c2e3,0x0266501,0x1a3f0ab,0x1510000,
  37675. 0x0763318,0x1931a47,0x0194e17 } },
  37676. /* 226 */
  37677. { { 0x18fe898,0x0c05a0e,0x14d1c83,0x0e64308,0x0d7a28b,0x190ba04,
  37678. 0x10e1413,0x15fe3e7,0x1166aa6,0x09c0e6a,0x1838d57,0x010998a,
  37679. 0x0d9cde6,0x0f30f16,0x0107c29,0x12a3596,0x0f5d9b4,0x031088b,
  37680. 0x1b8ab0b,0x1c2da6f,0x00c4509 },
  37681. { 0x06fd79e,0x1106216,0x0c3ae0a,0x1c75ef1,0x15b7ee4,0x0c0ce54,
  37682. 0x18f06eb,0x0d27b36,0x0985525,0x06b3a6f,0x06743c4,0x0965f38,
  37683. 0x0917de6,0x03e2f35,0x0feaebd,0x1b6df40,0x0ad2ce2,0x142c5e2,
  37684. 0x1f27463,0x0470143,0x00c976c } },
  37685. /* 227 */
  37686. { { 0x064f114,0x18f7c58,0x1d32445,0x0a9e5e1,0x03cb156,0x19315bc,
  37687. 0x161515e,0x0d860a4,0x10f3493,0x1463380,0x107fb51,0x05fd334,
  37688. 0x09ef26d,0x13fbfb5,0x168899e,0x1f837ed,0x0dba01b,0x012b1dc,
  37689. 0x0d03b50,0x06d90b8,0x000e14b },
  37690. { 0x1db67e6,0x1f13212,0x017d795,0x12fe5d2,0x05df4e8,0x1621344,
  37691. 0x1945009,0x126f065,0x03e8750,0x095f131,0x0e1a44c,0x17b078a,
  37692. 0x1d856b5,0x0ab9a7c,0x072b956,0x090c2b6,0x1e2d5aa,0x02d03df,
  37693. 0x1a2aed6,0x192de19,0x01d07a4 } },
  37694. /* 228 */
  37695. { { 0x03aa2e9,0x0a682a9,0x0181efd,0x19da7a1,0x08841e0,0x0dfdb4e,
  37696. 0x1db89fe,0x10aad07,0x0162bdf,0x0583fa2,0x0373277,0x10720f6,
  37697. 0x0e62d17,0x12bd29b,0x12ee2ad,0x0fa7945,0x0d27cf4,0x04c5cd0,
  37698. 0x1ba98dc,0x0a9ad0b,0x01f2ff1 },
  37699. { 0x0b232ac,0x1bb452b,0x0aad5a2,0x0c7e54a,0x0e8d6e3,0x1bfe302,
  37700. 0x1e85a20,0x12375d0,0x1d10a76,0x1e2c541,0x157efba,0x15e1f28,
  37701. 0x0ead5e4,0x1eb2a71,0x0835b0d,0x104aa34,0x0b9da7c,0x0c6207e,
  37702. 0x0366e4c,0x1679aec,0x00b26d7 } },
  37703. /* 229 */
  37704. { { 0x12eaf45,0x0861f5d,0x04bdec2,0x18c5ff7,0x0d24d91,0x1b791ef,
  37705. 0x0fa929c,0x1c77e54,0x16ff0fd,0x0dccf5e,0x040bd6d,0x0abb942,
  37706. 0x08bca2b,0x03f0195,0x080f360,0x02f51ec,0x048a8bf,0x0aa085a,
  37707. 0x077156c,0x0cc14fc,0x0109b86 },
  37708. { 0x0a2fbd8,0x058ed01,0x0296c52,0x167645d,0x1ed85e8,0x095a84f,
  37709. 0x083921c,0x02c26f1,0x0c6a3e5,0x02b00a4,0x0ed40da,0x04382c6,
  37710. 0x1171009,0x12a8938,0x049450c,0x0208f27,0x1d207d3,0x1bda498,
  37711. 0x150b82e,0x1ce4570,0x00ea623 } },
  37712. /* 230 */
  37713. { { 0x0972688,0x011e992,0x1d88212,0x04007ea,0x18b83c1,0x06a2942,
  37714. 0x19a41b4,0x0fc329a,0x02c6f74,0x010cac2,0x1b626a1,0x05d2028,
  37715. 0x02c8f8a,0x1a28dde,0x1b0779d,0x109f453,0x0b8f7f2,0x1fb115b,
  37716. 0x0dc7913,0x03b7d2f,0x006083f },
  37717. { 0x19dd56b,0x04999cc,0x17a6659,0x152f48f,0x0cfac0b,0x147d901,
  37718. 0x162baef,0x194ccc1,0x0f61d7b,0x1e14eec,0x1705351,0x0a3b0b5,
  37719. 0x1c6f5fb,0x07cfea0,0x16b1e21,0x07cd9cc,0x1d4ff51,0x10e734e,
  37720. 0x1f9674f,0x1cb23df,0x00231ac } },
  37721. /* 231 */
  37722. { { 0x1fda771,0x1d21c54,0x0038b99,0x190cc62,0x026f652,0x19f91db,
  37723. 0x0792384,0x03fbf63,0x0035d2d,0x0cfc479,0x0fa1e16,0x02251a2,
  37724. 0x071723a,0x1da8e70,0x02a8a4b,0x1750512,0x10ebbd9,0x072f9d3,
  37725. 0x1d1452d,0x104ce66,0x0155dde },
  37726. { 0x0f59a95,0x15bbf6b,0x108022c,0x0604040,0x13f853e,0x163bcbc,
  37727. 0x0ab07ae,0x0eca44a,0x1b56b66,0x166e5cc,0x0a9401b,0x13f32e4,
  37728. 0x104abdb,0x02715d6,0x0843cfc,0x1ba9a4c,0x0ff3034,0x08652d0,
  37729. 0x0b02e03,0x1b0101b,0x0041333 } },
  37730. /* 232 */
  37731. { { 0x1a85a06,0x083849a,0x0d13a14,0x0c85de3,0x0e166e7,0x1d9d36a,
  37732. 0x02dc681,0x0d50952,0x030329e,0x16eb600,0x1549675,0x14ca7aa,
  37733. 0x1e20c4b,0x17c5682,0x0ec9abd,0x1999bdc,0x1412ab4,0x01071ea,
  37734. 0x0501909,0x1312695,0x01bd797 },
  37735. { 0x00c7ff0,0x0e8c247,0x0d03ca8,0x192a876,0x1ae85ef,0x0e98c5d,
  37736. 0x0c6bbd4,0x14dd2c8,0x075878f,0x0e9f6a7,0x057d4b9,0x13b7851,
  37737. 0x1c4d2a2,0x0f88833,0x1c9e1dc,0x09dca75,0x1649e7f,0x13666f4,
  37738. 0x15b5d36,0x111b434,0x0192351 } },
  37739. /* 233 */
  37740. { { 0x1d310ed,0x1909001,0x0c46c20,0x1930f60,0x120ee8c,0x02ac546,
  37741. 0x0749a13,0x1913ca9,0x0b7167e,0x112f9e7,0x156ed57,0x09e897e,
  37742. 0x17acf11,0x030e480,0x07b71dc,0x0878103,0x0e6deb3,0x0bacd22,
  37743. 0x1326d7b,0x1f3efc0,0x007858d },
  37744. { 0x1f13222,0x03f5d9d,0x08453e9,0x1bd40fb,0x1e451dc,0x0c12178,
  37745. 0x1eb0f03,0x03c37d3,0x136eb87,0x192bea6,0x0c64364,0x0eb57d4,
  37746. 0x13f49e7,0x075f159,0x1b4647d,0x0012c80,0x13c0c11,0x033d562,
  37747. 0x0e06b1e,0x0b9f17a,0x01f4521 } },
  37748. /* 234 */
  37749. { { 0x0493b79,0x145477d,0x0ab0e1f,0x169d638,0x120e270,0x1911905,
  37750. 0x0fe827f,0x07b3e72,0x0a91c39,0x170dd57,0x0a36597,0x0c34271,
  37751. 0x04deda9,0x0bdea87,0x0ac8e32,0x191c0d3,0x08a2363,0x17fb46a,
  37752. 0x1931305,0x1c01cb9,0x0158af8 },
  37753. { 0x1c509a1,0x0e78367,0x01d5b33,0x1f84d98,0x00f411e,0x0e2bf83,
  37754. 0x17f5936,0x158da19,0x132e99c,0x0a8a429,0x1a5442a,0x167b171,
  37755. 0x1d58f9a,0x1886e1f,0x1a61c26,0x06a134f,0x03d75ef,0x1c1c842,
  37756. 0x0a4c4b1,0x1993a0b,0x01b628c } },
  37757. /* 235 */
  37758. { { 0x141463f,0x1a78071,0x1e80764,0x1c2a1b4,0x14c8a6c,0x04aa9f8,
  37759. 0x183f104,0x123b690,0x0a93f4a,0x11def2d,0x16019f0,0x0f0e59a,
  37760. 0x009f47c,0x0219ee4,0x0cc0152,0x054fa3a,0x1f975a3,0x08605f3,
  37761. 0x031d76a,0x0eefab1,0x012e08b },
  37762. { 0x1a10d37,0x0940bb0,0x16977f0,0x02b8a1e,0x0d7b618,0x03be307,
  37763. 0x0576de5,0x016515f,0x133c531,0x05515bb,0x06099e8,0x1570a62,
  37764. 0x1f905fa,0x15a0cac,0x03a6059,0x0ef09e8,0x05216b3,0x04e65a1,
  37765. 0x0619ab3,0x0baef8d,0x00c5683 } },
  37766. /* 236 */
  37767. { { 0x1450a66,0x18a6595,0x1053a75,0x18fb7fb,0x1318885,0x1350600,
  37768. 0x03616d1,0x14ccab5,0x15bdfc1,0x1510f4c,0x1e4b440,0x1931cce,
  37769. 0x177a0d7,0x1aa853c,0x006ed5e,0x1a66e54,0x0335d74,0x0a16231,
  37770. 0x036b525,0x09c3811,0x008b7be },
  37771. { 0x1812273,0x1d81fca,0x15fc61c,0x05dc7ee,0x0e26ed3,0x1310bd1,
  37772. 0x03ab9b6,0x09e58e2,0x0261d9f,0x1a85aba,0x0768b66,0x1f536f8,
  37773. 0x0743971,0x02542ef,0x113ee1f,0x026f645,0x051ec22,0x17b961a,
  37774. 0x1ee8649,0x0acd18e,0x0173134 } },
  37775. /* 237 */
  37776. { { 0x03ba183,0x1463d45,0x1e9cf8f,0x17fc713,0x0e8cebb,0x0dd307a,
  37777. 0x11a1c3e,0x1071d48,0x1cb601a,0x08bb71a,0x14b6d15,0x184c25c,
  37778. 0x11f90bd,0x07b895f,0x1e79166,0x0a99b2b,0x00fbea0,0x1cde990,
  37779. 0x157f502,0x0337edb,0x017a2cf },
  37780. { 0x0736feb,0x1b65133,0x18bdc73,0x13bcf9f,0x1de86f4,0x1482b1d,
  37781. 0x0f3a3f0,0x09f8c15,0x0726b6e,0x17451e7,0x048d6ea,0x088a7e5,
  37782. 0x1ed2382,0x1287fd2,0x0d55fd5,0x1ee8949,0x054113e,0x150a29f,
  37783. 0x1909b74,0x0ed4a67,0x01b07c6 } },
  37784. /* 238 */
  37785. { { 0x1d96872,0x101f91a,0x032bd79,0x187f4b7,0x0b1a23c,0x046e2fd,
  37786. 0x01c6fa6,0x17aa8b3,0x1d430c0,0x1974244,0x16730f8,0x13c0ec9,
  37787. 0x0d7ec26,0x1960620,0x08e084b,0x10769ee,0x183887b,0x096ca30,
  37788. 0x1c62904,0x1f4ce25,0x0010281 },
  37789. { 0x0858b37,0x00247b2,0x176600a,0x1e6afbc,0x00e149a,0x0f5d8c7,
  37790. 0x01e4586,0x1416443,0x19f2b0b,0x0810059,0x072eb88,0x15cc207,
  37791. 0x1d5a87e,0x1cabce8,0x1f7376c,0x0a2bc9d,0x0aa2788,0x10d9c47,
  37792. 0x0061e2a,0x0a58799,0x002c1a5 } },
  37793. /* 239 */
  37794. { { 0x0a723dc,0x1fa8007,0x08c5eb1,0x088562a,0x0a5f04f,0x042e430,
  37795. 0x05116fa,0x004c7a9,0x1ff1197,0x0fccc9f,0x1633a98,0x08b9898,
  37796. 0x16c3fba,0x1ce6b01,0x145479a,0x04777cd,0x11557b9,0x13ad1d5,
  37797. 0x1acbf51,0x00f8a59,0x01474ec },
  37798. { 0x188239d,0x11e9976,0x1a5311a,0x0d06b5c,0x0d1b8ae,0x1759738,
  37799. 0x18c967f,0x16be9fb,0x043bc0b,0x11dfb8e,0x0a9c148,0x016f1ec,
  37800. 0x053cd22,0x0ff3ccd,0x092183a,0x0ff2644,0x10324ab,0x1ec2ac3,
  37801. 0x1652562,0x1ee6616,0x010f8e0 } },
  37802. /* 240 */
  37803. { { 0x067d520,0x0e3dd9e,0x07b2bcd,0x1647f95,0x18f4958,0x1d54046,
  37804. 0x1c6522e,0x15c0ef1,0x02135e8,0x0c61867,0x03bfdd0,0x1353911,
  37805. 0x0bcdd8d,0x1b98a25,0x01d77c3,0x14a68e4,0x0954506,0x0daa4e4,
  37806. 0x1eedff1,0x0712f2b,0x011c4ef },
  37807. { 0x1f5e698,0x164d621,0x18e8ff8,0x19c714b,0x0e77fcb,0x04e170e,
  37808. 0x12438c2,0x002da0b,0x1ac1d58,0x13a79ff,0x0e74a96,0x0440703,
  37809. 0x0baeeda,0x1af9cb0,0x162c50f,0x1577db2,0x0510db7,0x032ffe8,
  37810. 0x0816dc6,0x0fcd00f,0x00ce8e9 } },
  37811. /* 241 */
  37812. { { 0x0e86a83,0x0f30dc6,0x0580894,0x1f7efce,0x0604159,0x1819bbc,
  37813. 0x1f75d23,0x085f824,0x1450522,0x1e5961b,0x1a826e1,0x01e9269,
  37814. 0x01bd495,0x0233ca2,0x11b100f,0x082d4a2,0x11023ba,0x0f456a3,
  37815. 0x1d8e3ac,0x1034c15,0x01b389b },
  37816. { 0x0150c69,0x0c9a774,0x12f39a6,0x11c4f82,0x14f7590,0x00ca7fb,
  37817. 0x0a245a8,0x0ecbb81,0x01bd51b,0x07a4e99,0x1e58c0e,0x00bc30e,
  37818. 0x086bc33,0x1e9da53,0x0bcfeff,0x1e313fc,0x177d7ca,0x18a04d9,
  37819. 0x0e3c426,0x1d42773,0x01b3029 } },
  37820. /* 242 */
  37821. { { 0x1a2fd88,0x09c6912,0x180fbde,0x199d740,0x090f2f7,0x136ffa4,
  37822. 0x072035e,0x10c987c,0x02883f9,0x063c79b,0x194c140,0x0b25331,
  37823. 0x13ed92b,0x192eee3,0x02a3c6c,0x0e11403,0x187d5d3,0x1b6ffec,
  37824. 0x147ca2e,0x06aa9e1,0x0059dcd },
  37825. { 0x1a74e7d,0x1720e91,0x17d85f1,0x1cbb665,0x14b61eb,0x1ffd05c,
  37826. 0x1fe9e79,0x01a785f,0x12ebb7a,0x19b315b,0x17e70d1,0x0bdc035,
  37827. 0x04a8641,0x0a33c93,0x00b0c99,0x138ae2a,0x1492fa0,0x10b4889,
  37828. 0x11d2421,0x1e69544,0x0195897 } },
  37829. /* 243 */
  37830. { { 0x1adc253,0x0e9acd5,0x0579211,0x198f2f9,0x0054b92,0x10c1097,
  37831. 0x0d6f668,0x04e4553,0x0a52b88,0x1dc052f,0x0719da6,0x0f1c5cc,
  37832. 0x13ea38e,0x04587c5,0x09d2c68,0x10a99f6,0x0e3db9d,0x1db5521,
  37833. 0x1804b5c,0x044a46a,0x01638ba },
  37834. { 0x1c8c576,0x00737ba,0x1749f3b,0x19c978f,0x0bb20e7,0x0c03935,
  37835. 0x08321a7,0x16e12b1,0x08a023e,0x0846335,0x042c56a,0x01d4ec2,
  37836. 0x06ca9f5,0x0c37b0d,0x0326650,0x0d3b0cd,0x0ed2a0a,0x1ceef91,
  37837. 0x0fe2843,0x1c312f7,0x01e0bfe } },
  37838. /* 244 */
  37839. { { 0x0319e4f,0x0340c24,0x1e809b6,0x0ab4b0d,0x0be6f6b,0x189932b,
  37840. 0x1621899,0x1f57deb,0x198529c,0x0129562,0x0a73eeb,0x0be2c56,
  37841. 0x0de7cc4,0x11531ac,0x0141826,0x158e1dc,0x0a42940,0x07be5ce,
  37842. 0x0216c7c,0x0955d95,0x01adfb4 },
  37843. { 0x198678e,0x1d49b73,0x10e19ad,0x0732a80,0x0a01e10,0x14305be,
  37844. 0x078de05,0x0afe492,0x1b745d8,0x17fea41,0x017b5bb,0x0c5148e,
  37845. 0x175dbb3,0x1952e87,0x15a3526,0x1fdc6af,0x09a2389,0x168d429,
  37846. 0x09ff5a1,0x184a923,0x01addbb } },
  37847. /* 245 */
  37848. { { 0x09686a3,0x05d104b,0x0fd7843,0x0bc780a,0x108b1c5,0x1a38811,
  37849. 0x0c4d09b,0x0702e25,0x1490330,0x1c8b2d8,0x0549ec7,0x002e5a0,
  37850. 0x0245b72,0x154d1a7,0x13d991e,0x06b90df,0x194b0be,0x128faa5,
  37851. 0x08578e0,0x16454ab,0x00e3fcc },
  37852. { 0x14dc0be,0x0f2762d,0x1712a9c,0x11b639a,0x1b13624,0x170803d,
  37853. 0x1fd0c11,0x147e6d7,0x1da9c99,0x134036b,0x06f1416,0x0ddd069,
  37854. 0x109cbfc,0x109f042,0x01c79cf,0x091824d,0x02767f4,0x0af3551,
  37855. 0x169eebe,0x0ef0f85,0x01b9ba7 } },
  37856. /* 246 */
  37857. { { 0x1a73375,0x12c7762,0x10e06af,0x1af5158,0x175df69,0x0541ad0,
  37858. 0x0542b3b,0x01e59e6,0x1f507d3,0x03d8304,0x0c1092e,0x14578c1,
  37859. 0x0c9ae53,0x0087c87,0x0c78609,0x1137692,0x10fadd6,0x122963e,
  37860. 0x1d8c6a3,0x0a69228,0x0013ab4 },
  37861. { 0x084f3af,0x0ec2b46,0x0cfabcb,0x043755c,0x029dc09,0x0b58384,
  37862. 0x0aa162e,0x02c8ca8,0x0e8a825,0x11306a0,0x14c8ad0,0x1b58b86,
  37863. 0x12b9e5e,0x1cf6d06,0x09e5580,0x1721579,0x1c6b962,0x1435e83,
  37864. 0x07b14c0,0x05b58f6,0x010a2e2 } },
  37865. /* 247 */
  37866. { { 0x19d8f0a,0x1e04e91,0x0085997,0x1957142,0x12b2e03,0x19a3bdc,
  37867. 0x05da005,0x009c86d,0x18e3616,0x19c76cf,0x0186faa,0x123b3d6,
  37868. 0x1079b00,0x1f422b3,0x1089950,0x145c19a,0x0c72fe1,0x1d07bbf,
  37869. 0x18280c3,0x0842c4e,0x00931d2 },
  37870. { 0x0646bc3,0x1c1a67c,0x1be7ea7,0x04815d2,0x1df94a5,0x08bbe8b,
  37871. 0x0e240de,0x19b2038,0x0ffeb66,0x0fe8322,0x0491967,0x05d8ef7,
  37872. 0x0f81aec,0x06cc0ea,0x1cedfcb,0x161265b,0x169f377,0x1e4de1f,
  37873. 0x1616762,0x1e69e7b,0x0125dae } },
  37874. /* 248 */
  37875. { { 0x0c123bc,0x0228dd1,0x0952b02,0x101031f,0x11e83a6,0x0abdc56,
  37876. 0x15c0a62,0x02cadba,0x0f0f12f,0x03f971a,0x1e85373,0x1866153,
  37877. 0x0c1f6a9,0x197f3c1,0x1268aee,0x0a9bbdf,0x097709f,0x1e98ce3,
  37878. 0x1918294,0x047197a,0x01dc0b8 },
  37879. { 0x0dfb6f6,0x09480a2,0x149bd92,0x08dc803,0x070d7cb,0x09bd6c1,
  37880. 0x0903921,0x1b234e1,0x170d8db,0x06b30da,0x03562e1,0x0475e2e,
  37881. 0x12ca272,0x11a270e,0x0d33c51,0x1c3f5dd,0x095ab9d,0x1912afe,
  37882. 0x0f717a9,0x1c2215b,0x01f8cd6 } },
  37883. /* 249 */
  37884. { { 0x0b8a0a7,0x1e35cbc,0x17a8a95,0x0dd067d,0x04b4aeb,0x089ff39,
  37885. 0x05f052f,0x1c93c8c,0x0fc2e8e,0x00c3444,0x11fbbf1,0x1493f62,
  37886. 0x1b8d398,0x1733167,0x1c647c4,0x145d9d3,0x089958b,0x0b0c391,
  37887. 0x02e3543,0x1a1e360,0x002dbd6 },
  37888. { 0x0c93cc9,0x07eff12,0x039e257,0x0173ce3,0x09ed778,0x1d7bf59,
  37889. 0x0e960e2,0x0d20391,0x04ddcbf,0x1129c3f,0x035aec0,0x017f430,
  37890. 0x0264b25,0x04a3e3e,0x1a39523,0x1e79ada,0x0329923,0x14153db,
  37891. 0x1440f34,0x006c265,0x000fb8f } },
  37892. /* 250 */
  37893. { { 0x0d9d494,0x059f846,0x07ce066,0x1329e9f,0x1b2065b,0x19c7d4c,
  37894. 0x08880f1,0x196ecc9,0x0d8d229,0x0cfa60a,0x1152cc6,0x0b898a3,
  37895. 0x12ddad7,0x0909d19,0x0cb382f,0x0f65f34,0x085888c,0x179d108,
  37896. 0x0c7fc82,0x1f46c4b,0x00d16de },
  37897. { 0x1a296eb,0x002a40c,0x0c4d138,0x0ba3522,0x1d94ff1,0x1522a78,
  37898. 0x0b4affa,0x0ffafbd,0x14d40bd,0x132d401,0x0692beb,0x08fc300,
  37899. 0x17604f1,0x12f06f3,0x0c123e6,0x0594130,0x0a5ff57,0x1d1d8ce,
  37900. 0x0087445,0x0fb74e3,0x00e0a23 } },
  37901. /* 251 */
  37902. { { 0x1630ee8,0x15fc248,0x0c07b6e,0x040bd6a,0x1e6589c,0x08fa3de,
  37903. 0x0acb681,0x1033efa,0x0212bbe,0x1554fcb,0x048492b,0x1abd285,
  37904. 0x1bdced3,0x1a21af2,0x07d6e27,0x1ecded2,0x0339411,0x10cb026,
  37905. 0x0d5bc36,0x1813948,0x00e6b7f },
  37906. { 0x14f811c,0x07209fb,0x176c4a5,0x03bf1b1,0x1a42d83,0x1a0c648,
  37907. 0x1c85e58,0x1d84fea,0x088ebcd,0x1ef290c,0x016f257,0x00ddd46,
  37908. 0x01fdd5e,0x163345b,0x0798222,0x030c3da,0x016eb81,0x0199d78,
  37909. 0x17773af,0x16325a2,0x01c95ec } },
  37910. /* 252 */
  37911. { { 0x0bde442,0x19bd1f0,0x1cfa49e,0x10cdef4,0x00543fe,0x0886177,
  37912. 0x074823b,0x065a61b,0x1a6617a,0x1bce1a0,0x173e2eb,0x10e1a3a,
  37913. 0x0be7367,0x11d5e7c,0x14373a7,0x0bcf605,0x0dd772b,0x0ff11e9,
  37914. 0x1ff1c31,0x19dd403,0x010b29f },
  37915. { 0x0d803ff,0x05726b1,0x1aa4c6f,0x1fb7860,0x13ee913,0x0083314,
  37916. 0x19eaf63,0x0b15e3b,0x0e7a6d6,0x042bc15,0x1d381b5,0x125c205,
  37917. 0x0691265,0x09b7d7f,0x08c49fc,0x0242723,0x0408837,0x0235c9a,
  37918. 0x0c7858d,0x1687014,0x00ba53b } },
  37919. /* 253 */
  37920. { { 0x05636b0,0x08bfe65,0x171d8b9,0x02d5742,0x0296e02,0x173d96a,
  37921. 0x1f5f084,0x108b551,0x15717ad,0x08be736,0x0bcd5e5,0x10b7316,
  37922. 0x1ce762b,0x0facd83,0x1e65ad7,0x1ede085,0x0bbf37e,0x0f9b995,
  37923. 0x150ad22,0x028bd48,0x015da5d },
  37924. { 0x07f6e3f,0x1e2af55,0x16f079d,0x0f54940,0x1f4d99a,0x0141139,
  37925. 0x1f5dd16,0x1f74ada,0x177b748,0x1844afd,0x07d7476,0x199c0c5,
  37926. 0x1b1c484,0x1acc01f,0x0c72428,0x171a1eb,0x1291720,0x121d627,
  37927. 0x0ab04fc,0x017fd0e,0x00e98c1 } },
  37928. /* 254 */
  37929. { { 0x06c4fd6,0x023c2e0,0x0e76747,0x0ba4b85,0x1f4b902,0x0c17925,
  37930. 0x17ac752,0x0560826,0x0ba4fef,0x159f6e1,0x181eace,0x073f31b,
  37931. 0x1d55a52,0x04b7a5b,0x1f126ac,0x1902bab,0x1603844,0x1e28514,
  37932. 0x159daca,0x0291a02,0x0047db1 },
  37933. { 0x0f3bad9,0x1ce6288,0x0753127,0x1804520,0x090888f,0x1da26fa,
  37934. 0x157af11,0x0d122f4,0x0f39f2b,0x05975e3,0x0658a88,0x075e09d,
  37935. 0x170c58e,0x0b9eead,0x0adf06d,0x1eed8a5,0x1d6a329,0x195aa56,
  37936. 0x0bd328e,0x15a3d70,0x010859d } },
  37937. /* 255 */
  37938. { { 0x182d1ad,0x0209450,0x111598b,0x1c4122d,0x1751796,0x140b23b,
  37939. 0x109cae9,0x1834ee0,0x0b92c85,0x164587d,0x0cb81fe,0x05bf5df,
  37940. 0x0d207ab,0x1c30d99,0x0d4c281,0x1a28b8e,0x16588ae,0x0b1edf6,
  37941. 0x094e927,0x179b941,0x00bd547 },
  37942. { 0x1056b51,0x09c17c3,0x044a9f0,0x16261f3,0x03d91ed,0x002da16,
  37943. 0x1791b4e,0x12bef8f,0x1fd31a9,0x0b080f5,0x1ee2a91,0x05699a7,
  37944. 0x0e1efd2,0x0f58bde,0x0e477de,0x01865fc,0x0c6616c,0x05a6a60,
  37945. 0x046fbbd,0x00477ce,0x011219f } },
  37946. };
  37947. /* Multiply the base point of P521 by the scalar and return the result.
  37948. * If map is true then convert result to affine coordinates.
  37949. *
  37950. * Stripe implementation.
  37951. * Pre-generated: 2^0, 2^65, ...
  37952. * Pre-generated: products of all combinations of above.
  37953. * 8 doubles and adds (with qz=1)
  37954. *
  37955. * r Resulting point.
  37956. * k Scalar to multiply by.
  37957. * map Indicates whether to convert result to affine.
  37958. * ct Constant time required.
  37959. * heap Heap to use for allocation.
  37960. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  37961. */
  37962. static int sp_521_ecc_mulmod_base_21(sp_point_521* r, const sp_digit* k,
  37963. int map, int ct, void* heap)
  37964. {
  37965. return sp_521_ecc_mulmod_stripe_21(r, &p521_base, p521_table,
  37966. k, map, ct, heap);
  37967. }
  37968. #endif
  37969. /* Multiply the base point of P521 by the scalar and return the result.
  37970. * If map is true then convert result to affine coordinates.
  37971. *
  37972. * km Scalar to multiply by.
  37973. * r Resulting point.
  37974. * map Indicates whether to convert result to affine.
  37975. * heap Heap to use for allocation.
  37976. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  37977. */
  37978. int sp_ecc_mulmod_base_521(const mp_int* km, ecc_point* r, int map, void* heap)
  37979. {
  37980. #ifdef WOLFSSL_SP_SMALL_STACK
  37981. sp_point_521* point = NULL;
  37982. sp_digit* k = NULL;
  37983. #else
  37984. sp_point_521 point[1];
  37985. sp_digit k[21];
  37986. #endif
  37987. int err = MP_OKAY;
  37988. #ifdef WOLFSSL_SP_SMALL_STACK
  37989. point = (sp_point_521*)XMALLOC(sizeof(sp_point_521), heap,
  37990. DYNAMIC_TYPE_ECC);
  37991. if (point == NULL)
  37992. err = MEMORY_E;
  37993. if (err == MP_OKAY) {
  37994. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21, heap,
  37995. DYNAMIC_TYPE_ECC);
  37996. if (k == NULL)
  37997. err = MEMORY_E;
  37998. }
  37999. #endif
  38000. if (err == MP_OKAY) {
  38001. sp_521_from_mp(k, 21, km);
  38002. err = sp_521_ecc_mulmod_base_21(point, k, map, 1, heap);
  38003. }
  38004. if (err == MP_OKAY) {
  38005. err = sp_521_point_to_ecc_point_21(point, r);
  38006. }
  38007. #ifdef WOLFSSL_SP_SMALL_STACK
  38008. if (k != NULL)
  38009. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  38010. if (point != NULL)
  38011. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  38012. #endif
  38013. return err;
  38014. }
  38015. /* Multiply the base point of P521 by the scalar, add point a and return
  38016. * the result. If map is true then convert result to affine coordinates.
  38017. *
  38018. * km Scalar to multiply by.
  38019. * am Point to add to scalar multiply result.
  38020. * inMont Point to add is in montgomery form.
  38021. * r Resulting point.
  38022. * map Indicates whether to convert result to affine.
  38023. * heap Heap to use for allocation.
  38024. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  38025. */
  38026. int sp_ecc_mulmod_base_add_521(const mp_int* km, const ecc_point* am,
  38027. int inMont, ecc_point* r, int map, void* heap)
  38028. {
  38029. #ifdef WOLFSSL_SP_SMALL_STACK
  38030. sp_point_521* point = NULL;
  38031. sp_digit* k = NULL;
  38032. #else
  38033. sp_point_521 point[2];
  38034. sp_digit k[21 + 21 * 2 * 6];
  38035. #endif
  38036. sp_point_521* addP = NULL;
  38037. sp_digit* tmp = NULL;
  38038. int err = MP_OKAY;
  38039. #ifdef WOLFSSL_SP_SMALL_STACK
  38040. point = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, heap,
  38041. DYNAMIC_TYPE_ECC);
  38042. if (point == NULL)
  38043. err = MEMORY_E;
  38044. if (err == MP_OKAY) {
  38045. k = (sp_digit*)XMALLOC(
  38046. sizeof(sp_digit) * (21 + 21 * 2 * 6),
  38047. heap, DYNAMIC_TYPE_ECC);
  38048. if (k == NULL)
  38049. err = MEMORY_E;
  38050. }
  38051. #endif
  38052. if (err == MP_OKAY) {
  38053. addP = point + 1;
  38054. tmp = k + 21;
  38055. sp_521_from_mp(k, 21, km);
  38056. sp_521_point_from_ecc_point_21(addP, am);
  38057. }
  38058. if ((err == MP_OKAY) && (!inMont)) {
  38059. err = sp_521_mod_mul_norm_21(addP->x, addP->x, p521_mod);
  38060. }
  38061. if ((err == MP_OKAY) && (!inMont)) {
  38062. err = sp_521_mod_mul_norm_21(addP->y, addP->y, p521_mod);
  38063. }
  38064. if ((err == MP_OKAY) && (!inMont)) {
  38065. err = sp_521_mod_mul_norm_21(addP->z, addP->z, p521_mod);
  38066. }
  38067. if (err == MP_OKAY) {
  38068. err = sp_521_ecc_mulmod_base_21(point, k, 0, 0, heap);
  38069. }
  38070. if (err == MP_OKAY) {
  38071. sp_521_proj_point_add_21(point, point, addP, tmp);
  38072. if (map) {
  38073. sp_521_map_21(point, point, tmp);
  38074. }
  38075. err = sp_521_point_to_ecc_point_21(point, r);
  38076. }
  38077. #ifdef WOLFSSL_SP_SMALL_STACK
  38078. if (k != NULL)
  38079. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  38080. if (point)
  38081. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  38082. #endif
  38083. return err;
  38084. }
  38085. #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
  38086. defined(HAVE_ECC_VERIFY)
  38087. #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN | HAVE_ECC_SIGN | HAVE_ECC_VERIFY */
  38088. /* Add 1 to a. (a = a + 1)
  38089. *
  38090. * r A single precision integer.
  38091. * a A single precision integer.
  38092. */
  38093. SP_NOINLINE static void sp_521_add_one_21(sp_digit* a)
  38094. {
  38095. a[0]++;
  38096. sp_521_norm_21(a);
  38097. }
  38098. /* Read big endian unsigned byte array into r.
  38099. *
  38100. * r A single precision integer.
  38101. * size Maximum number of bytes to convert
  38102. * a Byte array.
  38103. * n Number of bytes in array to read.
  38104. */
  38105. static void sp_521_from_bin(sp_digit* r, int size, const byte* a, int n)
  38106. {
  38107. int i;
  38108. int j = 0;
  38109. word32 s = 0;
  38110. r[0] = 0;
  38111. for (i = n-1; i >= 0; i--) {
  38112. r[j] |= (((sp_digit)a[i]) << s);
  38113. if (s >= 17U) {
  38114. r[j] &= 0x1ffffff;
  38115. s = 25U - s;
  38116. if (j + 1 >= size) {
  38117. break;
  38118. }
  38119. r[++j] = (sp_digit)a[i] >> s;
  38120. s = 8U - s;
  38121. }
  38122. else {
  38123. s += 8U;
  38124. }
  38125. }
  38126. for (j++; j < size; j++) {
  38127. r[j] = 0;
  38128. }
  38129. }
  38130. /* Generates a scalar that is in the range 1..order-1.
  38131. *
  38132. * rng Random number generator.
  38133. * k Scalar value.
  38134. * returns RNG failures, MEMORY_E when memory allocation fails and
  38135. * MP_OKAY on success.
  38136. */
  38137. static int sp_521_ecc_gen_k_21(WC_RNG* rng, sp_digit* k)
  38138. {
  38139. int err;
  38140. byte buf[66];
  38141. do {
  38142. err = wc_RNG_GenerateBlock(rng, buf, sizeof(buf));
  38143. if (err == 0) {
  38144. buf[0] &= 0x1;
  38145. sp_521_from_bin(k, 21, buf, (int)sizeof(buf));
  38146. if (sp_521_cmp_21(k, p521_order2) <= 0) {
  38147. sp_521_add_one_21(k);
  38148. break;
  38149. }
  38150. }
  38151. }
  38152. while (err == 0);
  38153. return err;
  38154. }
  38155. /* Makes a random EC key pair.
  38156. *
  38157. * rng Random number generator.
  38158. * priv Generated private value.
  38159. * pub Generated public point.
  38160. * heap Heap to use for allocation.
  38161. * returns ECC_INF_E when the point does not have the correct order, RNG
  38162. * failures, MEMORY_E when memory allocation fails and MP_OKAY on success.
  38163. */
  38164. int sp_ecc_make_key_521(WC_RNG* rng, mp_int* priv, ecc_point* pub, void* heap)
  38165. {
  38166. #ifdef WOLFSSL_SP_SMALL_STACK
  38167. sp_point_521* point = NULL;
  38168. sp_digit* k = NULL;
  38169. #else
  38170. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  38171. sp_point_521 point[2];
  38172. #else
  38173. sp_point_521 point[1];
  38174. #endif
  38175. sp_digit k[21];
  38176. #endif
  38177. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  38178. sp_point_521* infinity = NULL;
  38179. #endif
  38180. int err = MP_OKAY;
  38181. (void)heap;
  38182. #ifdef WOLFSSL_SP_SMALL_STACK
  38183. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  38184. point = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, heap, DYNAMIC_TYPE_ECC);
  38185. #else
  38186. point = (sp_point_521*)XMALLOC(sizeof(sp_point_521), heap, DYNAMIC_TYPE_ECC);
  38187. #endif
  38188. if (point == NULL)
  38189. err = MEMORY_E;
  38190. if (err == MP_OKAY) {
  38191. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21, heap,
  38192. DYNAMIC_TYPE_ECC);
  38193. if (k == NULL)
  38194. err = MEMORY_E;
  38195. }
  38196. #endif
  38197. if (err == MP_OKAY) {
  38198. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  38199. infinity = point + 1;
  38200. #endif
  38201. err = sp_521_ecc_gen_k_21(rng, k);
  38202. }
  38203. if (err == MP_OKAY) {
  38204. err = sp_521_ecc_mulmod_base_21(point, k, 1, 1, NULL);
  38205. }
  38206. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  38207. if (err == MP_OKAY) {
  38208. err = sp_521_ecc_mulmod_21(infinity, point, p521_order, 1, 1, NULL);
  38209. }
  38210. if (err == MP_OKAY) {
  38211. if (sp_521_iszero_21(point->x) || sp_521_iszero_21(point->y)) {
  38212. err = ECC_INF_E;
  38213. }
  38214. }
  38215. #endif
  38216. if (err == MP_OKAY) {
  38217. err = sp_521_to_mp(k, priv);
  38218. }
  38219. if (err == MP_OKAY) {
  38220. err = sp_521_point_to_ecc_point_21(point, pub);
  38221. }
  38222. #ifdef WOLFSSL_SP_SMALL_STACK
  38223. if (k != NULL)
  38224. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  38225. if (point != NULL) {
  38226. /* point is not sensitive, so no need to zeroize */
  38227. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  38228. }
  38229. #endif
  38230. return err;
  38231. }
  38232. #ifdef WOLFSSL_SP_NONBLOCK
  38233. typedef struct sp_ecc_key_gen_521_ctx {
  38234. int state;
  38235. sp_521_ecc_mulmod_21_ctx mulmod_ctx;
  38236. sp_digit k[21];
  38237. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  38238. sp_point_521 point[2];
  38239. #else
  38240. sp_point_521 point[1];
  38241. #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
  38242. } sp_ecc_key_gen_521_ctx;
  38243. int sp_ecc_make_key_521_nb(sp_ecc_ctx_t* sp_ctx, WC_RNG* rng, mp_int* priv,
  38244. ecc_point* pub, void* heap)
  38245. {
  38246. int err = FP_WOULDBLOCK;
  38247. sp_ecc_key_gen_521_ctx* ctx = (sp_ecc_key_gen_521_ctx*)sp_ctx->data;
  38248. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  38249. sp_point_521* infinity = ctx->point + 1;
  38250. #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
  38251. typedef char ctx_size_test[sizeof(sp_ecc_key_gen_521_ctx)
  38252. >= sizeof(*sp_ctx) ? -1 : 1];
  38253. (void)sizeof(ctx_size_test);
  38254. switch (ctx->state) {
  38255. case 0:
  38256. err = sp_521_ecc_gen_k_21(rng, ctx->k);
  38257. if (err == MP_OKAY) {
  38258. err = FP_WOULDBLOCK;
  38259. ctx->state = 1;
  38260. }
  38261. break;
  38262. case 1:
  38263. err = sp_521_ecc_mulmod_base_21_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
  38264. ctx->point, ctx->k, 1, 1, heap);
  38265. if (err == MP_OKAY) {
  38266. err = FP_WOULDBLOCK;
  38267. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  38268. XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
  38269. ctx->state = 2;
  38270. #else
  38271. ctx->state = 3;
  38272. #endif
  38273. }
  38274. break;
  38275. #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
  38276. case 2:
  38277. err = sp_521_ecc_mulmod_21_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
  38278. infinity, ctx->point, p521_order, 1, 1);
  38279. if (err == MP_OKAY) {
  38280. if (sp_521_iszero_21(ctx->point->x) ||
  38281. sp_521_iszero_21(ctx->point->y)) {
  38282. err = ECC_INF_E;
  38283. }
  38284. else {
  38285. err = FP_WOULDBLOCK;
  38286. ctx->state = 3;
  38287. }
  38288. }
  38289. break;
  38290. #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
  38291. case 3:
  38292. err = sp_521_to_mp(ctx->k, priv);
  38293. if (err == MP_OKAY) {
  38294. err = sp_521_point_to_ecc_point_21(ctx->point, pub);
  38295. }
  38296. break;
  38297. }
  38298. if (err != FP_WOULDBLOCK) {
  38299. XMEMSET(ctx, 0, sizeof(sp_ecc_key_gen_521_ctx));
  38300. }
  38301. return err;
  38302. }
  38303. #endif /* WOLFSSL_SP_NONBLOCK */
  38304. #ifdef HAVE_ECC_DHE
  38305. /* Write r as big endian to byte array.
  38306. * Fixed length number of bytes written: 66
  38307. *
  38308. * r A single precision integer.
  38309. * a Byte array.
  38310. */
  38311. static void sp_521_to_bin_21(sp_digit* r, byte* a)
  38312. {
  38313. int i;
  38314. int j;
  38315. int s = 0;
  38316. int b;
  38317. for (i=0; i<20; i++) {
  38318. r[i+1] += r[i] >> 25;
  38319. r[i] &= 0x1ffffff;
  38320. }
  38321. j = 528 / 8 - 1;
  38322. a[j] = 0;
  38323. for (i=0; i<21 && j>=0; i++) {
  38324. b = 0;
  38325. /* lint allow cast of mismatch sp_digit and int */
  38326. a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
  38327. b += 8 - s;
  38328. if (j < 0) {
  38329. break;
  38330. }
  38331. while (b < 25) {
  38332. a[j--] = (byte)(r[i] >> b);
  38333. b += 8;
  38334. if (j < 0) {
  38335. break;
  38336. }
  38337. }
  38338. s = 8 - (b - 25);
  38339. if (j >= 0) {
  38340. a[j] = 0;
  38341. }
  38342. if (s != 0) {
  38343. j++;
  38344. }
  38345. }
  38346. }
  38347. /* Multiply the point by the scalar and serialize the X ordinate.
  38348. * The number is 0 padded to maximum size on output.
  38349. *
  38350. * priv Scalar to multiply the point by.
  38351. * pub Point to multiply.
  38352. * out Buffer to hold X ordinate.
  38353. * outLen On entry, size of the buffer in bytes.
  38354. * On exit, length of data in buffer in bytes.
  38355. * heap Heap to use for allocation.
  38356. * returns BUFFER_E if the buffer is to small for output size,
  38357. * MEMORY_E when memory allocation fails and MP_OKAY on success.
  38358. */
  38359. int sp_ecc_secret_gen_521(const mp_int* priv, const ecc_point* pub, byte* out,
  38360. word32* outLen, void* heap)
  38361. {
  38362. #ifdef WOLFSSL_SP_SMALL_STACK
  38363. sp_point_521* point = NULL;
  38364. sp_digit* k = NULL;
  38365. #else
  38366. sp_point_521 point[1];
  38367. sp_digit k[21];
  38368. #endif
  38369. int err = MP_OKAY;
  38370. if (*outLen < 65U) {
  38371. err = BUFFER_E;
  38372. }
  38373. #ifdef WOLFSSL_SP_SMALL_STACK
  38374. if (err == MP_OKAY) {
  38375. point = (sp_point_521*)XMALLOC(sizeof(sp_point_521), heap,
  38376. DYNAMIC_TYPE_ECC);
  38377. if (point == NULL)
  38378. err = MEMORY_E;
  38379. }
  38380. if (err == MP_OKAY) {
  38381. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21, heap,
  38382. DYNAMIC_TYPE_ECC);
  38383. if (k == NULL)
  38384. err = MEMORY_E;
  38385. }
  38386. #endif
  38387. if (err == MP_OKAY) {
  38388. sp_521_from_mp(k, 21, priv);
  38389. sp_521_point_from_ecc_point_21(point, pub);
  38390. err = sp_521_ecc_mulmod_21(point, point, k, 1, 1, heap);
  38391. }
  38392. if (err == MP_OKAY) {
  38393. sp_521_to_bin_21(point->x, out);
  38394. *outLen = 66;
  38395. }
  38396. #ifdef WOLFSSL_SP_SMALL_STACK
  38397. if (k != NULL)
  38398. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  38399. if (point != NULL)
  38400. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  38401. #endif
  38402. return err;
  38403. }
  38404. #ifdef WOLFSSL_SP_NONBLOCK
  38405. typedef struct sp_ecc_sec_gen_521_ctx {
  38406. int state;
  38407. union {
  38408. sp_521_ecc_mulmod_21_ctx mulmod_ctx;
  38409. };
  38410. sp_digit k[21];
  38411. sp_point_521 point;
  38412. } sp_ecc_sec_gen_521_ctx;
  38413. int sp_ecc_secret_gen_521_nb(sp_ecc_ctx_t* sp_ctx, const mp_int* priv,
  38414. const ecc_point* pub, byte* out, word32* outLen, void* heap)
  38415. {
  38416. int err = FP_WOULDBLOCK;
  38417. sp_ecc_sec_gen_521_ctx* ctx = (sp_ecc_sec_gen_521_ctx*)sp_ctx->data;
  38418. typedef char ctx_size_test[sizeof(sp_ecc_sec_gen_521_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  38419. (void)sizeof(ctx_size_test);
  38420. if (*outLen < 32U) {
  38421. err = BUFFER_E;
  38422. }
  38423. switch (ctx->state) {
  38424. case 0:
  38425. sp_521_from_mp(ctx->k, 21, priv);
  38426. sp_521_point_from_ecc_point_21(&ctx->point, pub);
  38427. ctx->state = 1;
  38428. break;
  38429. case 1:
  38430. err = sp_521_ecc_mulmod_21_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
  38431. &ctx->point, &ctx->point, ctx->k, 1, 1, heap);
  38432. if (err == MP_OKAY) {
  38433. sp_521_to_bin_21(ctx->point.x, out);
  38434. *outLen = 66;
  38435. }
  38436. break;
  38437. }
  38438. if (err == MP_OKAY && ctx->state != 1) {
  38439. err = FP_WOULDBLOCK;
  38440. }
  38441. if (err != FP_WOULDBLOCK) {
  38442. XMEMSET(ctx, 0, sizeof(sp_ecc_sec_gen_521_ctx));
  38443. }
  38444. return err;
  38445. }
  38446. #endif /* WOLFSSL_SP_NONBLOCK */
  38447. #endif /* HAVE_ECC_DHE */
  38448. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  38449. SP_NOINLINE static void sp_521_rshift_21(sp_digit* r, const sp_digit* a,
  38450. byte n)
  38451. {
  38452. int i;
  38453. #ifdef WOLFSSL_SP_SMALL
  38454. for (i=0; i<20; i++) {
  38455. r[i] = ((a[i] >> n) | (a[i + 1] << (25 - n))) & 0x1ffffff;
  38456. }
  38457. #else
  38458. for (i=0; i<16; i += 8) {
  38459. r[i+0] = (a[i+0] >> n) | ((a[i+1] << (25 - n)) & 0x1ffffff);
  38460. r[i+1] = (a[i+1] >> n) | ((a[i+2] << (25 - n)) & 0x1ffffff);
  38461. r[i+2] = (a[i+2] >> n) | ((a[i+3] << (25 - n)) & 0x1ffffff);
  38462. r[i+3] = (a[i+3] >> n) | ((a[i+4] << (25 - n)) & 0x1ffffff);
  38463. r[i+4] = (a[i+4] >> n) | ((a[i+5] << (25 - n)) & 0x1ffffff);
  38464. r[i+5] = (a[i+5] >> n) | ((a[i+6] << (25 - n)) & 0x1ffffff);
  38465. r[i+6] = (a[i+6] >> n) | ((a[i+7] << (25 - n)) & 0x1ffffff);
  38466. r[i+7] = (a[i+7] >> n) | ((a[i+8] << (25 - n)) & 0x1ffffff);
  38467. }
  38468. r[16] = (a[16] >> n) | ((a[17] << (25 - n)) & 0x1ffffff);
  38469. r[17] = (a[17] >> n) | ((a[18] << (25 - n)) & 0x1ffffff);
  38470. r[18] = (a[18] >> n) | ((a[19] << (25 - n)) & 0x1ffffff);
  38471. r[19] = (a[19] >> n) | ((a[20] << (25 - n)) & 0x1ffffff);
  38472. #endif /* WOLFSSL_SP_SMALL */
  38473. r[20] = a[20] >> n;
  38474. }
  38475. #endif
  38476. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  38477. /* Multiply a by scalar b into r. (r = a * b)
  38478. *
  38479. * r A single precision integer.
  38480. * a A single precision integer.
  38481. * b A scalar.
  38482. */
  38483. SP_NOINLINE static void sp_521_mul_d_21(sp_digit* r, const sp_digit* a,
  38484. sp_digit b)
  38485. {
  38486. #ifdef WOLFSSL_SP_SMALL
  38487. sp_int64 tb = b;
  38488. sp_int64 t = 0;
  38489. int i;
  38490. for (i = 0; i < 21; i++) {
  38491. t += tb * a[i];
  38492. r[i] = (sp_digit)(t & 0x1ffffff);
  38493. t >>= 25;
  38494. }
  38495. r[21] = (sp_digit)t;
  38496. #else
  38497. sp_int64 tb = b;
  38498. sp_int64 t = 0;
  38499. sp_digit t2;
  38500. sp_int64 p[4];
  38501. int i;
  38502. for (i = 0; i < 20; i += 4) {
  38503. p[0] = tb * a[i + 0];
  38504. p[1] = tb * a[i + 1];
  38505. p[2] = tb * a[i + 2];
  38506. p[3] = tb * a[i + 3];
  38507. t += p[0];
  38508. t2 = (sp_digit)(t & 0x1ffffff);
  38509. t >>= 25;
  38510. r[i + 0] = (sp_digit)t2;
  38511. t += p[1];
  38512. t2 = (sp_digit)(t & 0x1ffffff);
  38513. t >>= 25;
  38514. r[i + 1] = (sp_digit)t2;
  38515. t += p[2];
  38516. t2 = (sp_digit)(t & 0x1ffffff);
  38517. t >>= 25;
  38518. r[i + 2] = (sp_digit)t2;
  38519. t += p[3];
  38520. t2 = (sp_digit)(t & 0x1ffffff);
  38521. t >>= 25;
  38522. r[i + 3] = (sp_digit)t2;
  38523. }
  38524. t += tb * a[20];
  38525. r[20] = (sp_digit)(t & 0x1ffffff);
  38526. t >>= 25;
  38527. r[21] = (sp_digit)(t & 0x1ffffff);
  38528. #endif /* WOLFSSL_SP_SMALL */
  38529. }
  38530. SP_NOINLINE static void sp_521_lshift_42(sp_digit* r, const sp_digit* a,
  38531. byte n)
  38532. {
  38533. #ifdef WOLFSSL_SP_SMALL
  38534. int i;
  38535. r[42] = a[41] >> (25 - n);
  38536. for (i=41; i>0; i--) {
  38537. r[i] = ((a[i] << n) | (a[i-1] >> (25 - n))) & 0x1ffffff;
  38538. }
  38539. #else
  38540. sp_int_digit s;
  38541. sp_int_digit t;
  38542. s = (sp_int_digit)a[41];
  38543. r[42] = s >> (25U - n);
  38544. s = (sp_int_digit)(a[41]); t = (sp_int_digit)(a[40]);
  38545. r[41] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38546. s = (sp_int_digit)(a[40]); t = (sp_int_digit)(a[39]);
  38547. r[40] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38548. s = (sp_int_digit)(a[39]); t = (sp_int_digit)(a[38]);
  38549. r[39] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38550. s = (sp_int_digit)(a[38]); t = (sp_int_digit)(a[37]);
  38551. r[38] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38552. s = (sp_int_digit)(a[37]); t = (sp_int_digit)(a[36]);
  38553. r[37] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38554. s = (sp_int_digit)(a[36]); t = (sp_int_digit)(a[35]);
  38555. r[36] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38556. s = (sp_int_digit)(a[35]); t = (sp_int_digit)(a[34]);
  38557. r[35] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38558. s = (sp_int_digit)(a[34]); t = (sp_int_digit)(a[33]);
  38559. r[34] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38560. s = (sp_int_digit)(a[33]); t = (sp_int_digit)(a[32]);
  38561. r[33] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38562. s = (sp_int_digit)(a[32]); t = (sp_int_digit)(a[31]);
  38563. r[32] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38564. s = (sp_int_digit)(a[31]); t = (sp_int_digit)(a[30]);
  38565. r[31] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38566. s = (sp_int_digit)(a[30]); t = (sp_int_digit)(a[29]);
  38567. r[30] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38568. s = (sp_int_digit)(a[29]); t = (sp_int_digit)(a[28]);
  38569. r[29] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38570. s = (sp_int_digit)(a[28]); t = (sp_int_digit)(a[27]);
  38571. r[28] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38572. s = (sp_int_digit)(a[27]); t = (sp_int_digit)(a[26]);
  38573. r[27] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38574. s = (sp_int_digit)(a[26]); t = (sp_int_digit)(a[25]);
  38575. r[26] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38576. s = (sp_int_digit)(a[25]); t = (sp_int_digit)(a[24]);
  38577. r[25] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38578. s = (sp_int_digit)(a[24]); t = (sp_int_digit)(a[23]);
  38579. r[24] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38580. s = (sp_int_digit)(a[23]); t = (sp_int_digit)(a[22]);
  38581. r[23] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38582. s = (sp_int_digit)(a[22]); t = (sp_int_digit)(a[21]);
  38583. r[22] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38584. s = (sp_int_digit)(a[21]); t = (sp_int_digit)(a[20]);
  38585. r[21] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38586. s = (sp_int_digit)(a[20]); t = (sp_int_digit)(a[19]);
  38587. r[20] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38588. s = (sp_int_digit)(a[19]); t = (sp_int_digit)(a[18]);
  38589. r[19] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38590. s = (sp_int_digit)(a[18]); t = (sp_int_digit)(a[17]);
  38591. r[18] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38592. s = (sp_int_digit)(a[17]); t = (sp_int_digit)(a[16]);
  38593. r[17] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38594. s = (sp_int_digit)(a[16]); t = (sp_int_digit)(a[15]);
  38595. r[16] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38596. s = (sp_int_digit)(a[15]); t = (sp_int_digit)(a[14]);
  38597. r[15] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38598. s = (sp_int_digit)(a[14]); t = (sp_int_digit)(a[13]);
  38599. r[14] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38600. s = (sp_int_digit)(a[13]); t = (sp_int_digit)(a[12]);
  38601. r[13] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38602. s = (sp_int_digit)(a[12]); t = (sp_int_digit)(a[11]);
  38603. r[12] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38604. s = (sp_int_digit)(a[11]); t = (sp_int_digit)(a[10]);
  38605. r[11] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38606. s = (sp_int_digit)(a[10]); t = (sp_int_digit)(a[9]);
  38607. r[10] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38608. s = (sp_int_digit)(a[9]); t = (sp_int_digit)(a[8]);
  38609. r[9] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38610. s = (sp_int_digit)(a[8]); t = (sp_int_digit)(a[7]);
  38611. r[8] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38612. s = (sp_int_digit)(a[7]); t = (sp_int_digit)(a[6]);
  38613. r[7] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38614. s = (sp_int_digit)(a[6]); t = (sp_int_digit)(a[5]);
  38615. r[6] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38616. s = (sp_int_digit)(a[5]); t = (sp_int_digit)(a[4]);
  38617. r[5] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38618. s = (sp_int_digit)(a[4]); t = (sp_int_digit)(a[3]);
  38619. r[4] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38620. s = (sp_int_digit)(a[3]); t = (sp_int_digit)(a[2]);
  38621. r[3] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38622. s = (sp_int_digit)(a[2]); t = (sp_int_digit)(a[1]);
  38623. r[2] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38624. s = (sp_int_digit)(a[1]); t = (sp_int_digit)(a[0]);
  38625. r[1] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
  38626. #endif /* WOLFSSL_SP_SMALL */
  38627. r[0] = (a[0] << n) & 0x1ffffff;
  38628. }
  38629. /* Divide d in a and put remainder into r (m*d + r = a)
  38630. * m is not calculated as it is not needed at this time.
  38631. *
  38632. * Simplified based on top word of divisor being (1 << 25) - 1
  38633. *
  38634. * a Number to be divided.
  38635. * d Number to divide with.
  38636. * m Multiplier result.
  38637. * r Remainder from the division.
  38638. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  38639. */
  38640. static int sp_521_div_21(const sp_digit* a, const sp_digit* d,
  38641. const sp_digit* m, sp_digit* r)
  38642. {
  38643. int i;
  38644. sp_digit r1;
  38645. sp_digit mask;
  38646. #ifdef WOLFSSL_SP_SMALL_STACK
  38647. sp_digit* t1 = NULL;
  38648. #else
  38649. sp_digit t1[4 * 21 + 3];
  38650. #endif
  38651. sp_digit* t2 = NULL;
  38652. sp_digit* sd = NULL;
  38653. int err = MP_OKAY;
  38654. (void)m;
  38655. #ifdef WOLFSSL_SP_SMALL_STACK
  38656. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 21 + 3), NULL,
  38657. DYNAMIC_TYPE_TMP_BUFFER);
  38658. if (t1 == NULL)
  38659. err = MEMORY_E;
  38660. #endif
  38661. (void)m;
  38662. if (err == MP_OKAY) {
  38663. t2 = t1 + 42 + 1;
  38664. sd = t2 + 21 + 1;
  38665. sp_521_mul_d_21(sd, d, (sp_digit)1 << 4);
  38666. sp_521_lshift_42(t1, a, 4);
  38667. t1[21 + 21] += t1[21 + 21 - 1] >> 25;
  38668. t1[21 + 21 - 1] &= 0x1ffffff;
  38669. for (i=20; i>=0; i--) {
  38670. r1 = t1[21 + i];
  38671. sp_521_mul_d_21(t2, sd, r1);
  38672. (void)sp_521_sub_21(&t1[i], &t1[i], t2);
  38673. t1[21 + i] -= t2[21];
  38674. sp_521_norm_21(&t1[i + 1]);
  38675. mask = ~((t1[21 + i] - 1) >> 31);
  38676. sp_521_cond_sub_21(t1 + i, t1 + i, sd, mask);
  38677. sp_521_norm_21(&t1[i + 1]);
  38678. }
  38679. sp_521_norm_21(t1);
  38680. sp_521_rshift_21(r, t1, 4);
  38681. }
  38682. #ifdef WOLFSSL_SP_SMALL_STACK
  38683. if (t1 != NULL)
  38684. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  38685. #endif
  38686. return err;
  38687. }
  38688. /* Reduce a modulo m into r. (r = a mod m)
  38689. *
  38690. * r A single precision number that is the reduced result.
  38691. * a A single precision number that is to be reduced.
  38692. * m A single precision number that is the modulus to reduce with.
  38693. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  38694. */
  38695. static int sp_521_mod_21(sp_digit* r, const sp_digit* a, const sp_digit* m)
  38696. {
  38697. return sp_521_div_21(a, m, NULL, r);
  38698. }
  38699. #endif
  38700. #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
  38701. /* Multiply two number mod the order of P521 curve. (r = a * b mod order)
  38702. *
  38703. * r Result of the multiplication.
  38704. * a First operand of the multiplication.
  38705. * b Second operand of the multiplication.
  38706. */
  38707. static void sp_521_mont_mul_order_21(sp_digit* r, const sp_digit* a, const sp_digit* b)
  38708. {
  38709. sp_521_mul_21(r, a, b);
  38710. sp_521_mont_reduce_order_21(r, p521_order, p521_mp_order);
  38711. }
  38712. #if defined(HAVE_ECC_SIGN) || (defined(HAVE_ECC_VERIFY) && defined(WOLFSSL_SP_SMALL))
  38713. #ifdef WOLFSSL_SP_SMALL
  38714. /* Order-2 for the P521 curve. */
  38715. static const uint32_t p521_order_minus_2[17] = {
  38716. 0x91386407U,0xbb6fb71eU,0x899c47aeU,0x3bb5c9b8U,0xf709a5d0U,0x7fcc0148U,
  38717. 0xbf2f966bU,0x51868783U,0xfffffffaU,0xffffffffU,0xffffffffU,0xffffffffU,
  38718. 0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0x000001ffU
  38719. };
  38720. #else
  38721. /* The low half of the order-2 of the P521 curve. */
  38722. static const uint32_t p521_order_low[9] = {
  38723. 0x91386407U,0xbb6fb71eU,0x899c47aeU,0x3bb5c9b8U,0xf709a5d0U,0x7fcc0148U,
  38724. 0xbf2f966bU,0x51868783U,0xfffffffaU
  38725. };
  38726. #endif /* WOLFSSL_SP_SMALL */
  38727. /* Square number mod the order of P521 curve. (r = a * a mod order)
  38728. *
  38729. * r Result of the squaring.
  38730. * a Number to square.
  38731. */
  38732. static void sp_521_mont_sqr_order_21(sp_digit* r, const sp_digit* a)
  38733. {
  38734. sp_521_sqr_21(r, a);
  38735. sp_521_mont_reduce_order_21(r, p521_order, p521_mp_order);
  38736. }
  38737. #ifndef WOLFSSL_SP_SMALL
  38738. /* Square number mod the order of P521 curve a number of times.
  38739. * (r = a ^ n mod order)
  38740. *
  38741. * r Result of the squaring.
  38742. * a Number to square.
  38743. */
  38744. static void sp_521_mont_sqr_n_order_21(sp_digit* r, const sp_digit* a, int n)
  38745. {
  38746. int i;
  38747. sp_521_mont_sqr_order_21(r, a);
  38748. for (i=1; i<n; i++) {
  38749. sp_521_mont_sqr_order_21(r, r);
  38750. }
  38751. }
  38752. #endif /* !WOLFSSL_SP_SMALL */
  38753. /* Invert the number, in Montgomery form, modulo the order of the P521 curve.
  38754. * (r = 1 / a mod order)
  38755. *
  38756. * r Inverse result.
  38757. * a Number to invert.
  38758. * td Temporary data.
  38759. */
  38760. #ifdef WOLFSSL_SP_NONBLOCK
  38761. typedef struct sp_521_mont_inv_order_21_ctx {
  38762. int state;
  38763. int i;
  38764. } sp_521_mont_inv_order_21_ctx;
  38765. static int sp_521_mont_inv_order_21_nb(sp_ecc_ctx_t* sp_ctx, sp_digit* r, const sp_digit* a,
  38766. sp_digit* t)
  38767. {
  38768. int err = FP_WOULDBLOCK;
  38769. sp_521_mont_inv_order_21_ctx* ctx = (sp_521_mont_inv_order_21_ctx*)sp_ctx;
  38770. typedef char ctx_size_test[sizeof(sp_521_mont_inv_order_21_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  38771. (void)sizeof(ctx_size_test);
  38772. switch (ctx->state) {
  38773. case 0:
  38774. XMEMCPY(t, a, sizeof(sp_digit) * 21);
  38775. ctx->i = 519;
  38776. ctx->state = 1;
  38777. break;
  38778. case 1:
  38779. sp_521_mont_sqr_order_21(t, t);
  38780. ctx->state = 2;
  38781. break;
  38782. case 2:
  38783. if ((p521_order_minus_2[ctx->i / 32] & ((sp_int_digit)1 << (ctx->i % 32))) != 0) {
  38784. sp_521_mont_mul_order_21(t, t, a);
  38785. }
  38786. ctx->i--;
  38787. ctx->state = (ctx->i == 0) ? 3 : 1;
  38788. break;
  38789. case 3:
  38790. XMEMCPY(r, t, sizeof(sp_digit) * 21U);
  38791. err = MP_OKAY;
  38792. break;
  38793. }
  38794. return err;
  38795. }
  38796. #endif /* WOLFSSL_SP_NONBLOCK */
  38797. static void sp_521_mont_inv_order_21(sp_digit* r, const sp_digit* a,
  38798. sp_digit* td)
  38799. {
  38800. #ifdef WOLFSSL_SP_SMALL
  38801. sp_digit* t = td;
  38802. int i;
  38803. XMEMCPY(t, a, sizeof(sp_digit) * 21);
  38804. for (i=519; i>=0; i--) {
  38805. sp_521_mont_sqr_order_21(t, t);
  38806. if ((p521_order_minus_2[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
  38807. sp_521_mont_mul_order_21(t, t, a);
  38808. }
  38809. }
  38810. XMEMCPY(r, t, sizeof(sp_digit) * 21U);
  38811. #else
  38812. sp_digit* t = td;
  38813. sp_digit* t2 = td + 2 * 21;
  38814. sp_digit* t3 = td + 4 * 21;
  38815. int i;
  38816. /* t = a^2 */
  38817. sp_521_mont_sqr_order_21(t, a);
  38818. /* t = a^3 = t * a */
  38819. sp_521_mont_mul_order_21(t, t, a);
  38820. /* t= a^c = t ^ 2 ^ 2 */
  38821. sp_521_mont_sqr_n_order_21(t2, t, 2);
  38822. /* t = a^f = t2 * t */
  38823. sp_521_mont_mul_order_21(t, t2, t);
  38824. /* t3 = a^1e */
  38825. sp_521_mont_sqr_order_21(t3, t);
  38826. /* t3 = a^1f = t3 * a */
  38827. sp_521_mont_mul_order_21(t3, t3, a);
  38828. /* t2= a^f0 = t ^ 2 ^ 4 */
  38829. sp_521_mont_sqr_n_order_21(t2, t, 4);
  38830. /* t = a^ff = t2 * t */
  38831. sp_521_mont_mul_order_21(t, t2, t);
  38832. /* t2= a^ff00 = t ^ 2 ^ 8 */
  38833. sp_521_mont_sqr_n_order_21(t2, t, 8);
  38834. /* t3= a^ffff = t2 * t */
  38835. sp_521_mont_mul_order_21(t, t2, t);
  38836. /* t2= a^ffff0000 = t ^ 2 ^ 16 */
  38837. sp_521_mont_sqr_n_order_21(t2, t, 16);
  38838. /* t = a^ffffffff = t2 * t */
  38839. sp_521_mont_mul_order_21(t, t2, t);
  38840. /* t2= a^ffffffff00000000 = t ^ 2 ^ 32 */
  38841. sp_521_mont_sqr_n_order_21(t2, t, 32);
  38842. /* t = a^ffffffffffffffff = t2 * t */
  38843. sp_521_mont_mul_order_21(t, t2, t);
  38844. /* t2= a^ffffffffffffffff0000000000000000 = t ^ 2 ^ 64 */
  38845. sp_521_mont_sqr_n_order_21(t2, t, 64);
  38846. /* t = a^ffffffffffffffffffffffffffffffff = t2 * t */
  38847. sp_521_mont_mul_order_21(t, t2, t);
  38848. /* t2= a^ffffffffffffffffffffffffffffffff00000000000000000000000000000000 = t ^ 2 ^ 128 */
  38849. sp_521_mont_sqr_n_order_21(t2, t, 128);
  38850. /* t = a^ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff = t2 * t */
  38851. sp_521_mont_mul_order_21(t, t2, t);
  38852. /* t2 = a^1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0 */
  38853. sp_521_mont_sqr_n_order_21(t2, t, 5);
  38854. /* t2 = a^1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff = t * t3 */
  38855. sp_521_mont_mul_order_21(t2, t2, t3);
  38856. for (i=259; i>=1; i--) {
  38857. sp_521_mont_sqr_order_21(t2, t2);
  38858. if ((p521_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
  38859. sp_521_mont_mul_order_21(t2, t2, a);
  38860. }
  38861. }
  38862. sp_521_mont_sqr_order_21(t2, t2);
  38863. sp_521_mont_mul_order_21(r, t2, a);
  38864. #endif /* WOLFSSL_SP_SMALL */
  38865. }
  38866. #endif /* HAVE_ECC_SIGN || (HAVE_ECC_VERIFY && WOLFSSL_SP_SMALL) */
  38867. #endif /* HAVE_ECC_SIGN | HAVE_ECC_VERIFY */
  38868. #ifdef HAVE_ECC_SIGN
  38869. #ifndef SP_ECC_MAX_SIG_GEN
  38870. #define SP_ECC_MAX_SIG_GEN 64
  38871. #endif
  38872. /* Calculate second signature value S from R, k and private value.
  38873. *
  38874. * s = (r * x + e) / k
  38875. *
  38876. * s Signature value.
  38877. * r First signature value.
  38878. * k Ephemeral private key.
  38879. * x Private key as a number.
  38880. * e Hash of message as a number.
  38881. * tmp Temporary storage for intermediate numbers.
  38882. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  38883. */
  38884. static int sp_521_calc_s_21(sp_digit* s, const sp_digit* r, sp_digit* k,
  38885. sp_digit* x, const sp_digit* e, sp_digit* tmp)
  38886. {
  38887. int err;
  38888. sp_digit carry;
  38889. sp_int32 c;
  38890. sp_digit* kInv = k;
  38891. /* Conv k to Montgomery form (mod order) */
  38892. sp_521_mul_21(k, k, p521_norm_order);
  38893. err = sp_521_mod_21(k, k, p521_order);
  38894. if (err == MP_OKAY) {
  38895. sp_521_norm_21(k);
  38896. /* kInv = 1/k mod order */
  38897. sp_521_mont_inv_order_21(kInv, k, tmp);
  38898. sp_521_norm_21(kInv);
  38899. /* s = r * x + e */
  38900. sp_521_mul_21(x, x, r);
  38901. err = sp_521_mod_21(x, x, p521_order);
  38902. }
  38903. if (err == MP_OKAY) {
  38904. sp_521_norm_21(x);
  38905. carry = sp_521_add_21(s, e, x);
  38906. sp_521_cond_sub_21(s, s, p521_order, 0 - carry);
  38907. sp_521_norm_21(s);
  38908. c = sp_521_cmp_21(s, p521_order);
  38909. sp_521_cond_sub_21(s, s, p521_order,
  38910. (sp_digit)0 - (sp_digit)(c >= 0));
  38911. sp_521_norm_21(s);
  38912. /* s = s * k^-1 mod order */
  38913. sp_521_mont_mul_order_21(s, s, kInv);
  38914. sp_521_norm_21(s);
  38915. }
  38916. return err;
  38917. }
  38918. /* Sign the hash using the private key.
  38919. * e = [hash, 521 bits] from binary
  38920. * r = (k.G)->x mod order
  38921. * s = (r * x + e) / k mod order
  38922. * The hash is truncated to the first 521 bits.
  38923. *
  38924. * hash Hash to sign.
  38925. * hashLen Length of the hash data.
  38926. * rng Random number generator.
  38927. * priv Private part of key - scalar.
  38928. * rm First part of result as an mp_int.
  38929. * sm Sirst part of result as an mp_int.
  38930. * heap Heap to use for allocation.
  38931. * returns RNG failures, MEMORY_E when memory allocation fails and
  38932. * MP_OKAY on success.
  38933. */
  38934. int sp_ecc_sign_521(const byte* hash, word32 hashLen, WC_RNG* rng,
  38935. const mp_int* priv, mp_int* rm, mp_int* sm, mp_int* km, void* heap)
  38936. {
  38937. #ifdef WOLFSSL_SP_SMALL_STACK
  38938. sp_digit* e = NULL;
  38939. sp_point_521* point = NULL;
  38940. #else
  38941. sp_digit e[7 * 2 * 21];
  38942. sp_point_521 point[1];
  38943. #endif
  38944. sp_digit* x = NULL;
  38945. sp_digit* k = NULL;
  38946. sp_digit* r = NULL;
  38947. sp_digit* tmp = NULL;
  38948. sp_digit* s = NULL;
  38949. sp_int32 c;
  38950. int err = MP_OKAY;
  38951. int i;
  38952. (void)heap;
  38953. #ifdef WOLFSSL_SP_SMALL_STACK
  38954. if (err == MP_OKAY) {
  38955. point = (sp_point_521*)XMALLOC(sizeof(sp_point_521), heap,
  38956. DYNAMIC_TYPE_ECC);
  38957. if (point == NULL)
  38958. err = MEMORY_E;
  38959. }
  38960. if (err == MP_OKAY) {
  38961. e = (sp_digit*)XMALLOC(sizeof(sp_digit) * 7 * 2 * 21, heap,
  38962. DYNAMIC_TYPE_ECC);
  38963. if (e == NULL)
  38964. err = MEMORY_E;
  38965. }
  38966. #endif
  38967. if (err == MP_OKAY) {
  38968. x = e + 2 * 21;
  38969. k = e + 4 * 21;
  38970. r = e + 6 * 21;
  38971. tmp = e + 8 * 21;
  38972. s = e;
  38973. if (hashLen > 66U) {
  38974. hashLen = 66U;
  38975. }
  38976. }
  38977. for (i = SP_ECC_MAX_SIG_GEN; err == MP_OKAY && i > 0; i--) {
  38978. /* New random point. */
  38979. if (km == NULL || mp_iszero(km)) {
  38980. err = sp_521_ecc_gen_k_21(rng, k);
  38981. }
  38982. else {
  38983. sp_521_from_mp(k, 21, km);
  38984. mp_zero(km);
  38985. }
  38986. if (err == MP_OKAY) {
  38987. err = sp_521_ecc_mulmod_base_21(point, k, 1, 1, heap);
  38988. }
  38989. if (err == MP_OKAY) {
  38990. /* r = point->x mod order */
  38991. XMEMCPY(r, point->x, sizeof(sp_digit) * 21U);
  38992. sp_521_norm_21(r);
  38993. c = sp_521_cmp_21(r, p521_order);
  38994. sp_521_cond_sub_21(r, r, p521_order,
  38995. (sp_digit)0 - (sp_digit)(c >= 0));
  38996. sp_521_norm_21(r);
  38997. if (!sp_521_iszero_21(r)) {
  38998. /* x is modified in calculation of s. */
  38999. sp_521_from_mp(x, 21, priv);
  39000. /* s ptr == e ptr, e is modified in calculation of s. */
  39001. sp_521_from_bin(e, 21, hash, (int)hashLen);
  39002. /* Take 521 leftmost bits of hash. */
  39003. if (hashLen == 66U) {
  39004. sp_521_rshift_21(e, e, 7);
  39005. e[20] |= ((sp_digit)hash[0]) << 13;
  39006. }
  39007. err = sp_521_calc_s_21(s, r, k, x, e, tmp);
  39008. /* Check that signature is usable. */
  39009. if ((err == MP_OKAY) && (!sp_521_iszero_21(s))) {
  39010. break;
  39011. }
  39012. }
  39013. }
  39014. #ifdef WOLFSSL_ECDSA_SET_K_ONE_LOOP
  39015. i = 1;
  39016. #endif
  39017. }
  39018. if (i == 0) {
  39019. err = RNG_FAILURE_E;
  39020. }
  39021. if (err == MP_OKAY) {
  39022. err = sp_521_to_mp(r, rm);
  39023. }
  39024. if (err == MP_OKAY) {
  39025. err = sp_521_to_mp(s, sm);
  39026. }
  39027. #ifdef WOLFSSL_SP_SMALL_STACK
  39028. if (e != NULL)
  39029. #endif
  39030. {
  39031. ForceZero(e, sizeof(sp_digit) * 7 * 2 * 21);
  39032. #ifdef WOLFSSL_SP_SMALL_STACK
  39033. XFREE(e, heap, DYNAMIC_TYPE_ECC);
  39034. #endif
  39035. }
  39036. #ifdef WOLFSSL_SP_SMALL_STACK
  39037. if (point != NULL)
  39038. #endif
  39039. {
  39040. ForceZero(point, sizeof(sp_point_521));
  39041. #ifdef WOLFSSL_SP_SMALL_STACK
  39042. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  39043. #endif
  39044. }
  39045. return err;
  39046. }
  39047. #ifdef WOLFSSL_SP_NONBLOCK
  39048. typedef struct sp_ecc_sign_521_ctx {
  39049. int state;
  39050. union {
  39051. sp_521_ecc_mulmod_21_ctx mulmod_ctx;
  39052. sp_521_mont_inv_order_21_ctx mont_inv_order_ctx;
  39053. };
  39054. sp_digit e[2*21];
  39055. sp_digit x[2*21];
  39056. sp_digit k[2*21];
  39057. sp_digit r[2*21];
  39058. sp_digit tmp[3 * 2*21];
  39059. sp_point_521 point;
  39060. sp_digit* s;
  39061. sp_digit* kInv;
  39062. int i;
  39063. } sp_ecc_sign_521_ctx;
  39064. int sp_ecc_sign_521_nb(sp_ecc_ctx_t* sp_ctx, const byte* hash, word32 hashLen, WC_RNG* rng,
  39065. mp_int* priv, mp_int* rm, mp_int* sm, mp_int* km, void* heap)
  39066. {
  39067. int err = FP_WOULDBLOCK;
  39068. sp_ecc_sign_521_ctx* ctx = (sp_ecc_sign_521_ctx*)sp_ctx->data;
  39069. typedef char ctx_size_test[sizeof(sp_ecc_sign_521_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  39070. (void)sizeof(ctx_size_test);
  39071. switch (ctx->state) {
  39072. case 0: /* INIT */
  39073. ctx->s = ctx->e;
  39074. ctx->kInv = ctx->k;
  39075. ctx->i = SP_ECC_MAX_SIG_GEN;
  39076. ctx->state = 1;
  39077. break;
  39078. case 1: /* GEN */
  39079. /* New random point. */
  39080. if (km == NULL || mp_iszero(km)) {
  39081. err = sp_521_ecc_gen_k_21(rng, ctx->k);
  39082. }
  39083. else {
  39084. sp_521_from_mp(ctx->k, 21, km);
  39085. mp_zero(km);
  39086. }
  39087. XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
  39088. ctx->state = 2;
  39089. break;
  39090. case 2: /* MULMOD */
  39091. err = sp_521_ecc_mulmod_21_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
  39092. &ctx->point, &p521_base, ctx->k, 1, 1, heap);
  39093. if (err == MP_OKAY) {
  39094. ctx->state = 3;
  39095. }
  39096. break;
  39097. case 3: /* MODORDER */
  39098. {
  39099. sp_int32 c;
  39100. /* r = point->x mod order */
  39101. XMEMCPY(ctx->r, ctx->point.x, sizeof(sp_digit) * 21U);
  39102. sp_521_norm_21(ctx->r);
  39103. c = sp_521_cmp_21(ctx->r, p521_order);
  39104. sp_521_cond_sub_21(ctx->r, ctx->r, p521_order,
  39105. (sp_digit)0 - (sp_digit)(c >= 0));
  39106. sp_521_norm_21(ctx->r);
  39107. if (hashLen > 66U) {
  39108. hashLen = 66U;
  39109. }
  39110. sp_521_from_mp(ctx->x, 21, priv);
  39111. sp_521_from_bin(ctx->e, 21, hash, (int)hashLen);
  39112. if (hashLen == 66U) {
  39113. sp_521_rshift_21(ctx->e, ctx->e, 7);
  39114. ctx->e[20] |= ((sp_digit)hash[0]) << 13;
  39115. }
  39116. ctx->state = 4;
  39117. break;
  39118. }
  39119. case 4: /* KMODORDER */
  39120. /* Conv k to Montgomery form (mod order) */
  39121. sp_521_mul_21(ctx->k, ctx->k, p521_norm_order);
  39122. err = sp_521_mod_21(ctx->k, ctx->k, p521_order);
  39123. if (err == MP_OKAY) {
  39124. sp_521_norm_21(ctx->k);
  39125. XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
  39126. ctx->state = 5;
  39127. }
  39128. break;
  39129. case 5: /* KINV */
  39130. /* kInv = 1/k mod order */
  39131. err = sp_521_mont_inv_order_21_nb((sp_ecc_ctx_t*)&ctx->mont_inv_order_ctx, ctx->kInv, ctx->k, ctx->tmp);
  39132. if (err == MP_OKAY) {
  39133. XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
  39134. ctx->state = 6;
  39135. }
  39136. break;
  39137. case 6: /* KINVNORM */
  39138. sp_521_norm_21(ctx->kInv);
  39139. ctx->state = 7;
  39140. break;
  39141. case 7: /* R */
  39142. /* s = r * x + e */
  39143. sp_521_mul_21(ctx->x, ctx->x, ctx->r);
  39144. ctx->state = 8;
  39145. break;
  39146. case 8: /* S1 */
  39147. err = sp_521_mod_21(ctx->x, ctx->x, p521_order);
  39148. if (err == MP_OKAY)
  39149. ctx->state = 9;
  39150. break;
  39151. case 9: /* S2 */
  39152. {
  39153. sp_digit carry;
  39154. sp_int32 c;
  39155. sp_521_norm_21(ctx->x);
  39156. carry = sp_521_add_21(ctx->s, ctx->e, ctx->x);
  39157. sp_521_cond_sub_21(ctx->s, ctx->s,
  39158. p521_order, 0 - carry);
  39159. sp_521_norm_21(ctx->s);
  39160. c = sp_521_cmp_21(ctx->s, p521_order);
  39161. sp_521_cond_sub_21(ctx->s, ctx->s, p521_order,
  39162. (sp_digit)0 - (sp_digit)(c >= 0));
  39163. sp_521_norm_21(ctx->s);
  39164. /* s = s * k^-1 mod order */
  39165. sp_521_mont_mul_order_21(ctx->s, ctx->s, ctx->kInv);
  39166. sp_521_norm_21(ctx->s);
  39167. /* Check that signature is usable. */
  39168. if (sp_521_iszero_21(ctx->s) == 0) {
  39169. ctx->state = 10;
  39170. break;
  39171. }
  39172. #ifdef WOLFSSL_ECDSA_SET_K_ONE_LOOP
  39173. ctx->i = 1;
  39174. #endif
  39175. /* not usable gen, try again */
  39176. ctx->i--;
  39177. if (ctx->i == 0) {
  39178. err = RNG_FAILURE_E;
  39179. }
  39180. ctx->state = 1;
  39181. break;
  39182. }
  39183. case 10: /* RES */
  39184. err = sp_521_to_mp(ctx->r, rm);
  39185. if (err == MP_OKAY) {
  39186. err = sp_521_to_mp(ctx->s, sm);
  39187. }
  39188. break;
  39189. }
  39190. if (err == MP_OKAY && ctx->state != 10) {
  39191. err = FP_WOULDBLOCK;
  39192. }
  39193. if (err != FP_WOULDBLOCK) {
  39194. XMEMSET(ctx->e, 0, sizeof(sp_digit) * 2U * 21U);
  39195. XMEMSET(ctx->x, 0, sizeof(sp_digit) * 2U * 21U);
  39196. XMEMSET(ctx->k, 0, sizeof(sp_digit) * 2U * 21U);
  39197. XMEMSET(ctx->r, 0, sizeof(sp_digit) * 2U * 21U);
  39198. XMEMSET(ctx->tmp, 0, sizeof(sp_digit) * 3U * 2U * 21U);
  39199. }
  39200. return err;
  39201. }
  39202. #endif /* WOLFSSL_SP_NONBLOCK */
  39203. #endif /* HAVE_ECC_SIGN */
  39204. #ifndef WOLFSSL_SP_SMALL
  39205. static const char sp_521_tab32_21[32] = {
  39206. 1, 10, 2, 11, 14, 22, 3, 30,
  39207. 12, 15, 17, 19, 23, 26, 4, 31,
  39208. 9, 13, 21, 29, 16, 18, 25, 8,
  39209. 20, 28, 24, 7, 27, 6, 5, 32};
  39210. static int sp_521_num_bits_25_21(sp_digit v)
  39211. {
  39212. v |= v >> 1;
  39213. v |= v >> 2;
  39214. v |= v >> 4;
  39215. v |= v >> 8;
  39216. v |= v >> 16;
  39217. return sp_521_tab32_21[(uint32_t)(v*0x07C4ACDD) >> 27];
  39218. }
  39219. static int sp_521_num_bits_21(const sp_digit* a)
  39220. {
  39221. int i;
  39222. int r = 0;
  39223. for (i = 20; i >= 0; i--) {
  39224. if (a[i] != 0) {
  39225. r = sp_521_num_bits_25_21(a[i]);
  39226. r += i * 25;
  39227. break;
  39228. }
  39229. }
  39230. return r;
  39231. }
  39232. /* Non-constant time modular inversion.
  39233. *
  39234. * @param [out] r Resulting number.
  39235. * @param [in] a Number to invert.
  39236. * @param [in] m Modulus.
  39237. * @return MP_OKAY on success.
  39238. * @return MEMEORY_E when dynamic memory allocation fails.
  39239. */
  39240. static int sp_521_mod_inv_21(sp_digit* r, const sp_digit* a, const sp_digit* m)
  39241. {
  39242. int err = MP_OKAY;
  39243. #ifdef WOLFSSL_SP_SMALL_STACK
  39244. sp_digit* u = NULL;
  39245. #else
  39246. sp_digit u[21 * 4];
  39247. #endif
  39248. sp_digit* v = NULL;
  39249. sp_digit* b = NULL;
  39250. sp_digit* d = NULL;
  39251. int ut;
  39252. int vt;
  39253. #ifdef WOLFSSL_SP_SMALL_STACK
  39254. u = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21 * 4, NULL,
  39255. DYNAMIC_TYPE_ECC);
  39256. if (u == NULL)
  39257. err = MEMORY_E;
  39258. #endif
  39259. if (err == MP_OKAY) {
  39260. v = u + 21;
  39261. b = u + 2 * 21;
  39262. d = u + 3 * 21;
  39263. XMEMCPY(u, m, sizeof(sp_digit) * 21);
  39264. XMEMCPY(v, a, sizeof(sp_digit) * 21);
  39265. ut = sp_521_num_bits_21(u);
  39266. vt = sp_521_num_bits_21(v);
  39267. XMEMSET(b, 0, sizeof(sp_digit) * 21);
  39268. if ((v[0] & 1) == 0) {
  39269. sp_521_rshift1_21(v, v);
  39270. XMEMCPY(d, m, sizeof(sp_digit) * 21);
  39271. d[0]++;
  39272. sp_521_rshift1_21(d, d);
  39273. vt--;
  39274. while ((v[0] & 1) == 0) {
  39275. sp_521_rshift1_21(v, v);
  39276. if (d[0] & 1)
  39277. sp_521_add_21(d, d, m);
  39278. sp_521_rshift1_21(d, d);
  39279. vt--;
  39280. }
  39281. }
  39282. else {
  39283. XMEMSET(d+1, 0, sizeof(sp_digit) * (21 - 1));
  39284. d[0] = 1;
  39285. }
  39286. while (ut > 1 && vt > 1) {
  39287. if ((ut > vt) || ((ut == vt) &&
  39288. (sp_521_cmp_21(u, v) >= 0))) {
  39289. sp_521_sub_21(u, u, v);
  39290. sp_521_norm_21(u);
  39291. sp_521_sub_21(b, b, d);
  39292. sp_521_norm_21(b);
  39293. if (b[20] < 0)
  39294. sp_521_add_21(b, b, m);
  39295. sp_521_norm_21(b);
  39296. ut = sp_521_num_bits_21(u);
  39297. do {
  39298. sp_521_rshift1_21(u, u);
  39299. if (b[0] & 1)
  39300. sp_521_add_21(b, b, m);
  39301. sp_521_rshift1_21(b, b);
  39302. ut--;
  39303. }
  39304. while (ut > 0 && (u[0] & 1) == 0);
  39305. }
  39306. else {
  39307. sp_521_sub_21(v, v, u);
  39308. sp_521_norm_21(v);
  39309. sp_521_sub_21(d, d, b);
  39310. sp_521_norm_21(d);
  39311. if (d[20] < 0)
  39312. sp_521_add_21(d, d, m);
  39313. sp_521_norm_21(d);
  39314. vt = sp_521_num_bits_21(v);
  39315. do {
  39316. sp_521_rshift1_21(v, v);
  39317. if (d[0] & 1)
  39318. sp_521_add_21(d, d, m);
  39319. sp_521_rshift1_21(d, d);
  39320. vt--;
  39321. }
  39322. while (vt > 0 && (v[0] & 1) == 0);
  39323. }
  39324. }
  39325. if (ut == 1)
  39326. XMEMCPY(r, b, sizeof(sp_digit) * 21);
  39327. else
  39328. XMEMCPY(r, d, sizeof(sp_digit) * 21);
  39329. }
  39330. #ifdef WOLFSSL_SP_SMALL_STACK
  39331. if (u != NULL)
  39332. XFREE(u, NULL, DYNAMIC_TYPE_ECC);
  39333. #endif
  39334. return err;
  39335. }
  39336. #endif /* WOLFSSL_SP_SMALL */
  39337. /* Add point p1 into point p2. Handles p1 == p2 and result at infinity.
  39338. *
  39339. * p1 First point to add and holds result.
  39340. * p2 Second point to add.
  39341. * tmp Temporary storage for intermediate numbers.
  39342. */
  39343. static void sp_521_add_points_21(sp_point_521* p1, const sp_point_521* p2,
  39344. sp_digit* tmp)
  39345. {
  39346. sp_521_proj_point_add_21(p1, p1, p2, tmp);
  39347. if (sp_521_iszero_21(p1->z)) {
  39348. if (sp_521_iszero_21(p1->x) && sp_521_iszero_21(p1->y)) {
  39349. sp_521_proj_point_dbl_21(p1, p2, tmp);
  39350. }
  39351. else {
  39352. /* Y ordinate is not used from here - don't set. */
  39353. p1->x[0] = 0;
  39354. p1->x[1] = 0;
  39355. p1->x[2] = 0;
  39356. p1->x[3] = 0;
  39357. p1->x[4] = 0;
  39358. p1->x[5] = 0;
  39359. p1->x[6] = 0;
  39360. p1->x[7] = 0;
  39361. p1->x[8] = 0;
  39362. p1->x[9] = 0;
  39363. p1->x[10] = 0;
  39364. p1->x[11] = 0;
  39365. p1->x[12] = 0;
  39366. p1->x[13] = 0;
  39367. p1->x[14] = 0;
  39368. p1->x[15] = 0;
  39369. p1->x[16] = 0;
  39370. p1->x[17] = 0;
  39371. p1->x[18] = 0;
  39372. p1->x[19] = 0;
  39373. p1->x[20] = 0;
  39374. XMEMCPY(p1->z, p521_norm_mod, sizeof(p521_norm_mod));
  39375. }
  39376. }
  39377. }
  39378. /* Calculate the verification point: [e/s]G + [r/s]Q
  39379. *
  39380. * p1 Calculated point.
  39381. * p2 Public point and temporary.
  39382. * s Second part of signature as a number.
  39383. * u1 Temporary number.
  39384. * u2 Temporary number.
  39385. * heap Heap to use for allocation.
  39386. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  39387. */
  39388. static int sp_521_calc_vfy_point_21(sp_point_521* p1, sp_point_521* p2,
  39389. sp_digit* s, sp_digit* u1, sp_digit* u2, sp_digit* tmp, void* heap)
  39390. {
  39391. int err;
  39392. #ifndef WOLFSSL_SP_SMALL
  39393. err = sp_521_mod_inv_21(s, s, p521_order);
  39394. if (err == MP_OKAY)
  39395. #endif /* !WOLFSSL_SP_SMALL */
  39396. {
  39397. sp_521_mul_21(s, s, p521_norm_order);
  39398. err = sp_521_mod_21(s, s, p521_order);
  39399. }
  39400. if (err == MP_OKAY) {
  39401. sp_521_norm_21(s);
  39402. #ifdef WOLFSSL_SP_SMALL
  39403. {
  39404. sp_521_mont_inv_order_21(s, s, tmp);
  39405. sp_521_mont_mul_order_21(u1, u1, s);
  39406. sp_521_mont_mul_order_21(u2, u2, s);
  39407. }
  39408. #else
  39409. {
  39410. sp_521_mont_mul_order_21(u1, u1, s);
  39411. sp_521_mont_mul_order_21(u2, u2, s);
  39412. }
  39413. #endif /* WOLFSSL_SP_SMALL */
  39414. {
  39415. err = sp_521_ecc_mulmod_base_21(p1, u1, 0, 0, heap);
  39416. }
  39417. }
  39418. if ((err == MP_OKAY) && sp_521_iszero_21(p1->z)) {
  39419. p1->infinity = 1;
  39420. }
  39421. if (err == MP_OKAY) {
  39422. err = sp_521_ecc_mulmod_21(p2, p2, u2, 0, 0, heap);
  39423. }
  39424. if ((err == MP_OKAY) && sp_521_iszero_21(p2->z)) {
  39425. p2->infinity = 1;
  39426. }
  39427. if (err == MP_OKAY) {
  39428. sp_521_add_points_21(p1, p2, tmp);
  39429. }
  39430. return err;
  39431. }
  39432. #ifdef HAVE_ECC_VERIFY
  39433. /* Verify the signature values with the hash and public key.
  39434. * e = Truncate(hash, 521)
  39435. * u1 = e/s mod order
  39436. * u2 = r/s mod order
  39437. * r == (u1.G + u2.Q)->x mod order
  39438. * Optimization: Leave point in projective form.
  39439. * (x, y, 1) == (x' / z'*z', y' / z'*z'*z', z' / z')
  39440. * (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x'
  39441. * The hash is truncated to the first 521 bits.
  39442. *
  39443. * hash Hash to sign.
  39444. * hashLen Length of the hash data.
  39445. * rng Random number generator.
  39446. * priv Private part of key - scalar.
  39447. * rm First part of result as an mp_int.
  39448. * sm Sirst part of result as an mp_int.
  39449. * heap Heap to use for allocation.
  39450. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  39451. */
  39452. int sp_ecc_verify_521(const byte* hash, word32 hashLen, const mp_int* pX,
  39453. const mp_int* pY, const mp_int* pZ, const mp_int* rm, const mp_int* sm,
  39454. int* res, void* heap)
  39455. {
  39456. #ifdef WOLFSSL_SP_SMALL_STACK
  39457. sp_digit* u1 = NULL;
  39458. sp_point_521* p1 = NULL;
  39459. #else
  39460. sp_digit u1[18 * 21];
  39461. sp_point_521 p1[2];
  39462. #endif
  39463. sp_digit* u2 = NULL;
  39464. sp_digit* s = NULL;
  39465. sp_digit* tmp = NULL;
  39466. sp_point_521* p2 = NULL;
  39467. sp_digit carry;
  39468. sp_int32 c = 0;
  39469. int err = MP_OKAY;
  39470. #ifdef WOLFSSL_SP_SMALL_STACK
  39471. if (err == MP_OKAY) {
  39472. p1 = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, heap,
  39473. DYNAMIC_TYPE_ECC);
  39474. if (p1 == NULL)
  39475. err = MEMORY_E;
  39476. }
  39477. if (err == MP_OKAY) {
  39478. u1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 18 * 21, heap,
  39479. DYNAMIC_TYPE_ECC);
  39480. if (u1 == NULL)
  39481. err = MEMORY_E;
  39482. }
  39483. #endif
  39484. if (err == MP_OKAY) {
  39485. u2 = u1 + 2 * 21;
  39486. s = u1 + 4 * 21;
  39487. tmp = u1 + 6 * 21;
  39488. p2 = p1 + 1;
  39489. if (hashLen > 66U) {
  39490. hashLen = 66U;
  39491. }
  39492. sp_521_from_bin(u1, 21, hash, (int)hashLen);
  39493. sp_521_from_mp(u2, 21, rm);
  39494. sp_521_from_mp(s, 21, sm);
  39495. sp_521_from_mp(p2->x, 21, pX);
  39496. sp_521_from_mp(p2->y, 21, pY);
  39497. sp_521_from_mp(p2->z, 21, pZ);
  39498. if (hashLen == 66U) {
  39499. sp_521_rshift_21(u1, u1, 7);
  39500. u1[20] |= ((sp_digit)hash[0]) << 13;
  39501. }
  39502. err = sp_521_calc_vfy_point_21(p1, p2, s, u1, u2, tmp, heap);
  39503. }
  39504. if (err == MP_OKAY) {
  39505. /* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
  39506. /* Reload r and convert to Montgomery form. */
  39507. sp_521_from_mp(u2, 21, rm);
  39508. err = sp_521_mod_mul_norm_21(u2, u2, p521_mod);
  39509. }
  39510. if (err == MP_OKAY) {
  39511. /* u1 = r.z'.z' mod prime */
  39512. sp_521_mont_sqr_21(p1->z, p1->z, p521_mod, p521_mp_mod);
  39513. sp_521_mont_mul_21(u1, u2, p1->z, p521_mod, p521_mp_mod);
  39514. *res = (int)(sp_521_cmp_21(p1->x, u1) == 0);
  39515. if (*res == 0) {
  39516. /* Reload r and add order. */
  39517. sp_521_from_mp(u2, 21, rm);
  39518. carry = sp_521_add_21(u2, u2, p521_order);
  39519. /* Carry means result is greater than mod and is not valid. */
  39520. if (carry == 0) {
  39521. sp_521_norm_21(u2);
  39522. /* Compare with mod and if greater or equal then not valid. */
  39523. c = sp_521_cmp_21(u2, p521_mod);
  39524. }
  39525. }
  39526. if ((*res == 0) && (c < 0)) {
  39527. /* Convert to Montogomery form */
  39528. err = sp_521_mod_mul_norm_21(u2, u2, p521_mod);
  39529. if (err == MP_OKAY) {
  39530. /* u1 = (r + 1*order).z'.z' mod prime */
  39531. {
  39532. sp_521_mont_mul_21(u1, u2, p1->z, p521_mod, p521_mp_mod);
  39533. }
  39534. *res = (sp_521_cmp_21(p1->x, u1) == 0);
  39535. }
  39536. }
  39537. }
  39538. #ifdef WOLFSSL_SP_SMALL_STACK
  39539. if (u1 != NULL)
  39540. XFREE(u1, heap, DYNAMIC_TYPE_ECC);
  39541. if (p1 != NULL)
  39542. XFREE(p1, heap, DYNAMIC_TYPE_ECC);
  39543. #endif
  39544. return err;
  39545. }
  39546. #ifdef WOLFSSL_SP_NONBLOCK
  39547. typedef struct sp_ecc_verify_521_ctx {
  39548. int state;
  39549. union {
  39550. sp_521_ecc_mulmod_21_ctx mulmod_ctx;
  39551. sp_521_mont_inv_order_21_ctx mont_inv_order_ctx;
  39552. sp_521_proj_point_dbl_21_ctx dbl_ctx;
  39553. sp_521_proj_point_add_21_ctx add_ctx;
  39554. };
  39555. sp_digit u1[2*21];
  39556. sp_digit u2[2*21];
  39557. sp_digit s[2*21];
  39558. sp_digit tmp[2*21 * 6];
  39559. sp_point_521 p1;
  39560. sp_point_521 p2;
  39561. } sp_ecc_verify_521_ctx;
  39562. int sp_ecc_verify_521_nb(sp_ecc_ctx_t* sp_ctx, const byte* hash,
  39563. word32 hashLen, const mp_int* pX, const mp_int* pY, const mp_int* pZ,
  39564. const mp_int* rm, const mp_int* sm, int* res, void* heap)
  39565. {
  39566. int err = FP_WOULDBLOCK;
  39567. sp_ecc_verify_521_ctx* ctx = (sp_ecc_verify_521_ctx*)sp_ctx->data;
  39568. typedef char ctx_size_test[sizeof(sp_ecc_verify_521_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  39569. (void)sizeof(ctx_size_test);
  39570. switch (ctx->state) {
  39571. case 0: /* INIT */
  39572. if (hashLen > 66U) {
  39573. hashLen = 66U;
  39574. }
  39575. sp_521_from_bin(ctx->u1, 21, hash, (int)hashLen);
  39576. sp_521_from_mp(ctx->u2, 21, rm);
  39577. sp_521_from_mp(ctx->s, 21, sm);
  39578. sp_521_from_mp(ctx->p2.x, 21, pX);
  39579. sp_521_from_mp(ctx->p2.y, 21, pY);
  39580. sp_521_from_mp(ctx->p2.z, 21, pZ);
  39581. if (hashLen == 66U) {
  39582. sp_521_rshift_21(ctx->u1, ctx->u1, 7);
  39583. ctx->u1[20] |= ((sp_digit)hash[0]) << 13;
  39584. }
  39585. ctx->state = 1;
  39586. break;
  39587. case 1: /* NORMS0 */
  39588. sp_521_mul_21(ctx->s, ctx->s, p521_norm_order);
  39589. err = sp_521_mod_21(ctx->s, ctx->s, p521_order);
  39590. if (err == MP_OKAY)
  39591. ctx->state = 2;
  39592. break;
  39593. case 2: /* NORMS1 */
  39594. sp_521_norm_21(ctx->s);
  39595. XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
  39596. ctx->state = 3;
  39597. break;
  39598. case 3: /* NORMS2 */
  39599. err = sp_521_mont_inv_order_21_nb((sp_ecc_ctx_t*)&ctx->mont_inv_order_ctx, ctx->s, ctx->s, ctx->tmp);
  39600. if (err == MP_OKAY) {
  39601. ctx->state = 4;
  39602. }
  39603. break;
  39604. case 4: /* NORMS3 */
  39605. sp_521_mont_mul_order_21(ctx->u1, ctx->u1, ctx->s);
  39606. ctx->state = 5;
  39607. break;
  39608. case 5: /* NORMS4 */
  39609. sp_521_mont_mul_order_21(ctx->u2, ctx->u2, ctx->s);
  39610. XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
  39611. ctx->state = 6;
  39612. break;
  39613. case 6: /* MULBASE */
  39614. err = sp_521_ecc_mulmod_21_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx, &ctx->p1, &p521_base, ctx->u1, 0, 0, heap);
  39615. if (err == MP_OKAY) {
  39616. if (sp_521_iszero_21(ctx->p1.z)) {
  39617. ctx->p1.infinity = 1;
  39618. }
  39619. XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
  39620. ctx->state = 7;
  39621. }
  39622. break;
  39623. case 7: /* MULMOD */
  39624. err = sp_521_ecc_mulmod_21_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx, &ctx->p2, &ctx->p2, ctx->u2, 0, 0, heap);
  39625. if (err == MP_OKAY) {
  39626. if (sp_521_iszero_21(ctx->p2.z)) {
  39627. ctx->p2.infinity = 1;
  39628. }
  39629. XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
  39630. ctx->state = 8;
  39631. }
  39632. break;
  39633. case 8: /* ADD */
  39634. err = sp_521_proj_point_add_21_nb((sp_ecc_ctx_t*)&ctx->add_ctx, &ctx->p1, &ctx->p1, &ctx->p2, ctx->tmp);
  39635. if (err == MP_OKAY)
  39636. ctx->state = 9;
  39637. break;
  39638. case 9: /* MONT */
  39639. /* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
  39640. /* Reload r and convert to Montgomery form. */
  39641. sp_521_from_mp(ctx->u2, 21, rm);
  39642. err = sp_521_mod_mul_norm_21(ctx->u2, ctx->u2, p521_mod);
  39643. if (err == MP_OKAY)
  39644. ctx->state = 10;
  39645. break;
  39646. case 10: /* SQR */
  39647. /* u1 = r.z'.z' mod prime */
  39648. sp_521_mont_sqr_21(ctx->p1.z, ctx->p1.z, p521_mod, p521_mp_mod);
  39649. ctx->state = 11;
  39650. break;
  39651. case 11: /* MUL */
  39652. sp_521_mont_mul_21(ctx->u1, ctx->u2, ctx->p1.z, p521_mod, p521_mp_mod);
  39653. ctx->state = 12;
  39654. break;
  39655. case 12: /* RES */
  39656. {
  39657. sp_int32 c = 0;
  39658. err = MP_OKAY; /* math okay, now check result */
  39659. *res = (int)(sp_521_cmp_21(ctx->p1.x, ctx->u1) == 0);
  39660. if (*res == 0) {
  39661. sp_digit carry;
  39662. /* Reload r and add order. */
  39663. sp_521_from_mp(ctx->u2, 21, rm);
  39664. carry = sp_521_add_21(ctx->u2, ctx->u2, p521_order);
  39665. /* Carry means result is greater than mod and is not valid. */
  39666. if (carry == 0) {
  39667. sp_521_norm_21(ctx->u2);
  39668. /* Compare with mod and if greater or equal then not valid. */
  39669. c = sp_521_cmp_21(ctx->u2, p521_mod);
  39670. }
  39671. }
  39672. if ((*res == 0) && (c < 0)) {
  39673. /* Convert to Montogomery form */
  39674. err = sp_521_mod_mul_norm_21(ctx->u2, ctx->u2, p521_mod);
  39675. if (err == MP_OKAY) {
  39676. /* u1 = (r + 1*order).z'.z' mod prime */
  39677. sp_521_mont_mul_21(ctx->u1, ctx->u2, ctx->p1.z, p521_mod,
  39678. p521_mp_mod);
  39679. *res = (int)(sp_521_cmp_21(ctx->p1.x, ctx->u1) == 0);
  39680. }
  39681. }
  39682. break;
  39683. }
  39684. } /* switch */
  39685. if (err == MP_OKAY && ctx->state != 12) {
  39686. err = FP_WOULDBLOCK;
  39687. }
  39688. return err;
  39689. }
  39690. #endif /* WOLFSSL_SP_NONBLOCK */
  39691. #endif /* HAVE_ECC_VERIFY */
  39692. #ifdef HAVE_ECC_CHECK_KEY
  39693. /* Check that the x and y oridinates are a valid point on the curve.
  39694. *
  39695. * point EC point.
  39696. * heap Heap to use if dynamically allocating.
  39697. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
  39698. * not on the curve and MP_OKAY otherwise.
  39699. */
  39700. static int sp_521_ecc_is_point_21(const sp_point_521* point,
  39701. void* heap)
  39702. {
  39703. #ifdef WOLFSSL_SP_SMALL_STACK
  39704. sp_digit* t1 = NULL;
  39705. #else
  39706. sp_digit t1[21 * 4];
  39707. #endif
  39708. sp_digit* t2 = NULL;
  39709. int err = MP_OKAY;
  39710. #ifdef WOLFSSL_SP_SMALL_STACK
  39711. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21 * 4, heap, DYNAMIC_TYPE_ECC);
  39712. if (t1 == NULL)
  39713. err = MEMORY_E;
  39714. #endif
  39715. (void)heap;
  39716. if (err == MP_OKAY) {
  39717. t2 = t1 + 2 * 21;
  39718. /* y^2 - x^3 - a.x = b */
  39719. sp_521_sqr_21(t1, point->y);
  39720. (void)sp_521_mod_21(t1, t1, p521_mod);
  39721. sp_521_sqr_21(t2, point->x);
  39722. (void)sp_521_mod_21(t2, t2, p521_mod);
  39723. sp_521_mul_21(t2, t2, point->x);
  39724. (void)sp_521_mod_21(t2, t2, p521_mod);
  39725. sp_521_mont_sub_21(t1, t1, t2, p521_mod);
  39726. /* y^2 - x^3 + 3.x = b, when a = -3 */
  39727. sp_521_mont_add_21(t1, t1, point->x, p521_mod);
  39728. sp_521_mont_add_21(t1, t1, point->x, p521_mod);
  39729. sp_521_mont_add_21(t1, t1, point->x, p521_mod);
  39730. if (sp_521_cmp_21(t1, p521_b) != 0) {
  39731. err = MP_VAL;
  39732. }
  39733. }
  39734. #ifdef WOLFSSL_SP_SMALL_STACK
  39735. if (t1 != NULL)
  39736. XFREE(t1, heap, DYNAMIC_TYPE_ECC);
  39737. #endif
  39738. return err;
  39739. }
  39740. /* Check that the x and y oridinates are a valid point on the curve.
  39741. *
  39742. * pX X ordinate of EC point.
  39743. * pY Y ordinate of EC point.
  39744. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
  39745. * not on the curve and MP_OKAY otherwise.
  39746. */
  39747. int sp_ecc_is_point_521(const mp_int* pX, const mp_int* pY)
  39748. {
  39749. #ifdef WOLFSSL_SP_SMALL_STACK
  39750. sp_point_521* pub = NULL;
  39751. #else
  39752. sp_point_521 pub[1];
  39753. #endif
  39754. const byte one[1] = { 1 };
  39755. int err = MP_OKAY;
  39756. #ifdef WOLFSSL_SP_SMALL_STACK
  39757. pub = (sp_point_521*)XMALLOC(sizeof(sp_point_521), NULL,
  39758. DYNAMIC_TYPE_ECC);
  39759. if (pub == NULL)
  39760. err = MEMORY_E;
  39761. #endif
  39762. if (err == MP_OKAY) {
  39763. sp_521_from_mp(pub->x, 21, pX);
  39764. sp_521_from_mp(pub->y, 21, pY);
  39765. sp_521_from_bin(pub->z, 21, one, (int)sizeof(one));
  39766. err = sp_521_ecc_is_point_21(pub, NULL);
  39767. }
  39768. #ifdef WOLFSSL_SP_SMALL_STACK
  39769. if (pub != NULL)
  39770. XFREE(pub, NULL, DYNAMIC_TYPE_ECC);
  39771. #endif
  39772. return err;
  39773. }
  39774. /* Check that the private scalar generates the EC point (px, py), the point is
  39775. * on the curve and the point has the correct order.
  39776. *
  39777. * pX X ordinate of EC point.
  39778. * pY Y ordinate of EC point.
  39779. * privm Private scalar that generates EC point.
  39780. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
  39781. * not on the curve, ECC_INF_E if the point does not have the correct order,
  39782. * ECC_PRIV_KEY_E when the private scalar doesn't generate the EC point and
  39783. * MP_OKAY otherwise.
  39784. */
  39785. int sp_ecc_check_key_521(const mp_int* pX, const mp_int* pY,
  39786. const mp_int* privm, void* heap)
  39787. {
  39788. #ifdef WOLFSSL_SP_SMALL_STACK
  39789. sp_digit* priv = NULL;
  39790. sp_point_521* pub = NULL;
  39791. #else
  39792. sp_digit priv[21];
  39793. sp_point_521 pub[2];
  39794. #endif
  39795. sp_point_521* p = NULL;
  39796. const byte one[1] = { 1 };
  39797. int err = MP_OKAY;
  39798. /* Quick check the lengs of public key ordinates and private key are in
  39799. * range. Proper check later.
  39800. */
  39801. if (((mp_count_bits(pX) > 521) ||
  39802. (mp_count_bits(pY) > 521) ||
  39803. ((privm != NULL) && (mp_count_bits(privm) > 521)))) {
  39804. err = ECC_OUT_OF_RANGE_E;
  39805. }
  39806. #ifdef WOLFSSL_SP_SMALL_STACK
  39807. if (err == MP_OKAY) {
  39808. pub = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, heap,
  39809. DYNAMIC_TYPE_ECC);
  39810. if (pub == NULL)
  39811. err = MEMORY_E;
  39812. }
  39813. if (err == MP_OKAY && privm) {
  39814. priv = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21, heap,
  39815. DYNAMIC_TYPE_ECC);
  39816. if (priv == NULL)
  39817. err = MEMORY_E;
  39818. }
  39819. #endif
  39820. if (err == MP_OKAY) {
  39821. p = pub + 1;
  39822. sp_521_from_mp(pub->x, 21, pX);
  39823. sp_521_from_mp(pub->y, 21, pY);
  39824. sp_521_from_bin(pub->z, 21, one, (int)sizeof(one));
  39825. if (privm)
  39826. sp_521_from_mp(priv, 21, privm);
  39827. /* Check point at infinitiy. */
  39828. if ((sp_521_iszero_21(pub->x) != 0) &&
  39829. (sp_521_iszero_21(pub->y) != 0)) {
  39830. err = ECC_INF_E;
  39831. }
  39832. }
  39833. /* Check range of X and Y */
  39834. if ((err == MP_OKAY) &&
  39835. ((sp_521_cmp_21(pub->x, p521_mod) >= 0) ||
  39836. (sp_521_cmp_21(pub->y, p521_mod) >= 0))) {
  39837. err = ECC_OUT_OF_RANGE_E;
  39838. }
  39839. if (err == MP_OKAY) {
  39840. /* Check point is on curve */
  39841. err = sp_521_ecc_is_point_21(pub, heap);
  39842. }
  39843. if (err == MP_OKAY) {
  39844. /* Point * order = infinity */
  39845. err = sp_521_ecc_mulmod_21(p, pub, p521_order, 1, 1, heap);
  39846. }
  39847. /* Check result is infinity */
  39848. if ((err == MP_OKAY) && ((sp_521_iszero_21(p->x) == 0) ||
  39849. (sp_521_iszero_21(p->y) == 0))) {
  39850. err = ECC_INF_E;
  39851. }
  39852. if (privm) {
  39853. if (err == MP_OKAY) {
  39854. /* Base * private = point */
  39855. err = sp_521_ecc_mulmod_base_21(p, priv, 1, 1, heap);
  39856. }
  39857. /* Check result is public key */
  39858. if ((err == MP_OKAY) &&
  39859. ((sp_521_cmp_21(p->x, pub->x) != 0) ||
  39860. (sp_521_cmp_21(p->y, pub->y) != 0))) {
  39861. err = ECC_PRIV_KEY_E;
  39862. }
  39863. }
  39864. #ifdef WOLFSSL_SP_SMALL_STACK
  39865. if (pub != NULL)
  39866. XFREE(pub, heap, DYNAMIC_TYPE_ECC);
  39867. if (priv != NULL)
  39868. XFREE(priv, heap, DYNAMIC_TYPE_ECC);
  39869. #endif
  39870. return err;
  39871. }
  39872. #endif
  39873. #ifdef WOLFSSL_PUBLIC_ECC_ADD_DBL
  39874. /* Add two projective EC points together.
  39875. * (pX, pY, pZ) + (qX, qY, qZ) = (rX, rY, rZ)
  39876. *
  39877. * pX First EC point's X ordinate.
  39878. * pY First EC point's Y ordinate.
  39879. * pZ First EC point's Z ordinate.
  39880. * qX Second EC point's X ordinate.
  39881. * qY Second EC point's Y ordinate.
  39882. * qZ Second EC point's Z ordinate.
  39883. * rX Resultant EC point's X ordinate.
  39884. * rY Resultant EC point's Y ordinate.
  39885. * rZ Resultant EC point's Z ordinate.
  39886. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  39887. */
  39888. int sp_ecc_proj_add_point_521(mp_int* pX, mp_int* pY, mp_int* pZ,
  39889. mp_int* qX, mp_int* qY, mp_int* qZ,
  39890. mp_int* rX, mp_int* rY, mp_int* rZ)
  39891. {
  39892. #ifdef WOLFSSL_SP_SMALL_STACK
  39893. sp_digit* tmp = NULL;
  39894. sp_point_521* p = NULL;
  39895. #else
  39896. sp_digit tmp[2 * 21 * 6];
  39897. sp_point_521 p[2];
  39898. #endif
  39899. sp_point_521* q = NULL;
  39900. int err = MP_OKAY;
  39901. #ifdef WOLFSSL_SP_SMALL_STACK
  39902. if (err == MP_OKAY) {
  39903. p = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, NULL,
  39904. DYNAMIC_TYPE_ECC);
  39905. if (p == NULL)
  39906. err = MEMORY_E;
  39907. }
  39908. if (err == MP_OKAY) {
  39909. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 6, NULL,
  39910. DYNAMIC_TYPE_ECC);
  39911. if (tmp == NULL) {
  39912. err = MEMORY_E;
  39913. }
  39914. }
  39915. #endif
  39916. if (err == MP_OKAY) {
  39917. q = p + 1;
  39918. sp_521_from_mp(p->x, 21, pX);
  39919. sp_521_from_mp(p->y, 21, pY);
  39920. sp_521_from_mp(p->z, 21, pZ);
  39921. sp_521_from_mp(q->x, 21, qX);
  39922. sp_521_from_mp(q->y, 21, qY);
  39923. sp_521_from_mp(q->z, 21, qZ);
  39924. p->infinity = sp_521_iszero_21(p->x) &
  39925. sp_521_iszero_21(p->y);
  39926. q->infinity = sp_521_iszero_21(q->x) &
  39927. sp_521_iszero_21(q->y);
  39928. sp_521_proj_point_add_21(p, p, q, tmp);
  39929. }
  39930. if (err == MP_OKAY) {
  39931. err = sp_521_to_mp(p->x, rX);
  39932. }
  39933. if (err == MP_OKAY) {
  39934. err = sp_521_to_mp(p->y, rY);
  39935. }
  39936. if (err == MP_OKAY) {
  39937. err = sp_521_to_mp(p->z, rZ);
  39938. }
  39939. #ifdef WOLFSSL_SP_SMALL_STACK
  39940. if (tmp != NULL)
  39941. XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
  39942. if (p != NULL)
  39943. XFREE(p, NULL, DYNAMIC_TYPE_ECC);
  39944. #endif
  39945. return err;
  39946. }
  39947. /* Double a projective EC point.
  39948. * (pX, pY, pZ) + (pX, pY, pZ) = (rX, rY, rZ)
  39949. *
  39950. * pX EC point's X ordinate.
  39951. * pY EC point's Y ordinate.
  39952. * pZ EC point's Z ordinate.
  39953. * rX Resultant EC point's X ordinate.
  39954. * rY Resultant EC point's Y ordinate.
  39955. * rZ Resultant EC point's Z ordinate.
  39956. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  39957. */
  39958. int sp_ecc_proj_dbl_point_521(mp_int* pX, mp_int* pY, mp_int* pZ,
  39959. mp_int* rX, mp_int* rY, mp_int* rZ)
  39960. {
  39961. #ifdef WOLFSSL_SP_SMALL_STACK
  39962. sp_digit* tmp = NULL;
  39963. sp_point_521* p = NULL;
  39964. #else
  39965. sp_digit tmp[2 * 21 * 2];
  39966. sp_point_521 p[1];
  39967. #endif
  39968. int err = MP_OKAY;
  39969. #ifdef WOLFSSL_SP_SMALL_STACK
  39970. if (err == MP_OKAY) {
  39971. p = (sp_point_521*)XMALLOC(sizeof(sp_point_521), NULL,
  39972. DYNAMIC_TYPE_ECC);
  39973. if (p == NULL)
  39974. err = MEMORY_E;
  39975. }
  39976. if (err == MP_OKAY) {
  39977. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 2, NULL,
  39978. DYNAMIC_TYPE_ECC);
  39979. if (tmp == NULL)
  39980. err = MEMORY_E;
  39981. }
  39982. #endif
  39983. if (err == MP_OKAY) {
  39984. sp_521_from_mp(p->x, 21, pX);
  39985. sp_521_from_mp(p->y, 21, pY);
  39986. sp_521_from_mp(p->z, 21, pZ);
  39987. p->infinity = sp_521_iszero_21(p->x) &
  39988. sp_521_iszero_21(p->y);
  39989. sp_521_proj_point_dbl_21(p, p, tmp);
  39990. }
  39991. if (err == MP_OKAY) {
  39992. err = sp_521_to_mp(p->x, rX);
  39993. }
  39994. if (err == MP_OKAY) {
  39995. err = sp_521_to_mp(p->y, rY);
  39996. }
  39997. if (err == MP_OKAY) {
  39998. err = sp_521_to_mp(p->z, rZ);
  39999. }
  40000. #ifdef WOLFSSL_SP_SMALL_STACK
  40001. if (tmp != NULL)
  40002. XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
  40003. if (p != NULL)
  40004. XFREE(p, NULL, DYNAMIC_TYPE_ECC);
  40005. #endif
  40006. return err;
  40007. }
  40008. /* Map a projective EC point to affine in place.
  40009. * pZ will be one.
  40010. *
  40011. * pX EC point's X ordinate.
  40012. * pY EC point's Y ordinate.
  40013. * pZ EC point's Z ordinate.
  40014. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  40015. */
  40016. int sp_ecc_map_521(mp_int* pX, mp_int* pY, mp_int* pZ)
  40017. {
  40018. #ifdef WOLFSSL_SP_SMALL_STACK
  40019. sp_digit* tmp = NULL;
  40020. sp_point_521* p = NULL;
  40021. #else
  40022. sp_digit tmp[2 * 21 * 5];
  40023. sp_point_521 p[1];
  40024. #endif
  40025. int err = MP_OKAY;
  40026. #ifdef WOLFSSL_SP_SMALL_STACK
  40027. if (err == MP_OKAY) {
  40028. p = (sp_point_521*)XMALLOC(sizeof(sp_point_521), NULL,
  40029. DYNAMIC_TYPE_ECC);
  40030. if (p == NULL)
  40031. err = MEMORY_E;
  40032. }
  40033. if (err == MP_OKAY) {
  40034. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 5, NULL,
  40035. DYNAMIC_TYPE_ECC);
  40036. if (tmp == NULL)
  40037. err = MEMORY_E;
  40038. }
  40039. #endif
  40040. if (err == MP_OKAY) {
  40041. sp_521_from_mp(p->x, 21, pX);
  40042. sp_521_from_mp(p->y, 21, pY);
  40043. sp_521_from_mp(p->z, 21, pZ);
  40044. p->infinity = sp_521_iszero_21(p->x) &
  40045. sp_521_iszero_21(p->y);
  40046. sp_521_map_21(p, p, tmp);
  40047. }
  40048. if (err == MP_OKAY) {
  40049. err = sp_521_to_mp(p->x, pX);
  40050. }
  40051. if (err == MP_OKAY) {
  40052. err = sp_521_to_mp(p->y, pY);
  40053. }
  40054. if (err == MP_OKAY) {
  40055. err = sp_521_to_mp(p->z, pZ);
  40056. }
  40057. #ifdef WOLFSSL_SP_SMALL_STACK
  40058. if (tmp != NULL)
  40059. XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
  40060. if (p != NULL)
  40061. XFREE(p, NULL, DYNAMIC_TYPE_ECC);
  40062. #endif
  40063. return err;
  40064. }
  40065. #endif /* WOLFSSL_PUBLIC_ECC_ADD_DBL */
  40066. #ifdef HAVE_COMP_KEY
  40067. /* Square root power for the P521 curve. */
  40068. static const uint32_t p521_sqrt_power[17] = {
  40069. 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
  40070. 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
  40071. 0x00000000,0x00000000,0x00000080
  40072. };
  40073. /* Find the square root of a number mod the prime of the curve.
  40074. *
  40075. * y The number to operate on and the result.
  40076. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  40077. */
  40078. static int sp_521_mont_sqrt_21(sp_digit* y)
  40079. {
  40080. #ifdef WOLFSSL_SP_SMALL_STACK
  40081. sp_digit* t = NULL;
  40082. #else
  40083. sp_digit t[2 * 21];
  40084. #endif
  40085. int err = MP_OKAY;
  40086. #ifdef WOLFSSL_SP_SMALL_STACK
  40087. t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21, NULL, DYNAMIC_TYPE_ECC);
  40088. if (t == NULL)
  40089. err = MEMORY_E;
  40090. #endif
  40091. if (err == MP_OKAY) {
  40092. {
  40093. int i;
  40094. XMEMCPY(t, y, sizeof(sp_digit) * 21);
  40095. for (i=518; i>=0; i--) {
  40096. sp_521_mont_sqr_21(t, t, p521_mod, p521_mp_mod);
  40097. if (p521_sqrt_power[i / 32] & ((sp_digit)1 << (i % 32)))
  40098. sp_521_mont_mul_21(t, t, y, p521_mod, p521_mp_mod);
  40099. }
  40100. XMEMCPY(y, t, sizeof(sp_digit) * 21);
  40101. }
  40102. }
  40103. #ifdef WOLFSSL_SP_SMALL_STACK
  40104. if (t != NULL)
  40105. XFREE(t, NULL, DYNAMIC_TYPE_ECC);
  40106. #endif
  40107. return err;
  40108. }
  40109. /* Uncompress the point given the X ordinate.
  40110. *
  40111. * xm X ordinate.
  40112. * odd Whether the Y ordinate is odd.
  40113. * ym Calculated Y ordinate.
  40114. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
  40115. */
  40116. int sp_ecc_uncompress_521(mp_int* xm, int odd, mp_int* ym)
  40117. {
  40118. #ifdef WOLFSSL_SP_SMALL_STACK
  40119. sp_digit* x = NULL;
  40120. #else
  40121. sp_digit x[4 * 21];
  40122. #endif
  40123. sp_digit* y = NULL;
  40124. int err = MP_OKAY;
  40125. #ifdef WOLFSSL_SP_SMALL_STACK
  40126. x = (sp_digit*)XMALLOC(sizeof(sp_digit) * 4 * 21, NULL, DYNAMIC_TYPE_ECC);
  40127. if (x == NULL)
  40128. err = MEMORY_E;
  40129. #endif
  40130. if (err == MP_OKAY) {
  40131. y = x + 2 * 21;
  40132. sp_521_from_mp(x, 21, xm);
  40133. err = sp_521_mod_mul_norm_21(x, x, p521_mod);
  40134. }
  40135. if (err == MP_OKAY) {
  40136. /* y = x^3 */
  40137. {
  40138. sp_521_mont_sqr_21(y, x, p521_mod, p521_mp_mod);
  40139. sp_521_mont_mul_21(y, y, x, p521_mod, p521_mp_mod);
  40140. }
  40141. /* y = x^3 - 3x */
  40142. sp_521_mont_sub_21(y, y, x, p521_mod);
  40143. sp_521_mont_sub_21(y, y, x, p521_mod);
  40144. sp_521_mont_sub_21(y, y, x, p521_mod);
  40145. /* y = x^3 - 3x + b */
  40146. err = sp_521_mod_mul_norm_21(x, p521_b, p521_mod);
  40147. }
  40148. if (err == MP_OKAY) {
  40149. sp_521_mont_add_21(y, y, x, p521_mod);
  40150. /* y = sqrt(x^3 - 3x + b) */
  40151. err = sp_521_mont_sqrt_21(y);
  40152. }
  40153. if (err == MP_OKAY) {
  40154. XMEMSET(y + 21, 0, 21U * sizeof(sp_digit));
  40155. sp_521_mont_reduce_21(y, p521_mod, p521_mp_mod);
  40156. if ((((word32)y[0] ^ (word32)odd) & 1U) != 0U) {
  40157. sp_521_mont_sub_21(y, p521_mod, y, p521_mod);
  40158. }
  40159. err = sp_521_to_mp(y, ym);
  40160. }
  40161. #ifdef WOLFSSL_SP_SMALL_STACK
  40162. if (x != NULL)
  40163. XFREE(x, NULL, DYNAMIC_TYPE_ECC);
  40164. #endif
  40165. return err;
  40166. }
  40167. #endif
  40168. #endif /* WOLFSSL_SP_521 */
  40169. #ifdef WOLFCRYPT_HAVE_SAKKE
  40170. #ifdef WOLFSSL_SP_1024
  40171. /* Point structure to use. */
  40172. typedef struct sp_point_1024 {
  40173. /* X ordinate of point. */
  40174. sp_digit x[2 * 42];
  40175. /* Y ordinate of point. */
  40176. sp_digit y[2 * 42];
  40177. /* Z ordinate of point. */
  40178. sp_digit z[2 * 42];
  40179. /* Indicates point is at infinity. */
  40180. int infinity;
  40181. } sp_point_1024;
  40182. #ifndef WOLFSSL_SP_SMALL
  40183. /* Multiply a and b into r. (r = a * b)
  40184. *
  40185. * r A single precision integer.
  40186. * a A single precision integer.
  40187. * b A single precision integer.
  40188. */
  40189. SP_NOINLINE static void sp_1024_mul_7(sp_digit* r, const sp_digit* a,
  40190. const sp_digit* b)
  40191. {
  40192. sp_int64 t0 = ((sp_int64)a[ 0]) * b[ 0];
  40193. sp_int64 t1 = ((sp_int64)a[ 0]) * b[ 1]
  40194. + ((sp_int64)a[ 1]) * b[ 0];
  40195. sp_int64 t2 = ((sp_int64)a[ 0]) * b[ 2]
  40196. + ((sp_int64)a[ 1]) * b[ 1]
  40197. + ((sp_int64)a[ 2]) * b[ 0];
  40198. sp_int64 t3 = ((sp_int64)a[ 0]) * b[ 3]
  40199. + ((sp_int64)a[ 1]) * b[ 2]
  40200. + ((sp_int64)a[ 2]) * b[ 1]
  40201. + ((sp_int64)a[ 3]) * b[ 0];
  40202. sp_int64 t4 = ((sp_int64)a[ 0]) * b[ 4]
  40203. + ((sp_int64)a[ 1]) * b[ 3]
  40204. + ((sp_int64)a[ 2]) * b[ 2]
  40205. + ((sp_int64)a[ 3]) * b[ 1]
  40206. + ((sp_int64)a[ 4]) * b[ 0];
  40207. sp_int64 t5 = ((sp_int64)a[ 0]) * b[ 5]
  40208. + ((sp_int64)a[ 1]) * b[ 4]
  40209. + ((sp_int64)a[ 2]) * b[ 3]
  40210. + ((sp_int64)a[ 3]) * b[ 2]
  40211. + ((sp_int64)a[ 4]) * b[ 1]
  40212. + ((sp_int64)a[ 5]) * b[ 0];
  40213. sp_int64 t6 = ((sp_int64)a[ 0]) * b[ 6]
  40214. + ((sp_int64)a[ 1]) * b[ 5]
  40215. + ((sp_int64)a[ 2]) * b[ 4]
  40216. + ((sp_int64)a[ 3]) * b[ 3]
  40217. + ((sp_int64)a[ 4]) * b[ 2]
  40218. + ((sp_int64)a[ 5]) * b[ 1]
  40219. + ((sp_int64)a[ 6]) * b[ 0];
  40220. sp_int64 t7 = ((sp_int64)a[ 1]) * b[ 6]
  40221. + ((sp_int64)a[ 2]) * b[ 5]
  40222. + ((sp_int64)a[ 3]) * b[ 4]
  40223. + ((sp_int64)a[ 4]) * b[ 3]
  40224. + ((sp_int64)a[ 5]) * b[ 2]
  40225. + ((sp_int64)a[ 6]) * b[ 1];
  40226. sp_int64 t8 = ((sp_int64)a[ 2]) * b[ 6]
  40227. + ((sp_int64)a[ 3]) * b[ 5]
  40228. + ((sp_int64)a[ 4]) * b[ 4]
  40229. + ((sp_int64)a[ 5]) * b[ 3]
  40230. + ((sp_int64)a[ 6]) * b[ 2];
  40231. sp_int64 t9 = ((sp_int64)a[ 3]) * b[ 6]
  40232. + ((sp_int64)a[ 4]) * b[ 5]
  40233. + ((sp_int64)a[ 5]) * b[ 4]
  40234. + ((sp_int64)a[ 6]) * b[ 3];
  40235. sp_int64 t10 = ((sp_int64)a[ 4]) * b[ 6]
  40236. + ((sp_int64)a[ 5]) * b[ 5]
  40237. + ((sp_int64)a[ 6]) * b[ 4];
  40238. sp_int64 t11 = ((sp_int64)a[ 5]) * b[ 6]
  40239. + ((sp_int64)a[ 6]) * b[ 5];
  40240. sp_int64 t12 = ((sp_int64)a[ 6]) * b[ 6];
  40241. t1 += t0 >> 25; r[ 0] = t0 & 0x1ffffff;
  40242. t2 += t1 >> 25; r[ 1] = t1 & 0x1ffffff;
  40243. t3 += t2 >> 25; r[ 2] = t2 & 0x1ffffff;
  40244. t4 += t3 >> 25; r[ 3] = t3 & 0x1ffffff;
  40245. t5 += t4 >> 25; r[ 4] = t4 & 0x1ffffff;
  40246. t6 += t5 >> 25; r[ 5] = t5 & 0x1ffffff;
  40247. t7 += t6 >> 25; r[ 6] = t6 & 0x1ffffff;
  40248. t8 += t7 >> 25; r[ 7] = t7 & 0x1ffffff;
  40249. t9 += t8 >> 25; r[ 8] = t8 & 0x1ffffff;
  40250. t10 += t9 >> 25; r[ 9] = t9 & 0x1ffffff;
  40251. t11 += t10 >> 25; r[10] = t10 & 0x1ffffff;
  40252. t12 += t11 >> 25; r[11] = t11 & 0x1ffffff;
  40253. r[13] = (sp_digit)(t12 >> 25);
  40254. r[12] = t12 & 0x1ffffff;
  40255. }
  40256. /* Square a and put result in r. (r = a * a)
  40257. *
  40258. * r A single precision integer.
  40259. * a A single precision integer.
  40260. */
  40261. SP_NOINLINE static void sp_1024_sqr_7(sp_digit* r, const sp_digit* a)
  40262. {
  40263. sp_int64 t0 = ((sp_int64)a[ 0]) * a[ 0];
  40264. sp_int64 t1 = (((sp_int64)a[ 0]) * a[ 1]) * 2;
  40265. sp_int64 t2 = (((sp_int64)a[ 0]) * a[ 2]) * 2
  40266. + ((sp_int64)a[ 1]) * a[ 1];
  40267. sp_int64 t3 = (((sp_int64)a[ 0]) * a[ 3]
  40268. + ((sp_int64)a[ 1]) * a[ 2]) * 2;
  40269. sp_int64 t4 = (((sp_int64)a[ 0]) * a[ 4]
  40270. + ((sp_int64)a[ 1]) * a[ 3]) * 2
  40271. + ((sp_int64)a[ 2]) * a[ 2];
  40272. sp_int64 t5 = (((sp_int64)a[ 0]) * a[ 5]
  40273. + ((sp_int64)a[ 1]) * a[ 4]
  40274. + ((sp_int64)a[ 2]) * a[ 3]) * 2;
  40275. sp_int64 t6 = (((sp_int64)a[ 0]) * a[ 6]
  40276. + ((sp_int64)a[ 1]) * a[ 5]
  40277. + ((sp_int64)a[ 2]) * a[ 4]) * 2
  40278. + ((sp_int64)a[ 3]) * a[ 3];
  40279. sp_int64 t7 = (((sp_int64)a[ 1]) * a[ 6]
  40280. + ((sp_int64)a[ 2]) * a[ 5]
  40281. + ((sp_int64)a[ 3]) * a[ 4]) * 2;
  40282. sp_int64 t8 = (((sp_int64)a[ 2]) * a[ 6]
  40283. + ((sp_int64)a[ 3]) * a[ 5]) * 2
  40284. + ((sp_int64)a[ 4]) * a[ 4];
  40285. sp_int64 t9 = (((sp_int64)a[ 3]) * a[ 6]
  40286. + ((sp_int64)a[ 4]) * a[ 5]) * 2;
  40287. sp_int64 t10 = (((sp_int64)a[ 4]) * a[ 6]) * 2
  40288. + ((sp_int64)a[ 5]) * a[ 5];
  40289. sp_int64 t11 = (((sp_int64)a[ 5]) * a[ 6]) * 2;
  40290. sp_int64 t12 = ((sp_int64)a[ 6]) * a[ 6];
  40291. t1 += t0 >> 25; r[ 0] = t0 & 0x1ffffff;
  40292. t2 += t1 >> 25; r[ 1] = t1 & 0x1ffffff;
  40293. t3 += t2 >> 25; r[ 2] = t2 & 0x1ffffff;
  40294. t4 += t3 >> 25; r[ 3] = t3 & 0x1ffffff;
  40295. t5 += t4 >> 25; r[ 4] = t4 & 0x1ffffff;
  40296. t6 += t5 >> 25; r[ 5] = t5 & 0x1ffffff;
  40297. t7 += t6 >> 25; r[ 6] = t6 & 0x1ffffff;
  40298. t8 += t7 >> 25; r[ 7] = t7 & 0x1ffffff;
  40299. t9 += t8 >> 25; r[ 8] = t8 & 0x1ffffff;
  40300. t10 += t9 >> 25; r[ 9] = t9 & 0x1ffffff;
  40301. t11 += t10 >> 25; r[10] = t10 & 0x1ffffff;
  40302. t12 += t11 >> 25; r[11] = t11 & 0x1ffffff;
  40303. r[13] = (sp_digit)(t12 >> 25);
  40304. r[12] = t12 & 0x1ffffff;
  40305. }
  40306. /* Add b to a into r. (r = a + b)
  40307. *
  40308. * r A single precision integer.
  40309. * a A single precision integer.
  40310. * b A single precision integer.
  40311. */
  40312. SP_NOINLINE static int sp_1024_add_7(sp_digit* r, const sp_digit* a,
  40313. const sp_digit* b)
  40314. {
  40315. r[ 0] = a[ 0] + b[ 0];
  40316. r[ 1] = a[ 1] + b[ 1];
  40317. r[ 2] = a[ 2] + b[ 2];
  40318. r[ 3] = a[ 3] + b[ 3];
  40319. r[ 4] = a[ 4] + b[ 4];
  40320. r[ 5] = a[ 5] + b[ 5];
  40321. r[ 6] = a[ 6] + b[ 6];
  40322. return 0;
  40323. }
  40324. /* Sub b from a into r. (r = a - b)
  40325. *
  40326. * r A single precision integer.
  40327. * a A single precision integer.
  40328. * b A single precision integer.
  40329. */
  40330. SP_NOINLINE static int sp_1024_sub_14(sp_digit* r, const sp_digit* a,
  40331. const sp_digit* b)
  40332. {
  40333. r[ 0] = a[ 0] - b[ 0];
  40334. r[ 1] = a[ 1] - b[ 1];
  40335. r[ 2] = a[ 2] - b[ 2];
  40336. r[ 3] = a[ 3] - b[ 3];
  40337. r[ 4] = a[ 4] - b[ 4];
  40338. r[ 5] = a[ 5] - b[ 5];
  40339. r[ 6] = a[ 6] - b[ 6];
  40340. r[ 7] = a[ 7] - b[ 7];
  40341. r[ 8] = a[ 8] - b[ 8];
  40342. r[ 9] = a[ 9] - b[ 9];
  40343. r[10] = a[10] - b[10];
  40344. r[11] = a[11] - b[11];
  40345. r[12] = a[12] - b[12];
  40346. r[13] = a[13] - b[13];
  40347. return 0;
  40348. }
  40349. /* Add b to a into r. (r = a + b)
  40350. *
  40351. * r A single precision integer.
  40352. * a A single precision integer.
  40353. * b A single precision integer.
  40354. */
  40355. SP_NOINLINE static int sp_1024_add_14(sp_digit* r, const sp_digit* a,
  40356. const sp_digit* b)
  40357. {
  40358. r[ 0] = a[ 0] + b[ 0];
  40359. r[ 1] = a[ 1] + b[ 1];
  40360. r[ 2] = a[ 2] + b[ 2];
  40361. r[ 3] = a[ 3] + b[ 3];
  40362. r[ 4] = a[ 4] + b[ 4];
  40363. r[ 5] = a[ 5] + b[ 5];
  40364. r[ 6] = a[ 6] + b[ 6];
  40365. r[ 7] = a[ 7] + b[ 7];
  40366. r[ 8] = a[ 8] + b[ 8];
  40367. r[ 9] = a[ 9] + b[ 9];
  40368. r[10] = a[10] + b[10];
  40369. r[11] = a[11] + b[11];
  40370. r[12] = a[12] + b[12];
  40371. r[13] = a[13] + b[13];
  40372. return 0;
  40373. }
  40374. /* Multiply a and b into r. (r = a * b)
  40375. *
  40376. * r A single precision integer.
  40377. * a A single precision integer.
  40378. * b A single precision integer.
  40379. */
  40380. SP_NOINLINE static void sp_1024_mul_21(sp_digit* r, const sp_digit* a,
  40381. const sp_digit* b)
  40382. {
  40383. sp_digit p0[14];
  40384. sp_digit p1[14];
  40385. sp_digit p2[14];
  40386. sp_digit p3[14];
  40387. sp_digit p4[14];
  40388. sp_digit p5[14];
  40389. sp_digit t0[14];
  40390. sp_digit t1[14];
  40391. sp_digit t2[14];
  40392. sp_digit a0[7];
  40393. sp_digit a1[7];
  40394. sp_digit a2[7];
  40395. sp_digit b0[7];
  40396. sp_digit b1[7];
  40397. sp_digit b2[7];
  40398. (void)sp_1024_add_7(a0, a, &a[7]);
  40399. (void)sp_1024_add_7(b0, b, &b[7]);
  40400. (void)sp_1024_add_7(a1, &a[7], &a[14]);
  40401. (void)sp_1024_add_7(b1, &b[7], &b[14]);
  40402. (void)sp_1024_add_7(a2, a0, &a[14]);
  40403. (void)sp_1024_add_7(b2, b0, &b[14]);
  40404. sp_1024_mul_7(p0, a, b);
  40405. sp_1024_mul_7(p2, &a[7], &b[7]);
  40406. sp_1024_mul_7(p4, &a[14], &b[14]);
  40407. sp_1024_mul_7(p1, a0, b0);
  40408. sp_1024_mul_7(p3, a1, b1);
  40409. sp_1024_mul_7(p5, a2, b2);
  40410. XMEMSET(r, 0, sizeof(*r)*2U*21U);
  40411. (void)sp_1024_sub_14(t0, p3, p2);
  40412. (void)sp_1024_sub_14(t1, p1, p2);
  40413. (void)sp_1024_sub_14(t2, p5, t0);
  40414. (void)sp_1024_sub_14(t2, t2, t1);
  40415. (void)sp_1024_sub_14(t0, t0, p4);
  40416. (void)sp_1024_sub_14(t1, t1, p0);
  40417. (void)sp_1024_add_14(r, r, p0);
  40418. (void)sp_1024_add_14(&r[7], &r[7], t1);
  40419. (void)sp_1024_add_14(&r[14], &r[14], t2);
  40420. (void)sp_1024_add_14(&r[21], &r[21], t0);
  40421. (void)sp_1024_add_14(&r[28], &r[28], p4);
  40422. }
  40423. /* Square a into r. (r = a * a)
  40424. *
  40425. * r A single precision integer.
  40426. * a A single precision integer.
  40427. */
  40428. SP_NOINLINE static void sp_1024_sqr_21(sp_digit* r, const sp_digit* a)
  40429. {
  40430. sp_digit p0[14];
  40431. sp_digit p1[14];
  40432. sp_digit p2[14];
  40433. sp_digit p3[14];
  40434. sp_digit p4[14];
  40435. sp_digit p5[14];
  40436. sp_digit t0[14];
  40437. sp_digit t1[14];
  40438. sp_digit t2[14];
  40439. sp_digit a0[7];
  40440. sp_digit a1[7];
  40441. sp_digit a2[7];
  40442. (void)sp_1024_add_7(a0, a, &a[7]);
  40443. (void)sp_1024_add_7(a1, &a[7], &a[14]);
  40444. (void)sp_1024_add_7(a2, a0, &a[14]);
  40445. sp_1024_sqr_7(p0, a);
  40446. sp_1024_sqr_7(p2, &a[7]);
  40447. sp_1024_sqr_7(p4, &a[14]);
  40448. sp_1024_sqr_7(p1, a0);
  40449. sp_1024_sqr_7(p3, a1);
  40450. sp_1024_sqr_7(p5, a2);
  40451. XMEMSET(r, 0, sizeof(*r)*2U*21U);
  40452. (void)sp_1024_sub_14(t0, p3, p2);
  40453. (void)sp_1024_sub_14(t1, p1, p2);
  40454. (void)sp_1024_sub_14(t2, p5, t0);
  40455. (void)sp_1024_sub_14(t2, t2, t1);
  40456. (void)sp_1024_sub_14(t0, t0, p4);
  40457. (void)sp_1024_sub_14(t1, t1, p0);
  40458. (void)sp_1024_add_14(r, r, p0);
  40459. (void)sp_1024_add_14(&r[7], &r[7], t1);
  40460. (void)sp_1024_add_14(&r[14], &r[14], t2);
  40461. (void)sp_1024_add_14(&r[21], &r[21], t0);
  40462. (void)sp_1024_add_14(&r[28], &r[28], p4);
  40463. }
  40464. /* Add b to a into r. (r = a + b)
  40465. *
  40466. * r A single precision integer.
  40467. * a A single precision integer.
  40468. * b A single precision integer.
  40469. */
  40470. SP_NOINLINE static int sp_1024_add_21(sp_digit* r, const sp_digit* a,
  40471. const sp_digit* b)
  40472. {
  40473. int i;
  40474. for (i = 0; i < 16; i += 8) {
  40475. r[i + 0] = a[i + 0] + b[i + 0];
  40476. r[i + 1] = a[i + 1] + b[i + 1];
  40477. r[i + 2] = a[i + 2] + b[i + 2];
  40478. r[i + 3] = a[i + 3] + b[i + 3];
  40479. r[i + 4] = a[i + 4] + b[i + 4];
  40480. r[i + 5] = a[i + 5] + b[i + 5];
  40481. r[i + 6] = a[i + 6] + b[i + 6];
  40482. r[i + 7] = a[i + 7] + b[i + 7];
  40483. }
  40484. r[16] = a[16] + b[16];
  40485. r[17] = a[17] + b[17];
  40486. r[18] = a[18] + b[18];
  40487. r[19] = a[19] + b[19];
  40488. r[20] = a[20] + b[20];
  40489. return 0;
  40490. }
  40491. /* Add b to a into r. (r = a + b)
  40492. *
  40493. * r A single precision integer.
  40494. * a A single precision integer.
  40495. * b A single precision integer.
  40496. */
  40497. SP_NOINLINE static int sp_1024_add_42(sp_digit* r, const sp_digit* a,
  40498. const sp_digit* b)
  40499. {
  40500. int i;
  40501. for (i = 0; i < 40; i += 8) {
  40502. r[i + 0] = a[i + 0] + b[i + 0];
  40503. r[i + 1] = a[i + 1] + b[i + 1];
  40504. r[i + 2] = a[i + 2] + b[i + 2];
  40505. r[i + 3] = a[i + 3] + b[i + 3];
  40506. r[i + 4] = a[i + 4] + b[i + 4];
  40507. r[i + 5] = a[i + 5] + b[i + 5];
  40508. r[i + 6] = a[i + 6] + b[i + 6];
  40509. r[i + 7] = a[i + 7] + b[i + 7];
  40510. }
  40511. r[40] = a[40] + b[40];
  40512. r[41] = a[41] + b[41];
  40513. return 0;
  40514. }
  40515. /* Sub b from a into r. (r = a - b)
  40516. *
  40517. * r A single precision integer.
  40518. * a A single precision integer.
  40519. * b A single precision integer.
  40520. */
  40521. SP_NOINLINE static int sp_1024_sub_42(sp_digit* r, const sp_digit* a,
  40522. const sp_digit* b)
  40523. {
  40524. int i;
  40525. for (i = 0; i < 40; i += 8) {
  40526. r[i + 0] = a[i + 0] - b[i + 0];
  40527. r[i + 1] = a[i + 1] - b[i + 1];
  40528. r[i + 2] = a[i + 2] - b[i + 2];
  40529. r[i + 3] = a[i + 3] - b[i + 3];
  40530. r[i + 4] = a[i + 4] - b[i + 4];
  40531. r[i + 5] = a[i + 5] - b[i + 5];
  40532. r[i + 6] = a[i + 6] - b[i + 6];
  40533. r[i + 7] = a[i + 7] - b[i + 7];
  40534. }
  40535. r[40] = a[40] - b[40];
  40536. r[41] = a[41] - b[41];
  40537. return 0;
  40538. }
  40539. /* Multiply a and b into r. (r = a * b)
  40540. *
  40541. * r A single precision integer.
  40542. * a A single precision integer.
  40543. * b A single precision integer.
  40544. */
  40545. SP_NOINLINE static void sp_1024_mul_42(sp_digit* r, const sp_digit* a,
  40546. const sp_digit* b)
  40547. {
  40548. sp_digit* z0 = r;
  40549. sp_digit z1[42];
  40550. sp_digit* a1 = z1;
  40551. sp_digit b1[21];
  40552. sp_digit* z2 = r + 42;
  40553. (void)sp_1024_add_21(a1, a, &a[21]);
  40554. (void)sp_1024_add_21(b1, b, &b[21]);
  40555. sp_1024_mul_21(z2, &a[21], &b[21]);
  40556. sp_1024_mul_21(z0, a, b);
  40557. sp_1024_mul_21(z1, a1, b1);
  40558. (void)sp_1024_sub_42(z1, z1, z2);
  40559. (void)sp_1024_sub_42(z1, z1, z0);
  40560. (void)sp_1024_add_42(r + 21, r + 21, z1);
  40561. }
  40562. /* Square a and put result in r. (r = a * a)
  40563. *
  40564. * r A single precision integer.
  40565. * a A single precision integer.
  40566. */
  40567. SP_NOINLINE static void sp_1024_sqr_42(sp_digit* r, const sp_digit* a)
  40568. {
  40569. sp_digit* z0 = r;
  40570. sp_digit z1[42];
  40571. sp_digit* a1 = z1;
  40572. sp_digit* z2 = r + 42;
  40573. (void)sp_1024_add_21(a1, a, &a[21]);
  40574. sp_1024_sqr_21(z2, &a[21]);
  40575. sp_1024_sqr_21(z0, a);
  40576. sp_1024_sqr_21(z1, a1);
  40577. (void)sp_1024_sub_42(z1, z1, z2);
  40578. (void)sp_1024_sub_42(z1, z1, z0);
  40579. (void)sp_1024_add_42(r + 21, r + 21, z1);
  40580. }
  40581. #else
  40582. /* Multiply a and b into r. (r = a * b)
  40583. *
  40584. * r A single precision integer.
  40585. * a A single precision integer.
  40586. * b A single precision integer.
  40587. */
  40588. SP_NOINLINE static void sp_1024_mul_42(sp_digit* r, const sp_digit* a,
  40589. const sp_digit* b)
  40590. {
  40591. int i;
  40592. int imax;
  40593. int k;
  40594. sp_uint64 c;
  40595. sp_uint64 lo;
  40596. c = ((sp_uint64)a[41]) * b[41];
  40597. r[83] = (sp_digit)(c >> 25);
  40598. c &= 0x1ffffff;
  40599. for (k = 81; k >= 0; k--) {
  40600. if (k >= 42) {
  40601. i = k - 41;
  40602. imax = 41;
  40603. }
  40604. else {
  40605. i = 0;
  40606. imax = k;
  40607. }
  40608. lo = 0;
  40609. for (; i <= imax; i++) {
  40610. lo += ((sp_uint64)a[i]) * b[k - i];
  40611. }
  40612. c += lo >> 25;
  40613. r[k + 2] += (sp_digit)(c >> 25);
  40614. r[k + 1] = (sp_digit)(c & 0x1ffffff);
  40615. c = lo & 0x1ffffff;
  40616. }
  40617. r[0] = (sp_digit)c;
  40618. }
  40619. /* Square a and put result in r. (r = a * a)
  40620. *
  40621. * r A single precision integer.
  40622. * a A single precision integer.
  40623. */
  40624. SP_NOINLINE static void sp_1024_sqr_42(sp_digit* r, const sp_digit* a)
  40625. {
  40626. int i;
  40627. int imax;
  40628. int k;
  40629. sp_uint64 c;
  40630. sp_uint64 t;
  40631. c = ((sp_uint64)a[41]) * a[41];
  40632. r[83] = (sp_digit)(c >> 25);
  40633. c = (c & 0x1ffffff) << 25;
  40634. for (k = 81; k >= 0; k--) {
  40635. i = (k + 1) / 2;
  40636. if ((k & 1) == 0) {
  40637. c += ((sp_uint64)a[i]) * a[i];
  40638. i++;
  40639. }
  40640. if (k < 41) {
  40641. imax = k;
  40642. }
  40643. else {
  40644. imax = 41;
  40645. }
  40646. t = 0;
  40647. for (; i <= imax; i++) {
  40648. t += ((sp_uint64)a[i]) * a[k - i];
  40649. }
  40650. c += t * 2;
  40651. r[k + 2] += (sp_digit) (c >> 50);
  40652. r[k + 1] = (sp_digit)((c >> 25) & 0x1ffffff);
  40653. c = (c & 0x1ffffff) << 25;
  40654. }
  40655. r[0] = (sp_digit)(c >> 25);
  40656. }
  40657. #endif /* !WOLFSSL_SP_SMALL */
  40658. /* The modulus (prime) of the curve P1024. */
  40659. static const sp_digit p1024_mod[42] = {
  40660. 0x0a85feb,0x0c03d7f,0x1a1d99b,0x0158f59,0x00c5df1,0x02bed84,0x1a08e26,
  40661. 0x03ff9c7,0x156971f,0x1ca6b57,0x1026aa7,0x18a4387,0x02a7cf3,0x18c2954,
  40662. 0x0bfd2a0,0x039c36d,0x1cd6568,0x0289562,0x09ad335,0x18c90e6,0x06d0e26,
  40663. 0x1a53335,0x0d5b49f,0x1911432,0x1b39ff7,0x05873c8,0x14c6967,0x050e61a,
  40664. 0x1c0f1b2,0x1593f17,0x0bbd02a,0x167c034,0x09ae358,0x04130df,0x138672d,
  40665. 0x1482d81,0x1ad0657,0x0308cc6,0x0ff6997,0x03e14ac,0x0997abb,0x0000000
  40666. };
  40667. /* The Montgomery normalizer for modulus of the curve P1024. */
  40668. static const sp_digit p1024_norm_mod[42] = {
  40669. 0x157a015,0x13fc280,0x05e2664,0x1ea70a6,0x1f3a20e,0x1d4127b,0x05f71d9,
  40670. 0x1c00638,0x0a968e0,0x03594a8,0x0fd9558,0x075bc78,0x1d5830c,0x073d6ab,
  40671. 0x1402d5f,0x1c63c92,0x0329a97,0x1d76a9d,0x1652cca,0x0736f19,0x192f1d9,
  40672. 0x05accca,0x12a4b60,0x06eebcd,0x04c6008,0x1a78c37,0x0b39698,0x1af19e5,
  40673. 0x03f0e4d,0x0a6c0e8,0x1442fd5,0x0983fcb,0x1651ca7,0x1becf20,0x0c798d2,
  40674. 0x0b7d27e,0x052f9a8,0x1cf7339,0x1009668,0x1c1eb53,0x0668544,0x0000000
  40675. };
  40676. /* The Montgomery multiplier for modulus of the curve P1024. */
  40677. static sp_digit p1024_mp_mod = 0x8f2f3d;
  40678. #if defined(WOLFSSL_SP_SMALL) || defined(HAVE_ECC_CHECK_KEY)
  40679. /* The order of the curve P1024. */
  40680. static const sp_digit p1024_order[42] = {
  40681. 0x1aa17fb,0x1b00f5f,0x0e87666,0x08563d6,0x003177c,0x10afb61,0x1e82389,
  40682. 0x18ffe71,0x1d5a5c7,0x1f29ad5,0x1c09aa9,0x1e290e1,0x00a9f3c,0x0630a55,
  40683. 0x0aff4a8,0x00e70db,0x173595a,0x08a2558,0x126b4cd,0x1632439,0x09b4389,
  40684. 0x1e94ccd,0x1356d27,0x1e4450c,0x06ce7fd,0x1961cf2,0x1531a59,0x1143986,
  40685. 0x1f03c6c,0x1564fc5,0x02ef40a,0x059f00d,0x1a6b8d6,0x0904c37,0x0ce19cb,
  40686. 0x1d20b60,0x16b4195,0x18c2331,0x03fda65,0x18f852b,0x0265eae,0x0000000
  40687. };
  40688. #endif
  40689. /* The base point of curve P1024. */
  40690. static const sp_point_1024 p1024_base = {
  40691. /* X ordinate */
  40692. {
  40693. 0x0e63895,0x0e455f5,0x05e6203,0x092cfc1,0x00ec46c,0x1fb9f64,0x18e96d8,
  40694. 0x10fdd22,0x080728d,0x0e7da66,0x1a44375,0x029b74c,0x14a7c15,0x1d306f3,
  40695. 0x00b0ce5,0x1e5c34e,0x0548b72,0x199be43,0x1756f32,0x015eecb,0x0890976,
  40696. 0x13a0367,0x1c62f67,0x13bf4aa,0x1f22cdb,0x10821ea,0x00c2c27,0x1621b72,
  40697. 0x0e2308a,0x1b607b6,0x0fed7b6,0x16dfef9,0x0b2f204,0x034e34c,0x1f582bb,
  40698. 0x1456345,0x1ed9b52,0x1cc8029,0x0a6b429,0x1dc6658,0x053fc09,0x0000000,
  40699. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40700. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40701. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40702. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40703. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40704. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40705. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40706. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40707. (sp_digit)0, (sp_digit)0
  40708. },
  40709. /* Y ordinate */
  40710. {
  40711. 0x1ef16d7,0x19feb8d,0x1379d55,0x00d4cfb,0x0db9b57,0x1da31b5,0x0b56b56,
  40712. 0x153017b,0x1e9cb99,0x1a8ad6b,0x1357c84,0x0f3f8b4,0x09492d9,0x0b2554c,
  40713. 0x1bc7a00,0x05fc158,0x0b5b765,0x0656b4b,0x1551f1b,0x15c22f5,0x12b970d,
  40714. 0x0654f01,0x105b3fc,0x028165c,0x18ccf9a,0x0fb35ac,0x17c3795,0x0fefebc,
  40715. 0x0ec2b9e,0x14fa32a,0x1e3d7a9,0x03c2822,0x1778d82,0x0834b1e,0x00580a6,
  40716. 0x0ba7d04,0x1634a13,0x18f8299,0x027c7e7,0x00c7ec0,0x00a8249,0x0000000,
  40717. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40718. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40719. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40720. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40721. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40722. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40723. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40724. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40725. (sp_digit)0, (sp_digit)0
  40726. },
  40727. /* Z ordinate */
  40728. {
  40729. 0x0000001,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  40730. 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  40731. 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  40732. 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  40733. 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  40734. 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
  40735. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40736. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40737. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40738. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40739. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40740. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40741. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40742. (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
  40743. (sp_digit)0, (sp_digit)0
  40744. },
  40745. /* infinity */
  40746. 0
  40747. };
  40748. /* Normalize the values in each word to 25 bits.
  40749. *
  40750. * a Array of sp_digit to normalize.
  40751. */
  40752. static void sp_1024_norm_41(sp_digit* a)
  40753. {
  40754. #ifdef WOLFSSL_SP_SMALL
  40755. int i;
  40756. for (i = 0; i < 40; i++) {
  40757. a[i+1] += a[i] >> 25;
  40758. a[i] &= 0x1ffffff;
  40759. }
  40760. #else
  40761. int i;
  40762. for (i = 0; i < 40; i += 8) {
  40763. a[i+1] += a[i+0] >> 25; a[i+0] &= 0x1ffffff;
  40764. a[i+2] += a[i+1] >> 25; a[i+1] &= 0x1ffffff;
  40765. a[i+3] += a[i+2] >> 25; a[i+2] &= 0x1ffffff;
  40766. a[i+4] += a[i+3] >> 25; a[i+3] &= 0x1ffffff;
  40767. a[i+5] += a[i+4] >> 25; a[i+4] &= 0x1ffffff;
  40768. a[i+6] += a[i+5] >> 25; a[i+5] &= 0x1ffffff;
  40769. a[i+7] += a[i+6] >> 25; a[i+6] &= 0x1ffffff;
  40770. a[i+8] += a[i+7] >> 25; a[i+7] &= 0x1ffffff;
  40771. }
  40772. #endif /* WOLFSSL_SP_SMALL */
  40773. }
  40774. /* Multiply a by scalar b into r. (r = a * b)
  40775. *
  40776. * r A single precision integer.
  40777. * a A single precision integer.
  40778. * b A scalar.
  40779. */
  40780. SP_NOINLINE static void sp_1024_mul_d_42(sp_digit* r, const sp_digit* a,
  40781. sp_digit b)
  40782. {
  40783. #ifdef WOLFSSL_SP_SMALL
  40784. sp_int64 tb = b;
  40785. sp_int64 t = 0;
  40786. int i;
  40787. for (i = 0; i < 42; i++) {
  40788. t += tb * a[i];
  40789. r[i] = (sp_digit)(t & 0x1ffffff);
  40790. t >>= 25;
  40791. }
  40792. r[42] = (sp_digit)t;
  40793. #else
  40794. sp_int64 tb = b;
  40795. sp_int64 t = 0;
  40796. sp_digit t2;
  40797. sp_int64 p[4];
  40798. int i;
  40799. for (i = 0; i < 40; i += 4) {
  40800. p[0] = tb * a[i + 0];
  40801. p[1] = tb * a[i + 1];
  40802. p[2] = tb * a[i + 2];
  40803. p[3] = tb * a[i + 3];
  40804. t += p[0];
  40805. t2 = (sp_digit)(t & 0x1ffffff);
  40806. t >>= 25;
  40807. r[i + 0] = (sp_digit)t2;
  40808. t += p[1];
  40809. t2 = (sp_digit)(t & 0x1ffffff);
  40810. t >>= 25;
  40811. r[i + 1] = (sp_digit)t2;
  40812. t += p[2];
  40813. t2 = (sp_digit)(t & 0x1ffffff);
  40814. t >>= 25;
  40815. r[i + 2] = (sp_digit)t2;
  40816. t += p[3];
  40817. t2 = (sp_digit)(t & 0x1ffffff);
  40818. t >>= 25;
  40819. r[i + 3] = (sp_digit)t2;
  40820. }
  40821. t += tb * a[40];
  40822. r[40] = (sp_digit)(t & 0x1ffffff);
  40823. t >>= 25;
  40824. t += tb * a[41];
  40825. r[41] = (sp_digit)(t & 0x1ffffff);
  40826. t >>= 25;
  40827. r[42] = (sp_digit)(t & 0x1ffffff);
  40828. #endif /* WOLFSSL_SP_SMALL */
  40829. }
  40830. /* Multiply a by scalar b into r. (r = a * b)
  40831. *
  40832. * r A single precision integer.
  40833. * a A single precision integer.
  40834. * b A scalar.
  40835. */
  40836. SP_NOINLINE static void sp_1024_mul_d_84(sp_digit* r, const sp_digit* a,
  40837. sp_digit b)
  40838. {
  40839. #ifdef WOLFSSL_SP_SMALL
  40840. sp_int64 tb = b;
  40841. sp_int64 t = 0;
  40842. int i;
  40843. for (i = 0; i < 84; i++) {
  40844. t += tb * a[i];
  40845. r[i] = (sp_digit)(t & 0x1ffffff);
  40846. t >>= 25;
  40847. }
  40848. r[84] = (sp_digit)t;
  40849. #else
  40850. sp_int64 tb = b;
  40851. sp_int64 t = 0;
  40852. sp_digit t2;
  40853. sp_int64 p[4];
  40854. int i;
  40855. for (i = 0; i < 84; i += 4) {
  40856. p[0] = tb * a[i + 0];
  40857. p[1] = tb * a[i + 1];
  40858. p[2] = tb * a[i + 2];
  40859. p[3] = tb * a[i + 3];
  40860. t += p[0];
  40861. t2 = (sp_digit)(t & 0x1ffffff);
  40862. t >>= 25;
  40863. r[i + 0] = (sp_digit)t2;
  40864. t += p[1];
  40865. t2 = (sp_digit)(t & 0x1ffffff);
  40866. t >>= 25;
  40867. r[i + 1] = (sp_digit)t2;
  40868. t += p[2];
  40869. t2 = (sp_digit)(t & 0x1ffffff);
  40870. t >>= 25;
  40871. r[i + 2] = (sp_digit)t2;
  40872. t += p[3];
  40873. t2 = (sp_digit)(t & 0x1ffffff);
  40874. t >>= 25;
  40875. r[i + 3] = (sp_digit)t2;
  40876. }
  40877. r[84] = (sp_digit)(t & 0x1ffffff);
  40878. #endif /* WOLFSSL_SP_SMALL */
  40879. }
  40880. #ifdef WOLFSSL_SP_SMALL
  40881. /* Conditionally add a and b using the mask m.
  40882. * m is -1 to add and 0 when not.
  40883. *
  40884. * r A single precision number representing conditional add result.
  40885. * a A single precision number to add with.
  40886. * b A single precision number to add.
  40887. * m Mask value to apply.
  40888. */
  40889. static void sp_1024_cond_add_42(sp_digit* r, const sp_digit* a,
  40890. const sp_digit* b, const sp_digit m)
  40891. {
  40892. int i;
  40893. for (i = 0; i < 42; i++) {
  40894. r[i] = a[i] + (b[i] & m);
  40895. }
  40896. }
  40897. #endif /* WOLFSSL_SP_SMALL */
  40898. #ifndef WOLFSSL_SP_SMALL
  40899. /* Conditionally add a and b using the mask m.
  40900. * m is -1 to add and 0 when not.
  40901. *
  40902. * r A single precision number representing conditional add result.
  40903. * a A single precision number to add with.
  40904. * b A single precision number to add.
  40905. * m Mask value to apply.
  40906. */
  40907. static void sp_1024_cond_add_42(sp_digit* r, const sp_digit* a,
  40908. const sp_digit* b, const sp_digit m)
  40909. {
  40910. int i;
  40911. for (i = 0; i < 40; i += 8) {
  40912. r[i + 0] = a[i + 0] + (b[i + 0] & m);
  40913. r[i + 1] = a[i + 1] + (b[i + 1] & m);
  40914. r[i + 2] = a[i + 2] + (b[i + 2] & m);
  40915. r[i + 3] = a[i + 3] + (b[i + 3] & m);
  40916. r[i + 4] = a[i + 4] + (b[i + 4] & m);
  40917. r[i + 5] = a[i + 5] + (b[i + 5] & m);
  40918. r[i + 6] = a[i + 6] + (b[i + 6] & m);
  40919. r[i + 7] = a[i + 7] + (b[i + 7] & m);
  40920. }
  40921. r[40] = a[40] + (b[40] & m);
  40922. r[41] = a[41] + (b[41] & m);
  40923. }
  40924. #endif /* !WOLFSSL_SP_SMALL */
  40925. #ifdef WOLFSSL_SP_SMALL
  40926. /* Sub b from a into r. (r = a - b)
  40927. *
  40928. * r A single precision integer.
  40929. * a A single precision integer.
  40930. * b A single precision integer.
  40931. */
  40932. SP_NOINLINE static int sp_1024_sub_42(sp_digit* r, const sp_digit* a,
  40933. const sp_digit* b)
  40934. {
  40935. int i;
  40936. for (i = 0; i < 42; i++) {
  40937. r[i] = a[i] - b[i];
  40938. }
  40939. return 0;
  40940. }
  40941. #endif
  40942. #ifdef WOLFSSL_SP_SMALL
  40943. /* Add b to a into r. (r = a + b)
  40944. *
  40945. * r A single precision integer.
  40946. * a A single precision integer.
  40947. * b A single precision integer.
  40948. */
  40949. SP_NOINLINE static int sp_1024_add_42(sp_digit* r, const sp_digit* a,
  40950. const sp_digit* b)
  40951. {
  40952. int i;
  40953. for (i = 0; i < 42; i++) {
  40954. r[i] = a[i] + b[i];
  40955. }
  40956. return 0;
  40957. }
  40958. #endif /* WOLFSSL_SP_SMALL */
  40959. SP_NOINLINE static void sp_1024_rshift_42(sp_digit* r, const sp_digit* a,
  40960. byte n)
  40961. {
  40962. int i;
  40963. #ifdef WOLFSSL_SP_SMALL
  40964. for (i=0; i<41; i++) {
  40965. r[i] = ((a[i] >> n) | (a[i + 1] << (25 - n))) & 0x1ffffff;
  40966. }
  40967. #else
  40968. for (i=0; i<40; i += 8) {
  40969. r[i+0] = (a[i+0] >> n) | ((a[i+1] << (25 - n)) & 0x1ffffff);
  40970. r[i+1] = (a[i+1] >> n) | ((a[i+2] << (25 - n)) & 0x1ffffff);
  40971. r[i+2] = (a[i+2] >> n) | ((a[i+3] << (25 - n)) & 0x1ffffff);
  40972. r[i+3] = (a[i+3] >> n) | ((a[i+4] << (25 - n)) & 0x1ffffff);
  40973. r[i+4] = (a[i+4] >> n) | ((a[i+5] << (25 - n)) & 0x1ffffff);
  40974. r[i+5] = (a[i+5] >> n) | ((a[i+6] << (25 - n)) & 0x1ffffff);
  40975. r[i+6] = (a[i+6] >> n) | ((a[i+7] << (25 - n)) & 0x1ffffff);
  40976. r[i+7] = (a[i+7] >> n) | ((a[i+8] << (25 - n)) & 0x1ffffff);
  40977. }
  40978. r[40] = (a[40] >> n) | ((a[41] << (25 - n)) & 0x1ffffff);
  40979. #endif /* WOLFSSL_SP_SMALL */
  40980. r[41] = a[41] >> n;
  40981. }
  40982. static WC_INLINE sp_digit sp_1024_div_word_42(sp_digit d1, sp_digit d0,
  40983. sp_digit div)
  40984. {
  40985. #ifdef SP_USE_DIVTI3
  40986. sp_int64 d = ((sp_int64)d1 << 25) + d0;
  40987. return d / div;
  40988. #elif defined(__x86_64__) || defined(__i386__)
  40989. sp_int64 d = ((sp_int64)d1 << 25) + d0;
  40990. sp_uint32 lo = (sp_uint32)d;
  40991. sp_digit hi = (sp_digit)(d >> 32);
  40992. __asm__ __volatile__ (
  40993. "idiv %2"
  40994. : "+a" (lo)
  40995. : "d" (hi), "r" (div)
  40996. : "cc"
  40997. );
  40998. return (sp_digit)lo;
  40999. #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
  41000. sp_int64 d = ((sp_int64)d1 << 25) + d0;
  41001. sp_digit dv = (div >> 1) + 1;
  41002. sp_digit t1 = (sp_digit)(d >> 25);
  41003. sp_digit t0 = (sp_digit)(d & 0x1ffffff);
  41004. sp_digit t2;
  41005. sp_digit sign;
  41006. sp_digit r;
  41007. int i;
  41008. sp_int64 m;
  41009. r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  41010. t1 -= dv & (0 - r);
  41011. for (i = 23; i >= 1; i--) {
  41012. t1 += t1 + (((sp_uint32)t0 >> 24) & 1);
  41013. t0 <<= 1;
  41014. t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
  41015. r += r + t2;
  41016. t1 -= dv & (0 - t2);
  41017. t1 += t2;
  41018. }
  41019. r += r + 1;
  41020. m = d - ((sp_int64)r * div);
  41021. r += (sp_digit)(m >> 25);
  41022. m = d - ((sp_int64)r * div);
  41023. r += (sp_digit)(m >> 50) - (sp_digit)(d >> 50);
  41024. m = d - ((sp_int64)r * div);
  41025. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  41026. m *= sign;
  41027. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  41028. r += sign * t2;
  41029. m = d - ((sp_int64)r * div);
  41030. sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
  41031. m *= sign;
  41032. t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
  41033. r += sign * t2;
  41034. return r;
  41035. #else
  41036. sp_int64 d = ((sp_int64)d1 << 25) + d0;
  41037. sp_digit r = 0;
  41038. sp_digit t;
  41039. sp_digit dv = (div >> 10) + 1;
  41040. t = (sp_digit)(d >> 20);
  41041. t = (t / dv) << 10;
  41042. r += t;
  41043. d -= (sp_int64)t * div;
  41044. t = (sp_digit)(d >> 5);
  41045. t = t / (dv << 5);
  41046. r += t;
  41047. d -= (sp_int64)t * div;
  41048. t = (sp_digit)d;
  41049. t = t / div;
  41050. r += t;
  41051. d -= (sp_int64)t * div;
  41052. return r;
  41053. #endif
  41054. }
  41055. static WC_INLINE sp_digit sp_1024_word_div_word_42(sp_digit d, sp_digit div)
  41056. {
  41057. #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
  41058. defined(SP_DIV_WORD_USE_DIV)
  41059. return d / div;
  41060. #else
  41061. return (sp_digit)((sp_uint32)(div - d) >> 31);
  41062. #endif
  41063. }
  41064. /* Divide d in a and put remainder into r (m*d + r = a)
  41065. * m is not calculated as it is not needed at this time.
  41066. *
  41067. * Full implementation.
  41068. *
  41069. * a Number to be divided.
  41070. * d Number to divide with.
  41071. * m Multiplier result.
  41072. * r Remainder from the division.
  41073. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  41074. */
  41075. static int sp_1024_div_42(const sp_digit* a, const sp_digit* d,
  41076. const sp_digit* m, sp_digit* r)
  41077. {
  41078. int i;
  41079. #ifndef WOLFSSL_SP_DIV_32
  41080. #endif
  41081. sp_digit dv;
  41082. sp_digit r1;
  41083. #ifdef WOLFSSL_SP_SMALL_STACK
  41084. sp_digit* t1 = NULL;
  41085. #else
  41086. sp_digit t1[4 * 42 + 3];
  41087. #endif
  41088. sp_digit* t2 = NULL;
  41089. sp_digit* sd = NULL;
  41090. int err = MP_OKAY;
  41091. (void)m;
  41092. #ifdef WOLFSSL_SP_SMALL_STACK
  41093. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 42 + 3), NULL,
  41094. DYNAMIC_TYPE_TMP_BUFFER);
  41095. if (t1 == NULL)
  41096. err = MEMORY_E;
  41097. #endif
  41098. (void)m;
  41099. if (err == MP_OKAY) {
  41100. t2 = t1 + 84 + 1;
  41101. sd = t2 + 42 + 1;
  41102. sp_1024_mul_d_42(sd, d, (sp_digit)1 << 1);
  41103. sp_1024_mul_d_84(t1, a, (sp_digit)1 << 1);
  41104. dv = sd[40];
  41105. t1[41 + 41] += t1[41 + 41 - 1] >> 25;
  41106. t1[41 + 41 - 1] &= 0x1ffffff;
  41107. for (i=41; i>=0; i--) {
  41108. r1 = sp_1024_div_word_42(t1[41 + i], t1[41 + i - 1], dv);
  41109. sp_1024_mul_d_42(t2, sd, r1);
  41110. (void)sp_1024_sub_42(&t1[i], &t1[i], t2);
  41111. sp_1024_norm_41(&t1[i]);
  41112. t1[41 + i] += t1[41 + i - 1] >> 25;
  41113. t1[41 + i - 1] &= 0x1ffffff;
  41114. r1 = sp_1024_div_word_42(-t1[41 + i], -t1[41 + i - 1], dv);
  41115. r1 -= t1[41 + i];
  41116. sp_1024_mul_d_42(t2, sd, r1);
  41117. (void)sp_1024_add_42(&t1[i], &t1[i], t2);
  41118. t1[41 + i] += t1[41 + i - 1] >> 25;
  41119. t1[41 + i - 1] &= 0x1ffffff;
  41120. }
  41121. t1[41 - 1] += t1[41 - 2] >> 25;
  41122. t1[41 - 2] &= 0x1ffffff;
  41123. r1 = sp_1024_word_div_word_42(t1[41 - 1], dv);
  41124. sp_1024_mul_d_42(t2, sd, r1);
  41125. sp_1024_sub_42(t1, t1, t2);
  41126. XMEMCPY(r, t1, sizeof(*r) * 84U);
  41127. for (i=0; i<40; i++) {
  41128. r[i+1] += r[i] >> 25;
  41129. r[i] &= 0x1ffffff;
  41130. }
  41131. sp_1024_cond_add_42(r, r, sd, r[40] >> 31);
  41132. sp_1024_norm_41(r);
  41133. sp_1024_rshift_42(r, r, 1);
  41134. r[41] = 0;
  41135. }
  41136. #ifdef WOLFSSL_SP_SMALL_STACK
  41137. if (t1 != NULL)
  41138. XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  41139. #endif
  41140. return err;
  41141. }
  41142. /* Reduce a modulo m into r. (r = a mod m)
  41143. *
  41144. * r A single precision number that is the reduced result.
  41145. * a A single precision number that is to be reduced.
  41146. * m A single precision number that is the modulus to reduce with.
  41147. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
  41148. */
  41149. static int sp_1024_mod_42(sp_digit* r, const sp_digit* a, const sp_digit* m)
  41150. {
  41151. return sp_1024_div_42(a, m, NULL, r);
  41152. }
  41153. /* Multiply a number by Montgomery normalizer mod modulus (prime).
  41154. *
  41155. * r The resulting Montgomery form number.
  41156. * a The number to convert.
  41157. * m The modulus (prime).
  41158. * returns MEMORY_E when memory allocation fails and MP_OKAY otherwise.
  41159. */
  41160. static int sp_1024_mod_mul_norm_42(sp_digit* r, const sp_digit* a,
  41161. const sp_digit* m)
  41162. {
  41163. sp_1024_mul_42(r, a, p1024_norm_mod);
  41164. return sp_1024_mod_42(r, r, m);
  41165. }
  41166. #ifdef WOLFCRYPT_HAVE_SAKKE
  41167. /* Create a new point.
  41168. *
  41169. * heap [in] Buffer to allocate dynamic memory from.
  41170. * sp [in] Data for point - only if not allocating.
  41171. * p [out] New point.
  41172. * returns MEMORY_E when dynamic memory allocation fails and 0 otherwise.
  41173. */
  41174. static int sp_1024_point_new_ex_42(void* heap, sp_point_1024* sp,
  41175. sp_point_1024** p)
  41176. {
  41177. int ret = MP_OKAY;
  41178. (void)heap;
  41179. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  41180. defined(WOLFSSL_SP_SMALL_STACK)
  41181. (void)sp;
  41182. *p = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024), heap, DYNAMIC_TYPE_ECC);
  41183. #else
  41184. *p = sp;
  41185. #endif
  41186. if (*p == NULL) {
  41187. ret = MEMORY_E;
  41188. }
  41189. return ret;
  41190. }
  41191. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  41192. defined(WOLFSSL_SP_SMALL_STACK)
  41193. /* Allocate memory for point and return error. */
  41194. #define sp_1024_point_new_42(heap, sp, p) sp_1024_point_new_ex_42((heap), NULL, &(p))
  41195. #else
  41196. /* Set pointer to data and return no error. */
  41197. #define sp_1024_point_new_42(heap, sp, p) sp_1024_point_new_ex_42((heap), &(sp), &(p))
  41198. #endif
  41199. #endif /* WOLFCRYPT_HAVE_SAKKE */
  41200. #ifdef WOLFCRYPT_HAVE_SAKKE
  41201. /* Free the point.
  41202. *
  41203. * p [in,out] Point to free.
  41204. * clear [in] Indicates whether to zeroize point.
  41205. * heap [in] Buffer from which dynamic memory was allocate from.
  41206. */
  41207. static void sp_1024_point_free_42(sp_point_1024* p, int clear, void* heap)
  41208. {
  41209. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  41210. defined(WOLFSSL_SP_SMALL_STACK)
  41211. /* If valid pointer then clear point data if requested and free data. */
  41212. if (p != NULL) {
  41213. if (clear != 0) {
  41214. XMEMSET(p, 0, sizeof(*p));
  41215. }
  41216. XFREE(p, heap, DYNAMIC_TYPE_ECC);
  41217. }
  41218. #else
  41219. /* Clear point data if requested. */
  41220. if ((p != NULL) && (clear != 0)) {
  41221. XMEMSET(p, 0, sizeof(*p));
  41222. }
  41223. #endif
  41224. (void)heap;
  41225. }
  41226. #endif /* WOLFCRYPT_HAVE_SAKKE */
  41227. /* Convert an mp_int to an array of sp_digit.
  41228. *
  41229. * r A single precision integer.
  41230. * size Maximum number of bytes to convert
  41231. * a A multi-precision integer.
  41232. */
  41233. static void sp_1024_from_mp(sp_digit* r, int size, const mp_int* a)
  41234. {
  41235. #if DIGIT_BIT == 25
  41236. int i;
  41237. sp_digit j = (sp_digit)0 - (sp_digit)a->used;
  41238. int o = 0;
  41239. for (i = 0; i < size; i++) {
  41240. sp_digit mask = (sp_digit)0 - (j >> 24);
  41241. r[i] = a->dp[o] & mask;
  41242. j++;
  41243. o += (int)(j >> 24);
  41244. }
  41245. #elif DIGIT_BIT > 25
  41246. unsigned int i;
  41247. int j = 0;
  41248. word32 s = 0;
  41249. r[0] = 0;
  41250. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  41251. r[j] |= ((sp_digit)a->dp[i] << s);
  41252. r[j] &= 0x1ffffff;
  41253. s = 25U - s;
  41254. if (j + 1 >= size) {
  41255. break;
  41256. }
  41257. /* lint allow cast of mismatch word32 and mp_digit */
  41258. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  41259. while ((s + 25U) <= (word32)DIGIT_BIT) {
  41260. s += 25U;
  41261. r[j] &= 0x1ffffff;
  41262. if (j + 1 >= size) {
  41263. break;
  41264. }
  41265. if (s < (word32)DIGIT_BIT) {
  41266. /* lint allow cast of mismatch word32 and mp_digit */
  41267. r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
  41268. }
  41269. else {
  41270. r[++j] = (sp_digit)0;
  41271. }
  41272. }
  41273. s = (word32)DIGIT_BIT - s;
  41274. }
  41275. for (j++; j < size; j++) {
  41276. r[j] = 0;
  41277. }
  41278. #else
  41279. unsigned int i;
  41280. int j = 0;
  41281. int s = 0;
  41282. r[0] = 0;
  41283. for (i = 0; i < (unsigned int)a->used && j < size; i++) {
  41284. r[j] |= ((sp_digit)a->dp[i]) << s;
  41285. if (s + DIGIT_BIT >= 25) {
  41286. r[j] &= 0x1ffffff;
  41287. if (j + 1 >= size) {
  41288. break;
  41289. }
  41290. s = 25 - s;
  41291. if (s == DIGIT_BIT) {
  41292. r[++j] = 0;
  41293. s = 0;
  41294. }
  41295. else {
  41296. r[++j] = a->dp[i] >> s;
  41297. s = DIGIT_BIT - s;
  41298. }
  41299. }
  41300. else {
  41301. s += DIGIT_BIT;
  41302. }
  41303. }
  41304. for (j++; j < size; j++) {
  41305. r[j] = 0;
  41306. }
  41307. #endif
  41308. }
  41309. /* Convert a point of type ecc_point to type sp_point_1024.
  41310. *
  41311. * p Point of type sp_point_1024 (result).
  41312. * pm Point of type ecc_point.
  41313. */
  41314. static void sp_1024_point_from_ecc_point_42(sp_point_1024* p,
  41315. const ecc_point* pm)
  41316. {
  41317. XMEMSET(p->x, 0, sizeof(p->x));
  41318. XMEMSET(p->y, 0, sizeof(p->y));
  41319. XMEMSET(p->z, 0, sizeof(p->z));
  41320. sp_1024_from_mp(p->x, 42, pm->x);
  41321. sp_1024_from_mp(p->y, 42, pm->y);
  41322. sp_1024_from_mp(p->z, 42, pm->z);
  41323. p->infinity = 0;
  41324. }
  41325. /* Convert an array of sp_digit to an mp_int.
  41326. *
  41327. * a A single precision integer.
  41328. * r A multi-precision integer.
  41329. */
  41330. static int sp_1024_to_mp(const sp_digit* a, mp_int* r)
  41331. {
  41332. int err;
  41333. err = mp_grow(r, (1024 + DIGIT_BIT - 1) / DIGIT_BIT);
  41334. if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
  41335. #if DIGIT_BIT == 25
  41336. XMEMCPY(r->dp, a, sizeof(sp_digit) * 41);
  41337. r->used = 41;
  41338. mp_clamp(r);
  41339. #elif DIGIT_BIT < 25
  41340. int i;
  41341. int j = 0;
  41342. int s = 0;
  41343. r->dp[0] = 0;
  41344. for (i = 0; i < 41; i++) {
  41345. r->dp[j] |= (mp_digit)(a[i] << s);
  41346. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  41347. s = DIGIT_BIT - s;
  41348. r->dp[++j] = (mp_digit)(a[i] >> s);
  41349. while (s + DIGIT_BIT <= 25) {
  41350. s += DIGIT_BIT;
  41351. r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  41352. if (s == SP_WORD_SIZE) {
  41353. r->dp[j] = 0;
  41354. }
  41355. else {
  41356. r->dp[j] = (mp_digit)(a[i] >> s);
  41357. }
  41358. }
  41359. s = 25 - s;
  41360. }
  41361. r->used = (1024 + DIGIT_BIT - 1) / DIGIT_BIT;
  41362. mp_clamp(r);
  41363. #else
  41364. int i;
  41365. int j = 0;
  41366. int s = 0;
  41367. r->dp[0] = 0;
  41368. for (i = 0; i < 41; i++) {
  41369. r->dp[j] |= ((mp_digit)a[i]) << s;
  41370. if (s + 25 >= DIGIT_BIT) {
  41371. #if DIGIT_BIT != 32 && DIGIT_BIT != 64
  41372. r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
  41373. #endif
  41374. s = DIGIT_BIT - s;
  41375. r->dp[++j] = a[i] >> s;
  41376. s = 25 - s;
  41377. }
  41378. else {
  41379. s += 25;
  41380. }
  41381. }
  41382. r->used = (1024 + DIGIT_BIT - 1) / DIGIT_BIT;
  41383. mp_clamp(r);
  41384. #endif
  41385. }
  41386. return err;
  41387. }
  41388. /* Convert a point of type sp_point_1024 to type ecc_point.
  41389. *
  41390. * p Point of type sp_point_1024.
  41391. * pm Point of type ecc_point (result).
  41392. * returns MEMORY_E when allocation of memory in ecc_point fails otherwise
  41393. * MP_OKAY.
  41394. */
  41395. static int sp_1024_point_to_ecc_point_42(const sp_point_1024* p, ecc_point* pm)
  41396. {
  41397. int err;
  41398. err = sp_1024_to_mp(p->x, pm->x);
  41399. if (err == MP_OKAY) {
  41400. err = sp_1024_to_mp(p->y, pm->y);
  41401. }
  41402. if (err == MP_OKAY) {
  41403. err = sp_1024_to_mp(p->z, pm->z);
  41404. }
  41405. return err;
  41406. }
  41407. /* Compare a with b in constant time.
  41408. *
  41409. * a A single precision integer.
  41410. * b A single precision integer.
  41411. * return -ve, 0 or +ve if a is less than, equal to or greater than b
  41412. * respectively.
  41413. */
  41414. static sp_digit sp_1024_cmp_42(const sp_digit* a, const sp_digit* b)
  41415. {
  41416. sp_digit r = 0;
  41417. #ifdef WOLFSSL_SP_SMALL
  41418. int i;
  41419. for (i=41; i>=0; i--) {
  41420. r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 24);
  41421. }
  41422. #else
  41423. int i;
  41424. r |= (a[41] - b[41]) & (0 - (sp_digit)1);
  41425. r |= (a[40] - b[40]) & ~(((sp_digit)0 - r) >> 24);
  41426. for (i = 32; i >= 0; i -= 8) {
  41427. r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 24);
  41428. r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 24);
  41429. r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 24);
  41430. r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 24);
  41431. r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 24);
  41432. r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 24);
  41433. r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 24);
  41434. r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 24);
  41435. }
  41436. #endif /* WOLFSSL_SP_SMALL */
  41437. return r;
  41438. }
  41439. /* Conditionally subtract b from a using the mask m.
  41440. * m is -1 to subtract and 0 when not.
  41441. *
  41442. * r A single precision number representing condition subtract result.
  41443. * a A single precision number to subtract from.
  41444. * b A single precision number to subtract.
  41445. * m Mask value to apply.
  41446. */
  41447. static void sp_1024_cond_sub_42(sp_digit* r, const sp_digit* a,
  41448. const sp_digit* b, const sp_digit m)
  41449. {
  41450. #ifdef WOLFSSL_SP_SMALL
  41451. int i;
  41452. for (i = 0; i < 42; i++) {
  41453. r[i] = a[i] - (b[i] & m);
  41454. }
  41455. #else
  41456. int i;
  41457. for (i = 0; i < 40; i += 8) {
  41458. r[i + 0] = a[i + 0] - (b[i + 0] & m);
  41459. r[i + 1] = a[i + 1] - (b[i + 1] & m);
  41460. r[i + 2] = a[i + 2] - (b[i + 2] & m);
  41461. r[i + 3] = a[i + 3] - (b[i + 3] & m);
  41462. r[i + 4] = a[i + 4] - (b[i + 4] & m);
  41463. r[i + 5] = a[i + 5] - (b[i + 5] & m);
  41464. r[i + 6] = a[i + 6] - (b[i + 6] & m);
  41465. r[i + 7] = a[i + 7] - (b[i + 7] & m);
  41466. }
  41467. r[40] = a[40] - (b[40] & m);
  41468. r[41] = a[41] - (b[41] & m);
  41469. #endif /* WOLFSSL_SP_SMALL */
  41470. }
  41471. /* Mul a by scalar b and add into r. (r += a * b)
  41472. *
  41473. * r A single precision integer.
  41474. * a A single precision integer.
  41475. * b A scalar.
  41476. */
  41477. SP_NOINLINE static void sp_1024_mul_add_42(sp_digit* r, const sp_digit* a,
  41478. const sp_digit b)
  41479. {
  41480. #ifdef WOLFSSL_SP_SMALL
  41481. sp_int64 tb = b;
  41482. sp_int64 t[4];
  41483. int i;
  41484. t[0] = 0;
  41485. for (i = 0; i < 40; i += 4) {
  41486. t[0] += (tb * a[i+0]) + r[i+0];
  41487. t[1] = (tb * a[i+1]) + r[i+1];
  41488. t[2] = (tb * a[i+2]) + r[i+2];
  41489. t[3] = (tb * a[i+3]) + r[i+3];
  41490. r[i+0] = t[0] & 0x1ffffff;
  41491. t[1] += t[0] >> 25;
  41492. r[i+1] = t[1] & 0x1ffffff;
  41493. t[2] += t[1] >> 25;
  41494. r[i+2] = t[2] & 0x1ffffff;
  41495. t[3] += t[2] >> 25;
  41496. r[i+3] = t[3] & 0x1ffffff;
  41497. t[0] = t[3] >> 25;
  41498. }
  41499. t[0] += (tb * a[40]) + r[40];
  41500. t[1] = (tb * a[41]) + r[41];
  41501. r[40] = t[0] & 0x1ffffff;
  41502. t[1] += t[0] >> 25;
  41503. r[41] = t[1] & 0x1ffffff;
  41504. r[42] += (sp_digit)(t[1] >> 25);
  41505. #else
  41506. sp_int64 tb = b;
  41507. sp_int64 t[8];
  41508. int i;
  41509. t[0] = tb * a[0]; r[0] += (sp_digit)(t[0] & 0x1ffffff);
  41510. for (i = 0; i < 40; i += 8) {
  41511. t[1] = tb * a[i+1];
  41512. r[i+1] += (sp_digit)((t[0] >> 25) + (t[1] & 0x1ffffff));
  41513. t[2] = tb * a[i+2];
  41514. r[i+2] += (sp_digit)((t[1] >> 25) + (t[2] & 0x1ffffff));
  41515. t[3] = tb * a[i+3];
  41516. r[i+3] += (sp_digit)((t[2] >> 25) + (t[3] & 0x1ffffff));
  41517. t[4] = tb * a[i+4];
  41518. r[i+4] += (sp_digit)((t[3] >> 25) + (t[4] & 0x1ffffff));
  41519. t[5] = tb * a[i+5];
  41520. r[i+5] += (sp_digit)((t[4] >> 25) + (t[5] & 0x1ffffff));
  41521. t[6] = tb * a[i+6];
  41522. r[i+6] += (sp_digit)((t[5] >> 25) + (t[6] & 0x1ffffff));
  41523. t[7] = tb * a[i+7];
  41524. r[i+7] += (sp_digit)((t[6] >> 25) + (t[7] & 0x1ffffff));
  41525. t[0] = tb * a[i+8];
  41526. r[i+8] += (sp_digit)((t[7] >> 25) + (t[0] & 0x1ffffff));
  41527. }
  41528. t[1] = tb * a[41];
  41529. r[41] += (sp_digit)((t[0] >> 25) + (t[1] & 0x1ffffff));
  41530. r[42] += (sp_digit)(t[1] >> 25);
  41531. #endif /* WOLFSSL_SP_SMALL */
  41532. }
  41533. /* Normalize the values in each word to 25 bits.
  41534. *
  41535. * a Array of sp_digit to normalize.
  41536. */
  41537. static void sp_1024_norm_42(sp_digit* a)
  41538. {
  41539. #ifdef WOLFSSL_SP_SMALL
  41540. int i;
  41541. for (i = 0; i < 41; i++) {
  41542. a[i+1] += a[i] >> 25;
  41543. a[i] &= 0x1ffffff;
  41544. }
  41545. #else
  41546. int i;
  41547. for (i = 0; i < 40; i += 8) {
  41548. a[i+1] += a[i+0] >> 25; a[i+0] &= 0x1ffffff;
  41549. a[i+2] += a[i+1] >> 25; a[i+1] &= 0x1ffffff;
  41550. a[i+3] += a[i+2] >> 25; a[i+2] &= 0x1ffffff;
  41551. a[i+4] += a[i+3] >> 25; a[i+3] &= 0x1ffffff;
  41552. a[i+5] += a[i+4] >> 25; a[i+4] &= 0x1ffffff;
  41553. a[i+6] += a[i+5] >> 25; a[i+5] &= 0x1ffffff;
  41554. a[i+7] += a[i+6] >> 25; a[i+6] &= 0x1ffffff;
  41555. a[i+8] += a[i+7] >> 25; a[i+7] &= 0x1ffffff;
  41556. }
  41557. a[41] += a[40] >> 25; a[40] &= 0x1ffffff;
  41558. #endif /* WOLFSSL_SP_SMALL */
  41559. }
  41560. /* Shift the result in the high 1024 bits down to the bottom.
  41561. *
  41562. * r A single precision number.
  41563. * a A single precision number.
  41564. */
  41565. static void sp_1024_mont_shift_42(sp_digit* r, const sp_digit* a)
  41566. {
  41567. #ifdef WOLFSSL_SP_SMALL
  41568. int i;
  41569. sp_uint32 n;
  41570. n = a[40] >> 24;
  41571. for (i = 0; i < 40; i++) {
  41572. n += (sp_uint32)a[41 + i] << 1;
  41573. r[i] = n & 0x1ffffff;
  41574. n >>= 25;
  41575. }
  41576. n += (sp_uint32)a[81] << 1;
  41577. r[40] = n;
  41578. #else
  41579. sp_uint32 n;
  41580. int i;
  41581. n = (sp_uint32)a[40];
  41582. n = n >> 24U;
  41583. for (i = 0; i < 40; i += 8) {
  41584. n += (sp_uint32)a[i+41] << 1U; r[i+0] = n & 0x1ffffff; n >>= 25U;
  41585. n += (sp_uint32)a[i+42] << 1U; r[i+1] = n & 0x1ffffff; n >>= 25U;
  41586. n += (sp_uint32)a[i+43] << 1U; r[i+2] = n & 0x1ffffff; n >>= 25U;
  41587. n += (sp_uint32)a[i+44] << 1U; r[i+3] = n & 0x1ffffff; n >>= 25U;
  41588. n += (sp_uint32)a[i+45] << 1U; r[i+4] = n & 0x1ffffff; n >>= 25U;
  41589. n += (sp_uint32)a[i+46] << 1U; r[i+5] = n & 0x1ffffff; n >>= 25U;
  41590. n += (sp_uint32)a[i+47] << 1U; r[i+6] = n & 0x1ffffff; n >>= 25U;
  41591. n += (sp_uint32)a[i+48] << 1U; r[i+7] = n & 0x1ffffff; n >>= 25U;
  41592. }
  41593. n += (sp_uint32)a[81] << 1U; r[40] = n;
  41594. #endif /* WOLFSSL_SP_SMALL */
  41595. XMEMSET(&r[41], 0, sizeof(*r) * 41U);
  41596. }
  41597. /* Reduce the number back to 1024 bits using Montgomery reduction.
  41598. *
  41599. * a A single precision number to reduce in place.
  41600. * m The single precision number representing the modulus.
  41601. * mp The digit representing the negative inverse of m mod 2^n.
  41602. */
  41603. static void sp_1024_mont_reduce_42(sp_digit* a, const sp_digit* m, sp_digit mp)
  41604. {
  41605. int i;
  41606. sp_digit mu;
  41607. sp_digit over;
  41608. sp_1024_norm_42(a + 41);
  41609. if (mp != 1) {
  41610. for (i=0; i<40; i++) {
  41611. mu = (a[i] * mp) & 0x1ffffff;
  41612. sp_1024_mul_add_42(a+i, m, mu);
  41613. a[i+1] += a[i] >> 25;
  41614. }
  41615. mu = (a[i] * mp) & 0xffffffL;
  41616. sp_1024_mul_add_42(a+i, m, mu);
  41617. a[i+1] += a[i] >> 25;
  41618. a[i] &= 0x1ffffff;
  41619. }
  41620. else {
  41621. for (i=0; i<40; i++) {
  41622. mu = a[i] & 0x1ffffff;
  41623. sp_1024_mul_add_42(a+i, m, mu);
  41624. a[i+1] += a[i] >> 25;
  41625. }
  41626. mu = a[i] & 0xffffffL;
  41627. sp_1024_mul_add_42(a+i, m, mu);
  41628. a[i+1] += a[i] >> 25;
  41629. a[i] &= 0x1ffffff;
  41630. }
  41631. sp_1024_norm_42(a + 41);
  41632. sp_1024_mont_shift_42(a, a);
  41633. over = a[40] - m[40];
  41634. sp_1024_cond_sub_42(a, a, m, ~((over - 1) >> 31));
  41635. sp_1024_norm_42(a);
  41636. }
  41637. /* Multiply two Montgomery form numbers mod the modulus (prime).
  41638. * (r = a * b mod m)
  41639. *
  41640. * r Result of multiplication.
  41641. * a First number to multiply in Montgomery form.
  41642. * b Second number to multiply in Montgomery form.
  41643. * m Modulus (prime).
  41644. * mp Montgomery multiplier.
  41645. */
  41646. SP_NOINLINE static void sp_1024_mont_mul_42(sp_digit* r, const sp_digit* a,
  41647. const sp_digit* b, const sp_digit* m, sp_digit mp)
  41648. {
  41649. sp_1024_mul_42(r, a, b);
  41650. sp_1024_mont_reduce_42(r, m, mp);
  41651. }
  41652. /* Square the Montgomery form number. (r = a * a mod m)
  41653. *
  41654. * r Result of squaring.
  41655. * a Number to square in Montgomery form.
  41656. * m Modulus (prime).
  41657. * mp Montgomery multiplier.
  41658. */
  41659. SP_NOINLINE static void sp_1024_mont_sqr_42(sp_digit* r, const sp_digit* a,
  41660. const sp_digit* m, sp_digit mp)
  41661. {
  41662. sp_1024_sqr_42(r, a);
  41663. sp_1024_mont_reduce_42(r, m, mp);
  41664. }
  41665. /* Mod-2 for the P1024 curve. */
  41666. static const uint8_t p1024_mod_minus_2[] = {
  41667. 6,0x06, 7,0x0f, 7,0x0b, 6,0x0c, 7,0x1e, 9,0x09, 7,0x0c, 7,0x1f,
  41668. 6,0x16, 6,0x06, 7,0x0e, 8,0x10, 6,0x03, 8,0x11, 6,0x0d, 7,0x14,
  41669. 9,0x12, 6,0x0f, 7,0x04, 9,0x0d, 6,0x00, 7,0x13, 6,0x01, 6,0x07,
  41670. 8,0x0d, 8,0x00, 6,0x06, 9,0x17, 6,0x14, 6,0x15, 6,0x11, 6,0x0b,
  41671. 9,0x0c, 6,0x1e, 13,0x14, 7,0x0e, 6,0x1d, 12,0x0a, 6,0x0b, 8,0x07,
  41672. 6,0x18, 6,0x0f, 6,0x10, 8,0x1c, 7,0x16, 7,0x02, 6,0x01, 6,0x13,
  41673. 10,0x15, 7,0x06, 8,0x14, 6,0x0c, 6,0x19, 7,0x10, 6,0x19, 6,0x19,
  41674. 9,0x16, 7,0x19, 6,0x1f, 6,0x17, 6,0x12, 8,0x02, 6,0x01, 6,0x04,
  41675. 6,0x15, 7,0x16, 6,0x04, 6,0x1f, 6,0x09, 7,0x06, 7,0x13, 7,0x09,
  41676. 6,0x0d, 10,0x18, 6,0x06, 6,0x11, 6,0x04, 6,0x01, 6,0x13, 8,0x06,
  41677. 6,0x0d, 8,0x13, 7,0x08, 6,0x08, 6,0x05, 7,0x0c, 7,0x0e, 7,0x15,
  41678. 6,0x05, 7,0x14, 10,0x19, 6,0x10, 6,0x16, 6,0x15, 7,0x1f, 6,0x14,
  41679. 6,0x0a, 10,0x11, 6,0x01, 7,0x05, 7,0x08, 8,0x0a, 7,0x1e, 7,0x1c,
  41680. 6,0x1c, 7,0x09, 10,0x18, 7,0x1c, 10,0x06, 6,0x0a, 6,0x07, 6,0x19,
  41681. 7,0x06, 6,0x0d, 7,0x0f, 7,0x0b, 7,0x05, 6,0x11, 6,0x1c, 7,0x1f,
  41682. 6,0x1e, 7,0x18, 6,0x1e, 6,0x00, 6,0x03, 6,0x02, 7,0x10, 6,0x0b,
  41683. 6,0x1b, 7,0x10, 6,0x00, 8,0x11, 7,0x1b, 6,0x18, 6,0x01, 7,0x0c,
  41684. 7,0x1d, 7,0x13, 6,0x08, 7,0x1b, 8,0x13, 7,0x16, 13,0x1d, 7,0x1f,
  41685. 6,0x0a, 6,0x01, 7,0x1f, 6,0x14, 1,0x01
  41686. };
  41687. /* Invert the number, in Montgomery form, modulo the modulus (prime) of the
  41688. * P1024 curve. (r = 1 / a mod m)
  41689. *
  41690. * r Inverse result.
  41691. * a Number to invert.
  41692. * td Temporary data.
  41693. */
  41694. static void sp_1024_mont_inv_42(sp_digit* r, const sp_digit* a,
  41695. sp_digit* td)
  41696. {
  41697. sp_digit* t = &td[32 * 2 * 42];
  41698. int i;
  41699. int j;
  41700. sp_digit* table[32];
  41701. for (i = 0; i < 32; i++) {
  41702. table[i] = &td[2 * 42 * i];
  41703. }
  41704. XMEMCPY(table[0], a, sizeof(sp_digit) * 42);
  41705. for (i = 1; i < 6; i++) {
  41706. sp_1024_mont_sqr_42(table[0], table[0], p1024_mod, p1024_mp_mod);
  41707. }
  41708. for (i = 1; i < 32; i++) {
  41709. sp_1024_mont_mul_42(table[i], table[i-1], a, p1024_mod, p1024_mp_mod);
  41710. }
  41711. XMEMCPY(t, table[p1024_mod_minus_2[1]], sizeof(sp_digit) * 42);
  41712. for (i = 2; i < (int)sizeof(p1024_mod_minus_2) - 2; i += 2) {
  41713. for (j = 0; j < p1024_mod_minus_2[i]; j++) {
  41714. sp_1024_mont_sqr_42(t, t, p1024_mod, p1024_mp_mod);
  41715. }
  41716. sp_1024_mont_mul_42(t, t, table[p1024_mod_minus_2[i+1]], p1024_mod,
  41717. p1024_mp_mod);
  41718. }
  41719. sp_1024_mont_sqr_42(t, t, p1024_mod, p1024_mp_mod);
  41720. sp_1024_mont_mul_42(r, t, a, p1024_mod, p1024_mp_mod);
  41721. }
  41722. /* Map the Montgomery form projective coordinate point to an affine point.
  41723. *
  41724. * r Resulting affine coordinate point.
  41725. * p Montgomery form projective coordinate point.
  41726. * t Temporary ordinate data.
  41727. */
  41728. static void sp_1024_map_42(sp_point_1024* r, const sp_point_1024* p,
  41729. sp_digit* t)
  41730. {
  41731. sp_digit* t1 = t;
  41732. sp_digit* t2 = t + 2*42;
  41733. sp_int32 n;
  41734. sp_1024_mont_inv_42(t1, p->z, t + 2*42);
  41735. sp_1024_mont_sqr_42(t2, t1, p1024_mod, p1024_mp_mod);
  41736. sp_1024_mont_mul_42(t1, t2, t1, p1024_mod, p1024_mp_mod);
  41737. /* x /= z^2 */
  41738. sp_1024_mont_mul_42(r->x, p->x, t2, p1024_mod, p1024_mp_mod);
  41739. XMEMSET(r->x + 42, 0, sizeof(sp_digit) * 42U);
  41740. sp_1024_mont_reduce_42(r->x, p1024_mod, p1024_mp_mod);
  41741. /* Reduce x to less than modulus */
  41742. n = sp_1024_cmp_42(r->x, p1024_mod);
  41743. sp_1024_cond_sub_42(r->x, r->x, p1024_mod, ~(n >> 24));
  41744. sp_1024_norm_42(r->x);
  41745. /* y /= z^3 */
  41746. sp_1024_mont_mul_42(r->y, p->y, t1, p1024_mod, p1024_mp_mod);
  41747. XMEMSET(r->y + 42, 0, sizeof(sp_digit) * 42U);
  41748. sp_1024_mont_reduce_42(r->y, p1024_mod, p1024_mp_mod);
  41749. /* Reduce y to less than modulus */
  41750. n = sp_1024_cmp_42(r->y, p1024_mod);
  41751. sp_1024_cond_sub_42(r->y, r->y, p1024_mod, ~(n >> 24));
  41752. sp_1024_norm_42(r->y);
  41753. XMEMSET(r->z, 0, sizeof(r->z) / 2);
  41754. r->z[0] = 1;
  41755. }
  41756. /* Add two Montgomery form numbers (r = a + b % m).
  41757. *
  41758. * r Result of addition.
  41759. * a First number to add in Montgomery form.
  41760. * b Second number to add in Montgomery form.
  41761. * m Modulus (prime).
  41762. */
  41763. static void sp_1024_mont_add_42(sp_digit* r, const sp_digit* a, const sp_digit* b,
  41764. const sp_digit* m)
  41765. {
  41766. sp_digit over;
  41767. (void)sp_1024_add_42(r, a, b);
  41768. sp_1024_norm_42(r);
  41769. over = r[40] - m[40];
  41770. sp_1024_cond_sub_42(r, r, m, ~((over - 1) >> 31));
  41771. sp_1024_norm_42(r);
  41772. }
  41773. /* Double a Montgomery form number (r = a + a % m).
  41774. *
  41775. * r Result of doubling.
  41776. * a Number to double in Montgomery form.
  41777. * m Modulus (prime).
  41778. */
  41779. static void sp_1024_mont_dbl_42(sp_digit* r, const sp_digit* a, const sp_digit* m)
  41780. {
  41781. sp_digit over;
  41782. (void)sp_1024_add_42(r, a, a);
  41783. sp_1024_norm_42(r);
  41784. over = r[40] - m[40];
  41785. sp_1024_cond_sub_42(r, r, m, ~((over - 1) >> 31));
  41786. sp_1024_norm_42(r);
  41787. }
  41788. /* Triple a Montgomery form number (r = a + a + a % m).
  41789. *
  41790. * r Result of Tripling.
  41791. * a Number to triple in Montgomery form.
  41792. * m Modulus (prime).
  41793. */
  41794. static void sp_1024_mont_tpl_42(sp_digit* r, const sp_digit* a, const sp_digit* m)
  41795. {
  41796. sp_digit over;
  41797. (void)sp_1024_add_42(r, a, a);
  41798. sp_1024_norm_42(r);
  41799. over = r[40] - m[40];
  41800. sp_1024_cond_sub_42(r, r, m, ~((over - 1) >> 31));
  41801. sp_1024_norm_42(r);
  41802. (void)sp_1024_add_42(r, r, a);
  41803. sp_1024_norm_42(r);
  41804. over = r[40] - m[40];
  41805. sp_1024_cond_sub_42(r, r, m, ~((over - 1) >> 31));
  41806. sp_1024_norm_42(r);
  41807. }
  41808. /* Subtract two Montgomery form numbers (r = a - b % m).
  41809. *
  41810. * r Result of subtration.
  41811. * a Number to subtract from in Montgomery form.
  41812. * b Number to subtract with in Montgomery form.
  41813. * m Modulus (prime).
  41814. */
  41815. static void sp_1024_mont_sub_42(sp_digit* r, const sp_digit* a, const sp_digit* b,
  41816. const sp_digit* m)
  41817. {
  41818. (void)sp_1024_sub_42(r, a, b);
  41819. sp_1024_norm_42(r);
  41820. sp_1024_cond_add_42(r, r, m, r[41] >> 7);
  41821. sp_1024_norm_42(r);
  41822. }
  41823. /* Shift number left one bit.
  41824. * Bottom bit is lost.
  41825. *
  41826. * r Result of shift.
  41827. * a Number to shift.
  41828. */
  41829. SP_NOINLINE static void sp_1024_rshift1_42(sp_digit* r, const sp_digit* a)
  41830. {
  41831. #ifdef WOLFSSL_SP_SMALL
  41832. int i;
  41833. for (i=0; i<41; i++) {
  41834. r[i] = (a[i] >> 1) + ((a[i + 1] << 24) & 0x1ffffff);
  41835. }
  41836. #else
  41837. r[0] = (a[0] >> 1) + ((a[1] << 24) & 0x1ffffff);
  41838. r[1] = (a[1] >> 1) + ((a[2] << 24) & 0x1ffffff);
  41839. r[2] = (a[2] >> 1) + ((a[3] << 24) & 0x1ffffff);
  41840. r[3] = (a[3] >> 1) + ((a[4] << 24) & 0x1ffffff);
  41841. r[4] = (a[4] >> 1) + ((a[5] << 24) & 0x1ffffff);
  41842. r[5] = (a[5] >> 1) + ((a[6] << 24) & 0x1ffffff);
  41843. r[6] = (a[6] >> 1) + ((a[7] << 24) & 0x1ffffff);
  41844. r[7] = (a[7] >> 1) + ((a[8] << 24) & 0x1ffffff);
  41845. r[8] = (a[8] >> 1) + ((a[9] << 24) & 0x1ffffff);
  41846. r[9] = (a[9] >> 1) + ((a[10] << 24) & 0x1ffffff);
  41847. r[10] = (a[10] >> 1) + ((a[11] << 24) & 0x1ffffff);
  41848. r[11] = (a[11] >> 1) + ((a[12] << 24) & 0x1ffffff);
  41849. r[12] = (a[12] >> 1) + ((a[13] << 24) & 0x1ffffff);
  41850. r[13] = (a[13] >> 1) + ((a[14] << 24) & 0x1ffffff);
  41851. r[14] = (a[14] >> 1) + ((a[15] << 24) & 0x1ffffff);
  41852. r[15] = (a[15] >> 1) + ((a[16] << 24) & 0x1ffffff);
  41853. r[16] = (a[16] >> 1) + ((a[17] << 24) & 0x1ffffff);
  41854. r[17] = (a[17] >> 1) + ((a[18] << 24) & 0x1ffffff);
  41855. r[18] = (a[18] >> 1) + ((a[19] << 24) & 0x1ffffff);
  41856. r[19] = (a[19] >> 1) + ((a[20] << 24) & 0x1ffffff);
  41857. r[20] = (a[20] >> 1) + ((a[21] << 24) & 0x1ffffff);
  41858. r[21] = (a[21] >> 1) + ((a[22] << 24) & 0x1ffffff);
  41859. r[22] = (a[22] >> 1) + ((a[23] << 24) & 0x1ffffff);
  41860. r[23] = (a[23] >> 1) + ((a[24] << 24) & 0x1ffffff);
  41861. r[24] = (a[24] >> 1) + ((a[25] << 24) & 0x1ffffff);
  41862. r[25] = (a[25] >> 1) + ((a[26] << 24) & 0x1ffffff);
  41863. r[26] = (a[26] >> 1) + ((a[27] << 24) & 0x1ffffff);
  41864. r[27] = (a[27] >> 1) + ((a[28] << 24) & 0x1ffffff);
  41865. r[28] = (a[28] >> 1) + ((a[29] << 24) & 0x1ffffff);
  41866. r[29] = (a[29] >> 1) + ((a[30] << 24) & 0x1ffffff);
  41867. r[30] = (a[30] >> 1) + ((a[31] << 24) & 0x1ffffff);
  41868. r[31] = (a[31] >> 1) + ((a[32] << 24) & 0x1ffffff);
  41869. r[32] = (a[32] >> 1) + ((a[33] << 24) & 0x1ffffff);
  41870. r[33] = (a[33] >> 1) + ((a[34] << 24) & 0x1ffffff);
  41871. r[34] = (a[34] >> 1) + ((a[35] << 24) & 0x1ffffff);
  41872. r[35] = (a[35] >> 1) + ((a[36] << 24) & 0x1ffffff);
  41873. r[36] = (a[36] >> 1) + ((a[37] << 24) & 0x1ffffff);
  41874. r[37] = (a[37] >> 1) + ((a[38] << 24) & 0x1ffffff);
  41875. r[38] = (a[38] >> 1) + ((a[39] << 24) & 0x1ffffff);
  41876. r[39] = (a[39] >> 1) + ((a[40] << 24) & 0x1ffffff);
  41877. r[40] = (a[40] >> 1) + ((a[41] << 24) & 0x1ffffff);
  41878. #endif
  41879. r[41] = a[41] >> 1;
  41880. }
  41881. /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m)
  41882. *
  41883. * r Result of division by 2.
  41884. * a Number to divide.
  41885. * m Modulus (prime).
  41886. */
  41887. static void sp_1024_mont_div2_42(sp_digit* r, const sp_digit* a,
  41888. const sp_digit* m)
  41889. {
  41890. sp_1024_cond_add_42(r, a, m, 0 - (a[0] & 1));
  41891. sp_1024_norm_42(r);
  41892. sp_1024_rshift1_42(r, r);
  41893. }
  41894. /* Double the Montgomery form projective point p.
  41895. *
  41896. * r Result of doubling point.
  41897. * p Point to double.
  41898. * t Temporary ordinate data.
  41899. */
  41900. static void sp_1024_proj_point_dbl_42(sp_point_1024* r, const sp_point_1024* p,
  41901. sp_digit* t)
  41902. {
  41903. sp_digit* t1 = t;
  41904. sp_digit* t2 = t + 2*42;
  41905. sp_digit* x;
  41906. sp_digit* y;
  41907. sp_digit* z;
  41908. x = r->x;
  41909. y = r->y;
  41910. z = r->z;
  41911. /* Put infinity into result. */
  41912. if (r != p) {
  41913. r->infinity = p->infinity;
  41914. }
  41915. /* T1 = Z * Z */
  41916. sp_1024_mont_sqr_42(t1, p->z, p1024_mod, p1024_mp_mod);
  41917. /* Z = Y * Z */
  41918. sp_1024_mont_mul_42(z, p->y, p->z, p1024_mod, p1024_mp_mod);
  41919. /* Z = 2Z */
  41920. sp_1024_mont_dbl_42(z, z, p1024_mod);
  41921. /* T2 = X - T1 */
  41922. sp_1024_mont_sub_42(t2, p->x, t1, p1024_mod);
  41923. /* T1 = X + T1 */
  41924. sp_1024_mont_add_42(t1, p->x, t1, p1024_mod);
  41925. /* T2 = T1 * T2 */
  41926. sp_1024_mont_mul_42(t2, t1, t2, p1024_mod, p1024_mp_mod);
  41927. /* T1 = 3T2 */
  41928. sp_1024_mont_tpl_42(t1, t2, p1024_mod);
  41929. /* Y = 2Y */
  41930. sp_1024_mont_dbl_42(y, p->y, p1024_mod);
  41931. /* Y = Y * Y */
  41932. sp_1024_mont_sqr_42(y, y, p1024_mod, p1024_mp_mod);
  41933. /* T2 = Y * Y */
  41934. sp_1024_mont_sqr_42(t2, y, p1024_mod, p1024_mp_mod);
  41935. /* T2 = T2/2 */
  41936. sp_1024_mont_div2_42(t2, t2, p1024_mod);
  41937. /* Y = Y * X */
  41938. sp_1024_mont_mul_42(y, y, p->x, p1024_mod, p1024_mp_mod);
  41939. /* X = T1 * T1 */
  41940. sp_1024_mont_sqr_42(x, t1, p1024_mod, p1024_mp_mod);
  41941. /* X = X - Y */
  41942. sp_1024_mont_sub_42(x, x, y, p1024_mod);
  41943. /* X = X - Y */
  41944. sp_1024_mont_sub_42(x, x, y, p1024_mod);
  41945. /* Y = Y - X */
  41946. sp_1024_mont_sub_42(y, y, x, p1024_mod);
  41947. /* Y = Y * T1 */
  41948. sp_1024_mont_mul_42(y, y, t1, p1024_mod, p1024_mp_mod);
  41949. /* Y = Y - T2 */
  41950. sp_1024_mont_sub_42(y, y, t2, p1024_mod);
  41951. }
  41952. #ifdef WOLFSSL_SP_NONBLOCK
  41953. typedef struct sp_1024_proj_point_dbl_42_ctx {
  41954. int state;
  41955. sp_digit* t1;
  41956. sp_digit* t2;
  41957. sp_digit* x;
  41958. sp_digit* y;
  41959. sp_digit* z;
  41960. } sp_1024_proj_point_dbl_42_ctx;
  41961. /* Double the Montgomery form projective point p.
  41962. *
  41963. * r Result of doubling point.
  41964. * p Point to double.
  41965. * t Temporary ordinate data.
  41966. */
  41967. static int sp_1024_proj_point_dbl_42_nb(sp_ecc_ctx_t* sp_ctx, sp_point_1024* r,
  41968. const sp_point_1024* p, sp_digit* t)
  41969. {
  41970. int err = FP_WOULDBLOCK;
  41971. sp_1024_proj_point_dbl_42_ctx* ctx = (sp_1024_proj_point_dbl_42_ctx*)sp_ctx->data;
  41972. typedef char ctx_size_test[sizeof(sp_1024_proj_point_dbl_42_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  41973. (void)sizeof(ctx_size_test);
  41974. switch (ctx->state) {
  41975. case 0:
  41976. ctx->t1 = t;
  41977. ctx->t2 = t + 2*42;
  41978. ctx->x = r->x;
  41979. ctx->y = r->y;
  41980. ctx->z = r->z;
  41981. /* Put infinity into result. */
  41982. if (r != p) {
  41983. r->infinity = p->infinity;
  41984. }
  41985. ctx->state = 1;
  41986. break;
  41987. case 1:
  41988. /* T1 = Z * Z */
  41989. sp_1024_mont_sqr_42(ctx->t1, p->z, p1024_mod, p1024_mp_mod);
  41990. ctx->state = 2;
  41991. break;
  41992. case 2:
  41993. /* Z = Y * Z */
  41994. sp_1024_mont_mul_42(ctx->z, p->y, p->z, p1024_mod, p1024_mp_mod);
  41995. ctx->state = 3;
  41996. break;
  41997. case 3:
  41998. /* Z = 2Z */
  41999. sp_1024_mont_dbl_42(ctx->z, ctx->z, p1024_mod);
  42000. ctx->state = 4;
  42001. break;
  42002. case 4:
  42003. /* T2 = X - T1 */
  42004. sp_1024_mont_sub_42(ctx->t2, p->x, ctx->t1, p1024_mod);
  42005. ctx->state = 5;
  42006. break;
  42007. case 5:
  42008. /* T1 = X + T1 */
  42009. sp_1024_mont_add_42(ctx->t1, p->x, ctx->t1, p1024_mod);
  42010. ctx->state = 6;
  42011. break;
  42012. case 6:
  42013. /* T2 = T1 * T2 */
  42014. sp_1024_mont_mul_42(ctx->t2, ctx->t1, ctx->t2, p1024_mod, p1024_mp_mod);
  42015. ctx->state = 7;
  42016. break;
  42017. case 7:
  42018. /* T1 = 3T2 */
  42019. sp_1024_mont_tpl_42(ctx->t1, ctx->t2, p1024_mod);
  42020. ctx->state = 8;
  42021. break;
  42022. case 8:
  42023. /* Y = 2Y */
  42024. sp_1024_mont_dbl_42(ctx->y, p->y, p1024_mod);
  42025. ctx->state = 9;
  42026. break;
  42027. case 9:
  42028. /* Y = Y * Y */
  42029. sp_1024_mont_sqr_42(ctx->y, ctx->y, p1024_mod, p1024_mp_mod);
  42030. ctx->state = 10;
  42031. break;
  42032. case 10:
  42033. /* T2 = Y * Y */
  42034. sp_1024_mont_sqr_42(ctx->t2, ctx->y, p1024_mod, p1024_mp_mod);
  42035. ctx->state = 11;
  42036. break;
  42037. case 11:
  42038. /* T2 = T2/2 */
  42039. sp_1024_mont_div2_42(ctx->t2, ctx->t2, p1024_mod);
  42040. ctx->state = 12;
  42041. break;
  42042. case 12:
  42043. /* Y = Y * X */
  42044. sp_1024_mont_mul_42(ctx->y, ctx->y, p->x, p1024_mod, p1024_mp_mod);
  42045. ctx->state = 13;
  42046. break;
  42047. case 13:
  42048. /* X = T1 * T1 */
  42049. sp_1024_mont_sqr_42(ctx->x, ctx->t1, p1024_mod, p1024_mp_mod);
  42050. ctx->state = 14;
  42051. break;
  42052. case 14:
  42053. /* X = X - Y */
  42054. sp_1024_mont_sub_42(ctx->x, ctx->x, ctx->y, p1024_mod);
  42055. ctx->state = 15;
  42056. break;
  42057. case 15:
  42058. /* X = X - Y */
  42059. sp_1024_mont_sub_42(ctx->x, ctx->x, ctx->y, p1024_mod);
  42060. ctx->state = 16;
  42061. break;
  42062. case 16:
  42063. /* Y = Y - X */
  42064. sp_1024_mont_sub_42(ctx->y, ctx->y, ctx->x, p1024_mod);
  42065. ctx->state = 17;
  42066. break;
  42067. case 17:
  42068. /* Y = Y * T1 */
  42069. sp_1024_mont_mul_42(ctx->y, ctx->y, ctx->t1, p1024_mod, p1024_mp_mod);
  42070. ctx->state = 18;
  42071. break;
  42072. case 18:
  42073. /* Y = Y - T2 */
  42074. sp_1024_mont_sub_42(ctx->y, ctx->y, ctx->t2, p1024_mod);
  42075. ctx->state = 19;
  42076. /* fall-through */
  42077. case 19:
  42078. err = MP_OKAY;
  42079. break;
  42080. }
  42081. if (err == MP_OKAY && ctx->state != 19) {
  42082. err = FP_WOULDBLOCK;
  42083. }
  42084. return err;
  42085. }
  42086. #endif /* WOLFSSL_SP_NONBLOCK */
  42087. /* Compare two numbers to determine if they are equal.
  42088. * Constant time implementation.
  42089. *
  42090. * a First number to compare.
  42091. * b Second number to compare.
  42092. * returns 1 when equal and 0 otherwise.
  42093. */
  42094. static int sp_1024_cmp_equal_42(const sp_digit* a, const sp_digit* b)
  42095. {
  42096. return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2]) |
  42097. (a[3] ^ b[3]) | (a[4] ^ b[4]) | (a[5] ^ b[5]) |
  42098. (a[6] ^ b[6]) | (a[7] ^ b[7]) | (a[8] ^ b[8]) |
  42099. (a[9] ^ b[9]) | (a[10] ^ b[10]) | (a[11] ^ b[11]) |
  42100. (a[12] ^ b[12]) | (a[13] ^ b[13]) | (a[14] ^ b[14]) |
  42101. (a[15] ^ b[15]) | (a[16] ^ b[16]) | (a[17] ^ b[17]) |
  42102. (a[18] ^ b[18]) | (a[19] ^ b[19]) | (a[20] ^ b[20]) |
  42103. (a[21] ^ b[21]) | (a[22] ^ b[22]) | (a[23] ^ b[23]) |
  42104. (a[24] ^ b[24]) | (a[25] ^ b[25]) | (a[26] ^ b[26]) |
  42105. (a[27] ^ b[27]) | (a[28] ^ b[28]) | (a[29] ^ b[29]) |
  42106. (a[30] ^ b[30]) | (a[31] ^ b[31]) | (a[32] ^ b[32]) |
  42107. (a[33] ^ b[33]) | (a[34] ^ b[34]) | (a[35] ^ b[35]) |
  42108. (a[36] ^ b[36]) | (a[37] ^ b[37]) | (a[38] ^ b[38]) |
  42109. (a[39] ^ b[39]) | (a[40] ^ b[40]) | (a[41] ^ b[41])) == 0;
  42110. }
  42111. /* Returns 1 if the number of zero.
  42112. * Implementation is constant time.
  42113. *
  42114. * a Number to check.
  42115. * returns 1 if the number is zero and 0 otherwise.
  42116. */
  42117. static int sp_1024_iszero_42(const sp_digit* a)
  42118. {
  42119. return (a[0] | a[1] | a[2] | a[3] | a[4] | a[5] | a[6] | a[7] |
  42120. a[8] | a[9] | a[10] | a[11] | a[12] | a[13] | a[14] | a[15] |
  42121. a[16] | a[17] | a[18] | a[19] | a[20] | a[21] | a[22] | a[23] |
  42122. a[24] | a[25] | a[26] | a[27] | a[28] | a[29] | a[30] | a[31] |
  42123. a[32] | a[33] | a[34] | a[35] | a[36] | a[37] | a[38] | a[39] |
  42124. a[40] | a[41]) == 0;
  42125. }
  42126. /* Add two Montgomery form projective points.
  42127. *
  42128. * r Result of addition.
  42129. * p First point to add.
  42130. * q Second point to add.
  42131. * t Temporary ordinate data.
  42132. */
  42133. static void sp_1024_proj_point_add_42(sp_point_1024* r,
  42134. const sp_point_1024* p, const sp_point_1024* q, sp_digit* t)
  42135. {
  42136. sp_digit* t6 = t;
  42137. sp_digit* t1 = t + 2*42;
  42138. sp_digit* t2 = t + 4*42;
  42139. sp_digit* t3 = t + 6*42;
  42140. sp_digit* t4 = t + 8*42;
  42141. sp_digit* t5 = t + 10*42;
  42142. /* U1 = X1*Z2^2 */
  42143. sp_1024_mont_sqr_42(t1, q->z, p1024_mod, p1024_mp_mod);
  42144. sp_1024_mont_mul_42(t3, t1, q->z, p1024_mod, p1024_mp_mod);
  42145. sp_1024_mont_mul_42(t1, t1, p->x, p1024_mod, p1024_mp_mod);
  42146. /* U2 = X2*Z1^2 */
  42147. sp_1024_mont_sqr_42(t2, p->z, p1024_mod, p1024_mp_mod);
  42148. sp_1024_mont_mul_42(t4, t2, p->z, p1024_mod, p1024_mp_mod);
  42149. sp_1024_mont_mul_42(t2, t2, q->x, p1024_mod, p1024_mp_mod);
  42150. /* S1 = Y1*Z2^3 */
  42151. sp_1024_mont_mul_42(t3, t3, p->y, p1024_mod, p1024_mp_mod);
  42152. /* S2 = Y2*Z1^3 */
  42153. sp_1024_mont_mul_42(t4, t4, q->y, p1024_mod, p1024_mp_mod);
  42154. /* Check double */
  42155. if ((~p->infinity) & (~q->infinity) &
  42156. sp_1024_cmp_equal_42(t2, t1) &
  42157. sp_1024_cmp_equal_42(t4, t3)) {
  42158. sp_1024_proj_point_dbl_42(r, p, t);
  42159. }
  42160. else {
  42161. sp_digit* x = t6;
  42162. sp_digit* y = t1;
  42163. sp_digit* z = t2;
  42164. /* H = U2 - U1 */
  42165. sp_1024_mont_sub_42(t2, t2, t1, p1024_mod);
  42166. /* R = S2 - S1 */
  42167. sp_1024_mont_sub_42(t4, t4, t3, p1024_mod);
  42168. /* X3 = R^2 - H^3 - 2*U1*H^2 */
  42169. sp_1024_mont_sqr_42(t5, t2, p1024_mod, p1024_mp_mod);
  42170. sp_1024_mont_mul_42(y, t1, t5, p1024_mod, p1024_mp_mod);
  42171. sp_1024_mont_mul_42(t5, t5, t2, p1024_mod, p1024_mp_mod);
  42172. /* Z3 = H*Z1*Z2 */
  42173. sp_1024_mont_mul_42(z, p->z, t2, p1024_mod, p1024_mp_mod);
  42174. sp_1024_mont_mul_42(z, z, q->z, p1024_mod, p1024_mp_mod);
  42175. sp_1024_mont_sqr_42(x, t4, p1024_mod, p1024_mp_mod);
  42176. sp_1024_mont_sub_42(x, x, t5, p1024_mod);
  42177. sp_1024_mont_mul_42(t5, t5, t3, p1024_mod, p1024_mp_mod);
  42178. sp_1024_mont_dbl_42(t3, y, p1024_mod);
  42179. sp_1024_mont_sub_42(x, x, t3, p1024_mod);
  42180. /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
  42181. sp_1024_mont_sub_42(y, y, x, p1024_mod);
  42182. sp_1024_mont_mul_42(y, y, t4, p1024_mod, p1024_mp_mod);
  42183. sp_1024_mont_sub_42(y, y, t5, p1024_mod);
  42184. {
  42185. int i;
  42186. sp_digit maskp = 0 - (q->infinity & (!p->infinity));
  42187. sp_digit maskq = 0 - (p->infinity & (!q->infinity));
  42188. sp_digit maskt = ~(maskp | maskq);
  42189. sp_digit inf = (sp_digit)(p->infinity & q->infinity);
  42190. for (i = 0; i < 42; i++) {
  42191. r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
  42192. (x[i] & maskt);
  42193. }
  42194. for (i = 0; i < 42; i++) {
  42195. r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
  42196. (y[i] & maskt);
  42197. }
  42198. for (i = 0; i < 42; i++) {
  42199. r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
  42200. (z[i] & maskt);
  42201. }
  42202. r->z[0] |= inf;
  42203. r->infinity = (word32)inf;
  42204. }
  42205. }
  42206. }
  42207. #ifdef WOLFSSL_SP_NONBLOCK
  42208. typedef struct sp_1024_proj_point_add_42_ctx {
  42209. int state;
  42210. sp_1024_proj_point_dbl_42_ctx dbl_ctx;
  42211. const sp_point_1024* ap[2];
  42212. sp_point_1024* rp[2];
  42213. sp_digit* t1;
  42214. sp_digit* t2;
  42215. sp_digit* t3;
  42216. sp_digit* t4;
  42217. sp_digit* t5;
  42218. sp_digit* t6;
  42219. sp_digit* x;
  42220. sp_digit* y;
  42221. sp_digit* z;
  42222. } sp_1024_proj_point_add_42_ctx;
  42223. /* Add two Montgomery form projective points.
  42224. *
  42225. * r Result of addition.
  42226. * p First point to add.
  42227. * q Second point to add.
  42228. * t Temporary ordinate data.
  42229. */
  42230. static int sp_1024_proj_point_add_42_nb(sp_ecc_ctx_t* sp_ctx, sp_point_1024* r,
  42231. const sp_point_1024* p, const sp_point_1024* q, sp_digit* t)
  42232. {
  42233. int err = FP_WOULDBLOCK;
  42234. sp_1024_proj_point_add_42_ctx* ctx = (sp_1024_proj_point_add_42_ctx*)sp_ctx->data;
  42235. /* Ensure only the first point is the same as the result. */
  42236. if (q == r) {
  42237. const sp_point_1024* a = p;
  42238. p = q;
  42239. q = a;
  42240. }
  42241. typedef char ctx_size_test[sizeof(sp_1024_proj_point_add_42_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  42242. (void)sizeof(ctx_size_test);
  42243. switch (ctx->state) {
  42244. case 0: /* INIT */
  42245. ctx->t6 = t;
  42246. ctx->t1 = t + 2*42;
  42247. ctx->t2 = t + 4*42;
  42248. ctx->t3 = t + 6*42;
  42249. ctx->t4 = t + 8*42;
  42250. ctx->t5 = t + 10*42;
  42251. ctx->x = ctx->t6;
  42252. ctx->y = ctx->t1;
  42253. ctx->z = ctx->t2;
  42254. ctx->state = 1;
  42255. break;
  42256. case 1:
  42257. /* U1 = X1*Z2^2 */
  42258. sp_1024_mont_sqr_42(ctx->t1, q->z, p1024_mod, p1024_mp_mod);
  42259. ctx->state = 2;
  42260. break;
  42261. case 2:
  42262. sp_1024_mont_mul_42(ctx->t3, ctx->t1, q->z, p1024_mod, p1024_mp_mod);
  42263. ctx->state = 3;
  42264. break;
  42265. case 3:
  42266. sp_1024_mont_mul_42(ctx->t1, ctx->t1, p->x, p1024_mod, p1024_mp_mod);
  42267. ctx->state = 4;
  42268. break;
  42269. case 4:
  42270. /* U2 = X2*Z1^2 */
  42271. sp_1024_mont_sqr_42(ctx->t2, p->z, p1024_mod, p1024_mp_mod);
  42272. ctx->state = 5;
  42273. break;
  42274. case 5:
  42275. sp_1024_mont_mul_42(ctx->t4, ctx->t2, p->z, p1024_mod, p1024_mp_mod);
  42276. ctx->state = 6;
  42277. break;
  42278. case 6:
  42279. sp_1024_mont_mul_42(ctx->t2, ctx->t2, q->x, p1024_mod, p1024_mp_mod);
  42280. ctx->state = 7;
  42281. break;
  42282. case 7:
  42283. /* S1 = Y1*Z2^3 */
  42284. sp_1024_mont_mul_42(ctx->t3, ctx->t3, p->y, p1024_mod, p1024_mp_mod);
  42285. ctx->state = 8;
  42286. break;
  42287. case 8:
  42288. /* S2 = Y2*Z1^3 */
  42289. sp_1024_mont_mul_42(ctx->t4, ctx->t4, q->y, p1024_mod, p1024_mp_mod);
  42290. ctx->state = 9;
  42291. break;
  42292. case 9:
  42293. /* Check double */
  42294. if ((~p->infinity) & (~q->infinity) &
  42295. sp_1024_cmp_equal_42(ctx->t2, ctx->t1) &
  42296. sp_1024_cmp_equal_42(ctx->t4, ctx->t3)) {
  42297. XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
  42298. sp_1024_proj_point_dbl_42(r, p, t);
  42299. ctx->state = 25;
  42300. }
  42301. else {
  42302. ctx->state = 10;
  42303. }
  42304. break;
  42305. case 10:
  42306. /* H = U2 - U1 */
  42307. sp_1024_mont_sub_42(ctx->t2, ctx->t2, ctx->t1, p1024_mod);
  42308. ctx->state = 11;
  42309. break;
  42310. case 11:
  42311. /* R = S2 - S1 */
  42312. sp_1024_mont_sub_42(ctx->t4, ctx->t4, ctx->t3, p1024_mod);
  42313. ctx->state = 12;
  42314. break;
  42315. case 12:
  42316. /* X3 = R^2 - H^3 - 2*U1*H^2 */
  42317. sp_1024_mont_sqr_42(ctx->t5, ctx->t2, p1024_mod, p1024_mp_mod);
  42318. ctx->state = 13;
  42319. break;
  42320. case 13:
  42321. sp_1024_mont_mul_42(ctx->y, ctx->t1, ctx->t5, p1024_mod, p1024_mp_mod);
  42322. ctx->state = 14;
  42323. break;
  42324. case 14:
  42325. sp_1024_mont_mul_42(ctx->t5, ctx->t5, ctx->t2, p1024_mod, p1024_mp_mod);
  42326. ctx->state = 15;
  42327. break;
  42328. case 15:
  42329. /* Z3 = H*Z1*Z2 */
  42330. sp_1024_mont_mul_42(ctx->z, p->z, ctx->t2, p1024_mod, p1024_mp_mod);
  42331. ctx->state = 16;
  42332. break;
  42333. case 16:
  42334. sp_1024_mont_mul_42(ctx->z, ctx->z, q->z, p1024_mod, p1024_mp_mod);
  42335. ctx->state = 17;
  42336. break;
  42337. case 17:
  42338. sp_1024_mont_sqr_42(ctx->x, ctx->t4, p1024_mod, p1024_mp_mod);
  42339. ctx->state = 18;
  42340. break;
  42341. case 18:
  42342. sp_1024_mont_sub_42(ctx->x, ctx->x, ctx->t5, p1024_mod);
  42343. ctx->state = 19;
  42344. break;
  42345. case 19:
  42346. sp_1024_mont_mul_42(ctx->t5, ctx->t5, ctx->t3, p1024_mod, p1024_mp_mod);
  42347. ctx->state = 20;
  42348. break;
  42349. case 20:
  42350. sp_1024_mont_dbl_42(ctx->t3, ctx->y, p1024_mod);
  42351. sp_1024_mont_sub_42(ctx->x, ctx->x, ctx->t3, p1024_mod);
  42352. ctx->state = 21;
  42353. break;
  42354. case 21:
  42355. /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
  42356. sp_1024_mont_sub_42(ctx->y, ctx->y, ctx->x, p1024_mod);
  42357. ctx->state = 22;
  42358. break;
  42359. case 22:
  42360. sp_1024_mont_mul_42(ctx->y, ctx->y, ctx->t4, p1024_mod, p1024_mp_mod);
  42361. ctx->state = 23;
  42362. break;
  42363. case 23:
  42364. sp_1024_mont_sub_42(ctx->y, ctx->y, ctx->t5, p1024_mod);
  42365. ctx->state = 24;
  42366. break;
  42367. case 24:
  42368. {
  42369. {
  42370. int i;
  42371. sp_digit maskp = 0 - (q->infinity & (!p->infinity));
  42372. sp_digit maskq = 0 - (p->infinity & (!q->infinity));
  42373. sp_digit maskt = ~(maskp | maskq);
  42374. sp_digit inf = (sp_digit)(p->infinity & q->infinity);
  42375. for (i = 0; i < 42; i++) {
  42376. r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
  42377. (ctx->x[i] & maskt);
  42378. }
  42379. for (i = 0; i < 42; i++) {
  42380. r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
  42381. (ctx->y[i] & maskt);
  42382. }
  42383. for (i = 0; i < 42; i++) {
  42384. r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
  42385. (ctx->z[i] & maskt);
  42386. }
  42387. r->z[0] |= inf;
  42388. r->infinity = (word32)inf;
  42389. }
  42390. ctx->state = 25;
  42391. break;
  42392. }
  42393. case 25:
  42394. err = MP_OKAY;
  42395. break;
  42396. }
  42397. if (err == MP_OKAY && ctx->state != 25) {
  42398. err = FP_WOULDBLOCK;
  42399. }
  42400. return err;
  42401. }
  42402. #endif /* WOLFSSL_SP_NONBLOCK */
  42403. #ifdef WOLFSSL_SP_SMALL
  42404. /* Multiply the point by the scalar and return the result.
  42405. * If map is true then convert result to affine coordinates.
  42406. *
  42407. * Small implementation using add and double that is cache attack resistant but
  42408. * allocates memory rather than use large stacks.
  42409. * 1024 adds and doubles.
  42410. *
  42411. * r Resulting point.
  42412. * g Point to multiply.
  42413. * k Scalar to multiply by.
  42414. * map Indicates whether to convert result to affine.
  42415. * ct Constant time required.
  42416. * heap Heap to use for allocation.
  42417. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  42418. */
  42419. static int sp_1024_ecc_mulmod_42(sp_point_1024* r, const sp_point_1024* g,
  42420. const sp_digit* k, int map, int ct, void* heap)
  42421. {
  42422. #ifdef WOLFSSL_SP_SMALL_STACK
  42423. sp_point_1024* t = NULL;
  42424. sp_digit* tmp = NULL;
  42425. #else
  42426. sp_point_1024 t[3];
  42427. sp_digit tmp[2 * 42 * 37];
  42428. #endif
  42429. sp_digit n;
  42430. int i;
  42431. int c;
  42432. int y;
  42433. int err = MP_OKAY;
  42434. /* Implementation is constant time. */
  42435. (void)ct;
  42436. (void)heap;
  42437. #ifdef WOLFSSL_SP_SMALL_STACK
  42438. t = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024) * 3, heap,
  42439. DYNAMIC_TYPE_ECC);
  42440. if (t == NULL)
  42441. err = MEMORY_E;
  42442. if (err == MP_OKAY) {
  42443. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 42 * 37, heap,
  42444. DYNAMIC_TYPE_ECC);
  42445. if (tmp == NULL)
  42446. err = MEMORY_E;
  42447. }
  42448. #endif
  42449. if (err == MP_OKAY) {
  42450. XMEMSET(t, 0, sizeof(sp_point_1024) * 3);
  42451. /* t[0] = {0, 0, 1} * norm */
  42452. t[0].infinity = 1;
  42453. /* t[1] = {g->x, g->y, g->z} * norm */
  42454. err = sp_1024_mod_mul_norm_42(t[1].x, g->x, p1024_mod);
  42455. }
  42456. if (err == MP_OKAY)
  42457. err = sp_1024_mod_mul_norm_42(t[1].y, g->y, p1024_mod);
  42458. if (err == MP_OKAY)
  42459. err = sp_1024_mod_mul_norm_42(t[1].z, g->z, p1024_mod);
  42460. if (err == MP_OKAY) {
  42461. i = 40;
  42462. c = 24;
  42463. n = k[i--] << (25 - c);
  42464. for (; ; c--) {
  42465. if (c == 0) {
  42466. if (i == -1)
  42467. break;
  42468. n = k[i--];
  42469. c = 25;
  42470. }
  42471. y = (n >> 24) & 1;
  42472. n <<= 1;
  42473. sp_1024_proj_point_add_42(&t[y^1], &t[0], &t[1], tmp);
  42474. XMEMCPY(&t[2], (void*)(((size_t)&t[0] & addr_mask[y^1]) +
  42475. ((size_t)&t[1] & addr_mask[y])),
  42476. sizeof(sp_point_1024));
  42477. sp_1024_proj_point_dbl_42(&t[2], &t[2], tmp);
  42478. XMEMCPY((void*)(((size_t)&t[0] & addr_mask[y^1]) +
  42479. ((size_t)&t[1] & addr_mask[y])), &t[2],
  42480. sizeof(sp_point_1024));
  42481. }
  42482. if (map != 0) {
  42483. sp_1024_map_42(r, &t[0], tmp);
  42484. }
  42485. else {
  42486. XMEMCPY(r, &t[0], sizeof(sp_point_1024));
  42487. }
  42488. }
  42489. #ifdef WOLFSSL_SP_SMALL_STACK
  42490. if (tmp != NULL)
  42491. #endif
  42492. {
  42493. ForceZero(tmp, sizeof(sp_digit) * 2 * 42 * 37);
  42494. #ifdef WOLFSSL_SP_SMALL_STACK
  42495. XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
  42496. #endif
  42497. }
  42498. #ifdef WOLFSSL_SP_SMALL_STACK
  42499. if (t != NULL)
  42500. #endif
  42501. {
  42502. ForceZero(t, sizeof(sp_point_1024) * 3);
  42503. #ifdef WOLFSSL_SP_SMALL_STACK
  42504. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  42505. #endif
  42506. }
  42507. return err;
  42508. }
  42509. #ifdef WOLFSSL_SP_NONBLOCK
  42510. typedef struct sp_1024_ecc_mulmod_42_ctx {
  42511. int state;
  42512. union {
  42513. sp_1024_proj_point_dbl_42_ctx dbl_ctx;
  42514. sp_1024_proj_point_add_42_ctx add_ctx;
  42515. };
  42516. sp_point_1024 t[3];
  42517. sp_digit tmp[2 * 42 * 37];
  42518. sp_digit n;
  42519. int i;
  42520. int c;
  42521. int y;
  42522. } sp_1024_ecc_mulmod_42_ctx;
  42523. static int sp_1024_ecc_mulmod_42_nb(sp_ecc_ctx_t* sp_ctx, sp_point_1024* r,
  42524. const sp_point_1024* g, const sp_digit* k, int map, int ct, void* heap)
  42525. {
  42526. int err = FP_WOULDBLOCK;
  42527. sp_1024_ecc_mulmod_42_ctx* ctx = (sp_1024_ecc_mulmod_42_ctx*)sp_ctx->data;
  42528. typedef char ctx_size_test[sizeof(sp_1024_ecc_mulmod_42_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
  42529. (void)sizeof(ctx_size_test);
  42530. /* Implementation is constant time. */
  42531. (void)ct;
  42532. switch (ctx->state) {
  42533. case 0: /* INIT */
  42534. XMEMSET(ctx->t, 0, sizeof(sp_point_1024) * 3);
  42535. ctx->i = 40;
  42536. ctx->c = 24;
  42537. ctx->n = k[ctx->i--] << (25 - ctx->c);
  42538. /* t[0] = {0, 0, 1} * norm */
  42539. ctx->t[0].infinity = 1;
  42540. ctx->state = 1;
  42541. break;
  42542. case 1: /* T1X */
  42543. /* t[1] = {g->x, g->y, g->z} * norm */
  42544. err = sp_1024_mod_mul_norm_42(ctx->t[1].x, g->x, p1024_mod);
  42545. ctx->state = 2;
  42546. break;
  42547. case 2: /* T1Y */
  42548. err = sp_1024_mod_mul_norm_42(ctx->t[1].y, g->y, p1024_mod);
  42549. ctx->state = 3;
  42550. break;
  42551. case 3: /* T1Z */
  42552. err = sp_1024_mod_mul_norm_42(ctx->t[1].z, g->z, p1024_mod);
  42553. ctx->state = 4;
  42554. break;
  42555. case 4: /* ADDPREP */
  42556. if (ctx->c == 0) {
  42557. if (ctx->i == -1) {
  42558. ctx->state = 7;
  42559. break;
  42560. }
  42561. ctx->n = k[ctx->i--];
  42562. ctx->c = 25;
  42563. }
  42564. ctx->y = (ctx->n >> 24) & 1;
  42565. ctx->n <<= 1;
  42566. XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
  42567. ctx->state = 5;
  42568. break;
  42569. case 5: /* ADD */
  42570. err = sp_1024_proj_point_add_42_nb((sp_ecc_ctx_t*)&ctx->add_ctx,
  42571. &ctx->t[ctx->y^1], &ctx->t[0], &ctx->t[1], ctx->tmp);
  42572. if (err == MP_OKAY) {
  42573. XMEMCPY(&ctx->t[2], (void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
  42574. ((size_t)&ctx->t[1] & addr_mask[ctx->y])),
  42575. sizeof(sp_point_1024));
  42576. XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
  42577. ctx->state = 6;
  42578. }
  42579. break;
  42580. case 6: /* DBL */
  42581. err = sp_1024_proj_point_dbl_42_nb((sp_ecc_ctx_t*)&ctx->dbl_ctx, &ctx->t[2],
  42582. &ctx->t[2], ctx->tmp);
  42583. if (err == MP_OKAY) {
  42584. XMEMCPY((void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
  42585. ((size_t)&ctx->t[1] & addr_mask[ctx->y])), &ctx->t[2],
  42586. sizeof(sp_point_1024));
  42587. ctx->state = 4;
  42588. ctx->c--;
  42589. }
  42590. break;
  42591. case 7: /* MAP */
  42592. if (map != 0) {
  42593. sp_1024_map_42(r, &ctx->t[0], ctx->tmp);
  42594. }
  42595. else {
  42596. XMEMCPY(r, &ctx->t[0], sizeof(sp_point_1024));
  42597. }
  42598. err = MP_OKAY;
  42599. break;
  42600. }
  42601. if (err == MP_OKAY && ctx->state != 7) {
  42602. err = FP_WOULDBLOCK;
  42603. }
  42604. if (err != FP_WOULDBLOCK) {
  42605. ForceZero(ctx->tmp, sizeof(ctx->tmp));
  42606. ForceZero(ctx->t, sizeof(ctx->t));
  42607. }
  42608. (void)heap;
  42609. return err;
  42610. }
  42611. #endif /* WOLFSSL_SP_NONBLOCK */
  42612. #else
  42613. /* A table entry for pre-computed points. */
  42614. typedef struct sp_table_entry_1024 {
  42615. sp_digit x[42];
  42616. sp_digit y[42];
  42617. } sp_table_entry_1024;
  42618. /* Conditionally copy a into r using the mask m.
  42619. * m is -1 to copy and 0 when not.
  42620. *
  42621. * r A single precision number to copy over.
  42622. * a A single precision number to copy.
  42623. * m Mask value to apply.
  42624. */
  42625. static void sp_1024_cond_copy_42(sp_digit* r, const sp_digit* a, const sp_digit m)
  42626. {
  42627. sp_digit t[42];
  42628. #ifdef WOLFSSL_SP_SMALL
  42629. int i;
  42630. for (i = 0; i < 42; i++) {
  42631. t[i] = r[i] ^ a[i];
  42632. }
  42633. for (i = 0; i < 42; i++) {
  42634. r[i] ^= t[i] & m;
  42635. }
  42636. #else
  42637. t[ 0] = r[ 0] ^ a[ 0];
  42638. t[ 1] = r[ 1] ^ a[ 1];
  42639. t[ 2] = r[ 2] ^ a[ 2];
  42640. t[ 3] = r[ 3] ^ a[ 3];
  42641. t[ 4] = r[ 4] ^ a[ 4];
  42642. t[ 5] = r[ 5] ^ a[ 5];
  42643. t[ 6] = r[ 6] ^ a[ 6];
  42644. t[ 7] = r[ 7] ^ a[ 7];
  42645. t[ 8] = r[ 8] ^ a[ 8];
  42646. t[ 9] = r[ 9] ^ a[ 9];
  42647. t[10] = r[10] ^ a[10];
  42648. t[11] = r[11] ^ a[11];
  42649. t[12] = r[12] ^ a[12];
  42650. t[13] = r[13] ^ a[13];
  42651. t[14] = r[14] ^ a[14];
  42652. t[15] = r[15] ^ a[15];
  42653. t[16] = r[16] ^ a[16];
  42654. t[17] = r[17] ^ a[17];
  42655. t[18] = r[18] ^ a[18];
  42656. t[19] = r[19] ^ a[19];
  42657. t[20] = r[20] ^ a[20];
  42658. t[21] = r[21] ^ a[21];
  42659. t[22] = r[22] ^ a[22];
  42660. t[23] = r[23] ^ a[23];
  42661. t[24] = r[24] ^ a[24];
  42662. t[25] = r[25] ^ a[25];
  42663. t[26] = r[26] ^ a[26];
  42664. t[27] = r[27] ^ a[27];
  42665. t[28] = r[28] ^ a[28];
  42666. t[29] = r[29] ^ a[29];
  42667. t[30] = r[30] ^ a[30];
  42668. t[31] = r[31] ^ a[31];
  42669. t[32] = r[32] ^ a[32];
  42670. t[33] = r[33] ^ a[33];
  42671. t[34] = r[34] ^ a[34];
  42672. t[35] = r[35] ^ a[35];
  42673. t[36] = r[36] ^ a[36];
  42674. t[37] = r[37] ^ a[37];
  42675. t[38] = r[38] ^ a[38];
  42676. t[39] = r[39] ^ a[39];
  42677. t[40] = r[40] ^ a[40];
  42678. t[41] = r[41] ^ a[41];
  42679. r[ 0] ^= t[ 0] & m;
  42680. r[ 1] ^= t[ 1] & m;
  42681. r[ 2] ^= t[ 2] & m;
  42682. r[ 3] ^= t[ 3] & m;
  42683. r[ 4] ^= t[ 4] & m;
  42684. r[ 5] ^= t[ 5] & m;
  42685. r[ 6] ^= t[ 6] & m;
  42686. r[ 7] ^= t[ 7] & m;
  42687. r[ 8] ^= t[ 8] & m;
  42688. r[ 9] ^= t[ 9] & m;
  42689. r[10] ^= t[10] & m;
  42690. r[11] ^= t[11] & m;
  42691. r[12] ^= t[12] & m;
  42692. r[13] ^= t[13] & m;
  42693. r[14] ^= t[14] & m;
  42694. r[15] ^= t[15] & m;
  42695. r[16] ^= t[16] & m;
  42696. r[17] ^= t[17] & m;
  42697. r[18] ^= t[18] & m;
  42698. r[19] ^= t[19] & m;
  42699. r[20] ^= t[20] & m;
  42700. r[21] ^= t[21] & m;
  42701. r[22] ^= t[22] & m;
  42702. r[23] ^= t[23] & m;
  42703. r[24] ^= t[24] & m;
  42704. r[25] ^= t[25] & m;
  42705. r[26] ^= t[26] & m;
  42706. r[27] ^= t[27] & m;
  42707. r[28] ^= t[28] & m;
  42708. r[29] ^= t[29] & m;
  42709. r[30] ^= t[30] & m;
  42710. r[31] ^= t[31] & m;
  42711. r[32] ^= t[32] & m;
  42712. r[33] ^= t[33] & m;
  42713. r[34] ^= t[34] & m;
  42714. r[35] ^= t[35] & m;
  42715. r[36] ^= t[36] & m;
  42716. r[37] ^= t[37] & m;
  42717. r[38] ^= t[38] & m;
  42718. r[39] ^= t[39] & m;
  42719. r[40] ^= t[40] & m;
  42720. r[41] ^= t[41] & m;
  42721. #endif /* WOLFSSL_SP_SMALL */
  42722. }
  42723. /* Double the Montgomery form projective point p a number of times.
  42724. *
  42725. * r Result of repeated doubling of point.
  42726. * p Point to double.
  42727. * n Number of times to double
  42728. * t Temporary ordinate data.
  42729. */
  42730. static void sp_1024_proj_point_dbl_n_42(sp_point_1024* p, int i,
  42731. sp_digit* t)
  42732. {
  42733. sp_digit* w = t;
  42734. sp_digit* a = t + 2*42;
  42735. sp_digit* b = t + 4*42;
  42736. sp_digit* t1 = t + 6*42;
  42737. sp_digit* t2 = t + 8*42;
  42738. sp_digit* x;
  42739. sp_digit* y;
  42740. sp_digit* z;
  42741. volatile int n = i;
  42742. x = p->x;
  42743. y = p->y;
  42744. z = p->z;
  42745. /* Y = 2*Y */
  42746. sp_1024_mont_dbl_42(y, y, p1024_mod);
  42747. /* W = Z^4 */
  42748. sp_1024_mont_sqr_42(w, z, p1024_mod, p1024_mp_mod);
  42749. sp_1024_mont_sqr_42(w, w, p1024_mod, p1024_mp_mod);
  42750. #ifndef WOLFSSL_SP_SMALL
  42751. while (--n > 0)
  42752. #else
  42753. while (--n >= 0)
  42754. #endif
  42755. {
  42756. /* A = 3*(X^2 - W) */
  42757. sp_1024_mont_sqr_42(t1, x, p1024_mod, p1024_mp_mod);
  42758. sp_1024_mont_sub_42(t1, t1, w, p1024_mod);
  42759. sp_1024_mont_tpl_42(a, t1, p1024_mod);
  42760. /* B = X*Y^2 */
  42761. sp_1024_mont_sqr_42(t1, y, p1024_mod, p1024_mp_mod);
  42762. sp_1024_mont_mul_42(b, t1, x, p1024_mod, p1024_mp_mod);
  42763. /* X = A^2 - 2B */
  42764. sp_1024_mont_sqr_42(x, a, p1024_mod, p1024_mp_mod);
  42765. sp_1024_mont_dbl_42(t2, b, p1024_mod);
  42766. sp_1024_mont_sub_42(x, x, t2, p1024_mod);
  42767. /* B = 2.(B - X) */
  42768. sp_1024_mont_sub_42(t2, b, x, p1024_mod);
  42769. sp_1024_mont_dbl_42(b, t2, p1024_mod);
  42770. /* Z = Z*Y */
  42771. sp_1024_mont_mul_42(z, z, y, p1024_mod, p1024_mp_mod);
  42772. /* t1 = Y^4 */
  42773. sp_1024_mont_sqr_42(t1, t1, p1024_mod, p1024_mp_mod);
  42774. #ifdef WOLFSSL_SP_SMALL
  42775. if (n != 0)
  42776. #endif
  42777. {
  42778. /* W = W*Y^4 */
  42779. sp_1024_mont_mul_42(w, w, t1, p1024_mod, p1024_mp_mod);
  42780. }
  42781. /* y = 2*A*(B - X) - Y^4 */
  42782. sp_1024_mont_mul_42(y, b, a, p1024_mod, p1024_mp_mod);
  42783. sp_1024_mont_sub_42(y, y, t1, p1024_mod);
  42784. }
  42785. #ifndef WOLFSSL_SP_SMALL
  42786. /* A = 3*(X^2 - W) */
  42787. sp_1024_mont_sqr_42(t1, x, p1024_mod, p1024_mp_mod);
  42788. sp_1024_mont_sub_42(t1, t1, w, p1024_mod);
  42789. sp_1024_mont_tpl_42(a, t1, p1024_mod);
  42790. /* B = X*Y^2 */
  42791. sp_1024_mont_sqr_42(t1, y, p1024_mod, p1024_mp_mod);
  42792. sp_1024_mont_mul_42(b, t1, x, p1024_mod, p1024_mp_mod);
  42793. /* X = A^2 - 2B */
  42794. sp_1024_mont_sqr_42(x, a, p1024_mod, p1024_mp_mod);
  42795. sp_1024_mont_dbl_42(t2, b, p1024_mod);
  42796. sp_1024_mont_sub_42(x, x, t2, p1024_mod);
  42797. /* B = 2.(B - X) */
  42798. sp_1024_mont_sub_42(t2, b, x, p1024_mod);
  42799. sp_1024_mont_dbl_42(b, t2, p1024_mod);
  42800. /* Z = Z*Y */
  42801. sp_1024_mont_mul_42(z, z, y, p1024_mod, p1024_mp_mod);
  42802. /* t1 = Y^4 */
  42803. sp_1024_mont_sqr_42(t1, t1, p1024_mod, p1024_mp_mod);
  42804. /* y = 2*A*(B - X) - Y^4 */
  42805. sp_1024_mont_mul_42(y, b, a, p1024_mod, p1024_mp_mod);
  42806. sp_1024_mont_sub_42(y, y, t1, p1024_mod);
  42807. #endif /* WOLFSSL_SP_SMALL */
  42808. /* Y = Y/2 */
  42809. sp_1024_mont_div2_42(y, y, p1024_mod);
  42810. }
  42811. /* Double the Montgomery form projective point p a number of times.
  42812. *
  42813. * r Result of repeated doubling of point.
  42814. * p Point to double.
  42815. * n Number of times to double
  42816. * t Temporary ordinate data.
  42817. */
  42818. static void sp_1024_proj_point_dbl_n_store_42(sp_point_1024* r,
  42819. const sp_point_1024* p, int n, int m, sp_digit* t)
  42820. {
  42821. sp_digit* w = t;
  42822. sp_digit* a = t + 2*42;
  42823. sp_digit* b = t + 4*42;
  42824. sp_digit* t1 = t + 6*42;
  42825. sp_digit* t2 = t + 8*42;
  42826. sp_digit* x = r[2*m].x;
  42827. sp_digit* y = r[(1<<n)*m].y;
  42828. sp_digit* z = r[2*m].z;
  42829. int i;
  42830. int j;
  42831. for (i=0; i<42; i++) {
  42832. x[i] = p->x[i];
  42833. }
  42834. for (i=0; i<42; i++) {
  42835. y[i] = p->y[i];
  42836. }
  42837. for (i=0; i<42; i++) {
  42838. z[i] = p->z[i];
  42839. }
  42840. /* Y = 2*Y */
  42841. sp_1024_mont_dbl_42(y, y, p1024_mod);
  42842. /* W = Z^4 */
  42843. sp_1024_mont_sqr_42(w, z, p1024_mod, p1024_mp_mod);
  42844. sp_1024_mont_sqr_42(w, w, p1024_mod, p1024_mp_mod);
  42845. j = m;
  42846. for (i=1; i<=n; i++) {
  42847. j *= 2;
  42848. /* A = 3*(X^2 - W) */
  42849. sp_1024_mont_sqr_42(t1, x, p1024_mod, p1024_mp_mod);
  42850. sp_1024_mont_sub_42(t1, t1, w, p1024_mod);
  42851. sp_1024_mont_tpl_42(a, t1, p1024_mod);
  42852. /* B = X*Y^2 */
  42853. sp_1024_mont_sqr_42(t1, y, p1024_mod, p1024_mp_mod);
  42854. sp_1024_mont_mul_42(b, t1, x, p1024_mod, p1024_mp_mod);
  42855. x = r[j].x;
  42856. /* X = A^2 - 2B */
  42857. sp_1024_mont_sqr_42(x, a, p1024_mod, p1024_mp_mod);
  42858. sp_1024_mont_dbl_42(t2, b, p1024_mod);
  42859. sp_1024_mont_sub_42(x, x, t2, p1024_mod);
  42860. /* B = 2.(B - X) */
  42861. sp_1024_mont_sub_42(t2, b, x, p1024_mod);
  42862. sp_1024_mont_dbl_42(b, t2, p1024_mod);
  42863. /* Z = Z*Y */
  42864. sp_1024_mont_mul_42(r[j].z, z, y, p1024_mod, p1024_mp_mod);
  42865. z = r[j].z;
  42866. /* t1 = Y^4 */
  42867. sp_1024_mont_sqr_42(t1, t1, p1024_mod, p1024_mp_mod);
  42868. if (i != n) {
  42869. /* W = W*Y^4 */
  42870. sp_1024_mont_mul_42(w, w, t1, p1024_mod, p1024_mp_mod);
  42871. }
  42872. /* y = 2*A*(B - X) - Y^4 */
  42873. sp_1024_mont_mul_42(y, b, a, p1024_mod, p1024_mp_mod);
  42874. sp_1024_mont_sub_42(y, y, t1, p1024_mod);
  42875. /* Y = Y/2 */
  42876. sp_1024_mont_div2_42(r[j].y, y, p1024_mod);
  42877. r[j].infinity = 0;
  42878. }
  42879. }
  42880. /* Add two Montgomery form projective points.
  42881. *
  42882. * ra Result of addition.
  42883. * rs Result of subtraction.
  42884. * p First point to add.
  42885. * q Second point to add.
  42886. * t Temporary ordinate data.
  42887. */
  42888. static void sp_1024_proj_point_add_sub_42(sp_point_1024* ra,
  42889. sp_point_1024* rs, const sp_point_1024* p, const sp_point_1024* q,
  42890. sp_digit* t)
  42891. {
  42892. sp_digit* t1 = t;
  42893. sp_digit* t2 = t + 2*42;
  42894. sp_digit* t3 = t + 4*42;
  42895. sp_digit* t4 = t + 6*42;
  42896. sp_digit* t5 = t + 8*42;
  42897. sp_digit* t6 = t + 10*42;
  42898. sp_digit* xa = ra->x;
  42899. sp_digit* ya = ra->y;
  42900. sp_digit* za = ra->z;
  42901. sp_digit* xs = rs->x;
  42902. sp_digit* ys = rs->y;
  42903. sp_digit* zs = rs->z;
  42904. XMEMCPY(xa, p->x, sizeof(p->x) / 2);
  42905. XMEMCPY(ya, p->y, sizeof(p->y) / 2);
  42906. XMEMCPY(za, p->z, sizeof(p->z) / 2);
  42907. ra->infinity = 0;
  42908. rs->infinity = 0;
  42909. /* U1 = X1*Z2^2 */
  42910. sp_1024_mont_sqr_42(t1, q->z, p1024_mod, p1024_mp_mod);
  42911. sp_1024_mont_mul_42(t3, t1, q->z, p1024_mod, p1024_mp_mod);
  42912. sp_1024_mont_mul_42(t1, t1, xa, p1024_mod, p1024_mp_mod);
  42913. /* U2 = X2*Z1^2 */
  42914. sp_1024_mont_sqr_42(t2, za, p1024_mod, p1024_mp_mod);
  42915. sp_1024_mont_mul_42(t4, t2, za, p1024_mod, p1024_mp_mod);
  42916. sp_1024_mont_mul_42(t2, t2, q->x, p1024_mod, p1024_mp_mod);
  42917. /* S1 = Y1*Z2^3 */
  42918. sp_1024_mont_mul_42(t3, t3, ya, p1024_mod, p1024_mp_mod);
  42919. /* S2 = Y2*Z1^3 */
  42920. sp_1024_mont_mul_42(t4, t4, q->y, p1024_mod, p1024_mp_mod);
  42921. /* H = U2 - U1 */
  42922. sp_1024_mont_sub_42(t2, t2, t1, p1024_mod);
  42923. /* RS = S2 + S1 */
  42924. sp_1024_mont_add_42(t6, t4, t3, p1024_mod);
  42925. /* R = S2 - S1 */
  42926. sp_1024_mont_sub_42(t4, t4, t3, p1024_mod);
  42927. /* Z3 = H*Z1*Z2 */
  42928. /* ZS = H*Z1*Z2 */
  42929. sp_1024_mont_mul_42(za, za, q->z, p1024_mod, p1024_mp_mod);
  42930. sp_1024_mont_mul_42(za, za, t2, p1024_mod, p1024_mp_mod);
  42931. XMEMCPY(zs, za, sizeof(p->z)/2);
  42932. /* X3 = R^2 - H^3 - 2*U1*H^2 */
  42933. /* XS = RS^2 - H^3 - 2*U1*H^2 */
  42934. sp_1024_mont_sqr_42(xa, t4, p1024_mod, p1024_mp_mod);
  42935. sp_1024_mont_sqr_42(xs, t6, p1024_mod, p1024_mp_mod);
  42936. sp_1024_mont_sqr_42(t5, t2, p1024_mod, p1024_mp_mod);
  42937. sp_1024_mont_mul_42(ya, t1, t5, p1024_mod, p1024_mp_mod);
  42938. sp_1024_mont_mul_42(t5, t5, t2, p1024_mod, p1024_mp_mod);
  42939. sp_1024_mont_sub_42(xa, xa, t5, p1024_mod);
  42940. sp_1024_mont_sub_42(xs, xs, t5, p1024_mod);
  42941. sp_1024_mont_dbl_42(t1, ya, p1024_mod);
  42942. sp_1024_mont_sub_42(xa, xa, t1, p1024_mod);
  42943. sp_1024_mont_sub_42(xs, xs, t1, p1024_mod);
  42944. /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
  42945. /* YS = -RS*(U1*H^2 - XS) - S1*H^3 */
  42946. sp_1024_mont_sub_42(ys, ya, xs, p1024_mod);
  42947. sp_1024_mont_sub_42(ya, ya, xa, p1024_mod);
  42948. sp_1024_mont_mul_42(ya, ya, t4, p1024_mod, p1024_mp_mod);
  42949. sp_1024_mont_sub_42(t6, p1024_mod, t6, p1024_mod);
  42950. sp_1024_mont_mul_42(ys, ys, t6, p1024_mod, p1024_mp_mod);
  42951. sp_1024_mont_mul_42(t5, t5, t3, p1024_mod, p1024_mp_mod);
  42952. sp_1024_mont_sub_42(ya, ya, t5, p1024_mod);
  42953. sp_1024_mont_sub_42(ys, ys, t5, p1024_mod);
  42954. }
  42955. /* Structure used to describe recoding of scalar multiplication. */
  42956. typedef struct ecc_recode_1024 {
  42957. /* Index into pre-computation table. */
  42958. uint8_t i;
  42959. /* Use the negative of the point. */
  42960. uint8_t neg;
  42961. } ecc_recode_1024;
  42962. /* The index into pre-computation table to use. */
  42963. static const uint8_t recode_index_42_7[130] = {
  42964. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  42965. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  42966. 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  42967. 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  42968. 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49,
  42969. 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33,
  42970. 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
  42971. 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
  42972. 0, 1,
  42973. };
  42974. /* Whether to negate y-ordinate. */
  42975. static const uint8_t recode_neg_42_7[130] = {
  42976. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  42977. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  42978. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  42979. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  42980. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  42981. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  42982. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  42983. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  42984. 0, 0,
  42985. };
  42986. /* Recode the scalar for multiplication using pre-computed values and
  42987. * subtraction.
  42988. *
  42989. * k Scalar to multiply by.
  42990. * v Vector of operations to perform.
  42991. */
  42992. static void sp_1024_ecc_recode_7_42(const sp_digit* k, ecc_recode_1024* v)
  42993. {
  42994. int i;
  42995. int j;
  42996. uint8_t y;
  42997. int carry = 0;
  42998. int o;
  42999. sp_digit n;
  43000. j = 0;
  43001. n = k[j];
  43002. o = 0;
  43003. for (i=0; i<147; i++) {
  43004. y = (int8_t)n;
  43005. if (o + 7 < 25) {
  43006. y &= 0x7f;
  43007. n >>= 7;
  43008. o += 7;
  43009. }
  43010. else if (o + 7 == 25) {
  43011. n >>= 7;
  43012. if (++j < 42)
  43013. n = k[j];
  43014. o = 0;
  43015. }
  43016. else if (++j < 42) {
  43017. n = k[j];
  43018. y |= (uint8_t)((n << (25 - o)) & 0x7f);
  43019. o -= 18;
  43020. n >>= o;
  43021. }
  43022. y += (uint8_t)carry;
  43023. v[i].i = recode_index_42_7[y];
  43024. v[i].neg = recode_neg_42_7[y];
  43025. carry = (y >> 7) + v[i].neg;
  43026. }
  43027. }
  43028. /* Multiply the point by the scalar and return the result.
  43029. * If map is true then convert result to affine coordinates.
  43030. *
  43031. * Window technique of 7 bits. (Add-Sub variation.)
  43032. * Calculate 0..64 times the point. Use function that adds and
  43033. * subtracts the same two points.
  43034. * Recode to add or subtract one of the computed points.
  43035. * Double to push up.
  43036. * NOT a sliding window.
  43037. *
  43038. * r Resulting point.
  43039. * g Point to multiply.
  43040. * k Scalar to multiply by.
  43041. * map Indicates whether to convert result to affine.
  43042. * ct Constant time required.
  43043. * heap Heap to use for allocation.
  43044. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  43045. */
  43046. static int sp_1024_ecc_mulmod_win_add_sub_42(sp_point_1024* r, const sp_point_1024* g,
  43047. const sp_digit* k, int map, int ct, void* heap)
  43048. {
  43049. #ifdef WOLFSSL_SP_SMALL_STACK
  43050. sp_point_1024* t = NULL;
  43051. sp_digit* tmp = NULL;
  43052. #else
  43053. sp_point_1024 t[65+2];
  43054. sp_digit tmp[2 * 42 * 37];
  43055. #endif
  43056. sp_point_1024* rt = NULL;
  43057. sp_point_1024* p = NULL;
  43058. sp_digit* negy;
  43059. int i;
  43060. ecc_recode_1024 v[147];
  43061. int err = MP_OKAY;
  43062. /* Constant time used for cache attack resistance implementation. */
  43063. (void)ct;
  43064. (void)heap;
  43065. #ifdef WOLFSSL_SP_SMALL_STACK
  43066. t = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024) *
  43067. (65+2), heap, DYNAMIC_TYPE_ECC);
  43068. if (t == NULL)
  43069. err = MEMORY_E;
  43070. if (err == MP_OKAY) {
  43071. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 42 * 37,
  43072. heap, DYNAMIC_TYPE_ECC);
  43073. if (tmp == NULL)
  43074. err = MEMORY_E;
  43075. }
  43076. #endif
  43077. if (err == MP_OKAY) {
  43078. rt = t + 65;
  43079. p = t + 65+1;
  43080. /* t[0] = {0, 0, 1} * norm */
  43081. XMEMSET(&t[0], 0, sizeof(t[0]));
  43082. t[0].infinity = 1;
  43083. /* t[1] = {g->x, g->y, g->z} * norm */
  43084. err = sp_1024_mod_mul_norm_42(t[1].x, g->x, p1024_mod);
  43085. }
  43086. if (err == MP_OKAY) {
  43087. err = sp_1024_mod_mul_norm_42(t[1].y, g->y, p1024_mod);
  43088. }
  43089. if (err == MP_OKAY) {
  43090. err = sp_1024_mod_mul_norm_42(t[1].z, g->z, p1024_mod);
  43091. }
  43092. if (err == MP_OKAY) {
  43093. t[1].infinity = 0;
  43094. /* t[2] ... t[64] */
  43095. sp_1024_proj_point_dbl_n_store_42(t, &t[ 1], 6, 1, tmp);
  43096. sp_1024_proj_point_add_42(&t[ 3], &t[ 2], &t[ 1], tmp);
  43097. sp_1024_proj_point_dbl_42(&t[ 6], &t[ 3], tmp);
  43098. sp_1024_proj_point_add_sub_42(&t[ 7], &t[ 5], &t[ 6], &t[ 1], tmp);
  43099. sp_1024_proj_point_dbl_42(&t[10], &t[ 5], tmp);
  43100. sp_1024_proj_point_add_sub_42(&t[11], &t[ 9], &t[10], &t[ 1], tmp);
  43101. sp_1024_proj_point_dbl_42(&t[12], &t[ 6], tmp);
  43102. sp_1024_proj_point_dbl_42(&t[14], &t[ 7], tmp);
  43103. sp_1024_proj_point_add_sub_42(&t[15], &t[13], &t[14], &t[ 1], tmp);
  43104. sp_1024_proj_point_dbl_42(&t[18], &t[ 9], tmp);
  43105. sp_1024_proj_point_add_sub_42(&t[19], &t[17], &t[18], &t[ 1], tmp);
  43106. sp_1024_proj_point_dbl_42(&t[20], &t[10], tmp);
  43107. sp_1024_proj_point_dbl_42(&t[22], &t[11], tmp);
  43108. sp_1024_proj_point_add_sub_42(&t[23], &t[21], &t[22], &t[ 1], tmp);
  43109. sp_1024_proj_point_dbl_42(&t[24], &t[12], tmp);
  43110. sp_1024_proj_point_dbl_42(&t[26], &t[13], tmp);
  43111. sp_1024_proj_point_add_sub_42(&t[27], &t[25], &t[26], &t[ 1], tmp);
  43112. sp_1024_proj_point_dbl_42(&t[28], &t[14], tmp);
  43113. sp_1024_proj_point_dbl_42(&t[30], &t[15], tmp);
  43114. sp_1024_proj_point_add_sub_42(&t[31], &t[29], &t[30], &t[ 1], tmp);
  43115. sp_1024_proj_point_dbl_42(&t[34], &t[17], tmp);
  43116. sp_1024_proj_point_add_sub_42(&t[35], &t[33], &t[34], &t[ 1], tmp);
  43117. sp_1024_proj_point_dbl_42(&t[36], &t[18], tmp);
  43118. sp_1024_proj_point_dbl_42(&t[38], &t[19], tmp);
  43119. sp_1024_proj_point_add_sub_42(&t[39], &t[37], &t[38], &t[ 1], tmp);
  43120. sp_1024_proj_point_dbl_42(&t[40], &t[20], tmp);
  43121. sp_1024_proj_point_dbl_42(&t[42], &t[21], tmp);
  43122. sp_1024_proj_point_add_sub_42(&t[43], &t[41], &t[42], &t[ 1], tmp);
  43123. sp_1024_proj_point_dbl_42(&t[44], &t[22], tmp);
  43124. sp_1024_proj_point_dbl_42(&t[46], &t[23], tmp);
  43125. sp_1024_proj_point_add_sub_42(&t[47], &t[45], &t[46], &t[ 1], tmp);
  43126. sp_1024_proj_point_dbl_42(&t[48], &t[24], tmp);
  43127. sp_1024_proj_point_dbl_42(&t[50], &t[25], tmp);
  43128. sp_1024_proj_point_add_sub_42(&t[51], &t[49], &t[50], &t[ 1], tmp);
  43129. sp_1024_proj_point_dbl_42(&t[52], &t[26], tmp);
  43130. sp_1024_proj_point_dbl_42(&t[54], &t[27], tmp);
  43131. sp_1024_proj_point_add_sub_42(&t[55], &t[53], &t[54], &t[ 1], tmp);
  43132. sp_1024_proj_point_dbl_42(&t[56], &t[28], tmp);
  43133. sp_1024_proj_point_dbl_42(&t[58], &t[29], tmp);
  43134. sp_1024_proj_point_add_sub_42(&t[59], &t[57], &t[58], &t[ 1], tmp);
  43135. sp_1024_proj_point_dbl_42(&t[60], &t[30], tmp);
  43136. sp_1024_proj_point_dbl_42(&t[62], &t[31], tmp);
  43137. sp_1024_proj_point_add_sub_42(&t[63], &t[61], &t[62], &t[ 1], tmp);
  43138. negy = t[0].y;
  43139. sp_1024_ecc_recode_7_42(k, v);
  43140. i = 146;
  43141. XMEMCPY(rt, &t[v[i].i], sizeof(sp_point_1024));
  43142. for (--i; i>=0; i--) {
  43143. sp_1024_proj_point_dbl_n_42(rt, 7, tmp);
  43144. XMEMCPY(p, &t[v[i].i], sizeof(sp_point_1024));
  43145. sp_1024_mont_sub_42(negy, p1024_mod, p->y, p1024_mod);
  43146. sp_1024_norm_42(negy);
  43147. sp_1024_cond_copy_42(p->y, negy, (sp_digit)0 - v[i].neg);
  43148. sp_1024_proj_point_add_42(rt, rt, p, tmp);
  43149. }
  43150. if (map != 0) {
  43151. sp_1024_map_42(r, rt, tmp);
  43152. }
  43153. else {
  43154. XMEMCPY(r, rt, sizeof(sp_point_1024));
  43155. }
  43156. }
  43157. #ifdef WOLFSSL_SP_SMALL_STACK
  43158. if (t != NULL)
  43159. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  43160. if (tmp != NULL)
  43161. XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
  43162. #endif
  43163. return err;
  43164. }
  43165. #ifdef FP_ECC
  43166. #endif /* FP_ECC */
  43167. /* Add two Montgomery form projective points. The second point has a q value of
  43168. * one.
  43169. * Only the first point can be the same pointer as the result point.
  43170. *
  43171. * r Result of addition.
  43172. * p First point to add.
  43173. * q Second point to add.
  43174. * t Temporary ordinate data.
  43175. */
  43176. static void sp_1024_proj_point_add_qz1_42(sp_point_1024* r,
  43177. const sp_point_1024* p, const sp_point_1024* q, sp_digit* t)
  43178. {
  43179. sp_digit* t2 = t;
  43180. sp_digit* t3 = t + 2*42;
  43181. sp_digit* t6 = t + 4*42;
  43182. sp_digit* t1 = t + 6*42;
  43183. sp_digit* t4 = t + 8*42;
  43184. sp_digit* t5 = t + 10*42;
  43185. /* Calculate values to subtract from P->x and P->y. */
  43186. /* U2 = X2*Z1^2 */
  43187. sp_1024_mont_sqr_42(t2, p->z, p1024_mod, p1024_mp_mod);
  43188. sp_1024_mont_mul_42(t4, t2, p->z, p1024_mod, p1024_mp_mod);
  43189. sp_1024_mont_mul_42(t2, t2, q->x, p1024_mod, p1024_mp_mod);
  43190. /* S2 = Y2*Z1^3 */
  43191. sp_1024_mont_mul_42(t4, t4, q->y, p1024_mod, p1024_mp_mod);
  43192. if ((~p->infinity) & (~q->infinity) &
  43193. sp_1024_cmp_equal_42(p->x, t2) &
  43194. sp_1024_cmp_equal_42(p->y, t4)) {
  43195. sp_1024_proj_point_dbl_42(r, p, t);
  43196. }
  43197. else {
  43198. sp_digit* x = t2;
  43199. sp_digit* y = t3;
  43200. sp_digit* z = t6;
  43201. /* H = U2 - X1 */
  43202. sp_1024_mont_sub_42(t2, t2, p->x, p1024_mod);
  43203. /* R = S2 - Y1 */
  43204. sp_1024_mont_sub_42(t4, t4, p->y, p1024_mod);
  43205. /* Z3 = H*Z1 */
  43206. sp_1024_mont_mul_42(z, p->z, t2, p1024_mod, p1024_mp_mod);
  43207. /* X3 = R^2 - H^3 - 2*X1*H^2 */
  43208. sp_1024_mont_sqr_42(t1, t2, p1024_mod, p1024_mp_mod);
  43209. sp_1024_mont_mul_42(t3, p->x, t1, p1024_mod, p1024_mp_mod);
  43210. sp_1024_mont_mul_42(t1, t1, t2, p1024_mod, p1024_mp_mod);
  43211. sp_1024_mont_sqr_42(t2, t4, p1024_mod, p1024_mp_mod);
  43212. sp_1024_mont_sub_42(t2, t2, t1, p1024_mod);
  43213. sp_1024_mont_dbl_42(t5, t3, p1024_mod);
  43214. sp_1024_mont_sub_42(x, t2, t5, p1024_mod);
  43215. /* Y3 = R*(X1*H^2 - X3) - Y1*H^3 */
  43216. sp_1024_mont_sub_42(t3, t3, x, p1024_mod);
  43217. sp_1024_mont_mul_42(t3, t3, t4, p1024_mod, p1024_mp_mod);
  43218. sp_1024_mont_mul_42(t1, t1, p->y, p1024_mod, p1024_mp_mod);
  43219. sp_1024_mont_sub_42(y, t3, t1, p1024_mod);
  43220. {
  43221. int i;
  43222. sp_digit maskp = 0 - (q->infinity & (!p->infinity));
  43223. sp_digit maskq = 0 - (p->infinity & (!q->infinity));
  43224. sp_digit maskt = ~(maskp | maskq);
  43225. sp_digit inf = (sp_digit)(p->infinity & q->infinity);
  43226. for (i = 0; i < 42; i++) {
  43227. r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
  43228. (x[i] & maskt);
  43229. }
  43230. for (i = 0; i < 42; i++) {
  43231. r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
  43232. (y[i] & maskt);
  43233. }
  43234. for (i = 0; i < 42; i++) {
  43235. r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
  43236. (z[i] & maskt);
  43237. }
  43238. r->z[0] |= inf;
  43239. r->infinity = (word32)inf;
  43240. }
  43241. }
  43242. }
  43243. #if defined(FP_ECC) || !defined(WOLFSSL_SP_SMALL)
  43244. /* Convert the projective point to affine.
  43245. * Ordinates are in Montgomery form.
  43246. *
  43247. * a Point to convert.
  43248. * t Temporary data.
  43249. */
  43250. static void sp_1024_proj_to_affine_42(sp_point_1024* a, sp_digit* t)
  43251. {
  43252. sp_digit* t1 = t;
  43253. sp_digit* t2 = t + 2 * 42;
  43254. sp_digit* tmp = t + 4 * 42;
  43255. sp_1024_mont_inv_42(t1, a->z, tmp);
  43256. sp_1024_mont_sqr_42(t2, t1, p1024_mod, p1024_mp_mod);
  43257. sp_1024_mont_mul_42(t1, t2, t1, p1024_mod, p1024_mp_mod);
  43258. sp_1024_mont_mul_42(a->x, a->x, t2, p1024_mod, p1024_mp_mod);
  43259. sp_1024_mont_mul_42(a->y, a->y, t1, p1024_mod, p1024_mp_mod);
  43260. XMEMCPY(a->z, p1024_norm_mod, sizeof(p1024_norm_mod));
  43261. }
  43262. /* Generate the pre-computed table of points for the base point.
  43263. *
  43264. * width = 8
  43265. * 256 entries
  43266. * 128 bits between
  43267. *
  43268. * a The base point.
  43269. * table Place to store generated point data.
  43270. * tmp Temporary data.
  43271. * heap Heap to use for allocation.
  43272. */
  43273. static int sp_1024_gen_stripe_table_42(const sp_point_1024* a,
  43274. sp_table_entry_1024* table, sp_digit* tmp, void* heap)
  43275. {
  43276. #ifdef WOLFSSL_SP_SMALL_STACK
  43277. sp_point_1024* t = NULL;
  43278. #else
  43279. sp_point_1024 t[3];
  43280. #endif
  43281. sp_point_1024* s1 = NULL;
  43282. sp_point_1024* s2 = NULL;
  43283. int i;
  43284. int j;
  43285. int err = MP_OKAY;
  43286. (void)heap;
  43287. #ifdef WOLFSSL_SP_SMALL_STACK
  43288. t = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024) * 3, heap,
  43289. DYNAMIC_TYPE_ECC);
  43290. if (t == NULL)
  43291. err = MEMORY_E;
  43292. #endif
  43293. if (err == MP_OKAY) {
  43294. s1 = t + 1;
  43295. s2 = t + 2;
  43296. err = sp_1024_mod_mul_norm_42(t->x, a->x, p1024_mod);
  43297. }
  43298. if (err == MP_OKAY) {
  43299. err = sp_1024_mod_mul_norm_42(t->y, a->y, p1024_mod);
  43300. }
  43301. if (err == MP_OKAY) {
  43302. err = sp_1024_mod_mul_norm_42(t->z, a->z, p1024_mod);
  43303. }
  43304. if (err == MP_OKAY) {
  43305. t->infinity = 0;
  43306. sp_1024_proj_to_affine_42(t, tmp);
  43307. XMEMCPY(s1->z, p1024_norm_mod, sizeof(p1024_norm_mod));
  43308. s1->infinity = 0;
  43309. XMEMCPY(s2->z, p1024_norm_mod, sizeof(p1024_norm_mod));
  43310. s2->infinity = 0;
  43311. /* table[0] = {0, 0, infinity} */
  43312. XMEMSET(&table[0], 0, sizeof(sp_table_entry_1024));
  43313. /* table[1] = Affine version of 'a' in Montgomery form */
  43314. XMEMCPY(table[1].x, t->x, sizeof(table->x));
  43315. XMEMCPY(table[1].y, t->y, sizeof(table->y));
  43316. for (i=1; i<8; i++) {
  43317. sp_1024_proj_point_dbl_n_42(t, 128, tmp);
  43318. sp_1024_proj_to_affine_42(t, tmp);
  43319. XMEMCPY(table[1<<i].x, t->x, sizeof(table->x));
  43320. XMEMCPY(table[1<<i].y, t->y, sizeof(table->y));
  43321. }
  43322. for (i=1; i<8; i++) {
  43323. XMEMCPY(s1->x, table[1<<i].x, sizeof(table->x));
  43324. XMEMCPY(s1->y, table[1<<i].y, sizeof(table->y));
  43325. for (j=(1<<i)+1; j<(1<<(i+1)); j++) {
  43326. XMEMCPY(s2->x, table[j-(1<<i)].x, sizeof(table->x));
  43327. XMEMCPY(s2->y, table[j-(1<<i)].y, sizeof(table->y));
  43328. sp_1024_proj_point_add_qz1_42(t, s1, s2, tmp);
  43329. sp_1024_proj_to_affine_42(t, tmp);
  43330. XMEMCPY(table[j].x, t->x, sizeof(table->x));
  43331. XMEMCPY(table[j].y, t->y, sizeof(table->y));
  43332. }
  43333. }
  43334. }
  43335. #ifdef WOLFSSL_SP_SMALL_STACK
  43336. if (t != NULL)
  43337. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  43338. #endif
  43339. return err;
  43340. }
  43341. #endif /* FP_ECC | !WOLFSSL_SP_SMALL */
  43342. /* Multiply the point by the scalar and return the result.
  43343. * If map is true then convert result to affine coordinates.
  43344. *
  43345. * Stripe implementation.
  43346. * Pre-generated: 2^0, 2^128, ...
  43347. * Pre-generated: products of all combinations of above.
  43348. * 8 doubles and adds (with qz=1)
  43349. *
  43350. * r Resulting point.
  43351. * k Scalar to multiply by.
  43352. * table Pre-computed table.
  43353. * map Indicates whether to convert result to affine.
  43354. * ct Constant time required.
  43355. * heap Heap to use for allocation.
  43356. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  43357. */
  43358. static int sp_1024_ecc_mulmod_stripe_42(sp_point_1024* r, const sp_point_1024* g,
  43359. const sp_table_entry_1024* table, const sp_digit* k, int map,
  43360. int ct, void* heap)
  43361. {
  43362. #ifdef WOLFSSL_SP_SMALL_STACK
  43363. sp_point_1024* rt = NULL;
  43364. sp_digit* t = NULL;
  43365. #else
  43366. sp_point_1024 rt[2];
  43367. sp_digit t[2 * 42 * 37];
  43368. #endif
  43369. sp_point_1024* p = NULL;
  43370. int i;
  43371. int j;
  43372. int y;
  43373. int x;
  43374. int err = MP_OKAY;
  43375. (void)g;
  43376. /* Constant time used for cache attack resistance implementation. */
  43377. (void)ct;
  43378. (void)heap;
  43379. #ifdef WOLFSSL_SP_SMALL_STACK
  43380. rt = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024) * 2, heap,
  43381. DYNAMIC_TYPE_ECC);
  43382. if (rt == NULL)
  43383. err = MEMORY_E;
  43384. if (err == MP_OKAY) {
  43385. t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 42 * 37, heap,
  43386. DYNAMIC_TYPE_ECC);
  43387. if (t == NULL)
  43388. err = MEMORY_E;
  43389. }
  43390. #endif
  43391. if (err == MP_OKAY) {
  43392. p = rt + 1;
  43393. XMEMCPY(p->z, p1024_norm_mod, sizeof(p1024_norm_mod));
  43394. XMEMCPY(rt->z, p1024_norm_mod, sizeof(p1024_norm_mod));
  43395. y = 0;
  43396. x = 127;
  43397. for (j=0; j<8; j++) {
  43398. y |= (int)(((k[x / 25] >> (x % 25)) & 1) << j);
  43399. x += 128;
  43400. }
  43401. XMEMCPY(rt->x, table[y].x, sizeof(table[y].x));
  43402. XMEMCPY(rt->y, table[y].y, sizeof(table[y].y));
  43403. rt->infinity = !y;
  43404. for (i=126; i>=0; i--) {
  43405. y = 0;
  43406. x = i;
  43407. for (j=0; j<8; j++) {
  43408. y |= (int)(((k[x / 25] >> (x % 25)) & 1) << j);
  43409. x += 128;
  43410. }
  43411. sp_1024_proj_point_dbl_42(rt, rt, t);
  43412. XMEMCPY(p->x, table[y].x, sizeof(table[y].x));
  43413. XMEMCPY(p->y, table[y].y, sizeof(table[y].y));
  43414. p->infinity = !y;
  43415. sp_1024_proj_point_add_qz1_42(rt, rt, p, t);
  43416. }
  43417. if (map != 0) {
  43418. sp_1024_map_42(r, rt, t);
  43419. }
  43420. else {
  43421. XMEMCPY(r, rt, sizeof(sp_point_1024));
  43422. }
  43423. }
  43424. #ifdef WOLFSSL_SP_SMALL_STACK
  43425. if (t != NULL)
  43426. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  43427. if (rt != NULL)
  43428. XFREE(rt, heap, DYNAMIC_TYPE_ECC);
  43429. #endif
  43430. return err;
  43431. }
  43432. #ifdef FP_ECC
  43433. #ifndef FP_ENTRIES
  43434. #define FP_ENTRIES 16
  43435. #endif
  43436. /* Cache entry - holds precomputation tables for a point. */
  43437. typedef struct sp_cache_1024_t {
  43438. /* X ordinate of point that table was generated from. */
  43439. sp_digit x[42];
  43440. /* Y ordinate of point that table was generated from. */
  43441. sp_digit y[42];
  43442. /* Precomputation table for point. */
  43443. sp_table_entry_1024 table[256];
  43444. /* Count of entries in table. */
  43445. uint32_t cnt;
  43446. /* Point and table set in entry. */
  43447. int set;
  43448. } sp_cache_1024_t;
  43449. /* Cache of tables. */
  43450. static THREAD_LS_T sp_cache_1024_t sp_cache_1024[FP_ENTRIES];
  43451. /* Index of last entry in cache. */
  43452. static THREAD_LS_T int sp_cache_1024_last = -1;
  43453. /* Cache has been initialized. */
  43454. static THREAD_LS_T int sp_cache_1024_inited = 0;
  43455. #ifndef HAVE_THREAD_LS
  43456. static volatile int initCacheMutex_1024 = 0;
  43457. static wolfSSL_Mutex sp_cache_1024_lock;
  43458. #endif
  43459. /* Get the cache entry for the point.
  43460. *
  43461. * g [in] Point scalar multiplying.
  43462. * cache [out] Cache table to use.
  43463. */
  43464. static void sp_ecc_get_cache_1024(const sp_point_1024* g, sp_cache_1024_t** cache)
  43465. {
  43466. int i;
  43467. int j;
  43468. uint32_t least;
  43469. if (sp_cache_1024_inited == 0) {
  43470. for (i=0; i<FP_ENTRIES; i++) {
  43471. sp_cache_1024[i].set = 0;
  43472. }
  43473. sp_cache_1024_inited = 1;
  43474. }
  43475. /* Compare point with those in cache. */
  43476. for (i=0; i<FP_ENTRIES; i++) {
  43477. if (!sp_cache_1024[i].set)
  43478. continue;
  43479. if (sp_1024_cmp_equal_42(g->x, sp_cache_1024[i].x) &
  43480. sp_1024_cmp_equal_42(g->y, sp_cache_1024[i].y)) {
  43481. sp_cache_1024[i].cnt++;
  43482. break;
  43483. }
  43484. }
  43485. /* No match. */
  43486. if (i == FP_ENTRIES) {
  43487. /* Find empty entry. */
  43488. i = (sp_cache_1024_last + 1) % FP_ENTRIES;
  43489. for (; i != sp_cache_1024_last; i=(i+1)%FP_ENTRIES) {
  43490. if (!sp_cache_1024[i].set) {
  43491. break;
  43492. }
  43493. }
  43494. /* Evict least used. */
  43495. if (i == sp_cache_1024_last) {
  43496. least = sp_cache_1024[0].cnt;
  43497. for (j=1; j<FP_ENTRIES; j++) {
  43498. if (sp_cache_1024[j].cnt < least) {
  43499. i = j;
  43500. least = sp_cache_1024[i].cnt;
  43501. }
  43502. }
  43503. }
  43504. XMEMCPY(sp_cache_1024[i].x, g->x, sizeof(sp_cache_1024[i].x));
  43505. XMEMCPY(sp_cache_1024[i].y, g->y, sizeof(sp_cache_1024[i].y));
  43506. sp_cache_1024[i].set = 1;
  43507. sp_cache_1024[i].cnt = 1;
  43508. }
  43509. *cache = &sp_cache_1024[i];
  43510. sp_cache_1024_last = i;
  43511. }
  43512. #endif /* FP_ECC */
  43513. /* Multiply the base point of P1024 by the scalar and return the result.
  43514. * If map is true then convert result to affine coordinates.
  43515. *
  43516. * r Resulting point.
  43517. * g Point to multiply.
  43518. * k Scalar to multiply by.
  43519. * map Indicates whether to convert result to affine.
  43520. * ct Constant time required.
  43521. * heap Heap to use for allocation.
  43522. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  43523. */
  43524. static int sp_1024_ecc_mulmod_42(sp_point_1024* r, const sp_point_1024* g,
  43525. const sp_digit* k, int map, int ct, void* heap)
  43526. {
  43527. #ifndef FP_ECC
  43528. return sp_1024_ecc_mulmod_win_add_sub_42(r, g, k, map, ct, heap);
  43529. #else
  43530. #ifdef WOLFSSL_SP_SMALL_STACK
  43531. sp_digit* tmp;
  43532. #else
  43533. sp_digit tmp[2 * 42 * 38];
  43534. #endif
  43535. sp_cache_1024_t* cache;
  43536. int err = MP_OKAY;
  43537. #ifdef WOLFSSL_SP_SMALL_STACK
  43538. tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 42 * 38, heap, DYNAMIC_TYPE_ECC);
  43539. if (tmp == NULL) {
  43540. err = MEMORY_E;
  43541. }
  43542. #endif
  43543. #ifndef HAVE_THREAD_LS
  43544. if (err == MP_OKAY) {
  43545. if (initCacheMutex_1024 == 0) {
  43546. wc_InitMutex(&sp_cache_1024_lock);
  43547. initCacheMutex_1024 = 1;
  43548. }
  43549. if (wc_LockMutex(&sp_cache_1024_lock) != 0) {
  43550. err = BAD_MUTEX_E;
  43551. }
  43552. }
  43553. #endif /* HAVE_THREAD_LS */
  43554. if (err == MP_OKAY) {
  43555. sp_ecc_get_cache_1024(g, &cache);
  43556. if (cache->cnt == 2)
  43557. sp_1024_gen_stripe_table_42(g, cache->table, tmp, heap);
  43558. #ifndef HAVE_THREAD_LS
  43559. wc_UnLockMutex(&sp_cache_1024_lock);
  43560. #endif /* HAVE_THREAD_LS */
  43561. if (cache->cnt < 2) {
  43562. err = sp_1024_ecc_mulmod_win_add_sub_42(r, g, k, map, ct, heap);
  43563. }
  43564. else {
  43565. err = sp_1024_ecc_mulmod_stripe_42(r, g, cache->table, k,
  43566. map, ct, heap);
  43567. }
  43568. }
  43569. #ifdef WOLFSSL_SP_SMALL_STACK
  43570. XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
  43571. #endif
  43572. return err;
  43573. #endif
  43574. }
  43575. #endif
  43576. /* Multiply the point by the scalar and return the result.
  43577. * If map is true then convert result to affine coordinates.
  43578. *
  43579. * km Scalar to multiply by.
  43580. * p Point to multiply.
  43581. * r Resulting point.
  43582. * map Indicates whether to convert result to affine.
  43583. * heap Heap to use for allocation.
  43584. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  43585. */
  43586. int sp_ecc_mulmod_1024(const mp_int* km, const ecc_point* gm, ecc_point* r,
  43587. int map, void* heap)
  43588. {
  43589. #ifdef WOLFSSL_SP_SMALL_STACK
  43590. sp_point_1024* point = NULL;
  43591. sp_digit* k = NULL;
  43592. #else
  43593. sp_point_1024 point[1];
  43594. sp_digit k[42];
  43595. #endif
  43596. int err = MP_OKAY;
  43597. #ifdef WOLFSSL_SP_SMALL_STACK
  43598. point = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024), heap,
  43599. DYNAMIC_TYPE_ECC);
  43600. if (point == NULL)
  43601. err = MEMORY_E;
  43602. if (err == MP_OKAY) {
  43603. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 42, heap,
  43604. DYNAMIC_TYPE_ECC);
  43605. if (k == NULL)
  43606. err = MEMORY_E;
  43607. }
  43608. #endif
  43609. if (err == MP_OKAY) {
  43610. sp_1024_from_mp(k, 42, km);
  43611. sp_1024_point_from_ecc_point_42(point, gm);
  43612. err = sp_1024_ecc_mulmod_42(point, point, k, map, 1, heap);
  43613. }
  43614. if (err == MP_OKAY) {
  43615. err = sp_1024_point_to_ecc_point_42(point, r);
  43616. }
  43617. #ifdef WOLFSSL_SP_SMALL_STACK
  43618. if (k != NULL)
  43619. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  43620. if (point != NULL)
  43621. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  43622. #endif
  43623. return err;
  43624. }
  43625. #ifdef WOLFSSL_SP_SMALL
  43626. /* Multiply the base point of P1024 by the scalar and return the result.
  43627. * If map is true then convert result to affine coordinates.
  43628. *
  43629. * r Resulting point.
  43630. * k Scalar to multiply by.
  43631. * map Indicates whether to convert result to affine.
  43632. * heap Heap to use for allocation.
  43633. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  43634. */
  43635. static int sp_1024_ecc_mulmod_base_42(sp_point_1024* r, const sp_digit* k,
  43636. int map, int ct, void* heap)
  43637. {
  43638. /* No pre-computed values. */
  43639. return sp_1024_ecc_mulmod_42(r, &p1024_base, k, map, ct, heap);
  43640. }
  43641. #ifdef WOLFSSL_SP_NONBLOCK
  43642. static int sp_1024_ecc_mulmod_base_42_nb(sp_ecc_ctx_t* sp_ctx, sp_point_1024* r,
  43643. const sp_digit* k, int map, int ct, void* heap)
  43644. {
  43645. /* No pre-computed values. */
  43646. return sp_1024_ecc_mulmod_42_nb(sp_ctx, r, &p1024_base, k, map, ct, heap);
  43647. }
  43648. #endif /* WOLFSSL_SP_NONBLOCK */
  43649. #else
  43650. /* Striping precomputation table.
  43651. * 8 points combined into a table of 256 points.
  43652. * Distance of 128 between points.
  43653. */
  43654. static const sp_table_entry_1024 p1024_table[256] = {
  43655. /* 0 */
  43656. { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  43657. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  43658. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  43659. 0x00, 0x00, 0x00, 0x00, 0x00 },
  43660. { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  43661. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  43662. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  43663. 0x00, 0x00, 0x00, 0x00, 0x00 } },
  43664. /* 1 */
  43665. { { 0x0162bc2,0x03f6370,0x0a26fe7,0x0621512,0x1decc6e,0x04cec0e,
  43666. 0x077c279,0x030bab3,0x06d3582,0x14b7514,0x17e36e6,0x0fa6e18,
  43667. 0x0601aec,0x067ae83,0x0b92656,0x1aff1ce,0x17d3e91,0x1617394,
  43668. 0x0a7cbd6,0x03b725b,0x19ed862,0x13ad2b3,0x12c9b21,0x0ad5582,
  43669. 0x185df2c,0x1cc9199,0x131a84f,0x111ce9a,0x08ec11b,0x18b9ffd,
  43670. 0x1bc4852,0x03e7f3f,0x0386a27,0x1da2750,0x0d3b039,0x0d7b363,
  43671. 0x0ecd349,0x12946e7,0x1e02ebf,0x0d43893,0x08dfff9 },
  43672. { 0x03c0c83,0x03a9d60,0x15d6d29,0x11579b9,0x08e69d1,0x1adb24b,
  43673. 0x06e23dd,0x0a5c707,0x0bf58f3,0x01fca4d,0x0f05720,0x0cf37a1,
  43674. 0x025f702,0x07f94c6,0x0fd745a,0x12edd0b,0x198c6c7,0x01fb75e,
  43675. 0x178f86d,0x0315e88,0x0093206,0x072a732,0x19f5566,0x09fdb3c,
  43676. 0x1283b50,0x08bd823,0x15c361d,0x0a1957f,0x1addbe4,0x145f9fa,
  43677. 0x1291f58,0x0f19699,0x037ef30,0x0248400,0x14f1ac7,0x0e9c291,
  43678. 0x0fcfd83,0x0b6994a,0x007cf89,0x0f7bc78,0x02aa120 } },
  43679. /* 2 */
  43680. { { 0x1900955,0x1b6d700,0x15b6a56,0x039d68c,0x05dc9cc,0x17f4add,
  43681. 0x0241f9c,0x068a18f,0x1a040c3,0x0d72a23,0x0ba9ba8,0x06e0f2a,
  43682. 0x0591191,0x1684b98,0x1fdcd0d,0x1a21ea9,0x074bda4,0x0526d80,
  43683. 0x059101c,0x060de32,0x122cfd5,0x19c5922,0x052e7f9,0x093eec4,
  43684. 0x0dad678,0x1720a34,0x02c3734,0x0f65343,0x1ad4928,0x18d0af0,
  43685. 0x06ab75f,0x1b77454,0x0c63a81,0x119bccd,0x116e048,0x10026f3,
  43686. 0x10e53bc,0x0159785,0x0ed87d0,0x0fe17e2,0x08c3eb2 },
  43687. { 0x113696f,0x169f0f2,0x1fea692,0x1831903,0x0350ba5,0x019e898,
  43688. 0x104d8f0,0x1783c5f,0x117a531,0x1ed3738,0x1584354,0x092035d,
  43689. 0x0742ec6,0x14cffab,0x0fa37df,0x1a255a6,0x13e3dee,0x1f2556b,
  43690. 0x003d37a,0x0768ca3,0x10b4d98,0x14a8179,0x064d949,0x1231aff,
  43691. 0x199aba8,0x1cd3f13,0x19c03f1,0x1ffd096,0x1fd8c20,0x006b205,
  43692. 0x0f5ed10,0x0ba4c83,0x1a21d21,0x110e5e1,0x110b0c9,0x06f3072,
  43693. 0x11401e8,0x132805d,0x10c42b3,0x07c4a38,0x07bf416 } },
  43694. /* 3 */
  43695. { { 0x1fd589e,0x1a7c471,0x080c705,0x01bf2e9,0x1b50179,0x182a4fe,
  43696. 0x08f8cf9,0x069a12c,0x115924f,0x0848f7f,0x196b163,0x195bf36,
  43697. 0x0feef79,0x1fb4e16,0x1310988,0x10579a5,0x03252cd,0x0c0bec8,
  43698. 0x17c7777,0x09e9b34,0x16bdacf,0x1aa808d,0x1418498,0x1a28193,
  43699. 0x0490d2e,0x1694fba,0x1136da1,0x08125d1,0x0b0fcc6,0x178b3bb,
  43700. 0x0d8897b,0x1be2d5d,0x08c01e9,0x1ec1507,0x1d0612e,0x0ec506c,
  43701. 0x0956e33,0x1aba714,0x1fc1dd5,0x18ce0b4,0x09871ed },
  43702. { 0x16535f7,0x1bb6abb,0x0ee2f42,0x044c6b6,0x1214d60,0x10b7b22,
  43703. 0x16b6674,0x0eb8184,0x15515bf,0x0a6f9d3,0x1c59d7f,0x0b78bd3,
  43704. 0x0724a62,0x003439f,0x0d7bedd,0x0b89478,0x033bb2e,0x177ae4d,
  43705. 0x01ac662,0x0366bd0,0x10eda97,0x12d1e34,0x07d7032,0x03c4683,
  43706. 0x1dd898e,0x0f2546a,0x1a556b6,0x19d9799,0x0d34164,0x0203924,
  43707. 0x1b8bb3d,0x08b815e,0x0bb3811,0x007ff8d,0x1a0871e,0x0e7e97d,
  43708. 0x0272ed5,0x06fbb46,0x0deb745,0x0146e2c,0x0397ed1 } },
  43709. /* 4 */
  43710. { { 0x15c2a27,0x105d93a,0x11133cf,0x12b2b0b,0x138e42f,0x142f306,
  43711. 0x0f83c64,0x01e8d62,0x076273d,0x1f66860,0x115a6b0,0x010a327,
  43712. 0x0a7800f,0x01a8c0c,0x139d2ad,0x06c77e0,0x0388496,0x1492c55,
  43713. 0x032253f,0x0cc2f97,0x09a0845,0x15157cb,0x02f18aa,0x08cd1b3,
  43714. 0x0280b5a,0x07d3361,0x1aa64bd,0x193beb1,0x001e99b,0x1bec9fa,
  43715. 0x03976c2,0x1898718,0x0614fe1,0x0fb59f0,0x1470b33,0x11aa622,
  43716. 0x0143b61,0x1abaf67,0x0629071,0x10bbf27,0x0402479 },
  43717. { 0x1055746,0x128bc47,0x1b83ee8,0x001563c,0x05ba004,0x14934be,
  43718. 0x053eeb0,0x081c363,0x15b4f47,0x18a908c,0x1ee951d,0x03a1376,
  43719. 0x0425009,0x1cd09cd,0x19d2186,0x154fcf4,0x1b3f353,0x15d4209,
  43720. 0x110f3bb,0x0ee3244,0x1bd0afe,0x1b1c23d,0x0511a34,0x149285a,
  43721. 0x19ff63d,0x02b30fb,0x075096d,0x0ac7438,0x1f46301,0x07e6baf,
  43722. 0x124f09c,0x1d65005,0x0072090,0x0380221,0x172f217,0x08d1e19,
  43723. 0x1a032e7,0x01b97df,0x0760329,0x1cd916f,0x01a6fd1 } },
  43724. /* 5 */
  43725. { { 0x15116a3,0x1480d46,0x11fe59e,0x0965ebe,0x0b84439,0x15d79d8,
  43726. 0x1514983,0x019c735,0x160ccfc,0x10df30b,0x1d4fc87,0x07a5987,
  43727. 0x16ac07e,0x0f688dd,0x00e3838,0x16185bb,0x1071c15,0x022a3a9,
  43728. 0x083f96e,0x1a8e912,0x096d70d,0x16f238c,0x06882f8,0x04ed8f8,
  43729. 0x1ad8a59,0x1039e1f,0x0f221bb,0x04d4398,0x031ac40,0x179bb74,
  43730. 0x1967f6d,0x158a03a,0x0a35d1a,0x142ba13,0x0415036,0x0a15d31,
  43731. 0x0bd734e,0x0ef0525,0x11d4197,0x1b82ac2,0x029b7d4 },
  43732. { 0x1f4e20b,0x1e165e5,0x131512c,0x1eb1988,0x1c3f548,0x06560f8,
  43733. 0x06d516c,0x0427301,0x100f806,0x007815a,0x0417803,0x11200cd,
  43734. 0x0ce612b,0x01a80c4,0x0563b5e,0x0ed651e,0x0583f55,0x0600ee2,
  43735. 0x11524b8,0x0064e54,0x0443298,0x1d07fc9,0x1de9588,0x1a1b882,
  43736. 0x02b0029,0x03d6895,0x049e03a,0x0824a8b,0x13f272b,0x1c8186a,
  43737. 0x0347af3,0x048603d,0x0e6ea40,0x083cc5d,0x1cbe8df,0x183cbe7,
  43738. 0x02b4126,0x0161881,0x125fa4d,0x004a704,0x05d0928 } },
  43739. /* 6 */
  43740. { { 0x12f780d,0x115bf7f,0x0c7560e,0x01afaed,0x14d2682,0x1ba5761,
  43741. 0x0a11e1b,0x1d7c786,0x010823f,0x1ea1109,0x19efd03,0x02fdf6b,
  43742. 0x0d227e4,0x12b47c6,0x03526da,0x177d8a2,0x1d61781,0x1a9de73,
  43743. 0x1cdc62d,0x1c7e445,0x0c1f9cf,0x0fecef3,0x1fd13a2,0x15936aa,
  43744. 0x0553f3f,0x05e78e6,0x1b9bcc0,0x1a5a108,0x0ae6b19,0x01514f8,
  43745. 0x1825db2,0x0497177,0x03dbf5e,0x12d53f3,0x1d165ce,0x0e9958f,
  43746. 0x04dd33c,0x15b11bc,0x1b9771b,0x068285f,0x00a26e4 },
  43747. { 0x0aa9a08,0x099cfd6,0x1386020,0x0aa48dd,0x00f3110,0x1c9ba3a,
  43748. 0x005c184,0x1c31259,0x1242f02,0x0c6a081,0x17a62a3,0x1a4076b,
  43749. 0x12482bf,0x0d5df4a,0x1be51ad,0x1049313,0x0b93769,0x15c690c,
  43750. 0x1985f1e,0x0d1d12c,0x0b91d52,0x08c5be9,0x058b9d5,0x11acf87,
  43751. 0x07973fe,0x028962e,0x08ac05f,0x05c62a1,0x0294694,0x0f5e60d,
  43752. 0x00dbd39,0x0a638e1,0x19910ce,0x1cf2851,0x1ad2dde,0x015e9ed,
  43753. 0x1a120ad,0x05d8bae,0x0dbb1a3,0x0c3724c,0x019497c } },
  43754. /* 7 */
  43755. { { 0x17659a8,0x0586320,0x03fda48,0x0f25965,0x077ab9c,0x03bcbfe,
  43756. 0x1c602da,0x0c6ab6c,0x1e77593,0x057ac60,0x06c6193,0x1b6caac,
  43757. 0x065155b,0x1c07a4a,0x1938d55,0x116405c,0x1b7229a,0x0758564,
  43758. 0x15c6f58,0x129af04,0x18f9885,0x1cf1fd3,0x1773024,0x185a6f2,
  43759. 0x148302a,0x0223dc5,0x02e43c5,0x00bf7ec,0x04b3c15,0x07409e7,
  43760. 0x062b184,0x1ab36b8,0x1a4f27a,0x101111c,0x05cdf3a,0x16bf467,
  43761. 0x0dff1c7,0x1c3985c,0x1de9b95,0x116a2f7,0x096b91b },
  43762. { 0x0ac087c,0x0c8fa4d,0x0a3706a,0x1cd9fb6,0x0e62f74,0x1b006b6,
  43763. 0x1fe697d,0x19211ad,0x0f917f9,0x1c0e682,0x14b6ff5,0x0bec7bc,
  43764. 0x007796f,0x176b90c,0x16d9380,0x026fbcf,0x0f66fa4,0x107843b,
  43765. 0x1287dc5,0x03dcc87,0x18a3327,0x0c3e255,0x12e6c81,0x090208f,
  43766. 0x1710739,0x01be5d0,0x1566317,0x1f34321,0x00e125d,0x1395379,
  43767. 0x0b432db,0x1e9e520,0x1142204,0x16e7dd1,0x12e5f38,0x0285a51,
  43768. 0x03d3c35,0x130dc55,0x092777c,0x02b9ff8,0x073f3d3 } },
  43769. /* 8 */
  43770. { { 0x0fd3673,0x142adf3,0x0ded761,0x1f3a429,0x109b70a,0x0236699,
  43771. 0x0be4373,0x1bd1a66,0x1595510,0x0a9e00a,0x0494739,0x012c718,
  43772. 0x095746a,0x02e60de,0x1f3a96e,0x1751f9a,0x068002e,0x027fd0a,
  43773. 0x0bf35df,0x0796e04,0x05e310a,0x1de2750,0x0da6677,0x1f4eadd,
  43774. 0x1a0d04e,0x1ec19ba,0x1b73b57,0x1b204f3,0x1fd56e4,0x1201928,
  43775. 0x1c52064,0x105498b,0x07633a4,0x0082df4,0x04c06cd,0x1062e1a,
  43776. 0x1247e57,0x0cc587b,0x087ea4e,0x0c886d7,0x088934f },
  43777. { 0x113eabc,0x1a1d823,0x145fc27,0x03599b8,0x0ca7dd9,0x09e53e2,
  43778. 0x098efbc,0x0964fb5,0x0258818,0x1972d3d,0x1709a62,0x0c25b2b,
  43779. 0x0c0a8cb,0x10f978a,0x1a5d68b,0x126b868,0x0ede172,0x18f94dc,
  43780. 0x102f078,0x17fadda,0x03dac3c,0x1f89931,0x14fd1ac,0x016ed03,
  43781. 0x1be6dfb,0x1a2608a,0x155b690,0x1c63868,0x043d985,0x1f8c547,
  43782. 0x1aa9f18,0x097bb69,0x1cb2083,0x07ac62a,0x10e1295,0x1362d41,
  43783. 0x06fd69d,0x1566512,0x12385d3,0x1762a6a,0x00d1898 } },
  43784. /* 9 */
  43785. { { 0x15ef043,0x19a30f1,0x15913a9,0x12692d6,0x107b67d,0x1c1d1e0,
  43786. 0x05cef43,0x06bac58,0x051d29c,0x16a581c,0x070693e,0x1054e36,
  43787. 0x1e3f428,0x0a5a1dc,0x0af3d99,0x1ea86ba,0x1aa2abd,0x0e3bd8a,
  43788. 0x0af8f70,0x071501b,0x073b5cb,0x175240b,0x057f682,0x1721d7c,
  43789. 0x16b4de7,0x1ec434c,0x14af23c,0x09f0fc4,0x04e4248,0x01eb1be,
  43790. 0x162b7b4,0x1af4f5f,0x1ede666,0x05c9d72,0x168a873,0x0301bb2,
  43791. 0x06fba39,0x0e7e92a,0x0b98295,0x1b88df0,0x02bdab1 },
  43792. { 0x06fed61,0x0f115fd,0x0539e93,0x0b991bb,0x0a458aa,0x09117ae,
  43793. 0x0b7c41c,0x0ee7c6e,0x1e5aff3,0x1525a27,0x0e39b41,0x174e94e,
  43794. 0x16bc2d0,0x0f98f89,0x11c3875,0x1522234,0x13ae102,0x0bbffc9,
  43795. 0x0431e21,0x1014a06,0x05ac8b3,0x143c1fe,0x07cf008,0x0e4ba0d,
  43796. 0x0892544,0x110f633,0x196b210,0x0f1e1c2,0x1a6e8a8,0x18d7e7e,
  43797. 0x0ea68eb,0x0f19a55,0x183ed37,0x0875700,0x158209b,0x0a659b7,
  43798. 0x0bee641,0x11a330e,0x00482cc,0x1257382,0x0353eb8 } },
  43799. /* 10 */
  43800. { { 0x0b5521e,0x0e56b08,0x0bc323f,0x00a5ce0,0x1a11b44,0x1ed24e0,
  43801. 0x1a0363f,0x15ac604,0x0cbf36b,0x0dcb2a5,0x028b5f3,0x1c22982,
  43802. 0x007b58c,0x131873f,0x1747df7,0x150263c,0x17d6760,0x1c65f1e,
  43803. 0x12035df,0x0b0cd6c,0x0219eb3,0x19bf81b,0x161ca33,0x1514eae,
  43804. 0x065ed42,0x0386eac,0x1641a8a,0x107e3e3,0x1f906b2,0x1fd2528,
  43805. 0x0a1e788,0x0a87641,0x0ac6e83,0x13baa79,0x0de6e07,0x1c9e16c,
  43806. 0x040016e,0x1de06a4,0x0d9f55f,0x0e3cc43,0x08da207 },
  43807. { 0x0ce65ec,0x0a80276,0x0178f21,0x1f6e903,0x16d10d1,0x1cbd693,
  43808. 0x1ef29e1,0x15ac97c,0x077e54a,0x1a226d8,0x17c3fd0,0x01937c1,
  43809. 0x0417b6b,0x02a8435,0x11095b0,0x1ab471f,0x03bfd74,0x07ca962,
  43810. 0x0713b6e,0x1c00b40,0x0328501,0x1e252bf,0x1545cb7,0x0baddc7,
  43811. 0x0ce4e53,0x08c6da0,0x1031942,0x15de3cb,0x1561fcb,0x02f3c2b,
  43812. 0x11ba145,0x0694449,0x068536a,0x0705172,0x089c3b0,0x18d351c,
  43813. 0x042b03f,0x1a91239,0x0f57ecf,0x1c5877d,0x0862f55 } },
  43814. /* 11 */
  43815. { { 0x06049fe,0x11c8791,0x07ecb5a,0x11b9779,0x0c92a57,0x11a7dbe,
  43816. 0x1b2925d,0x1274a5f,0x03dea58,0x19a065b,0x07a458a,0x0714549,
  43817. 0x13a39f3,0x0a4f20f,0x0cb7cf6,0x0fc804d,0x0db065a,0x1638e3e,
  43818. 0x1a0a068,0x1709408,0x0eca4a9,0x01b98f7,0x18fbad4,0x1976e4a,
  43819. 0x0913476,0x1c67368,0x06e5299,0x19f2f35,0x0fd9f10,0x061dc04,
  43820. 0x0e6d136,0x1c15f8b,0x00da613,0x0df34f3,0x1f78fa9,0x1ea5b9c,
  43821. 0x1c1ee74,0x0eb4326,0x01e40e9,0x1227790,0x071ab28 },
  43822. { 0x15b60ad,0x0c7e21d,0x06133d8,0x0094186,0x0afb5e3,0x0019810,
  43823. 0x00732f1,0x0cda447,0x1db1c0c,0x1e7c4a9,0x04aa34c,0x1c9b4c2,
  43824. 0x069c994,0x08cb3d4,0x0ab8b0f,0x19a53af,0x0935b7a,0x1e146aa,
  43825. 0x12695fe,0x0b7a26d,0x07f9807,0x1f4e421,0x12700dc,0x0644beb,
  43826. 0x0a18d19,0x0c6165e,0x0d10b00,0x06eefa2,0x13a7277,0x16a3fdd,
  43827. 0x063af97,0x032c5b8,0x0437d49,0x0440338,0x1824b70,0x19e7383,
  43828. 0x15fff35,0x14e37b8,0x029940f,0x16cbc6c,0x08d087b } },
  43829. /* 12 */
  43830. { { 0x1dc1844,0x091811f,0x115af88,0x1e20bd5,0x0eca27e,0x1451a43,
  43831. 0x0981bc5,0x1964307,0x1e1d7a4,0x0afc03e,0x1750f8a,0x0c64fde,
  43832. 0x077246a,0x03b812e,0x050c817,0x09c7d5c,0x1caf348,0x0a5efe3,
  43833. 0x1d4b01d,0x07312bb,0x0ac0ec9,0x1b6bd4e,0x00b9957,0x15dbb61,
  43834. 0x1fe208b,0x198cc2e,0x1149f79,0x13902fc,0x1de1ea7,0x07de189,
  43835. 0x0ecc338,0x1989ed9,0x1f95b89,0x19066ce,0x1c7bd6e,0x03e55db,
  43836. 0x1a8cfb0,0x0f05448,0x0dfb3f0,0x094c7db,0x0225ed3 },
  43837. { 0x0bb1a85,0x18aa6dd,0x1968f84,0x0e3cd4a,0x13d8dae,0x058807e,
  43838. 0x1f55aad,0x035a642,0x0ebc78e,0x026c9a7,0x1cf4df5,0x043691c,
  43839. 0x0b02153,0x100f21e,0x1242fe8,0x0120b77,0x1d02750,0x09e11f8,
  43840. 0x019a468,0x1ca0019,0x041c2a2,0x093032c,0x022caeb,0x004d6c0,
  43841. 0x01caf30,0x1308aea,0x1149db3,0x0e2585e,0x132ffb1,0x01f38ac,
  43842. 0x1c80713,0x0d4e995,0x094e13d,0x09bd23c,0x177c301,0x1c05ade,
  43843. 0x02b1c97,0x1dbb016,0x1f1eea3,0x1cba110,0x0612b60 } },
  43844. /* 13 */
  43845. { { 0x0245d6b,0x04ae7dd,0x1fdbbf5,0x0f459c7,0x1cf0cbb,0x1aff772,
  43846. 0x0ab037f,0x14649b4,0x0cf28c6,0x0648a7c,0x0295ae4,0x0a1a861,
  43847. 0x1472fdb,0x09eb901,0x16fdde4,0x193d207,0x091822a,0x0e7d2f6,
  43848. 0x0ba8fa0,0x1ce7907,0x11390dd,0x1133144,0x1516ea5,0x0d597a6,
  43849. 0x1648bca,0x01d5297,0x1a6281a,0x1ede4ed,0x18ed52f,0x09d651b,
  43850. 0x16494db,0x110b583,0x13c2c54,0x042539a,0x0b6802f,0x0f95fea,
  43851. 0x1768416,0x18fc0e1,0x061b8e5,0x1c3a5af,0x00f7334 },
  43852. { 0x196067e,0x1ae41b2,0x001abee,0x1271833,0x13e54e1,0x0586e61,
  43853. 0x1659ce7,0x1f3050b,0x1424035,0x1a9fa1e,0x1e4254a,0x03f1bfd,
  43854. 0x1a38c53,0x0d87ab8,0x1efa393,0x14f0f21,0x0d2a39c,0x04d060f,
  43855. 0x01bc988,0x1983acc,0x0b4a2fe,0x18b95be,0x0772242,0x176f0d1,
  43856. 0x0a6fbcc,0x124e19e,0x0bf9cfb,0x0362210,0x166c48d,0x1e8bfe5,
  43857. 0x1cd642d,0x10dc28a,0x156b0a6,0x156c2c9,0x0b1014f,0x16ebad0,
  43858. 0x054d30f,0x172afd6,0x1a526ca,0x0e5f15d,0x067636a } },
  43859. /* 14 */
  43860. { { 0x11d6bea,0x031de5c,0x0e598e0,0x1d247d9,0x0e263a2,0x13d6535,
  43861. 0x0264b18,0x0fd3af6,0x077af9e,0x176800d,0x0bfaef1,0x199e495,
  43862. 0x109214a,0x1c02ad4,0x1592e59,0x0933b46,0x11ce027,0x0804ccd,
  43863. 0x11a81a9,0x0749c3c,0x0fe7e41,0x1b1728f,0x081744f,0x150877d,
  43864. 0x07d349b,0x0cf1af4,0x14c60c5,0x14c6704,0x0019230,0x145d2a3,
  43865. 0x1c9808f,0x16ffa39,0x1107721,0x17ea9cd,0x10aff7c,0x108d6aa,
  43866. 0x1c18af3,0x0a7a7c0,0x02596cc,0x0ecc159,0x0086f98 },
  43867. { 0x0bb9850,0x00caa46,0x1231d9c,0x01441a5,0x0210b73,0x1ab3863,
  43868. 0x1415d4c,0x1d48109,0x10324ba,0x166e2ca,0x1ba6d0f,0x0be58ed,
  43869. 0x04607fc,0x0207fd3,0x04f403d,0x08c79e7,0x1962dc1,0x1f0088b,
  43870. 0x11dc979,0x1704a33,0x1186f00,0x1b2de8e,0x0d7981c,0x1ee5558,
  43871. 0x0554c2c,0x0bef9ec,0x1bbe8d2,0x09ba1fb,0x06ad11b,0x13467b2,
  43872. 0x0b75c48,0x13ef71d,0x1c20afb,0x16ff283,0x0753f01,0x14c612d,
  43873. 0x1245549,0x1bef8e3,0x1a041da,0x007cc35,0x0681f94 } },
  43874. /* 15 */
  43875. { { 0x1a0623b,0x0a8b1e4,0x0351f2b,0x0ecff57,0x1bf8295,0x17be3e6,
  43876. 0x0c3b206,0x1845995,0x0e966d5,0x14f1c64,0x1390711,0x1aa5e1a,
  43877. 0x1c34430,0x12959ac,0x181d68a,0x0024e84,0x1e333bd,0x09216e9,
  43878. 0x1fb48d0,0x07ec6b3,0x0ffacda,0x186bea9,0x137ccdc,0x08187de,
  43879. 0x156f076,0x0be2fff,0x106ef79,0x0f07843,0x0bb3364,0x051575c,
  43880. 0x01761e1,0x1d5a108,0x0c7c533,0x115ea0f,0x108fe6d,0x1e96fe2,
  43881. 0x1075d4a,0x018a2e3,0x1642955,0x09574c0,0x00c9de9 },
  43882. { 0x1d5682b,0x1939aca,0x1bb63b5,0x065d84e,0x111c428,0x1b50693,
  43883. 0x0bb562c,0x11fa3e9,0x08498a8,0x155a062,0x03d1458,0x18c4890,
  43884. 0x0258c8f,0x1bce7ff,0x123292e,0x06b3b17,0x03c701a,0x0c855ac,
  43885. 0x1f57457,0x0634e67,0x133caee,0x1de4891,0x00a9565,0x187c784,
  43886. 0x1cae4b6,0x044080c,0x10a64e0,0x0a26085,0x1c8199e,0x141efa3,
  43887. 0x0483800,0x1e5401d,0x0d68e58,0x0d71dc8,0x1d069dd,0x04d3c5b,
  43888. 0x071c30b,0x097652c,0x18e5ae3,0x01d763b,0x0733dca } },
  43889. /* 16 */
  43890. { { 0x159213a,0x04ae825,0x003bd6d,0x131ae04,0x0a67203,0x13b8e0e,
  43891. 0x02698ad,0x1969796,0x02b9eb0,0x156f76a,0x0e88489,0x0ea919b,
  43892. 0x11eb544,0x1844486,0x06aff37,0x08d681c,0x163698e,0x029284c,
  43893. 0x0ba704e,0x1fe1610,0x1a71e1b,0x06a884c,0x0862793,0x172398f,
  43894. 0x0c9bcc9,0x05f11b0,0x104dfb1,0x17a9afb,0x119f6e9,0x1290e8a,
  43895. 0x00f40d5,0x19f064a,0x15f6d78,0x1515a5f,0x00c637b,0x19c8602,
  43896. 0x0f4c319,0x09924a7,0x09f5f0c,0x08e1e3f,0x02ab3bd },
  43897. { 0x02c9fbb,0x1db4049,0x1b455d4,0x101e2d8,0x069e7dc,0x00b77e4,
  43898. 0x144d6eb,0x1370688,0x0846d1d,0x19351da,0x18b0850,0x1dc765a,
  43899. 0x15b517f,0x0594956,0x016be88,0x15826d2,0x11a2cad,0x0952b89,
  43900. 0x0f6f2a3,0x009b1fd,0x1fb2cd9,0x179f9b2,0x17fb6a1,0x0fd5439,
  43901. 0x1b208dc,0x1e0384b,0x129179d,0x1346b50,0x1d118e8,0x031667a,
  43902. 0x1a105e8,0x03edd33,0x00c04a8,0x1043e9e,0x12c2e9e,0x05888e0,
  43903. 0x1ea22ad,0x0513e89,0x148a5be,0x02c984f,0x093a4b4 } },
  43904. /* 17 */
  43905. { { 0x11efb7a,0x18de08f,0x1037509,0x0c67f99,0x0e4e68e,0x0fa8545,
  43906. 0x123c6c4,0x1133b37,0x1af0760,0x0181cc7,0x14380d5,0x05f6887,
  43907. 0x0145e24,0x1b71ea6,0x1b09467,0x15a12e7,0x190ba9b,0x1d5b87b,
  43908. 0x06b7443,0x0255abf,0x02b4de6,0x070a74a,0x0e0df95,0x1716d15,
  43909. 0x056d3dd,0x0040bad,0x106b0a9,0x10b6467,0x080f94e,0x1618786,
  43910. 0x1e7e3fd,0x1131b69,0x17f3fb7,0x1ee6ea5,0x113d169,0x0b458c0,
  43911. 0x1e3d389,0x15d97b7,0x1dd8fce,0x1ae65dc,0x0342ce0 },
  43912. { 0x1491b1f,0x109ca67,0x0e57ac9,0x0e3213c,0x1caaeed,0x126df56,
  43913. 0x0156a7f,0x09bb988,0x1493d60,0x1d3308e,0x17afbc5,0x147439c,
  43914. 0x15ba445,0x11cc4e5,0x0b8a163,0x1080dd0,0x08283f5,0x0dcb7a1,
  43915. 0x055b3d5,0x0ef7334,0x0a0e998,0x13270b3,0x0be41a9,0x12eda27,
  43916. 0x1d353b2,0x100e750,0x1cdb186,0x1f82de4,0x155d86e,0x0219d87,
  43917. 0x0076c13,0x11d6698,0x0b4b269,0x101401e,0x1de0ab9,0x0a71a0f,
  43918. 0x03be3ec,0x161de5a,0x1f4810e,0x1e7c2ad,0x0455f4a } },
  43919. /* 18 */
  43920. { { 0x14ec21c,0x1f9313a,0x08e3015,0x13c7437,0x1eacd4c,0x160ff49,
  43921. 0x0434445,0x16c7404,0x0eacc8a,0x075274a,0x1ccb2b9,0x1935d4d,
  43922. 0x0e31c00,0x035cbae,0x0d88e76,0x143d2b9,0x18ca14e,0x1b2a6ae,
  43923. 0x019ff22,0x1a63e8a,0x1ecb230,0x05b1aaf,0x122ee43,0x02e5d1c,
  43924. 0x01ecedc,0x19bbc7c,0x032c019,0x1107015,0x02d0122,0x1700f0b,
  43925. 0x17066c0,0x18b5e28,0x0087a06,0x0e1aa07,0x02dedcb,0x0de09b9,
  43926. 0x0de3c06,0x07790a4,0x07edfdc,0x0862601,0x04f1482 },
  43927. { 0x02055e2,0x027e737,0x019d780,0x150d864,0x09e247e,0x0ed5514,
  43928. 0x0f6557e,0x0769d79,0x1ceb7f6,0x0af9097,0x1e12834,0x183f0c6,
  43929. 0x115ecc5,0x1abb012,0x0ce002d,0x052a8a7,0x1c38a6a,0x0f5c980,
  43930. 0x04f3746,0x0d74314,0x0d240f1,0x08c43e1,0x00c4f49,0x12827ed,
  43931. 0x035859a,0x1e2fcc9,0x1bf8ff5,0x04680bc,0x00ee054,0x159a0b7,
  43932. 0x0c19e2b,0x07f5b55,0x13be7bb,0x022388f,0x08b20a2,0x0cf203f,
  43933. 0x0d662ff,0x086d982,0x05c2f25,0x1a87802,0x074d5d2 } },
  43934. /* 19 */
  43935. { { 0x15bfe11,0x016e015,0x079e8c0,0x1aa5a64,0x0733410,0x1cdd448,
  43936. 0x03d9659,0x0dc2b24,0x0685b23,0x112460a,0x1d81003,0x0b2868d,
  43937. 0x108cfab,0x00638bf,0x15ebedd,0x08aed3e,0x08c6604,0x186dd59,
  43938. 0x1370c91,0x0132d13,0x0d050fa,0x1161187,0x10780ab,0x0b7dee8,
  43939. 0x01554e4,0x1b786cb,0x0b3935e,0x0d11530,0x02d22e9,0x1d63af3,
  43940. 0x0a3eb7b,0x17a5974,0x11512a6,0x03a4fd7,0x198af9f,0x16f10d1,
  43941. 0x0e9f5a6,0x0246c0d,0x1e8a620,0x0858b0a,0x06b1a54 },
  43942. { 0x1242066,0x15cd6a1,0x0aba7d6,0x0a59994,0x0afef1b,0x076e270,
  43943. 0x0fb1e62,0x1ab6368,0x10341b0,0x0860078,0x0aacdc3,0x11ef6a1,
  43944. 0x194d68b,0x19d3254,0x03939bf,0x0d09d35,0x0fb7f1a,0x00cc19c,
  43945. 0x14683d7,0x01ce906,0x05158bc,0x06ed622,0x0b2b3cb,0x13feed6,
  43946. 0x139995e,0x02ae0a6,0x1c58e4c,0x0940367,0x0d83765,0x1752c44,
  43947. 0x0c5ab0f,0x0e464ef,0x04d9a9a,0x0dddfdc,0x1a47847,0x1132264,
  43948. 0x0bb6717,0x1b8bd75,0x12b2165,0x04d1762,0x04c2135 } },
  43949. /* 20 */
  43950. { { 0x1532833,0x1f0534a,0x019cb9b,0x1dac4da,0x0bca228,0x0f39ded,
  43951. 0x1cf6592,0x018455d,0x0f03c4c,0x041d43d,0x1a6d148,0x0eba6a2,
  43952. 0x09e954e,0x1a28354,0x1d427b9,0x19f20ae,0x16e2aea,0x0a4e593,
  43953. 0x09027e4,0x0ebaeff,0x16b9082,0x1ef85de,0x187adbc,0x0264e08,
  43954. 0x002cbe4,0x058ca41,0x06c7126,0x0be7f84,0x1fee593,0x05d41b0,
  43955. 0x1cddb1a,0x0a1c0a3,0x18cbbd9,0x1382150,0x01e4c63,0x1647095,
  43956. 0x00dd1e8,0x155f56c,0x10cd0a4,0x052b86f,0x065713c },
  43957. { 0x0b77b9a,0x05474e7,0x11a7733,0x0e476d2,0x0f97e72,0x0eb5941,
  43958. 0x0fb9a80,0x1fd8ed5,0x15abecd,0x092901e,0x0435c0e,0x0104525,
  43959. 0x1889448,0x1818a21,0x04c5092,0x08f87f3,0x1f17cd4,0x182104e,
  43960. 0x0157209,0x1e40b39,0x00697c6,0x112b607,0x165f5e1,0x05b2989,
  43961. 0x1b6fe41,0x0eead4e,0x0665310,0x134c8b2,0x1e21a31,0x0550e44,
  43962. 0x03848d2,0x18d407e,0x0904b50,0x17f566b,0x055a985,0x16ab82a,
  43963. 0x1cc7693,0x1b68dab,0x0f0e138,0x0d8775c,0x06b0e99 } },
  43964. /* 21 */
  43965. { { 0x0eced00,0x04fd5e6,0x0998c9e,0x15cb6f5,0x1237e71,0x0f5e6f9,
  43966. 0x189a4b7,0x11f0f65,0x0b61dad,0x1922890,0x1e00f2d,0x1c91a6b,
  43967. 0x0de11e5,0x0c72878,0x137d75e,0x15725f6,0x0b4bcd2,0x0b07734,
  43968. 0x138cd8f,0x165eb83,0x064798a,0x0d3e6a1,0x056e8e7,0x1e9f67e,
  43969. 0x172eb83,0x06d8d32,0x0395bc2,0x1eefbd1,0x0562c20,0x1b0f0b9,
  43970. 0x1d05d0d,0x114b1e1,0x0349ff8,0x0eb715f,0x1c6e134,0x09c09b4,
  43971. 0x1e9ff3b,0x0781a14,0x08fe0da,0x00acf04,0x04022a2 },
  43972. { 0x1847375,0x1de82c1,0x0bc149e,0x047e8a3,0x1ae56b6,0x163f8c1,
  43973. 0x1c9352c,0x11ac331,0x14525b9,0x1191fad,0x0212d7b,0x07341c1,
  43974. 0x16a9d8d,0x1d8963b,0x0175fdb,0x182a9a0,0x03e708b,0x06b8e24,
  43975. 0x109506f,0x0dfa50e,0x1ddb8ca,0x06fc1cb,0x02bcf73,0x199e486,
  43976. 0x131253e,0x1c6dc06,0x0163606,0x0e87421,0x191f68c,0x1590b89,
  43977. 0x1fcfd23,0x06776ca,0x13aff88,0x03f18a4,0x15981f9,0x0c3a2bd,
  43978. 0x008279f,0x0acd88f,0x0a55840,0x196494d,0x0312179 } },
  43979. /* 22 */
  43980. { { 0x1615ac2,0x061e503,0x1606a53,0x082435a,0x05865e6,0x0c35bcc,
  43981. 0x185be9e,0x03b5c8e,0x19d5e0f,0x0ad2075,0x115fa8e,0x04c87b2,
  43982. 0x19a9143,0x1d1432e,0x19b5a8f,0x15d191b,0x1961014,0x183b8ed,
  43983. 0x1daa1f2,0x0f99cd2,0x0f6077a,0x108a1d0,0x09f790b,0x127b269,
  43984. 0x1cc09d9,0x01ef101,0x0e63b13,0x04030d2,0x05df4b9,0x036c1d1,
  43985. 0x1af5dd5,0x0c5605a,0x0d9eb47,0x138c485,0x0823416,0x17f555e,
  43986. 0x031221b,0x1c0c0fa,0x047a948,0x0f0e66a,0x0417d6c },
  43987. { 0x091e9a8,0x0c0db87,0x1accf2f,0x1186e1a,0x1334041,0x1511b9b,
  43988. 0x0c42a3a,0x0ad04bb,0x06c7d67,0x19584f2,0x0cf7b63,0x1d37298,
  43989. 0x1be288e,0x0b4af1f,0x0109aec,0x1d1119b,0x086dce9,0x1530bb6,
  43990. 0x05978d8,0x191244c,0x1b093f4,0x0fb031f,0x1453904,0x1f3c098,
  43991. 0x1ac20c8,0x0b0b483,0x137f4ab,0x1dee8d3,0x12199ac,0x1d72422,
  43992. 0x18ae8c2,0x0255868,0x0681293,0x0a41698,0x01cf24b,0x0a0237d,
  43993. 0x0833099,0x065fc4f,0x0282bfd,0x0a5a28e,0x002189d } },
  43994. /* 23 */
  43995. { { 0x0599c69,0x00ceec9,0x0b29cf9,0x16ffd86,0x1b94221,0x1dfdfea,
  43996. 0x06f4826,0x0b7657f,0x063ed89,0x0f54bd2,0x01bde58,0x08d67e9,
  43997. 0x1966091,0x1e8a0d1,0x071e817,0x0826b7a,0x0cf83d6,0x1e3cf64,
  43998. 0x020d41e,0x1fa85f3,0x10277f8,0x1b8bd9e,0x0bf2d4e,0x194b443,
  43999. 0x18dcd67,0x1c34332,0x1334525,0x0d4d815,0x195067a,0x0b871a5,
  44000. 0x0305bcf,0x1be892b,0x11208e3,0x001091b,0x139bb0a,0x03a5bac,
  44001. 0x10782c7,0x1962559,0x1dbe8ce,0x17aa422,0x07bbf8a },
  44002. { 0x18b981a,0x12557d3,0x00a2fa7,0x0c609d9,0x188b4e3,0x0cef51b,
  44003. 0x13ce4e5,0x18e188b,0x1240b39,0x054dee9,0x00edf5c,0x0fba507,
  44004. 0x06499cd,0x183d081,0x1a42cb8,0x1e36660,0x198ee92,0x011316a,
  44005. 0x11c9692,0x1aefbd6,0x0a0ec62,0x1e3de1d,0x085bc96,0x0bdeff5,
  44006. 0x18b65d1,0x147b16e,0x142e5b5,0x12f2443,0x0f1906d,0x02e1d00,
  44007. 0x102e4a2,0x1d6e98e,0x0476b9b,0x1b1117d,0x0ed71d5,0x1e42fbb,
  44008. 0x1788504,0x1c16182,0x1c5af09,0x0d9f024,0x0860d09 } },
  44009. /* 24 */
  44010. { { 0x179bbf9,0x019bea6,0x1e03faf,0x10d3ee9,0x1d53eab,0x0826a9a,
  44011. 0x08254cc,0x12ffe6d,0x0196f8b,0x15c106d,0x19a424a,0x1a3eeb9,
  44012. 0x14961d3,0x02341ba,0x05fb010,0x1973763,0x1bf93a6,0x1d34670,
  44013. 0x17c0868,0x08adff8,0x1fdb503,0x18c4a07,0x0d428b6,0x0008413,
  44014. 0x10f8fef,0x03abbe2,0x1c12596,0x0c6ba2e,0x18770ad,0x136cc5d,
  44015. 0x0f9c95d,0x140f1ca,0x019b028,0x041bc47,0x132be7f,0x006c9a9,
  44016. 0x10dd39a,0x1efa08f,0x1e48068,0x084075b,0x07e80e4 },
  44017. { 0x19a1ddf,0x1c52ba9,0x15892d7,0x1ddc90c,0x1248e7a,0x1010f0e,
  44018. 0x1247605,0x18838f6,0x1fd36d2,0x13dc38d,0x100364b,0x0a0815d,
  44019. 0x13da38b,0x10c9f8d,0x009d849,0x0f1ade5,0x086fb1f,0x1b4e1ff,
  44020. 0x009eb0c,0x116f0dd,0x08f756c,0x039a43e,0x05a1fdb,0x1bdcb78,
  44021. 0x1221719,0x00c55c7,0x1ffce65,0x09d08e7,0x027c800,0x000a548,
  44022. 0x0a3ce13,0x1543a5c,0x167be9a,0x0f778cc,0x1b4f819,0x190d2d0,
  44023. 0x07bd837,0x1e35846,0x1618dcd,0x1a33d17,0x05dcab5 } },
  44024. /* 25 */
  44025. { { 0x07d772b,0x0141d4d,0x166c1e1,0x0bca812,0x0b49e52,0x00a55ab,
  44026. 0x0c02219,0x152a8d7,0x09d74b2,0x02240b1,0x0c2c6f5,0x015a407,
  44027. 0x0b26789,0x0469fc3,0x1ea0af3,0x1078e3c,0x1b5d85a,0x189a95f,
  44028. 0x0b41f33,0x1e2dc7f,0x043ff29,0x1c20f06,0x100a98e,0x06f3fdf,
  44029. 0x122c56b,0x1934827,0x0ec4913,0x13b14ca,0x08bdea1,0x1b6f9d1,
  44030. 0x13998d6,0x1eda8ab,0x0b68851,0x19b9a8c,0x006273f,0x16e9585,
  44031. 0x0b2cbda,0x007cefc,0x15262b5,0x13d5b93,0x008cc2d },
  44032. { 0x170c84b,0x1343360,0x1210b9a,0x16b4934,0x1b989e8,0x0644c95,
  44033. 0x0038341,0x046f61c,0x061b3a4,0x0d69a3c,0x0062655,0x08a161a,
  44034. 0x133c952,0x1188065,0x0488557,0x0eda1c7,0x16ef032,0x18c932d,
  44035. 0x1b50ad4,0x10b2b4e,0x13b60fe,0x107e31a,0x02a5b7b,0x0df127c,
  44036. 0x00dc824,0x05d3b0f,0x1bc29d3,0x1d92057,0x1fad9b4,0x03421fe,
  44037. 0x1d58402,0x09fb6d2,0x16a60e4,0x1ac852e,0x0b21fbd,0x0e7ea75,
  44038. 0x12870a3,0x0f35f00,0x156c34a,0x182ab54,0x0991fad } },
  44039. /* 26 */
  44040. { { 0x0844ffe,0x02587da,0x01c60af,0x08c1f17,0x1392271,0x11f8f9b,
  44041. 0x0038933,0x1d91580,0x0163519,0x06aa45a,0x022d7fc,0x0857105,
  44042. 0x107aaf8,0x15ee4d3,0x02c3130,0x1facf3d,0x1524ba5,0x1d036a8,
  44043. 0x04f37b0,0x035f41f,0x18f0d0b,0x1d6fc4f,0x0a02556,0x1465924,
  44044. 0x1e92dee,0x1f24365,0x04ff816,0x195c7f3,0x0919aa0,0x184afd3,
  44045. 0x02fc981,0x0dc1e37,0x154741e,0x07cc407,0x1dd0c3b,0x0e55da3,
  44046. 0x134991d,0x0b7bb5b,0x03fa64a,0x0504b3e,0x066cf8d },
  44047. { 0x06f5868,0x0c82d91,0x1a7a6c0,0x182d213,0x0102e88,0x1bf5aa6,
  44048. 0x0245928,0x04657a1,0x0c98163,0x19129f4,0x0b14f3d,0x1d3b0d7,
  44049. 0x1737f84,0x17f5557,0x0d49152,0x008dc5c,0x1772ca0,0x133e437,
  44050. 0x198cdcb,0x19ca1cc,0x0a0486b,0x105b4a8,0x1da8ea5,0x0357527,
  44051. 0x194d7fc,0x13730fc,0x0f04c9b,0x12af825,0x16b0051,0x07f2172,
  44052. 0x0326d96,0x10b24e8,0x0d297fc,0x19352ce,0x1a6c5df,0x16eca99,
  44053. 0x079d2eb,0x134cedd,0x19122aa,0x0b41d96,0x05fca0c } },
  44054. /* 27 */
  44055. { { 0x09a6663,0x112f9ab,0x129f89b,0x0fcd549,0x09597ee,0x0c5c060,
  44056. 0x1369a34,0x0604b49,0x1229267,0x083015a,0x01c8251,0x0ca00e7,
  44057. 0x139af5f,0x13399d2,0x1bb6cd0,0x052a3fd,0x1688657,0x107ae73,
  44058. 0x0e62ba6,0x146c170,0x16c3872,0x0015987,0x180d1ea,0x02c42b0,
  44059. 0x13b231a,0x0f66908,0x0bb9b1b,0x1fb39f2,0x1cf9e66,0x12d42e5,
  44060. 0x01217c2,0x05747fd,0x1a5a6e4,0x06b93eb,0x1c8147b,0x0155fcc,
  44061. 0x02081a1,0x0e35d95,0x0c2d382,0x1e172e7,0x0657acb },
  44062. { 0x074c8d4,0x02337e1,0x1344c4c,0x0c61532,0x0276517,0x1ca1afa,
  44063. 0x16329c1,0x00c42e4,0x0eb897a,0x0428203,0x1b84c11,0x1ddcac3,
  44064. 0x1bf38df,0x150bbc5,0x1d3eb3e,0x173d223,0x017b9ab,0x13b2e33,
  44065. 0x03c424c,0x0a9337b,0x1159b13,0x1bd39dc,0x103ad8c,0x0fd16d5,
  44066. 0x1ccf16f,0x1a9f960,0x0861f7b,0x1665807,0x0b9c625,0x0ea4c18,
  44067. 0x0e226b4,0x05e21ca,0x135eae3,0x1aade0b,0x070a757,0x1b6397b,
  44068. 0x0539db0,0x014623f,0x0ceed09,0x02590a5,0x03d2da4 } },
  44069. /* 28 */
  44070. { { 0x11f2865,0x015b743,0x035a5dc,0x1e28524,0x16cb639,0x1ac308a,
  44071. 0x08a8116,0x024650a,0x1f3b138,0x1ca1d68,0x081ba3c,0x0014e24,
  44072. 0x0ae6c22,0x11a6acf,0x024396a,0x1eeb385,0x140f6b7,0x1d5a97e,
  44073. 0x002fd59,0x0591bc3,0x0396f52,0x1956677,0x0607a5e,0x1d4b976,
  44074. 0x15819c4,0x1f7f01b,0x02ad474,0x1b330bd,0x150fd80,0x0b655e5,
  44075. 0x03789b2,0x12fc390,0x19d6b13,0x11abefd,0x0053de5,0x16b0563,
  44076. 0x07f4c7f,0x13c1108,0x1f98626,0x05b806a,0x002aeef },
  44077. { 0x07ec9be,0x1c93796,0x0804ae9,0x1ce4b16,0x092f307,0x1d35a51,
  44078. 0x0a8431b,0x156e9cc,0x1e2bcc5,0x06042a4,0x0301ce0,0x1b70f77,
  44079. 0x0db4160,0x194f8ca,0x1bc14a4,0x09539ab,0x0146dda,0x0875c6d,
  44080. 0x17a88f4,0x1a87a42,0x1fae0b5,0x017e1a5,0x1b3afbc,0x10eaf4e,
  44081. 0x164d084,0x051d669,0x00b4d33,0x028026d,0x0d95e2c,0x13a10e9,
  44082. 0x0a02729,0x0f0dd54,0x1fd1d6e,0x12ff661,0x0db68a5,0x073d622,
  44083. 0x0077920,0x038dd56,0x0bac122,0x002962b,0x06b446c } },
  44084. /* 29 */
  44085. { { 0x1e8fe80,0x0f59712,0x085f206,0x0d30471,0x0b5f790,0x120c249,
  44086. 0x1a65a07,0x08bade3,0x098ea6d,0x056c56b,0x00b9016,0x15a97fa,
  44087. 0x0d5bae5,0x140920b,0x1b70c9e,0x0f94202,0x185a334,0x0c598d4,
  44088. 0x0a994e4,0x1b4c210,0x15fb0b4,0x16da461,0x072e46c,0x155f188,
  44089. 0x0817cd2,0x0e04f4b,0x0f37f73,0x14c6090,0x1692541,0x09b0895,
  44090. 0x05dc156,0x1f14541,0x1dcd712,0x02940af,0x08e8d73,0x0ab356c,
  44091. 0x132b609,0x0475f04,0x014bcc3,0x097611c,0x0861342 },
  44092. { 0x0231d8a,0x01031d9,0x199ca24,0x13b34c2,0x10f6232,0x0d4f93d,
  44093. 0x03f9c1c,0x0fd55f4,0x0603f04,0x1e6c4b0,0x0a870da,0x14edfb2,
  44094. 0x16118cc,0x18ea41d,0x05398ad,0x0a4c468,0x0ddba70,0x15091e6,
  44095. 0x166d716,0x0ec86ff,0x0fa31a5,0x0126468,0x094c06f,0x0484f9b,
  44096. 0x0ad4410,0x0014b78,0x034ea9b,0x1cdf6bc,0x0a39960,0x0440039,
  44097. 0x0b73631,0x1081a7f,0x1afca12,0x0eaa0a6,0x08f77a4,0x1a53e99,
  44098. 0x0441734,0x1be2cc4,0x195f000,0x133399f,0x086333a } },
  44099. /* 30 */
  44100. { { 0x0f53b40,0x1d3a8f6,0x150b484,0x045ef14,0x0ff2c6f,0x1d72b6e,
  44101. 0x1c38bc4,0x11c1eb3,0x10e6174,0x0fc665f,0x1105164,0x1973ae5,
  44102. 0x170aade,0x064e6e5,0x0bb6149,0x1f8e0d6,0x12c1eaf,0x147005b,
  44103. 0x09ca040,0x04850b5,0x0afa89b,0x105b3ce,0x0a9fa9f,0x014dedf,
  44104. 0x18c264f,0x1cbae95,0x0c3a010,0x1daf62e,0x1730497,0x15a2e42,
  44105. 0x0f96a4f,0x0130dd2,0x12bf5d4,0x06057e4,0x0a71a88,0x1ea4d6b,
  44106. 0x199dc3a,0x0fa3e4d,0x0b3242b,0x1c57440,0x012b25f },
  44107. { 0x1eea395,0x06bc519,0x117026e,0x11ec67f,0x07a9361,0x076777e,
  44108. 0x058a49c,0x018fd04,0x0c628ed,0x123bcdc,0x1a24e54,0x194343a,
  44109. 0x1091db5,0x0c376e4,0x09b8639,0x1e77f0c,0x08bfeb3,0x07f011f,
  44110. 0x09405c7,0x13fbc20,0x12de627,0x0e2af0b,0x194bb1f,0x1a9948b,
  44111. 0x08695c6,0x078a22f,0x02f6f04,0x05bc70f,0x03835e4,0x06f437e,
  44112. 0x148ac45,0x0fc216c,0x1aba456,0x13c7f4f,0x00a8e43,0x148223b,
  44113. 0x0edf0ac,0x15b0e15,0x12dd15d,0x152e959,0x0216279 } },
  44114. /* 31 */
  44115. { { 0x047f747,0x06d5fa0,0x087b053,0x1b8262b,0x03ca233,0x12e8538,
  44116. 0x12f4d03,0x0d2b3cf,0x1bb4138,0x1e86274,0x07ef607,0x11621e0,
  44117. 0x1d189d0,0x13b5c11,0x112710a,0x00142a0,0x0a1398b,0x040e112,
  44118. 0x1a05e79,0x109c9f1,0x01e9080,0x0a34c72,0x1f62be6,0x0217e5d,
  44119. 0x0e37c56,0x0878f18,0x1e9f49e,0x1cd4087,0x1953884,0x1306598,
  44120. 0x1f6765b,0x006f33b,0x15f986d,0x1c817f3,0x1c47e3f,0x1c76951,
  44121. 0x1588416,0x0a29bc3,0x14d7bea,0x07f304e,0x020683e },
  44122. { 0x0378878,0x0171368,0x1e1f2d6,0x074f28a,0x1e214c2,0x134459c,
  44123. 0x002fe3d,0x0e027a0,0x1405152,0x0a46a7a,0x047d75d,0x02ba802,
  44124. 0x027113c,0x145ffc8,0x1d6949a,0x08b9877,0x0109b49,0x0ded358,
  44125. 0x10bce81,0x198e9d7,0x1fa183d,0x0221f7e,0x0abbd8a,0x0b8b7e8,
  44126. 0x00ee956,0x01d6973,0x1564bc9,0x1e1f421,0x03bf514,0x05990de,
  44127. 0x1d1ab96,0x0c0aed4,0x13b0868,0x1840d40,0x0fe135c,0x1217804,
  44128. 0x12dcee5,0x081d501,0x11e567f,0x1ea4fad,0x05e416b } },
  44129. /* 32 */
  44130. { { 0x06cc23c,0x09bb001,0x016090c,0x1d6b652,0x1819aae,0x09770bf,
  44131. 0x1cbe317,0x0055244,0x1ee5cc4,0x02473e5,0x1bc1f60,0x0ddcefb,
  44132. 0x1edbc7d,0x1b57c10,0x15a4913,0x17712c3,0x0ed996c,0x02fbcb3,
  44133. 0x1a85569,0x162fd52,0x0d56f81,0x1801f9f,0x0cb67bd,0x1054b65,
  44134. 0x05906e8,0x0c02f37,0x0aba51c,0x0df420e,0x0c76f48,0x1e28b2c,
  44135. 0x080d367,0x19606b5,0x1603dc0,0x13240cf,0x1fadd6f,0x1f6f673,
  44136. 0x0f04a9e,0x03aaa56,0x1f78f2a,0x1d90f69,0x04ff682 },
  44137. { 0x0a10ad5,0x0b13fe8,0x1d14c49,0x052d1cd,0x1fd45c7,0x1508b1b,
  44138. 0x0f5ae01,0x1c65303,0x1de5033,0x096f0e6,0x1e2622e,0x08bd7e9,
  44139. 0x1c3b44b,0x0d73f0e,0x06e625b,0x1b0f194,0x05a0778,0x1a90b37,
  44140. 0x1445a11,0x08e57d4,0x144582d,0x157944a,0x1ef74e0,0x0dd8993,
  44141. 0x116025d,0x1811176,0x12d954a,0x0c29d63,0x06210f3,0x0fb9d0f,
  44142. 0x09d8f17,0x00434e9,0x1160285,0x05ea6f4,0x1003197,0x1348994,
  44143. 0x0f15e29,0x058c3f0,0x141f123,0x11c6804,0x051eb81 } },
  44144. /* 33 */
  44145. { { 0x12100ab,0x0e8bc5c,0x00e47f0,0x012c0b7,0x1f2e3d6,0x0f2ce86,
  44146. 0x10956dc,0x008254f,0x114fcbe,0x1c5b33a,0x141abcf,0x126ab3f,
  44147. 0x070e8a3,0x0901068,0x0c99408,0x0f7caac,0x0d1528e,0x0334b7e,
  44148. 0x11edd95,0x10a2961,0x05b5658,0x062c895,0x033603e,0x04996fe,
  44149. 0x1ef04f3,0x0bac5d7,0x1f1b68f,0x16a7dd9,0x11df2f6,0x046c18e,
  44150. 0x1b7b7bd,0x0e70256,0x136b965,0x13018f9,0x192bb98,0x17905d5,
  44151. 0x1244f09,0x055e996,0x191fcc0,0x0aa63b2,0x08b0af9 },
  44152. { 0x0603544,0x00c0517,0x167addc,0x0644359,0x0b573ac,0x0038191,
  44153. 0x1d99589,0x07a742f,0x1b89abc,0x09f3a56,0x0c896ab,0x1c75af2,
  44154. 0x0b8a3d2,0x17812b2,0x1eee813,0x1a56a8a,0x12ffc2d,0x0443ab2,
  44155. 0x19c50fa,0x00ba2bc,0x0d70d29,0x0101724,0x1b6212d,0x0c6d4ae,
  44156. 0x19219c7,0x06f837c,0x04d78de,0x11b8684,0x064a02a,0x0b9e886,
  44157. 0x19a5707,0x1982af4,0x16a4ece,0x051aa66,0x0722389,0x1b75b98,
  44158. 0x1839329,0x1278d94,0x02b4200,0x0929b49,0x05363e5 } },
  44159. /* 34 */
  44160. { { 0x03fc641,0x091dbf1,0x018c7d5,0x1f0ccce,0x1e54e72,0x004e97f,
  44161. 0x057d638,0x1c25294,0x18c57f5,0x101ccbf,0x159373c,0x049962d,
  44162. 0x1ba2297,0x05d517f,0x1ef93f5,0x11dacd2,0x0460a6e,0x11fa83f,
  44163. 0x014214d,0x1c74baf,0x02080af,0x0ecaa04,0x1bbbdb3,0x18846f9,
  44164. 0x1d889f2,0x129b80f,0x0970e14,0x12db107,0x0212f14,0x13f6b95,
  44165. 0x1378971,0x03fef1f,0x1416783,0x1a0a325,0x001305b,0x0fd32ce,
  44166. 0x045b069,0x02e1d0e,0x0c30fe9,0x0307f7a,0x0633340 },
  44167. { 0x0fbbbce,0x0d06651,0x1d10e72,0x1954196,0x076f6e5,0x1c7671c,
  44168. 0x00438d0,0x10539cc,0x013802d,0x1568a47,0x11686c2,0x18c139a,
  44169. 0x009c3e5,0x1de7e0f,0x172e165,0x09ba10e,0x190d858,0x1d8cffb,
  44170. 0x0070a8a,0x11703db,0x07e3259,0x17815f0,0x0462f7c,0x0ecb9d2,
  44171. 0x1c8eeb9,0x0d703a7,0x02c93e5,0x04bd3b1,0x18f09d1,0x166e064,
  44172. 0x09ceec4,0x1416e96,0x06aee07,0x03be725,0x0be7020,0x1e8e47a,
  44173. 0x1ea8026,0x0a23eb5,0x02dce56,0x0b82c50,0x093a707 } },
  44174. /* 35 */
  44175. { { 0x15b27f9,0x1f7f138,0x048c9ae,0x0454501,0x0935a5e,0x0c51355,
  44176. 0x08ebff5,0x128bbbe,0x07c1386,0x0641f0b,0x08854d5,0x1793125,
  44177. 0x1544799,0x0dc684f,0x1b91c42,0x1d4d09c,0x016d588,0x1631d7b,
  44178. 0x00eac6d,0x12ce0d1,0x13365e8,0x101e904,0x0f04e4e,0x1847bb4,
  44179. 0x1292192,0x121e817,0x0b73dba,0x16e196f,0x1559e1a,0x07543c8,
  44180. 0x02c490d,0x0dae1fe,0x00680db,0x15d2282,0x1948a0c,0x1e3421f,
  44181. 0x05f0cb8,0x0fce047,0x107f75a,0x1588962,0x01a7422 },
  44182. { 0x140b675,0x0ee974f,0x1ce70ea,0x07f98e3,0x0a7c660,0x0471a11,
  44183. 0x0698465,0x1083127,0x0ed0ab4,0x19db0ac,0x0729ae3,0x1b2fdc6,
  44184. 0x03a3aa7,0x1bd46db,0x07a197b,0x0c5c978,0x0092c7c,0x198afc6,
  44185. 0x1d71b43,0x00f11f3,0x1ec5a26,0x14a5b79,0x0c60cc4,0x169b093,
  44186. 0x1bcd636,0x14db9d6,0x02f1a66,0x0dc2912,0x1175e76,0x086c150,
  44187. 0x13efcde,0x1f8a794,0x143605a,0x1b048bf,0x111e1ff,0x0caefed,
  44188. 0x000c82b,0x1e3aa93,0x1667209,0x0613a4a,0x00944d6 } },
  44189. /* 36 */
  44190. { { 0x0ab9620,0x15b1f73,0x00233f7,0x1af0d9b,0x1ff4fa6,0x119059e,
  44191. 0x1760915,0x02a28bd,0x0c49439,0x172fc31,0x0cfe1ca,0x10276e7,
  44192. 0x099508e,0x1297cbd,0x16017cf,0x136c477,0x028c982,0x07b8dae,
  44193. 0x1b833bf,0x098e1d0,0x136eb39,0x1491ded,0x14d3ec6,0x1c4fcb4,
  44194. 0x15862db,0x0b4eb27,0x0e0ead8,0x15c47be,0x0828cbb,0x18d893e,
  44195. 0x02b75b7,0x07460f5,0x101899f,0x0efb30c,0x1966047,0x0e6d990,
  44196. 0x19943b7,0x05bbba3,0x195da8f,0x106dfb0,0x07d89f3 },
  44197. { 0x1f92b2b,0x1212164,0x0af7e15,0x0b88dc6,0x100c6a7,0x0cd2e2b,
  44198. 0x1a2ddfe,0x0d127ce,0x0031495,0x177f42c,0x199c26d,0x1433859,
  44199. 0x13bbfe8,0x1737624,0x068ec6f,0x1851ae4,0x0a9c371,0x0937777,
  44200. 0x145df87,0x1022bc2,0x05a5d79,0x0758345,0x15efcef,0x1a56965,
  44201. 0x1a22046,0x0fe6fc6,0x0d66fa7,0x1be132b,0x040b793,0x0bde3bb,
  44202. 0x11725a2,0x0b457a7,0x00cf4c2,0x1f3a267,0x15ba26b,0x162de8b,
  44203. 0x1a8509b,0x1f9d659,0x09b9ad4,0x03ec7e5,0x0449af8 } },
  44204. /* 37 */
  44205. { { 0x16d9377,0x0789950,0x1e7b0bf,0x06fc345,0x1ab377b,0x08cd72c,
  44206. 0x084ba1b,0x162e5c3,0x0d013bb,0x1589733,0x1d9aeb4,0x00ab96b,
  44207. 0x100972e,0x1ccf55a,0x0778700,0x0bd85a2,0x0fdc65f,0x1e0f98a,
  44208. 0x0a7fd64,0x0230831,0x06e6fc3,0x1670292,0x17dcf07,0x04a0adb,
  44209. 0x1136316,0x10ce146,0x1dbec97,0x0153b7a,0x1cd2d73,0x0922422,
  44210. 0x0b4127b,0x1a6dd0a,0x179b83f,0x04541e3,0x1f1fda3,0x070b46b,
  44211. 0x095e803,0x0df8f0e,0x06bd4a6,0x1864112,0x00e8617 },
  44212. { 0x1c81b5c,0x1030133,0x1cf14dc,0x1bce6f0,0x0fa89dc,0x0a27e81,
  44213. 0x0c2c2a0,0x10654e8,0x126208c,0x00362d3,0x0903d4c,0x0cc1b1d,
  44214. 0x044e066,0x04b209d,0x14097e6,0x0293f3b,0x0cc46b9,0x15ef9c0,
  44215. 0x0849730,0x0acc321,0x1c37801,0x1ba93c9,0x0135a8e,0x0f4c5e4,
  44216. 0x013746b,0x0bc5b00,0x0161756,0x139fc4d,0x15fe66a,0x065c41c,
  44217. 0x1db72b4,0x08d64c3,0x0b468fc,0x0c90c5d,0x17be767,0x05941de,
  44218. 0x1e45240,0x03ea542,0x1da1f14,0x1e264d9,0x06f4404 } },
  44219. /* 38 */
  44220. { { 0x1ebd3ff,0x0c905a7,0x0eea8f8,0x11fbfa5,0x0a6234d,0x0d4c14e,
  44221. 0x0bcab86,0x0416fa3,0x0c6f5bc,0x1ef0b08,0x0e72a48,0x17e7b54,
  44222. 0x0be204d,0x16c6385,0x0b7a6e1,0x06e1654,0x0377c9d,0x1139706,
  44223. 0x1595443,0x02980dc,0x16b0809,0x142be5d,0x0d8479e,0x04cd4dd,
  44224. 0x1c6efd8,0x00e03b7,0x18c2560,0x1f5869d,0x024063d,0x00515cf,
  44225. 0x115a7fd,0x0f0f54b,0x1ba31a9,0x1866953,0x1f7ccf1,0x081c9a3,
  44226. 0x0895f07,0x1f18993,0x1c78a40,0x1f0ff6c,0x0905771 },
  44227. { 0x0062bee,0x0dd06d2,0x07e5466,0x1929afb,0x18e7238,0x0491600,
  44228. 0x0a6f078,0x0bfea7e,0x1b12d85,0x14d9540,0x0328a77,0x1ddadad,
  44229. 0x1f649f3,0x028604b,0x0b7f0d3,0x13140c9,0x0b99db3,0x040cb25,
  44230. 0x0961c89,0x0b388ef,0x103a00d,0x0b3a62c,0x027fa8e,0x0087ba0,
  44231. 0x1d8ee15,0x0103557,0x197c7b3,0x0ae434d,0x19b7b4c,0x124186d,
  44232. 0x0aadb5a,0x0cd91aa,0x0ffc617,0x0151383,0x075ab32,0x107bc48,
  44233. 0x07f2f7a,0x02f8291,0x17b3018,0x076c809,0x06a2295 } },
  44234. /* 39 */
  44235. { { 0x0fce389,0x096c7ba,0x1592491,0x0055f4a,0x059634c,0x16bc128,
  44236. 0x132efc3,0x01b26ef,0x137718e,0x0fa022d,0x1a69362,0x1cfb3f4,
  44237. 0x1a11074,0x194ad85,0x1c2ec1d,0x1dbccba,0x0adf107,0x1d916aa,
  44238. 0x068a71e,0x1347b14,0x03ab5c3,0x016bcaf,0x0dc8db0,0x0b132a2,
  44239. 0x02d002b,0x1717b94,0x195e42f,0x1c44cb7,0x065ea25,0x1508d47,
  44240. 0x0f64783,0x0c0039d,0x071a708,0x02a0107,0x1d68b07,0x022d201,
  44241. 0x157f698,0x196ae01,0x0d09f0e,0x140c33c,0x0528c9e },
  44242. { 0x126c577,0x0435a2f,0x15147b7,0x1128717,0x1807470,0x12c153f,
  44243. 0x0404de4,0x13e5bfc,0x0de1e56,0x0475650,0x168d5b8,0x1df534a,
  44244. 0x165f952,0x124bb10,0x1602d4f,0x0e3e549,0x055cd5d,0x0695b2c,
  44245. 0x1b3a8fc,0x0e097ec,0x03ca246,0x0fa4919,0x064fd90,0x1b6264a,
  44246. 0x1855c9a,0x1295340,0x18b4675,0x0daa459,0x02ed7b8,0x0f882dc,
  44247. 0x0a54d82,0x11c2a1a,0x10f0094,0x1f4489d,0x0fec2c4,0x12475b1,
  44248. 0x1794b44,0x18aab67,0x13d5f2e,0x126e717,0x0200f90 } },
  44249. /* 40 */
  44250. { { 0x188387f,0x117e2c1,0x0f17e6c,0x0051d10,0x0f26f17,0x1bcb9e6,
  44251. 0x0ae4346,0x0e288f9,0x0f6ec91,0x0aea751,0x136f023,0x0931861,
  44252. 0x0b2e16f,0x04311e1,0x04a4431,0x18a8bb9,0x1b030db,0x0758a48,
  44253. 0x137886c,0x1bd65c2,0x10f4631,0x1317f41,0x0128841,0x1383e7e,
  44254. 0x0979c37,0x1cad263,0x03ec1a9,0x14e656d,0x19dfa98,0x193d0b0,
  44255. 0x06ce910,0x11b7c59,0x1a307d3,0x04ff548,0x03480e6,0x1f27379,
  44256. 0x0f4a331,0x155d790,0x15770f6,0x131ba1e,0x05c307e },
  44257. { 0x1b233da,0x070621a,0x0616ef1,0x0a45edf,0x03d2908,0x1812347,
  44258. 0x0b486a2,0x1cf33ba,0x1a96916,0x1c7a074,0x0f33b65,0x10d8c29,
  44259. 0x0c0327d,0x19483b1,0x1a5540a,0x1e5db2b,0x197a879,0x187fe90,
  44260. 0x0382f4c,0x0ca26ea,0x04c4c43,0x050413e,0x09b0c52,0x19f8164,
  44261. 0x012a83f,0x0c4e3cc,0x18c64a1,0x07b1a2f,0x10f42dc,0x167f441,
  44262. 0x0fe2d5c,0x0960ff0,0x0d9ff92,0x08a47be,0x0540294,0x1866395,
  44263. 0x0c59f9a,0x029cb42,0x11e1743,0x1f58286,0x01df16d } },
  44264. /* 41 */
  44265. { { 0x0bcacc3,0x1da5634,0x033f31e,0x1e861eb,0x06ded34,0x10c2ad0,
  44266. 0x07d3f51,0x1798b3f,0x045c9f0,0x0a48cca,0x17224bd,0x1d8c86e,
  44267. 0x1adc5f7,0x1e42cc1,0x01c23c4,0x1a10e37,0x0c482fc,0x1d9952e,
  44268. 0x15ad303,0x19b86a5,0x1b2defd,0x0245637,0x12ec93c,0x120c8e2,
  44269. 0x0d4f533,0x1622cc1,0x1ee0e8e,0x0c5d6a5,0x17a2231,0x0f94119,
  44270. 0x14dc4c3,0x19787b7,0x0e7b802,0x1d6076e,0x0564919,0x1d1672b,
  44271. 0x1b56717,0x09e9740,0x0985c87,0x0a08ca2,0x0729a7f },
  44272. { 0x020f90a,0x168d542,0x01561d3,0x1c1fc99,0x0368e19,0x1f3a57b,
  44273. 0x12aaac2,0x1536c5a,0x08ca60c,0x17e6240,0x16a19dd,0x0b4aec8,
  44274. 0x0cf310b,0x0ed8d92,0x06eb26f,0x0b68826,0x11d2dea,0x177bbeb,
  44275. 0x0bf3193,0x0da420e,0x17f0470,0x08b39eb,0x0a6e49a,0x13c0cc6,
  44276. 0x00bf3e8,0x0a01170,0x0dd01df,0x0e5a19a,0x1232e24,0x0206c14,
  44277. 0x0ccf884,0x071b90a,0x1916dfb,0x07b3397,0x166c52e,0x1a91776,
  44278. 0x144be19,0x0f4fa56,0x0757067,0x092465b,0x07f6d36 } },
  44279. /* 42 */
  44280. { { 0x0794819,0x0326f37,0x1684ef4,0x1df05d7,0x1a6b694,0x0f14022,
  44281. 0x1ff82e4,0x1a43e02,0x107a43c,0x08698f9,0x10cfa46,0x044cc60,
  44282. 0x146c26f,0x055fee5,0x1222a9c,0x0238174,0x085a464,0x020c6c8,
  44283. 0x1fed620,0x069fcd7,0x18491b9,0x1bf1007,0x1d74788,0x0a827b6,
  44284. 0x0d63fa5,0x1bbef82,0x1788ecf,0x042ddae,0x11bd30e,0x136587c,
  44285. 0x0268161,0x0ee538a,0x0c395d9,0x1596bc2,0x062114a,0x0dd92fc,
  44286. 0x0093d68,0x1be0fc8,0x021b232,0x12ac51e,0x02d0323 },
  44287. { 0x044b4c5,0x04a03a5,0x1262a07,0x1398e05,0x1984687,0x186e4bd,
  44288. 0x08a1f3a,0x04396a0,0x06e3aa3,0x0180893,0x095b08c,0x0ec7c98,
  44289. 0x05c0ac8,0x12ada42,0x00d3483,0x1e6b6ca,0x040f240,0x0554b50,
  44290. 0x13dfbb7,0x1a4da6f,0x0656046,0x109dc08,0x18a96a3,0x1ae1856,
  44291. 0x04b9783,0x147c302,0x0167936,0x1f75ff1,0x17f5d12,0x080d2a2,
  44292. 0x15e4a76,0x16a636e,0x09e1eb2,0x14b9ce9,0x0f72793,0x12429b5,
  44293. 0x0eaa9bd,0x0b927e2,0x0ee6d6f,0x1663df3,0x0734c12 } },
  44294. /* 43 */
  44295. { { 0x0f9b086,0x11e1749,0x151263f,0x1d67fa8,0x0641b93,0x01632e2,
  44296. 0x0822d70,0x0848f9c,0x1c4f032,0x1296e50,0x14a7da2,0x0fb2cf3,
  44297. 0x14b5ec1,0x0a037af,0x14bfb42,0x1502223,0x1dc0d9b,0x19307b1,
  44298. 0x151ca8f,0x160ade2,0x10e6de2,0x0f80394,0x06c5c36,0x16b91f2,
  44299. 0x03e8db6,0x1f75171,0x073cd30,0x08b4507,0x173ee23,0x0a308dc,
  44300. 0x1166f71,0x17649a3,0x1bda6c2,0x0a0d0b2,0x0e8cf18,0x032faa5,
  44301. 0x1d2eb20,0x1d8b094,0x1927d1e,0x10e43f7,0x07c558a },
  44302. { 0x1350fec,0x02d291f,0x1302e52,0x0ad471a,0x016678c,0x0d53268,
  44303. 0x11a8835,0x1c91de6,0x0d96da2,0x02ed501,0x11ecf2e,0x09d49ec,
  44304. 0x0c845ec,0x06af4a3,0x1469b28,0x1e95781,0x1c14fa9,0x1a0ec68,
  44305. 0x122c4c0,0x0e598b3,0x1bfb439,0x06a1a7f,0x19f87d2,0x13a4630,
  44306. 0x0e93a81,0x11f9a86,0x01b77bc,0x13ea612,0x0cf12c4,0x167c900,
  44307. 0x1f0f0b9,0x0c80865,0x0691cc1,0x0b5a921,0x12d1c92,0x1d7ffee,
  44308. 0x020a97b,0x093e4f8,0x10d2111,0x194f678,0x034cd7d } },
  44309. /* 44 */
  44310. { { 0x1e7fe87,0x0bb0d2c,0x15cbc0c,0x14008f9,0x11eae31,0x1187b15,
  44311. 0x0b9a3eb,0x0864f20,0x1b71db1,0x1337a46,0x00e3d29,0x0cf01c0,
  44312. 0x0d75ee6,0x015eebb,0x116b19c,0x19ab876,0x028a0d6,0x08697dc,
  44313. 0x16316c4,0x1cfe3b3,0x1e9627c,0x120905a,0x0507f83,0x04cf86e,
  44314. 0x1b984b9,0x166cad0,0x07580c4,0x040dcb1,0x1493565,0x1a176d2,
  44315. 0x0b0619c,0x00e18e9,0x14520b9,0x1d8599b,0x0ed6555,0x084e079,
  44316. 0x06ed8c1,0x10face5,0x0e21fd8,0x18557ef,0x07ceb1c },
  44317. { 0x17fd65b,0x1d2dded,0x15f0191,0x006d928,0x18d45cc,0x0938c56,
  44318. 0x0676e78,0x1638db5,0x0e93a7f,0x08eddfa,0x159a87b,0x12b97a2,
  44319. 0x194512c,0x0de0648,0x186e803,0x0a4d290,0x0989e7f,0x11e3661,
  44320. 0x0506aab,0x12c2a01,0x18e3671,0x07e4629,0x0ff3d74,0x0b4aa3f,
  44321. 0x09929a2,0x19356b7,0x145f283,0x00e2130,0x09ef7e9,0x1c757d4,
  44322. 0x125d0ed,0x0e3568a,0x1d5ea31,0x0e1b69c,0x0fcf9b4,0x1ae885e,
  44323. 0x059d568,0x1341f00,0x1b57096,0x13244f9,0x01f629a } },
  44324. /* 45 */
  44325. { { 0x05a1c3e,0x0eed672,0x117e249,0x0a83eea,0x12d2936,0x13fc143,
  44326. 0x0bf2cdf,0x1a48ac4,0x13e4c79,0x011a289,0x19175a2,0x1f09384,
  44327. 0x195dffa,0x0ca4015,0x1e3d376,0x13f4060,0x1f09d33,0x02b3493,
  44328. 0x1f64773,0x00143d3,0x0bd79a5,0x0005585,0x1380206,0x129cbbf,
  44329. 0x135a381,0x0446cb8,0x1e62b7c,0x1d0ec60,0x05a2a79,0x00dc4d2,
  44330. 0x064eebc,0x0f11687,0x1ed6154,0x14cbeb7,0x1c8b9de,0x1b301ca,
  44331. 0x0a378ee,0x0487fd1,0x0168aab,0x14517b0,0x04a75fd },
  44332. { 0x1e74cbc,0x147ddaa,0x1c97426,0x1df5631,0x137738c,0x12761d3,
  44333. 0x0eb5a5d,0x0621f84,0x1e7e0ad,0x0d3e9ad,0x07326f1,0x0d1dc90,
  44334. 0x14e75e0,0x1ea5761,0x10baa64,0x0c789e1,0x1e80d4a,0x0789927,
  44335. 0x06c164b,0x16f82d3,0x146b5db,0x06d3f07,0x110b59d,0x001f5d4,
  44336. 0x166c7a3,0x041ad2e,0x04ccceb,0x107b904,0x008496e,0x0097462,
  44337. 0x105c3be,0x133debf,0x0e1dcb6,0x074314b,0x1c6c5cd,0x10dc56e,
  44338. 0x183507d,0x114e6e2,0x05e6811,0x15c47b0,0x05819f9 } },
  44339. /* 46 */
  44340. { { 0x0a78811,0x14890b5,0x1f0f665,0x084207c,0x164ee8f,0x1cf34c7,
  44341. 0x041c08a,0x1bdbbe0,0x04f582c,0x1000fcf,0x1eb06b9,0x115e5d9,
  44342. 0x0924a60,0x031c980,0x1d31e10,0x05222dd,0x0e6ebf7,0x0293175,
  44343. 0x113b968,0x1a15eb1,0x1bc7ddb,0x08766c3,0x01d6bfe,0x049e229,
  44344. 0x1b34c6f,0x0b917ee,0x07a197c,0x1020850,0x0c1b9a4,0x1213443,
  44345. 0x07e55a4,0x13de846,0x15f3208,0x1f41737,0x0b3f429,0x115eb0f,
  44346. 0x1ac395c,0x0b8c8bc,0x09d4359,0x07826c9,0x0745960 },
  44347. { 0x01ae519,0x03adffa,0x0944709,0x0295f1e,0x14401fb,0x1d961e9,
  44348. 0x1f34abb,0x010e1bb,0x151cdaf,0x1969c2d,0x02ec666,0x04ad041,
  44349. 0x168531c,0x0619f9f,0x12277d9,0x02ed22d,0x0992457,0x1611e7d,
  44350. 0x1b4042e,0x136a3d0,0x0313233,0x069131c,0x0236c3a,0x1fdbd6e,
  44351. 0x1e17900,0x178fbb4,0x0e8da1f,0x1fb2db9,0x0764753,0x1591c8a,
  44352. 0x1773411,0x0188b91,0x1ff2064,0x01ebc79,0x1ef6e0d,0x01dfa2c,
  44353. 0x0b77ee9,0x1e65b6a,0x1ed1524,0x027679e,0x0330255 } },
  44354. /* 47 */
  44355. { { 0x1eaaca1,0x002349a,0x0408dbc,0x0b12232,0x0c384b7,0x094aa60,
  44356. 0x159979b,0x1af966e,0x1b1e9d6,0x1c8ccdc,0x109d5f2,0x0693853,
  44357. 0x1075852,0x1c739c6,0x12f46ea,0x1484f13,0x0905923,0x0cdc6df,
  44358. 0x03f8622,0x0ef27c3,0x0083a23,0x0bd3a17,0x0909c5d,0x1d7ac27,
  44359. 0x179d24e,0x1bbc624,0x1353cb3,0x0064a0a,0x0705de4,0x1048cac,
  44360. 0x0ea8ee2,0x067b333,0x1191bd9,0x1f70f0d,0x0e90ec3,0x0975fdf,
  44361. 0x1facdf1,0x1d68c21,0x15872ce,0x160870e,0x09328ad },
  44362. { 0x106b872,0x027407c,0x1996afa,0x00f04c4,0x105523a,0x0c667bb,
  44363. 0x1a9f8ce,0x047b138,0x1f55b53,0x1d5aa8e,0x137aa0b,0x1d940aa,
  44364. 0x0da0578,0x1baac4e,0x09948f4,0x1aea1de,0x042864a,0x16c7eb1,
  44365. 0x1e3f87f,0x04ff8a2,0x142293f,0x184efc3,0x1ecf9bc,0x0a1a0a8,
  44366. 0x0e49e37,0x0509431,0x097700e,0x1b218d6,0x1b682b7,0x1711426,
  44367. 0x02b0686,0x1310326,0x1f3dab7,0x1f05223,0x154aebc,0x0a61cd7,
  44368. 0x162d25c,0x00012df,0x1579c1a,0x19f5ba1,0x00aa1f3 } },
  44369. /* 48 */
  44370. { { 0x0a10453,0x110c811,0x042ea60,0x1854074,0x1d1eb91,0x12379de,
  44371. 0x1765659,0x18d5f76,0x0f38b6f,0x0c6f1a2,0x1f28769,0x07cb719,
  44372. 0x04ce47c,0x07b86d0,0x16385b4,0x05dadf9,0x09bda26,0x156221a,
  44373. 0x15b8be3,0x01b0f78,0x0e58932,0x040c89c,0x0738fa8,0x1646d81,
  44374. 0x02dffa2,0x186d2c3,0x1239fbe,0x161f34b,0x0c78eb6,0x01958b5,
  44375. 0x0bd2d4d,0x0e136a3,0x1f43105,0x0cb1437,0x1be23d4,0x1a11c46,
  44376. 0x0ed403a,0x09f8bb7,0x151787e,0x1c12c6c,0x0559337 },
  44377. { 0x0fd807a,0x0fb9c6c,0x0888c37,0x1b56262,0x14e0ec9,0x0d7de1f,
  44378. 0x1d36d89,0x12a2945,0x09f12f8,0x0db8302,0x0113f75,0x1847586,
  44379. 0x0fb46f3,0x1aa00a4,0x08cb47f,0x1caa836,0x0f539b4,0x0b0da2c,
  44380. 0x175c2dd,0x0964941,0x01d9f69,0x0c944ac,0x03f190a,0x0bfc45a,
  44381. 0x149beee,0x1b1e02e,0x1da862f,0x15e688f,0x1929d67,0x0ee13f8,
  44382. 0x033a5a8,0x182aa3d,0x0fe6028,0x0a7d135,0x0bccad7,0x084fb59,
  44383. 0x145c2cb,0x0b18de2,0x0534d28,0x1f36192,0x0930070 } },
  44384. /* 49 */
  44385. { { 0x1a9bc05,0x1962f34,0x0dcf4bc,0x0cb1389,0x0a5c19c,0x132fce0,
  44386. 0x0797a51,0x07212b9,0x1bcfb4c,0x1587949,0x0df0c62,0x10ee3bb,
  44387. 0x08b9070,0x1359c02,0x13a5961,0x1b37b12,0x0cf606b,0x0f8cd48,
  44388. 0x1bf4b5a,0x1ab1bf6,0x0a69cc1,0x07230ec,0x021b731,0x19c9063,
  44389. 0x1c277f9,0x141622a,0x19d97e2,0x0934b32,0x1adc8d7,0x134661d,
  44390. 0x0acbff1,0x122259b,0x0018396,0x1e3e59c,0x170ec90,0x09530f2,
  44391. 0x010a222,0x1af9880,0x178521d,0x082b0f6,0x0043a21 },
  44392. { 0x0873752,0x14ede1d,0x1fb9eef,0x085e885,0x0e1493f,0x0610c0f,
  44393. 0x08b2306,0x1cf3039,0x0e29769,0x0671848,0x1a317c0,0x1591bce,
  44394. 0x1eb4626,0x1a6bb3b,0x1a73918,0x129cc67,0x0ade0fa,0x1fc4e16,
  44395. 0x07d6d6f,0x0b98228,0x012c04f,0x1b11146,0x09597dc,0x00b99ca,
  44396. 0x1706a0c,0x027f8df,0x1ef921f,0x1a0ffff,0x19f1a45,0x1e04d24,
  44397. 0x000fb10,0x131b290,0x14e79bb,0x1897c27,0x08581cf,0x1b1466b,
  44398. 0x0f970d6,0x1af57b8,0x02ba12e,0x0f7e49a,0x018d074 } },
  44399. /* 50 */
  44400. { { 0x0601faf,0x1e3be42,0x1dc9634,0x055e383,0x09465be,0x0b6c036,
  44401. 0x19e6344,0x079fec4,0x0d5b0d9,0x0cb6063,0x19c8e8e,0x1aeabd8,
  44402. 0x092fa1a,0x01dd29a,0x1aa0510,0x09b152c,0x0222ac3,0x0ee264a,
  44403. 0x159d619,0x08e3bdd,0x128fddf,0x0bca9ea,0x162b296,0x1d7ecfb,
  44404. 0x063b524,0x069d972,0x05f896d,0x0b0490e,0x159daa2,0x16dd218,
  44405. 0x1008f16,0x1066aea,0x058f9c6,0x058d32a,0x169fe4e,0x039ed0b,
  44406. 0x0efed23,0x0d27ed6,0x1796660,0x1da1176,0x0711093 },
  44407. { 0x01f161a,0x11fe320,0x1a1c4aa,0x012e98b,0x1735856,0x1aefc17,
  44408. 0x14bec5e,0x1329544,0x1a48e62,0x05c1583,0x1611f6c,0x02ae53b,
  44409. 0x0600234,0x0294e2d,0x1953401,0x1ea71e3,0x19e6d98,0x1e60e29,
  44410. 0x034eaf2,0x0c56a65,0x10cd361,0x1c15427,0x1d68de4,0x1dce908,
  44411. 0x1a81b4d,0x18dfb8b,0x0d308ef,0x0d9e6bf,0x1e8b3e1,0x014fbc3,
  44412. 0x0c1ff47,0x0b36f35,0x1da7e68,0x16305db,0x028217d,0x0a0e420,
  44413. 0x07ed48b,0x0200acf,0x05f50c6,0x1b49b39,0x017898b } },
  44414. /* 51 */
  44415. { { 0x01b8cf8,0x041ec57,0x015b361,0x05d3451,0x123d4b4,0x0525e11,
  44416. 0x1613c81,0x1f4ec66,0x0ca7a69,0x1059114,0x1eeac93,0x1517eea,
  44417. 0x0a8afbd,0x1662fce,0x0c90221,0x12b870b,0x013d41a,0x1a3fda4,
  44418. 0x0aaaf9a,0x178a798,0x199d3f1,0x1f8d68a,0x1c8b368,0x03d5363,
  44419. 0x0c081c3,0x1608d97,0x0c05852,0x091e609,0x0fa7ab0,0x0774e35,
  44420. 0x0f738c7,0x08281b8,0x1af7633,0x055dd2a,0x0cdf73a,0x1d096f5,
  44421. 0x07cf3ef,0x0f3b246,0x1aac943,0x19e2a6a,0x073a88d },
  44422. { 0x0e83b39,0x1414403,0x0df4fe1,0x073e880,0x077a441,0x0de420a,
  44423. 0x02c3c5f,0x093f20b,0x154d175,0x0db27a7,0x01fff8b,0x14d5e46,
  44424. 0x01a23ce,0x0789313,0x0fbf555,0x0fe4c72,0x18a10f3,0x097a732,
  44425. 0x13b878d,0x06f9c7e,0x1e8ba44,0x13d49e6,0x193bd0a,0x1355202,
  44426. 0x1c9f493,0x06a0ef5,0x08f5ed7,0x08447ad,0x0a3acc4,0x1508fc4,
  44427. 0x0b5e269,0x058c114,0x0fb9df8,0x0b6032b,0x038eefd,0x01cf3b7,
  44428. 0x068fa30,0x02b5793,0x1a879cf,0x02f5c72,0x052f32b } },
  44429. /* 52 */
  44430. { { 0x114f71a,0x09260f3,0x14655bd,0x0535bb0,0x01be126,0x056df1e,
  44431. 0x0276197,0x0935b23,0x05a0fb6,0x045fae4,0x064b676,0x152443a,
  44432. 0x0f9efa6,0x17b925b,0x1fa0e25,0x02339c7,0x024b250,0x0761fd7,
  44433. 0x0b834f0,0x15f3ec5,0x024d4b6,0x05eb0cb,0x03f3ae8,0x1b6dc75,
  44434. 0x1092b2f,0x094bee1,0x18c98f3,0x123b46e,0x1c43bdc,0x1b0f7ca,
  44435. 0x164c301,0x19bd689,0x1136400,0x0698ec4,0x1a110f0,0x1ffafb9,
  44436. 0x1871899,0x1f61d8c,0x16305e3,0x051dfbe,0x079e14d },
  44437. { 0x1b40c55,0x1111acd,0x090b8e0,0x1a1da0f,0x0a27202,0x1c60fa0,
  44438. 0x106a520,0x11c91cd,0x1d864a7,0x1af9253,0x115724a,0x081418d,
  44439. 0x087e7f1,0x07096a8,0x0b0412b,0x03c21cc,0x07ec11b,0x0cd850d,
  44440. 0x1eecf75,0x144ebf5,0x0b30fd8,0x1f4d1db,0x17fcd53,0x0c05403,
  44441. 0x05d9e46,0x0fbad08,0x164eed9,0x1a6e369,0x02fdeb3,0x1f8587c,
  44442. 0x1176972,0x1bc8d0a,0x001229b,0x0a8bf23,0x02e71cf,0x04a0bc2,
  44443. 0x072ff49,0x07d2a0b,0x1b389df,0x11532ac,0x00d8ec2 } },
  44444. /* 53 */
  44445. { { 0x1eee995,0x07b9f65,0x0030053,0x19a923d,0x12eb88b,0x15d2ea5,
  44446. 0x1b2b766,0x09ac2b4,0x19304c8,0x1bea319,0x00f268b,0x03a5156,
  44447. 0x14ba050,0x08dd5dc,0x1dc8f7a,0x0aee591,0x1775040,0x06442fc,
  44448. 0x1ff2c25,0x03a5678,0x071ab5e,0x0aefcb6,0x187b9e6,0x0c8933c,
  44449. 0x0daab34,0x0995c64,0x157d81e,0x1684bbb,0x043587d,0x0e50d89,
  44450. 0x101c094,0x13f8e86,0x0d7d3be,0x1564493,0x0c43240,0x1f182f2,
  44451. 0x0559a74,0x09160aa,0x12bf1c9,0x04f86e6,0x086001e },
  44452. { 0x1693947,0x005d2f3,0x18ac4ec,0x1c02580,0x0478641,0x0a48543,
  44453. 0x0e383a1,0x0bdc348,0x1d9574d,0x0b9eddf,0x0ee9854,0x171937a,
  44454. 0x159532e,0x0f9f503,0x106f2e1,0x125723e,0x0478cbb,0x0560e61,
  44455. 0x1be406d,0x08c91c3,0x12ee0f3,0x0f6959d,0x1764a74,0x1aeb7f9,
  44456. 0x11eabc3,0x0692387,0x1c4e73d,0x19b78de,0x0249535,0x02a6f82,
  44457. 0x00f3619,0x08ff967,0x0079812,0x1c9860f,0x06d05f7,0x0173e41,
  44458. 0x114ebc0,0x12fe188,0x11b0508,0x19668f2,0x0020591 } },
  44459. /* 54 */
  44460. { { 0x15e0af4,0x01b9093,0x092f8c0,0x1fcf149,0x121141e,0x1aba42b,
  44461. 0x1f3db45,0x13cccd9,0x1168e65,0x1d0eb9b,0x010bb97,0x1ca81c5,
  44462. 0x16263e3,0x0a45eaf,0x1b30f52,0x020955b,0x03d246b,0x000cef0,
  44463. 0x0d0f606,0x13d207e,0x0d31f8a,0x052d860,0x12d5ee9,0x1c4ecbf,
  44464. 0x0c50651,0x1b3c123,0x1d9466f,0x018aea3,0x119a018,0x0100790,
  44465. 0x1d17c17,0x0f043a9,0x06487b8,0x01d033f,0x12a8987,0x044c5f2,
  44466. 0x1214605,0x07f244b,0x017bd5b,0x0bf43be,0x0511998 },
  44467. { 0x18586c0,0x0a4bed8,0x0989606,0x0d8ddd5,0x004415d,0x06d1458,
  44468. 0x11ada5f,0x128f8d4,0x07c1945,0x10a4d94,0x0e941a6,0x13f49da,
  44469. 0x14b5636,0x01e4a65,0x04aa999,0x1ddc4e1,0x13aa9e9,0x0aade73,
  44470. 0x1e24d42,0x1650e0e,0x132634b,0x180375a,0x02be57e,0x071e90b,
  44471. 0x1032396,0x1fc43e6,0x016e9d6,0x126ec4d,0x02d5812,0x179ecea,
  44472. 0x137ccb5,0x0cb8dac,0x0cad574,0x0f6a0d2,0x03eecb3,0x0f30bea,
  44473. 0x1006a06,0x1a67074,0x1fe6b3c,0x0cab14a,0x059eaf2 } },
  44474. /* 55 */
  44475. { { 0x0c3876f,0x03f7db7,0x1921ed0,0x07e1e90,0x180c612,0x04981cb,
  44476. 0x15bfefe,0x1605576,0x045a91a,0x0c97550,0x046e0a5,0x09aef10,
  44477. 0x09ce5b8,0x0fcf9fe,0x09c68d0,0x1c2770d,0x186f0e7,0x060bfee,
  44478. 0x1568220,0x1b052ec,0x066688e,0x1a40eaf,0x1d75b71,0x02e2f2e,
  44479. 0x09df61d,0x10ff7fe,0x178fde7,0x0d5a991,0x06192e3,0x18be902,
  44480. 0x18b6c54,0x04e9fb4,0x0c9fa7a,0x0cc8a3c,0x093e0b7,0x1809d92,
  44481. 0x1a64971,0x0e8f1c1,0x0efec16,0x1d44c41,0x03b4450 },
  44482. { 0x176dcdb,0x1d4aae3,0x091cf6d,0x1903917,0x15c4a57,0x0bb07d9,
  44483. 0x1400d41,0x0a75c50,0x1b3aec3,0x1f40348,0x05ef978,0x0b7c8e2,
  44484. 0x0138033,0x02b667b,0x111f8e8,0x0f22dc3,0x1eb3397,0x0929e7e,
  44485. 0x172dfb8,0x19bf75e,0x17043de,0x07be7a5,0x1cf25e5,0x1f028c5,
  44486. 0x1680c9f,0x14f9200,0x06f8f6a,0x1c881c2,0x191d8a4,0x01bbb4f,
  44487. 0x1771741,0x196bd38,0x106c7a8,0x1e926a0,0x0684ced,0x0432321,
  44488. 0x1764b4a,0x09e41c1,0x0d853a2,0x0198853,0x04a7fe3 } },
  44489. /* 56 */
  44490. { { 0x055c7c5,0x19d3812,0x1d539e3,0x10e02ae,0x1b7636e,0x1193162,
  44491. 0x11491d8,0x18fe658,0x01bc780,0x04c588f,0x1b61dcb,0x1d5922b,
  44492. 0x14d48ea,0x0cc932f,0x0134f00,0x0401f76,0x19bcfa5,0x035a958,
  44493. 0x0fa8ffa,0x1413032,0x0059c46,0x1edd3ac,0x160b1cc,0x12d5599,
  44494. 0x0bbd618,0x0a8e992,0x133a3b3,0x181345f,0x1c44b3a,0x0c7e817,
  44495. 0x12d4a64,0x15542f0,0x0c45e4a,0x1042e78,0x0d03f88,0x026ac4c,
  44496. 0x050c7d6,0x05db3b6,0x1ac8d4f,0x146ca24,0x083fa1e },
  44497. { 0x0ccc646,0x0436d08,0x07a582b,0x1ef608a,0x0ce0637,0x0443081,
  44498. 0x1d8c228,0x1057779,0x1203499,0x1e0c80c,0x0f36808,0x0739f81,
  44499. 0x1d707fc,0x0dea7eb,0x1347c54,0x07776fe,0x0744471,0x06b5327,
  44500. 0x16b2798,0x1b8ced8,0x116957b,0x019bdb0,0x115b14c,0x1e8143a,
  44501. 0x11396dc,0x163e9a2,0x15265f4,0x07dbd84,0x04a739f,0x14d2616,
  44502. 0x1894d2b,0x0d4d5a5,0x001397e,0x0afc08a,0x15348fa,0x1e40ed3,
  44503. 0x1e98fab,0x1003e36,0x147833b,0x0f32638,0x0614097 } },
  44504. /* 57 */
  44505. { { 0x1156623,0x1996d8a,0x1f08f76,0x1956f4c,0x08137fb,0x0cf1e13,
  44506. 0x07d41bc,0x0c24c02,0x089924c,0x010c581,0x013070d,0x161f8d0,
  44507. 0x07492a0,0x17d5735,0x16f9c1a,0x17cc3ac,0x03e0d01,0x09d89e9,
  44508. 0x01fd31a,0x08b68ff,0x1aa3445,0x11026e0,0x15088db,0x0a2c3d9,
  44509. 0x1261d3c,0x003b09a,0x0ef622f,0x1d68d4c,0x19d7201,0x0c1b0ac,
  44510. 0x1cde31b,0x0d375e1,0x0955fe1,0x194107b,0x0f585c1,0x148cfdd,
  44511. 0x1e3a340,0x0dc5151,0x17e20bc,0x0ec5a16,0x0636dac },
  44512. { 0x0c80af3,0x006dcda,0x0aae50a,0x029c712,0x1a189cd,0x03beee4,
  44513. 0x00b8345,0x09e4dce,0x068f9f1,0x08d771c,0x0a82cba,0x0c75017,
  44514. 0x092864f,0x05b8a51,0x1607dce,0x0f96d59,0x070c5fe,0x09870dc,
  44515. 0x0420dff,0x1d43876,0x089f883,0x09b5902,0x0b689e5,0x145b4be,
  44516. 0x12a6858,0x10a1d75,0x080ea3e,0x046617e,0x10b1c4e,0x045aee3,
  44517. 0x1d2d712,0x0532cf1,0x078c4d9,0x1b3ae05,0x0260977,0x104677a,
  44518. 0x1b67d36,0x1ae03b3,0x1bcfcde,0x1fc9a17,0x02f6dbd } },
  44519. /* 58 */
  44520. { { 0x04da7c7,0x0397e97,0x04c8be1,0x035ccef,0x108cfc9,0x0134713,
  44521. 0x1c228f7,0x0486c95,0x0799a24,0x1886ff0,0x162ffc3,0x1ab0e3a,
  44522. 0x06ef912,0x0c44b17,0x1cd77f2,0x1d414d7,0x1a95f47,0x0945cb7,
  44523. 0x0b4c230,0x14f3d55,0x1bba734,0x1bcfa1b,0x055cc0c,0x1ea9eeb,
  44524. 0x0bd8e6c,0x1760016,0x1f9d8cb,0x0ec0db9,0x1931044,0x0f65a98,
  44525. 0x075012d,0x0159ee5,0x0e0897c,0x0f8ef05,0x0e18ef7,0x1112c51,
  44526. 0x187d744,0x168aa77,0x1753bb3,0x12e8b1a,0x05cb6e1 },
  44527. { 0x08c75ed,0x178cb80,0x0be2633,0x1deddd5,0x1cf49d3,0x1af4b6b,
  44528. 0x0780861,0x1143adf,0x0dd9b0d,0x076167f,0x1db6abf,0x19fd72a,
  44529. 0x1838a61,0x1b53edd,0x000fce4,0x029e820,0x06823b8,0x1d9be1c,
  44530. 0x0038c54,0x0cdb977,0x07a89fb,0x1d02cc2,0x079f8ba,0x14e4ee1,
  44531. 0x063fd35,0x1685276,0x07f2783,0x023e7b2,0x15baa43,0x004a6a8,
  44532. 0x18cf077,0x14119a9,0x1a06ebc,0x0f7553a,0x08e0bb5,0x1f56c2e,
  44533. 0x01f52c1,0x015dd87,0x15b94ba,0x060a2eb,0x02149d6 } },
  44534. /* 59 */
  44535. { { 0x19311f6,0x14737af,0x1e17b86,0x1f75783,0x097e3c9,0x0a104d6,
  44536. 0x114bad2,0x1c29f4f,0x019774f,0x0617a8e,0x16113c1,0x02450aa,
  44537. 0x135cefd,0x1ac39d5,0x0e18a8e,0x033f96a,0x1d6cbed,0x13b477e,
  44538. 0x19611a6,0x0248f3d,0x009ccdc,0x189ec06,0x0448df8,0x0898518,
  44539. 0x0a290c0,0x143eeba,0x0af51f8,0x1dcca2f,0x0ffeef9,0x0914568,
  44540. 0x07f0908,0x1031a50,0x073088f,0x006f0a1,0x12f10fb,0x07d78e8,
  44541. 0x1415bd7,0x137667d,0x109b16c,0x0a1960f,0x014e2f3 },
  44542. { 0x016946b,0x0950821,0x04b5523,0x0ef497b,0x0e801f0,0x14a8b03,
  44543. 0x1428d0d,0x192b32d,0x163a197,0x18dae17,0x1ddf243,0x189e0c3,
  44544. 0x0279da3,0x09ffbd9,0x07358d2,0x0247e38,0x050a234,0x02f30db,
  44545. 0x0a100cf,0x16698be,0x0214826,0x146179a,0x1c62e43,0x100dd8a,
  44546. 0x15620ae,0x0da52f9,0x178c92a,0x05f5c68,0x13cb51a,0x1caf45a,
  44547. 0x1e2302e,0x1f32cae,0x14f6ac2,0x0f79964,0x01f5ae7,0x0e0fd8c,
  44548. 0x10ed8f2,0x1f8edd6,0x0793d8e,0x005b96c,0x058537e } },
  44549. /* 60 */
  44550. { { 0x0f80ba2,0x0583232,0x116c7d9,0x0e0ab34,0x08e055e,0x1a5b1a7,
  44551. 0x0acd3c7,0x105864c,0x1de8c84,0x1a7beaf,0x11e02bb,0x1d41861,
  44552. 0x139d55d,0x07d0f34,0x102bee7,0x186962e,0x0667460,0x1167f35,
  44553. 0x061f07b,0x12b2822,0x0d94f66,0x1bafcba,0x04e0bc9,0x08a93d6,
  44554. 0x0ace400,0x0810e50,0x1eeaf7b,0x1048967,0x1653eaf,0x0683271,
  44555. 0x00f0dbd,0x18ab8bf,0x0b9f0dc,0x1e74875,0x13beb3a,0x0bb2773,
  44556. 0x1906142,0x12c7390,0x05c3459,0x0bf05af,0x0485783 },
  44557. { 0x0576210,0x092de69,0x110f735,0x0faa36a,0x1f378aa,0x0c1cca4,
  44558. 0x0fc5c6f,0x043fd2f,0x1f38ac6,0x18687b1,0x1023324,0x182f030,
  44559. 0x16af8f2,0x1307a9f,0x04b21f8,0x0ebc84d,0x007db0a,0x187722a,
  44560. 0x1f6c6cd,0x08f5cbf,0x044b0ec,0x0e3d535,0x1da44a7,0x0816eba,
  44561. 0x132b22e,0x1bbdb7c,0x0257bce,0x00cec9a,0x1c63e8e,0x03fab45,
  44562. 0x100a3f5,0x1380029,0x1810494,0x0aec768,0x0ff75e6,0x1f21c5a,
  44563. 0x0c2a85a,0x1cd02eb,0x0c4a3ac,0x17b443e,0x06c0277 } },
  44564. /* 61 */
  44565. { { 0x109e7ef,0x1b8435a,0x1e47906,0x167aff3,0x0842ec7,0x135c45c,
  44566. 0x17e5154,0x1579a50,0x0051dd0,0x1227032,0x1c73adb,0x1820ee9,
  44567. 0x1b90198,0x091f330,0x12afa60,0x08fb2dd,0x13632f6,0x1224088,
  44568. 0x1b14abb,0x10568a4,0x09d51dd,0x1fc9cee,0x1594241,0x1a8ab7f,
  44569. 0x0eef2fc,0x0be5eaf,0x1634b97,0x102b49b,0x1c9f2a7,0x1649445,
  44570. 0x0896b53,0x0af4766,0x0f10d0b,0x0e5ede3,0x079c82e,0x11d1a18,
  44571. 0x1b774ee,0x05838d4,0x13e3d68,0x135e45f,0x03067bc },
  44572. { 0x1ca9326,0x0c4f95b,0x1d8f839,0x1b62449,0x17a106f,0x1d2bde8,
  44573. 0x11485d1,0x05d646a,0x162b088,0x10a4c16,0x07ff3c9,0x0a88872,
  44574. 0x0d7f3af,0x1427220,0x0a8cdee,0x160e235,0x1b0941b,0x014751b,
  44575. 0x1929fd5,0x0fb9685,0x15fba95,0x160d356,0x19ead98,0x186d441,
  44576. 0x1e381f7,0x1b5e89a,0x126ea82,0x05cf301,0x04671f4,0x01864a7,
  44577. 0x18d08dc,0x1161245,0x0cc63ff,0x12c4f92,0x09e5116,0x19a21aa,
  44578. 0x0870ff6,0x0ce98b5,0x10656ee,0x195532d,0x0390c83 } },
  44579. /* 62 */
  44580. { { 0x1c4a73f,0x1fd417f,0x0c0d434,0x0a77aa6,0x0665d63,0x05dbbe9,
  44581. 0x1be2899,0x1090140,0x022d73d,0x0e02537,0x0ee2aa0,0x1fea064,
  44582. 0x1a2409c,0x062626a,0x173885e,0x1383263,0x00e0c0f,0x01ba554,
  44583. 0x0061aee,0x0b470e0,0x087f0b2,0x085578a,0x142dde8,0x0931bc3,
  44584. 0x19ad5ab,0x08b0af9,0x186a830,0x05c65b4,0x025ce89,0x1edecb7,
  44585. 0x1448a38,0x0bd0c8d,0x17c88dc,0x18e345a,0x059099e,0x0ace562,
  44586. 0x000bdec,0x06c03fb,0x15ce974,0x0fa447c,0x03ea400 },
  44587. { 0x195d0a3,0x0f5e852,0x0ed35db,0x175fe16,0x06bd76c,0x0dedcbd,
  44588. 0x0553e6c,0x0e37e58,0x04c714c,0x158cd5a,0x0bd98d8,0x0772443,
  44589. 0x16c9bf3,0x064a0f7,0x161f126,0x01eda47,0x0c3d79f,0x092ac02,
  44590. 0x09eb2f0,0x14200a5,0x08af6f1,0x0caa829,0x176ade7,0x1a2c426,
  44591. 0x1a6f0c8,0x014febb,0x1779784,0x00a116d,0x1da12b4,0x00797ca,
  44592. 0x087656b,0x0eb1517,0x060af71,0x0647dc4,0x120dc58,0x0816329,
  44593. 0x0e004d3,0x0736406,0x0aa8290,0x02ed629,0x009f82a } },
  44594. /* 63 */
  44595. { { 0x01366dc,0x1f2c461,0x0be582a,0x1f5eebb,0x129c0a4,0x1c9f6a3,
  44596. 0x07f66b2,0x0e0e0a0,0x087a16d,0x0bf3a27,0x1cd86ee,0x14f531c,
  44597. 0x13a42e0,0x145aa67,0x136bfc8,0x120f035,0x0bbb7bd,0x1f843e6,
  44598. 0x18c9439,0x1e7306c,0x1c09da6,0x175d783,0x19b5a4f,0x175e2ae,
  44599. 0x0f4c38c,0x0e83cdd,0x1f7f2a6,0x15309c0,0x0d8dab5,0x1923f93,
  44600. 0x1e6ad34,0x0fd746d,0x10be701,0x0e90b26,0x19943a3,0x066f773,
  44601. 0x131c4f0,0x1527122,0x16169ca,0x1096ea7,0x077d1e9 },
  44602. { 0x0e62367,0x1991cec,0x13c764d,0x1773041,0x1361848,0x0e4be21,
  44603. 0x18d116a,0x1f8018f,0x014f960,0x10764d7,0x11d2d66,0x019ee80,
  44604. 0x15cf41f,0x167032e,0x1bb7a3f,0x10c214b,0x04e9e80,0x0d8ef2d,
  44605. 0x1833dd7,0x0895c95,0x0d0b17c,0x11b58a4,0x0be958c,0x13fe5b8,
  44606. 0x0740fd2,0x097327d,0x0a232c8,0x0c0bd71,0x063016c,0x18d6b54,
  44607. 0x05fcb1d,0x0c0f698,0x16112e7,0x04bc2b6,0x101d035,0x0bfd21d,
  44608. 0x0256e0e,0x0df0c5f,0x0b6c166,0x1d994a9,0x04e6eab } },
  44609. /* 64 */
  44610. { { 0x199cfe6,0x191e9fd,0x05e2540,0x0d92668,0x1b09bc2,0x1efdb7b,
  44611. 0x07905f2,0x0c0c822,0x089a757,0x08a0ba2,0x0672c24,0x1bf2212,
  44612. 0x0f4c633,0x1cb5fe9,0x17f1f1c,0x0c5b6e2,0x1128cab,0x04650ca,
  44613. 0x16e06ab,0x0e48e69,0x054a306,0x15da626,0x199e891,0x0452c8d,
  44614. 0x0a0fabf,0x0b86bbf,0x07e96d7,0x17da2be,0x1192f35,0x16d2e17,
  44615. 0x0b695a1,0x0fecd21,0x0cac72a,0x085beef,0x0a8b2a9,0x1e1895e,
  44616. 0x0049ad2,0x0318e0b,0x1c15bd1,0x12c09d9,0x0325d27 },
  44617. { 0x048c144,0x0fdaaa4,0x1ccbb84,0x0b6d4f5,0x0e06292,0x0f07cd2,
  44618. 0x1a384da,0x03c24b6,0x0ca53b2,0x0cded73,0x03a86eb,0x00b85d3,
  44619. 0x15f50d6,0x0f97d1c,0x0e7854e,0x065eb7b,0x12de915,0x1a2b871,
  44620. 0x1a89435,0x0d315c8,0x1145810,0x1656cec,0x1ff6551,0x1d2f4bc,
  44621. 0x0772111,0x174d5fb,0x14927e0,0x1453efa,0x11df63c,0x1cd4cc2,
  44622. 0x196a714,0x0e3a1c7,0x184d54b,0x095ab7e,0x1670107,0x15a3c08,
  44623. 0x1d80096,0x19f5b77,0x1e74f3a,0x08dc654,0x019d485 } },
  44624. /* 65 */
  44625. { { 0x140f5e5,0x0f747da,0x145ff86,0x1e09cd1,0x06d2a52,0x1ee438c,
  44626. 0x036c2b6,0x191a464,0x0d03a7f,0x01d6ad4,0x12e45aa,0x078e117,
  44627. 0x0054bf8,0x1728f42,0x084cfa8,0x1bbbe12,0x024cb52,0x1de71c2,
  44628. 0x0418d60,0x0f7c806,0x1176d5c,0x0fa2c71,0x107aee7,0x09b577f,
  44629. 0x19639bc,0x0d457d8,0x13015c9,0x0c6a1fc,0x01cd243,0x031a427,
  44630. 0x17ab128,0x1828b71,0x1f73154,0x0191bd6,0x167acd2,0x00154db,
  44631. 0x0bff272,0x1a2e1ee,0x14ec28c,0x0d969c8,0x01b3ace },
  44632. { 0x0a8bdc5,0x1f2f4c8,0x02240d0,0x1ac60d4,0x0203bf9,0x0429075,
  44633. 0x068d639,0x00d3091,0x0de7d1d,0x08bef5f,0x0574fef,0x0daebef,
  44634. 0x1f8fafa,0x1c3d851,0x13ad8c0,0x1d5f549,0x132ffdd,0x1700b35,
  44635. 0x19d9380,0x1c40a8f,0x1304a2f,0x127438f,0x156ae60,0x05d88bc,
  44636. 0x136bb95,0x065515e,0x12a4348,0x1698290,0x1cfb537,0x19c3bad,
  44637. 0x1954c67,0x0d30589,0x0238a4a,0x1490e9a,0x071e840,0x1d4576c,
  44638. 0x1b3ab17,0x030db26,0x0285078,0x07c325e,0x0538ec3 } },
  44639. /* 66 */
  44640. { { 0x19b56cf,0x04b7f50,0x0b3464d,0x08f7733,0x063d77f,0x085440b,
  44641. 0x0bea15f,0x1fb1e09,0x0082835,0x0769ed1,0x0b3b1f3,0x15dabb0,
  44642. 0x057e21f,0x1c004e4,0x05d6e67,0x1460edc,0x11b2d05,0x16ce371,
  44643. 0x0521f60,0x091a950,0x0655969,0x196a37b,0x01baf4f,0x0799893,
  44644. 0x11aa877,0x0534342,0x0a2c590,0x1c441e4,0x020b753,0x11d420d,
  44645. 0x1be7c1b,0x1215814,0x0fffe5e,0x159fd96,0x076a3af,0x13eb536,
  44646. 0x0e08e2c,0x03eccbb,0x1d00496,0x13007d3,0x06fd602 },
  44647. { 0x0b7516a,0x04fc6c7,0x02ad51c,0x097b8b3,0x03058a7,0x1400e74,
  44648. 0x176621f,0x12da469,0x0d17b8a,0x087cec8,0x03daaff,0x093edd2,
  44649. 0x1baa1e5,0x0d3f6aa,0x05bfe01,0x0983249,0x17a6c25,0x086cfb2,
  44650. 0x025895d,0x1d49397,0x07de3cd,0x1816ff9,0x0da168f,0x1178097,
  44651. 0x0e7fddb,0x1581e28,0x1e61c8d,0x009fe1f,0x0d50559,0x0c7edd8,
  44652. 0x141250a,0x1c297d1,0x0b3386d,0x0986b1a,0x1a71f0f,0x12f5a69,
  44653. 0x0159fdd,0x15995ef,0x197007c,0x0798ec3,0x084cfa2 } },
  44654. /* 67 */
  44655. { { 0x199b964,0x008f5c5,0x111c4ef,0x14b1c5f,0x0e280c0,0x04d2a5c,
  44656. 0x0f12753,0x1f50e1f,0x0bf6e20,0x1d19a51,0x0233e8d,0x1a1baf9,
  44657. 0x1aee583,0x17a578e,0x180a6a3,0x1f14c0b,0x0340c2e,0x136aaf1,
  44658. 0x027a6d8,0x0dfbfc4,0x080f61b,0x135dc70,0x0ec76b4,0x125f834,
  44659. 0x1c16293,0x1a72d6d,0x182ab8f,0x05581fc,0x1f4d5b0,0x000d615,
  44660. 0x14a3666,0x18505fd,0x133f93f,0x0d99f91,0x0432d4b,0x0e2db96,
  44661. 0x055752e,0x1c87c26,0x0363827,0x0a39094,0x0287d4c },
  44662. { 0x09867da,0x0c10087,0x13697e9,0x06350e9,0x014589b,0x0f71173,
  44663. 0x09f17ef,0x15000bc,0x1e612bd,0x1abff7a,0x18d7e78,0x1dbe5a6,
  44664. 0x064e0db,0x17892d4,0x0f9c391,0x145cac5,0x0840d94,0x0d04dcc,
  44665. 0x02d7974,0x13342a5,0x08b57eb,0x173a881,0x086e505,0x0da5988,
  44666. 0x17fd7e0,0x0228d89,0x1ffa826,0x1f43ea2,0x0ecbd76,0x14b37fe,
  44667. 0x0f8ee87,0x1065e8a,0x0c89a4a,0x147d0ea,0x0abfb29,0x060f63c,
  44668. 0x0bd395a,0x1da229a,0x0784f43,0x1b9b1df,0x00132a3 } },
  44669. /* 68 */
  44670. { { 0x16374c2,0x03bc2ab,0x010394f,0x0308e4e,0x060526d,0x0650227,
  44671. 0x1b7208a,0x027140c,0x0f1ce13,0x1f0e0d9,0x0c31747,0x10659bd,
  44672. 0x0f2aeec,0x0e5fc13,0x1659a66,0x14b134e,0x081de77,0x0668c47,
  44673. 0x0634495,0x1c1fc02,0x186ae5c,0x0203c85,0x0850aa6,0x158519d,
  44674. 0x1043f39,0x0027147,0x021f796,0x1ddf052,0x19a8c54,0x0d997b1,
  44675. 0x13e0f0c,0x0b10ef2,0x10454a7,0x0d9c8eb,0x154062c,0x0b94c6b,
  44676. 0x11d9c79,0x1f503b1,0x0a8973b,0x0ed6df1,0x013cbee },
  44677. { 0x13f34f3,0x15f07c6,0x1f8de72,0x1946c2f,0x1da9c31,0x0a1350d,
  44678. 0x1b88f76,0x00964db,0x1f29c91,0x0eecb13,0x1b34efa,0x02d3c58,
  44679. 0x16033eb,0x1e5d10c,0x1cfd24b,0x1907914,0x00bb858,0x1c971bf,
  44680. 0x0ecfeed,0x05594c4,0x00a2e4f,0x0f325f0,0x00407ec,0x11ec891,
  44681. 0x1826a94,0x073c8d3,0x1241c98,0x0280cf6,0x0bb8354,0x1528718,
  44682. 0x1bbddd2,0x1933380,0x122ca80,0x04288fc,0x16e42e8,0x00d70c6,
  44683. 0x05fa04f,0x09b5ae1,0x0259efe,0x1b5c05d,0x04e0a1a } },
  44684. /* 69 */
  44685. { { 0x1a29c4d,0x1333845,0x0250032,0x1c45310,0x008240c,0x0ed3a96,
  44686. 0x1299c5b,0x068438b,0x1abbbfa,0x04e0722,0x0a2dc9a,0x0bfa7da,
  44687. 0x141d754,0x0be2b55,0x0884663,0x13acabe,0x1743875,0x0a59ec7,
  44688. 0x1f942e2,0x121bf71,0x1a16934,0x0bf4075,0x0d907d7,0x1596a6f,
  44689. 0x1a5eb79,0x12f3d86,0x1c30757,0x16d6292,0x1a429aa,0x1346d2e,
  44690. 0x0948ce3,0x05eda5e,0x010c437,0x079d3f0,0x1b4994c,0x1844de2,
  44691. 0x0bef08b,0x187bdb6,0x12667be,0x1b33f33,0x0733e30 },
  44692. { 0x02a38f9,0x10ac152,0x1403b3f,0x1c8e616,0x0ec2d58,0x0bb5965,
  44693. 0x1ca9f7a,0x1765dc5,0x1a969c1,0x029ceda,0x136d2bc,0x02d1f9d,
  44694. 0x0231954,0x13d4748,0x1dcd22b,0x0a83fe5,0x1cc3121,0x10eac6b,
  44695. 0x080ab94,0x0b6eb84,0x15a75d2,0x0d7a041,0x17aa659,0x1369c8d,
  44696. 0x16a4152,0x0cd9ff5,0x1ef49eb,0x192ff6d,0x1f900b5,0x0a60130,
  44697. 0x07b61d5,0x009ab63,0x03031d9,0x0cdce5a,0x06e32c8,0x1e67abd,
  44698. 0x1ee00bc,0x01ea491,0x17031e9,0x0736f34,0x056facb } },
  44699. /* 70 */
  44700. { { 0x1018bfa,0x0b2d151,0x0610064,0x093ff5b,0x100c6b2,0x1a0d4d8,
  44701. 0x0c7d954,0x19377e3,0x125dc4c,0x15e8ecb,0x1ff9839,0x1daa57f,
  44702. 0x0b52850,0x1f2a84d,0x1a64b31,0x0b3e249,0x02e4ceb,0x07fb628,
  44703. 0x0a9f452,0x166ae63,0x0a462f0,0x0ef3f1d,0x1a43077,0x0285101,
  44704. 0x09f45d1,0x0eadd76,0x1996f97,0x0eb9fa4,0x0bce134,0x18a70ff,
  44705. 0x0c20eae,0x101285a,0x0ba4829,0x1416435,0x0d74a5f,0x1a3c364,
  44706. 0x10d8218,0x18e6df2,0x1b2eedd,0x0cdb29a,0x0885992 },
  44707. { 0x15ccaf2,0x039480a,0x1cf8221,0x0ef8b6e,0x0679ebc,0x0e8476c,
  44708. 0x0b746cb,0x1b75116,0x087d475,0x1050c07,0x1340aa5,0x0d6ecd2,
  44709. 0x1680fdb,0x1f9fcf4,0x01d6324,0x06d887d,0x0fa4ad8,0x0ded1fb,
  44710. 0x0bece1f,0x018b026,0x000f940,0x0112a81,0x0969e15,0x0dd9e30,
  44711. 0x1c35177,0x0cd154b,0x1959b6d,0x07d7e8d,0x145eda0,0x1140132,
  44712. 0x1111d0e,0x19ee956,0x1169d84,0x19fb4f6,0x0c76232,0x0d75572,
  44713. 0x1825719,0x1749966,0x05c65c2,0x14d4181,0x0797224 } },
  44714. /* 71 */
  44715. { { 0x01f3567,0x091fc22,0x1c758ca,0x105c497,0x011c316,0x138fffe,
  44716. 0x1c9aedd,0x044972e,0x17a5e1a,0x00ba353,0x16d05d8,0x1d4075b,
  44717. 0x0653ddd,0x1facdc2,0x019e8f1,0x0ffeeaf,0x18756cd,0x0580954,
  44718. 0x066ea6a,0x0bfd93e,0x07481bd,0x117c183,0x1d40de6,0x1180ba2,
  44719. 0x1445dab,0x0153bb1,0x0de40fd,0x1afe883,0x03e46d5,0x13a6d48,
  44720. 0x1070045,0x15ba24d,0x11d3c4d,0x0ada00d,0x0ab1851,0x1d44ea5,
  44721. 0x155c356,0x1215342,0x014b136,0x02bb041,0x03ff09c },
  44722. { 0x1cb7784,0x10de77c,0x0c15302,0x184845e,0x0ec539b,0x00a553d,
  44723. 0x1e7f431,0x188be81,0x0ffd42b,0x1d518b6,0x1638574,0x09865e6,
  44724. 0x0242f5a,0x0b713b4,0x0f7367b,0x1d9dc01,0x09ff8a5,0x0834fbc,
  44725. 0x17853d7,0x10031c0,0x0741807,0x09c5a06,0x0aecf92,0x02fee5a,
  44726. 0x08c1d79,0x0862ede,0x13315c5,0x01dd4cc,0x1a8920e,0x062d61f,
  44727. 0x192897b,0x038f2e2,0x021b0f5,0x168b59e,0x0bc98d2,0x151e134,
  44728. 0x18391d9,0x1987e2a,0x0b93239,0x00a9fbf,0x047ef18 } },
  44729. /* 72 */
  44730. { { 0x1a285e4,0x0f9e89e,0x0fd2659,0x147403c,0x1a7d4db,0x10a5685,
  44731. 0x104e984,0x0928e70,0x1223975,0x1dbea9a,0x0c2e4b4,0x1b9eb4e,
  44732. 0x1da53db,0x19968b2,0x0c364ac,0x0fde862,0x14182f9,0x1225142,
  44733. 0x137386d,0x0444388,0x0ec9bf6,0x0c3f150,0x0ee84e1,0x1f5b331,
  44734. 0x12c8dcb,0x02599f9,0x1ed7fb5,0x013cbe7,0x0217bb4,0x0632e33,
  44735. 0x0a570ca,0x1f9bee3,0x00db69f,0x103c458,0x0886e24,0x1744785,
  44736. 0x1ae6464,0x1594731,0x02187e2,0x13971bc,0x01a6b6e },
  44737. { 0x0af77aa,0x1615b03,0x0196bdb,0x1b510fe,0x0e60f5c,0x04c62b1,
  44738. 0x050027d,0x0970fa4,0x1fcbaaf,0x1acadac,0x0ae1576,0x05424e3,
  44739. 0x0c0fb59,0x0a1a4d8,0x1384397,0x1193941,0x1d8887d,0x1ceb0c3,
  44740. 0x152f5b6,0x1d2bf22,0x099903e,0x09ae836,0x03f94c8,0x0d4c9a1,
  44741. 0x1bc30fb,0x1b07a53,0x159a932,0x1a455e1,0x17367c3,0x1677ae9,
  44742. 0x1545a54,0x132fb1c,0x10ea734,0x1996837,0x1c3dcc5,0x05688f8,
  44743. 0x09cb394,0x15981a5,0x03f4002,0x10050a2,0x079dd01 } },
  44744. /* 73 */
  44745. { { 0x0c7424e,0x0019d1d,0x1340138,0x10c1fb4,0x1b06b68,0x1bb97de,
  44746. 0x05d9af2,0x14846d5,0x1f297cd,0x0a54715,0x04f1b8a,0x170bb60,
  44747. 0x0d4b0aa,0x0391d1d,0x0abb262,0x094d67a,0x0cd13c8,0x1065719,
  44748. 0x03b05a7,0x111ebce,0x0262218,0x1ea1544,0x1ce58ce,0x0c1b370,
  44749. 0x0792e7b,0x1f0b456,0x0841da7,0x13e56e4,0x0bed348,0x07f3692,
  44750. 0x0aa3cff,0x147d649,0x15efb88,0x03835e9,0x08fd213,0x1bbbd9f,
  44751. 0x129ece0,0x008cd4c,0x150d9f3,0x08b1a80,0x087e5ad },
  44752. { 0x11000a7,0x0d54ebe,0x00ceea6,0x195d047,0x0b94aff,0x1c1ee2c,
  44753. 0x058a37e,0x11b9045,0x1845a41,0x1acff08,0x05c150b,0x01f0ba8,
  44754. 0x01a8b97,0x195b8ac,0x0630995,0x1ba2f12,0x17dc0d1,0x07277a3,
  44755. 0x0beb5f0,0x1699e67,0x0a5bb50,0x1c80c38,0x086eba9,0x07450d0,
  44756. 0x087f9bb,0x0e6e3b8,0x1849296,0x10aea63,0x1432397,0x0137abf,
  44757. 0x12bb5d3,0x002c992,0x1f5ae25,0x05fba6a,0x1f8bc25,0x04cc116,
  44758. 0x1dceea3,0x06dadd7,0x10117d3,0x0333219,0x00b7125 } },
  44759. /* 74 */
  44760. { { 0x0d5c64d,0x08650c4,0x14d168a,0x134e924,0x0596d74,0x0074928,
  44761. 0x034f4a8,0x0d74096,0x0caf7b6,0x0166816,0x17b60c2,0x0185d9b,
  44762. 0x0e912b5,0x1f98b23,0x0f3a77b,0x1ff2b02,0x0c7c75f,0x0b15738,
  44763. 0x18a9185,0x10a5c0f,0x0fd16f6,0x0801c02,0x0c83f5f,0x031d1b2,
  44764. 0x0a4dd82,0x0ebd8d1,0x0ebf191,0x12314df,0x19fdbe4,0x07d0f46,
  44765. 0x1bbec20,0x088e16d,0x1d4d08a,0x1a77b99,0x01ddb65,0x05a5744,
  44766. 0x09dae5d,0x05cad3b,0x165b63b,0x074fad2,0x07a3f42 },
  44767. { 0x0929387,0x096534d,0x1ffcd8b,0x0396383,0x0bdb758,0x08db65d,
  44768. 0x1b27df9,0x03fb125,0x03a4e13,0x146c319,0x01d587b,0x07e2b7b,
  44769. 0x124680e,0x0a73f39,0x0965f87,0x1fdfdc7,0x17c5581,0x19e6395,
  44770. 0x0a32b82,0x0eff159,0x14aff3e,0x0e2f17e,0x1f31f5f,0x06ab6f3,
  44771. 0x0455221,0x0bbee9d,0x0a8b01c,0x08d649e,0x09621f5,0x0996834,
  44772. 0x0f9056d,0x07ef02c,0x1e9af51,0x1f69095,0x0e6ccf5,0x064fac7,
  44773. 0x1680294,0x00cf794,0x1ebd2ac,0x0aa2c47,0x02da5fc } },
  44774. /* 75 */
  44775. { { 0x0a5c600,0x14e79e4,0x19f1890,0x047fc67,0x07a80c2,0x0beee5d,
  44776. 0x09d0029,0x0e93ffb,0x1925b0c,0x0d70ab6,0x003ac34,0x07f2d62,
  44777. 0x01097a4,0x17ca1e4,0x07a5173,0x19e482d,0x0e51128,0x1d0fb9a,
  44778. 0x067c04c,0x10f8948,0x0024043,0x0580822,0x1001e1a,0x06b39e5,
  44779. 0x16abf90,0x071f2a0,0x191e355,0x138edfd,0x02173ef,0x0ed3215,
  44780. 0x1059886,0x13fc602,0x1e03156,0x1923f30,0x138e4fb,0x0541feb,
  44781. 0x072b659,0x0bc95d0,0x1534e04,0x032e190,0x0855f02 },
  44782. { 0x07314c4,0x1fdb642,0x05a987e,0x0bd68b7,0x1790615,0x1157d64,
  44783. 0x18519ae,0x102e205,0x1ab9497,0x0a8fcba,0x0313fbb,0x162f822,
  44784. 0x079d2f5,0x17fabb3,0x12339c2,0x089cef5,0x0216eb2,0x1f39b35,
  44785. 0x1471971,0x1779d8a,0x19dedd1,0x0570d42,0x0d49418,0x14fa5cf,
  44786. 0x081748b,0x0623d02,0x06ae3aa,0x03458a8,0x1ff078e,0x1261b7e,
  44787. 0x011b9e0,0x0290e96,0x1b49fc7,0x0fb99bc,0x0dfc1ac,0x1e455c6,
  44788. 0x0f8fe6c,0x1a90c93,0x01e5c70,0x19ea4ba,0x0292236 } },
  44789. /* 76 */
  44790. { { 0x18b29dc,0x06c053e,0x122b36e,0x0811d4c,0x117a202,0x095f48e,
  44791. 0x0b17aba,0x178fb62,0x0fda72f,0x19a3e8c,0x1831bc7,0x16813ce,
  44792. 0x1111374,0x0c71c6c,0x187a3c7,0x183e8e6,0x09d739a,0x13b8a5f,
  44793. 0x137d713,0x12e0396,0x0ae1c1f,0x0c37b96,0x1644e3b,0x1a30189,
  44794. 0x1e1f76a,0x1ce0e3f,0x1a78b6f,0x11830b7,0x10c44df,0x1934be3,
  44795. 0x17e0d76,0x161a2b6,0x197cfea,0x12a2f7c,0x1169879,0x1ca2028,
  44796. 0x05184e5,0x1834421,0x19ea85a,0x0b2ea43,0x07cfac3 },
  44797. { 0x00bc53a,0x010b39e,0x0d9e046,0x06fcea2,0x04b5ede,0x12bd0c4,
  44798. 0x157f68d,0x1307944,0x0ba1fdd,0x0b55dfa,0x09df602,0x0d3f8bb,
  44799. 0x059ce83,0x1559a16,0x1ee6b9e,0x0b3e3e4,0x1d69720,0x083648d,
  44800. 0x053b3fa,0x1b56612,0x1f12ee0,0x1dc9fa9,0x0ed91fe,0x14afc1d,
  44801. 0x18a7aff,0x1039861,0x1e7cab5,0x02fa0dd,0x19dcc95,0x06c3ddc,
  44802. 0x08525ca,0x088c101,0x0034af1,0x0e0bed8,0x10fc4ae,0x0199021,
  44803. 0x172a22a,0x12f8a7b,0x00af5c8,0x0fe3bbf,0x06ce3dc } },
  44804. /* 77 */
  44805. { { 0x0397830,0x06c1ad2,0x0c1b01f,0x19e8e66,0x0dd9290,0x0c4f462,
  44806. 0x14ea0a6,0x0a5ba6b,0x1563d81,0x0c812ac,0x17986de,0x1223d0f,
  44807. 0x1cf278d,0x081271a,0x1cd031c,0x01cb338,0x0614a0d,0x096a222,
  44808. 0x0c989a8,0x0ec11fe,0x1aa963e,0x14e264d,0x189e8df,0x1fffa4a,
  44809. 0x0dc5176,0x0e6862b,0x033bca8,0x16dbdf9,0x0559d9c,0x06ab77e,
  44810. 0x04b2f30,0x008396d,0x05f3fc5,0x10f04f2,0x08e7945,0x199a0b8,
  44811. 0x1c3b559,0x198f74a,0x085b4a9,0x04547a1,0x0851511 },
  44812. { 0x0ff19e2,0x0819ac3,0x180de0b,0x143b450,0x02c60da,0x1e3f76e,
  44813. 0x033f955,0x16165cf,0x01bc4e8,0x07b7cc2,0x0d719ea,0x16967be,
  44814. 0x0acc1f9,0x03b2231,0x184d80d,0x1c1612d,0x1977c7a,0x15fc885,
  44815. 0x050d655,0x0fe60aa,0x0ae527c,0x0e7b18f,0x10536c5,0x0d36699,
  44816. 0x161427e,0x1f9528e,0x057f04b,0x1d9050a,0x087162d,0x1709fdc,
  44817. 0x0f7f33a,0x1bc2911,0x0332ac1,0x1f3a66d,0x1388bb8,0x194406e,
  44818. 0x10ae069,0x1f50d0f,0x1b01165,0x1e4ef7b,0x08b1159 } },
  44819. /* 78 */
  44820. { { 0x1961d30,0x18d2217,0x123d2bd,0x10f58e4,0x1df968a,0x148366d,
  44821. 0x1e1f2c6,0x04ba65b,0x004abf9,0x0608713,0x0135300,0x0eb373e,
  44822. 0x1ab8711,0x09cb82e,0x1553982,0x0109201,0x033c9f8,0x0fbac3a,
  44823. 0x09e88dd,0x1575bcd,0x17ac2e9,0x1c4a560,0x159db51,0x005b338,
  44824. 0x0525bc2,0x19ea650,0x16afeb9,0x0b71795,0x05991b9,0x169c1a0,
  44825. 0x10c8dc7,0x08b1533,0x169e47a,0x0643315,0x0c60ade,0x18f9581,
  44826. 0x00232c7,0x1553cdf,0x1d165b3,0x066b11e,0x00bd864 },
  44827. { 0x0734189,0x0d45a3f,0x085f7a8,0x119fcbf,0x12c5ac8,0x01bb322,
  44828. 0x1353845,0x0a08894,0x0af9e97,0x1291184,0x11acef0,0x0187a61,
  44829. 0x1778b1d,0x0636fa3,0x16b97c1,0x11bae5d,0x19a2ee8,0x029898e,
  44830. 0x1324f8d,0x0701dd5,0x0e8ec4e,0x16546d8,0x15266c6,0x0ba93af,
  44831. 0x08c167f,0x06bbb9a,0x1c555b3,0x12cc64a,0x11d13dc,0x0746130,
  44832. 0x1319738,0x16b45fb,0x095fe66,0x07d5096,0x00ca196,0x104cd31,
  44833. 0x11c32c9,0x03e8fa1,0x0641f6a,0x131f9b2,0x0466505 } },
  44834. /* 79 */
  44835. { { 0x14a5efa,0x009e635,0x099531b,0x163a0f6,0x0481989,0x0e34e06,
  44836. 0x19b3a2f,0x1a82172,0x02c2531,0x0a67d51,0x028403d,0x101195a,
  44837. 0x09cb5f1,0x172ed22,0x0d494e3,0x107997d,0x085bedd,0x0531200,
  44838. 0x189571e,0x05b59fa,0x058fe79,0x0310310,0x020dc64,0x02cb183,
  44839. 0x15e83ed,0x0a14b30,0x1df4a35,0x16a9364,0x175df34,0x13edc1d,
  44840. 0x10babc4,0x02ff772,0x160df6d,0x1e49827,0x076fdbd,0x1fa10c6,
  44841. 0x0018789,0x01c7cc3,0x0a0305f,0x0957352,0x00c4357 },
  44842. { 0x120cad0,0x199260e,0x0229dba,0x1318c22,0x10decb0,0x0369b6c,
  44843. 0x14e71bc,0x12f4dd3,0x0bc0da1,0x06cbc5d,0x0b1739b,0x0380a0f,
  44844. 0x155948b,0x02a4bf5,0x151c593,0x029c657,0x00f4d59,0x0154e26,
  44845. 0x1d67c0f,0x18a08d4,0x047e772,0x0534d64,0x19f5cca,0x0916661,
  44846. 0x17d0c30,0x167546a,0x0103dee,0x0c0069c,0x1f1790e,0x08c9d42,
  44847. 0x0da08f6,0x0b90b2e,0x0e9b66c,0x1081153,0x11e99e7,0x0845945,
  44848. 0x09023fa,0x13d0ce0,0x156e403,0x1e24e4d,0x0324999 } },
  44849. /* 80 */
  44850. { { 0x0834915,0x1576b3e,0x193599f,0x1578bd6,0x1f77aa6,0x0b1008c,
  44851. 0x0f2d897,0x184e53d,0x0699fd9,0x1771279,0x153db02,0x10e8571,
  44852. 0x16e1eb5,0x0a64bb6,0x049c430,0x1d4cafe,0x135f6d9,0x0489c81,
  44853. 0x1ad4019,0x16e0920,0x0e4f668,0x07043b7,0x1965a68,0x13b26c0,
  44854. 0x1bf3f2f,0x1e77c80,0x06d2678,0x16350ca,0x1bcaaaf,0x09fdf96,
  44855. 0x0da02e5,0x12e760d,0x12cc566,0x1b63218,0x070cebc,0x0a6a69b,
  44856. 0x10ffd81,0x031d290,0x0ae4791,0x097e318,0x057ea2b },
  44857. { 0x0a0f2f2,0x0f0b145,0x12a803d,0x0a1c8d7,0x0c7e75c,0x116216c,
  44858. 0x11e6a92,0x0052f56,0x014baa2,0x0798475,0x0f30bad,0x1a28d28,
  44859. 0x04a901b,0x176ac40,0x0497fbb,0x01ef976,0x0f99d18,0x0328164,
  44860. 0x1603187,0x0a72322,0x1ee3e53,0x1493880,0x1f89e01,0x14e4e2e,
  44861. 0x040a1fa,0x0a9bd05,0x0931d6c,0x05db9c0,0x0f1c223,0x1305a9c,
  44862. 0x0bb688d,0x17c60fa,0x1511e98,0x1705a26,0x19026eb,0x0e484ed,
  44863. 0x1ff1f30,0x061c93b,0x0d7269e,0x08dd4f2,0x060480b } },
  44864. /* 81 */
  44865. { { 0x072ece3,0x03eb31c,0x03e0c42,0x1b2ab6e,0x1f29be7,0x1caddc2,
  44866. 0x13f1e73,0x0436a16,0x1dbffa6,0x171dac6,0x0ae976e,0x0501c04,
  44867. 0x1c0e61d,0x00c0a24,0x0b9445d,0x0a90af1,0x040cf55,0x1058994,
  44868. 0x03382c3,0x1da36d7,0x1e3d800,0x0abc6ae,0x0d77ff7,0x14ad68e,
  44869. 0x0237469,0x173fbf2,0x0636442,0x0bc646d,0x13c7c7d,0x0950318,
  44870. 0x196dbfd,0x1525bd3,0x02fe20d,0x0885dad,0x1f4f448,0x0683668,
  44871. 0x00c16f2,0x082f6da,0x0233316,0x1a7351f,0x00774a0 },
  44872. { 0x1b6c106,0x0c0d5f1,0x02dceb8,0x1f1bc2a,0x0ebe163,0x1aa41b2,
  44873. 0x0e0bdbc,0x02d9eeb,0x13ac7ac,0x1069031,0x1c8abea,0x0cd0522,
  44874. 0x135c680,0x08aa2aa,0x0507984,0x1c7eee7,0x038bf5d,0x10b893f,
  44875. 0x0bed076,0x1fbe063,0x066332c,0x08c3de4,0x11a24f2,0x0593933,
  44876. 0x06744a6,0x0a3ba82,0x1658b06,0x0d0cdc5,0x0cdf4c9,0x046f9bc,
  44877. 0x0c9227b,0x0680ff4,0x060709b,0x148689d,0x0565544,0x07a6fa4,
  44878. 0x1ab9227,0x11e981d,0x0052e58,0x0a84864,0x0081519 } },
  44879. /* 82 */
  44880. { { 0x17b2108,0x1b6c4fd,0x06abe48,0x195aebf,0x1ecc83c,0x10ed089,
  44881. 0x0ac56d3,0x0c5ef8e,0x10315c3,0x0957577,0x0bf8fd5,0x01dbe4e,
  44882. 0x0811e14,0x03c21f7,0x15e6fda,0x164b733,0x0fd1d9b,0x06735aa,
  44883. 0x0c6eb5d,0x161c42b,0x090db20,0x07adc26,0x1528085,0x14d9d92,
  44884. 0x1bf52fc,0x1b7a2cd,0x167937d,0x06c7891,0x0cf17ee,0x1c276b2,
  44885. 0x120c117,0x1ec55b4,0x002a167,0x06500c2,0x0fcda9d,0x1a593c3,
  44886. 0x1691c42,0x07cea0f,0x0e1d3a3,0x0f18589,0x05abf21 },
  44887. { 0x1b3bccd,0x1cb35f9,0x12a91dd,0x017c7c1,0x0047e0f,0x1ea8218,
  44888. 0x00ece31,0x1f99707,0x1946fd5,0x1bf1dd7,0x103a1f9,0x0f0bd3d,
  44889. 0x0579baa,0x0450c69,0x0f155f3,0x1f9fdb0,0x1af25be,0x0cdcb72,
  44890. 0x031c6d8,0x0ba2bd3,0x0da14f0,0x0d3bf31,0x0207e64,0x1547042,
  44891. 0x0c781cb,0x1fd8e37,0x1795366,0x0a45ecb,0x0d14307,0x0ab9a27,
  44892. 0x16bd741,0x12b95fb,0x035b31f,0x07adf98,0x1d0d8de,0x128fccf,
  44893. 0x1270b9d,0x0fbe56a,0x1a9200a,0x10e9b22,0x015ad15 } },
  44894. /* 83 */
  44895. { { 0x0588ae4,0x1176755,0x08c8037,0x1146e34,0x152ebc5,0x1182222,
  44896. 0x0a4d1c4,0x05ba01d,0x1e4b183,0x1dfd33e,0x07a10eb,0x06836d1,
  44897. 0x0829216,0x10fa717,0x05aeef5,0x13b8a3f,0x08404c2,0x0caa103,
  44898. 0x08c5ff4,0x1c704e8,0x1162c7f,0x0331a41,0x18282bb,0x000309f,
  44899. 0x194d107,0x0c2fe15,0x0ff87ef,0x0e4332e,0x0743520,0x1558fd8,
  44900. 0x049922d,0x188dca7,0x1bbdaad,0x12b7f91,0x147c03e,0x0c1b71b,
  44901. 0x066725f,0x040af5c,0x0658c41,0x194a5d0,0x03f9c4c },
  44902. { 0x0ce637e,0x1594b99,0x1377fcd,0x1beba4b,0x01a15f2,0x0156cbc,
  44903. 0x014b62c,0x1d2343a,0x0cfbab3,0x12f9dde,0x1badd4b,0x17aec29,
  44904. 0x1a60d2c,0x06ad3c9,0x124610f,0x04289a8,0x175cdba,0x1112167,
  44905. 0x02e65d9,0x0e0bcf1,0x0132a20,0x00763bf,0x19384b3,0x035360a,
  44906. 0x14df6b6,0x1ad58e0,0x11d2096,0x1fb2fe0,0x0312238,0x04109ed,
  44907. 0x0365581,0x09a618e,0x0486727,0x17734ef,0x1c54704,0x1b79571,
  44908. 0x068d893,0x031c5a3,0x15d2d77,0x1ac447e,0x06479da } },
  44909. /* 84 */
  44910. { { 0x05f2b26,0x02279d8,0x1db15a4,0x150173e,0x135a294,0x087b575,
  44911. 0x1f8a10a,0x0ef1073,0x1026a58,0x10e7d91,0x1fe70dd,0x0d6c5cb,
  44912. 0x1676892,0x0588e2b,0x19b3480,0x07dfd75,0x15672a0,0x16e42bb,
  44913. 0x06eb58e,0x1c0e95c,0x199c0ca,0x10eb84e,0x0ff9246,0x003b382,
  44914. 0x1ded665,0x1fbbb62,0x070cabb,0x1b4dd94,0x1683e81,0x0eaae2b,
  44915. 0x11d4212,0x1bf31b0,0x0392e9c,0x0d2b24f,0x00bd936,0x05f5af3,
  44916. 0x037b98b,0x01dedbd,0x0125fdf,0x129e10c,0x01fe09f },
  44917. { 0x048cc63,0x1f5573b,0x1c51269,0x02cf9f4,0x13ea251,0x1fa2ac8,
  44918. 0x048f194,0x10df917,0x181a16e,0x0abb0cd,0x1919d36,0x0096790,
  44919. 0x1a0c7e8,0x0b0b2cc,0x0204d28,0x04651f9,0x1690a65,0x11b3754,
  44920. 0x0f240a7,0x0652c09,0x0d2b415,0x0a57155,0x1be7866,0x0217deb,
  44921. 0x08c527f,0x0304f15,0x1b19efe,0x07b96b0,0x0cc25d7,0x01fd422,
  44922. 0x14fd869,0x0e9d66c,0x14e7eea,0x007816b,0x1c1b749,0x09e66ac,
  44923. 0x1d83bcb,0x03b4a67,0x149abbb,0x10db6c4,0x04de957 } },
  44924. /* 85 */
  44925. { { 0x1eac2f7,0x1e98a9e,0x0a39219,0x156c3b3,0x0084778,0x1bd96ad,
  44926. 0x1be582a,0x0f3e76e,0x0cfdf4f,0x059802b,0x0e3d2c0,0x1c2a635,
  44927. 0x01d0701,0x0e3bce8,0x1e52356,0x0a6e20f,0x0bc8267,0x03e4ca7,
  44928. 0x02eb530,0x09a9dc9,0x1058110,0x1adfe4e,0x1e63382,0x13f5016,
  44929. 0x0898d30,0x157e3e5,0x16b2ccf,0x0489e44,0x0f31750,0x06fe2d9,
  44930. 0x0d3547a,0x149af7c,0x049ba6b,0x015a19f,0x131ef68,0x142ec1e,
  44931. 0x0435275,0x11b53f2,0x06030df,0x117cc6d,0x01c9441 },
  44932. { 0x1dc1414,0x1098984,0x14dd0e8,0x1887926,0x060765f,0x0fbce70,
  44933. 0x081eb7d,0x194dfe6,0x085d4cf,0x18c58fd,0x0656adb,0x0e5cc7d,
  44934. 0x02f5c42,0x1415980,0x0682792,0x0fe2c24,0x11b9714,0x1415b2e,
  44935. 0x029ff89,0x0784184,0x0726499,0x0c7338b,0x067272e,0x1688141,
  44936. 0x0d673fe,0x1e2ad01,0x04946d2,0x1e7f53c,0x1338ea3,0x023a502,
  44937. 0x12dd76f,0x0f613ed,0x0b4044b,0x1a3049e,0x0862010,0x04cecfb,
  44938. 0x098ceac,0x028a110,0x0d6ea5e,0x1656aa4,0x0611bfb } },
  44939. /* 86 */
  44940. { { 0x00ad2a1,0x152af78,0x035ef6e,0x1c29452,0x09efa85,0x158b4a1,
  44941. 0x11da3a4,0x0607694,0x111ec81,0x1888de6,0x149ec99,0x0e05117,
  44942. 0x060e425,0x0cd01e0,0x033ca8f,0x11095e5,0x12df318,0x05dbe46,
  44943. 0x0eabac8,0x1428c5c,0x1d77e2e,0x0221dc2,0x0cd4d60,0x09dd37a,
  44944. 0x0448255,0x0c7c0f7,0x1b9aa86,0x165ddd3,0x0c5944e,0x1402613,
  44945. 0x1f1e96a,0x105562c,0x0ef2da5,0x110d2d0,0x11d80bf,0x1cb4556,
  44946. 0x1370298,0x0e59dc1,0x0aa345a,0x0881d67,0x086e6c5 },
  44947. { 0x1793d9b,0x0199085,0x1b3bb78,0x023bb6b,0x179fade,0x0985b27,
  44948. 0x16a49a2,0x165ee7f,0x1fe4fd1,0x1556cbe,0x1372201,0x163b254,
  44949. 0x15073a5,0x1e4bb6b,0x1e32f62,0x04d8115,0x1b163ce,0x1305a55,
  44950. 0x12c7ec1,0x060153b,0x13d39c8,0x066d4ad,0x0cd6965,0x0fd590e,
  44951. 0x1d7d4b3,0x1558fcb,0x0883bbe,0x07a5d74,0x0828c8a,0x048379f,
  44952. 0x004c963,0x10b56ef,0x032616f,0x05b0be4,0x064a30a,0x1ae4b2e,
  44953. 0x1233b82,0x18cb5e1,0x049b735,0x17233f4,0x083867e } },
  44954. /* 87 */
  44955. { { 0x0474edb,0x1f39f11,0x06b9dd3,0x083509c,0x0a76639,0x16eb719,
  44956. 0x0a6b671,0x0ba4e06,0x114f8bf,0x062520a,0x19ee400,0x146fa44,
  44957. 0x0e3ce2e,0x08e927d,0x1d4c054,0x036f024,0x054263a,0x13e0a6c,
  44958. 0x0b82c81,0x1080363,0x09fc20c,0x0d840fa,0x1cca804,0x138dbf1,
  44959. 0x123fb95,0x0830f40,0x1200387,0x0651b8f,0x059a9aa,0x11bc121,
  44960. 0x0dd61da,0x16fded8,0x1ada8b5,0x0a64f91,0x0dbaa4f,0x1e047ed,
  44961. 0x1fb6389,0x1aa0a6f,0x0ce7a27,0x145cc51,0x04b26bb },
  44962. { 0x1318454,0x18e5a2e,0x12db4c2,0x1fae86d,0x123b749,0x053a308,
  44963. 0x11c995a,0x03c6221,0x11c84fd,0x02ef091,0x00f5572,0x0dcc108,
  44964. 0x18a5f8d,0x0d8fd5f,0x16db84e,0x1b9c072,0x0c33cfe,0x07f36b4,
  44965. 0x12e4444,0x00703f2,0x0eb71d9,0x0096e63,0x1c2a3aa,0x1219457,
  44966. 0x004137e,0x02d2cf4,0x1f22897,0x1d6bf80,0x04663cb,0x129d2ec,
  44967. 0x1f00270,0x12216d4,0x0b15073,0x07c6a80,0x0931042,0x0b0c0fb,
  44968. 0x0b901e6,0x01ece1e,0x057180b,0x18a592c,0x04d697b } },
  44969. /* 88 */
  44970. { { 0x1a8fb40,0x18f7877,0x0273836,0x16b7473,0x09021c5,0x0e8cef9,
  44971. 0x1ec5602,0x1c351ad,0x14c1219,0x1bc3db9,0x1c1789a,0x02d029d,
  44972. 0x026417e,0x07cbcb7,0x04d0b6e,0x0843689,0x05ebf84,0x117c3c5,
  44973. 0x052914d,0x122dafd,0x1693e71,0x11d708c,0x06062ee,0x0d1009d,
  44974. 0x14be957,0x1c57633,0x13e1093,0x144c0e9,0x0ce6ab0,0x1dcea33,
  44975. 0x02f6f24,0x192400f,0x1f15a98,0x078d1d9,0x1434e1c,0x0f3a21f,
  44976. 0x04e785a,0x0920ecf,0x1360298,0x143cd91,0x076ca87 },
  44977. { 0x02e48b7,0x1fdab70,0x07190d5,0x079813d,0x1bd14b1,0x034e787,
  44978. 0x090d490,0x153b6be,0x02c3b01,0x03c0b2e,0x15b6b7e,0x0f89cd2,
  44979. 0x08e549e,0x1deb05b,0x1fa54e2,0x18ca7e5,0x16b059d,0x1ca97c2,
  44980. 0x0ddffa6,0x0c044b6,0x08c4d3f,0x145ff48,0x1a831cc,0x11ebe5a,
  44981. 0x0a2d3bc,0x0286735,0x0c91094,0x0e42688,0x1b3ce5f,0x13351e9,
  44982. 0x0485f84,0x182ceea,0x1b5e43f,0x1c4a53a,0x0188dfe,0x0a2b24e,
  44983. 0x0be3e37,0x1303a99,0x0def854,0x18cdb47,0x027e7f2 } },
  44984. /* 89 */
  44985. { { 0x0a15883,0x1b2d6f3,0x0ccd8e3,0x18cd5fb,0x14a7e68,0x1896f2e,
  44986. 0x0daaf4f,0x020c40f,0x037b878,0x037fca8,0x13db4c7,0x1964c95,
  44987. 0x02c0d44,0x195f3c6,0x0eb1807,0x1301c2c,0x05a1636,0x18e31e6,
  44988. 0x1724d26,0x059fd12,0x12203e9,0x0c20f63,0x1dce383,0x0bf52c2,
  44989. 0x1d7642d,0x074b0b4,0x070f80a,0x154eed8,0x0d54092,0x0b2358b,
  44990. 0x1664f71,0x0e0dbe9,0x0b27fb5,0x035cbd0,0x05c33a7,0x013d322,
  44991. 0x13c85f4,0x07215f2,0x194a3aa,0x06f0648,0x002e964 },
  44992. { 0x078ea1f,0x0056ed7,0x1a5a455,0x1af6ce1,0x11a1b74,0x0034132,
  44993. 0x19107dc,0x18ff326,0x07d7520,0x1cbeb75,0x184b863,0x1404d39,
  44994. 0x020faa6,0x1c9041a,0x042b2a1,0x0886c4b,0x0637561,0x1bd241c,
  44995. 0x0e05023,0x0c293de,0x140607c,0x026bc29,0x1ccefd6,0x1776dee,
  44996. 0x1b0109a,0x04d43b0,0x1fd4a28,0x09d6493,0x00ae3ce,0x0f6c170,
  44997. 0x1e821e0,0x042f1df,0x04c1b25,0x09d3f43,0x0a8a754,0x1f983cc,
  44998. 0x1919062,0x1c5ca70,0x149f7b6,0x1b49e2c,0x0739f53 } },
  44999. /* 90 */
  45000. { { 0x04adc5f,0x1a54449,0x15b5e97,0x0d5031e,0x15646c1,0x0afcaa4,
  45001. 0x044a5de,0x0001d89,0x1d19c54,0x1a43a9e,0x044ad0a,0x06d640b,
  45002. 0x0616fa2,0x143d24a,0x0f597cf,0x1a0ccd6,0x001045f,0x0538ba5,
  45003. 0x0a97850,0x0a06262,0x0623b63,0x0254b5c,0x09e712d,0x16007ab,
  45004. 0x19d659a,0x18d3d19,0x18e09bc,0x0e5e618,0x1090cdc,0x1c8637b,
  45005. 0x092d39c,0x120dd7c,0x1ac6c36,0x0282d2c,0x01b6ee9,0x14734fe,
  45006. 0x058c413,0x0cc8f0e,0x03a120e,0x1ff441c,0x0020c23 },
  45007. { 0x1c74661,0x1256d57,0x0194483,0x064eff8,0x17bbcf6,0x0e73cc9,
  45008. 0x073dadb,0x1428209,0x17b161b,0x1c6b5a9,0x043ec96,0x086352c,
  45009. 0x0922218,0x0feef3b,0x07b2747,0x00c61bd,0x04d42d8,0x1e995fd,
  45010. 0x09137d2,0x0ae054c,0x0dfb388,0x16a2ac9,0x137b747,0x09c0371,
  45011. 0x1f45bfb,0x0d8070e,0x0a1b885,0x1e97bda,0x137e6a8,0x0a43b54,
  45012. 0x08e024d,0x10261ee,0x15278ba,0x010fc20,0x1a48e2a,0x158db88,
  45013. 0x1d8b4f8,0x03d88cf,0x073bc88,0x0a7f24d,0x076e7bf } },
  45014. /* 91 */
  45015. { { 0x1ebd187,0x1421413,0x16ed7c4,0x176cb55,0x0d3320a,0x12c34ac,
  45016. 0x1d969c8,0x1576084,0x18f0986,0x11f99fc,0x1fd40f6,0x0f4f5d7,
  45017. 0x0541180,0x012fb8d,0x11ddb2a,0x1e4964b,0x1edff7d,0x0606f3d,
  45018. 0x197c7ed,0x161e842,0x1ae3da8,0x1bb98f9,0x17cffdc,0x07c14a4,
  45019. 0x1d7e719,0x1232668,0x0edacee,0x1bf0954,0x1f37828,0x1c4bd50,
  45020. 0x11eea12,0x1cee675,0x07960cc,0x00d10b7,0x1aad426,0x1a9a8da,
  45021. 0x1cbb80e,0x009612b,0x1bc247b,0x04e572d,0x079e7ad },
  45022. { 0x130caae,0x0b86e47,0x1bd0f36,0x0214dd7,0x05cabcf,0x0a30b6c,
  45023. 0x018fb1c,0x130c783,0x1519e3a,0x0286d85,0x0c4f587,0x12c6c99,
  45024. 0x09f39b8,0x112a3db,0x19f607c,0x16199be,0x1b9d67d,0x1b8abd5,
  45025. 0x025246d,0x144b751,0x00dcccc,0x1e3d13f,0x1da2481,0x1a86503,
  45026. 0x08fbe0f,0x0049a57,0x0d5c83b,0x0bb23ee,0x1d7beda,0x0c84e6f,
  45027. 0x0cacbd8,0x094073c,0x0c10232,0x0c7ee0f,0x197b6c3,0x1ba787a,
  45028. 0x0fe5005,0x048b642,0x1aa50cb,0x1589817,0x07f8c37 } },
  45029. /* 92 */
  45030. { { 0x1ac05e5,0x00f2a21,0x0094cfb,0x099b1a7,0x1a4a4da,0x1fcf15e,
  45031. 0x0302e22,0x1b90db1,0x0b53811,0x06b8ee8,0x0eae90d,0x01a5478,
  45032. 0x1e65504,0x1b0b08d,0x1102526,0x09f4057,0x06e279a,0x18e16a1,
  45033. 0x0c196b0,0x14b5447,0x0890535,0x17e2975,0x16aa28c,0x1bb5a45,
  45034. 0x1eca79f,0x137ad2e,0x14aacec,0x023e0bf,0x1cd81e9,0x13edf9b,
  45035. 0x03176b3,0x121a2d7,0x00e44e7,0x0c4a707,0x0bb793d,0x1e2bcd1,
  45036. 0x1c92a74,0x1024ccf,0x1f0bebf,0x1552e1c,0x01d7703 },
  45037. { 0x10062a9,0x0640e9f,0x02eaa29,0x11b2d44,0x031eb2b,0x05e880f,
  45038. 0x0637e19,0x028cdbb,0x04413b6,0x102fac9,0x1557e2e,0x141bd34,
  45039. 0x1151a67,0x1725a96,0x10bc25c,0x1564759,0x0ec7184,0x1d5aed5,
  45040. 0x11fda46,0x11687cf,0x07f4ce0,0x05bb621,0x148394c,0x047d7b8,
  45041. 0x12069e4,0x0673e9a,0x00d37c5,0x16bc73d,0x0305ac6,0x194aa23,
  45042. 0x104f72f,0x1fc699b,0x02cb2e1,0x1ad7db4,0x1744447,0x13a9588,
  45043. 0x07f296f,0x17b1e6a,0x021c717,0x1d92784,0x00a2c40 } },
  45044. /* 93 */
  45045. { { 0x15747db,0x01c27d7,0x01ac26f,0x0d80d57,0x1bad608,0x1e0aa39,
  45046. 0x020ba79,0x17f480d,0x155977a,0x0a99368,0x077ac0b,0x140bb50,
  45047. 0x11063a9,0x0925b08,0x01b929d,0x1d72135,0x07a4ab2,0x10a017c,
  45048. 0x171802e,0x0e43a9a,0x1dbf7d0,0x14f944f,0x068bf66,0x1bcde0e,
  45049. 0x0e66dec,0x139faee,0x1f6ae7e,0x042e24e,0x074bab6,0x024fb62,
  45050. 0x0cdb4b7,0x0eddda0,0x0017e1f,0x012e9ee,0x170136a,0x0772e2e,
  45051. 0x14b05e4,0x14bf1ea,0x121f9b0,0x08cad93,0x02efb45 },
  45052. { 0x121c064,0x0958045,0x0a7a91c,0x0494e0c,0x1186fe4,0x1a7857e,
  45053. 0x0cd026d,0x052c86b,0x17ec9e6,0x0b2d521,0x183421a,0x0ce7898,
  45054. 0x0adda14,0x1f982bd,0x19599c2,0x0dec016,0x0403ce8,0x13f82f4,
  45055. 0x1100685,0x00e7520,0x007ec05,0x1c14a73,0x05ac798,0x19ee08c,
  45056. 0x0325269,0x09d103c,0x0fa339f,0x1282283,0x17053d2,0x0c69bab,
  45057. 0x0374e2b,0x1954cc6,0x1a68fb3,0x021a86d,0x1fc7a54,0x17d97d5,
  45058. 0x1d2d760,0x08b36a8,0x047927d,0x19c8c51,0x0337532 } },
  45059. /* 94 */
  45060. { { 0x000bb9b,0x08c299d,0x1a14fc4,0x1c8becc,0x0d2ffba,0x1771269,
  45061. 0x06a1752,0x0dd35c2,0x1034185,0x05d0f0d,0x04d27c6,0x02f04e6,
  45062. 0x15a9ac8,0x0a2b8ad,0x0f7f529,0x1a5d582,0x03c5daa,0x1d2fba1,
  45063. 0x0d6dda9,0x090772a,0x1e9b30a,0x127fc39,0x04ba6b6,0x07420ab,
  45064. 0x02d8472,0x0700ab3,0x0e3b6b1,0x126a92f,0x18fa70b,0x020d1ce,
  45065. 0x07d86d9,0x081a2b1,0x141d756,0x02f850a,0x08dfc28,0x10c5328,
  45066. 0x0bb2890,0x05801a3,0x0cafff6,0x0bba99a,0x0192a2b },
  45067. { 0x05ced07,0x1b3141b,0x147d8d5,0x160bbc3,0x029f32f,0x0053d50,
  45068. 0x0e6f2fd,0x08eda2f,0x09bb50a,0x18d9504,0x0989e06,0x1776f2b,
  45069. 0x1b9389a,0x19a7e0c,0x13fd83e,0x10e72a5,0x092387d,0x179d5ca,
  45070. 0x0483335,0x00a7ccd,0x14f0a8f,0x05b1d4d,0x0fbcb75,0x1d04252,
  45071. 0x0ede151,0x1d0cd58,0x0c20e2f,0x1f74181,0x1c11bea,0x13d64ff,
  45072. 0x1e0af56,0x12b9810,0x18bfd95,0x1786302,0x028fe30,0x14d0da9,
  45073. 0x1d9b31b,0x1d5d578,0x109a30c,0x1127781,0x0632e22 } },
  45074. /* 95 */
  45075. { { 0x1a1ccca,0x08e900a,0x0f0c721,0x18fca45,0x0efe290,0x155829a,
  45076. 0x0755463,0x02e16e8,0x1bc85e2,0x132b0cb,0x1e2ca6b,0x083c039,
  45077. 0x18ae131,0x134a423,0x0b2d64d,0x1b15c5c,0x10fc31b,0x075abdd,
  45078. 0x09939e2,0x1debad8,0x0d86dec,0x064e5cb,0x1bea15b,0x12307b4,
  45079. 0x1681327,0x0b516d8,0x00e0f5e,0x007e704,0x0c6fedf,0x0b7f8e8,
  45080. 0x06d6291,0x114d57b,0x1589805,0x0b78c92,0x0b160fe,0x0e673ea,
  45081. 0x1a7e9ea,0x16f6c7e,0x135173d,0x182ba39,0x068c3d9 },
  45082. { 0x0b392b7,0x13132f3,0x14259f8,0x1eeebb2,0x0ec1d9b,0x128a7be,
  45083. 0x0f3535d,0x039c2d5,0x00de72e,0x037acd9,0x1ec0cf6,0x079a35b,
  45084. 0x0ca66e4,0x02f22be,0x0d10d00,0x1b545b6,0x1165681,0x0db3d3c,
  45085. 0x00451cc,0x1cf757e,0x0961c32,0x1769d8f,0x019bf85,0x07a4dcc,
  45086. 0x0298ef6,0x0b6c927,0x01506b7,0x17d41bb,0x02f9719,0x006fccc,
  45087. 0x0b3be54,0x18be0ed,0x0876e63,0x09cb5ae,0x0b96c8f,0x14abc25,
  45088. 0x0ec6747,0x17dd9b1,0x01a9427,0x1dc4665,0x08f2055 } },
  45089. /* 96 */
  45090. { { 0x02c1af0,0x15cf1dc,0x0991292,0x0fe595c,0x1c65e9e,0x0c3ea37,
  45091. 0x0b02980,0x0c69fd5,0x1e393b3,0x1e9f99a,0x0eb3389,0x1801033,
  45092. 0x119c9f7,0x1c55330,0x1d062d6,0x15d2a7e,0x157372a,0x0ffd4a2,
  45093. 0x16ce162,0x1af0091,0x1c1c937,0x0fb78fd,0x144321b,0x1e1419d,
  45094. 0x0bd89a2,0x0f5a457,0x08d9d0e,0x1cbabf4,0x17d2d8a,0x15059f8,
  45095. 0x05040e9,0x0823b31,0x033f68a,0x1b3d179,0x02cc862,0x0cffd9d,
  45096. 0x0319bf0,0x112a079,0x0c8b810,0x192681a,0x01292c8 },
  45097. { 0x186463d,0x1aac381,0x05ffd7a,0x0406e3b,0x14bbc2b,0x00ce2d6,
  45098. 0x115c42e,0x082366c,0x0cf04ad,0x05da16b,0x0e7b043,0x18eccd2,
  45099. 0x075d819,0x100c23f,0x116b04e,0x065c90e,0x1021c72,0x027b825,
  45100. 0x12c15e0,0x1cb1415,0x02952c9,0x19dab0f,0x0548ee2,0x1f3746b,
  45101. 0x0df0079,0x11419c2,0x087aaa5,0x10463f8,0x0a2b907,0x02a7c57,
  45102. 0x18e8bab,0x061a384,0x075ed77,0x1c80040,0x1b57ecc,0x1559689,
  45103. 0x1011293,0x0a35617,0x05d9249,0x057d704,0x07c7876 } },
  45104. /* 97 */
  45105. { { 0x07902b6,0x1eb7d83,0x0602e3d,0x07a2e6b,0x12823a4,0x1a0eeed,
  45106. 0x1ec4965,0x0b80c59,0x14033f9,0x11c8d83,0x026e31b,0x0146d0b,
  45107. 0x123831d,0x0911487,0x11d3525,0x03e75c6,0x0d6222e,0x0a6d58a,
  45108. 0x0fc234e,0x01f9bca,0x08f58f0,0x17383f9,0x156645e,0x11cc0f8,
  45109. 0x0a0ba06,0x0120b35,0x1f5f87e,0x004e27c,0x0a328f6,0x0aa026b,
  45110. 0x0a9f095,0x131219a,0x12e3264,0x0590506,0x0513b28,0x19e440f,
  45111. 0x12f4e09,0x0c6e03a,0x1a07572,0x009b09b,0x0694035 },
  45112. { 0x1407206,0x1d9b372,0x0a33e2d,0x1e1b11f,0x1ecf54c,0x1397378,
  45113. 0x19523dc,0x0d0dfdf,0x081ab44,0x12989b9,0x1d10235,0x1e1c9c8,
  45114. 0x1f52cb5,0x124839b,0x109ace9,0x1a0e33c,0x19b4980,0x192bb60,
  45115. 0x1c9cb2b,0x068c501,0x11c991f,0x07a3479,0x1e39829,0x1089b12,
  45116. 0x0a32990,0x015c3bb,0x12e5456,0x14aae01,0x11adbf8,0x19b28a5,
  45117. 0x1beac6b,0x1f7a687,0x0ebff92,0x00f9a11,0x0c06df6,0x0265f3f,
  45118. 0x1a6b30e,0x0287035,0x0551ab6,0x04f78bf,0x06da9e0 } },
  45119. /* 98 */
  45120. { { 0x09490ce,0x172612e,0x0e0487b,0x061bed0,0x096ec4a,0x149b475,
  45121. 0x01f8292,0x1e7cd8c,0x04bc262,0x0582495,0x10d3ff6,0x04208c1,
  45122. 0x0d0846a,0x146f99e,0x1fde990,0x0ec25ef,0x0442182,0x08862a8,
  45123. 0x126f340,0x0bf9d22,0x13dc9d2,0x06e7e30,0x1c95847,0x1ea39ca,
  45124. 0x17e8897,0x05a8acf,0x053a302,0x1f477e6,0x07538f3,0x108abaf,
  45125. 0x083a855,0x1239080,0x1e0a951,0x1568568,0x02eb3c0,0x1e1a44d,
  45126. 0x058b8e5,0x0635620,0x1644a81,0x17366a2,0x0773b40 },
  45127. { 0x031cfd2,0x1966e1b,0x1ef003f,0x0700ee6,0x14c4c2d,0x0529380,
  45128. 0x185a8ce,0x1bdac00,0x1b32cab,0x0719836,0x0c5f2b4,0x11d54e1,
  45129. 0x0e33673,0x1cf9a9f,0x1d2aa35,0x075a7e5,0x0d9576f,0x03897b5,
  45130. 0x06caf38,0x0f30a51,0x0a30e42,0x06ed496,0x01763e5,0x0925bb2,
  45131. 0x1d475d8,0x05ecc48,0x0934579,0x1c0d4b9,0x0eabbd3,0x0a7592a,
  45132. 0x0f11c97,0x181daa2,0x1394ace,0x1573618,0x0166efe,0x0efc1f3,
  45133. 0x033fd13,0x092aa34,0x13dd770,0x10b8ad8,0x012b463 } },
  45134. /* 99 */
  45135. { { 0x12951de,0x0df5ec9,0x1252043,0x04b54d3,0x16959d4,0x197846c,
  45136. 0x07013b2,0x058bf89,0x02250b8,0x03a7866,0x113876b,0x134a75d,
  45137. 0x0d96a43,0x0824cd6,0x0f2ae6a,0x1675f86,0x06654d9,0x197e66f,
  45138. 0x018eba2,0x1e50b87,0x1f88f4a,0x1f237f5,0x08dccdc,0x1356fda,
  45139. 0x1672c3c,0x1063a8e,0x03f8480,0x038a226,0x13e56ec,0x0017a97,
  45140. 0x006b609,0x1494c95,0x089ab7a,0x0b1f91a,0x198767c,0x0e143f6,
  45141. 0x0e55331,0x034df08,0x1505c5f,0x0bcfb11,0x061c193 },
  45142. { 0x092ae43,0x116cd9a,0x0168b9c,0x0a0a71e,0x1ef89d9,0x0555b18,
  45143. 0x1962080,0x02f5cef,0x0eba4b1,0x0396090,0x1872e0a,0x0590748,
  45144. 0x065c243,0x05c9c79,0x16cd0d3,0x0fb8062,0x0c58c4c,0x082df95,
  45145. 0x05acde3,0x0a03bab,0x0c30d2e,0x0fe5c48,0x0a141b2,0x06c3e19,
  45146. 0x0f4617c,0x1d71e85,0x0168d72,0x03ef6e3,0x1c01382,0x1af8f9f,
  45147. 0x17ef440,0x116491d,0x0628af5,0x0e5703a,0x0741232,0x071ac84,
  45148. 0x0ca1877,0x11ed1c9,0x16e51d7,0x1e4e3a7,0x027ad0d } },
  45149. /* 100 */
  45150. { { 0x05b5aed,0x1ed3c98,0x1a9e78e,0x08b331a,0x0c67d4a,0x1f5b801,
  45151. 0x1874c3d,0x08990ab,0x0147d1c,0x0c53f4f,0x1503b70,0x0c31912,
  45152. 0x003ea99,0x1f35fe9,0x0ef8829,0x0886f4a,0x064ecc1,0x164a43f,
  45153. 0x13be171,0x0f240e6,0x0bd5729,0x18eaf0f,0x1e83539,0x091ad6d,
  45154. 0x0b1e64d,0x06a7ed1,0x159b880,0x10543c0,0x1366a17,0x186d2d2,
  45155. 0x0e0a8f1,0x0348e6e,0x03fbd2b,0x010747f,0x1019ff8,0x0bafdf1,
  45156. 0x0acfb66,0x1437ef7,0x150bfb1,0x04edba2,0x05d9b5e },
  45157. { 0x13e472e,0x1e2d2e5,0x0178d8d,0x0e61428,0x0153d92,0x04c2ac1,
  45158. 0x04b96d1,0x0a20133,0x1f39a08,0x0780666,0x1b15806,0x18236b8,
  45159. 0x0e26237,0x09a1aa0,0x03b5020,0x0630883,0x1f07e7f,0x1ff7be5,
  45160. 0x1d215da,0x1246cd7,0x091aecd,0x0d5e4a6,0x06dd6f8,0x02c44ec,
  45161. 0x178de4a,0x05c470b,0x0f171af,0x0a5cafa,0x171858c,0x0163ad5,
  45162. 0x1e5730e,0x07edc73,0x12c2c28,0x19afe70,0x1bcb589,0x0c98fc1,
  45163. 0x035a599,0x18ef58c,0x11d9b81,0x19b9771,0x024f891 } },
  45164. /* 101 */
  45165. { { 0x178c1e2,0x1b05fb3,0x197093b,0x1a01ab7,0x1f49c03,0x00d04ff,
  45166. 0x061b8bc,0x0b1d823,0x0ae096e,0x0d39452,0x1e61316,0x1db6e0e,
  45167. 0x05aabbc,0x038652d,0x11cef4a,0x01c7bf6,0x0614de3,0x1464946,
  45168. 0x1d9eaf2,0x1cff349,0x09cf3fa,0x15f610d,0x00f0acb,0x1b36bbd,
  45169. 0x10d629c,0x06fd7d3,0x07182c6,0x1bd5d4b,0x09b54ca,0x1bdf202,
  45170. 0x18f57fb,0x0dba621,0x0eebc76,0x190e67e,0x1f8e3d8,0x0aee91d,
  45171. 0x18ee8af,0x0e19588,0x1d84bfa,0x19fa85b,0x0863ac3 },
  45172. { 0x05a2fe2,0x17e53dc,0x171828d,0x11dc853,0x13e70d0,0x0e1ca27,
  45173. 0x0882450,0x0151937,0x067272a,0x0354083,0x02f418c,0x0aabf2d,
  45174. 0x1de69a1,0x0a9e301,0x1bdf91c,0x1c9f570,0x14aef56,0x04b8330,
  45175. 0x01e02d3,0x186d713,0x1263c0d,0x111d0e9,0x10d95ff,0x0aa4592,
  45176. 0x17a8643,0x13c80fc,0x1bb7fbd,0x12312fe,0x0a17a0d,0x18ea36d,
  45177. 0x0f7aef8,0x10b599f,0x1179100,0x1e0ef37,0x18ca3e7,0x19c1b4d,
  45178. 0x01e7142,0x0ea9edf,0x1c96872,0x03d170c,0x03e3f1b } },
  45179. /* 102 */
  45180. { { 0x17fbf05,0x10ae03d,0x020adfa,0x0c3e347,0x192f11b,0x0e68de4,
  45181. 0x1656b47,0x11793bb,0x0ad0f7e,0x0fadbfd,0x1eade4c,0x0bd7f94,
  45182. 0x062936e,0x0cd2adf,0x1d05f70,0x1caa861,0x04343cd,0x18fb7a7,
  45183. 0x0bc112f,0x1ebccb0,0x0408971,0x1221446,0x1cf0ee3,0x00feaea,
  45184. 0x0c59fb8,0x07830d5,0x16062d6,0x0c9dc5b,0x03b0d3a,0x05304bd,
  45185. 0x161bde8,0x0072960,0x185ecc8,0x1a8bec5,0x11d2fec,0x0d340b2,
  45186. 0x079c3f0,0x16acbbd,0x0009626,0x1b0e015,0x081208e },
  45187. { 0x0c4ce37,0x1a84c8a,0x0298424,0x0743549,0x134bb84,0x06ac747,
  45188. 0x1c09160,0x1750c00,0x1b375b8,0x0da1624,0x0f7a0db,0x0a49da7,
  45189. 0x16ac365,0x124919d,0x08786d1,0x128deaa,0x1d564dd,0x15e3e62,
  45190. 0x1ed6dab,0x09606b7,0x01a39c1,0x0c00a36,0x1fc8ae8,0x04429ea,
  45191. 0x0fbbc87,0x1b205b1,0x1ed2485,0x159fafe,0x0d6df13,0x06d0e5a,
  45192. 0x0457fc4,0x0c4c015,0x00e2620,0x08b3fb3,0x0a76076,0x12f58fb,
  45193. 0x16e7a19,0x0713065,0x0cf09ba,0x17101bd,0x044383f } },
  45194. /* 103 */
  45195. { { 0x04f9af6,0x1f80ef2,0x0873841,0x1b1963f,0x16381a4,0x1eea499,
  45196. 0x18fb3ed,0x13fccb7,0x026a883,0x05c21ad,0x1e27634,0x122a7d8,
  45197. 0x1fee60f,0x15e62f0,0x17fa940,0x15039c4,0x0c57e44,0x0023be0,
  45198. 0x0c2e96e,0x1d3f064,0x0dd9349,0x17ef0c0,0x1750bcc,0x147a239,
  45199. 0x19eaf64,0x01d4581,0x1afadc2,0x01df109,0x0742cb8,0x1062789,
  45200. 0x188a239,0x0e41404,0x0156cc5,0x1dbbfa2,0x1799c94,0x139aa8f,
  45201. 0x06013a5,0x14d3765,0x0111660,0x11e1aa9,0x08aee70 },
  45202. { 0x0c54409,0x116ce19,0x0b1063c,0x0cebd75,0x09ebfa4,0x1424c0d,
  45203. 0x1a4a218,0x01921c5,0x16b3a8e,0x0100fb7,0x1d907b4,0x02d97ae,
  45204. 0x15c9730,0x180b82b,0x09bcbc1,0x19c03f2,0x08ffec0,0x024c202,
  45205. 0x0c674c1,0x12c423e,0x08c4bf6,0x02648d4,0x1d2d721,0x0061504,
  45206. 0x0fbcee0,0x090a620,0x1793db5,0x1dacea4,0x167d1eb,0x03e614e,
  45207. 0x0dabdf9,0x1843a6a,0x0307db8,0x14a02fd,0x11aaeec,0x1ead6d8,
  45208. 0x033e805,0x0cd3f18,0x09683c1,0x1fcc12d,0x0970f61 } },
  45209. /* 104 */
  45210. { { 0x1ec8e4a,0x09e918d,0x0d306f1,0x086b4c0,0x0809ac1,0x0f2326c,
  45211. 0x0076942,0x06a9dc1,0x18a4882,0x0b570fe,0x0192d92,0x10c664b,
  45212. 0x1fa1ae9,0x1a66834,0x1284fa5,0x14d6975,0x058b1d8,0x01b9c66,
  45213. 0x1dae769,0x0e3eb1c,0x16fb5fa,0x0463f58,0x12466fa,0x09c853b,
  45214. 0x0f13fad,0x0f6fae4,0x049267e,0x0b076ce,0x0d8bd74,0x008ad08,
  45215. 0x1faf388,0x0af2176,0x06d7605,0x1bc6efb,0x1b7920a,0x15262d5,
  45216. 0x15f855f,0x0c7d96b,0x1329f83,0x128b4fb,0x0404b5b },
  45217. { 0x17a15c7,0x1341528,0x080be7b,0x19df100,0x0ae4cfb,0x0351aa5,
  45218. 0x104e544,0x1cf9dc5,0x0170feb,0x0f300c9,0x03152d7,0x13fae7a,
  45219. 0x17589e3,0x0648495,0x171c4d6,0x1fcbe32,0x13f0a7b,0x0e5bf6a,
  45220. 0x187325e,0x124855e,0x17d92bd,0x1629caf,0x034bbc5,0x1665e13,
  45221. 0x0c1ca70,0x0e086a5,0x154b461,0x0b0ea4d,0x0d6195a,0x18254a1,
  45222. 0x0b0a4ca,0x14a0161,0x025a979,0x1e9187f,0x12b958b,0x18bf43e,
  45223. 0x00da253,0x1aad791,0x1800983,0x16b0628,0x07faa11 } },
  45224. /* 105 */
  45225. { { 0x0402149,0x1278637,0x0466c2e,0x1b2c798,0x1584cc1,0x093a3b1,
  45226. 0x1706a99,0x1e4ee81,0x1c95715,0x1bbffba,0x07ec38f,0x095a7f1,
  45227. 0x1fb2f23,0x17cdf1f,0x05640cb,0x0fd04aa,0x01d0423,0x1fe4fd9,
  45228. 0x054fb64,0x1dfe714,0x1d13eb2,0x1008020,0x02754eb,0x037b051,
  45229. 0x0545b7f,0x152e797,0x190e54f,0x1a944f9,0x1e75c8d,0x12ea6c2,
  45230. 0x10c034b,0x04837c3,0x193ed62,0x10196f5,0x097c090,0x023ca7e,
  45231. 0x03a4e70,0x0abb1b6,0x1fafee6,0x0a5db31,0x014b63a },
  45232. { 0x1c43336,0x05aa9b8,0x092dd84,0x0c47490,0x19dfd4a,0x03028d8,
  45233. 0x08b800a,0x1b6f72f,0x08f5f1e,0x155ddce,0x1f6ab61,0x1aef36c,
  45234. 0x1b67a57,0x06affd7,0x13941b7,0x078c715,0x19589ac,0x042ed4f,
  45235. 0x168f454,0x197550e,0x0ed2081,0x07f49a3,0x00cd4f6,0x1f3405a,
  45236. 0x161f1a1,0x038d955,0x1ce9967,0x0196126,0x1df8a1b,0x1185a7a,
  45237. 0x076df83,0x1d6fab4,0x1c4c741,0x12e783b,0x1271ca3,0x191e08d,
  45238. 0x17c171a,0x0e85e3f,0x09954cb,0x0e706da,0x0024858 } },
  45239. /* 106 */
  45240. { { 0x1a4cd8d,0x06e91ba,0x09e3350,0x072f797,0x132ca43,0x06b0fa8,
  45241. 0x1361096,0x0d0618b,0x1da1e8e,0x13f602c,0x1750282,0x02e23ac,
  45242. 0x1607a8f,0x1a1a86b,0x079957b,0x15c850d,0x0f05983,0x05cc673,
  45243. 0x162faf4,0x02723b3,0x1d497b6,0x12d8dd2,0x0e94a78,0x0d659ec,
  45244. 0x132e91f,0x114a37b,0x08fe8ed,0x1acdd8d,0x0f0ed2b,0x087661f,
  45245. 0x1d8e5e5,0x0be1168,0x09008cb,0x1071777,0x1096596,0x0ffad7c,
  45246. 0x1177bc8,0x16a89e0,0x0b6b9e3,0x1bffca2,0x06798ce },
  45247. { 0x197c5c6,0x1fc7e8d,0x0cfd278,0x1cf1876,0x19fbab3,0x1acadd1,
  45248. 0x1104903,0x0ec884e,0x15d7d43,0x1a112dc,0x111ddc5,0x1f98f38,
  45249. 0x05880b3,0x194b592,0x0eb2a0c,0x1c309b8,0x1f71734,0x12ac89e,
  45250. 0x124d11c,0x1647a73,0x0a11a4d,0x19e8a10,0x13aecdc,0x0c117b9,
  45251. 0x00cf9f3,0x09fdce9,0x18c33f8,0x0c3159e,0x10874ca,0x1598af9,
  45252. 0x095d7c1,0x13e000b,0x06efe7f,0x1e4eda8,0x1e3006f,0x03155d4,
  45253. 0x178e7c4,0x0bc92af,0x18e57e4,0x1a4a5d2,0x03ea7ae } },
  45254. /* 107 */
  45255. { { 0x106ae25,0x0bf022d,0x03be618,0x1b96aea,0x1cac148,0x0615d15,
  45256. 0x0bc3981,0x0eb23d4,0x176b789,0x060cfb5,0x1686040,0x0da0ca3,
  45257. 0x1b79b9b,0x04a2b82,0x0896faf,0x0b7e3e6,0x1f35c00,0x0985a1a,
  45258. 0x109361b,0x1689057,0x1777440,0x0b6b1b9,0x0ae3c26,0x08969b8,
  45259. 0x16c561c,0x0ccb2fe,0x18c241a,0x1280bdc,0x0a1ec1e,0x0492045,
  45260. 0x05467fc,0x07a5e51,0x0f3246a,0x033cbf7,0x1d96f1d,0x1c02d86,
  45261. 0x10705f7,0x092b4fe,0x001118b,0x1380a4a,0x06a8ad3 },
  45262. { 0x0be7282,0x18106a3,0x1c4b917,0x1a42701,0x1405afe,0x0d35684,
  45263. 0x096f757,0x03c99b9,0x07f8be6,0x16b78c2,0x0e05e30,0x12a6b2d,
  45264. 0x1420132,0x1d46fca,0x0ec79ed,0x0569b1a,0x1bb3957,0x13abe30,
  45265. 0x0330ed5,0x136af70,0x1fecd74,0x099bd9f,0x05643fe,0x0bb929b,
  45266. 0x1b65314,0x0b99cdd,0x188cd79,0x01838c0,0x03feba7,0x196bfbb,
  45267. 0x0ca70b9,0x198c36e,0x168e424,0x1f96523,0x1e9aa9c,0x1aeefa5,
  45268. 0x05cb58c,0x126dd56,0x186ab7b,0x0f339f5,0x01a1811 } },
  45269. /* 108 */
  45270. { { 0x1575ed0,0x1fb17bb,0x066dbdb,0x12fa3b5,0x18f14fa,0x17ebfb0,
  45271. 0x0bbeda7,0x0665ce5,0x1ddc286,0x02d5a65,0x1160d31,0x1a90b0d,
  45272. 0x18b0e20,0x1cbbaee,0x05c0468,0x08931a7,0x008f413,0x0009864,
  45273. 0x14457b6,0x011d75e,0x1ed92d4,0x0e01306,0x1141a81,0x1957223,
  45274. 0x1736219,0x1434f2d,0x1ba1a4e,0x19ea118,0x1736174,0x122fe63,
  45275. 0x08d39c4,0x12bb139,0x171aa1f,0x1de4c17,0x11a981e,0x049774f,
  45276. 0x012b7fd,0x128af39,0x1d6a3ce,0x0eb2461,0x07d2ddc },
  45277. { 0x0d2cae8,0x0c0b6a7,0x0ddcf41,0x1b73800,0x0cf6bc7,0x15846a2,
  45278. 0x0639991,0x101847d,0x14b9c01,0x0f73630,0x05e707e,0x1427df2,
  45279. 0x0ae11c9,0x076cb44,0x0d851fa,0x0e14f4b,0x048d066,0x0bd7f5b,
  45280. 0x1da149d,0x0066782,0x08f2d67,0x14bafcf,0x0a27765,0x14d15bd,
  45281. 0x1228d37,0x0c35dab,0x191532c,0x0340bab,0x1dd5502,0x0ac7831,
  45282. 0x1cd2040,0x0996d95,0x0dd4f08,0x055f3c9,0x0149e15,0x0ce189b,
  45283. 0x0e729d7,0x0cb4ee3,0x102ea11,0x0f5637e,0x05a52f8 } },
  45284. /* 109 */
  45285. { { 0x1ecacbd,0x0cf4884,0x17abb40,0x1af7137,0x0544023,0x039b8f3,
  45286. 0x07c2d5c,0x02ef98a,0x016c8e2,0x0419582,0x166ad45,0x0d05024,
  45287. 0x14b1aa6,0x11f1b0e,0x0403e48,0x0b854dc,0x0e9e3a9,0x172c9f7,
  45288. 0x1b04389,0x16d77a2,0x013f699,0x19ca39d,0x0b521e1,0x0e930f9,
  45289. 0x14dc5b2,0x174f8e0,0x1495678,0x0fb800e,0x147ad25,0x024ee1e,
  45290. 0x04e1126,0x1baa4ef,0x1df278a,0x0adccc1,0x1b23bbf,0x00ee1c7,
  45291. 0x16bd02a,0x12c2233,0x17ff8ab,0x0c87ce0,0x017f027 },
  45292. { 0x1abea1f,0x0008694,0x1133769,0x0a480f5,0x036b969,0x1990c5b,
  45293. 0x004a410,0x0952d4c,0x1163d53,0x110fe1d,0x081597c,0x0b7d998,
  45294. 0x1705ba1,0x0b142ab,0x0e39536,0x009a624,0x0578788,0x00d8a21,
  45295. 0x026a7f9,0x17e6095,0x02b196f,0x1625f32,0x1229fc1,0x05610bd,
  45296. 0x020e86e,0x08eee8d,0x0bfd296,0x1efe4f8,0x0343b88,0x03a9d25,
  45297. 0x13705ec,0x1762e7a,0x04b1e88,0x03ddf34,0x0910f70,0x0e7599d,
  45298. 0x0c441d7,0x0ae446a,0x055fb6c,0x134a7cb,0x00ef030 } },
  45299. /* 110 */
  45300. { { 0x08e5b60,0x12b90fd,0x0ec93f0,0x1ad2381,0x046938a,0x0511243,
  45301. 0x12dd82c,0x0efc8da,0x07de168,0x11fcd61,0x0718c21,0x0dde4e4,
  45302. 0x02503bb,0x05b3fd8,0x106677c,0x17a73f1,0x172e07a,0x13c60f6,
  45303. 0x0cbc376,0x1bd6f76,0x09f3cf9,0x18361e4,0x0bfdc9b,0x0e444b5,
  45304. 0x08b2d19,0x1ae5b80,0x1d3c517,0x1eb4c22,0x1c4f378,0x17c622b,
  45305. 0x1913839,0x0388a78,0x1bdaa44,0x0964045,0x09b69ba,0x02af7c6,
  45306. 0x1d77356,0x1e1feca,0x0dcaaa6,0x18d766f,0x03d3b6c },
  45307. { 0x122c880,0x189664b,0x0225b9b,0x0e50d6d,0x1a1b6ae,0x17d7f61,
  45308. 0x1026eb4,0x1df7439,0x043bb8b,0x0b256bd,0x0fd30eb,0x14012f8,
  45309. 0x1ba5af6,0x01a9d48,0x1f2c367,0x17ed655,0x0ab69cc,0x06509fe,
  45310. 0x0aaf064,0x142723e,0x07e5699,0x0111d12,0x0b6f555,0x0911b34,
  45311. 0x0180f95,0x01e7103,0x1c49133,0x153cf7f,0x13a365b,0x1d5f43e,
  45312. 0x188a4a5,0x1f4994b,0x054fa38,0x10db620,0x08f59ef,0x096720c,
  45313. 0x18f41a4,0x133e2bb,0x1139c7e,0x0878f6a,0x02e946e } },
  45314. /* 111 */
  45315. { { 0x00934ae,0x07eefe3,0x1b44a60,0x1e2c840,0x0c3e7ef,0x176bad1,
  45316. 0x1fe5905,0x1b9eebc,0x15cd0b2,0x1630679,0x0b61efe,0x1d9c3f5,
  45317. 0x1dddc4b,0x0c24f2e,0x0fea1f2,0x1e35cea,0x0a32c1b,0x1e2ea8b,
  45318. 0x11ccad2,0x1b7d502,0x096b565,0x1d67243,0x001faf8,0x172ed28,
  45319. 0x074d6cd,0x1df2065,0x0197939,0x1eb9a4e,0x0c4ebc3,0x1e009d5,
  45320. 0x085d211,0x087ad87,0x162e034,0x103b533,0x125519e,0x1ad21b1,
  45321. 0x1eda677,0x06bc6b0,0x16309da,0x0aa0303,0x00997ce },
  45322. { 0x05a0b81,0x1ba364b,0x17ea4a5,0x0dcbc25,0x08b58be,0x0fa1bfa,
  45323. 0x0cf11c5,0x0b2aae7,0x1b565c4,0x012f483,0x09e5f39,0x0a242b0,
  45324. 0x0f4f43f,0x0752a3a,0x16be9be,0x00959cb,0x1be13de,0x19575c7,
  45325. 0x0281f20,0x1f2be1d,0x09feed7,0x1733160,0x0f804a9,0x0859e2e,
  45326. 0x0e9b8c7,0x022dfcb,0x0b8a287,0x1d4aeb3,0x14e2f38,0x00da2e7,
  45327. 0x0651d65,0x1f20340,0x1d3c02d,0x0b5973e,0x1ba9c24,0x11cf49b,
  45328. 0x0fa9b98,0x19395a9,0x1ff9942,0x13fa122,0x096f9f0 } },
  45329. /* 112 */
  45330. { { 0x0310a96,0x0556216,0x1cd1e3a,0x07ef454,0x12a9830,0x0b11039,
  45331. 0x0a0f48e,0x10188d9,0x0d95412,0x0898f37,0x0fa446b,0x18bc595,
  45332. 0x085791f,0x020db63,0x12ddfae,0x110f0a1,0x1ea3d3c,0x157fc9e,
  45333. 0x0401ef3,0x083e3be,0x11fd065,0x012ae6f,0x13b9ca7,0x07c72e4,
  45334. 0x1131732,0x060f07b,0x06b5342,0x05bcf48,0x1e22bfa,0x155fd1a,
  45335. 0x096a644,0x1136066,0x050122b,0x0a6a750,0x07d0194,0x17173ca,
  45336. 0x19d3e0a,0x1e3d56b,0x1fa9508,0x04c8171,0x071998e },
  45337. { 0x0b6ed78,0x007e6e7,0x1459005,0x0e30a68,0x053cf37,0x0b06e63,
  45338. 0x0d96ba3,0x1f008a1,0x09dac55,0x1360d3b,0x15a1b33,0x125b5c0,
  45339. 0x028a96a,0x093892b,0x1911d88,0x1284a5f,0x150a4f3,0x13a3de5,
  45340. 0x114c7f0,0x18dfe5f,0x1ff0f0e,0x03887f4,0x125f0d1,0x0f259ff,
  45341. 0x087839c,0x00cfda4,0x0009bec,0x0a58a49,0x04c2905,0x114e6c0,
  45342. 0x1cd0006,0x06b9194,0x02b5ad8,0x0efd03a,0x1c5dbb9,0x0386f03,
  45343. 0x1dfa4ab,0x15c2f81,0x0cab329,0x034161a,0x0838994 } },
  45344. /* 113 */
  45345. { { 0x0067dff,0x031516f,0x058b03c,0x0179700,0x14f3269,0x03d15ee,
  45346. 0x064341c,0x123319b,0x0fae4a3,0x17e31dc,0x0b60516,0x16f7665,
  45347. 0x11684f1,0x18ccefd,0x08b738b,0x0b09161,0x17f48f2,0x1113070,
  45348. 0x0b57a18,0x07b6018,0x1171739,0x0a19c67,0x07a23e1,0x159ea45,
  45349. 0x1942902,0x19e8033,0x01a0d6b,0x122af97,0x02614c1,0x17c95c5,
  45350. 0x1b0bea9,0x0269d88,0x0ff95f5,0x1409a82,0x09bbede,0x099e00c,
  45351. 0x137a470,0x059e82d,0x1b09515,0x0624d29,0x01fbfda },
  45352. { 0x0f69c77,0x1db2be4,0x03ebf7a,0x1747bf1,0x12a8278,0x1dbc5a4,
  45353. 0x155c707,0x0668c76,0x011c71a,0x103350d,0x0562c34,0x0286113,
  45354. 0x0610c88,0x07ceb3d,0x1d71f83,0x0f71f72,0x0087303,0x0ed52e9,
  45355. 0x02fd618,0x0a00ba8,0x09a95ee,0x13bedd3,0x0c039b3,0x0c598e8,
  45356. 0x03cb3c9,0x02ac49e,0x0533e10,0x15930c5,0x1c9d700,0x1b1d112,
  45357. 0x1a029fb,0x1723c8f,0x0184869,0x1c25f7f,0x17ae30b,0x1e373af,
  45358. 0x00e278b,0x1c448ae,0x1c6799d,0x195884d,0x04f9488 } },
  45359. /* 114 */
  45360. { { 0x151b8ce,0x0fe6a6e,0x1a01843,0x106c461,0x0857927,0x0ccab10,
  45361. 0x1fc70d9,0x0efdb8f,0x1e2cae8,0x02f56a5,0x19d8224,0x0bb3cf2,
  45362. 0x0ca1c32,0x1e9c493,0x0e7b776,0x0149c7c,0x0685f6f,0x06d4964,
  45363. 0x11e83e9,0x1f0015e,0x0aabe16,0x0df2fb0,0x142d36d,0x070a7a6,
  45364. 0x1412f98,0x04e1b32,0x026de5e,0x096c44a,0x0e72b26,0x002c270,
  45365. 0x0efa958,0x1caab85,0x1bd4901,0x09708d5,0x069c5ca,0x1e6f083,
  45366. 0x0174218,0x05ad557,0x1ae49b8,0x1091ef2,0x0688e06 },
  45367. { 0x13b8f64,0x17b2098,0x118b37f,0x172858e,0x0ef11b7,0x06c55ed,
  45368. 0x1eddd70,0x1520cf9,0x0af4041,0x04752f8,0x14843d8,0x1b04d26,
  45369. 0x0823d5b,0x13c8bd0,0x0e413f0,0x05a42b5,0x1fe45d2,0x1c2edd8,
  45370. 0x14d8567,0x0bca129,0x18f2c3d,0x070e9cd,0x0baed4a,0x0959de1,
  45371. 0x0a828f4,0x12a6eae,0x1c8315e,0x084135b,0x195f442,0x1a19bc7,
  45372. 0x0dd5d0a,0x15266fa,0x11fa7d9,0x07edbe8,0x1027193,0x19acd41,
  45373. 0x1bb817e,0x12adc7c,0x049955b,0x1c7c988,0x01723c7 } },
  45374. /* 115 */
  45375. { { 0x08b43f3,0x0436c6e,0x19a2699,0x024c813,0x1c3e0e6,0x1a3001f,
  45376. 0x110df66,0x0f63113,0x16284ec,0x142819a,0x16eba8e,0x0b88d53,
  45377. 0x1c5a366,0x14bc499,0x1da5077,0x02920f7,0x1106934,0x08f6ad2,
  45378. 0x12e000b,0x14f6f51,0x0a59664,0x1230768,0x180fddb,0x09d7e4e,
  45379. 0x06ba31f,0x13fe1f0,0x07cb0e2,0x12d9da8,0x1db08a2,0x07bce78,
  45380. 0x0d8ab06,0x19bcf47,0x119e882,0x1458364,0x14a76fd,0x0a2bcef,
  45381. 0x0e947cb,0x0bc5d52,0x064e886,0x056ec61,0x084bf54 },
  45382. { 0x164f21e,0x166d4f1,0x15fb077,0x0a025ca,0x0d6cf34,0x07c8708,
  45383. 0x1a12162,0x1717448,0x1e3b104,0x1b6ed25,0x1bd5ea7,0x068dc75,
  45384. 0x096bf7a,0x14193f5,0x00a67fb,0x1cd8e42,0x087da95,0x0d54cfa,
  45385. 0x0b37d91,0x1f027da,0x14b824f,0x0945ea0,0x1476ecb,0x1f434c3,
  45386. 0x101afca,0x0d20328,0x0a737af,0x1b3e973,0x1039e47,0x19caf20,
  45387. 0x10abd06,0x18a15be,0x1e9e6ba,0x14f24f1,0x0eb8d07,0x069e426,
  45388. 0x0b157f2,0x146079e,0x0054d25,0x0f7b40d,0x0383f82 } },
  45389. /* 116 */
  45390. { { 0x183ff4c,0x03510b2,0x079cbb1,0x1295ae1,0x0e645a2,0x0650952,
  45391. 0x1a73f01,0x1cbb8cd,0x09160a7,0x178947a,0x11d8ba0,0x0f62ad3,
  45392. 0x07bfb22,0x0176dc7,0x031e58f,0x1ed11f0,0x00649a0,0x053ed7f,
  45393. 0x1452e33,0x082ea85,0x00beb7e,0x09c36f2,0x0e83171,0x16f2662,
  45394. 0x052861d,0x18df868,0x07eff81,0x12059cd,0x0e9903b,0x14ab108,
  45395. 0x0e18791,0x1ee07d7,0x0ef874e,0x1bc5b7d,0x11fb757,0x15ecd12,
  45396. 0x1af5ea3,0x1432a3a,0x11895bf,0x02a87f2,0x03b121f },
  45397. { 0x19275e9,0x17423b2,0x19416c9,0x1ada1f9,0x07581cf,0x11f8f7a,
  45398. 0x12ff62a,0x01cabeb,0x1e484e6,0x13df18a,0x1a63907,0x041ffd2,
  45399. 0x04d8f1a,0x1d5823c,0x151b6a5,0x1b67c4b,0x175834c,0x0d2936d,
  45400. 0x1422802,0x0811b31,0x08161fd,0x102dae5,0x1f0012c,0x1c977d1,
  45401. 0x03bb365,0x177ad9f,0x15d66ed,0x0a19824,0x1ac737f,0x140be17,
  45402. 0x06bc17e,0x1a4e72a,0x0e102d2,0x199b3cf,0x102ffb2,0x1e551ca,
  45403. 0x0a6a515,0x1a237d9,0x0320d9c,0x1a26e52,0x05505e1 } },
  45404. /* 117 */
  45405. { { 0x15e68a6,0x00a50e8,0x179430c,0x0cc9ba6,0x0f9f0b2,0x16b3fcb,
  45406. 0x1d0b40e,0x1083186,0x0d2c144,0x040c607,0x068f2dd,0x02d21a8,
  45407. 0x1ec5181,0x024f9f4,0x12320ff,0x1270ccb,0x0612c27,0x04d9306,
  45408. 0x1b413a7,0x10df5d9,0x0758f60,0x15febe2,0x09ecb33,0x052ffb1,
  45409. 0x0313390,0x164259e,0x0025c06,0x1504c9d,0x0b3762c,0x1543a84,
  45410. 0x1fa7e5d,0x130751b,0x1582714,0x0cc74ae,0x19a7675,0x106a1a4,
  45411. 0x0f6fd34,0x05c4e58,0x0c5f217,0x1a94ae8,0x0617d80 },
  45412. { 0x0022b67,0x1933f38,0x052933b,0x0a6ed17,0x00536bb,0x1c22314,
  45413. 0x0959b49,0x03262a7,0x0382439,0x082a6a2,0x1e31292,0x02e4bbe,
  45414. 0x1a8d11e,0x0ad0f1a,0x094a9c7,0x1c63b36,0x0808171,0x103c336,
  45415. 0x0ce2803,0x0a03b63,0x02360a8,0x1c673b8,0x0bb64ca,0x1b5efa0,
  45416. 0x176098e,0x174d16b,0x0ee4c01,0x15dcbb5,0x1eb0363,0x04625df,
  45417. 0x02febff,0x09c4367,0x17b9678,0x0703483,0x167f72a,0x02923f8,
  45418. 0x0e93847,0x1127aa8,0x1e02cfd,0x010f9a2,0x05156f5 } },
  45419. /* 118 */
  45420. { { 0x006e8d0,0x1a71101,0x1cc9608,0x08fe2b5,0x15f6f5d,0x1c4a87f,
  45421. 0x1ca2758,0x1e95f56,0x17d4495,0x1762684,0x0a02a59,0x18bad1b,
  45422. 0x0bad890,0x127c51b,0x0a82481,0x0b8bfc9,0x17e0f4d,0x0bccf12,
  45423. 0x112578c,0x0cef5c4,0x035244c,0x19d2dc7,0x1c80e1e,0x1450f72,
  45424. 0x190f475,0x17bb81b,0x170f07c,0x0912b98,0x07fa415,0x07cda0d,
  45425. 0x02ee1a0,0x1601601,0x0d47458,0x039e5fe,0x00e2e99,0x1429399,
  45426. 0x0c9be19,0x16afbd5,0x196e9e3,0x139666e,0x0525459 },
  45427. { 0x01b54c4,0x1cb3cd1,0x167421c,0x156c92f,0x029ece2,0x0443200,
  45428. 0x06a4b21,0x1b3e29e,0x1e9fa79,0x1246e7f,0x08236eb,0x03848d8,
  45429. 0x1e14b91,0x0d71fb4,0x0c3efcb,0x17070b5,0x07ed1ed,0x18c0564,
  45430. 0x02161ae,0x1fae303,0x0bd0146,0x0a2a33e,0x0843ad9,0x0cf9fdc,
  45431. 0x1940816,0x1305511,0x0adcf46,0x1624b83,0x1c1cbed,0x0980440,
  45432. 0x0cb79a1,0x06f8604,0x034c713,0x0468c7f,0x1c39bcf,0x078d8c0,
  45433. 0x14af4e8,0x11b2dd5,0x0ad141f,0x1dbb9f0,0x022f0a7 } },
  45434. /* 119 */
  45435. { { 0x07f1b7f,0x13c8ff5,0x0753898,0x1bb9fe1,0x1c3d8c5,0x03ee2c4,
  45436. 0x0a70ce7,0x1810d85,0x14276e8,0x0d6a00b,0x1875593,0x1eb3d3f,
  45437. 0x090a918,0x1554086,0x15e59c0,0x19b8971,0x0364aa5,0x175bd44,
  45438. 0x1ebe9cb,0x184777c,0x0908fc4,0x0f25643,0x136ed72,0x018fcde,
  45439. 0x190136a,0x0691bf1,0x0527086,0x0abae00,0x1324a28,0x1e33ca5,
  45440. 0x1c791d6,0x0c50f40,0x18a8dc6,0x0191e64,0x066d7ed,0x1272b45,
  45441. 0x0c0389e,0x0361f70,0x1311b86,0x0de2ce6,0x079f81e },
  45442. { 0x04f3c4e,0x160f99b,0x052e0fc,0x0a26cfc,0x136b2ac,0x19f21ea,
  45443. 0x173f164,0x1fc894d,0x110d961,0x072ca3a,0x1caab8d,0x1d9cfc7,
  45444. 0x0508234,0x1ef53f9,0x04b802a,0x1424997,0x0f0a791,0x10f7dd2,
  45445. 0x064b54e,0x10dfa42,0x0af6c20,0x1e5a8e4,0x1fb0343,0x01e36bf,
  45446. 0x1b2cadc,0x10ca468,0x1e04b6f,0x00f4711,0x1bdd45b,0x1d356f6,
  45447. 0x069021c,0x1ae04b1,0x02a1268,0x13db25e,0x0ea05f8,0x0b77edc,
  45448. 0x0d386e8,0x172b31b,0x10001cf,0x06f3bcf,0x0442ecd } },
  45449. /* 120 */
  45450. { { 0x02f90a6,0x08d7345,0x0332d33,0x1adeb5a,0x1277d41,0x0ea5c77,
  45451. 0x0a31100,0x062d470,0x0d83766,0x00bd09a,0x04492fa,0x0b1bebc,
  45452. 0x04142b7,0x1eb5caf,0x1ef1a77,0x13c7c4b,0x15fd74a,0x151864f,
  45453. 0x02598f3,0x01e2c7b,0x186d5ac,0x1b86731,0x0caa7bb,0x1daaa88,
  45454. 0x10ea5d8,0x13d3d34,0x0262250,0x1bc47fe,0x0ced585,0x1b52f55,
  45455. 0x195d6b4,0x1a7c308,0x114a6c1,0x09c881a,0x0b0dfc2,0x107b22c,
  45456. 0x033d56e,0x0856ecf,0x1a47970,0x0e60d54,0x085176b },
  45457. { 0x0a21e38,0x0887d14,0x14e28c8,0x1aaee7a,0x17b6379,0x0106e24,
  45458. 0x1eefcb4,0x19ba6d2,0x1961833,0x08bbac9,0x0a14596,0x0bf5cbf,
  45459. 0x126d704,0x1c355ae,0x043ca69,0x0b6e067,0x030dc4f,0x15605ed,
  45460. 0x1318571,0x004815b,0x0d91cca,0x01628a3,0x0387c5c,0x059df0f,
  45461. 0x072d0a7,0x1d0e75a,0x002d9a6,0x09080e1,0x01aa0a8,0x07cebf3,
  45462. 0x02de6c2,0x08cd2ac,0x08160be,0x15b8f1c,0x10b6523,0x184726b,
  45463. 0x1431590,0x1ec1e04,0x1a2cf5f,0x176dcae,0x08ab154 } },
  45464. /* 121 */
  45465. { { 0x13c4a96,0x030019a,0x00d4a1a,0x1120b9b,0x0e5c60e,0x137c662,
  45466. 0x04d923d,0x13d7ab2,0x09faccf,0x15c05cc,0x18e796d,0x1f5dc64,
  45467. 0x0bbc1c1,0x13c556f,0x18e5b48,0x0405a5e,0x0d01898,0x08053cb,
  45468. 0x091d20d,0x16a91e7,0x0e3e18a,0x01d98d8,0x0b3415b,0x0c8a25b,
  45469. 0x068dd01,0x1de0add,0x052c0fc,0x00706db,0x1206c52,0x0535ec7,
  45470. 0x0db593b,0x13e2ef3,0x11a361e,0x19a5449,0x03f14aa,0x05b04d2,
  45471. 0x12922e2,0x15dc704,0x00aa4d0,0x109c016,0x01bfcdd },
  45472. { 0x1a365d9,0x1cd21ba,0x0c0cc42,0x1c11b1f,0x14ade15,0x016fc1e,
  45473. 0x14f5f5d,0x085392e,0x0de3187,0x1b984ea,0x02b3833,0x042466c,
  45474. 0x031228e,0x1bb34b2,0x10f48e3,0x0b4a620,0x1edf90f,0x1fe156d,
  45475. 0x0d7e4e5,0x0c996ef,0x101041d,0x0562236,0x14802cc,0x02e41fc,
  45476. 0x0642d23,0x03ae1e4,0x16e6a88,0x1980245,0x1eae47f,0x1d89020,
  45477. 0x09215b8,0x0d190ed,0x1864455,0x10358a2,0x01088cd,0x1e3438f,
  45478. 0x027757b,0x1b368f9,0x153c66d,0x077ef73,0x025b78a } },
  45479. /* 122 */
  45480. { { 0x16707ce,0x1ab8c0a,0x042a420,0x108629f,0x1bdc239,0x12bedec,
  45481. 0x0216a2f,0x17002f9,0x1ad63a4,0x05dd112,0x0b3ff75,0x170c2b5,
  45482. 0x025ce71,0x194aa39,0x09991d5,0x1a7babe,0x1f74f0a,0x1854078,
  45483. 0x10d4bb5,0x0a7147f,0x06ca010,0x02a101e,0x1e29901,0x018e769,
  45484. 0x07a8833,0x00d9596,0x180b72b,0x06867dc,0x0b17c7b,0x0ce7f69,
  45485. 0x11cb812,0x17ac653,0x18681a4,0x16e1bcf,0x0518dbe,0x16712f3,
  45486. 0x12b7895,0x0b28644,0x073c371,0x0e0cb4a,0x070ab95 },
  45487. { 0x1585d93,0x1c7623d,0x193919d,0x014c67f,0x0a6d361,0x10188d6,
  45488. 0x055393a,0x05e43b4,0x1bd6400,0x1910c85,0x12dea6b,0x158fb23,
  45489. 0x179e633,0x17341be,0x04f0c7f,0x1dd15da,0x1d71616,0x16d2503,
  45490. 0x0bf3585,0x144e647,0x1694d78,0x12dd0a6,0x1019a5b,0x1eb0841,
  45491. 0x154d74d,0x1e4b99b,0x189de38,0x10bca09,0x15a5c2e,0x15062ad,
  45492. 0x170c156,0x1147596,0x13df538,0x0476d18,0x12d4a82,0x1cb12d5,
  45493. 0x04c85dd,0x0421504,0x19afbf2,0x0f2a3bb,0x05fec9f } },
  45494. /* 123 */
  45495. { { 0x0519f99,0x0163e7f,0x0d4d7af,0x01ca820,0x0396bd8,0x1cc479f,
  45496. 0x0500a28,0x1435bdb,0x1d601bd,0x001db9a,0x1992b07,0x006c299,
  45497. 0x10fd302,0x0092014,0x0dfafa4,0x012fab0,0x1a3a554,0x0e55750,
  45498. 0x02e204e,0x0e7a4b6,0x10b9dce,0x15f6584,0x0d7b504,0x07b5678,
  45499. 0x09ff7d6,0x038cc81,0x0418b6c,0x0aa86fb,0x04c11d5,0x17ab215,
  45500. 0x0249df4,0x049f922,0x17fa645,0x092a6a3,0x06dc9e6,0x18f625d,
  45501. 0x184c618,0x0957116,0x14655eb,0x0c79d1d,0x00a8d56 },
  45502. { 0x021fde1,0x028b185,0x01250eb,0x0cd207b,0x0fcf5dd,0x0eb140e,
  45503. 0x067b97f,0x068da49,0x077a49a,0x0f6e378,0x1701bd3,0x058050e,
  45504. 0x0646bda,0x1a3dc02,0x18383d8,0x106dfa1,0x09b5e67,0x1082c0b,
  45505. 0x1a2a010,0x032255b,0x1d32c96,0x05549d9,0x17cffa8,0x0aed78b,
  45506. 0x18edb0c,0x123cf89,0x1b634df,0x12e35ad,0x05e7cb7,0x0b9ce67,
  45507. 0x103aae1,0x03a4056,0x0a4b434,0x0fe9344,0x155f8e8,0x02bb084,
  45508. 0x13a86f9,0x17d5ead,0x18a7e1c,0x126d548,0x095b934 } },
  45509. /* 124 */
  45510. { { 0x1f951de,0x05380cc,0x0d16666,0x0de0b1b,0x0fade59,0x081ee9c,
  45511. 0x0707bcf,0x1a69a8f,0x133b141,0x14946ae,0x1a2901b,0x100159f,
  45512. 0x1d9a465,0x00e77d1,0x022b4bf,0x0e4dda2,0x121e013,0x1b25cb4,
  45513. 0x1a0eee7,0x0d4d6d1,0x0544b9b,0x0e09217,0x0a7c79b,0x0cb2cd6,
  45514. 0x0f6762f,0x1a0e9fc,0x1978416,0x069ba12,0x011e1ca,0x09cd0b0,
  45515. 0x06f53a4,0x04a2aa8,0x0a4dc68,0x10b36f7,0x02b3208,0x08df006,
  45516. 0x11d1612,0x03d70e9,0x1e9f6f7,0x0a2c435,0x02e25ef },
  45517. { 0x18e7357,0x1e7c7ee,0x16e094c,0x11d59db,0x133ba21,0x0269561,
  45518. 0x18c741e,0x1c4d1c7,0x0f2804a,0x0493f9b,0x1eb5f87,0x1a44efc,
  45519. 0x0001433,0x0c3fbc5,0x10073c1,0x04f5c16,0x036aa00,0x0cefe78,
  45520. 0x16691ad,0x08d9163,0x0d32c9e,0x030f944,0x0a9b792,0x114087b,
  45521. 0x0da2f1b,0x1ab6eab,0x17cb42e,0x08c461c,0x1efb563,0x1b720ce,
  45522. 0x1d067c2,0x043a590,0x1ec37cd,0x122d9aa,0x0e5edc3,0x047b7e0,
  45523. 0x0c7ce85,0x031546d,0x1cf5bc2,0x14fc283,0x087979e } },
  45524. /* 125 */
  45525. { { 0x11c747f,0x13d9fbf,0x0da66df,0x1b8dcc6,0x151a4c1,0x196dd00,
  45526. 0x1fdc2cd,0x1fc84e7,0x0d3ee54,0x136911a,0x12b83f2,0x1c19a67,
  45527. 0x0c12fc8,0x0eeb788,0x0ca14e1,0x139f24e,0x1bdf01a,0x0e4379f,
  45528. 0x0db2ba4,0x04ceffc,0x0a44532,0x1997f7f,0x0e69c00,0x115e42e,
  45529. 0x0a328ce,0x0fa164e,0x1bda9cc,0x004acee,0x096813c,0x19efb35,
  45530. 0x0a31a1e,0x11b65db,0x14aab12,0x07f5e8c,0x116bbb1,0x05bc61b,
  45531. 0x179241b,0x0911b54,0x1305b01,0x005847a,0x03ec988 },
  45532. { 0x072f74d,0x13b0620,0x01643e7,0x1d56b28,0x078eb0d,0x1804e17,
  45533. 0x1a90326,0x1cbb67b,0x038b59a,0x1f43af8,0x16a8191,0x086c569,
  45534. 0x08f40eb,0x04879bc,0x1a93e48,0x15f1734,0x1afedbf,0x177f5f4,
  45535. 0x019f895,0x1f2d4b3,0x0aebf87,0x11bad5b,0x079bfb4,0x1b62796,
  45536. 0x0782a3f,0x1108bf9,0x19c3e89,0x02058e3,0x0c0dbe5,0x03767ea,
  45537. 0x05d74ac,0x06068e5,0x17cc268,0x1f3c029,0x18acad9,0x051b7eb,
  45538. 0x1a25da3,0x119f9d5,0x12450bd,0x1d1df5d,0x03e9315 } },
  45539. /* 126 */
  45540. { { 0x19a9ea9,0x0e7d291,0x098a495,0x0017c67,0x00f3c69,0x1b215e9,
  45541. 0x1ad2e72,0x030eb3d,0x000bae7,0x18b62a3,0x043e10c,0x0dabe68,
  45542. 0x16874a7,0x087894d,0x0ed40ba,0x03e3824,0x1a81285,0x056e47c,
  45543. 0x0d89023,0x16ec943,0x177bf57,0x0f8d403,0x045bb00,0x01bb8b8,
  45544. 0x0cef21f,0x0d3ba37,0x13969a9,0x1893a8f,0x0955ba3,0x0df3837,
  45545. 0x0c07857,0x168baf3,0x09c0c79,0x08843b1,0x0c21de3,0x0e224f0,
  45546. 0x0c6a22d,0x0c2ee3c,0x09e4489,0x01a14d0,0x02ed02a },
  45547. { 0x1aa2682,0x01a0b26,0x18954c1,0x16026b2,0x0e26d32,0x03384b8,
  45548. 0x00d2af6,0x05c8939,0x1ee77ae,0x0d0ce95,0x1b05a44,0x053475e,
  45549. 0x1439bd5,0x0e6b082,0x1329701,0x01fc26d,0x19bdc6c,0x0b1b852,
  45550. 0x04f544d,0x041a4f7,0x051aca4,0x02aaa62,0x161cc35,0x19bd7e5,
  45551. 0x058c996,0x102f5e9,0x02943e6,0x1963732,0x0f01510,0x04bd3d8,
  45552. 0x185a6a3,0x023a42f,0x0c36d34,0x1baf416,0x0229d4b,0x03e22ed,
  45553. 0x009b2a6,0x1809ca5,0x15f7476,0x08953df,0x0146278 } },
  45554. /* 127 */
  45555. { { 0x12803cf,0x11d7691,0x1cd1af2,0x17352df,0x01e4398,0x15bc45e,
  45556. 0x1d5fdd2,0x09b95ec,0x07e68c0,0x1d29f00,0x1f34830,0x1832b96,
  45557. 0x0a5f969,0x0e0345e,0x02d969b,0x06065e5,0x1d31d86,0x071e500,
  45558. 0x1e02385,0x0677030,0x18be9b7,0x0cf7f30,0x0d75c13,0x03728db,
  45559. 0x13542b0,0x0df93b7,0x1befb77,0x00afc33,0x1275cee,0x1795c81,
  45560. 0x119f460,0x1101ef7,0x0dc5f77,0x1b60a1e,0x14fde11,0x05ade07,
  45561. 0x09ba507,0x0faaabd,0x058a00d,0x16d6805,0x07acb57 },
  45562. { 0x0e6b07c,0x09ab4a2,0x1177490,0x13c38e6,0x051c4cc,0x19dcfda,
  45563. 0x1136389,0x1f880e8,0x1b88e34,0x124b03c,0x09ddb7f,0x099fe2a,
  45564. 0x1c77d18,0x03a114c,0x040cee7,0x0512eda,0x08477bf,0x014d053,
  45565. 0x1a3c108,0x1fbe21d,0x16d659f,0x16225da,0x1385c51,0x135d0aa,
  45566. 0x106c2fb,0x06ac18e,0x0f64f9f,0x059705b,0x16b607b,0x0e231e4,
  45567. 0x0a20ce0,0x0ea93c5,0x0aed251,0x110ea03,0x0471dd2,0x1bdf2f1,
  45568. 0x0675fbd,0x0c03e3c,0x145b2ba,0x172c6c6,0x06a5a05 } },
  45569. /* 128 */
  45570. { { 0x08f4f33,0x18f5335,0x1d2a4b9,0x0c9bd51,0x12fc6fc,0x144230f,
  45571. 0x094b3fb,0x011a6ac,0x008954d,0x0d8541f,0x0add996,0x18468d1,
  45572. 0x045bd68,0x0807c68,0x0a04d5e,0x0cf5c80,0x1c052b8,0x08c0e0c,
  45573. 0x01d9310,0x14a2d23,0x1d24986,0x1709aba,0x12c077e,0x06cef6f,
  45574. 0x09ae559,0x18c8b93,0x151b726,0x0da2e04,0x0097c8f,0x024ce20,
  45575. 0x1ee379a,0x04b3880,0x0df0032,0x14ec5bb,0x0b645f4,0x0c81235,
  45576. 0x0a7ab5f,0x1a3690a,0x192329f,0x168e1d9,0x0688054 },
  45577. { 0x1a5b86c,0x0b45528,0x091fc34,0x112aeee,0x0437e4d,0x1901949,
  45578. 0x101dbc5,0x09d5d08,0x19647a5,0x13d643e,0x1588b02,0x1496080,
  45579. 0x0f1e597,0x1853cf9,0x1bf971b,0x02adbdb,0x0c24d55,0x1579f78,
  45580. 0x1c11f3d,0x1f609dd,0x0137917,0x0faa5b1,0x0de49e6,0x097c170,
  45581. 0x0a32f31,0x18643af,0x0c3119a,0x02af8cb,0x018978e,0x08673f1,
  45582. 0x0bf4a32,0x19bcb0f,0x10fc3ba,0x1bdf6dc,0x1c722e1,0x1bba65a,
  45583. 0x0a8e10c,0x0191006,0x1b94ced,0x033b29e,0x00021f4 } },
  45584. /* 129 */
  45585. { { 0x1519d26,0x0891621,0x0114864,0x1a814a3,0x1dafac1,0x05dc4fd,
  45586. 0x1c7a552,0x1f398de,0x016844b,0x1799bae,0x1a35567,0x1ef22f1,
  45587. 0x05e7789,0x0fc5f0e,0x1d666d8,0x1bc8009,0x19a2cbb,0x0c04464,
  45588. 0x04c81b2,0x1344c11,0x0851893,0x1ffe698,0x086b92f,0x11fd5fd,
  45589. 0x0b3fee0,0x15e3326,0x07fc52a,0x03e7013,0x041ef96,0x0a66154,
  45590. 0x0d8360e,0x02fe03b,0x1fad8ad,0x1dbb9ba,0x15d9b7a,0x04df868,
  45591. 0x0425251,0x18b582d,0x1b67c79,0x10053c3,0x0798558 },
  45592. { 0x1106473,0x19d554a,0x08128b2,0x02b4c3b,0x15fafa4,0x0ab1e04,
  45593. 0x04d894e,0x10ffa79,0x195312b,0x1524048,0x0171dae,0x0b057f1,
  45594. 0x156c7e7,0x11863c6,0x1db6ad8,0x0881ae1,0x11c7747,0x1467182,
  45595. 0x1f6d861,0x1d7a29f,0x00966db,0x1d0c872,0x0c38107,0x1cc5c55,
  45596. 0x0c4666e,0x1eb5d08,0x09d3ccc,0x07aafc5,0x1b9b669,0x16e27f3,
  45597. 0x1f401aa,0x00da506,0x0f72f6c,0x1a0f57d,0x179a441,0x0e63198,
  45598. 0x0569247,0x081304b,0x0c23671,0x1863a1f,0x095d823 } },
  45599. /* 130 */
  45600. { { 0x00528a5,0x15ec30a,0x0f21abb,0x14a72f3,0x1268c2b,0x00a255f,
  45601. 0x06e293b,0x1db6379,0x182a7d7,0x17d5d86,0x0463607,0x01a29c0,
  45602. 0x0ef12c7,0x10e0aac,0x181c5a2,0x1ce7c62,0x0b7e4b7,0x099f214,
  45603. 0x0ebb277,0x0ecc6f0,0x035c631,0x1f70956,0x145cbfe,0x02f6548,
  45604. 0x10bfbbc,0x0951bef,0x01d07e0,0x0425f0e,0x088f9c4,0x05edf14,
  45605. 0x174f73b,0x0ead94a,0x1dc15aa,0x14720d4,0x03b2e40,0x07e6323,
  45606. 0x0aeadb0,0x0f0142b,0x13d51fb,0x1aaf0ca,0x00e2708 },
  45607. { 0x1e20f88,0x06629e6,0x00e489c,0x18beb62,0x1338272,0x058edfc,
  45608. 0x1867977,0x182a085,0x1b72d74,0x19ef10c,0x0aa9552,0x1516555,
  45609. 0x0616c49,0x1dd435d,0x0110f96,0x02d2a01,0x17220cf,0x0f735e6,
  45610. 0x026af44,0x1f58d75,0x039d59f,0x1df88ab,0x0a0c485,0x09974a4,
  45611. 0x08af2f3,0x0837269,0x1c1c9ea,0x04fe07c,0x017766f,0x03cfb48,
  45612. 0x0f9a10b,0x0f50224,0x13469bd,0x0b9dc65,0x0d1a90a,0x1a9181e,
  45613. 0x03990db,0x0bc2531,0x059e3f1,0x077f653,0x00d3dab } },
  45614. /* 131 */
  45615. { { 0x029c3cc,0x1bb7367,0x0f1a3e0,0x19e02d9,0x0b0507e,0x1ca670e,
  45616. 0x1e65978,0x083bd7f,0x173c50d,0x07e2937,0x1b38f49,0x14a85a2,
  45617. 0x014edd5,0x08e098a,0x0def766,0x10c0d76,0x0f2e33a,0x071a217,
  45618. 0x018a76a,0x12066f8,0x13312ae,0x122c955,0x15febb1,0x0570af6,
  45619. 0x18997d8,0x0bb0d49,0x068cdcc,0x1ad9197,0x06751fa,0x0ef1484,
  45620. 0x05a0965,0x03182e3,0x01e97fb,0x0b9abd4,0x084efda,0x13c9e91,
  45621. 0x1cb89f6,0x1c3e172,0x0d09a84,0x1d6b0e9,0x0530b4e },
  45622. { 0x0b7b5ae,0x13ad0dd,0x0fd3a7c,0x1a074af,0x1b69dc4,0x0e282dd,
  45623. 0x1712a91,0x00592e9,0x1416ac4,0x131b4f9,0x061771c,0x1cf15db,
  45624. 0x01735e4,0x06ea235,0x12361e7,0x160540a,0x0699e16,0x1426758,
  45625. 0x026c469,0x1edf48f,0x0784f73,0x0fd9527,0x1aa8310,0x1536d2e,
  45626. 0x1690293,0x15958fb,0x03c0ea2,0x02999c0,0x0d66c18,0x12adc22,
  45627. 0x005932c,0x0612a44,0x194e7d6,0x19138db,0x1390f68,0x13c0a5a,
  45628. 0x08b6a4d,0x1c59738,0x15dfd49,0x0a5018c,0x0909425 } },
  45629. /* 132 */
  45630. { { 0x15b4c2f,0x0d0a686,0x127349a,0x16b914c,0x0b8fc59,0x11bea51,
  45631. 0x12ceac3,0x0fd2b7d,0x0911103,0x0d0d3b4,0x0d4c8bf,0x00b529c,
  45632. 0x1c5810e,0x10bc7d7,0x137304a,0x19cc544,0x1b28e3d,0x02e1631,
  45633. 0x114b111,0x187e2f2,0x1161995,0x01a16a2,0x0d4cc3b,0x1df0252,
  45634. 0x1a60ab4,0x009d012,0x0a2eba7,0x0a9264a,0x03caf88,0x1303717,
  45635. 0x11c9746,0x06c937e,0x04091ab,0x162f8ea,0x1efdc13,0x078fa15,
  45636. 0x1d8b333,0x1e8eb15,0x05bd49e,0x0239fcc,0x0505701 },
  45637. { 0x134356b,0x025677a,0x1ef3402,0x0a96961,0x1df1de0,0x1026e0c,
  45638. 0x1f8173b,0x1c20435,0x0361b78,0x05ef344,0x034e2d9,0x198fdef,
  45639. 0x0ea324f,0x15852f2,0x0cdcb3b,0x0332dfd,0x0b36581,0x177827e,
  45640. 0x1ac2ad3,0x1cbaa0b,0x186e7dc,0x0411c62,0x078a6d6,0x1b0006e,
  45641. 0x03197bc,0x0e7ef2f,0x05201ae,0x17ebc8a,0x0e67ab8,0x0b45e8c,
  45642. 0x0b50cc2,0x1f3ec7f,0x0a7d04e,0x0c5da13,0x048ed70,0x19438fe,
  45643. 0x05dce22,0x0dc2411,0x19e7d21,0x0dfaa81,0x08ff0b3 } },
  45644. /* 133 */
  45645. { { 0x1f42cff,0x1717a1f,0x05f267c,0x1a386a6,0x03c19f9,0x10daa2d,
  45646. 0x04e4aae,0x065b6e9,0x14afa9a,0x0119582,0x1350da1,0x1a8dafb,
  45647. 0x150b855,0x02e7cc8,0x10d7881,0x1443115,0x0c7f001,0x0ebe791,
  45648. 0x15020c1,0x1a6b5dd,0x0fcd057,0x0caa9e6,0x0969294,0x1c57272,
  45649. 0x0579393,0x013af2b,0x00d08bb,0x0406656,0x053958a,0x002f1d6,
  45650. 0x18e6c24,0x0f3d362,0x08051a3,0x10c6b31,0x1027f19,0x1f6941b,
  45651. 0x0748e7a,0x0742bfb,0x158fa78,0x1dd8aef,0x071b28e },
  45652. { 0x1726bf8,0x15866cc,0x1cf1250,0x1238411,0x1290a3b,0x0cc7550,
  45653. 0x0439ec1,0x051fae5,0x1a25a91,0x153bc8f,0x1f5f6b1,0x1649806,
  45654. 0x1b2d33d,0x187141b,0x07bfac1,0x1c54184,0x16ee3da,0x1dfb86c,
  45655. 0x141d809,0x1b03230,0x17e343e,0x1426a56,0x12bac2a,0x18b6e98,
  45656. 0x1101fe8,0x1eede3a,0x1ab49ba,0x17f654d,0x18aa4ed,0x103435b,
  45657. 0x122ea04,0x1c22b30,0x14aa8f2,0x12e2764,0x076cfae,0x141a21b,
  45658. 0x0318295,0x1ff623b,0x0496b39,0x034661b,0x0729471 } },
  45659. /* 134 */
  45660. { { 0x0bbd495,0x02c8219,0x1cfff39,0x037ca92,0x130f4dd,0x0e1fa71,
  45661. 0x1b87576,0x00800d7,0x059ba72,0x077303c,0x0b1da10,0x1a7e858,
  45662. 0x1ec194f,0x14ff445,0x19dac4b,0x0042141,0x1dbec2b,0x18be6ee,
  45663. 0x02047b1,0x1a86d60,0x09e4689,0x1b9425f,0x09a9ae8,0x0fa8229,
  45664. 0x195b200,0x1a255e1,0x0c3c479,0x119bf3e,0x196402f,0x1f64749,
  45665. 0x01717fa,0x1dd68c5,0x0751743,0x0689bc5,0x1e0b1b8,0x07337f0,
  45666. 0x1eb292e,0x12f0b85,0x1f57ce5,0x1b0b003,0x0001c39 },
  45667. { 0x04a0912,0x02e5ced,0x1293d20,0x1488217,0x127cb76,0x18eb2de,
  45668. 0x12e3bb1,0x135de7b,0x1481684,0x007dd95,0x0918d5e,0x004d516,
  45669. 0x08ef6a7,0x0962273,0x1897220,0x0e9502a,0x12c4d7a,0x0312611,
  45670. 0x0c58c79,0x0ee06e9,0x1c2e81a,0x18edc8b,0x01393df,0x0c3db2a,
  45671. 0x065fd1f,0x11e8e82,0x072f79b,0x0209009,0x131fcfb,0x1060eb8,
  45672. 0x0558df3,0x115b48e,0x0e4dbc2,0x0cb9311,0x1172b3a,0x01eea61,
  45673. 0x0e28745,0x0b06e67,0x0bc4e80,0x0e17723,0x09132e6 } },
  45674. /* 135 */
  45675. { { 0x196099d,0x1f7f13c,0x0232015,0x1740dcc,0x172344d,0x0ac2c45,
  45676. 0x01d0342,0x1d3d695,0x079e5ae,0x09ed783,0x08beb79,0x1535211,
  45677. 0x0ac9560,0x083f383,0x12f84c4,0x048d4fe,0x19b2830,0x136af9e,
  45678. 0x1f328f9,0x11d1b44,0x1292a5f,0x1326147,0x1ad4772,0x03bfaf1,
  45679. 0x0310ef3,0x1f2a67d,0x08b281c,0x05c18f8,0x0da6839,0x0b4a520,
  45680. 0x1f040bc,0x0ea1a71,0x0bb07cc,0x1701a8b,0x0f8aeb6,0x1ae07d0,
  45681. 0x14d3c9d,0x09e0335,0x03b47aa,0x1caf328,0x07d0b03 },
  45682. { 0x1d94c63,0x1f51826,0x0ce97f9,0x0ae7161,0x17ef01c,0x0735a5a,
  45683. 0x09e3285,0x0ed2a69,0x0a53532,0x1b1166f,0x0b40181,0x140ef84,
  45684. 0x09af696,0x1ea3590,0x0f06219,0x05694e6,0x0bb626c,0x04b2a66,
  45685. 0x013cf13,0x11a7435,0x0b74a09,0x1696b9a,0x0d65be7,0x0aa3920,
  45686. 0x1021a5d,0x11fefe9,0x1c7b144,0x0574fa5,0x01aa39e,0x1492d96,
  45687. 0x09fe5c9,0x1f1d652,0x0e75d0e,0x09537e9,0x04b8646,0x1df574e,
  45688. 0x1b83e50,0x035a1d4,0x1798298,0x05fb56b,0x031b178 } },
  45689. /* 136 */
  45690. { { 0x034db92,0x0dd22a0,0x11361e3,0x031e69b,0x0397790,0x1aa619d,
  45691. 0x13cbb7d,0x1111a00,0x0cd563a,0x152caa5,0x1feb47a,0x191376b,
  45692. 0x18a29d6,0x186c5ed,0x0b7d956,0x1b68f51,0x02d8cdb,0x1fbfdc2,
  45693. 0x034c816,0x1c74070,0x1ca9b72,0x193e563,0x10cd6c2,0x14a8ebb,
  45694. 0x00bcbd8,0x12fffe3,0x07ae934,0x06deee3,0x10fca67,0x0e1c062,
  45695. 0x000f640,0x1018032,0x1dacf7b,0x0fc268f,0x163d5a0,0x02eb9ec,
  45696. 0x1cefbbc,0x13f31a2,0x1b47d5e,0x1ca7c0f,0x06fc0fb },
  45697. { 0x01b0e5f,0x088b5dc,0x0ee125b,0x0a5590a,0x182dd2a,0x19c3f86,
  45698. 0x08b50c9,0x0b26afc,0x0ba912c,0x1199542,0x177304f,0x0c8693a,
  45699. 0x138b71c,0x01c6c2e,0x060bba5,0x19a9c19,0x13cbf7f,0x1c85caa,
  45700. 0x03fb578,0x0737787,0x09032cb,0x0e2d621,0x08b19f2,0x00fb4ab,
  45701. 0x01217bf,0x07775f9,0x1682e79,0x0b580b5,0x09e0c65,0x0961477,
  45702. 0x0fc42ec,0x09176dc,0x0f3aee5,0x03748ae,0x1a722c1,0x1e95ce4,
  45703. 0x0a0e553,0x1330095,0x03f232c,0x1435299,0x0701935 } },
  45704. /* 137 */
  45705. { { 0x0626dea,0x06a0ed2,0x0e7f796,0x142b720,0x05ef66c,0x12732d9,
  45706. 0x04290c5,0x19f3350,0x1748cfc,0x1f36d56,0x10bea67,0x0d7a5e2,
  45707. 0x167ab9a,0x0ea38bc,0x12e85a1,0x1473749,0x1366bc3,0x1096985,
  45708. 0x0fd141d,0x0d4bb91,0x0c0e1f4,0x148a10d,0x0e1a394,0x1774389,
  45709. 0x0620659,0x1c83d34,0x1b69a62,0x1696aa5,0x0537072,0x0e6a72a,
  45710. 0x17d40e7,0x13d202c,0x0a07a9e,0x02efe21,0x1fcf5f5,0x015071f,
  45711. 0x1b5ceb3,0x0c8f2d1,0x0980106,0x1912d39,0x06c961e },
  45712. { 0x0e7eb46,0x1ee0de2,0x0d21c0e,0x0eb2d8f,0x16bac55,0x17eba6e,
  45713. 0x05f359a,0x1e69f32,0x1656ce6,0x11aa882,0x05c5d55,0x0a18649,
  45714. 0x0d3d1fb,0x11f7fd9,0x099e0f9,0x1457bfb,0x1f3eefa,0x1debcf8,
  45715. 0x1ebe7bd,0x1f7ca82,0x17a4a4e,0x112d2ad,0x1b3bd91,0x0e26608,
  45716. 0x132381a,0x0d188b7,0x1ee5589,0x165454f,0x027e96d,0x121d058,
  45717. 0x0f1a82a,0x0906567,0x18fe5d2,0x1d56022,0x037d6b7,0x14a4683,
  45718. 0x049e7f9,0x0d44e5e,0x12d4f01,0x1b0d3c4,0x0830883 } },
  45719. /* 138 */
  45720. { { 0x0557389,0x18e3101,0x02f2566,0x0f5bdf8,0x1fe5ce9,0x1879c1a,
  45721. 0x0f9fe0c,0x03d1277,0x116cfb8,0x1f06357,0x10a3f49,0x0cb7a08,
  45722. 0x026f64e,0x1bcf30c,0x17a4916,0x02394a7,0x1c1487e,0x1845189,
  45723. 0x116f3a4,0x1d87728,0x149e65c,0x0a6b3f6,0x0cef00c,0x0f046a4,
  45724. 0x16b2430,0x0e934f9,0x1e4eb4c,0x0f1cbb5,0x00890cd,0x15b863c,
  45725. 0x1a7c9a0,0x13c8bdf,0x015c34f,0x1d7f538,0x0e939b2,0x1826ba9,
  45726. 0x1e3fcc6,0x11bc523,0x03e310e,0x0ff2cc7,0x02376f9 },
  45727. { 0x0575b99,0x10f6057,0x037029b,0x1f0372e,0x1e14cb4,0x139ca3b,
  45728. 0x0e0934e,0x13be014,0x1fb235a,0x1a5ce40,0x18a5102,0x02beb7e,
  45729. 0x1a8d151,0x0f0b2eb,0x14d6d0c,0x07c779f,0x0a2b2ee,0x1ae897f,
  45730. 0x1460b9e,0x13094de,0x108e629,0x19e1b2e,0x1390f8b,0x1e6dce4,
  45731. 0x0709130,0x000cc99,0x03f4d15,0x1316940,0x196dce6,0x1e875d7,
  45732. 0x1508f13,0x046ceaa,0x00ba0ae,0x12bc253,0x10b6c0c,0x02a37b5,
  45733. 0x015464a,0x1a0c851,0x00a5a2a,0x0c2d7e2,0x08c4616 } },
  45734. /* 139 */
  45735. { { 0x11f36a5,0x0512c16,0x1cb7bff,0x051298b,0x0eded2b,0x076c278,
  45736. 0x136e10f,0x1366b4b,0x0db0e3b,0x087c4c1,0x068448a,0x15e00e3,
  45737. 0x16cce0e,0x1cd1b16,0x1995f90,0x0fc8fa1,0x15d6269,0x02a8b52,
  45738. 0x198d945,0x1c3eef1,0x09bc269,0x05ea813,0x178f7b7,0x038af8a,
  45739. 0x0230044,0x1c6f676,0x131c155,0x1707e63,0x089eabd,0x1db98f2,
  45740. 0x0d06f7b,0x072bf9b,0x0b678cf,0x0d80090,0x0473fe7,0x112119f,
  45741. 0x15f52cc,0x15e37a2,0x0458b2f,0x045698c,0x0155ea6 },
  45742. { 0x16fa42e,0x1178fc3,0x1b9e52f,0x12ff5bd,0x0b5e874,0x0432d7d,
  45743. 0x1c3d4e3,0x160d25c,0x0df8059,0x174cdc2,0x09eb245,0x00dd16b,
  45744. 0x0b0ceb6,0x16a31e9,0x148cd5c,0x013419d,0x0232a9a,0x1968793,
  45745. 0x0187ef7,0x1333187,0x110b252,0x13e0df1,0x1c46222,0x1155bc6,
  45746. 0x029c50d,0x19ecd89,0x00ec4d4,0x179f36f,0x029708d,0x037c7f8,
  45747. 0x020f29d,0x1b507df,0x1a013a1,0x1422252,0x14612ac,0x151d209,
  45748. 0x1cbd4ab,0x14259ed,0x1630cbf,0x0484b20,0x08f570f } },
  45749. /* 140 */
  45750. { { 0x0a9c508,0x1364516,0x1e037ad,0x04d3ad6,0x0dc5bec,0x156b001,
  45751. 0x0499a23,0x0282dac,0x149d726,0x0c20dcb,0x1cb9bd8,0x1cd99c8,
  45752. 0x1641e40,0x0fd3d43,0x0890990,0x12f415b,0x133cc39,0x022dcfe,
  45753. 0x105773d,0x1d1f52f,0x029db25,0x190974b,0x004933a,0x167b2ac,
  45754. 0x072c67d,0x0221d46,0x0df069e,0x1c5bda5,0x1027ff8,0x04e336e,
  45755. 0x11a52ac,0x0fcf457,0x09a057d,0x063b1fc,0x089b3dc,0x055b17e,
  45756. 0x08a2621,0x193473e,0x1307532,0x10f6588,0x03d171e },
  45757. { 0x0e49820,0x160b746,0x1724e0a,0x0581889,0x04ee45e,0x142c621,
  45758. 0x1e449cf,0x1f21d8c,0x046327c,0x0c6592e,0x16707e4,0x0ed78c2,
  45759. 0x1343e38,0x1baa2e5,0x0db8380,0x068fd6d,0x1ab5d12,0x0b25c1c,
  45760. 0x0c03550,0x0124e94,0x116972e,0x13440e0,0x09aaca3,0x0eb5086,
  45761. 0x00fffeb,0x06fa52c,0x08d6448,0x14b0059,0x09f4a30,0x0168190,
  45762. 0x001ffba,0x11cd527,0x118016b,0x108e55a,0x11c30bb,0x0f7338d,
  45763. 0x0b9d4ec,0x082d78d,0x0401058,0x1f0699b,0x0234e98 } },
  45764. /* 141 */
  45765. { { 0x0db9cda,0x1a9040a,0x1243fd0,0x0f2d5bd,0x19cfdc4,0x02c5b6c,
  45766. 0x0a9bebd,0x0630875,0x1743eaa,0x18fba0a,0x0d7604f,0x125cc2e,
  45767. 0x15915e1,0x0562cae,0x10688b4,0x1791a68,0x167c044,0x13825df,
  45768. 0x188e88d,0x0c08e37,0x15572f9,0x040ae8e,0x130c98e,0x163bb29,
  45769. 0x0230b76,0x133ca08,0x1c30722,0x05ca873,0x1c910df,0x00d6419,
  45770. 0x17d5ac5,0x10cb709,0x07c999f,0x015bda3,0x07e887c,0x003604a,
  45771. 0x1621695,0x0da9304,0x07a4f79,0x1c79c74,0x06a2130 },
  45772. { 0x13ca1a7,0x1b3d025,0x1a03486,0x0601819,0x0f42ed5,0x16783d5,
  45773. 0x14da24c,0x0b44599,0x15c25c3,0x1291d40,0x013418d,0x12b11ba,
  45774. 0x1becdd3,0x197c9d1,0x168d40a,0x16a60e7,0x03cd5e5,0x1a62f06,
  45775. 0x0c9a1dd,0x1ea90c2,0x0292ef9,0x1e0f3a1,0x1b61ffb,0x09cbdbd,
  45776. 0x0c29ea2,0x18d36cd,0x00ce127,0x115793e,0x1239050,0x1149207,
  45777. 0x14ec26c,0x0ff2686,0x191072c,0x15aa833,0x0e079ab,0x002054c,
  45778. 0x16feb87,0x103a04c,0x0a0c0fb,0x155389a,0x034f06f } },
  45779. /* 142 */
  45780. { { 0x148f005,0x0e3cf91,0x02c61a7,0x03be924,0x1b5c5d7,0x1732524,
  45781. 0x15f29b7,0x169fa36,0x0e82a4f,0x0dbfb9a,0x1e0d988,0x106972a,
  45782. 0x16637cb,0x1e943ec,0x0d0406d,0x1d95792,0x0ac0392,0x18ac87c,
  45783. 0x1dd7d38,0x1b86e6f,0x0c62280,0x07b530d,0x02cdbd4,0x0aad1b5,
  45784. 0x18304a6,0x1853a7a,0x0764c21,0x01af255,0x0895cc8,0x18c97e4,
  45785. 0x07db45e,0x0922927,0x18392fa,0x0adcf24,0x09f7507,0x0b5e6c0,
  45786. 0x1caa82b,0x16bcf12,0x1746914,0x163e822,0x0764d47 },
  45787. { 0x0ee8b9c,0x11181d1,0x152177c,0x070bbf9,0x1b9f72d,0x009d1b8,
  45788. 0x0e60c42,0x1ead685,0x13de741,0x146291d,0x0eed6f8,0x04b5e60,
  45789. 0x0f08576,0x164dfcd,0x1bca66a,0x0b66924,0x0080d44,0x110df56,
  45790. 0x1ae8b03,0x047405a,0x08646a5,0x18bfe71,0x18c0a86,0x00183d5,
  45791. 0x0a235e3,0x188a28b,0x09ed2a4,0x0a86e6d,0x0c89f74,0x1cf4606,
  45792. 0x17b4f02,0x081db11,0x081904f,0x1fe3802,0x0d58f2d,0x109e4d3,
  45793. 0x121b973,0x10ea9d1,0x0e04026,0x1864614,0x01c0dd9 } },
  45794. /* 143 */
  45795. { { 0x06a7d9a,0x10fb3e2,0x0733fea,0x097dbf2,0x0474333,0x1217973,
  45796. 0x0e9d11e,0x1528b06,0x1241ffa,0x1cc0028,0x1bf9ad9,0x150866b,
  45797. 0x0370979,0x1845920,0x0184fd7,0x023b8be,0x1cd64f2,0x035d917,
  45798. 0x015cb3f,0x1165474,0x014ae1b,0x00bca85,0x06783ad,0x16d9a98,
  45799. 0x0bb293e,0x0fff31a,0x151c289,0x0340964,0x115a0a3,0x1d64d1e,
  45800. 0x1a6907d,0x17e5fdb,0x1ed85ec,0x0a50077,0x1d7e06e,0x183eb03,
  45801. 0x1ef4a15,0x1ccb584,0x106f2a8,0x07360c0,0x052d8be },
  45802. { 0x1631a2f,0x09b7b7e,0x0372f45,0x0166a35,0x11fae7f,0x0931094,
  45803. 0x0431e6c,0x06ba34b,0x12bd0f4,0x16a43af,0x03a9c14,0x0da7256,
  45804. 0x1e9aedb,0x1c1d5c4,0x142af72,0x0325817,0x06289fe,0x1413d08,
  45805. 0x00a82f6,0x0d52c02,0x0814656,0x1be701b,0x16820c0,0x0c7280b,
  45806. 0x0d79f58,0x0fc985f,0x1b6f2a3,0x0e40336,0x1aa3f59,0x094377e,
  45807. 0x04a2480,0x0a46d71,0x137b996,0x01739d9,0x0e38a3f,0x0623a7c,
  45808. 0x080e8da,0x1c3fa0c,0x09175c1,0x0cfb5c9,0x06cff63 } },
  45809. /* 144 */
  45810. { { 0x09a8bb4,0x08219fc,0x1dc6f4f,0x0727731,0x02144c3,0x038516a,
  45811. 0x05b200d,0x13d056c,0x1e5da08,0x07e63ab,0x17f69a6,0x09def7e,
  45812. 0x0c54235,0x0f5e9a6,0x017094e,0x1ba1a31,0x085bec5,0x1171059,
  45813. 0x00a86f2,0x1777c2f,0x0ef0e71,0x184dc2a,0x05677b4,0x12ff4d5,
  45814. 0x0997989,0x0228b92,0x03607cf,0x019f1f5,0x0111525,0x1a8bb06,
  45815. 0x1aaa68e,0x1d9f08b,0x1b0ef7d,0x1688de4,0x188ee7f,0x0192673,
  45816. 0x0825608,0x1f4e2e1,0x1079f24,0x02ec27d,0x01d2c82 },
  45817. { 0x07cfc93,0x09a3ecc,0x0041ce0,0x17e30ff,0x047603b,0x0865188,
  45818. 0x0f27449,0x1e67f4d,0x0bb055b,0x00048f0,0x0be1f12,0x1e34747,
  45819. 0x0bbdf95,0x0a02a05,0x1a1ddc0,0x008b7c4,0x130d7fe,0x0ccc6fb,
  45820. 0x1c8ef0b,0x1026bf6,0x0c46b39,0x060af5f,0x0b08c3e,0x0aac381,
  45821. 0x018305f,0x03ff047,0x1369829,0x181f7e9,0x0d4bfc7,0x0e1270b,
  45822. 0x0481ba5,0x0e8c2fd,0x0163495,0x061073a,0x01a52b8,0x0c72e33,
  45823. 0x0131e2b,0x1349891,0x1dc8bf8,0x06c14a6,0x025486e } },
  45824. /* 145 */
  45825. { { 0x1572806,0x1cae529,0x0385861,0x12cad2d,0x12c8944,0x1991d75,
  45826. 0x0b25cfe,0x1ac2938,0x0409bc7,0x18aef13,0x0486cfe,0x14e58f2,
  45827. 0x1ba90cd,0x102655d,0x0be8538,0x0824ada,0x0f79160,0x1e5e6d3,
  45828. 0x10d7e51,0x10c4c36,0x0b10250,0x1c61417,0x16da1b0,0x14f2397,
  45829. 0x16d62f1,0x1362880,0x0586889,0x1638fda,0x1d74a66,0x0333138,
  45830. 0x09099e0,0x104850f,0x1ffeda1,0x07879da,0x0ffeef9,0x0997ca0,
  45831. 0x19482a7,0x1bf85f5,0x04fc75f,0x0b01109,0x0751b23 },
  45832. { 0x1c9be68,0x1dceb74,0x11b3565,0x08cfa21,0x1794b5c,0x11597a0,
  45833. 0x170f5dd,0x0235119,0x0a1b44e,0x0ca531d,0x03b2a1b,0x1773555,
  45834. 0x1ffb0bb,0x04b1ec3,0x0c3cb43,0x00ebbe9,0x02c5dc7,0x0dba983,
  45835. 0x064ce62,0x0e4d589,0x0cdefed,0x1c2bfce,0x1769818,0x1f18ecc,
  45836. 0x0392a75,0x165110e,0x157719c,0x1a4c9b2,0x0ecc8dc,0x1f915b3,
  45837. 0x0e9c013,0x03148b1,0x11aa9ae,0x1eb29fd,0x137e2ea,0x19d52c8,
  45838. 0x0ba0de7,0x1bc7401,0x1b1d6a4,0x05b9458,0x0144cc1 } },
  45839. /* 146 */
  45840. { { 0x189aa3a,0x1050e94,0x193564e,0x06b3cdc,0x183f228,0x1739976,
  45841. 0x0c32f4c,0x093d271,0x13c3cb2,0x0623262,0x1a9ab3d,0x0bf1f13,
  45842. 0x129750a,0x1a367e1,0x1f96efc,0x170128c,0x19d37b2,0x0e4dfd5,
  45843. 0x0cce71b,0x16e8a67,0x0deef8e,0x1f1dbb3,0x0ff807e,0x0d5d44e,
  45844. 0x14254ef,0x188598a,0x09ef986,0x0ab87be,0x0184885,0x16c0eec,
  45845. 0x1e5c3ed,0x177ce29,0x01af3a4,0x07b49ed,0x005e746,0x12aebe4,
  45846. 0x0465b83,0x047e359,0x0a54770,0x066d709,0x0874ecf },
  45847. { 0x1b3f6be,0x17c1f5d,0x08f5892,0x1211768,0x1578fbb,0x039a93f,
  45848. 0x0c2eb5e,0x084ac47,0x0a62e04,0x1b2cdec,0x0dbde70,0x02cffc4,
  45849. 0x062903b,0x129f935,0x090c31b,0x0259eab,0x1ae3ad7,0x19112a3,
  45850. 0x1bac9ca,0x1121aee,0x0df9b73,0x059eb14,0x056d3dc,0x1d5c959,
  45851. 0x013b053,0x1a74f87,0x039fc85,0x169ea27,0x1bae175,0x167ccc6,
  45852. 0x001d520,0x088a309,0x169bbde,0x178ae15,0x194b2bf,0x129e4f2,
  45853. 0x16bcaf1,0x11f795d,0x18d3e82,0x1039c98,0x031fb85 } },
  45854. /* 147 */
  45855. { { 0x15cd607,0x18368b0,0x0e98e60,0x1554658,0x080c9fa,0x1c898eb,
  45856. 0x1c16ddd,0x001d0f4,0x036708b,0x018809d,0x14a5fc4,0x01c3288,
  45857. 0x16814fa,0x1353cda,0x11560ea,0x17da8e1,0x0bf4b16,0x18181ce,
  45858. 0x0aabe34,0x0f951b5,0x08a518a,0x13ae6db,0x1ccc567,0x07029f5,
  45859. 0x0e738d2,0x1cfef50,0x02343d3,0x166a4e3,0x1ff032e,0x1304ee6,
  45860. 0x02ec2dd,0x07a9067,0x1ba8ea9,0x0a83d32,0x1609577,0x0830089,
  45861. 0x0a4a50b,0x05111f2,0x0795211,0x00031c3,0x0983230 },
  45862. { 0x1f3d5a6,0x10813ab,0x1734a28,0x10dd195,0x1fce564,0x0a8f9df,
  45863. 0x0e06c09,0x1e32b20,0x1935ebd,0x1366327,0x0ea9bac,0x0523810,
  45864. 0x0160611,0x047267a,0x062299a,0x1636b9b,0x173dd53,0x0ac0e1f,
  45865. 0x1ff1887,0x100952e,0x02fa78c,0x187d6e5,0x0c61d0c,0x0799e04,
  45866. 0x08da4c8,0x183fb80,0x169e691,0x0824543,0x115eb5c,0x069fa54,
  45867. 0x1826a38,0x1a0246c,0x0de157d,0x1695051,0x0ec997a,0x0a8bde8,
  45868. 0x188db28,0x11156f0,0x032ab42,0x13d245c,0x08abbe3 } },
  45869. /* 148 */
  45870. { { 0x02d2f01,0x034829d,0x0172d11,0x06bb8cd,0x127c319,0x1a5013e,
  45871. 0x02efc75,0x03ad521,0x15b50ec,0x0ed1a87,0x10b8980,0x08bc7e7,
  45872. 0x121d3dd,0x1c1b774,0x1b84742,0x12f39ec,0x08f474b,0x03f01c8,
  45873. 0x02e1e0d,0x0f8b733,0x1de919e,0x1f5e9e8,0x09d074f,0x1ec0b37,
  45874. 0x08e8d1e,0x123b1e3,0x04d9d38,0x173ff27,0x1e67f69,0x09f39f3,
  45875. 0x12075f5,0x15dd3c4,0x18dc326,0x0cc2634,0x1b6acef,0x0ea5e47,
  45876. 0x0f8fe8a,0x0f18d83,0x0ea57e5,0x1a187a1,0x00f15b4 },
  45877. { 0x10a8d85,0x1b31abc,0x0bc63cb,0x1dc4b2b,0x11bffba,0x1a8943a,
  45878. 0x1fb1892,0x0bba2b6,0x1323471,0x11cdb55,0x151075d,0x0532578,
  45879. 0x130cdd5,0x1b682c1,0x0003a93,0x1c6c0a9,0x152f6d6,0x190f7eb,
  45880. 0x04a4184,0x0fffca3,0x18cdc0b,0x12f7544,0x0da2960,0x13044cd,
  45881. 0x1ba9222,0x1d97676,0x02ef41a,0x0f15236,0x16b0cb6,0x16e025d,
  45882. 0x062c90d,0x195f1d5,0x17a99e7,0x102dde7,0x19b9c6a,0x03725a1,
  45883. 0x15993eb,0x068238f,0x1776efe,0x0f04070,0x0515db3 } },
  45884. /* 149 */
  45885. { { 0x15bef22,0x1f55537,0x1c4bb90,0x1040690,0x152d269,0x1d7b634,
  45886. 0x12139e8,0x0063c98,0x09a8c94,0x06a1a63,0x0626686,0x0e82a00,
  45887. 0x0c63e5d,0x1f47520,0x0e36ef3,0x10e42a4,0x0d29679,0x0653664,
  45888. 0x12b2f7a,0x16d5dc0,0x13ce73d,0x06dbfcc,0x0fda4ca,0x08bc669,
  45889. 0x19bbfad,0x11851fb,0x0df07c5,0x18a3d92,0x00a6de8,0x192fcd8,
  45890. 0x10d241c,0x025b057,0x1e6acb4,0x0cfe4a4,0x0db43b1,0x16b2036,
  45891. 0x1cf34e3,0x04db884,0x1300b2c,0x0fc357e,0x02de048 },
  45892. { 0x1d9d484,0x19179c6,0x0b3062d,0x06f8ef7,0x0334939,0x0c95c54,
  45893. 0x0e3c64f,0x04ab1b7,0x08e3fac,0x06bc6a8,0x1d29f60,0x1302e8b,
  45894. 0x1df0500,0x03be614,0x1caffb6,0x113f1a0,0x0f2c30a,0x1b3d5fc,
  45895. 0x0820835,0x0acfd53,0x173892c,0x17451d2,0x1096ac4,0x0aaa436,
  45896. 0x0faebf0,0x0f4e0b1,0x1ae53a9,0x1c389e4,0x11e546e,0x04ca1eb,
  45897. 0x0747905,0x087d17c,0x18183b8,0x1570592,0x120bbe7,0x008922f,
  45898. 0x13874a3,0x09d22bb,0x1e1b9a0,0x0e39885,0x06f6ac0 } },
  45899. /* 150 */
  45900. { { 0x1d6e3b1,0x01156a6,0x01a74e2,0x195ac41,0x1c78e1c,0x166f407,
  45901. 0x0e114b2,0x1c7cf08,0x0a8469f,0x10e60a5,0x1a3bc84,0x1b4fccf,
  45902. 0x088e8f3,0x069a3a2,0x00f45b9,0x063e9b7,0x1987986,0x19dd0ee,
  45903. 0x0931305,0x16b2ee1,0x101fdfa,0x031f6e3,0x07c284c,0x1b1fe50,
  45904. 0x1d6016c,0x1e4a324,0x0ef3156,0x04ce461,0x00412a2,0x0e302bb,
  45905. 0x1d80a86,0x0651f5d,0x119d5f1,0x1556ce3,0x1a7bd9f,0x0a4f972,
  45906. 0x119bafb,0x0129873,0x00b2fcd,0x199feb5,0x06e2c24 },
  45907. { 0x1af8793,0x18125d6,0x12398c4,0x0206b92,0x144bccf,0x1a805fc,
  45908. 0x19ade54,0x0cbd340,0x01d1167,0x0c8d4a3,0x04f1e1e,0x165d3fb,
  45909. 0x1595add,0x14972a4,0x14b00df,0x1cb9e0b,0x1189f03,0x1658a2d,
  45910. 0x16a87dc,0x1c91952,0x0e4f81a,0x0109ad3,0x080fc9c,0x1654faa,
  45911. 0x0f5a249,0x15195e7,0x000b5fc,0x0d0f520,0x0745b00,0x1914363,
  45912. 0x014bdf4,0x10ca0e6,0x1a8a875,0x0e2c79e,0x0210ba3,0x0b7c717,
  45913. 0x1bf1118,0x045f9a6,0x03e45ad,0x01b2f81,0x05af7fd } },
  45914. /* 151 */
  45915. { { 0x0a224a5,0x0dca87a,0x1ce957e,0x0998a04,0x0190457,0x1f8feaa,
  45916. 0x04cc190,0x10669f0,0x10e50f7,0x0b400dd,0x005c4a6,0x080712b,
  45917. 0x16866d7,0x12048e9,0x0690176,0x0dfcfb7,0x1df16a4,0x078f1bc,
  45918. 0x0efe45a,0x09527f0,0x0bca8d0,0x1a99590,0x0b9320c,0x0543821,
  45919. 0x134b1f7,0x0da4ce9,0x1f60657,0x1f7932e,0x014b5d8,0x1efffdd,
  45920. 0x1db2bac,0x0edb5e8,0x0fef022,0x1b97a30,0x17fb6d6,0x0497291,
  45921. 0x16dfb06,0x02e492d,0x152b946,0x1032c13,0x027a9c3 },
  45922. { 0x12a93af,0x1b9a378,0x0d35cf0,0x18aa6cc,0x028b707,0x00c9e88,
  45923. 0x1635526,0x13b1df4,0x0ef21b6,0x1c1d2e6,0x0283893,0x01474f1,
  45924. 0x1805cbb,0x12d89e4,0x00c5e05,0x0f09802,0x0582b73,0x17f5107,
  45925. 0x140d87c,0x0e2741c,0x02d9df9,0x07e8661,0x0c51268,0x0bc5c36,
  45926. 0x152e77c,0x0678c1b,0x16d9c11,0x1c89ad7,0x1e177a6,0x0f4ab99,
  45927. 0x08c04b7,0x011dc58,0x0b49669,0x18ca4b4,0x15047d7,0x1fb3760,
  45928. 0x0acd886,0x0c1638b,0x0491254,0x129f7bd,0x01c6906 } },
  45929. /* 152 */
  45930. { { 0x0880026,0x13e8b9d,0x17c976d,0x0024bb2,0x09c4f0a,0x165bd24,
  45931. 0x01544fd,0x14a520a,0x15cbbdc,0x15918e8,0x0f2f4cf,0x19332e5,
  45932. 0x1af8cff,0x16aad01,0x13bd352,0x0f85f96,0x1ca2286,0x0ca26a3,
  45933. 0x1ab46a9,0x110a901,0x104596d,0x1c65e45,0x1da95f3,0x0bcab40,
  45934. 0x1844b00,0x04beff2,0x0474628,0x1d3cfc3,0x123c745,0x1374294,
  45935. 0x0e655e8,0x0febb66,0x0867b79,0x1686468,0x02398ef,0x184aa68,
  45936. 0x089ad23,0x0b72eab,0x10ce456,0x1ad4a09,0x07b8c13 },
  45937. { 0x0fb6901,0x01d56a9,0x14ecbf1,0x122d944,0x1c0313f,0x0d56e30,
  45938. 0x00c2945,0x18428eb,0x07f577d,0x09e8c93,0x0f03772,0x1d1dee4,
  45939. 0x1a26e52,0x1f5cfb6,0x0783ae0,0x06eda5e,0x082f180,0x0ccbcef,
  45940. 0x020d24e,0x051d976,0x18e743e,0x0e51ce1,0x068b547,0x1c7ed6b,
  45941. 0x063a9a8,0x1383730,0x092e6cc,0x19e3b47,0x18915d4,0x0451697,
  45942. 0x049b94d,0x0a0a0f2,0x075e3e0,0x1c1fd2f,0x195c834,0x135dff9,
  45943. 0x0fd2fb2,0x16a9e64,0x1334075,0x1ecd2de,0x00e3c3e } },
  45944. /* 153 */
  45945. { { 0x1ee1d83,0x19be090,0x1e20ef0,0x1af0f6e,0x17e08f6,0x07d2674,
  45946. 0x07f304e,0x0b17ee1,0x1a0348e,0x17bbb23,0x199cb6e,0x15794ab,
  45947. 0x1d04f8b,0x1eaf62e,0x14a4675,0x124301d,0x1ff33e9,0x1c67325,
  45948. 0x12c166b,0x13f8ae4,0x12baac0,0x1cee2f1,0x141a0c7,0x0b5ed52,
  45949. 0x0267746,0x1fc1351,0x1b25fc7,0x18bdfcc,0x0087fd3,0x106b5e3,
  45950. 0x1ac5457,0x1551db8,0x1a39c5e,0x0f694d8,0x1aec39e,0x107bb02,
  45951. 0x1c3788b,0x009bb4d,0x09471b3,0x1c78125,0x0463098 },
  45952. { 0x0bd0fa7,0x00463e4,0x1924e99,0x039cd7b,0x1176431,0x1f7bdf6,
  45953. 0x18420a0,0x071c62b,0x199b5d9,0x109e63b,0x1269ae0,0x0b028b4,
  45954. 0x11af7f1,0x1294f26,0x03f6c3f,0x193ada0,0x177ce66,0x12ae9c7,
  45955. 0x0f52e54,0x0f99803,0x1986b4f,0x04d7b8f,0x0365d6d,0x0c9a015,
  45956. 0x19fcbcd,0x16b895a,0x12968ee,0x10c1ca0,0x1c89f11,0x102215a,
  45957. 0x07db65d,0x0f47c46,0x0d0c659,0x05d497f,0x10cc5e3,0x1cb0229,
  45958. 0x0698e11,0x13a6033,0x0e16b8b,0x1274691,0x07f8fd0 } },
  45959. /* 154 */
  45960. { { 0x19428af,0x0c96560,0x1997c91,0x0274610,0x192a1c8,0x05debf8,
  45961. 0x0604b8c,0x17284b1,0x1836c6b,0x06d8391,0x19261c4,0x03d2b31,
  45962. 0x0b9c7a4,0x1756b7a,0x1fc5e79,0x0588915,0x1b97586,0x1387c7c,
  45963. 0x1c8660f,0x16046ed,0x11526b3,0x0dcc732,0x09760fa,0x0a24314,
  45964. 0x126a8d7,0x0d31d96,0x0a75bc7,0x0a10503,0x081f749,0x0682d2d,
  45965. 0x1c637de,0x1c8d0e8,0x19ee559,0x1ec666b,0x095d9e1,0x0a40c19,
  45966. 0x08476c9,0x1d427fd,0x144c509,0x0a3cc86,0x087b64c },
  45967. { 0x130d3c4,0x037b2a5,0x1c521fd,0x184769d,0x0dec4c5,0x0526b46,
  45968. 0x11d998f,0x0db676e,0x1cf3fb5,0x0f9a134,0x1f51a87,0x13881fa,
  45969. 0x1dd4f13,0x1534d45,0x0df1f1d,0x1afa547,0x0c9cbad,0x0772b5a,
  45970. 0x12508cd,0x1fe6855,0x1da3b28,0x1d3c378,0x0011bf7,0x001905c,
  45971. 0x1149cb7,0x0cbe72e,0x0542599,0x1461df0,0x1f4bddc,0x0304fe7,
  45972. 0x1a11288,0x08924a4,0x12f65e7,0x10f9c07,0x14b3500,0x01cb6ca,
  45973. 0x042dbbd,0x154e150,0x18bd5df,0x0f9b380,0x08c9526 } },
  45974. /* 155 */
  45975. { { 0x1c1abb1,0x081972f,0x1d0d995,0x0825fc8,0x0215af5,0x182f7a9,
  45976. 0x1d580a7,0x1d3faca,0x1dc191b,0x0739992,0x18e6c2c,0x0cbd810,
  45977. 0x137ab3c,0x0e1f333,0x141fd44,0x0aaaace,0x1c3c861,0x0b1c5f7,
  45978. 0x0bc312b,0x03119e8,0x186d5d0,0x0e6c4b0,0x010e8c0,0x18ce83d,
  45979. 0x003f7b2,0x0e8022b,0x13e8f34,0x0ea8b81,0x00672ef,0x17fea52,
  45980. 0x177d84a,0x08b73d1,0x0197c9f,0x116ba2b,0x0df61e4,0x1f68a64,
  45981. 0x0b2d59b,0x09971d2,0x1a85afc,0x0e77094,0x08afa1b },
  45982. { 0x193ac70,0x0cb7573,0x1441acd,0x1dddedb,0x0c94ef8,0x0117202,
  45983. 0x13e89c1,0x0c724d6,0x0e9e5d7,0x0638ee7,0x0aab7f2,0x16e1ea2,
  45984. 0x1f352fc,0x1441cba,0x1ee84e2,0x0762636,0x190058c,0x0abcc89,
  45985. 0x1dd03f4,0x0412552,0x0697969,0x0d8b058,0x066b651,0x106f564,
  45986. 0x1438810,0x1b8de31,0x13c5d2e,0x0ddc238,0x1b80eb7,0x1fe0d58,
  45987. 0x0298446,0x0e1d88b,0x082bac8,0x09992de,0x049cc4b,0x11ddcc0,
  45988. 0x1240adc,0x08c58d5,0x024f2d0,0x12256b4,0x0672111 } },
  45989. /* 156 */
  45990. { { 0x15cf9bf,0x0c9837a,0x1b6647a,0x1148d72,0x1b04530,0x1d32efc,
  45991. 0x0787679,0x1775c78,0x1c731bc,0x09e58a8,0x1629851,0x044f49a,
  45992. 0x0214be5,0x0be3a66,0x16b248a,0x001ac73,0x045822e,0x1a687bd,
  45993. 0x18ac0f7,0x163aa38,0x0b2dafe,0x125d50c,0x0ec770e,0x056e9e1,
  45994. 0x07178df,0x119bf9e,0x1a25ada,0x19a6514,0x0e055ff,0x0a2a0ee,
  45995. 0x01fa57b,0x0d49c57,0x1fbc76b,0x0ee74cb,0x1fc7e96,0x03cbd8c,
  45996. 0x0c0367c,0x11b4566,0x08ff814,0x02ca9c9,0x07c8639 },
  45997. { 0x07388cf,0x0a5af65,0x14e157a,0x018066b,0x17cc0a6,0x17c2dd0,
  45998. 0x0de2d85,0x10136d3,0x1101229,0x02e8177,0x1429e5c,0x1d0039f,
  45999. 0x12565a6,0x1e8f71a,0x1d2a5b5,0x13b5bd6,0x0ed427b,0x1ae4419,
  46000. 0x1b54cc3,0x150a51c,0x0ee896e,0x158c692,0x0c36218,0x1f273ee,
  46001. 0x18ed59f,0x1294e69,0x0804180,0x121f934,0x03b3ff6,0x045c118,
  46002. 0x1a718b6,0x1baa568,0x042d7a4,0x096c9fe,0x1e8a32b,0x100df1b,
  46003. 0x0092043,0x11b0483,0x156b540,0x0b1f9d0,0x0325827 } },
  46004. /* 157 */
  46005. { { 0x19e8c60,0x0722f9a,0x061bac8,0x0a6c994,0x071bb8a,0x1c70886,
  46006. 0x141c77f,0x0f00562,0x14c93e5,0x1a748e9,0x0743601,0x1c01705,
  46007. 0x1ac0326,0x113541f,0x0648961,0x1413c78,0x0d5fb29,0x11c3d32,
  46008. 0x16b1720,0x147a69c,0x1a29caa,0x12d6d16,0x03b5a17,0x052ca1d,
  46009. 0x00267eb,0x179c939,0x05d8e00,0x0e30963,0x0b1aeaf,0x0e876fb,
  46010. 0x1748fd7,0x04bcc24,0x01fa347,0x1950d5f,0x1e74321,0x1fac50f,
  46011. 0x0c57c3a,0x1549e95,0x1d95926,0x0e2b7b4,0x01a4e6a },
  46012. { 0x14d1267,0x1376f2a,0x0d20684,0x0639a05,0x17f9453,0x18fd8e9,
  46013. 0x1c13338,0x025ae15,0x1097dc0,0x1a08585,0x1edb173,0x1a2e6d8,
  46014. 0x05930e1,0x0344884,0x0bfb907,0x0c71f20,0x0a779fb,0x19a4dd2,
  46015. 0x135be37,0x18b0435,0x0acea16,0x009703b,0x1ecee0f,0x003a29b,
  46016. 0x1033be5,0x16d35c6,0x0883cb4,0x0b27a8a,0x1f18800,0x0936cce,
  46017. 0x098dd49,0x13fd667,0x032351c,0x17a2b65,0x0ef07db,0x15b2268,
  46018. 0x15b9dc8,0x042bed9,0x1a0cb1d,0x1270b69,0x0856a7c } },
  46019. /* 158 */
  46020. { { 0x10a5583,0x1e80106,0x162a801,0x1bdb48c,0x0f1301d,0x0c9cdf1,
  46021. 0x1e590d3,0x06d2380,0x0a70c08,0x065b3c0,0x0795028,0x1f2b7d0,
  46022. 0x18c0b4d,0x0ea5645,0x0ef34d1,0x0c472d9,0x0d05475,0x12be297,
  46023. 0x00173ad,0x05b9483,0x0255cac,0x15bc9a2,0x0457b9a,0x193454d,
  46024. 0x1ef3124,0x13a1b36,0x1e304b1,0x1a772c5,0x1b7c3bb,0x078dbed,
  46025. 0x16eaad9,0x1c45772,0x00e4553,0x11dba1e,0x1aeb131,0x024811f,
  46026. 0x0a4da63,0x13b9891,0x16900f2,0x1098c6d,0x0628890 },
  46027. { 0x0b8d208,0x1fea9c6,0x1b52915,0x12a87e0,0x1a8f800,0x17f955b,
  46028. 0x18553cb,0x1cf6cdb,0x1f72517,0x0ed9475,0x0274b3f,0x1ccdf27,
  46029. 0x0e0149f,0x0c2dc46,0x1a1dcff,0x087eef3,0x10b0ba5,0x0229704,
  46030. 0x02c0ff0,0x136b9f6,0x177bdeb,0x05362f6,0x0c44d12,0x1f806e4,
  46031. 0x1f3cf8f,0x0251b04,0x15706d3,0x179388d,0x059be92,0x1df9c7d,
  46032. 0x04799bc,0x19b604d,0x196bf5f,0x1c47c89,0x0750027,0x07e3d8b,
  46033. 0x0ad9dfe,0x081a2b1,0x135630a,0x058b5b4,0x079d812 } },
  46034. /* 159 */
  46035. { { 0x0529507,0x0726755,0x1400535,0x08e8cab,0x056a081,0x07e23a0,
  46036. 0x028e13c,0x11d81a6,0x03443cb,0x14101f5,0x05ca362,0x1f612fe,
  46037. 0x1233c62,0x1a9077a,0x0e373f6,0x13a7d14,0x15d7cac,0x0507c86,
  46038. 0x1cf3a94,0x0f617f0,0x01cb28a,0x1d36362,0x14456b8,0x0702583,
  46039. 0x171daa1,0x03f51a8,0x1589354,0x0ba9774,0x18f42f2,0x0944bf4,
  46040. 0x1c6476b,0x12d4826,0x1d6b1e9,0x12dbbff,0x0496da7,0x0fa8d84,
  46041. 0x00c4f70,0x095a121,0x155eb1f,0x12b0284,0x02ab3af },
  46042. { 0x05372a6,0x103a635,0x0e9e1b2,0x1cac525,0x128fb83,0x1a0e7ab,
  46043. 0x05b71dd,0x13ae8ab,0x1520ef4,0x05a6750,0x1191c9c,0x1c68c3c,
  46044. 0x1d1472f,0x1fdc562,0x15af598,0x180e3e9,0x0c9c10b,0x0a37296,
  46045. 0x1c68d18,0x129dfc6,0x0877287,0x0c13b7f,0x092141c,0x1deb569,
  46046. 0x157739b,0x00af6d6,0x1cfc572,0x0985b3f,0x0395c32,0x0872c7c,
  46047. 0x1546225,0x1016d50,0x0e40996,0x001f0dd,0x08b22a2,0x1c9ea7c,
  46048. 0x039d25e,0x119fb08,0x0272abc,0x06a4a08,0x007db2c } },
  46049. /* 160 */
  46050. { { 0x17d4703,0x1dc6d81,0x02e71fc,0x1f8be91,0x083708d,0x18ea017,
  46051. 0x00c3e11,0x1d23f75,0x05a2faa,0x0af7469,0x13f07a9,0x1e20a80,
  46052. 0x11c2e5b,0x1516ab2,0x1f5409e,0x1ebf2c8,0x00c7eba,0x19bd29e,
  46053. 0x16cc2af,0x1e17652,0x13ba7ad,0x1f6b264,0x1698b87,0x1de94f0,
  46054. 0x018c0e2,0x027bffe,0x0534b34,0x073bb3b,0x00af021,0x1d5baf5,
  46055. 0x13c94fe,0x01fdf35,0x08100ea,0x0ad53be,0x0137218,0x12e98a7,
  46056. 0x1fe5206,0x143416c,0x15d672c,0x11f9efb,0x008b6ca },
  46057. { 0x16c3b5a,0x12df501,0x0d2f813,0x04ff3e5,0x1872610,0x1cbe079,
  46058. 0x095c0a5,0x14753f9,0x182879e,0x12b0c05,0x1c377c5,0x1376c0f,
  46059. 0x0715338,0x13d8704,0x08488f1,0x0ff8f33,0x0ec9d89,0x0868c04,
  46060. 0x05bb7c6,0x00e2352,0x1118947,0x158390b,0x1e3d4bc,0x111116d,
  46061. 0x129ffd1,0x0802ec5,0x15331be,0x1e3c458,0x04877fe,0x10b2f59,
  46062. 0x097100d,0x06a8f2a,0x1a95233,0x0a3457e,0x1085a18,0x11ac454,
  46063. 0x14faba0,0x021d83b,0x09f4974,0x0041a63,0x02c337b } },
  46064. /* 161 */
  46065. { { 0x022fa65,0x182de75,0x18e9ec8,0x09a2b3e,0x1e183ef,0x1ac91fd,
  46066. 0x161f4fc,0x0a668e7,0x0c11d77,0x13fd983,0x1533fec,0x1cd6540,
  46067. 0x19702e7,0x178c2b0,0x1a7e5f2,0x0a38a79,0x0434e7d,0x1c1aa81,
  46068. 0x0d5ab16,0x1c7b05e,0x1131a63,0x156bb22,0x019edf2,0x0e3f93b,
  46069. 0x1e6afa6,0x0bbf742,0x18ac1f3,0x1730bdb,0x1a51933,0x0c587fe,
  46070. 0x0d81f56,0x15285b8,0x10eca39,0x10c54d8,0x13b9418,0x142fe7b,
  46071. 0x06b7d5c,0x0a74688,0x0c724f6,0x069db10,0x0509b26 },
  46072. { 0x0caed54,0x0a0a724,0x1a5ec6e,0x1997ea3,0x17a78c6,0x14d92c3,
  46073. 0x0323537,0x0f148d1,0x091ee3d,0x01209be,0x1b99300,0x0469c61,
  46074. 0x18a68f9,0x040c86b,0x0c956f2,0x0d216ae,0x05fba80,0x020f470,
  46075. 0x10d53d3,0x071b09d,0x0816500,0x0b6fd29,0x0c63c0b,0x16c7fb5,
  46076. 0x19007cc,0x02ae23f,0x0fa62b9,0x13a901f,0x0e319d2,0x0e912e8,
  46077. 0x0652b11,0x004db6e,0x06f3575,0x0c3dce8,0x1880b0d,0x0ee6773,
  46078. 0x0c31772,0x041cc91,0x01d4889,0x14ea977,0x01592d5 } },
  46079. /* 162 */
  46080. { { 0x17453f0,0x06cd167,0x07c15de,0x15db078,0x0ffb899,0x1415d3d,
  46081. 0x01b4f82,0x1035cca,0x0ea3d50,0x164270d,0x0a8e2cc,0x1181021,
  46082. 0x019ad52,0x1e9be82,0x1f6c082,0x1c83f63,0x1e1d06c,0x13c6b65,
  46083. 0x19d2dfd,0x0fe1e05,0x1022d28,0x1ae21dd,0x1d73495,0x034e367,
  46084. 0x0f2f3f8,0x1fa3694,0x1718cf9,0x0cb763e,0x1c580ee,0x1e0e627,
  46085. 0x094cb97,0x176f60f,0x155539f,0x1579d66,0x11c70f2,0x1b6b528,
  46086. 0x0cc22d2,0x0c5efa2,0x1ddf2e5,0x17aef44,0x01614bd },
  46087. { 0x10ab04d,0x1811876,0x0ba9307,0x00dc410,0x0e347b0,0x162dafd,
  46088. 0x0f18f10,0x06b3e21,0x1de0199,0x029cf37,0x142096c,0x09cecbb,
  46089. 0x16d89bd,0x1de76d0,0x0983fbe,0x1946524,0x15ce62a,0x1c5553a,
  46090. 0x1b20b17,0x0c5f52b,0x0768ed7,0x008c328,0x0679930,0x05c6919,
  46091. 0x16245c9,0x0b42bee,0x1cc7a9b,0x1b7114e,0x1447360,0x095583d,
  46092. 0x1fbbc00,0x02e3ae1,0x1356b94,0x048d85c,0x18a00fe,0x05cd160,
  46093. 0x179c20a,0x0a529d5,0x01ca0e9,0x18f6016,0x0489656 } },
  46094. /* 163 */
  46095. { { 0x1353c25,0x124dd38,0x189390d,0x0227ecf,0x117f27a,0x0f5cf1a,
  46096. 0x0cce870,0x1f2217a,0x078e29b,0x070e02e,0x0fc5765,0x1b2e8e8,
  46097. 0x1084fe7,0x086d16f,0x01d2422,0x077c339,0x1a75367,0x0c1201f,
  46098. 0x0eba86c,0x1ebb683,0x0ead7eb,0x1a920c0,0x13f82b8,0x1ea187f,
  46099. 0x1873fc2,0x06c8e8a,0x19c1987,0x0d0a35a,0x1e8c2c1,0x146cd28,
  46100. 0x06600a5,0x1c02c21,0x1d1a9cd,0x1f52b73,0x1226a29,0x10562a7,
  46101. 0x06e3c49,0x00dbc48,0x0772db5,0x1d3aced,0x0082bb2 },
  46102. { 0x0d6615f,0x077a362,0x0a71860,0x0203730,0x1c629dc,0x1932657,
  46103. 0x0bb003e,0x189bc44,0x010ecc2,0x0a2bf03,0x08b1371,0x133e3dd,
  46104. 0x0c95ce5,0x07ce2d9,0x0cfe9ca,0x021f208,0x062cd63,0x1f701aa,
  46105. 0x18b8894,0x0af8779,0x1e4484c,0x0d4b6c3,0x1b23b0c,0x0a58b4e,
  46106. 0x1e393a4,0x11a985f,0x02811ec,0x0b25628,0x18545ec,0x1f0c600,
  46107. 0x119ef62,0x0b82f18,0x14e0107,0x1802dbc,0x0518b88,0x06908e3,
  46108. 0x022a54f,0x12f11bb,0x0410899,0x08d2039,0x036451a } },
  46109. /* 164 */
  46110. { { 0x1893e71,0x0168c0c,0x02085e0,0x16a7344,0x01765d8,0x01767e5,
  46111. 0x1a8048c,0x13bf8d5,0x1365bf5,0x0a67a8d,0x0caa023,0x1ae41a4,
  46112. 0x0787741,0x0c74021,0x0d0facc,0x073d958,0x12fe747,0x12a9f65,
  46113. 0x0a2c1f2,0x14f3503,0x0b3aaec,0x112b7a5,0x0227fcc,0x143a3ee,
  46114. 0x1d7293f,0x10b2f4a,0x1bd8aa6,0x0c0ad35,0x08ddc22,0x1119550,
  46115. 0x12979dd,0x036f76a,0x1fabec3,0x0ab73c9,0x0559d0f,0x1e91441,
  46116. 0x0b0ebef,0x0e6d897,0x1f3c5d2,0x148d371,0x0705307 },
  46117. { 0x088310b,0x1260272,0x15edea3,0x04a64b9,0x12726e3,0x01f7d60,
  46118. 0x162c126,0x026ba1f,0x002ddb9,0x0b72a96,0x05a171e,0x07eeef7,
  46119. 0x030eeca,0x18af925,0x1d9ba26,0x192f336,0x0d648ef,0x03e139b,
  46120. 0x000871b,0x032d0b5,0x11ea3d6,0x1c50597,0x1f8cf89,0x0edad61,
  46121. 0x09879b6,0x05f4ae3,0x046bd38,0x00e8e63,0x04ee55a,0x1af89b6,
  46122. 0x0e68bea,0x0b3cbe7,0x138b8ff,0x17f3734,0x1690e72,0x003c229,
  46123. 0x0a6ad12,0x0caf61b,0x0abb325,0x1a0afcc,0x080f79b } },
  46124. /* 165 */
  46125. { { 0x0af09b3,0x1a153b0,0x1850f3b,0x1b267bf,0x1c016eb,0x02f5541,
  46126. 0x1c783b6,0x192e419,0x1ceaa3b,0x07af4cf,0x01be5f5,0x13a56e2,
  46127. 0x127216b,0x04b3456,0x1cd30db,0x0ca3ecb,0x0bc5b0c,0x1547dc1,
  46128. 0x0bf6937,0x085e39e,0x059e20f,0x16690fb,0x1acc6ac,0x07a2c31,
  46129. 0x176c7a1,0x1f2dbd3,0x08e198a,0x1888204,0x108e0be,0x0d38656,
  46130. 0x0032097,0x0045803,0x1299079,0x1cffecc,0x1680abb,0x00ec477,
  46131. 0x15c58b5,0x027a79f,0x1fc677a,0x149b049,0x05f5a5d },
  46132. { 0x08311dc,0x192bf3f,0x04d95cd,0x028cd9e,0x1ef94f5,0x0e510d6,
  46133. 0x05916c1,0x06f4e7c,0x002e4ab,0x0754d9e,0x04596ce,0x15930af,
  46134. 0x047760e,0x012580d,0x1f7411f,0x0ab09bf,0x1d13fb9,0x10c46a7,
  46135. 0x15522f6,0x1871704,0x1cacfaa,0x182cf4e,0x069e69b,0x144e01e,
  46136. 0x1720f09,0x1244c1f,0x13ee29f,0x19774aa,0x01fad58,0x0cb423d,
  46137. 0x178e286,0x0b57ad6,0x1856547,0x0b76108,0x14c7cdc,0x16ea227,
  46138. 0x0212907,0x08f3c0a,0x162244e,0x0021b82,0x05319c8 } },
  46139. /* 166 */
  46140. { { 0x161c3af,0x009b735,0x0da08c8,0x1c0f697,0x1d40f2d,0x064bf80,
  46141. 0x1b9fce0,0x074ca3b,0x06a8c31,0x0bc5d38,0x072842a,0x0fac402,
  46142. 0x1b22c58,0x158fa22,0x0ee8862,0x089cc91,0x107e504,0x0c62f57,
  46143. 0x10bf33e,0x13e0548,0x093d554,0x179ec02,0x09591d1,0x1808b22,
  46144. 0x04f6179,0x043a169,0x02af722,0x0c01f43,0x138f8f1,0x10056f6,
  46145. 0x11972e1,0x12475d6,0x0bf9b90,0x02bc552,0x18d4787,0x09ac7fd,
  46146. 0x0bb9ea1,0x04e2d67,0x13fc3cf,0x09be234,0x03d1331 },
  46147. { 0x0513d1e,0x03316da,0x0af7973,0x0baab2a,0x1e78a8c,0x1c36856,
  46148. 0x1e8ff9f,0x18bd146,0x07a04f0,0x1168952,0x1741b32,0x0dc85c4,
  46149. 0x114c669,0x1909b03,0x1851a62,0x1c396a4,0x01b89f6,0x17a6938,
  46150. 0x03bf657,0x1ac2ef0,0x0907aaf,0x0262ddb,0x19b5ceb,0x01b66b5,
  46151. 0x074ac42,0x1d024f4,0x13c9d47,0x02c63bc,0x1a2edd1,0x199b50f,
  46152. 0x136ca7d,0x16ffaf2,0x0406864,0x1c95326,0x074f88b,0x0ce7964,
  46153. 0x0043cc7,0x1482731,0x11ab7ab,0x13f6645,0x067f28a } },
  46154. /* 167 */
  46155. { { 0x0148ab5,0x1d92c65,0x0145f05,0x1f678c0,0x19a1976,0x1946fcd,
  46156. 0x01a6323,0x02fd44c,0x0e8d450,0x1d9663a,0x02908a1,0x06520af,
  46157. 0x1237257,0x0bdf639,0x157b894,0x1778903,0x1cf1d48,0x16ba08f,
  46158. 0x01fd73f,0x02fcd69,0x0e1b462,0x02a0f5c,0x12c01eb,0x0b40191,
  46159. 0x057a6e0,0x14ce20e,0x0f4be7e,0x1f2a9a5,0x141cad1,0x0aeda04,
  46160. 0x074dc2f,0x07052a1,0x087879c,0x052f772,0x154973b,0x1c9826e,
  46161. 0x1d3efb9,0x17bfd27,0x0f6cba3,0x0e837a3,0x05ff091 },
  46162. { 0x19c6632,0x089522b,0x0055e46,0x1f71441,0x1b19a44,0x0b1ce9d,
  46163. 0x1ee114d,0x19de9f2,0x1bc3c9b,0x0bf15e5,0x1990439,0x1e57e33,
  46164. 0x0d122b3,0x09abecd,0x0062768,0x1fecc3e,0x1bb79e5,0x033aab9,
  46165. 0x1cbcf13,0x1cb931d,0x0731444,0x1002688,0x15bd878,0x0ebac6b,
  46166. 0x0366fac,0x19186fd,0x18b2153,0x1f88f90,0x10850b9,0x121f056,
  46167. 0x0cb012b,0x05ee418,0x0e94f64,0x1de4eae,0x19969d4,0x06cfdf5,
  46168. 0x10373a6,0x1e9869d,0x0591b09,0x07452e4,0x0668101 } },
  46169. /* 168 */
  46170. { { 0x04509df,0x0ec89f4,0x0dd84e1,0x1b9e672,0x0978bed,0x11d0a47,
  46171. 0x0974cd0,0x0f25be8,0x1ee8cb5,0x1fd0571,0x1154f10,0x0d3a638,
  46172. 0x08f0153,0x0fdf8ea,0x13c22ef,0x048940b,0x1e69444,0x1d6ffa5,
  46173. 0x0d7768c,0x06bf034,0x0b7c016,0x04f3b7d,0x0217225,0x0e6ef06,
  46174. 0x1fcde16,0x06925eb,0x128953e,0x1b196a5,0x1ec985f,0x0533209,
  46175. 0x131885a,0x0f5204d,0x0db9741,0x0f0dbf9,0x1959438,0x1c72c5d,
  46176. 0x13beffd,0x1051a36,0x0ac7efb,0x05e17bf,0x03b35b7 },
  46177. { 0x15c3749,0x06f4fa9,0x1122ffe,0x1f15bb3,0x03c1f20,0x1c7b319,
  46178. 0x0cdef23,0x09352eb,0x1e8f3ae,0x094f23a,0x1898a09,0x01aa3ab,
  46179. 0x1dc32f1,0x13c3178,0x1034a5d,0x17c6cb5,0x138854c,0x109e3c9,
  46180. 0x0d9f918,0x0009de9,0x0ee148f,0x0872e88,0x1e8de85,0x1051141,
  46181. 0x0778dd2,0x1a6a4ba,0x1b3edcf,0x0d0614c,0x0049529,0x000983c,
  46182. 0x0527d11,0x12ec16d,0x033c709,0x1ae4cc1,0x129496d,0x1906819,
  46183. 0x0771f99,0x117205e,0x11a14fd,0x1d79b2b,0x047d0a1 } },
  46184. /* 169 */
  46185. { { 0x12811f1,0x1a7ffb2,0x000899b,0x06c5de6,0x0aacaa9,0x05d0657,
  46186. 0x1e95543,0x0ced870,0x0007f54,0x1a80a15,0x1c99ce8,0x0054405,
  46187. 0x05c7fd1,0x19ee373,0x0bb95c0,0x0c7b2bb,0x0c3064a,0x1303417,
  46188. 0x18ac947,0x1e17608,0x16e746c,0x12aed49,0x0380c32,0x084cb6a,
  46189. 0x060f243,0x07ae43d,0x0da6d3a,0x0c6f657,0x17770a9,0x1ac63d6,
  46190. 0x099807e,0x1da742b,0x12147f6,0x0f4b08f,0x1578a65,0x0c0b68f,
  46191. 0x03213a1,0x0654d9c,0x0a1732c,0x094932b,0x08f4b61 },
  46192. { 0x14eb3c1,0x0760ca5,0x09c16aa,0x0840647,0x0c549ac,0x1663554,
  46193. 0x04c893d,0x14601a9,0x145f9a5,0x129dcdd,0x1eaeec3,0x0220112,
  46194. 0x10e46ef,0x0bd66be,0x01cf95f,0x16b11fd,0x1e50f7c,0x0be7e67,
  46195. 0x01555f4,0x0a7acb9,0x12e20ea,0x0239447,0x1f767ad,0x1d6d151,
  46196. 0x1edfac0,0x1065596,0x002180e,0x104428e,0x1eb06c5,0x0344807,
  46197. 0x0b1a519,0x04bcb95,0x04cf5bf,0x08d74c0,0x01627f2,0x1db0ab3,
  46198. 0x13c45ea,0x09bc58b,0x06007b6,0x004a499,0x08f942d } },
  46199. /* 170 */
  46200. { { 0x0845808,0x1618147,0x1f147c7,0x156ef57,0x0302bff,0x0cbee3e,
  46201. 0x152e7e3,0x0964d5f,0x03aac59,0x09d41e2,0x165370f,0x17a2ce9,
  46202. 0x1ce3b74,0x0552c88,0x192dcdf,0x059a488,0x173871c,0x131492b,
  46203. 0x0d1103f,0x1e490a7,0x0d7d419,0x19f0295,0x1769a83,0x0d90d81,
  46204. 0x080d684,0x1a13229,0x0be0c93,0x04ad13f,0x0f117aa,0x08f403e,
  46205. 0x0df1d2b,0x11bb93b,0x026dea0,0x1e42eab,0x0dce59b,0x06a4c40,
  46206. 0x13b1eb5,0x16abe1f,0x06b2f82,0x0a52938,0x0383002 },
  46207. { 0x0744723,0x1ad202f,0x120683b,0x0a35c10,0x1b5bcf7,0x00fbb7e,
  46208. 0x16333fb,0x18d57f5,0x1fab37f,0x1d2ec18,0x1b6de3e,0x049191f,
  46209. 0x10be39e,0x16c9f98,0x13eb57e,0x0b8494b,0x11e913d,0x0ba3fed,
  46210. 0x1462dfd,0x148f928,0x0327052,0x163e7da,0x0788235,0x1ca717d,
  46211. 0x1cb9c70,0x08b589a,0x056ec5e,0x0c6a4eb,0x1106c73,0x1c402d9,
  46212. 0x01a8b01,0x1841376,0x0d42a06,0x08256e9,0x11c74f1,0x096a4b6,
  46213. 0x022ce03,0x1a59b44,0x0169727,0x12dd683,0x015f187 } },
  46214. /* 171 */
  46215. { { 0x0ee4684,0x0f50305,0x0f20253,0x0cf9b7b,0x02b21f0,0x09898ca,
  46216. 0x18526c6,0x14d4873,0x181a7db,0x125eea0,0x0ba03fa,0x0e0c785,
  46217. 0x02c6213,0x09411ee,0x02c259c,0x023636b,0x1158326,0x03a21ea,
  46218. 0x0f080e1,0x0df0622,0x12d22e1,0x0b15ecc,0x0338813,0x0327116,
  46219. 0x1bcd6f4,0x063a4ce,0x1474dde,0x125bda3,0x1dae734,0x0ba7e2e,
  46220. 0x166756f,0x13296c4,0x0813d52,0x165346a,0x13d83a1,0x18323b3,
  46221. 0x13e9c2a,0x10bcf57,0x048e158,0x1e73fdc,0x06146f1 },
  46222. { 0x18e2aa6,0x1699f03,0x0996f41,0x0f3bdd2,0x093af7f,0x1207423,
  46223. 0x03e076a,0x0fdaadc,0x09b9a40,0x0fdddc4,0x0654641,0x15b9dbd,
  46224. 0x19dcf44,0x0496dd1,0x1c7e34c,0x0ee96fe,0x1a54231,0x1b3adae,
  46225. 0x17d817a,0x0d44a34,0x1a9e745,0x17c3d1c,0x040c752,0x168e97b,
  46226. 0x1000605,0x148eda1,0x0ad996a,0x1b4bb7e,0x11eeb4b,0x1efab31,
  46227. 0x1617468,0x0c46ef8,0x08149ef,0x085ff81,0x13a5a17,0x1c5c35e,
  46228. 0x02a465d,0x15043ac,0x0014383,0x13c0d7a,0x095543f } },
  46229. /* 172 */
  46230. { { 0x1d7c6ef,0x1e37a42,0x1093df2,0x1ac7637,0x0ad8084,0x065d316,
  46231. 0x13a22fe,0x125bf21,0x0b455c1,0x0725b43,0x1f1bb66,0x11aaee9,
  46232. 0x176146b,0x1d71003,0x188e279,0x04a52e1,0x07961c2,0x0a920e2,
  46233. 0x021397d,0x042a207,0x02737d2,0x110bf14,0x15b4833,0x04ce9f1,
  46234. 0x19f514f,0x0edf188,0x15c3004,0x0a8b20a,0x1b760e8,0x1aecfe7,
  46235. 0x0677ead,0x13d1854,0x146362a,0x0a593ca,0x1e2929f,0x1896da7,
  46236. 0x0e5d698,0x0438827,0x05bfe97,0x0f05745,0x06db434 },
  46237. { 0x03f0d95,0x03249ae,0x0254192,0x049ce91,0x0917db8,0x179f224,
  46238. 0x17d89ac,0x097ee7f,0x02b7f57,0x1076e2a,0x0c9c8f1,0x13455ee,
  46239. 0x0cbe1c0,0x1e5688a,0x0d19a75,0x15ff2fa,0x00a321a,0x04b2330,
  46240. 0x1433587,0x1c5775d,0x150eb94,0x00ef623,0x019b869,0x1513eb1,
  46241. 0x0990db1,0x149d0df,0x13c9d65,0x073c9ad,0x00dddfc,0x1bc0607,
  46242. 0x104473e,0x1b33914,0x0afcd7f,0x0182878,0x0b6db87,0x099d7ff,
  46243. 0x16d2c6e,0x1cc0d84,0x1ea513c,0x1ce55c4,0x007a791 } },
  46244. /* 173 */
  46245. { { 0x09f0300,0x148238f,0x04139c3,0x13799bf,0x00253ad,0x02983c7,
  46246. 0x0a277fc,0x0c4a380,0x0ae8934,0x0f78497,0x11a117c,0x1235490,
  46247. 0x142c90a,0x18ed6a5,0x11bb683,0x0cf6432,0x0f333df,0x0783b28,
  46248. 0x0c56805,0x1311b61,0x10f9c6e,0x175aa17,0x1cb8319,0x1806f1e,
  46249. 0x16311e0,0x086aea5,0x0aba1a5,0x09175b5,0x1f1c8f5,0x11c6d9a,
  46250. 0x151a005,0x1289a35,0x09e3216,0x18e9909,0x0b21011,0x1d32a37,
  46251. 0x05e94dd,0x0614f9c,0x1b2b00f,0x05c8a87,0x06d6acc },
  46252. { 0x1b2d299,0x0cf4aab,0x0737ae6,0x17c7ae4,0x1a2bcd9,0x065a221,
  46253. 0x0e13eed,0x1545cc0,0x1dc060f,0x10bbb84,0x01f37ab,0x0da7193,
  46254. 0x0d74f0e,0x083b7df,0x08df3e0,0x1f7ff34,0x1137983,0x034d78a,
  46255. 0x08fe561,0x1ef43a6,0x03986c3,0x07b6db2,0x0f8872b,0x0e07b24,
  46256. 0x0134f96,0x1bb3e6c,0x1ee0e4f,0x0eab131,0x0252220,0x145e174,
  46257. 0x1f06d6c,0x0f24954,0x18799c1,0x13d455b,0x03ca050,0x043b66f,
  46258. 0x1f28949,0x1228d8f,0x11bbb56,0x0247a78,0x079d182 } },
  46259. /* 174 */
  46260. { { 0x09d5589,0x16ffc88,0x126468f,0x0805368,0x1ed52eb,0x1aa56fe,
  46261. 0x074c2d2,0x0ce27d7,0x1a27bff,0x1c90a60,0x03d1813,0x1dcecfe,
  46262. 0x084c817,0x01d2871,0x17e360f,0x0c46f75,0x1c99402,0x0e2ee01,
  46263. 0x19991f0,0x12b0372,0x07f35f2,0x04c5034,0x042da82,0x0c68a2e,
  46264. 0x07cec31,0x0c4573c,0x158b9d4,0x0003b74,0x02c3fb2,0x10d3a2f,
  46265. 0x0555753,0x16cfa67,0x1cacdeb,0x021775f,0x1e72f1a,0x1743415,
  46266. 0x1e88580,0x0c85159,0x1372141,0x1234f09,0x0731044 },
  46267. { 0x048d676,0x1166f93,0x0ac5132,0x0a9e362,0x1a85eca,0x0070f5c,
  46268. 0x0b250a6,0x112373b,0x11ac8aa,0x1869b84,0x078657c,0x156f8e3,
  46269. 0x1773072,0x17b81bc,0x1463208,0x0cfed74,0x014ac00,0x1d60487,
  46270. 0x1734a49,0x19f8e11,0x1a630e6,0x1110f3e,0x13d6227,0x0e38f8c,
  46271. 0x0a40b83,0x064da55,0x0a3de1e,0x1f3b57c,0x0caf3f1,0x16b5ec2,
  46272. 0x04bde2b,0x13c1c3b,0x039dd07,0x0126e1e,0x17ec489,0x12d017c,
  46273. 0x0bdc009,0x0d90a68,0x1153fd0,0x192a301,0x06a8f8f } },
  46274. /* 175 */
  46275. { { 0x1235132,0x0f6b1a9,0x022d8a8,0x02b3b75,0x1db233f,0x0f7eec0,
  46276. 0x15148a4,0x15d0ac4,0x1b25111,0x1a8294b,0x006f631,0x15f23ae,
  46277. 0x1db5921,0x0bba7a2,0x14175ca,0x0e7ff69,0x05ef18e,0x0371ea6,
  46278. 0x066cc0e,0x1b30bf1,0x1558897,0x1de44d8,0x02a70c3,0x0263039,
  46279. 0x0d1a34d,0x1071e49,0x08888cc,0x125d0d7,0x0eed022,0x0a6100e,
  46280. 0x07f3c91,0x0b07e61,0x1a45f74,0x1e8d193,0x00b2b43,0x10eb4c2,
  46281. 0x0b9c753,0x07a2e96,0x0ff5f6d,0x183b650,0x04752d8 },
  46282. { 0x1dff4d5,0x0b6756a,0x1fd1453,0x168b504,0x14cd5fd,0x0389af3,
  46283. 0x098313f,0x11c20e1,0x01be577,0x1605dbc,0x11ac237,0x059ab1b,
  46284. 0x16271e1,0x0a5e124,0x194226d,0x131596e,0x0636190,0x136ef96,
  46285. 0x1d4a20c,0x1d758cc,0x0af1fd6,0x12e1284,0x1aa8b40,0x19f83e1,
  46286. 0x0cda84d,0x1f009e1,0x0115442,0x18f06d5,0x0868011,0x14468d4,
  46287. 0x114e411,0x15f5e4a,0x03132aa,0x05446b2,0x15dca0c,0x0092d0a,
  46288. 0x0744b47,0x0a48e54,0x015495a,0x1e6ebf7,0x03a6518 } },
  46289. /* 176 */
  46290. { { 0x04042a0,0x076a811,0x079aaaa,0x0048a5e,0x0cb4e3b,0x0108ec3,
  46291. 0x17d31da,0x07fdb94,0x1ef4d5d,0x107f1fc,0x151b953,0x0548a45,
  46292. 0x1533a8e,0x18a233b,0x063887f,0x1a036b3,0x10ef592,0x08a4b62,
  46293. 0x0e99dce,0x00985f0,0x1f00691,0x05a395d,0x0a19c2f,0x062ef7a,
  46294. 0x083b250,0x1514754,0x15f49c4,0x0bb1780,0x19c994c,0x098bda1,
  46295. 0x1fd07be,0x1b9b435,0x001d3a8,0x07b7dcc,0x1ad5c0e,0x01ad0dd,
  46296. 0x1bfbf82,0x062e687,0x1605fa0,0x0c7db84,0x0540ac3 },
  46297. { 0x07f43df,0x0b4d4ff,0x19329c6,0x1058373,0x0665380,0x0e148bf,
  46298. 0x1df6216,0x0095b2c,0x196aa44,0x1654aa2,0x0a5f6ae,0x0abffe2,
  46299. 0x1e0e9d8,0x115753e,0x18625ec,0x07f1c3e,0x0fd36f1,0x1cb76e6,
  46300. 0x1b88037,0x1a60e02,0x08a4627,0x1b64c4c,0x1ca7c1c,0x1e463a4,
  46301. 0x05e6097,0x1a94af1,0x0fd8121,0x1efe443,0x19b299a,0x1304a00,
  46302. 0x16759a0,0x04d6963,0x199de09,0x0ebd18e,0x1d986b3,0x13d88f9,
  46303. 0x0ebe15e,0x14f959b,0x05d3d37,0x1d9f42d,0x017db32 } },
  46304. /* 177 */
  46305. { { 0x0f40599,0x1b48cb6,0x03a9d7b,0x1601804,0x1ea10df,0x157b3cb,
  46306. 0x0b9eff2,0x0f07b4b,0x188ddd6,0x0b31e51,0x0f3f343,0x11fc4ab,
  46307. 0x1e5a21f,0x11a25e3,0x10fd4e3,0x00c65d3,0x11d548e,0x09afb15,
  46308. 0x0f1b993,0x1e484a8,0x1627654,0x13134c9,0x11d569e,0x1e82649,
  46309. 0x1c5f7b0,0x079d1db,0x04e8860,0x0ad2fef,0x01675b0,0x0fd88f4,
  46310. 0x1d5b3e1,0x1ca6851,0x13cdb35,0x1458136,0x16454b4,0x11c7542,
  46311. 0x17a3fb7,0x03812af,0x11176a1,0x0374328,0x0460bd0 },
  46312. { 0x04d8077,0x06e11e1,0x14b2f0d,0x0098e41,0x02f4b58,0x0e8fff4,
  46313. 0x0a445bd,0x1c5453b,0x092783c,0x1c57a90,0x012bcd5,0x03576b2,
  46314. 0x10e29f5,0x1bd508c,0x115c35f,0x1bbe08d,0x1ba571b,0x0a52917,
  46315. 0x1a26ed4,0x1c540d5,0x044dbf4,0x062cf9a,0x1e66cd7,0x1984aae,
  46316. 0x0836726,0x0bbe181,0x16bf3b0,0x0949d30,0x16cbd09,0x1ee5be1,
  46317. 0x1deb6bd,0x0eba720,0x131b787,0x1125e76,0x013cb4f,0x16a5ad2,
  46318. 0x1f95421,0x0513348,0x01e3717,0x0782e69,0x07d342c } },
  46319. /* 178 */
  46320. { { 0x1fd127f,0x1960508,0x117b973,0x10233c9,0x06d36bb,0x1ab561b,
  46321. 0x0c949bb,0x0eac435,0x0e54306,0x067f577,0x1a5864c,0x0fa5587,
  46322. 0x112ede2,0x1c7e733,0x04d44eb,0x0987ac8,0x01b075f,0x030ace3,
  46323. 0x041a766,0x0fdfd2b,0x0ea9d44,0x14753b5,0x0be35bd,0x0b7a2c9,
  46324. 0x1c61b0f,0x1cc562e,0x187a22e,0x175688d,0x092320d,0x058b0dd,
  46325. 0x195862e,0x0f13130,0x0eafb3c,0x1bf4150,0x130b022,0x1618f57,
  46326. 0x00d160b,0x184db71,0x18e9c43,0x14d1c98,0x05be0af },
  46327. { 0x1bbf49c,0x1b69c0d,0x0ffa0aa,0x13180e0,0x1e09ce4,0x07a1319,
  46328. 0x02d7784,0x065d94b,0x1da5a45,0x0e632c0,0x03dedf6,0x10edec3,
  46329. 0x0707e18,0x1287bff,0x066978c,0x10d7c08,0x090de6b,0x0dd8d4f,
  46330. 0x1cd645a,0x14fbd66,0x1b2c584,0x04a8a4e,0x0e3acd2,0x1d75770,
  46331. 0x06a33b0,0x1490a2a,0x030be22,0x00cfe16,0x0db0190,0x0ff3851,
  46332. 0x0faf783,0x18c7cde,0x051b06c,0x037d6dd,0x1ee7a48,0x1543224,
  46333. 0x1e80dc0,0x15af43f,0x0c2bb93,0x1eba9bc,0x01e6fcc } },
  46334. /* 179 */
  46335. { { 0x08ac924,0x0ffb355,0x0fa2d5f,0x0385316,0x06e9ad3,0x1d84060,
  46336. 0x18ca597,0x07fa281,0x11d95c9,0x0d5908e,0x0032a9f,0x1085143,
  46337. 0x096d68d,0x1106f6b,0x04a5022,0x08c3e35,0x15338df,0x1540a8b,
  46338. 0x03aba4c,0x0c095cc,0x0c0bff5,0x04bed72,0x0406e79,0x04c5d13,
  46339. 0x1a97fde,0x0c1a2b9,0x13c4212,0x1ad3b34,0x124f1de,0x0117b23,
  46340. 0x17e3fe8,0x1d50b42,0x1f1c2e4,0x09bca6a,0x13a4051,0x1a98c4d,
  46341. 0x1f0907d,0x02066b5,0x0a0de01,0x0c2bbb5,0x04522d4 },
  46342. { 0x1fbe7c5,0x0f83cf5,0x111a225,0x1b09de6,0x10ea1de,0x10d5cb1,
  46343. 0x07adb52,0x0d0e2d5,0x050a30c,0x1252e91,0x0eeea86,0x0638008,
  46344. 0x155a166,0x080872f,0x041d409,0x00aad7a,0x09d3d8c,0x0dfff1f,
  46345. 0x1ddc906,0x0616300,0x029731b,0x18425c1,0x043fdfb,0x0343187,
  46346. 0x17d75f2,0x07c0061,0x15596ee,0x11a14c6,0x03bceb1,0x0d1522f,
  46347. 0x036eb07,0x047e161,0x038e90c,0x02d628e,0x0a897ef,0x0de3743,
  46348. 0x1da71fc,0x0a92b5e,0x102e827,0x152dafc,0x0346501 } },
  46349. /* 180 */
  46350. { { 0x02b0f1d,0x1224666,0x1c0e1af,0x1358986,0x03eb45c,0x04b5dff,
  46351. 0x1d9767f,0x1b4a70f,0x15ae27f,0x179e274,0x0602273,0x0eec378,
  46352. 0x01a008f,0x11650c5,0x1d28210,0x066e3e6,0x04253b7,0x0774414,
  46353. 0x13024d5,0x1f8db0f,0x0d6bcb6,0x0db0a4b,0x01227b0,0x1c64b89,
  46354. 0x029b949,0x0b35496,0x09ef7b0,0x0b8d94a,0x0a28131,0x07776e7,
  46355. 0x13e5511,0x074422a,0x0683eb3,0x030e79a,0x1e634e4,0x171f64d,
  46356. 0x06c940b,0x1845540,0x125b70e,0x19fcaa9,0x07c1d42 },
  46357. { 0x0110aa7,0x1381fee,0x0de1d9b,0x0fe6c5c,0x0b7b79d,0x16e51e5,
  46358. 0x11d756a,0x0e7a4b3,0x160be33,0x137653c,0x13a3fca,0x14960d8,
  46359. 0x1ff4744,0x19db82d,0x010b33b,0x096a765,0x1aaae30,0x00d1d7a,
  46360. 0x0cb4c6e,0x1f44023,0x08d97bb,0x1d25f74,0x112e9ba,0x0b97073,
  46361. 0x165ce56,0x074169a,0x1b6bdfb,0x09010d2,0x1597452,0x0673f34,
  46362. 0x0dcb1f3,0x1d29f30,0x1d6eb3c,0x0d19377,0x133ce04,0x0c14676,
  46363. 0x1ffa93a,0x101fa1f,0x0764050,0x050e786,0x0031e98 } },
  46364. /* 181 */
  46365. { { 0x05a17ff,0x1f67e3b,0x09953fb,0x11a2521,0x009f388,0x06d01c5,
  46366. 0x1711a4e,0x08d7e4c,0x1a169ad,0x1db0a2e,0x18bfa12,0x0428474,
  46367. 0x0533cf8,0x15e4305,0x0b7d5c6,0x07188ac,0x0fa815c,0x0df9548,
  46368. 0x1fb6a1d,0x143adc2,0x05e145b,0x0d4a37d,0x1e67620,0x01eb476,
  46369. 0x1e784b9,0x095360d,0x12c43fd,0x122146f,0x14fd360,0x0ff2527,
  46370. 0x0830e30,0x11c5a77,0x1180fc5,0x130c3e1,0x0142c5e,0x047c5fe,
  46371. 0x143a35c,0x0002cdc,0x11470e8,0x08b4519,0x0494d36 },
  46372. { 0x1a021f8,0x0135b25,0x0db0e61,0x06f2dbd,0x114c908,0x1b63b16,
  46373. 0x14e55f8,0x02cda5c,0x0751cf2,0x1aab765,0x0928663,0x1c00336,
  46374. 0x0edaca1,0x0590615,0x021f691,0x14e668f,0x0cdff41,0x1c9f6a6,
  46375. 0x11f0335,0x02f888b,0x10098d7,0x0548dfb,0x131218d,0x0b3775f,
  46376. 0x146f93b,0x18ad0f8,0x0795893,0x1a71767,0x1f8443d,0x0d56981,
  46377. 0x1f25b50,0x097e209,0x1670f03,0x032c135,0x07b4a5c,0x0a0a07f,
  46378. 0x134200f,0x070fa3d,0x11bcdda,0x0bd77a9,0x03cfdcc } },
  46379. /* 182 */
  46380. { { 0x123e13d,0x015435a,0x02814db,0x105241a,0x1014a45,0x0b894b0,
  46381. 0x0d1e39d,0x1d47aa5,0x07eb51b,0x0ba3033,0x03a4641,0x10c30f6,
  46382. 0x08709f7,0x1434447,0x02bb621,0x1f9a805,0x1d7d94a,0x1bcd404,
  46383. 0x084a6bc,0x0c065fc,0x008250c,0x194c1e2,0x1d792f9,0x1677d1c,
  46384. 0x11bbb7a,0x1944c19,0x12d8631,0x0634065,0x19c4a4d,0x02d09fa,
  46385. 0x188db76,0x1da9ec3,0x1ece345,0x18b8aed,0x1334795,0x0f74f55,
  46386. 0x04a1ebd,0x062c6d3,0x1ba844e,0x01e7a35,0x089296d },
  46387. { 0x0a82c97,0x09447e6,0x0372c59,0x1a284fd,0x06c6c12,0x1f6ed49,
  46388. 0x13c1d30,0x17ccd52,0x0eaa01e,0x030070f,0x17a1b65,0x1cf861e,
  46389. 0x1114abc,0x05a2b51,0x075c083,0x08584e8,0x013279f,0x05582d5,
  46390. 0x108e11a,0x0c1f5fa,0x19e670b,0x0098c69,0x0863bfb,0x0416631,
  46391. 0x1f1ac89,0x101f583,0x0360e67,0x03c7975,0x01a3010,0x09971e4,
  46392. 0x16197e2,0x1998ccf,0x08bca7d,0x0303e57,0x19e689a,0x199dc35,
  46393. 0x0ac0a12,0x0173266,0x13150c6,0x1ee5634,0x09233a2 } },
  46394. /* 183 */
  46395. { { 0x0cbee17,0x146fb05,0x1371c5f,0x04b849f,0x0f0959c,0x07fe580,
  46396. 0x0621f95,0x0d68de1,0x0d28511,0x0c9ef65,0x07e946e,0x09f1774,
  46397. 0x1e0bfaa,0x08790c1,0x04927bf,0x0eef339,0x1589684,0x0fc9e59,
  46398. 0x0c8b508,0x17f6fe4,0x1009284,0x0d6a157,0x10331c2,0x163ac2a,
  46399. 0x122749b,0x035634f,0x09c5f0f,0x0dea167,0x1c5eeb7,0x14c2ddc,
  46400. 0x17e2c87,0x148f076,0x0fb19ae,0x0e1f3ac,0x0e6d4b8,0x100990d,
  46401. 0x12971ac,0x12c8497,0x00a46b2,0x0d243db,0x02bb26a },
  46402. { 0x1f81416,0x1a21a8a,0x0ed2628,0x0f55feb,0x086e72e,0x0b930e0,
  46403. 0x193780c,0x1fc7a3e,0x05c0a1c,0x0e03c36,0x00d004c,0x09b166d,
  46404. 0x0d542ea,0x0d1cda6,0x1dc9ce8,0x04fe25e,0x0e1cbef,0x00a7f3f,
  46405. 0x1aec9f7,0x1f813c2,0x1dc7ee7,0x0ba0872,0x1037330,0x08767bb,
  46406. 0x0674219,0x0dbd1a3,0x00fcc70,0x052696c,0x0c10709,0x0f6ce11,
  46407. 0x1ac061b,0x0f33f2c,0x17ee8ba,0x18449d1,0x12d0926,0x1c1e77f,
  46408. 0x0e92d4d,0x130a239,0x1ac22eb,0x1f1c32d,0x0937cb3 } },
  46409. /* 184 */
  46410. { { 0x0fbfdce,0x073be0b,0x13015f0,0x13931a9,0x0a034cc,0x0b96907,
  46411. 0x1b5c909,0x079cec0,0x00019a8,0x030daae,0x05c58a6,0x1007e2b,
  46412. 0x1b80ba2,0x02d07eb,0x1050774,0x155441e,0x13b4b0d,0x04432c8,
  46413. 0x08e123b,0x10ae8d5,0x05d2e66,0x0d1f024,0x05b4569,0x0d20bba,
  46414. 0x0c7743b,0x15d40e0,0x16062bc,0x1d8636f,0x174b78c,0x18ca695,
  46415. 0x0a20363,0x0a87c5e,0x0659db2,0x03e0e65,0x09f67ec,0x0063707,
  46416. 0x1f1048c,0x09bfee0,0x1a84619,0x00ef0b0,0x04d57bb },
  46417. { 0x1b396b6,0x1bb4529,0x16b2f12,0x09276a3,0x1c8b24c,0x0570d9d,
  46418. 0x047ae8c,0x18a67ca,0x1945147,0x09ddeca,0x1f8f3a2,0x00622f3,
  46419. 0x146cc86,0x1fc905e,0x0c2859c,0x0c2c069,0x0eb6b25,0x1d99489,
  46420. 0x145a360,0x1345493,0x1128bc6,0x1d7786e,0x0d25279,0x04d33c3,
  46421. 0x1419a87,0x1b59309,0x1efc84d,0x0d8b08e,0x1971470,0x0c84d27,
  46422. 0x17f956c,0x0f736e8,0x1d6eb75,0x19e42b1,0x0ca4237,0x076a6cb,
  46423. 0x15fcfae,0x12bf21a,0x0aaa038,0x0312f3e,0x01067c1 } },
  46424. /* 185 */
  46425. { { 0x0bf8883,0x0a84219,0x199f211,0x14dfa0c,0x0755286,0x0119aea,
  46426. 0x03e3ddf,0x129ae16,0x02f4a2c,0x1c7306d,0x02b3d59,0x1159a23,
  46427. 0x19a468d,0x1fadc86,0x04e0c2e,0x122099d,0x074ed4e,0x075258e,
  46428. 0x1dddba9,0x0e62da4,0x0b12ac6,0x0e1b0dd,0x0e62b5d,0x02448a3,
  46429. 0x1d48299,0x1d76191,0x014c290,0x0c88044,0x12d5a52,0x0997194,
  46430. 0x0f0e911,0x0bfd9e3,0x148694b,0x1dc5c6d,0x05bb199,0x1dc9c0a,
  46431. 0x04306ad,0x152cafd,0x05c96ce,0x123e69d,0x07e4f70 },
  46432. { 0x1f70919,0x00b74db,0x0fd4fce,0x1a2d600,0x165216e,0x064cf2b,
  46433. 0x13fd1de,0x0208d8d,0x030a518,0x152d5f4,0x1ca36f9,0x13cc8bc,
  46434. 0x16ef6f4,0x056677e,0x175cfab,0x1e7eedf,0x06f8c37,0x1f61ca7,
  46435. 0x1901ff0,0x0410056,0x1cbd733,0x1d4b312,0x0623a3d,0x157f601,
  46436. 0x123637c,0x0cd4194,0x1d01fcd,0x0b1753b,0x1fae502,0x1772e65,
  46437. 0x04ffc06,0x1fc4a30,0x1eaeace,0x0e5d0fd,0x05860fc,0x0b38d3e,
  46438. 0x1eadcdb,0x162c56c,0x1a2f544,0x1a8d999,0x02ae49c } },
  46439. /* 186 */
  46440. { { 0x00849f2,0x0d871e2,0x063048e,0x1b48821,0x1136a4c,0x03fb24a,
  46441. 0x16a6795,0x18cc2a6,0x07a9bba,0x1725ee2,0x11ebda4,0x0c8ca6a,
  46442. 0x0a195a1,0x05a3d3a,0x1b2cc66,0x145650b,0x1fc9de6,0x093c2a9,
  46443. 0x18ae94b,0x1807141,0x1a93471,0x041ade5,0x04ae86e,0x063d944,
  46444. 0x150da6f,0x1636a5f,0x1a00acc,0x028dc7e,0x04c8c4d,0x00989e3,
  46445. 0x05c3270,0x1dda425,0x130f12d,0x02987d6,0x1fee71a,0x0336eb7,
  46446. 0x0918de5,0x00569f4,0x1c6dc8f,0x0a54e6e,0x0180e9d },
  46447. { 0x1ab77b0,0x12a1794,0x18a30c5,0x19ef5dc,0x1d411d9,0x1e17a06,
  46448. 0x01a14d4,0x19e0898,0x04b0ae4,0x1c6e3f2,0x1099bd8,0x030b2bf,
  46449. 0x1da0924,0x1e97f5b,0x07699c7,0x12f30c7,0x0d55ea3,0x12b42c7,
  46450. 0x03ce0ca,0x129e62b,0x18317a6,0x03698b6,0x0a508cf,0x146b4f7,
  46451. 0x0cb2630,0x09d97e5,0x17c7fdc,0x1df1efb,0x0ee2f3f,0x0292acf,
  46452. 0x12a2e6d,0x02ada0c,0x1b4f91b,0x07e7e68,0x1b08bd7,0x022ef0c,
  46453. 0x1777eb4,0x1e12b31,0x016d04a,0x079b157,0x021ca6f } },
  46454. /* 187 */
  46455. { { 0x1e66635,0x11589d1,0x1abc385,0x16553ee,0x1ef20a2,0x0d99ab0,
  46456. 0x0e8c11b,0x11b568e,0x17802bb,0x0205ebb,0x06d1302,0x1ebd4d3,
  46457. 0x115b6ba,0x0d9103f,0x1846400,0x0020b8d,0x0a9790b,0x072ef0b,
  46458. 0x0d9fc01,0x025e2bb,0x1d2522b,0x02c5012,0x0617eb5,0x0142284,
  46459. 0x16953df,0x0605e67,0x0fd140d,0x1884253,0x077bff4,0x02000e1,
  46460. 0x0603dd0,0x050153c,0x0440b4c,0x1515a37,0x03d610a,0x1eecfbd,
  46461. 0x05e8d94,0x11055c0,0x1d8d4f7,0x0b24044,0x05aff58 },
  46462. { 0x0458e40,0x1669054,0x0af6016,0x10292e6,0x1a5557d,0x0e5396a,
  46463. 0x104c57c,0x0478e0e,0x0952b53,0x197134e,0x13eb7df,0x0aacc92,
  46464. 0x065c592,0x0d3e933,0x0edeb34,0x050ca2a,0x03d86fe,0x1d36f83,
  46465. 0x1f54eda,0x03b626a,0x0d011e9,0x04f49f5,0x04656ee,0x0c77fcd,
  46466. 0x1e1af29,0x0431eb8,0x0a209e2,0x1565738,0x059b6ff,0x13491dc,
  46467. 0x145de0d,0x1ee053b,0x0695174,0x022b0b7,0x01d9ee6,0x138f30f,
  46468. 0x1907d84,0x1da78ea,0x0a5dd93,0x03911b1,0x03eab7e } },
  46469. /* 188 */
  46470. { { 0x0e5718b,0x14a5b29,0x07a71ce,0x09e99dc,0x03aefa5,0x1f76f57,
  46471. 0x0798d54,0x034ca9d,0x15f3aca,0x12a0f0d,0x00cc5bc,0x09121a1,
  46472. 0x0ed7129,0x1dbfca8,0x196bd8f,0x07c94f2,0x00dc74e,0x06c7e4f,
  46473. 0x0bde7af,0x1c91a5d,0x07e6b4e,0x1545bbc,0x09162a1,0x199d5e1,
  46474. 0x1621ff7,0x006ec63,0x1f7d9e6,0x0451ddf,0x1067278,0x03a17c8,
  46475. 0x0a48435,0x160fc6c,0x1f63501,0x0f14ec8,0x0719e5c,0x0a882ec,
  46476. 0x03a3b8a,0x06632f8,0x0551303,0x09e71c1,0x03491da },
  46477. { 0x1062eae,0x1682365,0x1db59c1,0x0aba10e,0x0e7db73,0x118ae97,
  46478. 0x00148a4,0x1b701bd,0x0c402bb,0x03c2b31,0x14ccdd0,0x04b84dd,
  46479. 0x135f935,0x1eab476,0x1a85359,0x1163cd9,0x1896688,0x0c8b508,
  46480. 0x171c59d,0x1aa40ab,0x1df20fb,0x1bf22ba,0x00cf441,0x012466b,
  46481. 0x1100aec,0x1c4a749,0x05b3614,0x1f3c3a0,0x0263682,0x1b92a19,
  46482. 0x15fbaf4,0x037499f,0x01d172b,0x02c1c20,0x0e755d3,0x1c6efb5,
  46483. 0x00d517d,0x1534ac4,0x16862ba,0x1fad5a2,0x00c843d } },
  46484. /* 189 */
  46485. { { 0x1373300,0x008ffe4,0x0c01156,0x1533fb8,0x1c39332,0x1e5b2a8,
  46486. 0x0e070d4,0x04fc337,0x096a83d,0x1a5c925,0x18fc69d,0x1f9765d,
  46487. 0x07cbfc8,0x0086ab6,0x09e3b10,0x15ef35e,0x02fe0ab,0x1b7ef34,
  46488. 0x0ce6baf,0x0da0e4e,0x1db6756,0x0eb8902,0x0f4d6b5,0x0a393a1,
  46489. 0x1e69470,0x13e5add,0x034e8c1,0x0efb690,0x0d75305,0x1faa2b9,
  46490. 0x0f4b1c3,0x1c0db0a,0x0615aec,0x1fdaef4,0x132c16a,0x0ee3333,
  46491. 0x0a0a8ed,0x17e4b5f,0x17da7bb,0x13a6bed,0x02dcc46 },
  46492. { 0x05f0e77,0x1668363,0x052b329,0x017ae36,0x1dcc798,0x09e6006,
  46493. 0x07e2cf2,0x0af6c44,0x1ae8cbf,0x0fe6ad9,0x0398ff7,0x0e7eedf,
  46494. 0x17bc929,0x0370995,0x01228d0,0x193c5d3,0x003d51e,0x12662cd,
  46495. 0x08cc206,0x1a65767,0x066b9c9,0x0940742,0x0004841,0x17ce52a,
  46496. 0x0032a1b,0x0246158,0x08924e1,0x17f8cae,0x1ba0ffd,0x10675b5,
  46497. 0x00ba5ca,0x1815290,0x00c0a4f,0x0c5e3fb,0x0731667,0x11ec588,
  46498. 0x112da0b,0x064b771,0x1e7f208,0x1b79b7b,0x05a1a65 } },
  46499. /* 190 */
  46500. { { 0x0485684,0x1348d21,0x0326fee,0x125388e,0x013116b,0x15028cb,
  46501. 0x065c798,0x1b56960,0x05ff499,0x1922d53,0x0e3bffc,0x0fe94a4,
  46502. 0x15c2ef8,0x064eaa8,0x1b71aeb,0x1595982,0x07e2dbd,0x1ad3f91,
  46503. 0x06eebb2,0x1b55895,0x18858de,0x16973e4,0x1fcc229,0x112ab27,
  46504. 0x12fc2e6,0x108a637,0x145df81,0x0cabe50,0x0b1bee3,0x0683180,
  46505. 0x15298fa,0x02782f6,0x0d0ce79,0x1a1315f,0x18d7125,0x0f94957,
  46506. 0x1c4e403,0x1a250bd,0x1ef67d2,0x133dfcb,0x05ae950 },
  46507. { 0x04f7455,0x12f73c0,0x1a0848b,0x0e440cc,0x141a499,0x0af1999,
  46508. 0x130c5de,0x1db2fa4,0x0e48efc,0x17a091e,0x0f08704,0x1b2433f,
  46509. 0x0ee8738,0x0331d1d,0x0ef7184,0x14db776,0x0c28593,0x09b01ec,
  46510. 0x0f06b1d,0x044fe5c,0x0519926,0x002f557,0x1faa4ab,0x0d02559,
  46511. 0x16f0bfd,0x16e2dac,0x13f0aa0,0x19cfd08,0x122b273,0x040d31a,
  46512. 0x054e101,0x0a50cf1,0x16088b1,0x0434441,0x1f30996,0x1843ff6,
  46513. 0x0f4a7ca,0x1198b09,0x14a6032,0x0fd47db,0x0411066 } },
  46514. /* 191 */
  46515. { { 0x0d04b63,0x181abe1,0x0862060,0x1be9253,0x1fc5a34,0x08caef9,
  46516. 0x1db688b,0x0e78e77,0x1cb4324,0x06f97c4,0x1fc4e05,0x1cb9d32,
  46517. 0x14345af,0x05cb027,0x18fd7e6,0x015cbb1,0x0e950c1,0x1d6bca1,
  46518. 0x1b497fc,0x1aa88fd,0x00cccef,0x0f0739e,0x0fda394,0x0a9f499,
  46519. 0x0d591ab,0x0462d8d,0x144ad87,0x1778220,0x0bf7608,0x1489dad,
  46520. 0x126ee4c,0x003cf2c,0x11231be,0x065f3ed,0x1a44103,0x13a1507,
  46521. 0x10a96db,0x0f2137c,0x047a8f7,0x08a69be,0x01cceb6 },
  46522. { 0x06d0f55,0x0862786,0x1274b48,0x1738ce7,0x0cadf61,0x071fddb,
  46523. 0x06466a7,0x1c9baff,0x093b063,0x1afa4a6,0x0a4ef84,0x167828b,
  46524. 0x1c580bd,0x07a977b,0x01c8cc8,0x176d49b,0x0e88814,0x13a6c3b,
  46525. 0x1ea5f7b,0x1ee4758,0x18334f6,0x181f1e6,0x1f78ae3,0x0e404e0,
  46526. 0x0f082ae,0x03730b1,0x1377e92,0x111d85a,0x1a17c6e,0x042cc69,
  46527. 0x06b6597,0x073002e,0x0e59e54,0x1b59131,0x0176efb,0x06156c5,
  46528. 0x0d48b20,0x1a28caa,0x17a8cf3,0x0669d44,0x01f1752 } },
  46529. /* 192 */
  46530. { { 0x067ea91,0x13b2d9a,0x1116022,0x1dfa5b3,0x1f4632e,0x195e379,
  46531. 0x171b673,0x15cf6eb,0x0359813,0x1e46920,0x12f637b,0x0413c89,
  46532. 0x0223ecb,0x10a92b1,0x0e8438c,0x1c334b3,0x1343f1e,0x1fd0a6c,
  46533. 0x0c3123d,0x0f8437f,0x1437df9,0x0875186,0x11398a2,0x028eb85,
  46534. 0x0e2a465,0x152d943,0x104999c,0x123e03c,0x0ab3b82,0x0d2e18d,
  46535. 0x1b271bf,0x1c2fa45,0x1277a5a,0x185d6db,0x160e453,0x037b11d,
  46536. 0x0a2392e,0x182e8db,0x0f0af42,0x120cb12,0x04cb8af },
  46537. { 0x14b1953,0x0102bdd,0x1bba8ac,0x09eb2fe,0x0ce08b4,0x1209642,
  46538. 0x1766d79,0x0330a9e,0x1b3cd49,0x0899316,0x0aed746,0x05c8dc8,
  46539. 0x0090276,0x0bc73fb,0x157239b,0x182d906,0x02438b6,0x0477d54,
  46540. 0x1543d86,0x0e6f21c,0x178ed01,0x1172beb,0x0462bd1,0x0b68e28,
  46541. 0x0d5e871,0x07cd0b5,0x0d077a9,0x000b2d8,0x0ca6109,0x1e19140,
  46542. 0x084aa55,0x06e98cb,0x1aee800,0x0020a17,0x049d402,0x03b620a,
  46543. 0x1f080fa,0x0edc98f,0x1e3f230,0x04baf30,0x0486a5c } },
  46544. /* 193 */
  46545. { { 0x01b4f36,0x0f109ca,0x13e4148,0x09f0076,0x1aacfb1,0x12a5d45,
  46546. 0x188b94a,0x0d9fbe3,0x08fe479,0x07d5ddd,0x0eb2dab,0x11b6b1b,
  46547. 0x11ae078,0x00cefd2,0x0635cdb,0x02dddbf,0x06a35a7,0x18aae14,
  46548. 0x1219186,0x1a8ced3,0x0a5ebe7,0x07b1d32,0x142d8e0,0x0c124c4,
  46549. 0x019149f,0x0d98a5a,0x028b7f1,0x12334fa,0x1466ac0,0x0d2ae77,
  46550. 0x1b31153,0x0d30d55,0x1fa4a24,0x04e76c9,0x05c5c69,0x1aa1216,
  46551. 0x01fa75a,0x178eb66,0x1015180,0x112f1c9,0x05d269f },
  46552. { 0x0920419,0x001860a,0x1ce4e9d,0x11212d0,0x0845d86,0x1b87d30,
  46553. 0x05313ba,0x1970373,0x1d9fc5b,0x1e55036,0x1e3cb6a,0x084feb1,
  46554. 0x0a06539,0x18ee295,0x1217d9e,0x037546b,0x1722c91,0x02d3ec6,
  46555. 0x1b0b60d,0x0200b95,0x1347404,0x023d472,0x0d61a29,0x1ca2587,
  46556. 0x0180b8d,0x0758277,0x148445a,0x1b54cdc,0x17cd8a4,0x0ed5918,
  46557. 0x1db02f5,0x0c22c9b,0x1d4185d,0x16be4d0,0x089876e,0x0759db9,
  46558. 0x09b0268,0x125ad60,0x1543c3f,0x0b44db2,0x08ac999 } },
  46559. /* 194 */
  46560. { { 0x040a39d,0x06e4d93,0x07e6cb2,0x11dbc19,0x01ff0b3,0x165d051,
  46561. 0x1a6f687,0x02ee9e8,0x1080d04,0x1481666,0x0518122,0x1465e93,
  46562. 0x15e956f,0x0bbb558,0x03e173e,0x1e92469,0x0ee0066,0x1e10fe3,
  46563. 0x1bbbcd9,0x03d7fdf,0x05ed35b,0x0e2309f,0x1e01160,0x0d740e2,
  46564. 0x1e8e6ea,0x1f6e5ef,0x0a5435c,0x1bf9546,0x048889d,0x1c9b0ed,
  46565. 0x14725d1,0x1b75ff7,0x0867c8c,0x17573e7,0x0c7c72e,0x11a4ce8,
  46566. 0x097912c,0x12a822c,0x07935a0,0x1b9afd4,0x00c7c1d },
  46567. { 0x0e963a7,0x118660e,0x0b794ea,0x19898bf,0x1352f64,0x1457dfb,
  46568. 0x08be0a0,0x00e5735,0x0ca2121,0x0139e2b,0x15db719,0x0ca90b4,
  46569. 0x1caadd7,0x085ae3b,0x05ab0fa,0x1e736c3,0x09fd1aa,0x0106a1f,
  46570. 0x14172f1,0x1240c59,0x12fdfc3,0x192607f,0x05058e1,0x1d043cc,
  46571. 0x0b8d82a,0x1f86799,0x0cfe9e8,0x1eb1f28,0x04ca925,0x0e96fb2,
  46572. 0x17ebafc,0x032314e,0x0061563,0x1b08c06,0x17b5ae1,0x02f3136,
  46573. 0x0d41244,0x1a1222d,0x0ceaefc,0x15c3bec,0x024ffc9 } },
  46574. /* 195 */
  46575. { { 0x1c7cb2b,0x06e02c9,0x0fee27f,0x0ab200a,0x01243b9,0x011a1e6,
  46576. 0x1af3d86,0x0c6c03b,0x166c18a,0x122a377,0x04ca1cd,0x0e03d92,
  46577. 0x11a5290,0x1cbc461,0x16e009b,0x1efaf86,0x02a92d1,0x04295c3,
  46578. 0x0a9e5ca,0x13960a1,0x0005180,0x1e51e59,0x025f519,0x1eb728d,
  46579. 0x077c09e,0x0c27906,0x0bc8906,0x066e588,0x1bb206c,0x1f06f9a,
  46580. 0x0d76814,0x1538281,0x026c6d0,0x17d99de,0x10332d5,0x10c39f9,
  46581. 0x099b396,0x1e7cf79,0x06e9070,0x1a280c4,0x089e4d3 },
  46582. { 0x05a9be3,0x14073d2,0x1ef74d7,0x100e6ad,0x04daa57,0x13de17e,
  46583. 0x158bae5,0x1c6030d,0x047cd16,0x18133cf,0x033a6e9,0x1804be6,
  46584. 0x10ca2f1,0x0fc327a,0x0816d18,0x03acde2,0x1978506,0x13feb6b,
  46585. 0x0822027,0x1b89ed1,0x1ae247e,0x04cd269,0x176b011,0x03f3b50,
  46586. 0x0664a6d,0x138fc22,0x135ea0e,0x1e619d0,0x0c33f19,0x15d6755,
  46587. 0x0afa4e0,0x1290c45,0x1033831,0x00f590f,0x12ebdda,0x0f606f4,
  46588. 0x19a1b5c,0x0b54844,0x143ef45,0x0dfcde3,0x0675d3e } },
  46589. /* 196 */
  46590. { { 0x07193e5,0x13ffeb8,0x039765d,0x030206b,0x0478aa9,0x06c77bf,
  46591. 0x1e7fcca,0x14eac69,0x06dbbd9,0x09d0774,0x055a1a4,0x12d0fc4,
  46592. 0x18379b2,0x04eced1,0x0fd042a,0x069a520,0x1b91b13,0x0ecfc6b,
  46593. 0x160bbed,0x0e84537,0x07789fe,0x111c01e,0x16d5a2d,0x1a4a689,
  46594. 0x1a350d3,0x1f449f4,0x01c9125,0x0b386b6,0x09e23b5,0x0a1b50b,
  46595. 0x1a711cb,0x198b698,0x1864632,0x1fa9884,0x16760f1,0x113edae,
  46596. 0x1e49788,0x0e78ed8,0x0692ea4,0x1fcc15e,0x05f7f92 },
  46597. { 0x145167e,0x10e6302,0x0383c62,0x055ff51,0x15ee2e0,0x153de7a,
  46598. 0x1fd450c,0x0cc499b,0x0a75108,0x1c16d21,0x046bddc,0x023e80a,
  46599. 0x03e894c,0x15578a1,0x13938c4,0x1a55d54,0x0f0f63d,0x0c61e9b,
  46600. 0x1d9818d,0x192aa1a,0x1eabfc5,0x189bf53,0x00494dc,0x172a1ec,
  46601. 0x0d59839,0x021152e,0x050398d,0x0b41ec0,0x0c70459,0x11c7795,
  46602. 0x1ce4178,0x088d61e,0x0bacc0e,0x02bc522,0x01bb112,0x0699a84,
  46603. 0x05bd780,0x1d8d555,0x11634d9,0x1b21456,0x025bece } },
  46604. /* 197 */
  46605. { { 0x033a8fb,0x139c106,0x10741e6,0x021e4bb,0x0fbf6cd,0x0a415b6,
  46606. 0x1cfe31b,0x0949ff8,0x007bf84,0x128f8c6,0x058bc0f,0x046cb32,
  46607. 0x11a7651,0x0a009c0,0x1669d38,0x0314158,0x065e550,0x0cabd34,
  46608. 0x0f2826c,0x18a37bc,0x053fe1e,0x19d4b01,0x0f031fa,0x1c07f09,
  46609. 0x1fd147d,0x184f41d,0x054bef6,0x00a81da,0x015ec1c,0x176ee75,
  46610. 0x01dae94,0x0964c26,0x1d30ed5,0x0b90379,0x0ba3a0e,0x1537af7,
  46611. 0x096373a,0x06c3490,0x0fd8fc8,0x0978761,0x00a616a },
  46612. { 0x01339c9,0x0f9f6b7,0x029881d,0x057f160,0x1afaa07,0x06cda3b,
  46613. 0x1b20af3,0x18fbf5f,0x100ca54,0x1898ac7,0x10c6b91,0x05e2717,
  46614. 0x0a44910,0x1886fe4,0x063c560,0x0a9a95f,0x07559e9,0x064f790,
  46615. 0x149e831,0x0435f38,0x0023e80,0x1bbd0c9,0x1ba0049,0x16046ee,
  46616. 0x1538c7f,0x0a8b1af,0x1fa327a,0x1be32e9,0x0c90975,0x1d768ae,
  46617. 0x1700a1f,0x1ef4a22,0x00728f0,0x0311efd,0x0f983eb,0x1321b7f,
  46618. 0x0311ba0,0x0a07ea0,0x11932a3,0x09c0f8c,0x0876d15 } },
  46619. /* 198 */
  46620. { { 0x0d3ea8a,0x06b6961,0x003b4e9,0x175084c,0x16be681,0x0383391,
  46621. 0x0403790,0x0f78a7e,0x06a7d7a,0x1f2db7f,0x186a0f8,0x09f2bab,
  46622. 0x0a6e699,0x1b04be1,0x12b3489,0x020220f,0x1baa679,0x0096cc6,
  46623. 0x00b8389,0x1888c22,0x072addf,0x016a499,0x120576f,0x086cd2c,
  46624. 0x0e64ba9,0x1c83f1c,0x08cacaf,0x12c1d63,0x08e28b4,0x1a92ec9,
  46625. 0x07b6915,0x0540ef9,0x0f75b39,0x10e8039,0x12edff5,0x0c4eec1,
  46626. 0x0f4b145,0x11ae8d8,0x05c02bc,0x077ceda,0x03040c2 },
  46627. { 0x0fa9a70,0x0e2ada7,0x1842c43,0x1ea7d0c,0x14de414,0x1c513fe,
  46628. 0x1044c27,0x0787b2b,0x106661d,0x02884d2,0x0d44f94,0x1294c1d,
  46629. 0x0bcaa29,0x0f3e99c,0x19054dc,0x1ce3e7d,0x1fc4651,0x027e8a2,
  46630. 0x0f0c4ed,0x17f0719,0x015051b,0x1c0f5c9,0x0c0e781,0x17eb58f,
  46631. 0x16b4414,0x0467434,0x022f835,0x1acce31,0x0f2b6f2,0x197aeec,
  46632. 0x02afa4e,0x1d714ff,0x1dfd1e7,0x1a8e2e0,0x176643d,0x1d0c567,
  46633. 0x032a74b,0x18d6ac5,0x126887a,0x1343d77,0x05486d7 } },
  46634. /* 199 */
  46635. { { 0x1359e13,0x11a7fd0,0x01472cb,0x1e5032c,0x002d8db,0x0b25af1,
  46636. 0x008f48d,0x025d2bc,0x042f6ac,0x189a05b,0x0dc977e,0x10a56ca,
  46637. 0x0d543ba,0x0692335,0x0bb735a,0x0e51703,0x024547c,0x0dfbc01,
  46638. 0x15a7ed9,0x1f14232,0x0ec9559,0x116fd91,0x1416de9,0x1dabca4,
  46639. 0x075409e,0x1888388,0x00a67db,0x1913251,0x16f8c79,0x09309ed,
  46640. 0x0a69f5a,0x16794f3,0x0eb7fb3,0x0b05818,0x0ee3ec8,0x1595733,
  46641. 0x128b409,0x0092b46,0x17e2f48,0x01eb588,0x0380f1b },
  46642. { 0x0a0068f,0x0cf35f3,0x1d4f02e,0x15914e6,0x0b67cf2,0x1d75be2,
  46643. 0x09522cb,0x1874d93,0x1340260,0x1a0bfcc,0x1dce79f,0x10ab981,
  46644. 0x1a8ee56,0x1c04a4e,0x02d443d,0x0ddffe1,0x1c28d5c,0x1d8bb87,
  46645. 0x165a9ee,0x0b57ddf,0x1a2ab4f,0x1b79332,0x081ec44,0x003b9f3,
  46646. 0x180a4b6,0x06317d9,0x1058afb,0x19006c2,0x0b83b3c,0x1dcb773,
  46647. 0x1acd263,0x15182fd,0x09b0fd6,0x1f7e175,0x16ea85d,0x1cb0696,
  46648. 0x1b110b3,0x08227aa,0x0a17a4a,0x1dbd7ae,0x04abedd } },
  46649. /* 200 */
  46650. { { 0x00ef376,0x0f0dcb8,0x0ffccd5,0x14cd9b5,0x156e5d9,0x143b236,
  46651. 0x095d51f,0x0d367b8,0x000f793,0x07a25c5,0x14b8a4a,0x163d418,
  46652. 0x1208c32,0x1b94d9c,0x1e37848,0x0473ab4,0x19ab26d,0x1a0c228,
  46653. 0x033929a,0x0d696fc,0x09f923f,0x0556595,0x08d7dbe,0x00c94b2,
  46654. 0x1c454e2,0x1175dc5,0x106fcc1,0x0fdfa06,0x1ff6f93,0x141dca6,
  46655. 0x019aeb1,0x1154ff4,0x1364b1e,0x19ba2e1,0x1cab382,0x1e0c2ce,
  46656. 0x11e3fb0,0x1846846,0x0cb4d1b,0x16631c2,0x06a20ab },
  46657. { 0x085cbc7,0x1880b35,0x0a9faa0,0x0d269f3,0x1099094,0x1c78d9e,
  46658. 0x042239d,0x1338442,0x12247b7,0x1527fc7,0x121339f,0x1ae28a8,
  46659. 0x04b3171,0x07cc61b,0x100e525,0x028b052,0x1f397df,0x12ed488,
  46660. 0x050e445,0x0b01261,0x18bca6b,0x0d0ba11,0x1d7e542,0x012eb1a,
  46661. 0x1182182,0x0e87f5a,0x0691e49,0x1c18c04,0x0a315ea,0x134a57c,
  46662. 0x0dc3a51,0x0d75a09,0x07af8a3,0x1223ed7,0x19ffc1c,0x1c8982b,
  46663. 0x05456ff,0x0233455,0x0e5dd46,0x14f7e6d,0x045e353 } },
  46664. /* 201 */
  46665. { { 0x1092f71,0x0b3b249,0x15c5d81,0x05eb725,0x0b66b6c,0x045b62f,
  46666. 0x0526f8b,0x07d3b66,0x020c036,0x117ac1d,0x15c25fd,0x1a66079,
  46667. 0x0c688ac,0x15dc8b5,0x14303e3,0x1361d0b,0x02c84c1,0x08dfba3,
  46668. 0x1129ab4,0x1dabf2f,0x1369c76,0x1d688cf,0x1b22e22,0x1ca1707,
  46669. 0x0371beb,0x1532cdc,0x02199c1,0x198d2a1,0x173d2c0,0x1ad1fc1,
  46670. 0x1ed4c71,0x054b405,0x01cd3a3,0x0d0e827,0x1de368e,0x1dd04e8,
  46671. 0x15da333,0x1e2dddb,0x0f4dbb7,0x04994f3,0x015941f },
  46672. { 0x17dd512,0x0607c53,0x17d90ba,0x0e3b86c,0x091b59a,0x1a9c315,
  46673. 0x0533421,0x195d01a,0x1d272fa,0x1121186,0x1f2d685,0x182c804,
  46674. 0x03eea3e,0x00f7cf8,0x1c02d67,0x0291b82,0x1270da3,0x0ea08e0,
  46675. 0x10606bc,0x1dc8918,0x100b801,0x0ccf1d4,0x1b7ca15,0x0135ffb,
  46676. 0x1b0bd0d,0x0122eb3,0x1a2cdc0,0x1073bf2,0x1836b8d,0x03f0737,
  46677. 0x124ed8c,0x17a6403,0x182e588,0x0815da9,0x09ade87,0x12c6db1,
  46678. 0x168641e,0x1bedbb4,0x0b40dc2,0x094231f,0x06d17c3 } },
  46679. /* 202 */
  46680. { { 0x181c99b,0x04420e0,0x12bf3d8,0x0390f7b,0x165dc90,0x106d5f5,
  46681. 0x0d11cdc,0x0b768c1,0x0537751,0x03ce1cb,0x1b09dd3,0x045c152,
  46682. 0x00d447f,0x15607a2,0x05484c0,0x1075a1b,0x06bc905,0x0419859,
  46683. 0x0a24128,0x1d2ef52,0x0b18e25,0x0cc2e28,0x077abff,0x15abed4,
  46684. 0x1bcb7a5,0x16ae7a6,0x07228df,0x179a003,0x1850b6c,0x0ec80f4,
  46685. 0x015e11b,0x16171cc,0x0c8194a,0x197c80d,0x15c4d04,0x1772e50,
  46686. 0x156ee28,0x14f8a4f,0x0753933,0x1487d3c,0x01ab9b5 },
  46687. { 0x14fa7a3,0x0d5c918,0x058c81b,0x008f1ff,0x0c4af0f,0x06cfede,
  46688. 0x05c4e41,0x1fc999c,0x112c045,0x0105175,0x1db5f6b,0x08f1fb1,
  46689. 0x1a44fc5,0x053db7f,0x1b9cb17,0x1eeb110,0x09b6fd6,0x0bfd229,
  46690. 0x0aa0835,0x03a3632,0x11494df,0x0f93c4f,0x0f604be,0x176a7a4,
  46691. 0x0f083aa,0x1994c21,0x0ca80ea,0x0c90a73,0x1125022,0x104858a,
  46692. 0x1558c73,0x0e63ed7,0x1294d15,0x1731a70,0x187650d,0x1f64526,
  46693. 0x1ca966a,0x0140e21,0x0cfb631,0x0ad8435,0x024b349 } },
  46694. /* 203 */
  46695. { { 0x19824e2,0x0e5c332,0x1d3126f,0x109c27c,0x0dc4ce4,0x1f0f753,
  46696. 0x06899ae,0x0af4980,0x11e3ec4,0x1d95c73,0x0a392d1,0x0bc05eb,
  46697. 0x0d7e8b1,0x1199a98,0x07adb9b,0x0a405d0,0x09e17a4,0x1d65d1b,
  46698. 0x1c39327,0x082863a,0x1eb8812,0x059f095,0x10642bd,0x1e90dfb,
  46699. 0x1052311,0x1e72993,0x04a7eca,0x1ed883c,0x0f6c089,0x03f5db8,
  46700. 0x1def98a,0x07fd688,0x079850a,0x18c5d8a,0x0c466f3,0x01f9fbf,
  46701. 0x1a80d04,0x0e1497e,0x16fe649,0x1cafc78,0x0212d65 },
  46702. { 0x015cf08,0x0d9c365,0x0bac8eb,0x0903c2e,0x0dfa4ac,0x0168602,
  46703. 0x0fe4d35,0x18f3a3b,0x174404d,0x0e7b039,0x0aff376,0x0883d26,
  46704. 0x1860508,0x0e34154,0x1a44328,0x0398135,0x01841ac,0x04a947e,
  46705. 0x0efb58c,0x02415db,0x1250e6a,0x1618667,0x0538387,0x1177e5f,
  46706. 0x0ba54e5,0x00aff42,0x1e7ea91,0x0cda169,0x0e7ce5c,0x18f3f67,
  46707. 0x0e83163,0x0df4d0e,0x01d43eb,0x189a43d,0x1680e67,0x0f2d8d8,
  46708. 0x06727ab,0x17cd557,0x0911f9b,0x0a934b8,0x066afa5 } },
  46709. /* 204 */
  46710. { { 0x180e91d,0x155d464,0x1beb696,0x12d5931,0x093cf50,0x1193315,
  46711. 0x0382a36,0x07d6132,0x0008145,0x0e90a98,0x077a100,0x067c7ae,
  46712. 0x122bb0d,0x1f0cd00,0x17db600,0x071ce8c,0x14c78a8,0x02c817f,
  46713. 0x04c4d23,0x055f6e3,0x057b74e,0x0bce7d8,0x0924c9d,0x1a07f1f,
  46714. 0x0a6423a,0x0053b0f,0x1563fe9,0x0fa9848,0x087e30b,0x006cbbd,
  46715. 0x09ad7a7,0x193909a,0x1c5edba,0x0b1d068,0x0e68f46,0x1bd9510,
  46716. 0x0bf6bf0,0x17979af,0x0af7ef1,0x0621ab1,0x001ef06 },
  46717. { 0x0cdcbb0,0x0818b1f,0x0554afe,0x104f839,0x19e2d72,0x1ae4980,
  46718. 0x1c0c255,0x0613ca4,0x1969839,0x0e0e2d4,0x020b7c3,0x01fef9a,
  46719. 0x11ef9f8,0x0fcbf02,0x04541d7,0x036ab9b,0x1fe9cc6,0x079437f,
  46720. 0x03c9331,0x1b671f0,0x1ae3352,0x161b291,0x1b66e67,0x1620953,
  46721. 0x08ca810,0x1d6884d,0x1cc1480,0x04e01fc,0x1400f5c,0x11273b4,
  46722. 0x0b0a8bb,0x1dc188a,0x195d399,0x01520ea,0x15abdfc,0x0e156eb,
  46723. 0x0db730b,0x08404c8,0x04808d0,0x1fabd1a,0x00e4f5f } },
  46724. /* 205 */
  46725. { { 0x1f14c38,0x0322207,0x07caf47,0x155d9c2,0x1a5b59f,0x17b1984,
  46726. 0x0169c8a,0x1dd548c,0x082af24,0x0e4fb2d,0x0845677,0x17fdd73,
  46727. 0x0ff4ee4,0x1a74275,0x18f41d9,0x1559c48,0x1e00e0b,0x1c465f0,
  46728. 0x17eaf72,0x0ad1d5a,0x199d7ca,0x1262bf5,0x0f60354,0x17d30e7,
  46729. 0x0572ce9,0x02f4e23,0x15cc02e,0x03143b9,0x1541769,0x0989207,
  46730. 0x0d92488,0x16b6284,0x1e324ff,0x078b57b,0x140490d,0x1881bb4,
  46731. 0x0133d97,0x019a10d,0x1c08022,0x0c210ed,0x033d411 },
  46732. { 0x078e5ec,0x0d1b5cc,0x08c9d4c,0x028d230,0x1de3e32,0x1182322,
  46733. 0x068cf42,0x0b3a2bf,0x1aa1736,0x1a60dc3,0x1753f9c,0x0945f24,
  46734. 0x14ac209,0x0131587,0x1259687,0x0b97887,0x03e447d,0x03ace48,
  46735. 0x148e4c0,0x1e42bc0,0x1f3492a,0x0f8fac9,0x1ffedb5,0x19bb6bf,
  46736. 0x03b4bc3,0x00432ca,0x12ff755,0x1a07453,0x0d76c09,0x0d358cc,
  46737. 0x1663df3,0x181e4f6,0x0790a22,0x0c667e0,0x0a1232d,0x1974aaf,
  46738. 0x16c54fd,0x110296b,0x0d19964,0x1548f6d,0x02d3de7 } },
  46739. /* 206 */
  46740. { { 0x1add3b7,0x13a3132,0x10aaab7,0x0b57e49,0x05888f3,0x12bec9f,
  46741. 0x1272b86,0x17fa82a,0x02c76f7,0x11170c7,0x080acc3,0x11d57c6,
  46742. 0x0a67f28,0x0e8e878,0x0699ae8,0x15a316f,0x1492881,0x087055b,
  46743. 0x1eb6c3a,0x04810d8,0x132f7d4,0x0294210,0x01c30cb,0x1f3413d,
  46744. 0x077f158,0x0c4c2c2,0x0bb0095,0x045526e,0x0987774,0x062e528,
  46745. 0x162f90a,0x0aecc00,0x1b79564,0x19be7a2,0x18c655f,0x12d8ff8,
  46746. 0x1631628,0x1811eee,0x04a9a2d,0x16cb638,0x047003b },
  46747. { 0x11c1c96,0x000e0e4,0x05c3665,0x124f425,0x0a5dcdf,0x014883d,
  46748. 0x0b85f0f,0x0207572,0x1a3fe47,0x17e747b,0x0663b89,0x1abc9dd,
  46749. 0x18b0d09,0x071d20f,0x0988812,0x14a0d5f,0x0a5a26c,0x158e009,
  46750. 0x06d5c94,0x1ee6993,0x1fe12c6,0x0fa897b,0x0424f5e,0x1dc334c,
  46751. 0x0906eac,0x1531798,0x0415b47,0x17ff070,0x135f216,0x0c2b77f,
  46752. 0x091871d,0x1835a44,0x007e978,0x07ef437,0x1285ac8,0x165994d,
  46753. 0x033fe81,0x06b696b,0x0b39aad,0x00960d4,0x073dff5 } },
  46754. /* 207 */
  46755. { { 0x0e20fb8,0x0ac02ec,0x0fc22d8,0x09056a6,0x1c6873e,0x142a653,
  46756. 0x1c0055a,0x022a40b,0x0cb3692,0x1ff6356,0x024ade1,0x01d98fe,
  46757. 0x0c1fa3c,0x1422ff2,0x0d991fb,0x1e224b6,0x085f8b1,0x1ea3c0f,
  46758. 0x0c3c69b,0x04d0731,0x0b92c65,0x166e5c7,0x13bae31,0x0bedaa5,
  46759. 0x10ead8e,0x06e099f,0x0f2364d,0x03107c4,0x0ac45a3,0x0adea14,
  46760. 0x014853b,0x1b77f95,0x17ca492,0x0d709fb,0x0ff81f9,0x17be822,
  46761. 0x12ab05f,0x1250693,0x1d4d58f,0x16ee291,0x07544d0 },
  46762. { 0x0797ace,0x0689a40,0x05f93fa,0x015f0db,0x016d6aa,0x0d347e1,
  46763. 0x09a23bd,0x109b7e1,0x19f9b26,0x05937a2,0x074bf06,0x19f5133,
  46764. 0x1552fef,0x11211ca,0x0be3609,0x06f01ab,0x069f63a,0x1c7891a,
  46765. 0x1353fab,0x068a9fb,0x1d09293,0x1bd39da,0x0ea0062,0x0aa5831,
  46766. 0x1f276e5,0x18e4d78,0x17fc9ae,0x0ba8ee7,0x1d4f44c,0x0a08036,
  46767. 0x1267bd2,0x0be7374,0x18f12f9,0x0527956,0x1b73d9b,0x14aecfe,
  46768. 0x1922f59,0x03b9f8b,0x0b526ea,0x1d583c8,0x0220081 } },
  46769. /* 208 */
  46770. { { 0x037a0ba,0x1eab9dd,0x17d8c10,0x19ba2ed,0x05a431b,0x10387b8,
  46771. 0x0b3f310,0x0120664,0x067c2d1,0x055e987,0x02f3e97,0x0bbd97f,
  46772. 0x0b362c9,0x1bc3d88,0x19f49dd,0x0bcc9ae,0x15e6ec0,0x1309648,
  46773. 0x19a70c3,0x0d2c639,0x06359e6,0x07b4171,0x09f2776,0x1ff9870,
  46774. 0x01f1295,0x0513c81,0x0628ab7,0x0d51dcf,0x1d500a0,0x13c225a,
  46775. 0x1163803,0x11b01ad,0x1746fc7,0x1886643,0x0efa457,0x1048c0a,
  46776. 0x019f6fd,0x0719459,0x0dcce11,0x158237a,0x0620541 },
  46777. { 0x09e5a29,0x1e9c128,0x0c783df,0x016864a,0x0748d7d,0x1c41dcc,
  46778. 0x04d5334,0x0f51ee9,0x08bfbb1,0x15c563a,0x0b4b171,0x14cc0be,
  46779. 0x03a4616,0x0de58dc,0x1659894,0x04cb567,0x1042fee,0x067ba98,
  46780. 0x0c89416,0x1ae7f7b,0x1556c70,0x1a78616,0x0484750,0x164b366,
  46781. 0x061d854,0x1bec310,0x1710acf,0x1fc8c0d,0x0a4949f,0x02c2f43,
  46782. 0x0b13172,0x02c1ddb,0x0ddcc8b,0x1121002,0x199d5a3,0x0c30099,
  46783. 0x0214165,0x19c2ad2,0x0fa5e47,0x131f265,0x07f3781 } },
  46784. /* 209 */
  46785. { { 0x1a6639a,0x1a5ed6f,0x0e4668d,0x080556e,0x0cbd48d,0x018f168,
  46786. 0x1c8d91c,0x03eb8bd,0x0d0599d,0x04f715e,0x0e110ed,0x16c1c1a,
  46787. 0x08d285e,0x1349c97,0x0faa4bc,0x0a71fb7,0x1bfb8bc,0x048a2af,
  46788. 0x11a6dda,0x0b3fe3c,0x1682ae2,0x0fa0ef2,0x1073b2c,0x0a5a35d,
  46789. 0x0f07199,0x023643b,0x079efdd,0x19c4a30,0x0ad2f11,0x16c3141,
  46790. 0x19f2e4e,0x0d749de,0x1a3cd31,0x1d51f47,0x0813941,0x11f9cd1,
  46791. 0x061bb60,0x0ba0b85,0x043433b,0x167ed58,0x06de716 },
  46792. { 0x12d6dc5,0x0c6820b,0x1973539,0x0cc72f8,0x1ed2cde,0x0f5a745,
  46793. 0x1f86032,0x1b6f5ce,0x075fa2e,0x113aa34,0x199ce15,0x049d523,
  46794. 0x0e4b303,0x11ae459,0x08ea158,0x0510ec0,0x0c2a8f9,0x0cefb6b,
  46795. 0x1bd7a2d,0x1830bfe,0x148aec2,0x159d6ab,0x1e24b84,0x095df78,
  46796. 0x1b4f2d5,0x010bd75,0x03ba1a2,0x0922a89,0x19bd5b1,0x0fb8d8e,
  46797. 0x1de89b1,0x05fe01b,0x1ccd166,0x18ef772,0x1c5ee56,0x09d7933,
  46798. 0x1fe1f77,0x0c1b0b1,0x096c242,0x061767a,0x051f908 } },
  46799. /* 210 */
  46800. { { 0x0922461,0x1b7d0f9,0x034524d,0x062ca1a,0x1bb1b1c,0x0c3046e,
  46801. 0x070cc37,0x00d2572,0x136b899,0x1309625,0x180148f,0x1617bea,
  46802. 0x05e1977,0x11b512a,0x0bffdc1,0x07b1df1,0x0781172,0x166d3e9,
  46803. 0x06f79ee,0x1789770,0x178e0b0,0x1976952,0x0f2c202,0x0365c04,
  46804. 0x00d0d17,0x0d72ded,0x1e506ee,0x0dbe719,0x0a65c5f,0x00ede0a,
  46805. 0x03a1776,0x1833bb3,0x198c82d,0x037c9bf,0x11fd488,0x118c26e,
  46806. 0x1f5bbe7,0x09d1612,0x12f9e78,0x11c1546,0x05eed21 },
  46807. { 0x1d4dc0b,0x12baa00,0x0c1f855,0x0feacd7,0x01ae5f2,0x1112ead,
  46808. 0x1afaee0,0x0d7d30b,0x01189ec,0x19d690e,0x1936757,0x0319d99,
  46809. 0x1917da5,0x0b5b2da,0x128b4fb,0x0ee3990,0x1758ffa,0x13fcc40,
  46810. 0x0b1a69e,0x0d5c245,0x046d50d,0x18e3734,0x12dfcc2,0x1a17627,
  46811. 0x03a605b,0x003c601,0x175cfc9,0x1421fd9,0x10a9969,0x0c6672f,
  46812. 0x01a3145,0x17b1eb0,0x06bf615,0x12370e9,0x0a1e456,0x115e65d,
  46813. 0x0287d30,0x1ba7408,0x10953ab,0x00d4c4c,0x08c14ba } },
  46814. /* 211 */
  46815. { { 0x17ee201,0x1bc4ad8,0x09dc321,0x0311caf,0x005aa47,0x01122b6,
  46816. 0x19d8e5e,0x03a3387,0x0c9c3ba,0x1f37c60,0x027af82,0x09ff687,
  46817. 0x16fe85f,0x0673fdd,0x02f3338,0x0d8c8a7,0x12a6526,0x143b755,
  46818. 0x1e68e10,0x158d219,0x19815c9,0x18e6647,0x07d73ce,0x1ed0fbd,
  46819. 0x1be6a9c,0x00afd0b,0x120e0d7,0x19f821f,0x0ef2ebf,0x07ed8a8,
  46820. 0x19821ac,0x11094a5,0x197ecd9,0x08f5c4f,0x1e8ac33,0x1482dcd,
  46821. 0x1ecc03b,0x1e8acc9,0x0597b8a,0x0bbd576,0x0645c0a },
  46822. { 0x0aa7e31,0x02102a8,0x1697653,0x185f0a3,0x0ec8df0,0x1937355,
  46823. 0x1a424f1,0x13532c8,0x02619bf,0x16dee1b,0x0fef55c,0x01c1c4a,
  46824. 0x061b426,0x06384f0,0x10967ee,0x1d8b72f,0x0bbcdda,0x0fd5fbe,
  46825. 0x12dc0fa,0x0bd163c,0x0fddb4d,0x17039a7,0x06c1b95,0x0abf14a,
  46826. 0x0a4f91f,0x046816a,0x08fd597,0x1f0c117,0x0d1d947,0x03e940b,
  46827. 0x0da08bd,0x0b9cf62,0x0c36156,0x0212106,0x17bcc74,0x0dc8ddc,
  46828. 0x083567f,0x132fb83,0x1b246ca,0x081a5f4,0x027e9ff } },
  46829. /* 212 */
  46830. { { 0x1e952e7,0x08c49eb,0x1c61d49,0x078e6b7,0x15b3058,0x1f02488,
  46831. 0x1664a5b,0x194e656,0x0806d2f,0x1a28c2c,0x017b649,0x0d40371,
  46832. 0x0c71ab7,0x16cfaaf,0x13a765d,0x175397b,0x12048f2,0x19ed305,
  46833. 0x04ac4ca,0x0f810cb,0x11d7697,0x0584c82,0x0db72a7,0x1115c4b,
  46834. 0x0ab23d1,0x19eece1,0x1f882ab,0x1e8d3e7,0x0d74d09,0x1be7ad5,
  46835. 0x0ef6f47,0x04553d6,0x15efe5c,0x008621e,0x1e884dc,0x0118bdb,
  46836. 0x1787026,0x1110bda,0x05ddab6,0x0ce7b59,0x04feee5 },
  46837. { 0x1d3d780,0x0c6a95a,0x1d10c38,0x060e2cc,0x0dadb5d,0x1a10ab2,
  46838. 0x0e1b969,0x10c641a,0x08d6bbb,0x0c61487,0x18f7457,0x06465a4,
  46839. 0x16981a4,0x0c4c231,0x1439f2a,0x1596267,0x04da519,0x1a89c3c,
  46840. 0x177207f,0x1c7f57b,0x043a832,0x0a18ccd,0x1f09e16,0x0e862c7,
  46841. 0x0abcf32,0x1d3ada6,0x15d3e53,0x1f40217,0x14a6279,0x1a1eab4,
  46842. 0x0930a29,0x196caf4,0x1d2a888,0x112f560,0x140fa1a,0x1efdde4,
  46843. 0x04c561f,0x08d2e98,0x1783bb4,0x1cf393d,0x04fe818 } },
  46844. /* 213 */
  46845. { { 0x1c1c7ff,0x0964ebf,0x0b44009,0x1b3f513,0x09bd419,0x1274e65,
  46846. 0x0492901,0x1999274,0x043942e,0x0265e5c,0x05a56ce,0x03fb0e9,
  46847. 0x1f004c2,0x0108b2d,0x120767d,0x02204d3,0x028dde0,0x0f1192b,
  46848. 0x0a6c013,0x06e8aeb,0x1c21ec9,0x1ffb6e7,0x1eccd1a,0x06e58fb,
  46849. 0x1a64b4d,0x0715626,0x0fc8125,0x1d96f5a,0x07c150c,0x00daf43,
  46850. 0x16158b1,0x1856e47,0x19395ce,0x0991894,0x1f15fb9,0x0f9235b,
  46851. 0x110b659,0x1788b0f,0x0fff381,0x0536e9a,0x0819155 },
  46852. { 0x0d9d4ee,0x09218b7,0x1c063b0,0x08d135f,0x1dffa15,0x04d1fa1,
  46853. 0x0d27caa,0x1649574,0x0d467ef,0x0d8f471,0x040b88b,0x06a8072,
  46854. 0x0b18dea,0x1297841,0x0aae14f,0x1ba8e84,0x0c1ed36,0x1389851,
  46855. 0x0a5747b,0x01d0da0,0x1ad3ca6,0x043e3fa,0x19ab1a0,0x10c8cb1,
  46856. 0x1cecfde,0x13287c1,0x0518744,0x05ccd84,0x1850997,0x00a85e9,
  46857. 0x027fbbd,0x14cc645,0x1183f3a,0x0e3ca87,0x12f9e4b,0x044ea8a,
  46858. 0x1136770,0x02608d8,0x1bbcc9d,0x18fd1d4,0x07d06bc } },
  46859. /* 214 */
  46860. { { 0x090212f,0x02ca138,0x011224a,0x18aa43d,0x091b7d4,0x16ddc93,
  46861. 0x0108af8,0x1009807,0x1bd81f8,0x0bb90f6,0x06f0d8c,0x17dd591,
  46862. 0x0dc136c,0x1dc7802,0x1c6d82d,0x115709e,0x0d04e21,0x0934899,
  46863. 0x1b32053,0x0492ddc,0x1c15b0e,0x0bbafd6,0x02cb38c,0x1a4478a,
  46864. 0x1c08466,0x1c5c171,0x193184b,0x0e43954,0x1653559,0x08f5d25,
  46865. 0x145669d,0x18fa7b3,0x033aad5,0x0a1231a,0x074ba03,0x143cc37,
  46866. 0x1c673ca,0x0fb2aff,0x12e4852,0x133a1f3,0x048b52b },
  46867. { 0x1dc05be,0x0a9ccf7,0x17a68e4,0x1027c12,0x1e70db1,0x0d9fed6,
  46868. 0x18ba737,0x0a288f0,0x01a0094,0x15818b1,0x083a8e8,0x1018472,
  46869. 0x0b4b279,0x111dc7f,0x14e53c6,0x02da958,0x0563e56,0x10b1fb9,
  46870. 0x1c50866,0x1ff27f6,0x0474aa0,0x0949eb1,0x149be5b,0x19fc4ed,
  46871. 0x12ea87d,0x08aee90,0x1d1c0e3,0x164f7e5,0x18168ea,0x0192fa0,
  46872. 0x06b9632,0x1665531,0x1704222,0x0f89df1,0x0e42ff2,0x1b46d28,
  46873. 0x0d0684a,0x1713030,0x1dbb3c5,0x10f3b18,0x017c0de } },
  46874. /* 215 */
  46875. { { 0x0c01958,0x0fa29ee,0x0e4ef29,0x0839d10,0x1d94595,0x0fadb6b,
  46876. 0x1428558,0x178bcc6,0x07e2d36,0x08e1e43,0x10e9b0a,0x1b094b5,
  46877. 0x0df6c7e,0x0cc0036,0x04f102f,0x1d876f2,0x0875671,0x0fbc5d8,
  46878. 0x10fa26a,0x051edd6,0x01ed1c9,0x19d70f5,0x1f7ca37,0x049656b,
  46879. 0x1a5b1b9,0x102b15d,0x146845b,0x123a4e0,0x1ed3e34,0x015b8b3,
  46880. 0x11823b0,0x0b78160,0x091cf7b,0x0bfacf1,0x05a6317,0x0e61ca0,
  46881. 0x15c799b,0x1e1a86f,0x1875c31,0x1c4158d,0x06862b9 },
  46882. { 0x1fa1f64,0x17a73cf,0x0d255b1,0x1543c48,0x1ed6a91,0x1ba9197,
  46883. 0x1b83336,0x00fd341,0x10322d6,0x1e4859b,0x1fbe1ef,0x15a48c5,
  46884. 0x1429480,0x015fe79,0x08525a7,0x1c71ff8,0x1e0a539,0x0372908,
  46885. 0x0a94527,0x13d84c2,0x15322a5,0x096b835,0x0657f88,0x1390852,
  46886. 0x1b108e9,0x0417bbf,0x0d77201,0x099d5d4,0x12d2987,0x0185dec,
  46887. 0x1ba9698,0x155d42b,0x142dca5,0x1884e56,0x0f1d261,0x13ad587,
  46888. 0x090af64,0x070e201,0x179b319,0x05aa3f1,0x05093fa } },
  46889. /* 216 */
  46890. { { 0x02d553b,0x1994026,0x10a7133,0x04772cd,0x1c1abe2,0x0b48a56,
  46891. 0x152708a,0x192aad4,0x1999976,0x064fc5a,0x1a0fcf6,0x0f7aeed,
  46892. 0x17c22c5,0x1e42f62,0x0a50aad,0x0c3ea9e,0x1e56e2c,0x0779a03,
  46893. 0x084f6d2,0x0bd195e,0x18c7f00,0x1ef9934,0x11c3214,0x1814a96,
  46894. 0x088d7ca,0x00f737a,0x1582dd4,0x0d7ad7d,0x0a4bd9b,0x188338a,
  46895. 0x053c040,0x0dc1311,0x085bc3b,0x0950029,0x106bd7e,0x15d80ce,
  46896. 0x0f7ef24,0x18b2137,0x090e0cb,0x09ad8ef,0x012f9c4 },
  46897. { 0x1313a1c,0x0f4b241,0x0cdc654,0x14678b1,0x18edd3d,0x1620224,
  46898. 0x0fd4b1e,0x1d09db7,0x10dcb5e,0x136537b,0x108be21,0x11eadba,
  46899. 0x0eec0ae,0x0330f61,0x1def150,0x0a47820,0x13ad422,0x1369cc8,
  46900. 0x039f2cf,0x0bc3d0b,0x1b45d10,0x1fe4bcd,0x11f24e5,0x12f6b24,
  46901. 0x1d4a909,0x1f39910,0x0fa254b,0x1dec514,0x1462410,0x0c13a74,
  46902. 0x1034235,0x0b2f01e,0x0cbed0f,0x0887632,0x089c238,0x0627af8,
  46903. 0x1679b1a,0x036c333,0x0746346,0x09c4d5c,0x002f75e } },
  46904. /* 217 */
  46905. { { 0x1f307d7,0x1bf5fa3,0x11dc6d8,0x15a0282,0x0b644a6,0x02d4063,
  46906. 0x0f594b8,0x0630546,0x1fed07b,0x078d079,0x1b965f2,0x0ff26d2,
  46907. 0x1ec09ee,0x03ffe00,0x0a9fb0f,0x0e7739b,0x0fef8f3,0x0aa4fc4,
  46908. 0x0eee262,0x1a32c38,0x07b7c88,0x14efe55,0x164a93f,0x1c95641,
  46909. 0x19ee23a,0x0d2897f,0x07d7b2c,0x0b5d4c8,0x0fb47df,0x11bff19,
  46910. 0x1039da4,0x04ba10b,0x0a5c420,0x1aad14b,0x15609b1,0x07b9224,
  46911. 0x1bce972,0x05cc2fc,0x0650560,0x0ccc72c,0x072b1b5 },
  46912. { 0x10e5558,0x045043c,0x1e0275c,0x020d135,0x1853604,0x189dafc,
  46913. 0x1ee2908,0x035d0bc,0x055a49d,0x15d0949,0x1c6c2f9,0x0961586,
  46914. 0x195e76c,0x09c7370,0x1413ce6,0x13442b0,0x02260ae,0x146ea0a,
  46915. 0x1a12173,0x009d372,0x1e43d8b,0x12c43f7,0x1e5312e,0x038bce7,
  46916. 0x08e67f1,0x0e20893,0x033dae6,0x04c47c5,0x0a96629,0x15543d0,
  46917. 0x14fcb42,0x099405d,0x066772a,0x1daa8d9,0x1938b58,0x0ad1dd1,
  46918. 0x0e78b5b,0x15d94c9,0x096b737,0x02dc2e4,0x05df192 } },
  46919. /* 218 */
  46920. { { 0x1f2e7e3,0x13f0f46,0x1f78800,0x11b1b40,0x1183cc6,0x05734a5,
  46921. 0x0e9a52d,0x1119c6b,0x13ca62e,0x0b6cbef,0x1fb4b22,0x0276a5d,
  46922. 0x0f3de47,0x135e842,0x01b1038,0x12477a0,0x1bbfc81,0x00f4db8,
  46923. 0x0ab31ac,0x038f6c3,0x0840999,0x1247b2b,0x194324d,0x1e8ea48,
  46924. 0x161d187,0x05109c2,0x06fff4f,0x021e562,0x1914186,0x0fd7fd0,
  46925. 0x0265a45,0x12abca6,0x11236de,0x196bcc7,0x1baa861,0x16c2797,
  46926. 0x06a2a48,0x1da2753,0x070c9fd,0x185c151,0x0452265 },
  46927. { 0x1430010,0x0f63c92,0x03012b5,0x1fd7a12,0x0ac786f,0x14e9fae,
  46928. 0x1d3fc82,0x0bf4bf3,0x0a3edc6,0x05fa089,0x0fac47f,0x073819e,
  46929. 0x0088248,0x0552db8,0x175b53a,0x1157171,0x1fdb756,0x171138e,
  46930. 0x1d11583,0x1d86e76,0x1296e43,0x130e7ba,0x1e3abe4,0x152db36,
  46931. 0x1ae0e3f,0x1ea8c04,0x1770977,0x16625a5,0x0b77110,0x1c5a35d,
  46932. 0x191ae3d,0x16bd9e3,0x09efc8d,0x1f65503,0x0eb9827,0x03832a5,
  46933. 0x1f4dbde,0x118176a,0x015550f,0x1f23c0f,0x014b02b } },
  46934. /* 219 */
  46935. { { 0x07e5b57,0x0e3b45c,0x155cb1c,0x0fea634,0x0bcc78f,0x0cbee40,
  46936. 0x0fe2fdd,0x0be9ff2,0x1139e17,0x1470136,0x1329b2c,0x0e4f972,
  46937. 0x1c6b83b,0x003cfbf,0x0bf8ec8,0x1a2e05d,0x0decf3b,0x015652a,
  46938. 0x0bc371b,0x082678d,0x035e17c,0x12e67af,0x0fa8799,0x0aa0b8d,
  46939. 0x11a4834,0x1c4d334,0x0398402,0x0c6757a,0x1d03882,0x138360b,
  46940. 0x03259b1,0x03419f2,0x0efffbe,0x0eb263d,0x0f9f42b,0x0c9b08f,
  46941. 0x0ea2aa4,0x0de6fdd,0x1429752,0x0e8598f,0x085e07e },
  46942. { 0x1c25bca,0x1705305,0x13b08ea,0x03c89ec,0x0e8e55f,0x03dbb9b,
  46943. 0x05b62d8,0x013c3cd,0x0d30059,0x14853a3,0x112642a,0x199a597,
  46944. 0x1d072b1,0x034717a,0x03f9b1b,0x11d921a,0x1f053e2,0x0c90762,
  46945. 0x0010330,0x043f69e,0x02c779b,0x09fe625,0x09cdd6f,0x1758fbb,
  46946. 0x1def9e1,0x069fafa,0x04d703e,0x1862baf,0x0cd318d,0x00b8165,
  46947. 0x071c45f,0x1d24dee,0x12823c4,0x179cd37,0x02efb40,0x0671b6b,
  46948. 0x1db6932,0x1a4918b,0x1d0c396,0x13f1a93,0x0096403 } },
  46949. /* 220 */
  46950. { { 0x0999eba,0x1a78b2b,0x0c1485d,0x0f63bcc,0x1d8ee28,0x0593349,
  46951. 0x1dc9b78,0x143b035,0x13f8942,0x1a2349c,0x0f84f0d,0x0c2bd40,
  46952. 0x0fbcf6b,0x0a7139e,0x03030d6,0x0b8ada6,0x056c672,0x127e99d,
  46953. 0x02fa5e8,0x0a695b5,0x0251a57,0x133e115,0x1e6490a,0x018b892,
  46954. 0x1bdb59d,0x1b42728,0x131a909,0x0f9aed9,0x06bf59d,0x0bd66a1,
  46955. 0x0ca4502,0x0cdd37d,0x1404a2c,0x171f4ac,0x1a61725,0x008e71f,
  46956. 0x0ad666d,0x1d9f075,0x1795af2,0x1a4c778,0x0626b0f },
  46957. { 0x1a1ec42,0x0bedd70,0x11411c8,0x1756b59,0x0a6ae7d,0x0998e8d,
  46958. 0x0ac7a19,0x0df6fc3,0x03d3012,0x0229838,0x186146e,0x13c1bdc,
  46959. 0x0428064,0x15344aa,0x01bd28f,0x1ec6510,0x1adcb56,0x1a5df21,
  46960. 0x12bfe53,0x1737b57,0x17be036,0x12de831,0x0365079,0x0de7576,
  46961. 0x19d4468,0x1eb410b,0x12ab5ab,0x090d225,0x1e15341,0x048f7fb,
  46962. 0x05a68ee,0x1d70dfb,0x0c426ce,0x09461c4,0x0a0445e,0x016adcd,
  46963. 0x16399e0,0x1f389ac,0x1ab064c,0x1b342f6,0x009bbdd } },
  46964. /* 221 */
  46965. { { 0x0fd3673,0x1ce0ef2,0x181dd78,0x034cb91,0x1880d9d,0x04e3ff7,
  46966. 0x10771ca,0x0008e4b,0x03529d2,0x1b39af7,0x11ebcd6,0x05da78e,
  46967. 0x15c1f8f,0x08977ef,0x1ce663e,0x13872b9,0x0184985,0x0f6b913,
  46968. 0x19a5e57,0x12745e1,0x12a7237,0x0b4358e,0x029aae3,0x15105c9,
  46969. 0x015de22,0x0bf0064,0x13e76e3,0x1cefadf,0x067547b,0x1d99011,
  46970. 0x170221b,0x093821d,0x02687d4,0x1f6a65b,0x185df20,0x153e387,
  46971. 0x1af366e,0x0aebf82,0x0b4939b,0x171a3df,0x02eaa01 },
  46972. { 0x1357c74,0x1fdb80f,0x1e51791,0x1553c76,0x13085c4,0x02d482c,
  46973. 0x01ccdba,0x1929e13,0x1be0244,0x09c047f,0x159837d,0x1f27476,
  46974. 0x1691ddd,0x19dcaf6,0x1d8ddef,0x041a916,0x1b7bb39,0x1c8dc88,
  46975. 0x1a84f3c,0x1e117f0,0x0e587cc,0x0bf500c,0x14fb63e,0x18aa328,
  46976. 0x0434378,0x0d358f5,0x07834b5,0x1cd5bbd,0x16259a8,0x1247cdc,
  46977. 0x177f0ac,0x1dde2fb,0x0ebceae,0x1ce42cb,0x110d55f,0x11ed296,
  46978. 0x07d5bba,0x068a878,0x061ad23,0x1d36983,0x002d31d } },
  46979. /* 222 */
  46980. { { 0x079499d,0x1cf0f6f,0x0ab69ae,0x11fa1f8,0x16ca8ff,0x1ec9ab7,
  46981. 0x1e3a069,0x04f7d81,0x1e8f063,0x01e8e4f,0x002faef,0x042e766,
  46982. 0x1b805c7,0x009e0c0,0x1082821,0x13a0200,0x07ef0ca,0x14f4d0b,
  46983. 0x0bbb775,0x19213a3,0x0a72076,0x1fc71d4,0x1928665,0x0f6853c,
  46984. 0x1f7a7a7,0x1f49e73,0x1172534,0x1581f7e,0x148407a,0x0a53f36,
  46985. 0x19fcdda,0x1523243,0x16679e2,0x0ddeb7a,0x03cfb87,0x13e47fc,
  46986. 0x0bf9fa9,0x08bab36,0x15d971e,0x1e5c1e9,0x0965860 },
  46987. { 0x1a5f79c,0x03815bf,0x09b79cd,0x0cb5e5a,0x130bd42,0x19f0674,
  46988. 0x02e61b1,0x05a8b7b,0x14ee44a,0x0df3df6,0x122869f,0x00492ad,
  46989. 0x0ec129e,0x1be6fc0,0x17016b1,0x14b36df,0x02b589c,0x1b8535d,
  46990. 0x066096b,0x1080433,0x10b6fc4,0x0a3d11f,0x074a12d,0x141515e,
  46991. 0x010a428,0x16c58ed,0x04acabd,0x03d6366,0x135ee3b,0x021d19c,
  46992. 0x1b3c145,0x11dff4d,0x007eb26,0x132a63d,0x021b598,0x182ddc8,
  46993. 0x0549ee4,0x1de280a,0x02949e9,0x0643f53,0x0650810 } },
  46994. /* 223 */
  46995. { { 0x07ed9b2,0x072305b,0x0f4927c,0x0186db2,0x0cda0fd,0x03af0e0,
  46996. 0x18fa623,0x19376b2,0x1614bc0,0x0bddf49,0x1a1815d,0x100334e,
  46997. 0x049a9b8,0x0476e2a,0x0df8abd,0x0b30b51,0x19eb51a,0x04f3bf6,
  46998. 0x0efc093,0x04a4e9d,0x0636dd0,0x040aa2e,0x1662d8a,0x001b740,
  46999. 0x1aed048,0x11d1cde,0x06078a8,0x1f84027,0x0cb4f27,0x1eae2a8,
  47000. 0x11f719b,0x16a40d1,0x127032f,0x0fd0ad6,0x12ba05a,0x0593417,
  47001. 0x1a7ca8a,0x1037909,0x194bd81,0x08d30c4,0x0982950 },
  47002. { 0x011c128,0x1a30017,0x09f8f8d,0x1a1cdb9,0x00dfae5,0x0a91324,
  47003. 0x05b8b65,0x087c880,0x0880b71,0x12fc479,0x0e2073d,0x11a8a4d,
  47004. 0x1eca3d2,0x0fdc357,0x1167747,0x1f2b1f3,0x0c24c74,0x1aa4430,
  47005. 0x12da7d3,0x1d48793,0x0cecd06,0x17399a7,0x14d0f26,0x0652e26,
  47006. 0x0ccd635,0x0062e61,0x0d7ce9b,0x12bfe80,0x12653ba,0x10e659b,
  47007. 0x0f4b806,0x144a0a4,0x1510fdf,0x13f5918,0x038a988,0x01ddca7,
  47008. 0x0a23cd1,0x0fe4506,0x1d52fab,0x0367cf1,0x04b7e6e } },
  47009. /* 224 */
  47010. { { 0x15f928b,0x083b7ed,0x13b1e72,0x0d6e68f,0x06250bb,0x007620f,
  47011. 0x1de62b0,0x18ea96c,0x09d9619,0x006905d,0x10d0fe4,0x01a0b3c,
  47012. 0x17ed42c,0x028c9ae,0x1ce7a15,0x0039c7b,0x18264f7,0x0131c88,
  47013. 0x07e1eab,0x1e4aa9c,0x1aaace8,0x04b2fc8,0x1f7759e,0x048a73f,
  47014. 0x1163fa3,0x0cacb66,0x112eb3a,0x1902be5,0x0f9ea55,0x061554a,
  47015. 0x1575e32,0x1de49c8,0x0b2aff4,0x0e1353d,0x1024737,0x05e1dac,
  47016. 0x00ca282,0x0521058,0x1d96255,0x18ba652,0x00611c4 },
  47017. { 0x1e81829,0x1000e54,0x0b33c64,0x0011450,0x1ed3332,0x0ef6cde,
  47018. 0x1f7863e,0x00617fa,0x1b78890,0x1c9d606,0x1e97759,0x123a6ae,
  47019. 0x0bbb00d,0x00169e1,0x1e88e9e,0x12029c2,0x08cfb54,0x1ffcafc,
  47020. 0x1c6db81,0x037e978,0x0c8b7cd,0x1011ac4,0x0b8ec92,0x02240ec,
  47021. 0x135b8a4,0x0984da9,0x1b1015b,0x090380b,0x16a1b52,0x0086748,
  47022. 0x1d1571d,0x10a02f3,0x1e03271,0x089045d,0x05decf3,0x002bcd8,
  47023. 0x10cbfe5,0x0d12604,0x0159942,0x0523821,0x0820795 } },
  47024. /* 225 */
  47025. { { 0x07d353e,0x09e7f8e,0x18ed74b,0x1afbc19,0x15e7ecc,0x143b1ae,
  47026. 0x01d7db2,0x07d6962,0x025f9ad,0x1420270,0x12d6bb6,0x1d1240b,
  47027. 0x016b963,0x04f910d,0x17b8360,0x159493c,0x1d9ea41,0x06b2642,
  47028. 0x1110a8d,0x0d89d26,0x15a46a4,0x1f1e7b2,0x0b1bfe5,0x082faf9,
  47029. 0x05c1ee5,0x0263b2b,0x07bafe7,0x1020135,0x1a63886,0x0e9cc46,
  47030. 0x11a56d8,0x1ed68e5,0x002b46a,0x188b8b2,0x05942df,0x063fbca,
  47031. 0x1e0c05e,0x1c7939d,0x1129e53,0x06d5106,0x07487b0 },
  47032. { 0x03e2370,0x072bace,0x1c66a18,0x07f0090,0x19d5819,0x117cd50,
  47033. 0x0fcf29b,0x136741b,0x1614471,0x163f4ac,0x1fb086d,0x18e9bdf,
  47034. 0x1fa9049,0x1fa8675,0x08192c8,0x1bc2b17,0x0c049a1,0x1589411,
  47035. 0x07549fc,0x096fb36,0x0430b65,0x0e87fe8,0x111c216,0x00a88d7,
  47036. 0x14a674f,0x0ca9be3,0x0e8eb76,0x0aa64a3,0x1533b5e,0x0b65f19,
  47037. 0x13928fb,0x04fc833,0x12f44d0,0x0dcbc97,0x1a0a974,0x1e5b09d,
  47038. 0x1b6fa69,0x1b5891e,0x0ef7731,0x18a43f4,0x0834f85 } },
  47039. /* 226 */
  47040. { { 0x0e9b31a,0x1a3e096,0x0edcca4,0x15fc7f6,0x1d88522,0x1fc87e8,
  47041. 0x1ed354b,0x03a979d,0x02b1a08,0x1d8b9c3,0x047c214,0x0374548,
  47042. 0x1a538c1,0x0a0db01,0x056e4f0,0x1ae82f1,0x1aab10b,0x114c9dc,
  47043. 0x0644a61,0x17a08c1,0x0ba5ccb,0x1877505,0x19a7ebe,0x0cc312e,
  47044. 0x0462235,0x12a6a42,0x10d9ffe,0x14c7713,0x1478da4,0x0e8e8e1,
  47045. 0x1df2eb5,0x154c069,0x1339227,0x189c8e2,0x017f986,0x0a1cdae,
  47046. 0x174ff51,0x0a5b307,0x0d53374,0x014a665,0x0639d8b },
  47047. { 0x02217cd,0x118b10b,0x039be90,0x1502385,0x0e0e4a2,0x1b36e01,
  47048. 0x1386085,0x1ded1b3,0x1046a06,0x0931b9c,0x0484054,0x0463bbd,
  47049. 0x1344eea,0x08a14c6,0x01f23c8,0x0afd20c,0x0ba63d9,0x093f939,
  47050. 0x17a32b8,0x1d01994,0x063fe7c,0x11127bd,0x1605baf,0x0ce7c68,
  47051. 0x0e5a789,0x1ea26f6,0x094daea,0x06ead44,0x1f77af1,0x10d771d,
  47052. 0x0f19135,0x0579f31,0x0b2bf6e,0x14b1630,0x07cca7e,0x067616b,
  47053. 0x0bb5002,0x1b4d0d5,0x100b2c1,0x06c18ea,0x0409031 } },
  47054. /* 227 */
  47055. { { 0x070433f,0x1439d0b,0x17f2134,0x0c4a927,0x09394df,0x1e7c4f6,
  47056. 0x0866a03,0x02dd60b,0x0db2976,0x1cf2188,0x18c11b8,0x1b93b3c,
  47057. 0x1e50742,0x0ef4e54,0x06b6320,0x03a1be6,0x194fb7b,0x0c3555f,
  47058. 0x0cf20b4,0x1b44f43,0x0d8436c,0x1a1cb81,0x1ec68bb,0x0102533,
  47059. 0x1fddc46,0x11c1405,0x1748e58,0x0965691,0x1c9353e,0x0179bd9,
  47060. 0x1a4b6cb,0x025f714,0x1b5b317,0x0023a6a,0x08ec206,0x11f370f,
  47061. 0x1e95257,0x0c84c30,0x0af2361,0x1dbe6f4,0x080668e },
  47062. { 0x19a0249,0x0e69ad9,0x1abb8bb,0x0965f15,0x0f230cd,0x11ef82d,
  47063. 0x05791c8,0x1e852b6,0x0e0e937,0x1b34c15,0x12458ae,0x16e5197,
  47064. 0x01019d2,0x07a4ee5,0x144aba7,0x00f68b8,0x1a7630f,0x088da48,
  47065. 0x00e1d3a,0x09e6994,0x143348d,0x132265b,0x107f43a,0x0b66187,
  47066. 0x19ae1f9,0x05609fb,0x17b62d8,0x006c5a9,0x0ad81c4,0x0a7fb0f,
  47067. 0x0a27a0c,0x093187a,0x1600dd4,0x10b8176,0x1067094,0x06bf963,
  47068. 0x1a9c1f3,0x1194fe1,0x1b3a564,0x09037bc,0x0046775 } },
  47069. /* 228 */
  47070. { { 0x1233c96,0x0f2b71c,0x1abfb8f,0x1900e6f,0x068c409,0x0d5e344,
  47071. 0x046f480,0x00b595c,0x12b4862,0x196754d,0x0415b03,0x0fc2de3,
  47072. 0x01e3238,0x12ee152,0x1d4d96a,0x17d0dd4,0x0cc12b4,0x0bb614d,
  47073. 0x158ca53,0x1f956f1,0x1f24a01,0x058655c,0x0076fa2,0x02980a9,
  47074. 0x06e5bf4,0x1d53b32,0x0f2e5ad,0x1c22312,0x04e097f,0x1ad8bb3,
  47075. 0x0a6d927,0x0a7f9eb,0x196422e,0x1fb1a50,0x06f42df,0x0ab2f19,
  47076. 0x1c22989,0x1f59c71,0x1115ad7,0x1f61067,0x0038a49 },
  47077. { 0x1e93257,0x1c0c609,0x106cd78,0x1b4c24e,0x14cebc9,0x1560358,
  47078. 0x04925f2,0x02c9edd,0x13daa11,0x113c719,0x080d2a0,0x0cbc9bc,
  47079. 0x10e7cc5,0x050dd31,0x1f7257c,0x0df7b76,0x1236695,0x140eecf,
  47080. 0x0c4cb75,0x1cc6337,0x1337c63,0x117e120,0x1b88ac0,0x117d638,
  47081. 0x081937e,0x05611c2,0x176324e,0x0763329,0x1b56448,0x1d65535,
  47082. 0x01ed533,0x00df230,0x07cd44e,0x06cf98d,0x06eea3e,0x0c3ba87,
  47083. 0x1f74a8e,0x06153c3,0x1598198,0x0442436,0x04bb76e } },
  47084. /* 229 */
  47085. { { 0x0354817,0x08f4573,0x10e1e85,0x15e0716,0x13d494e,0x0ac4c31,
  47086. 0x11a2216,0x024990d,0x11dcbac,0x10a9c13,0x16b419c,0x1f1981d,
  47087. 0x16f487a,0x128072e,0x0cc147f,0x0feab5a,0x11bd6e4,0x085388d,
  47088. 0x11d1ab5,0x0e134f1,0x135ea68,0x1132017,0x09fc5c9,0x0618260,
  47089. 0x08efafb,0x04be368,0x0701b1d,0x1de3808,0x03e2da9,0x07676e6,
  47090. 0x1cf431d,0x0125c20,0x0c5f96e,0x095ba18,0x0f3caa8,0x041e272,
  47091. 0x0107eb0,0x0c200b1,0x1e62c91,0x0bef6ed,0x08843d2 },
  47092. { 0x1b2a83e,0x080ee76,0x1c91385,0x005771a,0x1cfe8fb,0x12efb15,
  47093. 0x0196764,0x1861204,0x142ab6f,0x038aee7,0x0277f4f,0x00ab41e,
  47094. 0x0a73c05,0x11ac857,0x19d1763,0x0e93c24,0x0d876ff,0x1a9c17a,
  47095. 0x0483198,0x13fddf5,0x11cafc6,0x08cfeb8,0x1785808,0x0eb89ab,
  47096. 0x1c3bd90,0x1f9210c,0x04f7b5a,0x100197a,0x03a1163,0x1075b13,
  47097. 0x0de31fa,0x0fa4c98,0x1bd7958,0x0e4c61a,0x1915c56,0x0aadc45,
  47098. 0x1a7373b,0x1f9516f,0x12525c6,0x073126b,0x00503f9 } },
  47099. /* 230 */
  47100. { { 0x1dad4f6,0x0ee3338,0x086d96b,0x120497d,0x038e488,0x02e9ee9,
  47101. 0x1238bd8,0x113f6ed,0x0b0d96b,0x1eafaef,0x06cb2c4,0x146acc0,
  47102. 0x14e0b5b,0x01f1e92,0x1f52476,0x11d4fc6,0x023240c,0x1744302,
  47103. 0x047266e,0x0305e7d,0x1919374,0x1cd43d6,0x09b0b2b,0x0e9e52a,
  47104. 0x1040af5,0x051a589,0x0651000,0x17379da,0x1f42e75,0x0bdf036,
  47105. 0x0753331,0x097a211,0x0e8ec50,0x1da8011,0x1deb776,0x1618a62,
  47106. 0x1ecfead,0x0698e94,0x1a3e5a4,0x1fc2ecc,0x0735778 },
  47107. { 0x03c1137,0x1771f42,0x0f343e1,0x147e16e,0x1c1c42f,0x19071d1,
  47108. 0x19e762a,0x15c1cea,0x016242f,0x1caf8fa,0x024b91b,0x0238736,
  47109. 0x007b88e,0x0611b56,0x0a500f9,0x005cc2c,0x1412dac,0x133082f,
  47110. 0x18b818c,0x18514f0,0x1c8d74d,0x1979d91,0x08463fe,0x08bff7e,
  47111. 0x0417c07,0x08f08c1,0x113015c,0x136ab40,0x1be4de4,0x0dba677,
  47112. 0x01cb199,0x12f7ee2,0x0c4c01d,0x1833b0e,0x1b6b153,0x1165940,
  47113. 0x1450d0f,0x0cced53,0x00a87f1,0x14c3463,0x052e637 } },
  47114. /* 231 */
  47115. { { 0x1ebc6db,0x18078b5,0x1649205,0x17f2a07,0x0a6b45d,0x0a9c8ca,
  47116. 0x134f174,0x1798e2b,0x1e5ad2a,0x0150e02,0x0d19be5,0x086756f,
  47117. 0x0b36a82,0x1d09c8c,0x104efb6,0x1cd9d74,0x02490f4,0x134c52b,
  47118. 0x0fc7cf2,0x041b4de,0x1ab3bb7,0x0eb1a38,0x0845b50,0x07a6c12,
  47119. 0x1222730,0x14f7006,0x0118ee9,0x1fa9980,0x045fd17,0x0f26b14,
  47120. 0x11eb182,0x1015b93,0x1603b2c,0x17de531,0x126917e,0x177e2df,
  47121. 0x04bc94a,0x003fbfe,0x05a6104,0x09f4e96,0x07c916b },
  47122. { 0x0bac2d4,0x137c8bc,0x01d7040,0x104c035,0x0a2e809,0x19eb204,
  47123. 0x09db801,0x1115a5e,0x0fcc1fb,0x01b0862,0x0ca47d1,0x104594d,
  47124. 0x1c5727b,0x0476307,0x1154cb2,0x1a9160c,0x099ed9a,0x1a8f244,
  47125. 0x150fc40,0x16916be,0x0eeb841,0x1f6ac8e,0x09b32c6,0x19eb517,
  47126. 0x0df0f9d,0x0da7e25,0x02cd1f7,0x14f9404,0x04c5213,0x066165a,
  47127. 0x112a86b,0x00a4f81,0x13b6828,0x1e7a83b,0x1041c08,0x0d546e9,
  47128. 0x0b74c92,0x1e88003,0x141f1cc,0x0deef51,0x01ff391 } },
  47129. /* 232 */
  47130. { { 0x197939d,0x0c7f27c,0x0ecea88,0x16f22b0,0x1d4dfbb,0x1bab059,
  47131. 0x0d76a1f,0x131674f,0x15da92c,0x0e01400,0x19bd2aa,0x155a8cc,
  47132. 0x17e1eb4,0x0a674ee,0x0c5e944,0x060ec5d,0x0a4ef8f,0x17a3533,
  47133. 0x043951b,0x168b8d0,0x04dd900,0x0c25d78,0x1debc89,0x109a85f,
  47134. 0x1c8725c,0x1ef1e60,0x1639320,0x0127e44,0x0d88b23,0x0f208b8,
  47135. 0x1118beb,0x1580edc,0x19612e4,0x08a0df0,0x0d18cb7,0x15e91ae,
  47136. 0x125e34d,0x18fbacc,0x0432706,0x0ac0e57,0x019ed1a },
  47137. { 0x0735473,0x1fe6f36,0x10fa73d,0x0ec0077,0x0ab88e6,0x0ccddc5,
  47138. 0x1f2f3ec,0x17a2430,0x19acccc,0x1b98220,0x195166e,0x1e7961e,
  47139. 0x02214af,0x17c9314,0x1b2068d,0x04170d5,0x1329f9d,0x0554165,
  47140. 0x1dcf324,0x07f21ea,0x17e182f,0x15fb112,0x12bd839,0x08ec5be,
  47141. 0x144bfbd,0x1a9f8c5,0x076e5c1,0x1291625,0x02c18e3,0x1074be1,
  47142. 0x0b71ba4,0x0af7d2f,0x13d6208,0x11bfc9c,0x00b11ad,0x0bd1ae7,
  47143. 0x11fed1d,0x112e65f,0x05667d9,0x1f2d0d0,0x06f31e0 } },
  47144. /* 233 */
  47145. { { 0x0b8f204,0x17f2ac1,0x152b116,0x0da6b16,0x0c0441b,0x0afaf6d,
  47146. 0x19efeb3,0x126e427,0x1139bcd,0x08a6385,0x0f2ec06,0x0b032db,
  47147. 0x01714b4,0x0f69ae9,0x0a5f4d4,0x03e41d2,0x0376a3e,0x0c7b204,
  47148. 0x1cf35c1,0x15153a5,0x1f6d150,0x00ee6ec,0x1ecdba0,0x1eadb05,
  47149. 0x0eb655c,0x110ad2a,0x124aa96,0x0c20a01,0x089f037,0x05711d8,
  47150. 0x1a34434,0x18856cd,0x11b2079,0x146a424,0x18f43bb,0x0a95e35,
  47151. 0x01556f4,0x1f26142,0x09f984d,0x010c7b1,0x0875e33 },
  47152. { 0x16c0acc,0x07eee57,0x1023720,0x0d763cf,0x15ad1e6,0x02c2d6e,
  47153. 0x1eb860a,0x14db8e2,0x0275c7d,0x0e2a1a0,0x0e7856f,0x10a5a4d,
  47154. 0x10f4b4c,0x1502fd2,0x0287efd,0x19664be,0x047817b,0x0e37c0f,
  47155. 0x03fcb87,0x1a8650e,0x17fc2cb,0x0b33e3f,0x0289240,0x10b4d89,
  47156. 0x1acb7b5,0x02be822,0x11199b0,0x1d2e55a,0x17d63d2,0x03e7f36,
  47157. 0x1131d36,0x01c4e82,0x1067d87,0x0c2577b,0x15ea2c9,0x1765942,
  47158. 0x15f0fde,0x0e2dfdb,0x1802525,0x103e70d,0x05abb05 } },
  47159. /* 234 */
  47160. { { 0x0c97f57,0x11695f8,0x031e2f9,0x032c5e5,0x0fe0487,0x1a855d8,
  47161. 0x0919d1e,0x1db8a91,0x144fa09,0x1593701,0x16a5bbd,0x0dc7560,
  47162. 0x02fd44c,0x1873574,0x0c00cb1,0x1133bdb,0x02bd7e4,0x1145ea0,
  47163. 0x0df0470,0x05d2c73,0x171643f,0x0767489,0x03b0ff0,0x1fa1f18,
  47164. 0x18bc902,0x1d63b4d,0x09f2af0,0x1b39675,0x124cc99,0x0449034,
  47165. 0x053a22a,0x084c120,0x11461aa,0x13cf052,0x0a2e58b,0x018fe95,
  47166. 0x0b1b3e8,0x1810854,0x192f13b,0x10037fd,0x0705446 },
  47167. { 0x01901c1,0x1eb8989,0x12abeac,0x0ffd5aa,0x090a262,0x045d11f,
  47168. 0x14a16f0,0x0fcc9ed,0x136ec22,0x0cc980a,0x0646ae3,0x15720d8,
  47169. 0x0c99a16,0x1b24e71,0x0c73d6f,0x075010d,0x15966be,0x02c9033,
  47170. 0x12e8b3c,0x06c4f39,0x1486188,0x03f7fa9,0x0b055ee,0x04475e4,
  47171. 0x098964b,0x12bdfd6,0x002ab9e,0x1a1fa9e,0x018a80c,0x1ca0319,
  47172. 0x13b6b76,0x1bf11e2,0x044bb79,0x16cfe9c,0x0f52dc7,0x0d8367c,
  47173. 0x1620503,0x11a509e,0x029adb1,0x19f70d0,0x06f56ae } },
  47174. /* 235 */
  47175. { { 0x1205c5d,0x0e401ec,0x04a6c07,0x1ace247,0x08955f7,0x0db2b2b,
  47176. 0x0fff676,0x1fc7bd7,0x0d3b1ac,0x0221caf,0x13bbfee,0x1642c12,
  47177. 0x0b04328,0x114c8ff,0x0c7fea0,0x1a0eacc,0x0e6190d,0x086ef33,
  47178. 0x015df01,0x0078abd,0x040775b,0x0fc8b91,0x1b24739,0x176747e,
  47179. 0x08a408e,0x1cb4d14,0x0816284,0x1a6edf1,0x0e06761,0x0a2bcd3,
  47180. 0x023ce96,0x0f6e3a5,0x03029c5,0x0186008,0x10a2d13,0x181087e,
  47181. 0x130e0b9,0x1357fc3,0x112b763,0x0229dac,0x07b6be8 },
  47182. { 0x13aa54e,0x1c7251e,0x0268fb0,0x07b07aa,0x1023394,0x1caaf10,
  47183. 0x0988490,0x089f095,0x1f51d3d,0x088238b,0x0938dca,0x0858fd9,
  47184. 0x1e62d24,0x02fd2ae,0x16948f6,0x1436b18,0x0da851d,0x0637ae6,
  47185. 0x000051a,0x1795504,0x02e0044,0x14700b8,0x1dd4079,0x14159d9,
  47186. 0x19359e6,0x0597840,0x16b03bc,0x07bb4d5,0x164f013,0x16e47ec,
  47187. 0x1625ebb,0x0a61721,0x0dacd0e,0x09175a4,0x15bee10,0x1c98bf5,
  47188. 0x1700a1d,0x02760f6,0x151d08a,0x06bb794,0x086f9a8 } },
  47189. /* 236 */
  47190. { { 0x10cc69f,0x0c82aa2,0x063c387,0x1993dbf,0x10eb14b,0x1f5d00a,
  47191. 0x139dfb9,0x0a63772,0x1998f8e,0x1bd339b,0x1bbbc17,0x09c6362,
  47192. 0x1558838,0x0c2e2f0,0x04a1c8f,0x0a55577,0x145cbd9,0x07f28f1,
  47193. 0x189059d,0x01dc50f,0x02f0c5d,0x178800c,0x1f7051b,0x1eb7c59,
  47194. 0x19e92e7,0x09f07b9,0x1ed95af,0x0035675,0x08e2895,0x16ef28b,
  47195. 0x12ac554,0x171dc20,0x00dfe31,0x0223aca,0x180f10c,0x0685246,
  47196. 0x0460a91,0x03788a6,0x07e1a4c,0x15e076a,0x05bfa9f },
  47197. { 0x07b258e,0x1fa9608,0x0770a88,0x17acc68,0x189e82b,0x1e7f8d4,
  47198. 0x13b6208,0x03ea947,0x0719b49,0x02dbbca,0x0f7ee3d,0x0430486,
  47199. 0x0e898c2,0x0249287,0x0776473,0x0ecaa1f,0x0ae4fa1,0x0a86151,
  47200. 0x10c9fd1,0x1439c85,0x1e41f7a,0x0b2c1d8,0x04e856b,0x17f5b3c,
  47201. 0x0d5a5a1,0x0e6cd50,0x02387ef,0x1639545,0x1f7f879,0x01db48a,
  47202. 0x07abe4a,0x10fd034,0x10e4e0c,0x0694b60,0x0958420,0x1009fb9,
  47203. 0x12755bd,0x064b0b0,0x1bb69ab,0x155051f,0x01b1266 } },
  47204. /* 237 */
  47205. { { 0x14ee49c,0x005003b,0x1f5d3af,0x0596c46,0x176f685,0x1c9c51b,
  47206. 0x112b177,0x17bf80a,0x0b6fbfb,0x19c4764,0x1cbabb0,0x179ae8b,
  47207. 0x1784ac8,0x18f6749,0x1159826,0x1f42753,0x0ac7de8,0x0b2b7db,
  47208. 0x14cae1c,0x1bdae94,0x1f095f8,0x05d5444,0x0ac350a,0x16f5d85,
  47209. 0x07f2810,0x1a621d9,0x1bfbb2c,0x0c84dc3,0x09c2db2,0x0db5cf4,
  47210. 0x041110c,0x0724221,0x0c4bc5d,0x0082c55,0x0da13f6,0x1d24dee,
  47211. 0x071ef60,0x17d348a,0x1e88d14,0x1b6431a,0x033517f },
  47212. { 0x13c4a36,0x19fa32c,0x07baa70,0x106d635,0x0c69d71,0x1bdf765,
  47213. 0x0307509,0x138ab44,0x07e4f17,0x1465127,0x162288f,0x06d3a8d,
  47214. 0x1857373,0x1983817,0x13ac731,0x1aae8e3,0x19735ee,0x1458c26,
  47215. 0x1c133b0,0x0a2f440,0x0a537f4,0x0c6b831,0x1fc4a74,0x1aefc38,
  47216. 0x0571bb1,0x05903d2,0x060d436,0x0e95861,0x1ab8ef7,0x08cfb0f,
  47217. 0x06c9eca,0x16bbb00,0x1c4cc13,0x02c8fd3,0x156c50d,0x07cfcc4,
  47218. 0x1a3592b,0x0c9bdc2,0x1d524d2,0x07a618e,0x031fac6 } },
  47219. /* 238 */
  47220. { { 0x0913fb6,0x0678d82,0x1accbba,0x002ed34,0x1e40135,0x1f30f83,
  47221. 0x0edc5e0,0x1fcf21d,0x1e27f2f,0x12883fc,0x1e26fc7,0x0cffdb5,
  47222. 0x0d124ba,0x12c6f34,0x0480387,0x157dc31,0x0a36df5,0x14b1399,
  47223. 0x12fad2a,0x186f9f5,0x1a7672c,0x0b749e2,0x0c317ea,0x0c67277,
  47224. 0x0317cde,0x0b62615,0x1e0c2cb,0x0fecbcc,0x05b96a9,0x1a820df,
  47225. 0x1b52bf0,0x0e619cc,0x1f40a60,0x06c2785,0x09e64d0,0x112d437,
  47226. 0x07626b0,0x10c12a0,0x12fd4fb,0x1b6f561,0x001db35 },
  47227. { 0x00efee2,0x1de16d6,0x0d15b83,0x1bae3b7,0x0406ebc,0x1b4d5f4,
  47228. 0x178f866,0x045ce57,0x137e018,0x0e5bf30,0x162d312,0x0038228,
  47229. 0x03cbb8c,0x143e2eb,0x02d211d,0x0ceec84,0x1a1454c,0x00c23ef,
  47230. 0x060e746,0x1d223ba,0x1046bed,0x0493c6f,0x06e7727,0x03466d8,
  47231. 0x1d62b88,0x16e14a5,0x064f9de,0x1e12d0f,0x0e3ba77,0x0332a1e,
  47232. 0x1f1eb24,0x0eec9dd,0x08695fd,0x032e78a,0x1c2e6b1,0x03c1841,
  47233. 0x06e2cdb,0x1746945,0x0d0758d,0x119aeaa,0x07b6ba9 } },
  47234. /* 239 */
  47235. { { 0x1881ab4,0x0cf01e0,0x12232c7,0x0b662d1,0x19c25d5,0x11b2670,
  47236. 0x0f51ca0,0x049505a,0x0f161aa,0x0cca1c8,0x0ecb265,0x1801c3d,
  47237. 0x157838b,0x1ef63d3,0x1577f32,0x044151f,0x1c24ff7,0x026e901,
  47238. 0x1bfbfd2,0x02e7661,0x0b355ec,0x198b214,0x067c74a,0x0dd027f,
  47239. 0x1d9e505,0x0f8e035,0x0b02cc6,0x0522e57,0x023b159,0x11c27e9,
  47240. 0x1b5ab83,0x131a123,0x101059e,0x032475e,0x0392995,0x10d662d,
  47241. 0x1375e79,0x08a23f9,0x1142088,0x032e3d6,0x047e810 },
  47242. { 0x08c290d,0x0ea2d5e,0x0ce9c11,0x0b021f6,0x033d135,0x1ddf97d,
  47243. 0x002491b,0x1b2575e,0x1385c7c,0x07f9f8d,0x066172b,0x01d9c2c,
  47244. 0x08c5b15,0x154443a,0x1b829fc,0x1b9918d,0x08e5e88,0x1cec446,
  47245. 0x12e1910,0x0e6be59,0x16f24dd,0x1b9e207,0x130784e,0x1fdad23,
  47246. 0x025fff3,0x0e3fe1d,0x1c95fb9,0x1968762,0x0db1354,0x07c9f99,
  47247. 0x14ea995,0x005bfe5,0x0f58d0a,0x131ca22,0x0622a32,0x0ef1c7e,
  47248. 0x13e8669,0x1236677,0x1a1ece5,0x005c1b9,0x0785b19 } },
  47249. /* 240 */
  47250. { { 0x12f9a20,0x111b0d4,0x103bf33,0x0f3ac8a,0x17bdca8,0x006be2d,
  47251. 0x06a1474,0x04da8e7,0x02e97c9,0x13d646e,0x09aa2c1,0x1ffcf1b,
  47252. 0x092aea3,0x11e28db,0x0a2fd51,0x02834d0,0x0797155,0x03b78e2,
  47253. 0x05df604,0x197dec7,0x0e7af4b,0x04aa0de,0x1d6f125,0x0e0834a,
  47254. 0x14066d1,0x157f00f,0x161dd57,0x0505ab7,0x07ae80d,0x03eeacf,
  47255. 0x1bdb884,0x0705566,0x056e166,0x0eb1a55,0x1bdae74,0x08cbdd1,
  47256. 0x0e4ed84,0x110b056,0x0b09e66,0x0cf6ee2,0x06557c3 },
  47257. { 0x15b6e52,0x181346b,0x1a25586,0x00231a1,0x1081364,0x1758d75,
  47258. 0x0ccc1a8,0x1299fea,0x06d0908,0x1231113,0x1075213,0x044f6bf,
  47259. 0x0dbb351,0x0bd1831,0x197a81d,0x05b8b26,0x17bd66e,0x1a65651,
  47260. 0x0425621,0x1afa477,0x13bf220,0x09c6223,0x0703f4e,0x10fb49f,
  47261. 0x1370a67,0x05c56ff,0x13415fd,0x1e15d79,0x13f33ae,0x1a2608b,
  47262. 0x0d08179,0x124b44d,0x0d1f0a5,0x1ddfedc,0x1d25c8b,0x09526c9,
  47263. 0x0227d28,0x08d73bc,0x02ad322,0x00941c1,0x015c40d } },
  47264. /* 241 */
  47265. { { 0x00e18d1,0x18b4d15,0x1f0a6eb,0x0e98064,0x1971c01,0x0131674,
  47266. 0x0c8fdef,0x0f3b034,0x1818ff3,0x04cedc6,0x0f0cc08,0x0c7a99a,
  47267. 0x13663f6,0x008d02a,0x14c970c,0x148e1de,0x1dcf980,0x04e6b85,
  47268. 0x127b41c,0x08a5a23,0x0e13e64,0x1a5633b,0x0befd0f,0x10b854b,
  47269. 0x0c0a6ae,0x0624bdf,0x011c124,0x1f55caa,0x1e6ba92,0x1d43a48,
  47270. 0x0502ae5,0x155f532,0x055f537,0x132aba0,0x16ecd9c,0x1ff92b5,
  47271. 0x1119d6b,0x11a1dce,0x078dd91,0x1413a68,0x0788e94 },
  47272. { 0x053461a,0x137f2ce,0x1bb414e,0x1c11c76,0x15ec897,0x146c9cb,
  47273. 0x14bcc1d,0x09f51eb,0x0cc213d,0x1eb5ffb,0x0051f26,0x16820b6,
  47274. 0x09590c7,0x1e3dc0b,0x08d8a2d,0x0f1d241,0x06e5bce,0x1e33504,
  47275. 0x17b0763,0x09a5049,0x0ce93dd,0x0260cee,0x0242b3d,0x086b4fd,
  47276. 0x0d875d8,0x0d93319,0x07a98e0,0x1202cf8,0x1cc1285,0x0bcbf86,
  47277. 0x18ec896,0x08df1a8,0x1a612b4,0x17d1cc8,0x15e3057,0x108430b,
  47278. 0x119f678,0x0af61b8,0x1aa4f7d,0x18cf01b,0x091b19c } },
  47279. /* 242 */
  47280. { { 0x15d8b80,0x1384ee5,0x183bafc,0x05f86ac,0x03b9618,0x0f7cb48,
  47281. 0x1664415,0x08570e7,0x1e47c43,0x0f525a6,0x1e219f4,0x0489aa9,
  47282. 0x0fcc4b9,0x1ec6bbf,0x0c68b2b,0x1eac727,0x0e7e8c1,0x1034692,
  47283. 0x065cc15,0x1f576c9,0x174f5f5,0x0802a11,0x00c9231,0x071d227,
  47284. 0x1e2b53f,0x05f61b6,0x0deeda0,0x1a0fd1d,0x1313b5e,0x09ebec7,
  47285. 0x04a5920,0x15fa5a7,0x1b6a069,0x0518d3d,0x1238212,0x0b80db0,
  47286. 0x04f0c32,0x13fd97f,0x10ebda1,0x0680ce6,0x03c2ba8 },
  47287. { 0x13ad63b,0x16bbace,0x0c7ead8,0x0eb3c1d,0x1f9cab9,0x02f08b9,
  47288. 0x0a98ce2,0x13ce066,0x0e20b2f,0x11657e7,0x12a51fc,0x14fc93d,
  47289. 0x0db529b,0x11146c4,0x0550859,0x12ac249,0x1ec3923,0x0407511,
  47290. 0x10dc191,0x120fcfa,0x0e441b8,0x0aab1f2,0x12dfe91,0x14961f4,
  47291. 0x1829eb2,0x1c96654,0x1120181,0x014e414,0x0991ced,0x0d06123,
  47292. 0x1ae3337,0x0691a10,0x1a2325b,0x177099b,0x1427d82,0x1eacdda,
  47293. 0x147f253,0x1870488,0x0ef60f4,0x14b820e,0x01fa627 } },
  47294. /* 243 */
  47295. { { 0x0478fd4,0x1115121,0x0002844,0x02ce164,0x0cf4c6f,0x0ce36f5,
  47296. 0x0c13e0d,0x179ee37,0x17b93cd,0x0c71414,0x16d82d8,0x15c6461,
  47297. 0x0996e1b,0x0b2d9d9,0x1ff4ed2,0x0abbbe2,0x1c6bc70,0x1d2c31c,
  47298. 0x0e05f5f,0x1525da9,0x08a4c3e,0x13691d8,0x0420aca,0x02e021d,
  47299. 0x1228adc,0x0cbc238,0x1883a27,0x0a773c8,0x1f77c97,0x07cb81f,
  47300. 0x1973df9,0x0577cc1,0x03f8245,0x100beb6,0x12f2e03,0x173c865,
  47301. 0x00a45ed,0x052d66e,0x1d0f854,0x00a8f30,0x067b8bd },
  47302. { 0x0797cf7,0x03cda7a,0x180b998,0x15a07fb,0x031c998,0x055778f,
  47303. 0x1d8e953,0x022b546,0x0f76497,0x06cd0ff,0x06c69d9,0x18e75e5,
  47304. 0x137ce0d,0x1db3654,0x186c20f,0x0d4f0cc,0x0fe32fb,0x0dfa6ba,
  47305. 0x1c02958,0x0dde13b,0x115925f,0x1fc18e8,0x0af10e0,0x0d7bc6e,
  47306. 0x0c10c53,0x12db6ae,0x1e20b31,0x0928bf3,0x1a99b8d,0x0789a28,
  47307. 0x09207d2,0x0d75823,0x00161cd,0x125050a,0x13b7c62,0x093b29a,
  47308. 0x0467a82,0x1b18b2d,0x0bb7d94,0x1534993,0x074297a } },
  47309. /* 244 */
  47310. { { 0x01124ba,0x1ac5271,0x0f4b125,0x1150fff,0x19bd819,0x131c544,
  47311. 0x13744f5,0x0ec8bf7,0x015f7bf,0x0322ffc,0x1b55fa5,0x06df89c,
  47312. 0x195fa67,0x09730ed,0x0b991d6,0x128943d,0x00ccbdf,0x03cabae,
  47313. 0x16cc75d,0x02608e4,0x1ae6a3d,0x112655a,0x1e2077c,0x0510fe4,
  47314. 0x1d2991a,0x02cc6df,0x0289ab1,0x07a0eb2,0x061d4a2,0x0c296c3,
  47315. 0x1dcb962,0x1140281,0x1b5c13b,0x1bc151b,0x0678fec,0x001f283,
  47316. 0x1bc14e9,0x15502c8,0x0ec49c8,0x175aab7,0x089aab7 },
  47317. { 0x056bdc7,0x02d4b6b,0x14ee2cd,0x1fc2ed9,0x03bdc8a,0x0b2621a,
  47318. 0x062d8cb,0x083ad2a,0x179b82b,0x079b253,0x033e0bf,0x089dff6,
  47319. 0x1b907b3,0x0880943,0x14320f1,0x121dfe7,0x05934cd,0x074f935,
  47320. 0x1c20ad7,0x0b55e40,0x0165e5f,0x1af673e,0x13adcb1,0x130d9ac,
  47321. 0x10a81be,0x15574ac,0x1ffc54d,0x1dde931,0x063d5ef,0x0121d41,
  47322. 0x0ac1158,0x0a95d0e,0x00be14f,0x03b434a,0x13278c8,0x157dcf7,
  47323. 0x01bc4d7,0x0b513ee,0x0ad1b52,0x12eb281,0x0002dc2 } },
  47324. /* 245 */
  47325. { { 0x09d60c3,0x19c9bdb,0x1d57b94,0x05fd2e4,0x060be55,0x0392d31,
  47326. 0x0de3703,0x185623f,0x0cab2e7,0x0c1613f,0x0c8b2da,0x1bb3dc4,
  47327. 0x174bcee,0x0913827,0x0ac67b4,0x0c2cb2a,0x085854a,0x096fa61,
  47328. 0x0c64921,0x016b7ef,0x152aba4,0x08008cf,0x1f2f2a5,0x15bb0df,
  47329. 0x1d1cbe5,0x160ba33,0x0f6743c,0x17ea6df,0x14ebc99,0x171a5c6,
  47330. 0x05cf0a5,0x00b5026,0x095f8f4,0x1afbb02,0x0359ccc,0x0518b3d,
  47331. 0x0054212,0x09e9927,0x169cc2d,0x06a7877,0x04d5645 },
  47332. { 0x05c0877,0x17c003f,0x1d91cc8,0x0c19534,0x081b43e,0x00938b2,
  47333. 0x13d2e8b,0x184463e,0x1ed3136,0x0acb42b,0x0cc3782,0x064471b,
  47334. 0x1cae826,0x0cc8475,0x0beb502,0x0463cca,0x014af0d,0x085c68c,
  47335. 0x072f0d2,0x018a961,0x1f8e268,0x19a5f9d,0x1f5158b,0x056b2bf,
  47336. 0x1090b09,0x01a14c2,0x117857f,0x0de7394,0x178168e,0x08c8de1,
  47337. 0x01dc05d,0x108b495,0x06944b3,0x0aa0d48,0x1d2a0a8,0x09598da,
  47338. 0x1155c8b,0x04dd59d,0x1b18ab7,0x19cee60,0x01f2f89 } },
  47339. /* 246 */
  47340. { { 0x0ffefdf,0x1f7a0cd,0x15ae094,0x0a99f24,0x05d7ece,0x0272418,
  47341. 0x00bcad1,0x03e6ee0,0x1cba547,0x0c4baaf,0x0f8056c,0x0797ab9,
  47342. 0x09c8848,0x1505c21,0x13df1a5,0x1ec3a4a,0x1d461f3,0x18c4285,
  47343. 0x0891c55,0x0421121,0x0b0d7ba,0x176c977,0x0d6aef0,0x0bbd912,
  47344. 0x0cabe96,0x0257dab,0x12f155a,0x1b446e4,0x1a74929,0x1cb7b53,
  47345. 0x11b62e8,0x05de974,0x0b90db7,0x0d93d7e,0x1f82642,0x1dba469,
  47346. 0x16f4366,0x19e0b23,0x0351ef7,0x0fe2fca,0x009c809 },
  47347. { 0x0050c07,0x058a030,0x0df9a81,0x108751c,0x029e831,0x0af20fe,
  47348. 0x0a6caed,0x0759728,0x02ce60e,0x097f52d,0x160bd3b,0x1fe7b73,
  47349. 0x1adc7b1,0x143e9bf,0x1afb30d,0x0ea7291,0x032ecb0,0x13c8a9f,
  47350. 0x1c1d5a4,0x000a9ea,0x19ba6a6,0x064003a,0x0e1c734,0x1245be2,
  47351. 0x1386f30,0x1be0bd3,0x1a0cd5e,0x1d3f8b3,0x0151864,0x19d49ca,
  47352. 0x024749a,0x1a69b71,0x12a0222,0x06db8c8,0x13d167f,0x0ccce5f,
  47353. 0x04ff303,0x1f9346a,0x185b168,0x1a6d223,0x06f113e } },
  47354. /* 247 */
  47355. { { 0x036f1c9,0x0efac8c,0x01f54aa,0x0a84646,0x1a6519f,0x16942d7,
  47356. 0x11c0577,0x0eb080d,0x0af627f,0x10aa2e5,0x0105f42,0x03dd59c,
  47357. 0x03ae111,0x13089a2,0x0a2f7da,0x19797f6,0x0ab52db,0x06f4f78,
  47358. 0x004f996,0x183036f,0x1225e9d,0x0dcc893,0x02c76af,0x10298b2,
  47359. 0x198e322,0x13f2f82,0x1b64d3b,0x18772cd,0x1ba4bf5,0x076d5cc,
  47360. 0x19d3ae1,0x07836ab,0x0919a34,0x14307d9,0x0d2652a,0x0d535bb,
  47361. 0x16811ff,0x19106ff,0x00f886d,0x077a343,0x06636a2 },
  47362. { 0x0587283,0x0ad1690,0x11777d7,0x13de0ff,0x0b3822c,0x1b6f1c0,
  47363. 0x0f5543b,0x03a2f0d,0x125d167,0x11e7c83,0x0c77bc5,0x0e3e39b,
  47364. 0x0a74bf9,0x04217e2,0x127a0c0,0x0a9eeae,0x1c727f8,0x187176d,
  47365. 0x13892b2,0x0f77b57,0x108dbb2,0x1602df6,0x106c673,0x1920979,
  47366. 0x0123ef7,0x16dd56d,0x0f62660,0x04853e3,0x16e6320,0x10b732f,
  47367. 0x0c9274d,0x1dcb3fa,0x1789fa8,0x194fad1,0x0eebfa7,0x002c174,
  47368. 0x0f5378a,0x169db0d,0x09be03c,0x0ece785,0x07aeecc } },
  47369. /* 248 */
  47370. { { 0x043b0db,0x03abe6e,0x12b7ce9,0x0b30233,0x1d8a4e8,0x0b60ab1,
  47371. 0x16fd918,0x12ff012,0x04f533e,0x11503de,0x1f16b4f,0x06ce739,
  47372. 0x0ca9824,0x06b4029,0x09ae8eb,0x1d8cc31,0x1908a1c,0x0deb072,
  47373. 0x0ac6da5,0x10834a0,0x195bae3,0x090c850,0x061b7fc,0x063fb37,
  47374. 0x0beacad,0x1bd96f9,0x1331ca3,0x1b12644,0x10a9927,0x139c067,
  47375. 0x1ab0e3a,0x0b0d489,0x0439a80,0x0f81e54,0x1fc0585,0x0bdbcfe,
  47376. 0x07a1f88,0x124c841,0x1d91520,0x00d6f14,0x028ec40 },
  47377. { 0x0fe0009,0x1061751,0x13a7860,0x05e270e,0x011ba5d,0x126da97,
  47378. 0x0915314,0x0532ea4,0x07fede5,0x0a3ba13,0x1403513,0x0335364,
  47379. 0x0b01d34,0x0c34922,0x0229248,0x1c3739c,0x023dd1b,0x05d0b48,
  47380. 0x0a8c078,0x187ca86,0x0788242,0x1d38483,0x06d5bde,0x0951989,
  47381. 0x12a09c7,0x01cf856,0x075dbe5,0x139a308,0x1fb60e9,0x1f05b10,
  47382. 0x0d3b76b,0x17872ec,0x16bee54,0x1854202,0x0183fdf,0x1e8ca7f,
  47383. 0x0011c0a,0x0a43b79,0x0970daf,0x18e192a,0x0134f4c } },
  47384. /* 249 */
  47385. { { 0x138dff4,0x0d1f674,0x068e588,0x1690d4f,0x1d101a7,0x0a829bb,
  47386. 0x1be5f7a,0x1b7e589,0x1e65d87,0x18c204c,0x0e33ebc,0x1ff66e7,
  47387. 0x0eb89c7,0x142148b,0x0ea9417,0x14ec8d1,0x1094ebe,0x1d3c87e,
  47388. 0x164a24a,0x1beda9c,0x1741679,0x0e7e7f6,0x0808ccc,0x101fe42,
  47389. 0x0efd298,0x08085fa,0x1740d11,0x194f1bb,0x0858c87,0x0f659a1,
  47390. 0x1e8b2c2,0x04aea90,0x05eb6dc,0x18248cf,0x0857af2,0x02a0ceb,
  47391. 0x1381d47,0x0973a7b,0x15bd027,0x05307a7,0x06ea378 },
  47392. { 0x05cc40a,0x004a5a7,0x17ef197,0x1435e6f,0x1a2e3f6,0x0137223,
  47393. 0x1fa77e4,0x0a7dece,0x193880f,0x1c3c64a,0x112aa6d,0x160efec,
  47394. 0x1c4aa30,0x1790461,0x1145a0c,0x0cc7741,0x1ae658d,0x03e013b,
  47395. 0x187644c,0x1678715,0x1ea4ef0,0x13b4ae1,0x0c0bcde,0x018bc1a,
  47396. 0x0c1c56a,0x1cff002,0x10832f3,0x1fa92b8,0x0a0e7c9,0x0dceab4,
  47397. 0x151c1b5,0x0b250c8,0x1225dff,0x1384e45,0x1196366,0x10a4fa8,
  47398. 0x07c08d6,0x02ac6d4,0x1c1f51f,0x1cd769d,0x0606ee6 } },
  47399. /* 250 */
  47400. { { 0x1c621f6,0x0cfe3ab,0x15200b6,0x02ffd07,0x092e40c,0x18ccd81,
  47401. 0x11e867b,0x0cc37bf,0x0e62c76,0x0502081,0x0e1d4de,0x06e1cce,
  47402. 0x0f16cda,0x0f1d32d,0x0065d34,0x1c41379,0x048f78f,0x10cba10,
  47403. 0x1d66071,0x140b157,0x102dc83,0x1a4e44b,0x1c9ac90,0x034cf15,
  47404. 0x12f1e9d,0x114cc45,0x03fca6b,0x0e57f36,0x1cf5ec4,0x11cc0eb,
  47405. 0x162850f,0x164d1bb,0x09d7e45,0x07fbb4e,0x09557f1,0x062cd9b,
  47406. 0x04aa767,0x0266f85,0x01c1d81,0x1efd229,0x049dba6 },
  47407. { 0x158e37a,0x03fd953,0x1d98839,0x0e5b1d5,0x0f6b31d,0x0e11085,
  47408. 0x157e5be,0x0566a55,0x190efc3,0x049fb93,0x12c9900,0x13b883c,
  47409. 0x15435c9,0x02d8abc,0x0a1e380,0x06aeb7f,0x0a40e67,0x0cce290,
  47410. 0x1fba9d6,0x104b290,0x148bca6,0x00f8951,0x00a7dee,0x1459c6a,
  47411. 0x1cc182a,0x162d2a3,0x0fab578,0x023b0e9,0x082cdfa,0x1a4daab,
  47412. 0x19a6bc0,0x1177d1c,0x06ebfea,0x1ca55fc,0x1e0bd54,0x1e7b570,
  47413. 0x0bc8eb8,0x05fbcbf,0x19e3116,0x14936fb,0x04890a7 } },
  47414. /* 251 */
  47415. { { 0x1a995f6,0x0cb44c6,0x1bbf5ca,0x0fd8c2a,0x139eaae,0x15416ae,
  47416. 0x01030d5,0x1fcd2b2,0x1c135bc,0x1023590,0x0571e2c,0x16c81eb,
  47417. 0x00ea720,0x13e2fda,0x0093beb,0x077f805,0x14c0edb,0x14bec7e,
  47418. 0x07c93af,0x00520af,0x06b912f,0x078c3f5,0x05bf11f,0x13ab846,
  47419. 0x1fd2778,0x166610c,0x122498f,0x0674d6d,0x0d30a62,0x1a5945b,
  47420. 0x00208d8,0x193666d,0x0352e25,0x1ba2b65,0x1b29031,0x172711a,
  47421. 0x1c92065,0x12ad859,0x069dbe3,0x0960487,0x05c1747 },
  47422. { 0x0accab5,0x073e145,0x016f622,0x0d559da,0x1802783,0x1607b28,
  47423. 0x01df733,0x10430b7,0x0125c28,0x1e56e0e,0x1715324,0x0814cff,
  47424. 0x1345df5,0x013c451,0x0f21b8b,0x1f4589e,0x069e3a0,0x19f43a2,
  47425. 0x1ce60f3,0x1b548e4,0x18a5c59,0x05a54b6,0x0c18f12,0x1cb122a,
  47426. 0x12bcfc2,0x061e1c6,0x1e1390a,0x01cf170,0x04fd539,0x1496786,
  47427. 0x0164028,0x1283cc0,0x1f92db7,0x09d0e5b,0x0905b29,0x0f2acf2,
  47428. 0x11ab0fa,0x1b798ed,0x10230d7,0x168f6b0,0x05d675e } },
  47429. /* 252 */
  47430. { { 0x10c6025,0x10d3bc3,0x1f2abbb,0x0f2345b,0x1c4a23b,0x15b2627,
  47431. 0x18310e1,0x162f61c,0x1e5ae72,0x0ead8be,0x1e884b5,0x11593dd,
  47432. 0x166dfc8,0x0a01c5c,0x1abbefb,0x05d989f,0x1568e2d,0x184cd61,
  47433. 0x04abc81,0x1d4c240,0x1218548,0x0dc4e18,0x13ffb67,0x1cce662,
  47434. 0x091c4e0,0x0700e0f,0x1ebe0c0,0x01376c9,0x13c3be0,0x080e33b,
  47435. 0x1ea1e01,0x1810433,0x0cd6ede,0x1837ff0,0x181fe06,0x1ef80ab,
  47436. 0x0080b36,0x1b1fce7,0x1b28e0a,0x15e153f,0x002fccb },
  47437. { 0x07cac61,0x0ea68da,0x04b2664,0x0f570dc,0x0e9d168,0x0a78211,
  47438. 0x157b0ae,0x1cb18d0,0x148e648,0x120028c,0x06b15f2,0x1f65df1,
  47439. 0x0d9ba91,0x0df3c96,0x1064818,0x03c2a9e,0x1cbbd0f,0x0c16910,
  47440. 0x1111006,0x1d6277f,0x0fdc062,0x194cbc8,0x1cea5f0,0x0cf4c97,
  47441. 0x16d9460,0x1ad273c,0x01b48dd,0x08dba60,0x1f0f23c,0x026af6b,
  47442. 0x15e19cb,0x0769ec7,0x01851dc,0x139f941,0x1833498,0x1ea1475,
  47443. 0x0ac60f6,0x072c7e7,0x1551600,0x0ac2708,0x056f1e4 } },
  47444. /* 253 */
  47445. { { 0x0c24f3b,0x059fb19,0x1f98073,0x1e0db02,0x19eb1c7,0x1133bb4,
  47446. 0x102edaa,0x1c11b8c,0x00845d5,0x01c57ff,0x09e6a1e,0x1963f03,
  47447. 0x10f34fe,0x1f340cd,0x0b8a0b4,0x14970d4,0x1ce8237,0x0e25cbb,
  47448. 0x1d8d90e,0x0d67b70,0x04970f4,0x004bcb8,0x09197d5,0x1237c87,
  47449. 0x0876287,0x1636bf0,0x10d0663,0x004416d,0x1d94bb0,0x031b849,
  47450. 0x0c95ece,0x053ad21,0x0012e16,0x168d242,0x16d482a,0x0605d93,
  47451. 0x05dc34e,0x1717e34,0x033e2bf,0x06c4aa0,0x0911d19 },
  47452. { 0x1e5af5b,0x0deac7a,0x0a9c4ec,0x16f6d44,0x07ca263,0x17956e5,
  47453. 0x1b137ce,0x17b56d7,0x1a04420,0x1328f2c,0x0db0445,0x1676974,
  47454. 0x103b448,0x1fa1218,0x18aff37,0x0d97678,0x0a5f1a9,0x06f0ae2,
  47455. 0x1347e60,0x15b143c,0x1a3abe0,0x071b339,0x004af45,0x02559bb,
  47456. 0x03af692,0x0e72018,0x115d825,0x1edb573,0x1f5ca58,0x0415083,
  47457. 0x0c1f7c6,0x1112d47,0x103e63c,0x1d9f85c,0x1513618,0x1dea090,
  47458. 0x009887d,0x080cdce,0x0e19579,0x1fd41ea,0x02be744 } },
  47459. /* 254 */
  47460. { { 0x150f324,0x0682fad,0x1e88153,0x083d478,0x19b1eb2,0x1c735bd,
  47461. 0x02971ff,0x104950b,0x0ec0408,0x01c817f,0x0ea6f76,0x0929a19,
  47462. 0x1e72b26,0x194e4f0,0x05dbe42,0x1b703a0,0x102ceba,0x002ea75,
  47463. 0x1cae2ff,0x080b626,0x1190874,0x00bcf56,0x17104a2,0x056919a,
  47464. 0x03dd3ec,0x019ea25,0x1cfd354,0x089334e,0x0c3a098,0x1c66ab2,
  47465. 0x0eecdec,0x1e85d00,0x0e99497,0x08c5940,0x1e82e3d,0x0980f68,
  47466. 0x1568fde,0x0871e29,0x039eb1c,0x05f9d5a,0x0735f54 },
  47467. { 0x0380039,0x0d0b89c,0x07232aa,0x0fee9a3,0x0dfafe1,0x1e0d45d,
  47468. 0x0e4fb32,0x00b25a8,0x1fe0297,0x02edf9c,0x1a6cd8f,0x0b57261,
  47469. 0x0a4552b,0x157ea4a,0x198c0c8,0x15886fd,0x0d73f02,0x041354d,
  47470. 0x04d58a6,0x0a6ac53,0x1b3998c,0x03b9a15,0x0321a7e,0x1f36f34,
  47471. 0x10020e4,0x0d4eba8,0x134d1e2,0x06c3a34,0x0856376,0x0add67d,
  47472. 0x193c37b,0x111580f,0x07ee73f,0x18e5ea0,0x00fc27b,0x1bf58fa,
  47473. 0x0d475ba,0x0b4be5a,0x0e67897,0x13a297a,0x01e984c } },
  47474. /* 255 */
  47475. { { 0x050c817,0x082b0a4,0x04b71db,0x1269130,0x108a5b1,0x0c65df5,
  47476. 0x1455179,0x0b4e4e7,0x04be61e,0x0805afd,0x1ae3862,0x0d23af5,
  47477. 0x0baa088,0x09ad1ea,0x1999abf,0x0fa7bcc,0x19957ec,0x01c5160,
  47478. 0x1a35bd7,0x091d1ec,0x1746a06,0x163d6e0,0x07e7f24,0x060cb86,
  47479. 0x116c084,0x13491d0,0x01879ab,0x0c6e144,0x047e733,0x1b9b155,
  47480. 0x01189b0,0x1bdfedb,0x00c25f2,0x1696a2a,0x093336f,0x0530090,
  47481. 0x039a949,0x0dfe700,0x0b8052d,0x0aced28,0x06c474a },
  47482. { 0x188e3a1,0x1cd20be,0x10a8eba,0x118908e,0x105d3c8,0x1308988,
  47483. 0x1a344ff,0x117cb3b,0x11a869e,0x047adb5,0x1764285,0x18b354e,
  47484. 0x137a8ab,0x110a300,0x0326f1d,0x099b25e,0x147c382,0x121fd53,
  47485. 0x09742e4,0x0c7430d,0x0ebc817,0x1e4de5d,0x0ef0d06,0x08ba3bb,
  47486. 0x13160f7,0x0fa70c0,0x16dd739,0x0a79ca5,0x0de4c2a,0x13366a8,
  47487. 0x1b457ab,0x0ebaeca,0x0d8996c,0x12a952f,0x1c47132,0x09c9fea,
  47488. 0x1c5305b,0x0f4c2d1,0x08b3885,0x0a9f437,0x06b2589 } },
  47489. };
  47490. /* Multiply the base point of P1024 by the scalar and return the result.
  47491. * If map is true then convert result to affine coordinates.
  47492. *
  47493. * Stripe implementation.
  47494. * Pre-generated: 2^0, 2^128, ...
  47495. * Pre-generated: products of all combinations of above.
  47496. * 8 doubles and adds (with qz=1)
  47497. *
  47498. * r Resulting point.
  47499. * k Scalar to multiply by.
  47500. * map Indicates whether to convert result to affine.
  47501. * ct Constant time required.
  47502. * heap Heap to use for allocation.
  47503. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  47504. */
  47505. static int sp_1024_ecc_mulmod_base_42(sp_point_1024* r, const sp_digit* k,
  47506. int map, int ct, void* heap)
  47507. {
  47508. return sp_1024_ecc_mulmod_stripe_42(r, &p1024_base, p1024_table,
  47509. k, map, ct, heap);
  47510. }
  47511. #endif
  47512. /* Multiply the base point of P1024 by the scalar and return the result.
  47513. * If map is true then convert result to affine coordinates.
  47514. *
  47515. * km Scalar to multiply by.
  47516. * r Resulting point.
  47517. * map Indicates whether to convert result to affine.
  47518. * heap Heap to use for allocation.
  47519. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  47520. */
  47521. int sp_ecc_mulmod_base_1024(const mp_int* km, ecc_point* r, int map, void* heap)
  47522. {
  47523. #ifdef WOLFSSL_SP_SMALL_STACK
  47524. sp_point_1024* point = NULL;
  47525. sp_digit* k = NULL;
  47526. #else
  47527. sp_point_1024 point[1];
  47528. sp_digit k[42];
  47529. #endif
  47530. int err = MP_OKAY;
  47531. #ifdef WOLFSSL_SP_SMALL_STACK
  47532. point = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024), heap,
  47533. DYNAMIC_TYPE_ECC);
  47534. if (point == NULL)
  47535. err = MEMORY_E;
  47536. if (err == MP_OKAY) {
  47537. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 42, heap,
  47538. DYNAMIC_TYPE_ECC);
  47539. if (k == NULL)
  47540. err = MEMORY_E;
  47541. }
  47542. #endif
  47543. if (err == MP_OKAY) {
  47544. sp_1024_from_mp(k, 42, km);
  47545. err = sp_1024_ecc_mulmod_base_42(point, k, map, 1, heap);
  47546. }
  47547. if (err == MP_OKAY) {
  47548. err = sp_1024_point_to_ecc_point_42(point, r);
  47549. }
  47550. #ifdef WOLFSSL_SP_SMALL_STACK
  47551. if (k != NULL)
  47552. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  47553. if (point != NULL)
  47554. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  47555. #endif
  47556. return err;
  47557. }
  47558. /* Multiply the base point of P1024 by the scalar, add point a and return
  47559. * the result. If map is true then convert result to affine coordinates.
  47560. *
  47561. * km Scalar to multiply by.
  47562. * am Point to add to scalar multiply result.
  47563. * inMont Point to add is in montgomery form.
  47564. * r Resulting point.
  47565. * map Indicates whether to convert result to affine.
  47566. * heap Heap to use for allocation.
  47567. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  47568. */
  47569. int sp_ecc_mulmod_base_add_1024(const mp_int* km, const ecc_point* am,
  47570. int inMont, ecc_point* r, int map, void* heap)
  47571. {
  47572. #ifdef WOLFSSL_SP_SMALL_STACK
  47573. sp_point_1024* point = NULL;
  47574. sp_digit* k = NULL;
  47575. #else
  47576. sp_point_1024 point[2];
  47577. sp_digit k[42 + 42 * 2 * 37];
  47578. #endif
  47579. sp_point_1024* addP = NULL;
  47580. sp_digit* tmp = NULL;
  47581. int err = MP_OKAY;
  47582. #ifdef WOLFSSL_SP_SMALL_STACK
  47583. point = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024) * 2, heap,
  47584. DYNAMIC_TYPE_ECC);
  47585. if (point == NULL)
  47586. err = MEMORY_E;
  47587. if (err == MP_OKAY) {
  47588. k = (sp_digit*)XMALLOC(
  47589. sizeof(sp_digit) * (42 + 42 * 2 * 37),
  47590. heap, DYNAMIC_TYPE_ECC);
  47591. if (k == NULL)
  47592. err = MEMORY_E;
  47593. }
  47594. #endif
  47595. if (err == MP_OKAY) {
  47596. addP = point + 1;
  47597. tmp = k + 42;
  47598. sp_1024_from_mp(k, 42, km);
  47599. sp_1024_point_from_ecc_point_42(addP, am);
  47600. }
  47601. if ((err == MP_OKAY) && (!inMont)) {
  47602. err = sp_1024_mod_mul_norm_42(addP->x, addP->x, p1024_mod);
  47603. }
  47604. if ((err == MP_OKAY) && (!inMont)) {
  47605. err = sp_1024_mod_mul_norm_42(addP->y, addP->y, p1024_mod);
  47606. }
  47607. if ((err == MP_OKAY) && (!inMont)) {
  47608. err = sp_1024_mod_mul_norm_42(addP->z, addP->z, p1024_mod);
  47609. }
  47610. if (err == MP_OKAY) {
  47611. err = sp_1024_ecc_mulmod_base_42(point, k, 0, 0, heap);
  47612. }
  47613. if (err == MP_OKAY) {
  47614. sp_1024_proj_point_add_42(point, point, addP, tmp);
  47615. if (map) {
  47616. sp_1024_map_42(point, point, tmp);
  47617. }
  47618. err = sp_1024_point_to_ecc_point_42(point, r);
  47619. }
  47620. #ifdef WOLFSSL_SP_SMALL_STACK
  47621. if (k != NULL)
  47622. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  47623. if (point)
  47624. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  47625. #endif
  47626. return err;
  47627. }
  47628. #ifndef WOLFSSL_SP_SMALL
  47629. /* Generate a pre-computation table for the point.
  47630. *
  47631. * gm Point to generate table for.
  47632. * table Buffer to hold pre-computed points table.
  47633. * len Length of table.
  47634. * heap Heap to use for allocation.
  47635. * returns BAD_FUNC_ARG when gm or len is NULL, LENGTH_ONLY_E when table is
  47636. * NULL and length is returned, BUFFER_E if length is too small and 0 otherwise.
  47637. */
  47638. int sp_ecc_gen_table_1024(const ecc_point* gm, byte* table, word32* len,
  47639. void* heap)
  47640. {
  47641. #ifdef WOLFSSL_SP_SMALL_STACK
  47642. sp_point_1024* point = NULL;
  47643. sp_digit* t = NULL;
  47644. #else
  47645. sp_point_1024 point[1];
  47646. sp_digit t[38 * 2 * 42];
  47647. #endif
  47648. int err = MP_OKAY;
  47649. if ((gm == NULL) || (len == NULL)) {
  47650. err = BAD_FUNC_ARG;
  47651. }
  47652. if ((err == MP_OKAY) && (table == NULL)) {
  47653. *len = sizeof(sp_table_entry_1024) * 256;
  47654. err = LENGTH_ONLY_E;
  47655. }
  47656. if ((err == MP_OKAY) && (*len < (int)(sizeof(sp_table_entry_1024) * 256))) {
  47657. err = BUFFER_E;
  47658. }
  47659. #ifdef WOLFSSL_SP_SMALL_STACK
  47660. if (err == MP_OKAY) {
  47661. point = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024), heap,
  47662. DYNAMIC_TYPE_ECC);
  47663. if (point == NULL)
  47664. err = MEMORY_E;
  47665. }
  47666. if (err == MP_OKAY) {
  47667. t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 38 * 2 * 42, heap,
  47668. DYNAMIC_TYPE_ECC);
  47669. if (t == NULL)
  47670. err = MEMORY_E;
  47671. }
  47672. #endif
  47673. if (err == MP_OKAY) {
  47674. sp_1024_point_from_ecc_point_42(point, gm);
  47675. err = sp_1024_gen_stripe_table_42(point,
  47676. (sp_table_entry_1024*)table, t, heap);
  47677. }
  47678. if (err == 0) {
  47679. *len = sizeof(sp_table_entry_1024) * 256;
  47680. }
  47681. #ifdef WOLFSSL_SP_SMALL_STACK
  47682. if (t != NULL)
  47683. XFREE(t, heap, DYNAMIC_TYPE_ECC);
  47684. if (point != NULL)
  47685. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  47686. #endif
  47687. return err;
  47688. }
  47689. #else
  47690. /* Generate a pre-computation table for the point.
  47691. *
  47692. * gm Point to generate table for.
  47693. * table Buffer to hold pre-computed points table.
  47694. * len Length of table.
  47695. * heap Heap to use for allocation.
  47696. * returns BAD_FUNC_ARG when gm or len is NULL, LENGTH_ONLY_E when table is
  47697. * NULL and length is returned, BUFFER_E if length is too small and 0 otherwise.
  47698. */
  47699. int sp_ecc_gen_table_1024(const ecc_point* gm, byte* table, word32* len,
  47700. void* heap)
  47701. {
  47702. int err = 0;
  47703. if ((gm == NULL) || (len == NULL)) {
  47704. err = BAD_FUNC_ARG;
  47705. }
  47706. if ((err == 0) && (table == NULL)) {
  47707. *len = 0;
  47708. err = LENGTH_ONLY_E;
  47709. }
  47710. if ((err == 0) && (*len != 0)) {
  47711. err = BUFFER_E;
  47712. }
  47713. if (err == 0) {
  47714. *len = 0;
  47715. }
  47716. (void)heap;
  47717. return err;
  47718. }
  47719. #endif
  47720. /* Multiply the point by the scalar and return the result.
  47721. * If map is true then convert result to affine coordinates.
  47722. *
  47723. * km Scalar to multiply by.
  47724. * gm Point to multiply.
  47725. * table Pre-computed points.
  47726. * r Resulting point.
  47727. * map Indicates whether to convert result to affine.
  47728. * heap Heap to use for allocation.
  47729. * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
  47730. */
  47731. int sp_ecc_mulmod_table_1024(const mp_int* km, const ecc_point* gm, byte* table,
  47732. ecc_point* r, int map, void* heap)
  47733. {
  47734. #ifdef WOLFSSL_SP_SMALL_STACK
  47735. sp_point_1024* point = NULL;
  47736. sp_digit* k = NULL;
  47737. #else
  47738. sp_point_1024 point[1];
  47739. sp_digit k[42];
  47740. #endif
  47741. int err = MP_OKAY;
  47742. #ifdef WOLFSSL_SP_SMALL_STACK
  47743. point = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024), heap,
  47744. DYNAMIC_TYPE_ECC);
  47745. if (point == NULL) {
  47746. err = MEMORY_E;
  47747. }
  47748. if (err == MP_OKAY) {
  47749. k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 42, heap, DYNAMIC_TYPE_ECC);
  47750. if (k == NULL)
  47751. err = MEMORY_E;
  47752. }
  47753. #endif
  47754. if (err == MP_OKAY) {
  47755. sp_1024_from_mp(k, 42, km);
  47756. sp_1024_point_from_ecc_point_42(point, gm);
  47757. #ifndef WOLFSSL_SP_SMALL
  47758. err = sp_1024_ecc_mulmod_stripe_42(point, point,
  47759. (const sp_table_entry_1024*)table, k, map, 0, heap);
  47760. #else
  47761. (void)table;
  47762. err = sp_1024_ecc_mulmod_42(point, point, k, map, 0, heap);
  47763. #endif
  47764. }
  47765. if (err == MP_OKAY) {
  47766. err = sp_1024_point_to_ecc_point_42(point, r);
  47767. }
  47768. #ifdef WOLFSSL_SP_SMALL_STACK
  47769. if (k != NULL)
  47770. XFREE(k, heap, DYNAMIC_TYPE_ECC);
  47771. if (point != NULL)
  47772. XFREE(point, heap, DYNAMIC_TYPE_ECC);
  47773. #endif
  47774. return err;
  47775. }
  47776. /* Multiply p* in projective coordinates by q*.
  47777. *
  47778. * r.x = p.x - (p.y * q.y)
  47779. * r.y = (p.x * q.y) + p.y
  47780. *
  47781. * px [in,out] A single precision integer - X ordinate of number to multiply.
  47782. * py [in,out] A single precision integer - Y ordinate of number to multiply.
  47783. * q [in] A single precision integer - multiplier.
  47784. * t [in] Two single precision integers - temps.
  47785. */
  47786. static void sp_1024_proj_mul_qx1_42(sp_digit* px, sp_digit* py,
  47787. const sp_digit* q, sp_digit* t)
  47788. {
  47789. sp_digit* t1 = t;
  47790. sp_digit* t2 = t + 2 * 42;
  47791. /* t1 = p.x * q.y */
  47792. sp_1024_mont_mul_42(t1, px, q, p1024_mod, p1024_mp_mod);
  47793. /* t2 = p.y * q.y */
  47794. sp_1024_mont_mul_42(t2, py, q, p1024_mod, p1024_mp_mod);
  47795. /* r.x = p.x - (p.y * q.y) */
  47796. sp_1024_mont_sub_42(px, px, t2, p1024_mod);
  47797. /* r.y = (p.x * q.y) + p.y */
  47798. sp_1024_mont_add_42(py, t1, py, p1024_mod);
  47799. }
  47800. /* Square p* in projective coordinates.
  47801. *
  47802. * px' = (p.x + p.y) * (p.x - p.y) = p.x^2 - p.y^2
  47803. * py' = 2 * p.x * p.y
  47804. *
  47805. * px [in,out] A single precision integer - X ordinate of number to square.
  47806. * py [in,out] A single precision integer - Y ordinate of number to square.
  47807. * t [in] Two single precision integers - temps.
  47808. */
  47809. static void sp_1024_proj_sqr_42(sp_digit* px, sp_digit* py, sp_digit* t)
  47810. {
  47811. sp_digit* t1 = t;
  47812. sp_digit* t2 = t + 2 * 42;
  47813. /* t1 = p.x + p.y */
  47814. sp_1024_mont_add_42(t1, px, py, p1024_mod);
  47815. /* t2 = p.x - p.y */
  47816. sp_1024_mont_sub_42(t2, px, py, p1024_mod);
  47817. /* r.y = p.x * p.y */
  47818. sp_1024_mont_mul_42(py, px, py, p1024_mod, p1024_mp_mod);
  47819. /* r.x = (p.x + p.y) * (p.x - p.y) */
  47820. sp_1024_mont_mul_42(px, t1, t2, p1024_mod, p1024_mp_mod);
  47821. /* r.y = (p.x * p.y) * 2 */
  47822. sp_1024_mont_dbl_42(py, py, p1024_mod);
  47823. }
  47824. #ifdef WOLFSSL_SP_SMALL
  47825. /* Perform the modular exponentiation in Fp* for SAKKE.
  47826. *
  47827. * Simple square and multiply when expontent bit is one algorithm.
  47828. * Square and multiply performed in Fp*.
  47829. *
  47830. * base [in] Base. MP integer.
  47831. * exp [in] Exponent. MP integer.
  47832. * res [out] Result. MP integer.
  47833. * returns 0 on success and MEMORY_E if memory allocation fails.
  47834. */
  47835. int sp_ModExp_Fp_star_1024(const mp_int* base, mp_int* exp, mp_int* res)
  47836. {
  47837. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  47838. defined(WOLFSSL_SP_SMALL_STACK)
  47839. sp_digit* td;
  47840. sp_digit* t;
  47841. sp_digit* tx;
  47842. sp_digit* ty;
  47843. sp_digit* b;
  47844. sp_digit* e;
  47845. #else
  47846. sp_digit t[36 * 2 * 42];
  47847. sp_digit tx[2 * 42];
  47848. sp_digit ty[2 * 42];
  47849. sp_digit b[2 * 42];
  47850. sp_digit e[2 * 42];
  47851. #endif
  47852. sp_digit* r;
  47853. int err = MP_OKAY;
  47854. int bits;
  47855. int i;
  47856. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  47857. defined(WOLFSSL_SP_SMALL_STACK)
  47858. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 40 * 42 * 2, NULL,
  47859. DYNAMIC_TYPE_TMP_BUFFER);
  47860. if (td == NULL) {
  47861. err = MEMORY_E;
  47862. }
  47863. #endif
  47864. if (err == MP_OKAY) {
  47865. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  47866. defined(WOLFSSL_SP_SMALL_STACK)
  47867. t = td;
  47868. tx = td + 36 * 42 * 2;
  47869. ty = td + 37 * 42 * 2;
  47870. b = td + 38 * 42 * 2;
  47871. e = td + 39 * 42 * 2;
  47872. #endif
  47873. r = ty;
  47874. bits = mp_count_bits(exp);
  47875. sp_1024_from_mp(b, 42, base);
  47876. sp_1024_from_mp(e, 42, exp);
  47877. XMEMCPY(tx, p1024_norm_mod, sizeof(sp_digit) * 42);
  47878. sp_1024_mul_42(b, b, p1024_norm_mod);
  47879. err = sp_1024_mod_42(b, b, p1024_mod);
  47880. }
  47881. if (err == MP_OKAY) {
  47882. XMEMCPY(ty, b, sizeof(sp_digit) * 42);
  47883. for (i = bits - 2; i >= 0; i--) {
  47884. sp_1024_proj_sqr_42(tx, ty, t);
  47885. if ((e[i / 25] >> (i % 25)) & 1) {
  47886. sp_1024_proj_mul_qx1_42(tx, ty, b, t);
  47887. }
  47888. }
  47889. }
  47890. if (err == MP_OKAY) {
  47891. sp_1024_mont_inv_42(tx, tx, t);
  47892. XMEMSET(tx + 42, 0, sizeof(sp_digit) * 42);
  47893. sp_1024_mont_reduce_42(tx, p1024_mod, p1024_mp_mod);
  47894. XMEMSET(ty + 42, 0, sizeof(sp_digit) * 42);
  47895. sp_1024_mont_reduce_42(ty, p1024_mod, p1024_mp_mod);
  47896. sp_1024_mul_42(r, tx, ty);
  47897. err = sp_1024_mod_42(r, r, p1024_mod);
  47898. }
  47899. if (err == MP_OKAY) {
  47900. err = sp_1024_to_mp(r, res);
  47901. }
  47902. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  47903. defined(WOLFSSL_SP_SMALL_STACK)
  47904. if (td != NULL) {
  47905. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  47906. }
  47907. #endif
  47908. return err;
  47909. }
  47910. #else
  47911. /* Pre-computed table for exponentiating g.
  47912. * Striping: 8 points at a distance of (128 combined for
  47913. * a total of 256 points.
  47914. */
  47915. static const sp_digit sp_1024_g_table[256][42] = {
  47916. { 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000,
  47917. 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000,
  47918. 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000,
  47919. 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000,
  47920. 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000,
  47921. 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000,
  47922. 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000 },
  47923. { 0x15c1685, 0x1236919, 0x09605c2, 0x03c200f, 0x0ac9e97, 0x052539f,
  47924. 0x1cf7d0f, 0x0ea81d1, 0x1826424, 0x1237c0a, 0x15db449, 0x176966c,
  47925. 0x1b3af49, 0x195f8d7, 0x078b451, 0x0a3cdb1, 0x02c2fd1, 0x013df44,
  47926. 0x1e21c5f, 0x1db90b1, 0x0c6fadd, 0x1f8b563, 0x15b6166, 0x11d5cb1,
  47927. 0x01a1b2d, 0x186873a, 0x018707c, 0x1f5ef40, 0x07e0966, 0x084d4db,
  47928. 0x1f59b6f, 0x0fa769e, 0x1f11c06, 0x1e4c710, 0x080b1c9, 0x02c2a57,
  47929. 0x086cb22, 0x0ac448f, 0x0ebd2bf, 0x0d4d7a7, 0x059e93c },
  47930. { 0x1dd4594, 0x0e9b7b8, 0x079b953, 0x1e015de, 0x1bc9cc9, 0x0fb2985,
  47931. 0x0913a86, 0x0513d4b, 0x13f5209, 0x0c4554c, 0x1050621, 0x12991eb,
  47932. 0x1a97537, 0x0089ccf, 0x02f5e4b, 0x0d56a23, 0x0fdf5cb, 0x15cde9d,
  47933. 0x1b2e594, 0x1a39645, 0x1813813, 0x13a01c4, 0x1f51589, 0x1908639,
  47934. 0x1119b4a, 0x15b28fb, 0x0428603, 0x1b3ed52, 0x1bfa2ed, 0x168bcfb,
  47935. 0x1644e51, 0x0a153a1, 0x0f18631, 0x1b9e98b, 0x0835be0, 0x12be338,
  47936. 0x1b6a52b, 0x02d6354, 0x0b80efa, 0x0f6e9ec, 0x063ef18 },
  47937. { 0x16f45e7, 0x1b5bf80, 0x0be1f0d, 0x0e57d90, 0x1c1bdb5, 0x014db00,
  47938. 0x1dd0739, 0x03ae725, 0x0c7afd8, 0x1edf851, 0x04262db, 0x163ee48,
  47939. 0x0fbda41, 0x1db07c6, 0x101d1d2, 0x1789ab6, 0x141b330, 0x1499f06,
  47940. 0x0cfe8ef, 0x105060e, 0x0cd1ae1, 0x0d87ae3, 0x083b4a6, 0x130c191,
  47941. 0x1354e3f, 0x020bff9, 0x1855567, 0x026c130, 0x1f85cbb, 0x1b1e094,
  47942. 0x0faac32, 0x08ed0bf, 0x02ecc49, 0x0cb19b4, 0x1b0bac6, 0x14a0bd1,
  47943. 0x1dac2cd, 0x0e63ca6, 0x1688e43, 0x039e325, 0x04fe679 },
  47944. { 0x1e8733c, 0x011ea82, 0x1f06529, 0x0a3aae2, 0x0c845e6, 0x10d9916,
  47945. 0x1fa23a5, 0x19846f8, 0x0db4181, 0x02238e3, 0x0f5c843, 0x0bc4e27,
  47946. 0x0900c87, 0x1960bd8, 0x1f7a7b6, 0x1d5ed3b, 0x1e5e88c, 0x1218536,
  47947. 0x0e073a9, 0x0f4c34f, 0x18d5aaa, 0x13119fc, 0x1a94b40, 0x0d13535,
  47948. 0x0fdd060, 0x155daaf, 0x1972b12, 0x019f4f9, 0x1507613, 0x188a474,
  47949. 0x14be936, 0x09d343c, 0x09570c4, 0x000b818, 0x1d84681, 0x0431843,
  47950. 0x1e78d9d, 0x0e8fff5, 0x0ca5d55, 0x030ac3b, 0x004482a },
  47951. { 0x1d486d8, 0x0c56139, 0x079f9dd, 0x0cc39b8, 0x0169f94, 0x0455a7c,
  47952. 0x067f086, 0x060e479, 0x0f33736, 0x072a781, 0x1089828, 0x1c4b7b1,
  47953. 0x00560be, 0x0298de3, 0x1f0c1f1, 0x1fd6a51, 0x11a7e44, 0x1eb790f,
  47954. 0x1c4a34d, 0x089338a, 0x0a45c8e, 0x1f6bd97, 0x058ec14, 0x147a445,
  47955. 0x07a0432, 0x1342061, 0x14d5165, 0x16a30a9, 0x1557e95, 0x124feb9,
  47956. 0x1e99b86, 0x10d240e, 0x1267fd9, 0x0138106, 0x034f9cd, 0x09f426a,
  47957. 0x08ccdb4, 0x0e1f92b, 0x1e27c6a, 0x1f1bdb7, 0x0833a0f },
  47958. { 0x1376b76, 0x00ce3d5, 0x0332a31, 0x064fa1e, 0x1b7294f, 0x0628a69,
  47959. 0x0e78aa4, 0x14dcad7, 0x0a62575, 0x18dd28f, 0x102a224, 0x00f6131,
  47960. 0x0a56fee, 0x1a60b51, 0x0f96bba, 0x04c1609, 0x10be6eb, 0x072899a,
  47961. 0x075709c, 0x1db5ad4, 0x0dd1339, 0x0cf4edd, 0x1cd9bb5, 0x1a0dd81,
  47962. 0x1be882d, 0x1eda109, 0x032c461, 0x05ac739, 0x01058a2, 0x0af0ec5,
  47963. 0x1c47fb2, 0x1456e89, 0x1f73ea6, 0x02e0601, 0x146bd3c, 0x00e83fa,
  47964. 0x05f811a, 0x16fcad4, 0x0597cb8, 0x1c7d649, 0x0692b3c },
  47965. { 0x0a127b4, 0x165b969, 0x05bc339, 0x0b1f250, 0x06a46ea, 0x11bb0b3,
  47966. 0x1d18d1e, 0x1dc87d9, 0x1e0ab96, 0x11ecd00, 0x16fa305, 0x18db65d,
  47967. 0x05c8145, 0x06f2733, 0x109b2b9, 0x0a5f25e, 0x14074e2, 0x08ba685,
  47968. 0x14abe0c, 0x0481aef, 0x093654c, 0x0b9eb29, 0x1607e8e, 0x13a8d2a,
  47969. 0x1491ca0, 0x01e02dc, 0x0d51499, 0x189d0a6, 0x1283278, 0x0198ea0,
  47970. 0x094cb59, 0x0e06c3e, 0x0479038, 0x184f932, 0x06c627b, 0x00ee832,
  47971. 0x01de5fe, 0x078557c, 0x10b5b03, 0x015e800, 0x0333e43 },
  47972. { 0x126d3b7, 0x026f267, 0x06f977c, 0x0d6a7ef, 0x17a7730, 0x045b322,
  47973. 0x0f17c60, 0x0c14802, 0x0850373, 0x1948f52, 0x1840dfb, 0x1afa160,
  47974. 0x1b1ffc9, 0x12e489d, 0x1413765, 0x10b0fb3, 0x1aff13b, 0x0ca451b,
  47975. 0x18fb9d5, 0x086907f, 0x1386b54, 0x1a02318, 0x0ff0879, 0x1bd6b18,
  47976. 0x104e5cd, 0x0a959d0, 0x0995cb3, 0x09fc30c, 0x0aa4089, 0x18d08ad,
  47977. 0x18bae69, 0x08b3d48, 0x0dc6fe5, 0x18151c5, 0x05d52ba, 0x037631a,
  47978. 0x0f7791d, 0x093b1b1, 0x15c22b8, 0x03bad77, 0x010e8b3 },
  47979. { 0x0d9f1af, 0x181f29f, 0x059ae1f, 0x0eaccec, 0x03ad247, 0x070adc0,
  47980. 0x158c1d3, 0x0b671b9, 0x026b1e8, 0x03bf158, 0x0670546, 0x1a2e35f,
  47981. 0x1ab1654, 0x09c12a3, 0x00ba792, 0x0bdeb2f, 0x07c26d5, 0x036e3fe,
  47982. 0x1efad53, 0x11f2ba5, 0x0357903, 0x1f01b60, 0x1f96437, 0x1b87eff,
  47983. 0x16eae4f, 0x14467e5, 0x13cd786, 0x163f78a, 0x0a5568c, 0x0ed96d0,
  47984. 0x15cf238, 0x0b6deaa, 0x087393f, 0x005034d, 0x0ccb9eb, 0x1670c8d,
  47985. 0x0a8495a, 0x130e419, 0x112f3f4, 0x09819b9, 0x0648552 },
  47986. { 0x0a6ff2a, 0x1d9f162, 0x0a286af, 0x146b4c8, 0x0aa03fb, 0x17fba11,
  47987. 0x09fc226, 0x1271084, 0x0ba5dbd, 0x19bc41d, 0x060b2c8, 0x15d3a54,
  47988. 0x0538186, 0x04d00f8, 0x1c1d935, 0x03cf573, 0x1eb917b, 0x1c9208f,
  47989. 0x1c32ed6, 0x163206a, 0x1e7c700, 0x0adc8a5, 0x1754607, 0x102305a,
  47990. 0x0443719, 0x0cb89ae, 0x115d2e6, 0x04eb1a4, 0x0d28b23, 0x147ab19,
  47991. 0x0269942, 0x1f4707e, 0x0078bac, 0x19ec012, 0x1830028, 0x12ca8d4,
  47992. 0x0df8b44, 0x030e3d1, 0x158f290, 0x1e5e468, 0x01f76f3 },
  47993. { 0x0c436b0, 0x160a1a2, 0x01ea6a8, 0x0c3ed39, 0x1907055, 0x16d96fb,
  47994. 0x045ed7d, 0x1046be6, 0x1ed56ba, 0x0bb0fa0, 0x0be9221, 0x0c9efa1,
  47995. 0x1ef8314, 0x1d6e738, 0x07ca454, 0x0e91153, 0x093116b, 0x1593dfb,
  47996. 0x0ee510e, 0x14b5193, 0x1de8a98, 0x131772f, 0x1fe1e00, 0x025596e,
  47997. 0x193dd18, 0x0491d37, 0x137212f, 0x1f25499, 0x14995aa, 0x1157f8e,
  47998. 0x074f095, 0x009db13, 0x19fc33c, 0x1529c7e, 0x0a513b4, 0x0d80519,
  47999. 0x049ea72, 0x19b3dd8, 0x0381743, 0x1f67a21, 0x004924f },
  48000. { 0x073562f, 0x0471ee3, 0x1230195, 0x0bc5d5c, 0x13b3302, 0x0e34bbe,
  48001. 0x14cad78, 0x0f7cc3f, 0x06ebe55, 0x1271032, 0x1b86390, 0x038083a,
  48002. 0x1b76739, 0x0a6bf4a, 0x03aee38, 0x0371897, 0x1d42099, 0x1a5745b,
  48003. 0x004a434, 0x01becdc, 0x1f4ef8a, 0x11c92f2, 0x125f892, 0x0104e55,
  48004. 0x1b2cb15, 0x130bcd3, 0x18941c9, 0x08160e5, 0x02fa49b, 0x10c1483,
  48005. 0x13b6b67, 0x1e78a77, 0x180a784, 0x013ccc3, 0x0dda7c5, 0x0cb1505,
  48006. 0x0146842, 0x06c24e6, 0x0b8d423, 0x0138701, 0x04dfce8 },
  48007. { 0x127b780, 0x14e596a, 0x0375141, 0x0b2ef26, 0x152da01, 0x1e8131e,
  48008. 0x1802f89, 0x0562198, 0x0bb2d1b, 0x0081613, 0x0b7cf0d, 0x0c46aa9,
  48009. 0x074c652, 0x02f87fa, 0x0244e09, 0x0dcf9ad, 0x0c5ca91, 0x141fd46,
  48010. 0x0572362, 0x01e273a, 0x16b31e1, 0x1740ee2, 0x1c5cf70, 0x09db375,
  48011. 0x0cb045c, 0x1143fe7, 0x011f404, 0x00ffafb, 0x1a532f3, 0x18a9cf9,
  48012. 0x0889295, 0x1c42a78, 0x1e9e81d, 0x052042c, 0x057790a, 0x078ac4b,
  48013. 0x1339bd2, 0x1ed7fc4, 0x1a00b71, 0x0117140, 0x00d0759 },
  48014. { 0x0085f2a, 0x17953ef, 0x0b961c2, 0x1f7d336, 0x08fcd24, 0x05209dc,
  48015. 0x1498567, 0x0a31181, 0x08559f8, 0x1815172, 0x0b68347, 0x0043ec4,
  48016. 0x1583b96, 0x16e51b0, 0x0170bd5, 0x18d04b8, 0x11c7910, 0x100a467,
  48017. 0x1c9a56f, 0x1e512c4, 0x0ef6392, 0x1ad46b2, 0x020f42e, 0x1f978a5,
  48018. 0x122441c, 0x1f2f786, 0x1149845, 0x0bb5f9d, 0x0928e9f, 0x095cf82,
  48019. 0x0aada18, 0x0727e5c, 0x03f744d, 0x008a894, 0x1fb5c03, 0x1df7dda,
  48020. 0x04360df, 0x06f10ad, 0x14d6bcb, 0x0385e10, 0x024fa96 },
  48021. { 0x16df7f6, 0x1ed9fb0, 0x0c981d9, 0x11f7b20, 0x043057d, 0x016aa23,
  48022. 0x0aa41ba, 0x1b62e9b, 0x1689643, 0x14279a2, 0x0681808, 0x03bf991,
  48023. 0x1218b19, 0x0b613e8, 0x0d1abd3, 0x0a28b75, 0x086c989, 0x12d2bfa,
  48024. 0x1250be7, 0x0429d39, 0x0158c03, 0x07a0ca8, 0x09cf872, 0x15a8756,
  48025. 0x1759f39, 0x0b9c675, 0x1f943b8, 0x1c3716f, 0x0d7d4e5, 0x18fe47a,
  48026. 0x1cfd8d6, 0x0eaac07, 0x0ff77e3, 0x17d3047, 0x0745dd4, 0x02403ec,
  48027. 0x0a6fb6e, 0x0bd01ea, 0x0045253, 0x07bf89e, 0x0371cc2 },
  48028. { 0x090c351, 0x188aeed, 0x1018a26, 0x1e6c9b3, 0x0d196eb, 0x08598db,
  48029. 0x0480bd9, 0x05eef51, 0x06f5764, 0x01460b2, 0x00049f3, 0x1c6c102,
  48030. 0x1bdc4f7, 0x0e26403, 0x0db3423, 0x081e510, 0x156e002, 0x1894078,
  48031. 0x072ce54, 0x14daf13, 0x00383f9, 0x099d401, 0x1029253, 0x0fa68e8,
  48032. 0x17e91e8, 0x12522b4, 0x1c9b778, 0x01b2fa0, 0x00c30e7, 0x12c6bb2,
  48033. 0x1181bda, 0x0b74dcd, 0x1c2c0e8, 0x009f401, 0x09ebc6f, 0x1e661ed,
  48034. 0x09f4d78, 0x101727e, 0x1edfcf9, 0x1401901, 0x092b6bc },
  48035. { 0x100822e, 0x0ae41af, 0x1c48b8f, 0x057162d, 0x0e82571, 0x1851980,
  48036. 0x0a7124a, 0x0a90386, 0x1a7cc19, 0x1a71956, 0x0504fda, 0x19dc376,
  48037. 0x070bee9, 0x0549651, 0x1edeea9, 0x122a7db, 0x0faea3b, 0x0e6a395,
  48038. 0x03c303e, 0x013cfc0, 0x1b70e8f, 0x192e6f5, 0x0938761, 0x136c76d,
  48039. 0x1ae084a, 0x1b2ff15, 0x00ff563, 0x0802837, 0x162759f, 0x0f6d51d,
  48040. 0x0235fb1, 0x0f21c61, 0x0af6e67, 0x1bf18cd, 0x00c07c9, 0x1842b5b,
  48041. 0x0f33871, 0x0da5cc6, 0x1e2779f, 0x1929e05, 0x071ff62 },
  48042. { 0x04a84d9, 0x0388115, 0x079aa93, 0x1abd78e, 0x02ee4ac, 0x06b2bc7,
  48043. 0x0a297c7, 0x14a7623, 0x1fff120, 0x1faf7cf, 0x1940ce0, 0x11c213c,
  48044. 0x00a4c59, 0x050220c, 0x1a7e643, 0x05183c3, 0x146f598, 0x1c5c196,
  48045. 0x0ebd4da, 0x1e51406, 0x168a753, 0x18db6a7, 0x04bb712, 0x199a3e1,
  48046. 0x0692a72, 0x01976ef, 0x1748899, 0x07541ef, 0x12661cd, 0x1b1f51e,
  48047. 0x168e36e, 0x1fb86fb, 0x1e19fc6, 0x1b5a678, 0x0d4213b, 0x12d8316,
  48048. 0x1f1bba6, 0x141ff4e, 0x009cf9a, 0x1cebf2b, 0x040fd47 },
  48049. { 0x07140a4, 0x05ba313, 0x0bed6e2, 0x1dd56de, 0x0dbbfc1, 0x0312a43,
  48050. 0x12239a6, 0x185bb3d, 0x12eb6ef, 0x0df75d0, 0x03fe21a, 0x0295159,
  48051. 0x10cfc22, 0x1ad10ca, 0x15725ba, 0x1f6d32b, 0x0054171, 0x1c99c4e,
  48052. 0x0d1a0cd, 0x0ba8a43, 0x025c2d8, 0x042089a, 0x0535a28, 0x0d842e8,
  48053. 0x00139ec, 0x026f296, 0x1fdcc02, 0x019e172, 0x178aa32, 0x15130fa,
  48054. 0x10c6b05, 0x1f36d5c, 0x0b9fab3, 0x0534a8c, 0x0447615, 0x0cd1b04,
  48055. 0x1ffbe28, 0x19a6cc6, 0x0ce302c, 0x0afcc72, 0x05b1c11 },
  48056. { 0x0b6bb8f, 0x0d558b9, 0x0b0a43b, 0x0405f92, 0x0dc64ed, 0x14a639c,
  48057. 0x08f17f9, 0x1c9e857, 0x1cb54dc, 0x0b6e32f, 0x108370c, 0x0d46c64,
  48058. 0x14cb2d6, 0x02b6e7c, 0x19c1b9c, 0x0593a2d, 0x164a4f3, 0x01404e3,
  48059. 0x09bb72a, 0x11b061d, 0x1f57ab1, 0x1340e32, 0x13f46b3, 0x1425820,
  48060. 0x1651c7d, 0x1240fc8, 0x1b1de46, 0x15877ac, 0x1e67a30, 0x0e7a3c2,
  48061. 0x046dab4, 0x1b41fab, 0x0d3fc44, 0x031a272, 0x0005b87, 0x079c2c9,
  48062. 0x13e50ab, 0x0f4e5c1, 0x1bbd213, 0x0754ead, 0x0963ab8 },
  48063. { 0x14ea5a3, 0x1a3ec6f, 0x17fa512, 0x0ab9fc8, 0x1656881, 0x1e1ab24,
  48064. 0x1f56228, 0x02ba2dc, 0x0e7c99e, 0x072ad9f, 0x01c6f21, 0x009beaa,
  48065. 0x0e3fee2, 0x0202bee, 0x001bca4, 0x0aae0e2, 0x10dbba7, 0x07f461c,
  48066. 0x0c66b6b, 0x0b796c6, 0x1fd8364, 0x183e105, 0x00627a2, 0x0fb2af1,
  48067. 0x109697d, 0x11dc72a, 0x06e67d3, 0x06fa264, 0x0cfb6a0, 0x1290d30,
  48068. 0x168046c, 0x106e705, 0x0594aaa, 0x0ee03b3, 0x07f60f0, 0x0991372,
  48069. 0x076b988, 0x015c4c8, 0x11561ae, 0x1f97c8b, 0x0443480 },
  48070. { 0x114221a, 0x1ffda48, 0x09ebe3f, 0x1c7d0af, 0x0aec4f2, 0x12a3c3a,
  48071. 0x143903e, 0x0a485c5, 0x1d6f961, 0x19f3598, 0x1a6ddfb, 0x0a6ff7f,
  48072. 0x0ab2296, 0x1da1d43, 0x0a743cb, 0x0558d85, 0x0ed2457, 0x1920942,
  48073. 0x1c86e9e, 0x0d122fc, 0x078da38, 0x00608bd, 0x16fbdf0, 0x02c0b59,
  48074. 0x09071d3, 0x1749c0a, 0x18196a3, 0x05b5b53, 0x02be82c, 0x1c6c622,
  48075. 0x16356c4, 0x1edae56, 0x16c224b, 0x01f36cd, 0x173e3ac, 0x0373a6a,
  48076. 0x0170037, 0x168f585, 0x09faead, 0x1119ff5, 0x097118a },
  48077. { 0x1ecb5d8, 0x02cd166, 0x019afe7, 0x175274d, 0x0083c81, 0x1ba7dfc,
  48078. 0x1760411, 0x16849c1, 0x0a02070, 0x1bcd1e5, 0x1ede079, 0x1f761f7,
  48079. 0x049d352, 0x1f7950e, 0x0c36080, 0x1ca0351, 0x17b14b3, 0x15c2c31,
  48080. 0x0a20bfc, 0x0e14931, 0x0fa55ba, 0x019d837, 0x089cc02, 0x05fdc55,
  48081. 0x002f410, 0x1d2d216, 0x0628088, 0x09cec53, 0x03fc72e, 0x1d1342e,
  48082. 0x19f6e8a, 0x1fca5d5, 0x14fe763, 0x1a2fb2a, 0x01689c3, 0x18616a8,
  48083. 0x0573387, 0x150bbd5, 0x1ea0b55, 0x11a96e3, 0x017c077 },
  48084. { 0x135e37b, 0x0ff8e93, 0x15c839b, 0x0ccadd8, 0x09884e5, 0x1dd4bc6,
  48085. 0x0b2767a, 0x18945eb, 0x0ba09f3, 0x07d228c, 0x010ddd0, 0x02efeb6,
  48086. 0x0a8c3fa, 0x0b3d176, 0x0877b36, 0x17a8143, 0x0700528, 0x13b45e5,
  48087. 0x01a4712, 0x092a563, 0x1fd5f22, 0x02f436a, 0x05b84b1, 0x10b34d4,
  48088. 0x1915737, 0x1073d06, 0x0683ff3, 0x047e861, 0x0cc9a37, 0x1bcdd4b,
  48089. 0x0e16a36, 0x035a474, 0x1d12ae0, 0x1aec236, 0x0e878af, 0x0d3ffd8,
  48090. 0x0452ed6, 0x074270d, 0x1931b5b, 0x190ae3f, 0x01219d5 },
  48091. { 0x02969eb, 0x1533f93, 0x1dcd0fa, 0x1a5e07c, 0x1a3ab39, 0x1d84849,
  48092. 0x1f9455e, 0x0e9cc24, 0x18d1502, 0x1c15876, 0x02f6f43, 0x15b1cb0,
  48093. 0x0bffffc, 0x14ba1f3, 0x14f41d6, 0x023aca3, 0x1b18bac, 0x00a425e,
  48094. 0x0c930e2, 0x1b3321d, 0x07c695c, 0x083fd63, 0x085a987, 0x09cd70e,
  48095. 0x0f762a0, 0x0642184, 0x072e95f, 0x10cbbac, 0x14a07a2, 0x1586e91,
  48096. 0x1e4f0a5, 0x0740f27, 0x0f92839, 0x14f673b, 0x187c2f8, 0x04e16af,
  48097. 0x1e626f4, 0x0a5417b, 0x1c8c04c, 0x165acaf, 0x02c8d7a },
  48098. { 0x025e4d6, 0x1ac4904, 0x0d119f3, 0x0addf07, 0x1f51eaa, 0x080846e,
  48099. 0x197604c, 0x07ec7cc, 0x18dd096, 0x14fc4fa, 0x190da88, 0x09bb3be,
  48100. 0x078c4b1, 0x0a2f5dd, 0x16b91a7, 0x1e70333, 0x1775a4d, 0x188c555,
  48101. 0x078dffa, 0x12f17a5, 0x17efda8, 0x1556516, 0x1a73b56, 0x0fad514,
  48102. 0x0d05dc6, 0x11a364c, 0x15dfe12, 0x08e97e1, 0x0cd59a7, 0x059776c,
  48103. 0x1ef510a, 0x1a3a731, 0x0fd1cd5, 0x10588d8, 0x0f6e528, 0x08b2c02,
  48104. 0x1b404c4, 0x15b82d0, 0x165625b, 0x0ee9613, 0x02299d2 },
  48105. { 0x04397e6, 0x06ac6e3, 0x0c796e7, 0x1d7edba, 0x0c198f1, 0x0f8ed95,
  48106. 0x16384fa, 0x118b0cd, 0x18fcdc6, 0x02d7143, 0x1007f50, 0x019bca7,
  48107. 0x16a4b28, 0x008edaf, 0x058fcb5, 0x1f141b9, 0x189bec4, 0x1f6aea8,
  48108. 0x05bba62, 0x1fa27b2, 0x148e336, 0x198216f, 0x1a496c6, 0x1c00e9c,
  48109. 0x16291ac, 0x14a867a, 0x0094c5f, 0x11a7169, 0x1c446be, 0x0e95c10,
  48110. 0x0d31eb4, 0x1e16cb2, 0x1c44135, 0x106a838, 0x0dbd4b2, 0x0d2e36e,
  48111. 0x07b46c2, 0x0ffd2b9, 0x1863abe, 0x0f2326c, 0x021ac67 },
  48112. { 0x17fbcd2, 0x1071f96, 0x1062ad0, 0x072f7bf, 0x1272247, 0x1aea5a0,
  48113. 0x0cfe137, 0x1a69240, 0x03807b7, 0x1e6a11b, 0x10d895b, 0x1613667,
  48114. 0x14dfc19, 0x1079140, 0x15bcdd6, 0x0337027, 0x059037c, 0x0384bc5,
  48115. 0x1fc9ee7, 0x13132e1, 0x03894f3, 0x02b0ad2, 0x1f03869, 0x0c05ee9,
  48116. 0x1496a3e, 0x10e7fd1, 0x06c9872, 0x07e3886, 0x0164cdc, 0x08edf70,
  48117. 0x07d8488, 0x1cfef7d, 0x0463ee4, 0x170dd98, 0x19e24b0, 0x0c02bef,
  48118. 0x04483a5, 0x1ec46b1, 0x1676198, 0x1ce1cc5, 0x00e8ec1 },
  48119. { 0x00878dd, 0x06614c5, 0x1c6aa23, 0x1acc800, 0x19ac175, 0x0b9b0bc,
  48120. 0x1208294, 0x02b2068, 0x0dd58a3, 0x0b6811f, 0x088684c, 0x17a911a,
  48121. 0x0330785, 0x0ace247, 0x12cf79e, 0x14ee36e, 0x1824c67, 0x1a17701,
  48122. 0x02e4514, 0x1ed9bbc, 0x1e9159e, 0x144d91b, 0x1e0c2b8, 0x0bb064a,
  48123. 0x07a4c49, 0x13370c2, 0x1b41dcd, 0x0f6242f, 0x14a3256, 0x1643514,
  48124. 0x0996064, 0x10c9b06, 0x0aa0f56, 0x09f2dbb, 0x144bd2c, 0x1bc5457,
  48125. 0x1b6b73f, 0x0860e00, 0x0d8d761, 0x0beba20, 0x0653a79 },
  48126. { 0x0dcb199, 0x144c2a8, 0x0d833f8, 0x1cff405, 0x135b8e5, 0x1b01e85,
  48127. 0x15f0f25, 0x16b794f, 0x127f131, 0x0729446, 0x04b54ac, 0x09bdc56,
  48128. 0x073aa70, 0x0edb92e, 0x01ac760, 0x16227c4, 0x19ac5d1, 0x1858941,
  48129. 0x0d175d8, 0x12e197b, 0x1e8e14f, 0x1f59092, 0x1265fe4, 0x0fb544d,
  48130. 0x1739cee, 0x074deba, 0x1c7fbc8, 0x0dd97a7, 0x0a42b14, 0x108a3e3,
  48131. 0x147e652, 0x04ff61f, 0x089eb4f, 0x06d25e9, 0x14c6690, 0x0c2230d,
  48132. 0x1b9d797, 0x1fb2d2f, 0x19d7820, 0x0f7a888, 0x030dfc4 },
  48133. { 0x0aadfe8, 0x02d714f, 0x004af3f, 0x0969a9d, 0x05027e5, 0x099ab09,
  48134. 0x00b7e2d, 0x029560e, 0x056a6a2, 0x15ce102, 0x041a3a8, 0x1ef460b,
  48135. 0x0fb1a3d, 0x0c41888, 0x1452c86, 0x11c3946, 0x136c4b7, 0x05bdf11,
  48136. 0x18bda61, 0x0e79cc7, 0x1ac6170, 0x1316efb, 0x01b8452, 0x1af8791,
  48137. 0x192bf07, 0x14493b0, 0x0fac6b8, 0x1b4d3c1, 0x1849395, 0x18ba928,
  48138. 0x08260eb, 0x080f475, 0x0c52a4d, 0x1f10c4d, 0x1f6ab83, 0x022a6b8,
  48139. 0x197f250, 0x17f4391, 0x04b3f85, 0x03ea984, 0x0572a59 },
  48140. { 0x1a5553a, 0x1420c84, 0x0ef1259, 0x1064ee6, 0x1f05431, 0x17eb481,
  48141. 0x0d2c8fb, 0x1a9f39d, 0x1f22126, 0x09e5fcd, 0x1655e2f, 0x03805fd,
  48142. 0x186d967, 0x0501836, 0x0965f3b, 0x09fcb77, 0x1613d67, 0x15b82f6,
  48143. 0x1fccfdd, 0x06c456c, 0x0c31f1d, 0x0308e5c, 0x056f3cf, 0x07a3552,
  48144. 0x067dce5, 0x1a1d1c2, 0x07e422a, 0x005fd25, 0x15767a9, 0x04cec68,
  48145. 0x1edb8f9, 0x1215fa0, 0x142db5c, 0x18c8740, 0x1ef1b22, 0x1c2418d,
  48146. 0x04919a4, 0x0432a99, 0x0b0f203, 0x1c3b190, 0x065c2cb },
  48147. { 0x060bb63, 0x06d1053, 0x0915a13, 0x150dd0c, 0x07dc3b0, 0x10776b9,
  48148. 0x0b3d9ae, 0x0b0ec8e, 0x1679dd1, 0x0e0b172, 0x14b511e, 0x04ee108,
  48149. 0x1eb6884, 0x009fabc, 0x06f1acd, 0x02ee105, 0x1ec9501, 0x1c9750a,
  48150. 0x1dce060, 0x09c6008, 0x12f15e3, 0x04b9f0e, 0x030f28d, 0x137a7bd,
  48151. 0x0f1dc22, 0x169d2e2, 0x0e53bdf, 0x107dfe3, 0x0e7a1a7, 0x19c6efd,
  48152. 0x1491b6d, 0x0341330, 0x153d72e, 0x07a55a1, 0x1562837, 0x124a675,
  48153. 0x0e7888b, 0x02a80b0, 0x1fd9b60, 0x1aa774e, 0x0831440 },
  48154. { 0x011b2da, 0x117197b, 0x1ab3d0f, 0x13a1f48, 0x1d066e2, 0x059e06a,
  48155. 0x1cfa208, 0x1e1d12f, 0x01d3e44, 0x02e1473, 0x09e99b1, 0x1ecdbfa,
  48156. 0x17929d7, 0x080f428, 0x16e1828, 0x0f1bae6, 0x0983de0, 0x1751fe7,
  48157. 0x0e33846, 0x0efb6ac, 0x0b3bc99, 0x17a429b, 0x01220e0, 0x195bf8c,
  48158. 0x07a3c64, 0x1b8bf06, 0x1e0851e, 0x19a2fef, 0x011e3e3, 0x11e60da,
  48159. 0x1b7a559, 0x130bf68, 0x139ac8f, 0x08ce52b, 0x0736f3c, 0x0a70a73,
  48160. 0x015a281, 0x0c2d387, 0x115992a, 0x114dabe, 0x0504c3a },
  48161. { 0x0fa53c7, 0x0a941dc, 0x138c02d, 0x10a128e, 0x185cff3, 0x1e712fc,
  48162. 0x090710d, 0x1da469a, 0x0e5a129, 0x0c19218, 0x1319d0a, 0x12ad557,
  48163. 0x016ad38, 0x1f740f7, 0x1700075, 0x04e0545, 0x0b6670b, 0x1a611e3,
  48164. 0x1ba28ee, 0x1cacfd4, 0x13eab35, 0x07534b3, 0x0f1c2cf, 0x1c51d59,
  48165. 0x1a9c3e6, 0x1ed42d3, 0x1954ded, 0x15cd09b, 0x0937dc2, 0x01f2b6f,
  48166. 0x0897b2b, 0x1f08608, 0x12ea6c9, 0x0e2905f, 0x1f41dff, 0x1a7195e,
  48167. 0x09f56ad, 0x1d7858b, 0x0874b09, 0x1338e3a, 0x0496e46 },
  48168. { 0x1a93467, 0x07e414f, 0x1852e85, 0x081d654, 0x02e3768, 0x19f04de,
  48169. 0x13ebd20, 0x198cb37, 0x03686bd, 0x042cba9, 0x0c85aaf, 0x010103e,
  48170. 0x1840bfd, 0x0be040d, 0x18ef698, 0x0f27788, 0x086bb04, 0x0de80fd,
  48171. 0x1359031, 0x03d9cc5, 0x15c45a2, 0x0a1101e, 0x05efda9, 0x022cf6f,
  48172. 0x00edc95, 0x134675a, 0x1dd96e8, 0x0cf5595, 0x0b51f9d, 0x0cf4d75,
  48173. 0x0ea2e83, 0x161ad0c, 0x14b215e, 0x034a960, 0x136f97c, 0x0a6a99b,
  48174. 0x0b3744b, 0x15ae67e, 0x1ffa13c, 0x0e62606, 0x0133891 },
  48175. { 0x1003cd1, 0x0032022, 0x0b1bb9a, 0x18895c5, 0x1dac17b, 0x07298a7,
  48176. 0x1067f7a, 0x0b8979a, 0x1c7cea9, 0x0f1a75c, 0x0df8060, 0x0c5a71e,
  48177. 0x08bb577, 0x1304c86, 0x1133ec0, 0x094f7d9, 0x1f950a3, 0x185e249,
  48178. 0x10cc13b, 0x0e82e4a, 0x0a2a680, 0x1935e45, 0x0bb03f2, 0x08bfd4b,
  48179. 0x09b463b, 0x1d64f3d, 0x1957ef6, 0x17652a5, 0x05dff44, 0x0053024,
  48180. 0x05943c3, 0x09bd48f, 0x0c5104d, 0x11d0101, 0x0825a57, 0x0ba59df,
  48181. 0x0da1f34, 0x00815a3, 0x0fef532, 0x0e7e706, 0x0422eb5 },
  48182. { 0x0ad3f47, 0x0975b53, 0x083ab16, 0x1b2e297, 0x10861f6, 0x140a2cd,
  48183. 0x1a4641c, 0x006af83, 0x064ea58, 0x1be4a71, 0x049c8f3, 0x0d58a96,
  48184. 0x0a72537, 0x0d7db9b, 0x09ae907, 0x079b9e5, 0x120cba0, 0x0e44f44,
  48185. 0x0c3f4eb, 0x041968b, 0x19fef2e, 0x0a6b302, 0x09ba969, 0x13bf178,
  48186. 0x1fa8b88, 0x15ff731, 0x059a8fc, 0x01e38fc, 0x1312e14, 0x1e4e3a3,
  48187. 0x1fc27fa, 0x0e4f333, 0x119b9c2, 0x09582be, 0x0d32dff, 0x0d53f77,
  48188. 0x00da2dc, 0x1d13ebd, 0x0960b3e, 0x19e584a, 0x0368541 },
  48189. { 0x0799d37, 0x09e4f11, 0x0ce9443, 0x0b59f46, 0x1b677de, 0x07bcad8,
  48190. 0x1863c20, 0x1849cd5, 0x0afc8df, 0x0da9e15, 0x10b709a, 0x036c1d0,
  48191. 0x0879754, 0x16033ff, 0x09bcabe, 0x1b0efab, 0x003bd07, 0x1681045,
  48192. 0x152f8bc, 0x08e7e0c, 0x023e34b, 0x157a8af, 0x199f040, 0x1835e91,
  48193. 0x1bf9d2a, 0x0805806, 0x06da84f, 0x04c9f48, 0x094c11e, 0x1c354bf,
  48194. 0x1d059a5, 0x10d4b0d, 0x1d8cf2d, 0x093f484, 0x01a71fe, 0x0c0e77f,
  48195. 0x0241a56, 0x0bbc401, 0x04cd2e2, 0x0b2444c, 0x059a5bf },
  48196. { 0x1347191, 0x0e48f40, 0x05cba74, 0x19d72d3, 0x186c1ab, 0x0a353f8,
  48197. 0x01d9ea7, 0x12e0f11, 0x0daa7d3, 0x149e7e6, 0x0e6a836, 0x13e3b23,
  48198. 0x0c08bee, 0x1c6e9e3, 0x19ff5e3, 0x1020104, 0x0d09422, 0x1fc9c30,
  48199. 0x0b6d1fe, 0x14e355b, 0x0f8a6a6, 0x1bd30ab, 0x072a81a, 0x1091793,
  48200. 0x105e039, 0x09ad50d, 0x1caaaa4, 0x0dbb846, 0x1f3bd13, 0x103cd89,
  48201. 0x135df9f, 0x09598be, 0x10b5cbe, 0x07e9b46, 0x17e2613, 0x1009b48,
  48202. 0x13d3e0f, 0x077b0c6, 0x1e673c5, 0x18287d6, 0x0467564 },
  48203. { 0x0fff5d7, 0x12c825b, 0x1d4a35c, 0x1f25b88, 0x037f33a, 0x105c550,
  48204. 0x155d5b4, 0x073212b, 0x143baec, 0x111afe0, 0x0ae6c0c, 0x095ed14,
  48205. 0x01a2feb, 0x0a69ae3, 0x1140c62, 0x0e90cc3, 0x0a2ea87, 0x1d6495b,
  48206. 0x046f1bc, 0x09162a0, 0x1cb28eb, 0x1463cf6, 0x08a3f84, 0x1a5400d,
  48207. 0x1bc0ca5, 0x0284fb8, 0x08bc56e, 0x062cee6, 0x036218f, 0x19463d0,
  48208. 0x07bfa35, 0x09f03c1, 0x08f39cb, 0x0286c83, 0x0059edf, 0x062ee7e,
  48209. 0x0d6a1e0, 0x07bd6df, 0x0135434, 0x02c9dd3, 0x08a0dee },
  48210. { 0x1366e6f, 0x0c8dfa3, 0x0015412, 0x1fd0d86, 0x18084d9, 0x06671b5,
  48211. 0x11d4690, 0x1c42989, 0x03f1961, 0x1da3553, 0x11790ee, 0x0bf2808,
  48212. 0x1f56a78, 0x048f10a, 0x0346d5f, 0x1011bb7, 0x13ec7ee, 0x0354722,
  48213. 0x0ea87a3, 0x0cfdf17, 0x0109c03, 0x18f1f0c, 0x0c43647, 0x0414586,
  48214. 0x0fd0e7e, 0x13bfcbe, 0x1155330, 0x03d0190, 0x028403f, 0x1e0ebdb,
  48215. 0x1f3a26e, 0x07fc142, 0x178a966, 0x00039bb, 0x067f07c, 0x053d3b6,
  48216. 0x16f6bed, 0x13ff3ed, 0x1388cb3, 0x1a5dd2f, 0x07b04b5 },
  48217. { 0x0c5faf8, 0x035e3c1, 0x025d6d5, 0x1d1d702, 0x1a734c5, 0x1c28f00,
  48218. 0x1a1879d, 0x03e7aac, 0x1e956d5, 0x19d0809, 0x0f0df20, 0x0e63878,
  48219. 0x0cc7351, 0x1060a47, 0x1dce3ef, 0x1de82c0, 0x0bbe1bb, 0x1976378,
  48220. 0x1e94615, 0x0558dd9, 0x0df00aa, 0x0bb371d, 0x01ca40b, 0x045adc6,
  48221. 0x15089c6, 0x017e6a6, 0x0e9b760, 0x15c4364, 0x0863723, 0x0d2a99c,
  48222. 0x08b9519, 0x151b030, 0x05119a0, 0x14bbd6c, 0x00c8de1, 0x189e29a,
  48223. 0x1c7b272, 0x0d840e4, 0x18c7145, 0x1499337, 0x01c6a95 },
  48224. { 0x0821363, 0x0a56ae1, 0x18729ac, 0x069a2fb, 0x029c182, 0x16f4244,
  48225. 0x14b1332, 0x04f5deb, 0x182489e, 0x009559c, 0x07649fd, 0x0131e10,
  48226. 0x1f92c9c, 0x1ae5d68, 0x01ef7d1, 0x13f62df, 0x0b81a1d, 0x17a556d,
  48227. 0x1d7cedd, 0x14f2476, 0x08fe475, 0x0b6dddd, 0x067742b, 0x0e1568b,
  48228. 0x161644b, 0x178c1b7, 0x04d2f66, 0x148c910, 0x1abda32, 0x11375d4,
  48229. 0x1ed7244, 0x1ccac4b, 0x0ec8709, 0x0725f26, 0x0678206, 0x19a9672,
  48230. 0x14f6879, 0x004e420, 0x1932697, 0x0046150, 0x072708a },
  48231. { 0x14a466c, 0x1e058f9, 0x16e93cc, 0x18ff3a8, 0x01bae09, 0x143c2e5,
  48232. 0x03fb838, 0x103ae1e, 0x0908808, 0x12638a3, 0x10f68e0, 0x1855760,
  48233. 0x12e2416, 0x07637a1, 0x0f69c4f, 0x07c38e6, 0x049c979, 0x095ac83,
  48234. 0x0d724d9, 0x05ab616, 0x1b2adb6, 0x111f2e0, 0x0d57adb, 0x02d6a2a,
  48235. 0x0b5cebb, 0x08e67f4, 0x07dc25a, 0x1c1030d, 0x085bd59, 0x1cfdb0d,
  48236. 0x1df2197, 0x1f5c207, 0x169d3cc, 0x13f4ef8, 0x11cdcd1, 0x072a4b8,
  48237. 0x0369511, 0x1aae05a, 0x17485f6, 0x098e64c, 0x07491c7 },
  48238. { 0x0d2b94d, 0x16adfc0, 0x182cc4b, 0x0774964, 0x1b8ac63, 0x110cd08,
  48239. 0x1163358, 0x11d590d, 0x1aeb82c, 0x0be67b5, 0x1e73b4c, 0x13dcb3d,
  48240. 0x1a2dfb2, 0x1215e6a, 0x09f6263, 0x16403b5, 0x1c85974, 0x049f14a,
  48241. 0x07f16b7, 0x0eaf09b, 0x03ba69e, 0x0f80955, 0x15b11c2, 0x0ba7973,
  48242. 0x09f37c8, 0x15e8fed, 0x174f752, 0x0a90fc4, 0x1ba22ee, 0x0580859,
  48243. 0x0ec03f5, 0x18dd1b9, 0x1591493, 0x1433265, 0x1eaef39, 0x0d6e653,
  48244. 0x08906b7, 0x14e8e13, 0x1a105a0, 0x1cae82e, 0x08bcfd3 },
  48245. { 0x1c8c314, 0x0139a69, 0x00cc1a2, 0x02230e1, 0x15f0b2f, 0x145d0b4,
  48246. 0x1df0f01, 0x10f726f, 0x0779247, 0x1b2f06c, 0x04889d4, 0x1cbc3f3,
  48247. 0x0f15527, 0x13effea, 0x01a5920, 0x0c71214, 0x1f22f58, 0x0eac59e,
  48248. 0x0bc83ab, 0x08d712d, 0x0257834, 0x05a83a3, 0x0275e5c, 0x0454d22,
  48249. 0x0d20640, 0x1bcecf4, 0x1d9c7b0, 0x03cbf15, 0x1fe91ed, 0x128482b,
  48250. 0x061bd50, 0x0a51208, 0x14dda81, 0x09956f8, 0x043876e, 0x117af00,
  48251. 0x105a937, 0x0c68f24, 0x0ad24f8, 0x1ef7a6f, 0x053cadc },
  48252. { 0x053d0ff, 0x0f6fbaf, 0x1d9c6ed, 0x1911157, 0x1886606, 0x10368ae,
  48253. 0x0c3e048, 0x066c923, 0x1e22b6a, 0x180c1a2, 0x0ecc5ec, 0x129762e,
  48254. 0x15aba67, 0x1ee4f2c, 0x079619d, 0x049a318, 0x0822396, 0x1a70832,
  48255. 0x0957754, 0x0a5cb3b, 0x079c617, 0x15cf214, 0x0062d3a, 0x03e57da,
  48256. 0x0784b49, 0x14f657b, 0x0879e50, 0x1b9b73a, 0x1262243, 0x0a42887,
  48257. 0x170da50, 0x14ca1d8, 0x06f190a, 0x14bb008, 0x16bada6, 0x0cea854,
  48258. 0x032d104, 0x1ebaf4e, 0x18ac5a6, 0x0c97f18, 0x0908499 },
  48259. { 0x093c661, 0x0867b2d, 0x015ac4e, 0x093b6be, 0x1848626, 0x0d0bc40,
  48260. 0x0ea7694, 0x1352552, 0x16772de, 0x1865dc7, 0x0521f06, 0x1d7af8e,
  48261. 0x1e6e67f, 0x0731211, 0x0d0e0b5, 0x085f1f3, 0x10ebb5a, 0x14b7ed2,
  48262. 0x022693c, 0x03666ec, 0x0516c92, 0x1dc3af6, 0x1274cb5, 0x0202496,
  48263. 0x0d2cac4, 0x1bd5ec3, 0x071087e, 0x0d0c441, 0x17de33f, 0x04d5fb5,
  48264. 0x1a0f865, 0x1d27924, 0x1ee18f0, 0x0266066, 0x1578237, 0x05a9db7,
  48265. 0x13580d2, 0x1badf23, 0x15fa30a, 0x1f48d19, 0x03d7f6f },
  48266. { 0x1fbd5d1, 0x194866f, 0x037fa9e, 0x0d2e067, 0x1d759da, 0x1f76e4c,
  48267. 0x02c2243, 0x11cacd0, 0x142dce6, 0x034857a, 0x19360af, 0x1e57655,
  48268. 0x008519d, 0x1f8cadb, 0x04919fd, 0x043e8ac, 0x02cd83c, 0x1b2cd1a,
  48269. 0x159458c, 0x0e37eaa, 0x0562557, 0x1aaa45d, 0x17f1a24, 0x125e474,
  48270. 0x1920394, 0x00bdaa0, 0x0e72718, 0x0cea51c, 0x1e60195, 0x076a288,
  48271. 0x154fc19, 0x03a2d4a, 0x03f9eb9, 0x055f718, 0x13f4895, 0x187c318,
  48272. 0x1d434e7, 0x0ca6b7f, 0x1d39902, 0x07edbbc, 0x08fb12d },
  48273. { 0x13cb7a4, 0x1c0d114, 0x1935b18, 0x0170f6f, 0x053e09f, 0x0561f7a,
  48274. 0x0a08c1e, 0x1229e42, 0x0578cae, 0x04ffd68, 0x0e9377a, 0x12d4e2d,
  48275. 0x004a2b6, 0x1b7ac05, 0x1a06853, 0x0260e28, 0x17b4c2f, 0x089ac7c,
  48276. 0x04cbee2, 0x12d32c5, 0x1af7878, 0x0513452, 0x0a77614, 0x0473f06,
  48277. 0x11f6dfe, 0x0ced7bb, 0x193d1d2, 0x1e41fa5, 0x1ca0e95, 0x1f3bc33,
  48278. 0x1b26d90, 0x06eb303, 0x1858ecd, 0x18e4bf3, 0x096466a, 0x077d28d,
  48279. 0x06ff345, 0x0981d10, 0x0dec53e, 0x062eba4, 0x03fcc67 },
  48280. { 0x121f920, 0x0f5eaef, 0x0e41427, 0x1f82803, 0x1af70e1, 0x132557f,
  48281. 0x12ff656, 0x0444853, 0x12c37a1, 0x109042a, 0x0e49afc, 0x07e8fbd,
  48282. 0x1c1d4c9, 0x0fd9f8e, 0x1cf9302, 0x1788c25, 0x0595b51, 0x12b042d,
  48283. 0x043f6f4, 0x1ebac5e, 0x13c22a2, 0x07ef865, 0x183758b, 0x01e4a96,
  48284. 0x024a36b, 0x15b8aa2, 0x1559184, 0x074b40b, 0x15249cc, 0x1867d0f,
  48285. 0x022faf8, 0x0fcc543, 0x0ec6903, 0x14c9c92, 0x0eb2bd0, 0x0aebe1f,
  48286. 0x13fa868, 0x09a2ee5, 0x070d350, 0x1fb8e2a, 0x0645146 },
  48287. { 0x01924f9, 0x0319d5d, 0x1b87b3b, 0x0c00c64, 0x1ba6f13, 0x087e0bd,
  48288. 0x15eb1f9, 0x000406e, 0x1ef3d8e, 0x1298c8c, 0x1169d32, 0x0d54a3b,
  48289. 0x189545a, 0x098a095, 0x087563f, 0x1a000dc, 0x0057bb1, 0x180de18,
  48290. 0x1b46a70, 0x1138d2d, 0x1a48f17, 0x0fcc2c7, 0x1ebcb4d, 0x12f7d0a,
  48291. 0x109b981, 0x12ea1a6, 0x14a6a89, 0x1b80eea, 0x18fa801, 0x1df3e02,
  48292. 0x13b2b40, 0x0a97429, 0x0d70a9f, 0x0853a49, 0x1415b01, 0x14db8f0,
  48293. 0x0d005dd, 0x1e5254a, 0x07cb8a9, 0x0e557f7, 0x0448d3d },
  48294. { 0x1b33989, 0x178a294, 0x056b715, 0x19535d0, 0x068351b, 0x03a20a4,
  48295. 0x1584d2c, 0x07767e8, 0x03cd9f3, 0x0ae7215, 0x1b928e5, 0x09d8bfe,
  48296. 0x1113ade, 0x1287554, 0x0ab1c56, 0x1dfbfa7, 0x0995666, 0x10630f6,
  48297. 0x1a911c2, 0x145171e, 0x04c9108, 0x0272a42, 0x100bbd6, 0x1c5e66e,
  48298. 0x1b162d0, 0x05e5c12, 0x1ed1bdf, 0x1b9a263, 0x12fd893, 0x1c764b7,
  48299. 0x1e08205, 0x04b2518, 0x18c5d67, 0x1e22ca6, 0x0f7e658, 0x1e50b46,
  48300. 0x192a309, 0x04b8bae, 0x06695c9, 0x0f396e0, 0x0768814 },
  48301. { 0x1767eed, 0x1d08a48, 0x176ee90, 0x1b257ec, 0x1e11b9a, 0x12f10d2,
  48302. 0x0b3800e, 0x02bd144, 0x12a3354, 0x1b02210, 0x1ab5898, 0x0768953,
  48303. 0x05c2c56, 0x1059577, 0x1018992, 0x1c3ae97, 0x1758bf2, 0x0badc6a,
  48304. 0x0228997, 0x1e1dcfa, 0x12a71cf, 0x0ed85b8, 0x05e4538, 0x030d25a,
  48305. 0x125d04b, 0x00ae1ac, 0x115b33a, 0x1c4a7e9, 0x1f0e3ad, 0x120e4ff,
  48306. 0x06691e4, 0x1bb57da, 0x0b9d06e, 0x1728328, 0x098167e, 0x00ce26a,
  48307. 0x132ce18, 0x1b007da, 0x0189bcd, 0x038bcb5, 0x0670eb0 },
  48308. { 0x1cdbb43, 0x1e057b9, 0x06b77dc, 0x0afe486, 0x0f08ecc, 0x0d1c22e,
  48309. 0x01504a8, 0x1e322f0, 0x09224dd, 0x0d08279, 0x11fbfda, 0x071b7d5,
  48310. 0x024352f, 0x1e16899, 0x0eced39, 0x168edf8, 0x030b5e4, 0x0534f4a,
  48311. 0x1d691bc, 0x0646812, 0x0ece7d9, 0x0f2eb27, 0x0024e26, 0x0468bd3,
  48312. 0x01250db, 0x0b5bdc1, 0x09fd2de, 0x06aa526, 0x190b1f2, 0x060aa5d,
  48313. 0x158bba7, 0x12225ef, 0x1a9c8f5, 0x157190f, 0x1e6072e, 0x145a1e5,
  48314. 0x0075166, 0x1f81b30, 0x1fc9edd, 0x1cec6bb, 0x0504852 },
  48315. { 0x0f392fa, 0x19e72d1, 0x01e0bc3, 0x15d8d92, 0x126c076, 0x1d557b1,
  48316. 0x17a4a12, 0x1275a03, 0x1cbe8e9, 0x00d8b69, 0x142422c, 0x18485b2,
  48317. 0x1871305, 0x1c29d79, 0x1bf585c, 0x053418c, 0x00ed3c4, 0x1bb9a8a,
  48318. 0x1eafc09, 0x0362543, 0x11778a3, 0x0102c59, 0x0814c00, 0x18fbd73,
  48319. 0x1d9fca9, 0x09855ff, 0x0fa199f, 0x00bded3, 0x09e13fd, 0x198474d,
  48320. 0x070bce9, 0x1723d5d, 0x14c9a19, 0x073621f, 0x1b9d863, 0x00a1a19,
  48321. 0x1240f8b, 0x126e202, 0x03313ec, 0x0a3efd2, 0x0992fe1 },
  48322. { 0x0f197aa, 0x06d989c, 0x1e61115, 0x1b0f0e5, 0x04ded69, 0x1854145,
  48323. 0x09ec113, 0x18d2f68, 0x0a31e48, 0x010f0d7, 0x03bfb26, 0x013fbb3,
  48324. 0x0ee38cb, 0x040659d, 0x0e13ea1, 0x0aae641, 0x0a84747, 0x1dd2dda,
  48325. 0x1543a5a, 0x1c10159, 0x1550a9b, 0x0e77881, 0x111147a, 0x08264b9,
  48326. 0x0e75fc4, 0x19eb137, 0x00e2978, 0x1dd4bd3, 0x10abd26, 0x1f5cd15,
  48327. 0x0a5cc86, 0x136c105, 0x092e484, 0x1e61565, 0x1a2a64a, 0x163b902,
  48328. 0x1c8eb9f, 0x0767a5c, 0x1c7804d, 0x15098b6, 0x05a68bf },
  48329. { 0x10a2bfb, 0x19da2ff, 0x02c2d3f, 0x12aa05f, 0x1105fff, 0x0e06136,
  48330. 0x162156c, 0x00829bc, 0x10d3b9d, 0x08b432d, 0x14e45fb, 0x08a604d,
  48331. 0x0e2f5a2, 0x1a6d9e0, 0x08bd24f, 0x11e5cd4, 0x08ae241, 0x0a438aa,
  48332. 0x026fbd8, 0x06c750a, 0x1bec6ab, 0x1d5c65d, 0x0472878, 0x023472d,
  48333. 0x0dc9840, 0x0bbb8f0, 0x0835729, 0x1f305c1, 0x097bc1f, 0x1822c0c,
  48334. 0x19fad02, 0x010b5ab, 0x1c24a46, 0x1bdbe25, 0x1e8298c, 0x1fa2b91,
  48335. 0x1ef1628, 0x07377bd, 0x1d0e55b, 0x1f33ebd, 0x078acfd },
  48336. { 0x0520189, 0x1bf8afc, 0x071116f, 0x018efec, 0x154202a, 0x11170dc,
  48337. 0x11ae77e, 0x10e73db, 0x11f4a34, 0x16b0133, 0x13314b4, 0x1252902,
  48338. 0x03cd933, 0x02f4f89, 0x1da8490, 0x16defbc, 0x0a0ae36, 0x0711837,
  48339. 0x00e9638, 0x02a4317, 0x031a538, 0x1b50209, 0x0618aed, 0x0637ce3,
  48340. 0x0253cbf, 0x10ff46d, 0x08df7a1, 0x1bf8a66, 0x0e48902, 0x09fb485,
  48341. 0x14bc972, 0x11754dd, 0x0bcb8f0, 0x1a514b3, 0x183e422, 0x12de215,
  48342. 0x1061c94, 0x1a5a465, 0x08d9a32, 0x0e7a0eb, 0x00ad92d },
  48343. { 0x0ca548a, 0x0aff6e1, 0x06aefee, 0x01019b1, 0x0778c62, 0x1361402,
  48344. 0x0552cd1, 0x0057d32, 0x1d4be89, 0x11df049, 0x1a07b7a, 0x132a27c,
  48345. 0x01847b7, 0x017a00b, 0x0aa3d2c, 0x0ffd1e4, 0x14d4aeb, 0x11f7965,
  48346. 0x0ebb57d, 0x18a2a36, 0x11639ad, 0x08cc618, 0x1b0733f, 0x1afb11f,
  48347. 0x0c17ba3, 0x04bee15, 0x0d19084, 0x11f4c9a, 0x190bcf0, 0x005bca5,
  48348. 0x1ad7afe, 0x016a153, 0x178b4ba, 0x153358d, 0x04d09e6, 0x1a349fd,
  48349. 0x075b3ce, 0x1a6e578, 0x1a6ba3b, 0x140e14d, 0x095bbd8 },
  48350. { 0x014bbd0, 0x0924af3, 0x0d8d67e, 0x0f7047c, 0x1567a88, 0x0deb53b,
  48351. 0x127b3f0, 0x085c48f, 0x18e835c, 0x1fd57a3, 0x1819a8a, 0x09c155b,
  48352. 0x16314ef, 0x0e0b699, 0x0aea98d, 0x1c7120e, 0x071e2f0, 0x1fd214e,
  48353. 0x141f643, 0x03cba17, 0x1c04cac, 0x1528a7a, 0x1a7fcd7, 0x0aa9d82,
  48354. 0x053fcc0, 0x03fc498, 0x1ca8d65, 0x163b0d6, 0x0be487a, 0x1830157,
  48355. 0x0878a7e, 0x1bf739e, 0x0a10d6d, 0x0fe7ad0, 0x0167c83, 0x155a28e,
  48356. 0x18867a2, 0x06e337d, 0x0a46520, 0x09f824b, 0x0375a88 },
  48357. { 0x017f7ea, 0x05f1709, 0x16ac5e3, 0x150eb8d, 0x1a161e2, 0x0d8d2a0,
  48358. 0x1fb006f, 0x195eee0, 0x0e4fd73, 0x1c43250, 0x0836199, 0x0cc9a27,
  48359. 0x08baebc, 0x0469833, 0x0c97e67, 0x0b2a080, 0x1c92f1c, 0x1dc9f6c,
  48360. 0x1078199, 0x06cec6a, 0x0763fdf, 0x185c8d3, 0x1f65fee, 0x0f39341,
  48361. 0x069ea60, 0x0239355, 0x007aaa3, 0x0e60790, 0x063c55c, 0x0e40d7d,
  48362. 0x16f7b1d, 0x09fa255, 0x1cdcde2, 0x041c500, 0x169c65a, 0x133fc1b,
  48363. 0x1841537, 0x1d849d9, 0x013b19a, 0x1161197, 0x0268d81 },
  48364. { 0x1580555, 0x171ac20, 0x00edcf6, 0x0e8e7a2, 0x0fc32e6, 0x0660d5a,
  48365. 0x0404efb, 0x1bc4818, 0x0b24ee9, 0x1204cf9, 0x03819b6, 0x16b73f5,
  48366. 0x0e37b0c, 0x121c6bf, 0x0b81391, 0x002816b, 0x1642b72, 0x03fbe98,
  48367. 0x0e7929e, 0x1e9db66, 0x037586e, 0x169d3ec, 0x0979dfb, 0x0e0f85d,
  48368. 0x1ad37bd, 0x0c4c41f, 0x083e5e4, 0x02d6c67, 0x1a208e8, 0x0145173,
  48369. 0x1ab8930, 0x0886aa2, 0x171fe3c, 0x195fa88, 0x0ccd3d7, 0x0c7d727,
  48370. 0x01b53a5, 0x0cf6a58, 0x0912e10, 0x0b80ad9, 0x08b0273 },
  48371. { 0x1019195, 0x1da3270, 0x0306e26, 0x0de7f85, 0x1de4c02, 0x1e1d908,
  48372. 0x039b8af, 0x05f5824, 0x091bdf9, 0x038de2d, 0x056f27b, 0x15681b3,
  48373. 0x1e485d7, 0x13248ff, 0x119da3b, 0x1c4cb2f, 0x119afbc, 0x16caa96,
  48374. 0x186ddb0, 0x0d8ffd1, 0x0d1bbae, 0x00ebf1d, 0x059f60a, 0x1312e68,
  48375. 0x09af95e, 0x0c11f0a, 0x1228320, 0x03e0049, 0x006c0dd, 0x1fede18,
  48376. 0x133d5c7, 0x0b0ee7a, 0x12ecf7e, 0x0a06c59, 0x1e0bf4d, 0x04b0454,
  48377. 0x0436504, 0x1a2e1f8, 0x017f96a, 0x140969b, 0x0400e3a },
  48378. { 0x046e4a2, 0x10b24af, 0x01d11cc, 0x084826c, 0x17a2ed6, 0x0763be9,
  48379. 0x08ec718, 0x05ccb24, 0x1e5e0ac, 0x109d561, 0x01eadd7, 0x08378a2,
  48380. 0x1bda17c, 0x19e129e, 0x0c8bb25, 0x0452ccb, 0x1b8a501, 0x1ff9c33,
  48381. 0x1886a66, 0x0cc1aa0, 0x03f5fed, 0x03644fe, 0x08f0a14, 0x0c8a34f,
  48382. 0x150b9f1, 0x0379f69, 0x099f2d6, 0x0f87c06, 0x1185b12, 0x03bccb3,
  48383. 0x06f201f, 0x0942601, 0x1c157d4, 0x18fa684, 0x191eb6b, 0x106c5ee,
  48384. 0x13a6a19, 0x015cd67, 0x180e529, 0x1451b4d, 0x0131c3d },
  48385. { 0x1da83ba, 0x02ff8d3, 0x10d929e, 0x0ba09e8, 0x1415b42, 0x01fc097,
  48386. 0x066f7b0, 0x144f811, 0x080f5f4, 0x0c6a08d, 0x0946e71, 0x0c21fb4,
  48387. 0x123d32d, 0x069d979, 0x0ed1413, 0x0107933, 0x04bf4c2, 0x08cc622,
  48388. 0x0c3a0ff, 0x04c35ee, 0x1b9060c, 0x0fe5816, 0x0183293, 0x1e3cf90,
  48389. 0x1838b9d, 0x06487fb, 0x1f131a4, 0x16f39f2, 0x15f1546, 0x0a6baeb,
  48390. 0x1fc4c54, 0x03961d1, 0x1c074f1, 0x0bb0ad3, 0x0b06cb0, 0x0172415,
  48391. 0x04aa0ff, 0x004c56a, 0x173a77a, 0x0d468a8, 0x071d1a4 },
  48392. { 0x01b382e, 0x1c7bb7d, 0x0835d85, 0x06ee5bb, 0x00d8ecc, 0x0a68985,
  48393. 0x0acab17, 0x05954b5, 0x08d7262, 0x1e9c5d2, 0x0fb4189, 0x1b6d947,
  48394. 0x0fc5410, 0x1c9e766, 0x0de9621, 0x1c7afec, 0x0fd6e65, 0x08fb2ed,
  48395. 0x0291590, 0x08950ac, 0x140bc3b, 0x1427bc2, 0x03d1ece, 0x09ac1ec,
  48396. 0x1dadd5e, 0x16ac127, 0x105f4ed, 0x1199f21, 0x1fc13ad, 0x15ef992,
  48397. 0x0e4023a, 0x06c91f5, 0x090d716, 0x096a59f, 0x1ce8931, 0x1672c9f,
  48398. 0x133d0ac, 0x0e620b2, 0x1d486e5, 0x13e22cf, 0x06cd269 },
  48399. { 0x0f4f3ac, 0x0059d89, 0x17ecb63, 0x0533a37, 0x103dcfe, 0x19b9935,
  48400. 0x0d3e0c3, 0x104a800, 0x17c5a8c, 0x16eb449, 0x1c51088, 0x07a19b1,
  48401. 0x12eb709, 0x0c2ba17, 0x09e569d, 0x1b5bb12, 0x02c087a, 0x170af94,
  48402. 0x1aaded7, 0x1b8e922, 0x0bb47bb, 0x05d2c56, 0x14c3f90, 0x1758737,
  48403. 0x017ebe2, 0x05e06f2, 0x1b18681, 0x1696334, 0x1355694, 0x01a6f93,
  48404. 0x1be4ce3, 0x0615632, 0x0f03742, 0x064b2f4, 0x12e1b22, 0x0df45df,
  48405. 0x07eeb82, 0x17713a6, 0x1770867, 0x07fb468, 0x0327c06 },
  48406. { 0x147cd53, 0x0cf7fad, 0x1bfaace, 0x1a32875, 0x1be9869, 0x0154335,
  48407. 0x131ec50, 0x02dcc9d, 0x0b1c25a, 0x1f3e155, 0x1789c70, 0x16f2045,
  48408. 0x1fc4216, 0x1b36b52, 0x037f320, 0x0666dcb, 0x09eda81, 0x068aca8,
  48409. 0x0c2fedf, 0x0801e42, 0x0780370, 0x0cc9da4, 0x06f9381, 0x1e79a44,
  48410. 0x1a1fe39, 0x1c38311, 0x0bbb2d3, 0x0554456, 0x07b83b7, 0x024b361,
  48411. 0x0fc6bd3, 0x1b4bf4b, 0x042a94b, 0x00d793d, 0x008922c, 0x1935f75,
  48412. 0x1670112, 0x15ce951, 0x1a15bad, 0x1a381be, 0x0020f19 },
  48413. { 0x0dbba20, 0x08d4352, 0x1714dc1, 0x0db63bc, 0x1618ebc, 0x092c205,
  48414. 0x0286799, 0x09b34f0, 0x1d2bccc, 0x0201816, 0x0168925, 0x047a205,
  48415. 0x08e9ff0, 0x1d24313, 0x04dfb8c, 0x0228e77, 0x0f24cd6, 0x1f1bf71,
  48416. 0x0f415f3, 0x177fa74, 0x0fce79f, 0x09e66ef, 0x17ee85b, 0x0462e4e,
  48417. 0x058ec5b, 0x16dc8b0, 0x19c830e, 0x0ed33d7, 0x0f6bba4, 0x01c345a,
  48418. 0x1c0989d, 0x1e3140e, 0x0b0092a, 0x108b02a, 0x03aeb32, 0x0133a12,
  48419. 0x0c888f6, 0x0bf0ff8, 0x01513dd, 0x041600a, 0x079e727 },
  48420. { 0x020a239, 0x1679294, 0x0c418ca, 0x1d55cd6, 0x11a3974, 0x0050efd,
  48421. 0x15ae923, 0x155ac3f, 0x15a3ee7, 0x1229e1c, 0x0111b74, 0x0b41730,
  48422. 0x0f54845, 0x0f0b33b, 0x0a765ef, 0x0eb433e, 0x00c7893, 0x0f92965,
  48423. 0x1d0ea61, 0x035e7ce, 0x1d8de96, 0x0b3366d, 0x1c31e71, 0x18a71f2,
  48424. 0x1854ecb, 0x08e0a51, 0x0a849a1, 0x11b54e7, 0x1f558c5, 0x1da2954,
  48425. 0x017a6d6, 0x1f7a2bc, 0x1af7f83, 0x0c9ce9b, 0x049ce28, 0x0d4890f,
  48426. 0x1511a05, 0x14595ac, 0x011b790, 0x1c6e02b, 0x0001d3c },
  48427. { 0x145b1d7, 0x11b5cf0, 0x19935af, 0x140138a, 0x13e3938, 0x007b6df,
  48428. 0x0b9f79f, 0x0725cac, 0x0c343f5, 0x0882273, 0x025ec65, 0x0571b21,
  48429. 0x1ca5ab6, 0x0897bcb, 0x087dc2d, 0x051c963, 0x154750f, 0x0c8e6eb,
  48430. 0x1ee0597, 0x101c5ff, 0x02b3b4c, 0x03aca68, 0x197b4e7, 0x1067db8,
  48431. 0x0a49d56, 0x10c6609, 0x13cda4e, 0x0e6d297, 0x12c404e, 0x09a57e6,
  48432. 0x050d330, 0x023a803, 0x11bd5fc, 0x02f2303, 0x011ff16, 0x080aeb2,
  48433. 0x190b7a0, 0x1401b03, 0x11a12cc, 0x1f8815f, 0x04bb8c6 },
  48434. { 0x10f8796, 0x0716efe, 0x0778c48, 0x1b62679, 0x0968a40, 0x1b4e373,
  48435. 0x19b02a4, 0x077fd46, 0x0600727, 0x1f2db6b, 0x0050e4d, 0x19e1197,
  48436. 0x0539e4e, 0x0ff5e00, 0x1ffa736, 0x16a7890, 0x0440199, 0x1f5c57a,
  48437. 0x04d467a, 0x049c765, 0x1c162f1, 0x0564164, 0x0183086, 0x13b8b21,
  48438. 0x1d6f270, 0x094d668, 0x14db541, 0x0d2daa8, 0x120bfc5, 0x0efcac8,
  48439. 0x04300fd, 0x021ff4d, 0x1a3e88d, 0x19413cc, 0x1e95b10, 0x13a9f39,
  48440. 0x1a135d8, 0x07f54f4, 0x1f9e0ba, 0x1036d4e, 0x03699a8 },
  48441. { 0x0b1c64d, 0x119b90f, 0x05516f2, 0x1be3a50, 0x09cf3a2, 0x1b8837f,
  48442. 0x1a6cd94, 0x09b6fc5, 0x14f7cbf, 0x160b8a8, 0x02cdfc1, 0x02dc40b,
  48443. 0x05cbde4, 0x041a74e, 0x114e9fa, 0x074eb05, 0x1e2e9ac, 0x14a6def,
  48444. 0x1799f00, 0x1d8d978, 0x080d795, 0x0f8a135, 0x0308f09, 0x11a9f3f,
  48445. 0x0d20d6a, 0x11af716, 0x134edf0, 0x071b54a, 0x1a4d528, 0x07601eb,
  48446. 0x1cee782, 0x0f03968, 0x09475e9, 0x18e5565, 0x0e797b0, 0x0ee4e3e,
  48447. 0x0253518, 0x18474fc, 0x1fe2c77, 0x0064115, 0x04f3a4b },
  48448. { 0x0d095f8, 0x1c0838f, 0x15383de, 0x0db444d, 0x03e37fa, 0x19b68e9,
  48449. 0x0614abe, 0x023161f, 0x007d8e3, 0x08a31a7, 0x03c5bac, 0x152fc7c,
  48450. 0x17b9634, 0x010f761, 0x152ee71, 0x0438248, 0x1dbd72b, 0x05a766a,
  48451. 0x17c835f, 0x0070d0d, 0x00a2f96, 0x1eefc37, 0x07d4d67, 0x1891155,
  48452. 0x154fa5a, 0x0fa621e, 0x0f44127, 0x0dae295, 0x00607a5, 0x159f581,
  48453. 0x1784c54, 0x0f40464, 0x1be1c18, 0x1426da4, 0x1d294ab, 0x0089e49,
  48454. 0x0b5a7b8, 0x092e018, 0x1e7f679, 0x08d4da2, 0x06d8744 },
  48455. { 0x09a42f5, 0x083d55f, 0x13234a7, 0x186f039, 0x1fd5316, 0x034f508,
  48456. 0x169b677, 0x034e34e, 0x188fee9, 0x10cf06f, 0x113c493, 0x09b9f1a,
  48457. 0x0499c2b, 0x18d74a7, 0x1db7e48, 0x199840b, 0x076cf28, 0x193fdd4,
  48458. 0x15fdf3a, 0x141e03e, 0x1b746e1, 0x1a79fe9, 0x180fc7c, 0x183a427,
  48459. 0x1c4a742, 0x0c05076, 0x01f7ae1, 0x195584e, 0x0848bc5, 0x1c8fd78,
  48460. 0x0743d75, 0x00f58eb, 0x1f514ad, 0x1e2988b, 0x1cd2413, 0x1b2b472,
  48461. 0x1bb70f3, 0x125654b, 0x1582656, 0x193ff38, 0x03cf384 },
  48462. { 0x01fc9e3, 0x0835d67, 0x0e65c01, 0x04ced60, 0x0972174, 0x15fbd9a,
  48463. 0x06e379c, 0x1ee5694, 0x079b209, 0x1430154, 0x1aa3872, 0x17219c4,
  48464. 0x1a90580, 0x1f1279c, 0x1cce6df, 0x0c5c23d, 0x1916293, 0x05b62ec,
  48465. 0x1dec93d, 0x0e9c34a, 0x11e9511, 0x1a82f22, 0x1ce03f2, 0x106437b,
  48466. 0x17afb14, 0x0957a6c, 0x0dd1f97, 0x13300d7, 0x19a6080, 0x0eb2df4,
  48467. 0x0821549, 0x1a8abd0, 0x04828d9, 0x1053293, 0x1017615, 0x011918a,
  48468. 0x1103077, 0x13f39e3, 0x17c98f1, 0x0a1dce7, 0x02b2488 },
  48469. { 0x141159f, 0x1e6f342, 0x02c885c, 0x109f682, 0x18224c1, 0x1650e3b,
  48470. 0x018647c, 0x0800f45, 0x0a8b23e, 0x16103eb, 0x08d1294, 0x04214d6,
  48471. 0x05071a0, 0x1af694a, 0x03961f2, 0x198d9b6, 0x0ef810f, 0x0b62b5c,
  48472. 0x0b610ee, 0x118b1ec, 0x0975124, 0x1eba633, 0x12e40d8, 0x0d8cdec,
  48473. 0x0f7f2e6, 0x05f31a4, 0x07049af, 0x05f3a88, 0x0e49e8b, 0x1951b9e,
  48474. 0x1c2b01f, 0x1d0361b, 0x0486758, 0x110e8a9, 0x1534751, 0x1942116,
  48475. 0x14414a1, 0x130f673, 0x108545c, 0x198d475, 0x0938b3b },
  48476. { 0x0ded340, 0x050b5f2, 0x00daa79, 0x1501d10, 0x0e65fb2, 0x0b9d65c,
  48477. 0x0581b73, 0x1532e11, 0x0aaa657, 0x01d021a, 0x006c187, 0x18b0922,
  48478. 0x0cf304f, 0x0d05db2, 0x03ed86b, 0x05bebcc, 0x0ecf554, 0x1c0c615,
  48479. 0x1bddb57, 0x040aeca, 0x1d97740, 0x0849299, 0x0d59ade, 0x1add6bf,
  48480. 0x055e574, 0x05bd723, 0x16956d1, 0x01ef436, 0x147ea56, 0x0bcdc9b,
  48481. 0x159e5c0, 0x1e5b59c, 0x0e7e0e8, 0x01e0345, 0x181e13a, 0x03308e8,
  48482. 0x1530734, 0x1464f68, 0x075ac93, 0x14bb3d1, 0x06cff58 },
  48483. { 0x1e51f68, 0x000d801, 0x1f59423, 0x0a3a5fc, 0x01d1f22, 0x1ec402f,
  48484. 0x0342c26, 0x16fef33, 0x003e415, 0x0af483d, 0x165e609, 0x0cfac0f,
  48485. 0x16d1484, 0x0da29c4, 0x170ec7a, 0x0a1e80a, 0x013809f, 0x01a8008,
  48486. 0x008cff7, 0x165f4da, 0x00b8fbb, 0x057f8c1, 0x02da02c, 0x1a62fc0,
  48487. 0x004dc38, 0x1efd8ea, 0x1333231, 0x067aa88, 0x013f841, 0x03f3376,
  48488. 0x121fea1, 0x008dc5c, 0x13f83d8, 0x1d9d661, 0x1f15218, 0x0e78c4f,
  48489. 0x0b936af, 0x13fc557, 0x04c9d7d, 0x11e636f, 0x05fe4ac },
  48490. { 0x16f401e, 0x1525fc5, 0x1b51606, 0x075ab8f, 0x05db12a, 0x183da50,
  48491. 0x01c99be, 0x1a8f603, 0x09c22bc, 0x0e88f82, 0x1c7257f, 0x0fa8d26,
  48492. 0x0f5454a, 0x0cd2375, 0x1b157ee, 0x12da00c, 0x07c7fef, 0x00c31be,
  48493. 0x0e0fa57, 0x183a68d, 0x02dcbaf, 0x09805da, 0x1570e16, 0x1cfce24,
  48494. 0x1ec2b34, 0x1746ec6, 0x02c6133, 0x13939f6, 0x0278646, 0x062124d,
  48495. 0x19e3730, 0x04021e5, 0x10d95f2, 0x1d21014, 0x1325a5d, 0x1b0dc4a,
  48496. 0x0b2abda, 0x098e44f, 0x0152082, 0x0c82438, 0x0813771 },
  48497. { 0x05a8edf, 0x1592f4e, 0x1eb5899, 0x0420f14, 0x0e1388c, 0x1b776fb,
  48498. 0x1cdf521, 0x02ebe04, 0x1627446, 0x017d3fc, 0x14e0a89, 0x17b3670,
  48499. 0x0f3e2cf, 0x017b8df, 0x16b5ec4, 0x0152575, 0x0fa677d, 0x02b155e,
  48500. 0x07f7fcd, 0x1d7a2ea, 0x0c78573, 0x093e128, 0x15fd961, 0x0f9512d,
  48501. 0x116eec4, 0x04f7067, 0x019d88b, 0x199af36, 0x12c0758, 0x0c417c7,
  48502. 0x054c7f1, 0x14c010a, 0x032b37e, 0x062dd49, 0x0d860ba, 0x1c9af76,
  48503. 0x12f146f, 0x1239ae6, 0x16e62fc, 0x1dd39a5, 0x079c280 },
  48504. { 0x0b48122, 0x04101f9, 0x123af73, 0x0d60958, 0x08c0491, 0x02442f5,
  48505. 0x193727f, 0x03959e0, 0x182c100, 0x1c1c4cb, 0x178942a, 0x0e42ced,
  48506. 0x007339e, 0x070d5c1, 0x0a96baa, 0x0965c2f, 0x0a06bc1, 0x0126946,
  48507. 0x05ad88c, 0x18b76f0, 0x1606570, 0x0e67735, 0x1b1448d, 0x07d5c84,
  48508. 0x1f89f18, 0x1a58d95, 0x1a71989, 0x1c75e78, 0x1e38bc3, 0x02135a8,
  48509. 0x0ef82c1, 0x0e7c81c, 0x0dbc58e, 0x12df213, 0x15e2d6f, 0x107f3ba,
  48510. 0x12c8f40, 0x0cfbc8a, 0x1fd3e7f, 0x14953c7, 0x0758073 },
  48511. { 0x091ca22, 0x1d82bc3, 0x06d9f49, 0x0c27454, 0x1206bfd, 0x1caa09f,
  48512. 0x14e16b1, 0x00fd097, 0x0755366, 0x0e8c515, 0x0389331, 0x1bcf914,
  48513. 0x1d2e166, 0x1e23a6d, 0x155d430, 0x10874ad, 0x0c11366, 0x16f7a22,
  48514. 0x1d2e10c, 0x08dca79, 0x1783146, 0x1854fec, 0x12f0340, 0x0fdc406,
  48515. 0x0c82429, 0x163ded2, 0x1ff5ef9, 0x1a16217, 0x07f3ff3, 0x123b046,
  48516. 0x114b485, 0x169fa98, 0x0e52599, 0x0f08203, 0x1e8527a, 0x1bf7573,
  48517. 0x0661d32, 0x0153fd4, 0x1aaa24d, 0x0b1f5ec, 0x03f3e34 },
  48518. { 0x11597aa, 0x01ad7ca, 0x13ad47b, 0x1893bec, 0x1677d4a, 0x1a77fad,
  48519. 0x136726f, 0x06a04ed, 0x1515a29, 0x11f6524, 0x0ee70d0, 0x0aa7fb3,
  48520. 0x1c8a696, 0x16f0f84, 0x07ba77f, 0x0bf31f3, 0x156199e, 0x15c7d14,
  48521. 0x14a4b0c, 0x070eb06, 0x081bb76, 0x0e7e207, 0x01cd3b7, 0x08afb2b,
  48522. 0x15e9f65, 0x095ec16, 0x18c31e3, 0x11dc647, 0x033d67c, 0x172660a,
  48523. 0x0bb9dec, 0x0790629, 0x0d9f807, 0x117b1ab, 0x1788a83, 0x1c883dd,
  48524. 0x0c48295, 0x0f0bf6b, 0x053bc7a, 0x1886985, 0x0640d20 },
  48525. { 0x084d513, 0x105c719, 0x14e93a6, 0x0be62a0, 0x074c354, 0x166a950,
  48526. 0x1d01d16, 0x16f66dc, 0x01de50d, 0x005ee7e, 0x07f11b6, 0x0fb84a9,
  48527. 0x088d9d4, 0x181f83d, 0x0dbbc4c, 0x1a98453, 0x0ca6d4a, 0x1a7230d,
  48528. 0x127c6dc, 0x1c6a3bf, 0x0e65ca8, 0x06aba30, 0x02f1025, 0x065a6cf,
  48529. 0x02b330f, 0x1745b18, 0x18a15d0, 0x1340e96, 0x0c29c36, 0x1588c3b,
  48530. 0x1eb7f94, 0x12257a2, 0x19e4609, 0x1531cf9, 0x1598d26, 0x031dc81,
  48531. 0x072e05c, 0x1448156, 0x0a05ae5, 0x15181b2, 0x00f9c1c },
  48532. { 0x1433df3, 0x1d559b3, 0x0a307ae, 0x0e2ba6c, 0x16aa534, 0x1862e65,
  48533. 0x083625f, 0x1f22746, 0x165e408, 0x1648c65, 0x1cd145c, 0x10a9aa6,
  48534. 0x094b638, 0x05a6e50, 0x04e668c, 0x0264ce6, 0x1300a3b, 0x06792b3,
  48535. 0x1822ce2, 0x0c1bf4c, 0x0dfd5ea, 0x183d948, 0x162b5d2, 0x0d29f36,
  48536. 0x02789d7, 0x1d8c190, 0x02d98c3, 0x10b27b7, 0x1e3eaf4, 0x1fb8632,
  48537. 0x1e0f6d1, 0x07ce4c7, 0x1949c91, 0x17f99b1, 0x1b1b9b9, 0x0137359,
  48538. 0x098a824, 0x1ecdd38, 0x1bb14d2, 0x05e8ba6, 0x07e31c1 },
  48539. { 0x1fd2dd7, 0x00eb406, 0x0762f8a, 0x004956c, 0x1efacb0, 0x018fcb8,
  48540. 0x0017e51, 0x1797386, 0x0959cb3, 0x10646fd, 0x0ed0199, 0x18619ff,
  48541. 0x0dfdd5f, 0x1cb4d08, 0x118c6f9, 0x1fa36f4, 0x09ede13, 0x119b718,
  48542. 0x1251c1d, 0x077f5bf, 0x022376b, 0x0eee639, 0x1ea4649, 0x0d89dc3,
  48543. 0x10d7315, 0x1a3ba0f, 0x0438acd, 0x1ec9dc8, 0x04d93c4, 0x0969f7e,
  48544. 0x0ba1afa, 0x1f89f76, 0x13b7e03, 0x050dde2, 0x13d4cdf, 0x015832d,
  48545. 0x1e23ba6, 0x120d183, 0x14d5d37, 0x08a64da, 0x01a219c },
  48546. { 0x04db0bc, 0x1bf7c55, 0x058ff73, 0x0cf6d93, 0x0e23180, 0x050c979,
  48547. 0x0419cf6, 0x0e384c7, 0x0ffdc77, 0x0676171, 0x103b6f0, 0x1c6b45f,
  48548. 0x03997c8, 0x0166302, 0x1843b06, 0x10240f1, 0x0cb2b0c, 0x17e86f1,
  48549. 0x0795fe3, 0x188afed, 0x11c34d6, 0x192da9f, 0x054f9a6, 0x1f13971,
  48550. 0x0330ac4, 0x1f32115, 0x065559a, 0x05fe465, 0x1442d19, 0x0816a1b,
  48551. 0x00dcf35, 0x17d4d28, 0x04ce590, 0x1833178, 0x0dfbe00, 0x06d582a,
  48552. 0x16d0bf9, 0x15e7bbd, 0x064bf80, 0x1337920, 0x017aaa9 },
  48553. { 0x055db2e, 0x0ab21c7, 0x014434f, 0x067728d, 0x035dee4, 0x042317c,
  48554. 0x103956e, 0x0f83428, 0x1ea17e2, 0x17f9d9a, 0x17dea69, 0x186dbb2,
  48555. 0x0f23f99, 0x1eeb396, 0x05ff766, 0x08b80e4, 0x01edd20, 0x0fa0056,
  48556. 0x1fc1ac9, 0x0ab90e9, 0x09be94b, 0x1287252, 0x0291283, 0x076d026,
  48557. 0x05e91b4, 0x162f449, 0x04853e5, 0x117dbbc, 0x17fa977, 0x152607c,
  48558. 0x19c3d15, 0x14b7fa4, 0x08fd86b, 0x10477d1, 0x163ef9d, 0x1876965,
  48559. 0x026474b, 0x0affc61, 0x0c92bef, 0x1e14be7, 0x06b282a },
  48560. { 0x141a595, 0x0012fb1, 0x0a31e3f, 0x0d488bc, 0x191c38d, 0x0234212,
  48561. 0x1b8f7ad, 0x066e57a, 0x1755478, 0x1ca3369, 0x185b10f, 0x09a6107,
  48562. 0x1491141, 0x0ad3d65, 0x176519a, 0x1f6c828, 0x1098fd2, 0x08816ef,
  48563. 0x0ff61ec, 0x165a5a1, 0x10882a2, 0x0e2ca2a, 0x1a7a6f9, 0x0048bbc,
  48564. 0x18bf4a8, 0x187771b, 0x02c8c1a, 0x01617ad, 0x1e9f3d8, 0x02e3615,
  48565. 0x115da95, 0x0900584, 0x09d167b, 0x096fda1, 0x109cad0, 0x0427cc8,
  48566. 0x0e8d976, 0x127a94f, 0x1bafed9, 0x046a8e0, 0x06d4f5d },
  48567. { 0x0ba9f88, 0x0795b00, 0x02fcd72, 0x00f76da, 0x1dc807e, 0x1c0f2df,
  48568. 0x1b50ace, 0x03c1424, 0x0a7ac78, 0x1ae7367, 0x172e98c, 0x1cdfe6f,
  48569. 0x073e308, 0x11e4b24, 0x0372989, 0x0869a05, 0x17e8818, 0x13975d2,
  48570. 0x06de289, 0x07ab3ef, 0x0ea3a9e, 0x0e9783d, 0x14bc29f, 0x1a0bee9,
  48571. 0x0467824, 0x15b707f, 0x00045b7, 0x0410a2e, 0x137580b, 0x0f492c7,
  48572. 0x0ce70a9, 0x0e80e17, 0x18bd7a5, 0x1bec873, 0x01cae65, 0x08aa3f9,
  48573. 0x00db81b, 0x0d49e22, 0x0d2b5bb, 0x09facba, 0x04aaf0b },
  48574. { 0x114c7af, 0x192831a, 0x1ab66fb, 0x1b78303, 0x109e7da, 0x11f62c5,
  48575. 0x0ba1e3e, 0x10bde79, 0x1173b86, 0x06dfd5a, 0x14cb776, 0x1f81243,
  48576. 0x06b2490, 0x05ece23, 0x1bce1ae, 0x1b7b69d, 0x12fa061, 0x1e0e6ea,
  48577. 0x16f0136, 0x1d31344, 0x063664d, 0x15c2b94, 0x01be60d, 0x1c89540,
  48578. 0x1a8048b, 0x06388d2, 0x1825c06, 0x0dbdbc9, 0x011fb11, 0x02bbd96,
  48579. 0x165cabb, 0x14e43d9, 0x04dade1, 0x1f9d48a, 0x09af5ba, 0x0ff338a,
  48580. 0x1c2e14d, 0x0a0b2d8, 0x18cde87, 0x0730578, 0x08b2cbd },
  48581. { 0x052e991, 0x00df945, 0x0bb0a3b, 0x0d9f3a8, 0x0ba202f, 0x1a75228,
  48582. 0x144c318, 0x139060f, 0x1c5762b, 0x1e12bd9, 0x10a8b4f, 0x11a290f,
  48583. 0x0abd329, 0x118ca44, 0x053c69e, 0x00da594, 0x13b06ba, 0x0e38654,
  48584. 0x19017a2, 0x07e967d, 0x0ae79aa, 0x199aef7, 0x13193ba, 0x17e3a99,
  48585. 0x1f57803, 0x1fee8aa, 0x151585a, 0x083d816, 0x0e33f60, 0x0073043,
  48586. 0x1d48f7e, 0x1e04879, 0x19a79c8, 0x066ac1c, 0x093a1d3, 0x030d850,
  48587. 0x0fc5c83, 0x0775764, 0x0d9c088, 0x008fb7c, 0x057e283 },
  48588. { 0x1cdf666, 0x05b4c7d, 0x0749b98, 0x1317d76, 0x1dd06a9, 0x04c21b5,
  48589. 0x0b6ea01, 0x11a8089, 0x0522bc8, 0x1b5fbaf, 0x08ec835, 0x1736508,
  48590. 0x12655c4, 0x099cc53, 0x103d249, 0x0ec02cb, 0x0b70ca3, 0x13b6a79,
  48591. 0x00c3e96, 0x11324a4, 0x0705469, 0x03db02a, 0x05acdfa, 0x1bc365f,
  48592. 0x0f73153, 0x182f7cb, 0x12b553b, 0x1d97791, 0x1617b05, 0x0e85549,
  48593. 0x1f7aca2, 0x0f97442, 0x0c0fbd5, 0x0516b9d, 0x0d58675, 0x07a1a79,
  48594. 0x091d606, 0x1f74ea6, 0x1f69ba2, 0x06ed2df, 0x04f12e0 },
  48595. { 0x1f1a610, 0x1d2110a, 0x0669333, 0x0a6f0ca, 0x004a5c5, 0x01c09a4,
  48596. 0x09151ce, 0x054248d, 0x04b284e, 0x10ada42, 0x144c83e, 0x18ca28d,
  48597. 0x1a36464, 0x1854507, 0x1aea231, 0x1009df6, 0x0e793c4, 0x13a73e7,
  48598. 0x056b85a, 0x09a4597, 0x14dd8c3, 0x0ffce0e, 0x0767b62, 0x004a6e3,
  48599. 0x0866d32, 0x02530d0, 0x0a6f591, 0x0b64656, 0x17bab14, 0x1496793,
  48600. 0x00be223, 0x1528916, 0x1e69c6e, 0x10f65b9, 0x1aa56d4, 0x043492d,
  48601. 0x1858afb, 0x1bc753a, 0x1be46a3, 0x07d624c, 0x083d233 },
  48602. { 0x1b478d7, 0x1994433, 0x1270718, 0x02a145f, 0x01ee1ae, 0x09120dd,
  48603. 0x0acc063, 0x12c0b6d, 0x0893cd6, 0x0f8f944, 0x05ea1da, 0x0cc1502,
  48604. 0x17159d6, 0x18739eb, 0x0480465, 0x0be15d0, 0x10093f5, 0x12947f7,
  48605. 0x01537ec, 0x0f1b71b, 0x1fbbb39, 0x1b7a2ec, 0x15ad0fb, 0x17dc72f,
  48606. 0x04bfed5, 0x0d68bef, 0x05afddb, 0x003c1eb, 0x00754ca, 0x14071ea,
  48607. 0x1cca2c8, 0x1f1d0dd, 0x0db6122, 0x0f2c347, 0x1abedf4, 0x17044d6,
  48608. 0x0f40a55, 0x1a990a9, 0x0588518, 0x07d8b46, 0x07362f1 },
  48609. { 0x1c0c430, 0x1593e39, 0x195de4b, 0x1f4a386, 0x0cc0a65, 0x0ca78dc,
  48610. 0x13b3b48, 0x08ea14b, 0x0814b49, 0x04a2b44, 0x1eefd06, 0x103496d,
  48611. 0x08bbf0a, 0x1855430, 0x1bd3d63, 0x0f2bc6e, 0x1683987, 0x0ec9b0e,
  48612. 0x0ea3435, 0x0219b1c, 0x0455b65, 0x1fdb60d, 0x18f8bf6, 0x19123f2,
  48613. 0x1154eae, 0x1b21648, 0x17fd5a3, 0x1d63ce2, 0x0b399e0, 0x0e6b979,
  48614. 0x02f9ebe, 0x113e17e, 0x1c39bac, 0x01b4a8f, 0x164a426, 0x11e10c3,
  48615. 0x1a0a20a, 0x18b7816, 0x03ab766, 0x07f4718, 0x02f1069 },
  48616. { 0x006ded2, 0x1674886, 0x01ec1e9, 0x1e5fb21, 0x1974842, 0x1b1ad37,
  48617. 0x0ff5aa7, 0x04dc8d1, 0x11ed606, 0x05b0c48, 0x1b95201, 0x113e6d3,
  48618. 0x011fb2f, 0x0e4b510, 0x0f4444f, 0x0675939, 0x0fe10d6, 0x133acd6,
  48619. 0x1ea98a7, 0x14cdf91, 0x028364b, 0x04a3f9c, 0x09a1ab9, 0x139b533,
  48620. 0x03a05d5, 0x1b74146, 0x1023a8b, 0x18f5f62, 0x1953c87, 0x0472579,
  48621. 0x13c9547, 0x13b553c, 0x153d279, 0x18ca02d, 0x0352b5b, 0x163dfed,
  48622. 0x16437cd, 0x1aedeec, 0x0810c9d, 0x1c89fcf, 0x0985f83 },
  48623. { 0x0f45294, 0x01e0b75, 0x1d46258, 0x018496a, 0x1013116, 0x0b5a96b,
  48624. 0x08060e7, 0x0809822, 0x0ed9433, 0x03ce781, 0x106da1c, 0x0516e9e,
  48625. 0x010c5b0, 0x0e4560f, 0x10fc1da, 0x09e1c7b, 0x0a3f8b2, 0x12d62f7,
  48626. 0x0d31708, 0x0d0975c, 0x052aee6, 0x11cd5e2, 0x0949679, 0x1be8b99,
  48627. 0x12cd1e9, 0x07d583e, 0x0c6910f, 0x0e03392, 0x0003b30, 0x0d54c96,
  48628. 0x0b9a3f7, 0x01b1978, 0x19f179c, 0x00e5396, 0x09bc79e, 0x1377e2b,
  48629. 0x10dcc79, 0x0bbceaa, 0x18bc553, 0x0801fd2, 0x00c88e5 },
  48630. { 0x0f44357, 0x18d3574, 0x0daa13d, 0x0c74795, 0x175b4bf, 0x15e3407,
  48631. 0x076796b, 0x1e46699, 0x08a753e, 0x1657842, 0x18f23b3, 0x09820eb,
  48632. 0x1ae2801, 0x1ba7c69, 0x07568e3, 0x0655d77, 0x064b80e, 0x13acc42,
  48633. 0x0af0de4, 0x051cdfe, 0x01977b3, 0x17f7687, 0x1aeec7e, 0x0660cb5,
  48634. 0x0ac955a, 0x07433a7, 0x1e48b6f, 0x1833fb1, 0x1b907a8, 0x1742cc3,
  48635. 0x15e305e, 0x0767459, 0x1f33627, 0x1bb97c4, 0x0067ea1, 0x0dd75d4,
  48636. 0x1a25ced, 0x0ef24c9, 0x01c5539, 0x1715e22, 0x08e2560 },
  48637. { 0x141aba6, 0x1ba3618, 0x1e795b4, 0x1f75659, 0x05a1079, 0x0e93e3a,
  48638. 0x0a0c673, 0x01d6c70, 0x09dfd95, 0x111bb19, 0x1023fc8, 0x0b9a752,
  48639. 0x181e0b1, 0x188b008, 0x0a00802, 0x1774e93, 0x15da383, 0x0938ced,
  48640. 0x14411b5, 0x106814c, 0x1b1f607, 0x0f4ba91, 0x024a753, 0x0145157,
  48641. 0x0345c8e, 0x0e3a020, 0x082b7c2, 0x024eb58, 0x11d6116, 0x1932919,
  48642. 0x142d06a, 0x0a72394, 0x10cc77c, 0x1118a91, 0x124a3e4, 0x13117c1,
  48643. 0x12fd9a2, 0x19ec95c, 0x1cb97fb, 0x0450649, 0x059005f },
  48644. { 0x04c1c74, 0x0ba861e, 0x0de5aec, 0x01d2cdf, 0x1e73aac, 0x02cb9fd,
  48645. 0x176499b, 0x16d0b4e, 0x03a8656, 0x04bfc99, 0x11b37a3, 0x0762a08,
  48646. 0x1f2b704, 0x1ff9c4b, 0x0245bdc, 0x0e564a9, 0x01cb18b, 0x1489ee8,
  48647. 0x0230379, 0x0ea3e29, 0x0a58d0a, 0x0a42ac6, 0x0645d5c, 0x14cc7b4,
  48648. 0x1430144, 0x10c4bb8, 0x12c3821, 0x1be3215, 0x1ead9c2, 0x1e0679c,
  48649. 0x0840203, 0x02e705b, 0x085ac6e, 0x1519c00, 0x0144c98, 0x1bd2f23,
  48650. 0x143bae8, 0x04ac9b5, 0x17dbb91, 0x04daf07, 0x057a78e },
  48651. { 0x0dbddd8, 0x19a37a0, 0x0eb0586, 0x0f28218, 0x0b49a92, 0x03679d9,
  48652. 0x09e0c62, 0x1d718a8, 0x033b93d, 0x16f9919, 0x1d5e75c, 0x13ea81b,
  48653. 0x009c8d5, 0x01077a8, 0x15e99f7, 0x10c87cb, 0x11867f0, 0x1e2359c,
  48654. 0x165ab70, 0x14488b5, 0x04d0ecf, 0x0d8622a, 0x1963d62, 0x1082fae,
  48655. 0x09301e0, 0x1447376, 0x0b11538, 0x194bded, 0x0f462d6, 0x0247d60,
  48656. 0x0d90644, 0x011b140, 0x12407d8, 0x1adbf42, 0x0e9fdb4, 0x0f698a6,
  48657. 0x0f6ada8, 0x08f2094, 0x1cba0c9, 0x18b0388, 0x01ca370 },
  48658. { 0x001b68a, 0x0a8b8d4, 0x02ce52f, 0x19fa333, 0x1312879, 0x0b19013,
  48659. 0x0aafd04, 0x1b6920b, 0x0f5b01f, 0x0ff43fa, 0x084a2ed, 0x047539b,
  48660. 0x1778de5, 0x03de98f, 0x1c58687, 0x0986a17, 0x1d02390, 0x0daef67,
  48661. 0x0623c4b, 0x165105c, 0x0e74224, 0x0efcced, 0x0374a00, 0x19a39a4,
  48662. 0x067b508, 0x11ce56a, 0x170219f, 0x1862387, 0x0250726, 0x0b9015a,
  48663. 0x00dc684, 0x05dfb20, 0x1bf464e, 0x09d81c1, 0x122876f, 0x14a7a08,
  48664. 0x06265ba, 0x0da97a7, 0x0b1e4cb, 0x0989867, 0x02584b3 },
  48665. { 0x0eec688, 0x031c495, 0x148cf2e, 0x148bf7c, 0x05e740b, 0x105afc5,
  48666. 0x1c7dff5, 0x07a845c, 0x0487491, 0x0ae8c2e, 0x1f60351, 0x166df42,
  48667. 0x0404c2b, 0x1602a29, 0x09c6152, 0x14cae7e, 0x045a8b9, 0x03b6e98,
  48668. 0x0bb9f32, 0x0587c2c, 0x07d02e4, 0x0326fb6, 0x000999c, 0x0f96910,
  48669. 0x1dd51dc, 0x1f02c93, 0x1861e25, 0x167f557, 0x15737c6, 0x0917796,
  48670. 0x1fff9ab, 0x1fea353, 0x1b60269, 0x03dd557, 0x1515a60, 0x15c3906,
  48671. 0x151ca49, 0x0edb7fc, 0x0c216b3, 0x0e87f35, 0x07e8113 },
  48672. { 0x10a88b1, 0x11545c1, 0x1f86b5c, 0x119c222, 0x11918ea, 0x04da3ec,
  48673. 0x142e010, 0x1a67c05, 0x16c46d1, 0x09c0969, 0x059a72d, 0x1b61cb1,
  48674. 0x1e2fd09, 0x0ad866a, 0x1173418, 0x188a730, 0x15a2386, 0x1860e0a,
  48675. 0x17fd0f2, 0x0e9bcbe, 0x00cdda7, 0x0c71c8e, 0x0ec1dae, 0x009e50d,
  48676. 0x11eff50, 0x1ff4beb, 0x12bbb02, 0x07c168d, 0x01ad942, 0x0333995,
  48677. 0x08b914e, 0x072db48, 0x00c9f81, 0x195ff7f, 0x06898f6, 0x02c6ed8,
  48678. 0x1a56fa9, 0x0e3c8c5, 0x0169800, 0x0c9bf09, 0x0436b8c },
  48679. { 0x0b764bc, 0x0bf4ec5, 0x1e12204, 0x0940efb, 0x1fa61e9, 0x0c775ee,
  48680. 0x1974c30, 0x1b8b4ee, 0x1fc9451, 0x0448b57, 0x08d1e95, 0x1c660e3,
  48681. 0x1f01a52, 0x191da0e, 0x0ee577a, 0x1850cc6, 0x0c943c8, 0x06ebeb4,
  48682. 0x0365c1a, 0x13a83c3, 0x199de4f, 0x0846493, 0x1e6422e, 0x0e72946,
  48683. 0x0148ed4, 0x09ff30a, 0x1f35479, 0x0a030a2, 0x03dcb6e, 0x03af012,
  48684. 0x0154180, 0x02f2a88, 0x1dcde62, 0x0d2fff2, 0x03854df, 0x0cdef92,
  48685. 0x0768cb6, 0x1bd5720, 0x0578477, 0x13cdb7d, 0x05266ca },
  48686. { 0x186b3db, 0x0f73689, 0x1502137, 0x14f871c, 0x19e4af5, 0x027a4ef,
  48687. 0x01103ac, 0x1fb6683, 0x0fde5a4, 0x09c50f4, 0x15f3f08, 0x1248604,
  48688. 0x013e6e6, 0x0cfeb86, 0x0671b8c, 0x03fe06a, 0x17486c3, 0x0479a70,
  48689. 0x103387a, 0x0531fb2, 0x0d7cf1e, 0x0e8a4b0, 0x1bee32c, 0x05e77fe,
  48690. 0x013472b, 0x07f903e, 0x1051bbe, 0x1334416, 0x13e2208, 0x1b15bde,
  48691. 0x09df7b0, 0x0c4d7d4, 0x175044e, 0x065b3d4, 0x11253ed, 0x141e656,
  48692. 0x1fc6703, 0x1d04900, 0x128af05, 0x17339b0, 0x041f325 },
  48693. { 0x02843a4, 0x16a89e7, 0x0bf0c4b, 0x1c00e51, 0x0748498, 0x032672f,
  48694. 0x0a08936, 0x07751de, 0x0a62008, 0x0032382, 0x14ce34d, 0x03b297d,
  48695. 0x185905e, 0x031f3d9, 0x15e32d4, 0x0f77254, 0x196289e, 0x0cc13b6,
  48696. 0x05edcd0, 0x05b88fe, 0x0944dfe, 0x0f8ed64, 0x1648d48, 0x080154e,
  48697. 0x0d28d23, 0x1219edb, 0x1a9d86e, 0x0c8ee0b, 0x1d07ddc, 0x1d36cdf,
  48698. 0x1f6251e, 0x0485951, 0x0f2e3ac, 0x01a3400, 0x19c3ae3, 0x1a93de8,
  48699. 0x19aa18f, 0x19e9bde, 0x1aa79f6, 0x16dcb19, 0x056b30f },
  48700. { 0x180a428, 0x06e5566, 0x02441fb, 0x190e659, 0x1af922d, 0x0d220fb,
  48701. 0x01e60eb, 0x11441b1, 0x0924b00, 0x1f6cd22, 0x0070e8e, 0x067965d,
  48702. 0x1321235, 0x12fc03e, 0x13901d5, 0x15d9786, 0x1a51f2f, 0x085fd77,
  48703. 0x17a2a23, 0x0c694b5, 0x0a9178b, 0x1c4a1c9, 0x11382df, 0x17639b1,
  48704. 0x0237790, 0x0571849, 0x0be1c81, 0x1d5369f, 0x13cd83d, 0x00fac2e,
  48705. 0x1e4fb7e, 0x18ca474, 0x0f88c51, 0x06cb4ac, 0x0e2c5f0, 0x0fc8e5f,
  48706. 0x1ccf7f0, 0x0840f2e, 0x1451a26, 0x0aeb17b, 0x01353cc },
  48707. { 0x1bf6e18, 0x0b24b9c, 0x071ca29, 0x04c9371, 0x19e8b5a, 0x145c73a,
  48708. 0x0d28373, 0x0191b28, 0x1204704, 0x09adfa8, 0x0e3a0b6, 0x02c8d4f,
  48709. 0x142ab3a, 0x13fc094, 0x160fb58, 0x0e52fe2, 0x1e072d6, 0x1c20b53,
  48710. 0x14e790a, 0x10bb0d9, 0x1bad496, 0x03cac6e, 0x029e5ff, 0x0b9cdbd,
  48711. 0x0f92815, 0x11ad2ac, 0x03e28d8, 0x0be9cae, 0x077ae57, 0x07e0294,
  48712. 0x0f6f1a7, 0x14d62dd, 0x14193a9, 0x060f8c7, 0x10f2ec7, 0x131a3be,
  48713. 0x1a21e78, 0x1d41872, 0x17d61c8, 0x0bbe8a3, 0x03ec218 },
  48714. { 0x10bc2d7, 0x063eb8f, 0x104ae75, 0x18dca3a, 0x0982c6c, 0x0fc07b3,
  48715. 0x0b64e82, 0x13925c0, 0x1047ae0, 0x1ee9692, 0x0d47e6d, 0x093e6fe,
  48716. 0x1e35031, 0x03bc285, 0x1527387, 0x1a590d3, 0x0cb12f0, 0x0b01215,
  48717. 0x0f0a2e7, 0x1118acf, 0x0550ba1, 0x10835e0, 0x0390184, 0x0fa8653,
  48718. 0x04b1f8d, 0x0f0586c, 0x1f4e254, 0x094cf5c, 0x097607b, 0x02bdc5e,
  48719. 0x1cad49f, 0x0a92f54, 0x093c5f3, 0x0eb335e, 0x0330e6f, 0x06be3bd,
  48720. 0x09d447a, 0x03ee2e7, 0x0af94c2, 0x16d4423, 0x089b356 },
  48721. { 0x1dcc837, 0x0d857ef, 0x1ea7b5b, 0x1550e36, 0x0fb80ba, 0x0ea5b90,
  48722. 0x0ff2470, 0x0b88275, 0x1adac9e, 0x0dab5fb, 0x195e8fd, 0x05b5170,
  48723. 0x0e5664a, 0x0720eca, 0x0c13dc8, 0x06cb023, 0x1263743, 0x131f08e,
  48724. 0x109b6ba, 0x051d9de, 0x0dc2ee6, 0x04e58b1, 0x0045867, 0x0c90c86,
  48725. 0x1817f87, 0x0434e7a, 0x095612f, 0x03772e0, 0x1f7928e, 0x1e77805,
  48726. 0x194b309, 0x1b8c1dd, 0x0f3a80e, 0x0e17ca7, 0x0afa1eb, 0x04fc240,
  48727. 0x0a0d4f5, 0x178c704, 0x1449995, 0x01aaf8b, 0x039c4f1 },
  48728. { 0x08aecd3, 0x0db4674, 0x0a76cea, 0x114a315, 0x155b091, 0x0a772a2,
  48729. 0x136b52f, 0x109db83, 0x102068d, 0x0db45b3, 0x0b1cb5e, 0x01a1023,
  48730. 0x187dac8, 0x140d053, 0x079b4d6, 0x0c506da, 0x1ea3bd1, 0x06420f4,
  48731. 0x0531111, 0x182eeb1, 0x1202a7b, 0x12f8d50, 0x1cad8dc, 0x1a98aad,
  48732. 0x1767ec7, 0x08ddf63, 0x0f51bfd, 0x102fd76, 0x17e3392, 0x1f46b9f,
  48733. 0x113f796, 0x0b5da49, 0x0c6c977, 0x0bce7a2, 0x1c1edb9, 0x1817342,
  48734. 0x1069fbc, 0x18b23c4, 0x0ac033f, 0x05a922a, 0x0414b54 },
  48735. { 0x06e173b, 0x18f2c30, 0x04e8cf0, 0x1721cce, 0x1b7f4e1, 0x1d9057a,
  48736. 0x0d44b7a, 0x0e084bf, 0x105120e, 0x1c4630b, 0x0f93b31, 0x0c05202,
  48737. 0x173ef05, 0x00e3736, 0x074d6b2, 0x0d2153f, 0x08f9450, 0x17098f4,
  48738. 0x12bc20b, 0x1f36648, 0x0ea9708, 0x160dd15, 0x0cb9359, 0x01b6539,
  48739. 0x14a6e74, 0x003d78f, 0x034610c, 0x0957249, 0x156a6c7, 0x077c76a,
  48740. 0x0984cce, 0x04e1a2f, 0x08e623e, 0x07adffa, 0x0bea582, 0x0a78e6c,
  48741. 0x044e851, 0x0bbc3a2, 0x02ca90e, 0x0d5c017, 0x052678d },
  48742. { 0x136aeb4, 0x18e2cef, 0x02ad77f, 0x1952578, 0x12d6653, 0x1d2fc0a,
  48743. 0x1d25a49, 0x03e1c07, 0x02dfd49, 0x084ea0a, 0x07e26e1, 0x18a54ae,
  48744. 0x05258c2, 0x0999a24, 0x1586012, 0x13c1257, 0x14f3f7d, 0x10d19f4,
  48745. 0x106fe41, 0x0831a65, 0x095cfab, 0x072d52b, 0x1ce7124, 0x1a5afff,
  48746. 0x1196ef6, 0x0548720, 0x143de52, 0x1d9a80e, 0x053b4f3, 0x1cd9698,
  48747. 0x1252d63, 0x0bb32e9, 0x0ee842a, 0x17b415c, 0x1076fc8, 0x0c474b3,
  48748. 0x08efcea, 0x0d630a6, 0x1bb7411, 0x0b78219, 0x07040ba },
  48749. { 0x15a1a96, 0x127c0a8, 0x1f80b0d, 0x0630864, 0x11a6350, 0x0c9ea79,
  48750. 0x199406b, 0x0e61412, 0x1273b61, 0x0bb4a78, 0x16a74a7, 0x10eda59,
  48751. 0x178886d, 0x140a60b, 0x0069d08, 0x0d2d63c, 0x16b8667, 0x11a4913,
  48752. 0x0c97c01, 0x09e18cb, 0x0c4a2fd, 0x0ffd94a, 0x1949cd2, 0x03a66de,
  48753. 0x00d8ade, 0x10760ff, 0x039f8e1, 0x1f3447d, 0x14c31ea, 0x1b90dbb,
  48754. 0x12a5f4a, 0x086caf0, 0x0c3e582, 0x07551fd, 0x1d39c3d, 0x11fe5bf,
  48755. 0x1e87324, 0x140f0d7, 0x12704f4, 0x1ac17a3, 0x09043a6 },
  48756. { 0x06c7937, 0x0d07f3b, 0x0f8c544, 0x1957787, 0x1b2ded5, 0x0444560,
  48757. 0x1833380, 0x1e65582, 0x1616200, 0x143aa5e, 0x0ba81a4, 0x107a694,
  48758. 0x0fb801c, 0x0e5f083, 0x15e80ea, 0x19b2915, 0x022cedf, 0x04cb584,
  48759. 0x101a620, 0x068c75c, 0x1663c3c, 0x06facbf, 0x1ec4ba9, 0x19255f3,
  48760. 0x1383440, 0x0aa1646, 0x193a368, 0x13790b8, 0x0e801a7, 0x0fd16da,
  48761. 0x0ca55dc, 0x03c6af3, 0x1d2c138, 0x1683c3d, 0x177ffea, 0x0dc8b8e,
  48762. 0x173eac4, 0x1b051e5, 0x17cd6c1, 0x0907424, 0x026362b },
  48763. { 0x0fc3e89, 0x1469477, 0x19c4971, 0x0ed3d3d, 0x0d0ee87, 0x0f25ba9,
  48764. 0x0ee1abd, 0x067160f, 0x0cb86b3, 0x1b84839, 0x14aeb36, 0x01d5fea,
  48765. 0x09fd3d2, 0x0606d0f, 0x1bacac5, 0x0e28b4b, 0x08a44f9, 0x09c8fb4,
  48766. 0x181b521, 0x17a6203, 0x0d4921f, 0x12df54e, 0x11793ca, 0x17e43b4,
  48767. 0x0d464a7, 0x038bdb0, 0x0015355, 0x127f119, 0x00f2e91, 0x09e8df7,
  48768. 0x1cd6b39, 0x1828724, 0x0c26563, 0x15af749, 0x02ca5b1, 0x15390dc,
  48769. 0x09ff59b, 0x17f1188, 0x04d7914, 0x040aab9, 0x02e952b },
  48770. { 0x15f886e, 0x035e56b, 0x1160aa1, 0x1da87bf, 0x068a5db, 0x1d8dc37,
  48771. 0x116d801, 0x16a207c, 0x1355ff2, 0x0071764, 0x0fb3256, 0x1e4d44c,
  48772. 0x13bc702, 0x0c0f2f1, 0x0d6ce18, 0x040ec50, 0x1ec6c12, 0x0812889,
  48773. 0x1ef615b, 0x04dc74f, 0x1cb1a5c, 0x19ceb75, 0x03be0fe, 0x09a5f51,
  48774. 0x053f2a4, 0x14bbd55, 0x0d4ec7e, 0x1829de6, 0x159a307, 0x05088ba,
  48775. 0x183fd81, 0x16126ef, 0x1cd96b0, 0x1813995, 0x025b6cb, 0x0d4b829,
  48776. 0x0b53ef0, 0x054264f, 0x0392c70, 0x02e606f, 0x01236d0 },
  48777. { 0x084373b, 0x00e47e0, 0x1ebb5d2, 0x10c8c12, 0x09ae476, 0x1de1a59,
  48778. 0x17e8184, 0x1602601, 0x0934bc2, 0x18938a6, 0x0f9f88d, 0x0c521c5,
  48779. 0x0086524, 0x1680840, 0x13eee7f, 0x08aecaa, 0x1384231, 0x1787605,
  48780. 0x0c28ca0, 0x15eb286, 0x181765b, 0x1438377, 0x0ef7786, 0x0ea61d2,
  48781. 0x0727dba, 0x0e5be96, 0x19d3325, 0x1618bac, 0x18906db, 0x09b2921,
  48782. 0x1cecff3, 0x1a28cb1, 0x1881941, 0x1f8748c, 0x1555b25, 0x15cc2de,
  48783. 0x0b9ec7e, 0x1e16c2a, 0x0d5b8d4, 0x028c419, 0x002a480 },
  48784. { 0x06ccd38, 0x1691ea8, 0x0a98475, 0x0920b37, 0x029a1c5, 0x0808e29,
  48785. 0x0709da7, 0x0fae2f9, 0x0d82893, 0x03f0da3, 0x0d420fa, 0x1777070,
  48786. 0x18f5d63, 0x156d612, 0x09ed09e, 0x09a3fe1, 0x0bd9f15, 0x0ccd593,
  48787. 0x1b2557f, 0x01ff7f1, 0x1880dec, 0x13a4fe5, 0x1ba55f1, 0x00229bd,
  48788. 0x15dee1e, 0x163991c, 0x1cda7d1, 0x1254c96, 0x0b25991, 0x033048f,
  48789. 0x1690c11, 0x145d187, 0x02da887, 0x0b68c5f, 0x10970d5, 0x07489c5,
  48790. 0x155f75f, 0x1c820a5, 0x1ff80c4, 0x0df1e42, 0x01d8bde },
  48791. { 0x0028924, 0x09cfc51, 0x0e7c0f3, 0x1960dd9, 0x0e54f19, 0x182c233,
  48792. 0x0f2df5b, 0x0ed0c57, 0x05a0607, 0x1f0338b, 0x1fb0436, 0x12f5621,
  48793. 0x1c9397c, 0x178ddb2, 0x084e099, 0x17471e8, 0x0cba672, 0x120a6f6,
  48794. 0x022c179, 0x1a9a87f, 0x14d1594, 0x1d564a6, 0x1e64fd5, 0x162ec70,
  48795. 0x02a6abf, 0x0ad3a7e, 0x0edbf19, 0x1032d6b, 0x0d2139d, 0x0e42774,
  48796. 0x09b70dd, 0x06c1a74, 0x1b00a02, 0x09dc3dc, 0x0d737ae, 0x1d66dda,
  48797. 0x0c83209, 0x12d945e, 0x04f07d5, 0x0878c20, 0x0349c69 },
  48798. { 0x1e6c88a, 0x1ca2226, 0x01fb46c, 0x028e004, 0x15c2c47, 0x015bc06,
  48799. 0x1628887, 0x07d6de8, 0x0085099, 0x04fbab2, 0x1c3061d, 0x0af375d,
  48800. 0x10400ba, 0x19be387, 0x1d0a4e1, 0x0fd7e5a, 0x0ec2146, 0x1e2d471,
  48801. 0x0cdfd14, 0x14ccdca, 0x150a243, 0x03f685e, 0x12647c7, 0x17a3f23,
  48802. 0x13e90f4, 0x14d9d3f, 0x097c384, 0x0c113d1, 0x1896359, 0x10bb839,
  48803. 0x127434e, 0x04e3055, 0x0f842d5, 0x1e2e14e, 0x0a64205, 0x124232a,
  48804. 0x0725576, 0x17993f4, 0x163ea8c, 0x1571385, 0x0056587 },
  48805. { 0x0e4733d, 0x0b1768e, 0x1110021, 0x1731ca2, 0x1faff7c, 0x15a35ca,
  48806. 0x0087ea6, 0x026be06, 0x0b61a8c, 0x0a4a62f, 0x0d65da2, 0x006c6d6,
  48807. 0x1657c95, 0x1561697, 0x1a1323c, 0x0e07cd7, 0x0d89bd2, 0x1872d9a,
  48808. 0x1a1caae, 0x1b231ef, 0x0ee1c4a, 0x0fe2029, 0x10aa27a, 0x1216a3d,
  48809. 0x0ee3f31, 0x0a7e165, 0x1dbffc9, 0x11fa286, 0x1e09725, 0x06b4441,
  48810. 0x0e1bcf0, 0x01f62a8, 0x1d0a0e9, 0x1570031, 0x192fdb2, 0x198870e,
  48811. 0x1f1d0f6, 0x0f8ab29, 0x16f7a05, 0x1db70d9, 0x01b87f2 },
  48812. { 0x10b15b1, 0x095dd95, 0x1de4d5e, 0x0f9cd74, 0x03e4b5a, 0x079bbcd,
  48813. 0x1ff6776, 0x1dff759, 0x1c298d1, 0x02a285e, 0x00c7180, 0x0aad88e,
  48814. 0x060e3f5, 0x0aeb403, 0x1c3c1ea, 0x0a5840e, 0x0e02d10, 0x0671f42,
  48815. 0x0aa3315, 0x00f23cf, 0x03a3b05, 0x19dd191, 0x1358879, 0x0c65320,
  48816. 0x1b94d39, 0x0b6c3dc, 0x1dfae01, 0x1bf3968, 0x1ca0cc8, 0x06f476f,
  48817. 0x12b890c, 0x12e2541, 0x14bf416, 0x0454c9b, 0x11de221, 0x1d7c7e7,
  48818. 0x04a3e59, 0x15c3d8e, 0x0f08ec8, 0x1887d2b, 0x08e0227 },
  48819. { 0x010964d, 0x1115419, 0x1bac003, 0x0bfe0ad, 0x1ccd5df, 0x18f56be,
  48820. 0x0e87f6b, 0x1c6042e, 0x067cdca, 0x01419f0, 0x1324334, 0x099717b,
  48821. 0x151cc57, 0x19125a7, 0x1b29c50, 0x105310d, 0x03abb3f, 0x1e80730,
  48822. 0x106a37a, 0x1d9c361, 0x061db98, 0x121bc61, 0x08a291b, 0x02cbcba,
  48823. 0x1dd0da6, 0x071637c, 0x052dfbc, 0x075c713, 0x09f306b, 0x0b59ded,
  48824. 0x16ce8f0, 0x0714109, 0x09a26d3, 0x074a82f, 0x064d4e5, 0x18a51cb,
  48825. 0x0ea206b, 0x076588a, 0x175ba12, 0x16a80a8, 0x014b15a },
  48826. { 0x04c59a2, 0x0c364b3, 0x0a943db, 0x02c1faf, 0x1dfe2be, 0x1965c71,
  48827. 0x0d5a641, 0x1c067f3, 0x18176a7, 0x19192ec, 0x1c202d7, 0x09ce8b0,
  48828. 0x0579a0d, 0x06aea70, 0x1b837bc, 0x051c349, 0x1fac87b, 0x16056cf,
  48829. 0x1c26d3b, 0x031a5e7, 0x1d87d6f, 0x1394974, 0x13225ab, 0x128ec79,
  48830. 0x0953d60, 0x0fd6544, 0x0063efe, 0x17dd2f5, 0x03d701d, 0x1074a5b,
  48831. 0x0bf7c83, 0x08fd4e4, 0x1ba6e30, 0x1ab8fe5, 0x072984a, 0x0b9cafc,
  48832. 0x009a55f, 0x0b563b0, 0x078b878, 0x1b18871, 0x0742bbe },
  48833. { 0x1dc2c73, 0x1436e60, 0x0afc8fa, 0x1782c87, 0x0bbbfd5, 0x0c650fa,
  48834. 0x1e87c93, 0x18e0ff1, 0x08cb5ca, 0x1345370, 0x19a9f77, 0x0c96a9c,
  48835. 0x187d54c, 0x14dbd6b, 0x076e88a, 0x15728f1, 0x140e364, 0x0a6c46a,
  48836. 0x1dcb804, 0x05c05a3, 0x0278c8c, 0x0ba3715, 0x1320981, 0x030f8fa,
  48837. 0x15bb34b, 0x064f361, 0x1bae3f8, 0x1b167bf, 0x11e415e, 0x1a743e8,
  48838. 0x1e6daf0, 0x170cb8f, 0x1908bbf, 0x060be59, 0x139b87b, 0x16e2fa3,
  48839. 0x17cdd69, 0x0f19847, 0x1049054, 0x0296b92, 0x097bd5a },
  48840. { 0x1e82861, 0x0317f40, 0x103b807, 0x1bba858, 0x103d4b6, 0x0f48f2b,
  48841. 0x1956f99, 0x1bafca5, 0x05abbbf, 0x05a49ba, 0x0917d2e, 0x1ea58e5,
  48842. 0x18b4f15, 0x0a8794e, 0x010d6a1, 0x1cebf9d, 0x19b582d, 0x14efbb5,
  48843. 0x08322e5, 0x1098bf4, 0x0af452e, 0x0885450, 0x0bddf4b, 0x0c02787,
  48844. 0x1bbd8ca, 0x02f81c4, 0x089be0c, 0x01b3737, 0x0c8b9ab, 0x1424067,
  48845. 0x063c14f, 0x1ff57b4, 0x163367a, 0x1261526, 0x0f92990, 0x1ca1ea7,
  48846. 0x064fba2, 0x0962c64, 0x151a7e2, 0x0629198, 0x0317c6d },
  48847. { 0x0b7d42b, 0x092d816, 0x12b830d, 0x12621f5, 0x15240bc, 0x102047a,
  48848. 0x0808bfc, 0x1411aba, 0x1e0c10e, 0x180a017, 0x1ac8f5a, 0x0d14e31,
  48849. 0x197fbef, 0x0092950, 0x051ad69, 0x01add40, 0x048110e, 0x0acd7e7,
  48850. 0x08b7860, 0x03a4fe0, 0x09dae9a, 0x0b6e1fa, 0x1b6e5b4, 0x17c8010,
  48851. 0x0e3f5ef, 0x08e7e0d, 0x07b32f0, 0x13ae0c8, 0x1f8636f, 0x113ca92,
  48852. 0x0c12408, 0x184ec78, 0x169796a, 0x031859b, 0x00f0764, 0x0f39869,
  48853. 0x0e3d3f1, 0x0b28f87, 0x0e3f514, 0x0733b41, 0x06ae597 },
  48854. { 0x1f4d2ee, 0x09de3df, 0x0f615ec, 0x126162e, 0x0075422, 0x0a49b61,
  48855. 0x12f541e, 0x17d6c4a, 0x05efd55, 0x0af9195, 0x10ce247, 0x150a9c1,
  48856. 0x04c06f4, 0x0730fca, 0x0b16d66, 0x10f6f9e, 0x01ffd5f, 0x062b243,
  48857. 0x08abe93, 0x0c3f62b, 0x0774ee2, 0x1316cbd, 0x0c3fdc8, 0x19e00f5,
  48858. 0x1ae22d6, 0x10a0d44, 0x134d1bc, 0x11100a6, 0x16497e2, 0x1dffcbd,
  48859. 0x1f23f9c, 0x1f455ff, 0x08595b2, 0x0d39345, 0x1cfbc54, 0x173df39,
  48860. 0x0744b82, 0x0772f8f, 0x1f9caa1, 0x11b78c7, 0x0664904 },
  48861. { 0x08b760d, 0x1ddbc0f, 0x0a8246d, 0x104b55b, 0x147b0bd, 0x1a9137e,
  48862. 0x0f67fea, 0x11d0292, 0x0bffc14, 0x136e913, 0x0f8f6d2, 0x1f15453,
  48863. 0x0b5a032, 0x1a58558, 0x036f1c0, 0x090d063, 0x1b57d65, 0x16e665f,
  48864. 0x1160791, 0x0d566f3, 0x0ce2850, 0x1714187, 0x0244da9, 0x0d9018e,
  48865. 0x19356cf, 0x143245b, 0x1fbdac7, 0x142ec6e, 0x10f1c9f, 0x0e60c1f,
  48866. 0x174b270, 0x02d57db, 0x0f0526d, 0x186f24b, 0x038aa4e, 0x147c1d3,
  48867. 0x0f13873, 0x16bd6d0, 0x127b1bc, 0x0b9e7f4, 0x04eb93b },
  48868. { 0x11fae32, 0x0fbf2f0, 0x1d46f62, 0x0b88047, 0x113d74f, 0x0e1fb7e,
  48869. 0x0537d24, 0x16e3600, 0x1555279, 0x0c24d2b, 0x0801a07, 0x112e0b7,
  48870. 0x0abb9e8, 0x009e516, 0x0889067, 0x0cedf04, 0x085fd33, 0x157dddb,
  48871. 0x161e28a, 0x187ea4e, 0x1173931, 0x17f79ea, 0x04abbbf, 0x114d0f0,
  48872. 0x05cc8bd, 0x00b0c4d, 0x0f667c3, 0x059ffb6, 0x1d48b68, 0x0a0350c,
  48873. 0x182fd59, 0x1d38d89, 0x005e223, 0x020b92b, 0x077a1a0, 0x10a7cf0,
  48874. 0x07001cc, 0x1ae485e, 0x0fda337, 0x126f808, 0x02b582d },
  48875. { 0x1abc2ae, 0x12e4140, 0x1b2a845, 0x0bc56d3, 0x073380f, 0x1ffb37d,
  48876. 0x0cf481f, 0x00d812f, 0x0547765, 0x0b01c13, 0x1e88717, 0x13e76af,
  48877. 0x15dcbac, 0x04c6dee, 0x1d436d3, 0x1e654f0, 0x103d9ef, 0x042f108,
  48878. 0x1c47107, 0x1a2e585, 0x0c09cee, 0x124f1a4, 0x0a38e49, 0x03dbbf7,
  48879. 0x1936b83, 0x051b8e5, 0x1bd4219, 0x02b87a0, 0x1acfcd9, 0x19e6f49,
  48880. 0x0abfa38, 0x167e5ef, 0x1ee10d7, 0x0774d25, 0x0d23adf, 0x1b83b1d,
  48881. 0x1a574af, 0x124e71f, 0x0d3013e, 0x0130c5b, 0x0786151 },
  48882. { 0x0e72c21, 0x1fa403d, 0x1694ff8, 0x09fa1e1, 0x031aa14, 0x01d22a3,
  48883. 0x187a3e3, 0x1578edd, 0x051b4f1, 0x1cd704a, 0x16ec90d, 0x072faf9,
  48884. 0x0d2a3a4, 0x015eafe, 0x0533ffa, 0x1deb4f4, 0x112f427, 0x1ddf276,
  48885. 0x0134f33, 0x1487dc5, 0x0e1e9b0, 0x09c7763, 0x15ede2e, 0x171d0f6,
  48886. 0x004e467, 0x0100c6a, 0x14d0dd3, 0x1915b80, 0x08deb50, 0x1b02aa1,
  48887. 0x13d90dc, 0x1875f45, 0x0d80ec0, 0x0ab7cda, 0x04f0eaa, 0x10daa3f,
  48888. 0x04161c6, 0x0d1455c, 0x100967e, 0x16ed793, 0x0540b6b },
  48889. { 0x01d315d, 0x0b9a619, 0x1740138, 0x05b0dc0, 0x0ef5661, 0x1466c0a,
  48890. 0x18516ee, 0x135d5f5, 0x1acdc78, 0x1d83d24, 0x1d5c3c7, 0x135ab0e,
  48891. 0x1e6a21e, 0x1cde29e, 0x12a0dfa, 0x131d65c, 0x0931d62, 0x0a1b6d9,
  48892. 0x08d8bd1, 0x1f78f1d, 0x058543a, 0x0bd55fb, 0x0aa5cf6, 0x1249ac0,
  48893. 0x1dabe0c, 0x074ee73, 0x01f2b7c, 0x0d3b31e, 0x020538f, 0x02d0ba8,
  48894. 0x0a782d4, 0x088c39a, 0x1b7d1a3, 0x0740c1e, 0x1dd9788, 0x0dc3850,
  48895. 0x12dd50f, 0x112c33a, 0x0e230b2, 0x02925c0, 0x0897cab },
  48896. { 0x18bab8a, 0x09c0986, 0x002967b, 0x1948704, 0x011d364, 0x0c0a0ae,
  48897. 0x0fcb101, 0x0e80d0f, 0x07ac896, 0x156869d, 0x1046821, 0x020b72e,
  48898. 0x1c44928, 0x19c19b8, 0x0612c47, 0x1063ce9, 0x1840d1a, 0x0386976,
  48899. 0x1244bf8, 0x06c516d, 0x08d2d88, 0x1d8a7d4, 0x113e3df, 0x015927c,
  48900. 0x12a4dcf, 0x1d32b27, 0x0a9b093, 0x05ec535, 0x0cd9498, 0x15d1dfb,
  48901. 0x0b6ae41, 0x0414a30, 0x0822e67, 0x1c9d296, 0x16b0c3a, 0x145fe8f,
  48902. 0x1ff673a, 0x1162527, 0x03b1771, 0x0c68ed6, 0x064b007 },
  48903. { 0x1c9a404, 0x1a99f59, 0x054878f, 0x076fdf3, 0x11db7f7, 0x129b49d,
  48904. 0x0f8a5b0, 0x1a98fe2, 0x00738ee, 0x073fa62, 0x1b2b41f, 0x16679c4,
  48905. 0x11ccfd3, 0x00f62e7, 0x1e124d4, 0x09c03b0, 0x09ddc08, 0x19fc7e0,
  48906. 0x0e6d6b3, 0x1956658, 0x151c217, 0x1dcf7aa, 0x10b6bc2, 0x042f52a,
  48907. 0x16f56e1, 0x0157de3, 0x0b08dc0, 0x002f162, 0x10a2938, 0x01cfd83,
  48908. 0x1902d4b, 0x0aed952, 0x1925153, 0x1471b71, 0x1090675, 0x084aab2,
  48909. 0x09e50e8, 0x0fdc160, 0x1b630a4, 0x14ccc31, 0x07dd22e },
  48910. { 0x1cbb3bf, 0x14225a4, 0x0c95fff, 0x08aac5f, 0x1e0cc70, 0x0d422d6,
  48911. 0x194de7d, 0x1f83cdd, 0x0e51277, 0x0b6bf93, 0x0d5c625, 0x097260c,
  48912. 0x142c75d, 0x0b4abf9, 0x085224a, 0x0e85673, 0x13282e5, 0x1467a75,
  48913. 0x0c91edc, 0x1a7bbb0, 0x02376b0, 0x19900d2, 0x19ea7d8, 0x029490a,
  48914. 0x003c114, 0x08b20b2, 0x1edbdaa, 0x015fa88, 0x06f7906, 0x04986d6,
  48915. 0x00a57e5, 0x17a773b, 0x05ff94b, 0x16f87b4, 0x03f1472, 0x12b91f3,
  48916. 0x113b748, 0x0ce4455, 0x1f32255, 0x0ccbe31, 0x031377c },
  48917. { 0x1cfb35f, 0x0ef04be, 0x1be0d71, 0x1e03986, 0x0dccca9, 0x1b65b19,
  48918. 0x1a175d5, 0x0eafd27, 0x0f7b4b3, 0x016ea45, 0x0866d43, 0x1a9f613,
  48919. 0x079d95c, 0x18dff30, 0x0bb4565, 0x1b5a4ea, 0x0cf2596, 0x1a1cc40,
  48920. 0x07a429b, 0x1df6a6d, 0x060ae52, 0x1181e9f, 0x11025d9, 0x0a0e1c0,
  48921. 0x164faa9, 0x0e97e79, 0x1815893, 0x11f3276, 0x15e467d, 0x0c12006,
  48922. 0x092cd6a, 0x0191e8a, 0x089d024, 0x100bcf1, 0x08f1922, 0x1bde8a8,
  48923. 0x187edab, 0x0feb4aa, 0x149c4e9, 0x019423c, 0x03dacc5 },
  48924. { 0x099ae4c, 0x127ca32, 0x149f2cf, 0x02e0a78, 0x046dcbe, 0x1c17455,
  48925. 0x173a6f9, 0x08b00fe, 0x0d8481e, 0x1632694, 0x01bf42d, 0x0a31545,
  48926. 0x09f35e4, 0x0f8e6da, 0x0dee6eb, 0x07d5fef, 0x010aec2, 0x1f9fdb1,
  48927. 0x06ff4be, 0x17470b7, 0x13a00a9, 0x09c403f, 0x1946835, 0x0f65085,
  48928. 0x04404b1, 0x1853d59, 0x1fe7767, 0x1faaed0, 0x09df646, 0x1eda79f,
  48929. 0x137347b, 0x0c1be32, 0x1d2df7a, 0x0ef82ae, 0x0b0f81a, 0x037da7e,
  48930. 0x03248a3, 0x0dbab09, 0x113dd1a, 0x1c2d28e, 0x0866949 },
  48931. { 0x14ab07a, 0x106d29f, 0x1efcea6, 0x07ea94d, 0x0cd6f33, 0x1e79481,
  48932. 0x1a486c8, 0x0b01925, 0x0848e3d, 0x0ac0e1f, 0x0862af2, 0x1f7ba76,
  48933. 0x1793af1, 0x03365a6, 0x1663a84, 0x0074070, 0x14e990c, 0x0a8009c,
  48934. 0x1421ded, 0x0c963cf, 0x10913b6, 0x1deba63, 0x15e76c6, 0x05abba1,
  48935. 0x144354e, 0x1c14296, 0x0ccca76, 0x1a57083, 0x16d4800, 0x07583dc,
  48936. 0x11bea11, 0x1852bb8, 0x1a50569, 0x1f6271b, 0x0dce53d, 0x0f85a70,
  48937. 0x1b08317, 0x1c427fa, 0x0966370, 0x171163f, 0x0574352 },
  48938. { 0x15d7ce9, 0x0c9fb86, 0x1abfb48, 0x0c1690f, 0x1c19fd2, 0x132fe81,
  48939. 0x0ad65ef, 0x0acf889, 0x078270d, 0x0ced430, 0x1c06637, 0x1801754,
  48940. 0x1f8a84e, 0x142cc2e, 0x109f924, 0x051b05d, 0x0f0de20, 0x0ccb665,
  48941. 0x0708807, 0x0c918ec, 0x19eb4e7, 0x1e048e0, 0x0a58cd6, 0x1acf057,
  48942. 0x03a69f0, 0x049929d, 0x034a519, 0x1e40868, 0x1f68733, 0x10d084c,
  48943. 0x0691114, 0x0d32c02, 0x1cbcc09, 0x1d4a72f, 0x1763e14, 0x027109a,
  48944. 0x13b6a3a, 0x0c63126, 0x0f13c90, 0x1e40d5c, 0x03e431a },
  48945. { 0x1d381f1, 0x1ec9cc1, 0x0f0fe59, 0x1da1806, 0x16501aa, 0x0083b41,
  48946. 0x1d34151, 0x1a77e75, 0x05093a6, 0x0368acc, 0x1ca402a, 0x0e83b25,
  48947. 0x1543ae0, 0x1b785ba, 0x0cabe98, 0x0dadffd, 0x0a3aa45, 0x1684853,
  48948. 0x1bf6d91, 0x149fb55, 0x0f7d336, 0x020d4a1, 0x1f46ff9, 0x03dc83d,
  48949. 0x0a3ed85, 0x0e2bfe1, 0x1847a4d, 0x1e392d0, 0x1bb3434, 0x1b3329d,
  48950. 0x0ab355d, 0x15b12d8, 0x06931ba, 0x1fd20f9, 0x0f461ae, 0x03141f7,
  48951. 0x0203cef, 0x1ebec15, 0x134d470, 0x02bc4cc, 0x06dad3f },
  48952. { 0x0ec35a1, 0x005be89, 0x04a3465, 0x0dcfbf6, 0x0219c5b, 0x1990eab,
  48953. 0x1e31bc4, 0x16c5984, 0x033c58e, 0x13b4825, 0x00f10d7, 0x1eabb32,
  48954. 0x1915090, 0x01ecb50, 0x06f249b, 0x1974e0c, 0x1038c0a, 0x1cba54f,
  48955. 0x0662c86, 0x028042e, 0x0c6f7a4, 0x0efc4ac, 0x0c1a566, 0x17a0253,
  48956. 0x12f1dbe, 0x0e1a8bf, 0x0f7cea3, 0x02134c2, 0x0375c51, 0x0224339,
  48957. 0x14c2396, 0x12707a5, 0x0590ba4, 0x1c1be2b, 0x1f182ff, 0x1ff87dc,
  48958. 0x07d2d55, 0x1d29c81, 0x1e8ff21, 0x1a8bea2, 0x02438e9 },
  48959. { 0x015af3c, 0x0298444, 0x1b57129, 0x05e7937, 0x055f1a3, 0x1b2eeff,
  48960. 0x137265e, 0x16b5de3, 0x012e51e, 0x0e30eca, 0x1c92418, 0x18a9cc7,
  48961. 0x11bd0da, 0x0859f11, 0x0510a73, 0x0c020de, 0x1c2f1da, 0x0fb9be1,
  48962. 0x0ef13ec, 0x01c096d, 0x01cb715, 0x048df14, 0x0816d32, 0x0e03eb6,
  48963. 0x0633cd7, 0x04878da, 0x18a944d, 0x1667de8, 0x11f7f28, 0x1e39b47,
  48964. 0x19f76d1, 0x17a82d6, 0x0ada511, 0x0add9fa, 0x1f37fde, 0x0f3a552,
  48965. 0x16200e6, 0x145bd94, 0x0380402, 0x0235fc6, 0x013f390 },
  48966. { 0x1d0c827, 0x14b77bd, 0x1d18f74, 0x069453f, 0x106110f, 0x0d28ad2,
  48967. 0x0c1a072, 0x0eff0f2, 0x1268bca, 0x146c022, 0x01177f7, 0x0049330,
  48968. 0x04cbb83, 0x146072c, 0x0435c41, 0x0c0c47f, 0x0a8263b, 0x19541c6,
  48969. 0x0d71742, 0x176bcea, 0x1110293, 0x0aab20a, 0x13baa67, 0x17b400b,
  48970. 0x11ad01b, 0x00c7f18, 0x1e93634, 0x092fc17, 0x12b8662, 0x1bd00e7,
  48971. 0x02ccf75, 0x1b18975, 0x0075b73, 0x1bde4de, 0x1b51c8a, 0x165308c,
  48972. 0x0bda1b0, 0x13e7126, 0x00ed85e, 0x0d6d00e, 0x0458d4b },
  48973. { 0x154d8b2, 0x1510726, 0x0836289, 0x1c9a641, 0x05a5696, 0x0a7b800,
  48974. 0x16163e6, 0x150d316, 0x02f6549, 0x1256e1e, 0x134035e, 0x10326d2,
  48975. 0x1d1812e, 0x1982015, 0x0e6c001, 0x0c8208d, 0x049a1b3, 0x070850a,
  48976. 0x048c088, 0x12bd4b3, 0x00c3eae, 0x0d8da41, 0x0fbf0ba, 0x193d714,
  48977. 0x15cb585, 0x0327f2d, 0x065e11c, 0x035c063, 0x07d49f2, 0x05b8479,
  48978. 0x1ada3bc, 0x05ee4aa, 0x059ef18, 0x0d80d19, 0x115d893, 0x18015c0,
  48979. 0x1668f95, 0x071d832, 0x0fe458a, 0x1f56df7, 0x05f13f5 },
  48980. { 0x09b0dc6, 0x16cd71d, 0x1b21f1b, 0x12df107, 0x0ea1bde, 0x059b3bd,
  48981. 0x0fe23aa, 0x157d4cd, 0x09a66e3, 0x17d355e, 0x05fff77, 0x02f6d04,
  48982. 0x1cc4d33, 0x1486f82, 0x10723c8, 0x0ce9dee, 0x1177d11, 0x10f87ef,
  48983. 0x0d66272, 0x01d9cf8, 0x082dfdf, 0x0fb5ce2, 0x03bb64b, 0x17e394e,
  48984. 0x13e6655, 0x0ce39b8, 0x00973b2, 0x0159652, 0x03e69c9, 0x11d1740,
  48985. 0x068df27, 0x02ee274, 0x00a3c53, 0x10ba6be, 0x1595bd6, 0x0c6a1b8,
  48986. 0x05f802f, 0x112d220, 0x0928845, 0x0bb46f7, 0x0219649 },
  48987. { 0x1142680, 0x197e989, 0x13d0032, 0x0ecba29, 0x0b9e91d, 0x11334f5,
  48988. 0x13aaf7f, 0x18b8d41, 0x00ae22b, 0x177e72c, 0x1b0942f, 0x130d96d,
  48989. 0x1f3c2b7, 0x0b9c78f, 0x0b6c68b, 0x191d909, 0x028516e, 0x0cb84de,
  48990. 0x1a3df6d, 0x1262531, 0x17f9f36, 0x15cad8c, 0x1123bf1, 0x1554809,
  48991. 0x109529a, 0x0584ff8, 0x1451055, 0x1879197, 0x1f34352, 0x1de1a13,
  48992. 0x104cfbd, 0x1a4312f, 0x0a17940, 0x0a45002, 0x11f5b39, 0x04b5418,
  48993. 0x1d56fa6, 0x18e7539, 0x17c20a5, 0x160088e, 0x093ad0e },
  48994. { 0x08a9963, 0x1b4b3cc, 0x0375e82, 0x0eca2bd, 0x01e477f, 0x15a8793,
  48995. 0x18e18ed, 0x1bcc4e9, 0x1d33922, 0x1d4dc6a, 0x096cf58, 0x07f6d0f,
  48996. 0x033c38d, 0x0981719, 0x1dbc270, 0x1999e31, 0x1c3e02f, 0x192a602,
  48997. 0x1b998bd, 0x1da16e4, 0x0079c04, 0x1c0a1ff, 0x075591a, 0x002d918,
  48998. 0x09448c9, 0x1cbf7c5, 0x0fe08f5, 0x0ace989, 0x0de451e, 0x1b97de6,
  48999. 0x178161b, 0x0882fd5, 0x1fc88d5, 0x12c46e2, 0x08255db, 0x12572a4,
  49000. 0x1844d1f, 0x046ea12, 0x100d110, 0x1e1d483, 0x073f8c3 },
  49001. { 0x1f763dd, 0x1a7e42e, 0x00da254, 0x06758e3, 0x1b1427f, 0x078ad01,
  49002. 0x0f85dba, 0x11c1b6b, 0x0cb2088, 0x09c84a2, 0x12ba987, 0x135b0af,
  49003. 0x137804c, 0x08cfbdf, 0x16110a1, 0x1519f54, 0x0f1293a, 0x0b13776,
  49004. 0x08da805, 0x1c1b31d, 0x0dcd749, 0x171990f, 0x1bffdb6, 0x16f2399,
  49005. 0x1eea628, 0x1b0cb1e, 0x08b45b8, 0x029c0aa, 0x1ae206a, 0x0c7e58a,
  49006. 0x1928b81, 0x1f9464b, 0x1268745, 0x00d4507, 0x101c84d, 0x10f9f3a,
  49007. 0x1caa51b, 0x1692ecb, 0x175d77f, 0x0735b7d, 0x00108ae },
  49008. { 0x1e88f63, 0x0bc79d4, 0x0c95534, 0x1d5618e, 0x0a05b11, 0x10ec535,
  49009. 0x14f9b89, 0x190ee74, 0x08d0b91, 0x06dbed7, 0x0c01349, 0x00e7d37,
  49010. 0x0bde10b, 0x0a71848, 0x02fbf9d, 0x13913f9, 0x1990cc6, 0x10b5782,
  49011. 0x1565446, 0x1070073, 0x1afcddc, 0x0ca362e, 0x10fd96e, 0x1c14b33,
  49012. 0x04be81e, 0x18bfddf, 0x1becea6, 0x11123c6, 0x1dad008, 0x16baa22,
  49013. 0x07c326a, 0x1aa12fc, 0x1fc46ab, 0x0d270ef, 0x026eb21, 0x0710901,
  49014. 0x00c4523, 0x05da17d, 0x1077cd2, 0x1b1d627, 0x0807c06 },
  49015. { 0x0ee0ef6, 0x0b4f64c, 0x1ebc02a, 0x07176f6, 0x1a9d548, 0x17c7edd,
  49016. 0x1324a80, 0x0f84890, 0x08b7055, 0x1ed900d, 0x146bc9e, 0x07c8c15,
  49017. 0x1be5934, 0x0cc64af, 0x0a6a50a, 0x03a76a7, 0x1deda86, 0x14ba6d9,
  49018. 0x14e6703, 0x0a4b93d, 0x09bdce1, 0x00fb908, 0x026d5a2, 0x1042349,
  49019. 0x17d1599, 0x1ad047f, 0x0bbc3c9, 0x1beed67, 0x0f358b5, 0x007bfd1,
  49020. 0x0d24fc6, 0x187360c, 0x0c4ffcf, 0x01da9d5, 0x18985d6, 0x184d258,
  49021. 0x155399f, 0x1efd1b5, 0x1e986cb, 0x0d932c0, 0x016424c },
  49022. { 0x12744a9, 0x12e2aee, 0x1061775, 0x05fc75e, 0x0544c1c, 0x1458449,
  49023. 0x0ba67bf, 0x0346590, 0x1a9df69, 0x05bd592, 0x0659d0c, 0x0aa137d,
  49024. 0x0298384, 0x0579689, 0x1b34963, 0x0e4e579, 0x098bcc7, 0x0445720,
  49025. 0x0e3be83, 0x12c2829, 0x112cd43, 0x1cf6b26, 0x113fd9e, 0x0fe6808,
  49026. 0x055e42e, 0x0f5d4f3, 0x1516c3a, 0x1a2df88, 0x1ded283, 0x1f0a781,
  49027. 0x1711d28, 0x1599970, 0x1c9adff, 0x1d28dd1, 0x0f05c94, 0x027bfcd,
  49028. 0x1b5831b, 0x0d7a5cf, 0x11e2b77, 0x00549e8, 0x05544e6 },
  49029. { 0x0a80b4f, 0x02989dd, 0x03be25f, 0x1ec77b9, 0x0122716, 0x0162d40,
  49030. 0x10b6ded, 0x1195c4e, 0x1088330, 0x0ecf0f4, 0x106ac7a, 0x187e5a6,
  49031. 0x10352c8, 0x16ca2c3, 0x0f41403, 0x1b3b02c, 0x173c290, 0x0c1a4ee,
  49032. 0x1db1f4a, 0x078bc03, 0x033c205, 0x0365a10, 0x00c41d1, 0x1a135e3,
  49033. 0x08bd209, 0x140bb64, 0x1ac9e51, 0x01ee1cd, 0x11b540d, 0x0cef0cd,
  49034. 0x10dc82d, 0x0453296, 0x0b7ecdc, 0x029e7c0, 0x1738b7b, 0x0583499,
  49035. 0x1ed60f4, 0x1e9f6e8, 0x1498775, 0x0b9c483, 0x0573599 },
  49036. { 0x0237056, 0x1d1fdd0, 0x0e23712, 0x0867566, 0x0856c16, 0x0f63093,
  49037. 0x1aef49c, 0x1d9803d, 0x1e3031b, 0x1ef5819, 0x0287d6a, 0x0832c23,
  49038. 0x134eee4, 0x0db0079, 0x125d085, 0x10ee7d8, 0x1cf0886, 0x08db8c2,
  49039. 0x106df7f, 0x188d9af, 0x1e897b0, 0x0d25262, 0x1450ecb, 0x03ff29b,
  49040. 0x05984bb, 0x032edcd, 0x13273cd, 0x187209c, 0x0e64c9a, 0x0de0756,
  49041. 0x06be1ca, 0x0ed15b3, 0x0c22821, 0x0a0612e, 0x02062a5, 0x0f77a76,
  49042. 0x049a691, 0x1476af8, 0x17bc391, 0x1be7d88, 0x0885486 },
  49043. { 0x1dff464, 0x01649a5, 0x1145aa5, 0x1e4b4f6, 0x1db2719, 0x0df1921,
  49044. 0x01c2cc9, 0x0739960, 0x119fe33, 0x02ad18d, 0x1ba3fc8, 0x15d0483,
  49045. 0x0faca69, 0x0af7c6f, 0x01f7421, 0x0e78cec, 0x00f1a1b, 0x04f124b,
  49046. 0x074da04, 0x01d144e, 0x06b9bcb, 0x113442f, 0x0a7846a, 0x0bd5c32,
  49047. 0x1d0ab18, 0x08e4c5a, 0x103e07e, 0x14172dc, 0x0fc5031, 0x05e7cca,
  49048. 0x181343a, 0x1e233ad, 0x1d81697, 0x0670619, 0x0a1eaa9, 0x0e52106,
  49049. 0x091ff9d, 0x0ea69f6, 0x058b717, 0x1d1a957, 0x031cecf },
  49050. { 0x08b21e8, 0x1fecd7e, 0x1b7d0de, 0x0763286, 0x05dd32b, 0x0e1b507,
  49051. 0x00b5248, 0x121fcb2, 0x1a3d0fa, 0x14ef426, 0x148ef63, 0x0d5ab76,
  49052. 0x159663e, 0x1766b4b, 0x00288fe, 0x16b3930, 0x0d9b4fb, 0x08804e0,
  49053. 0x07483fc, 0x154f7b9, 0x1a3d839, 0x16f66b7, 0x1d40bd9, 0x0a2d953,
  49054. 0x0d4fbc5, 0x1622407, 0x19b1d0a, 0x0bff4be, 0x1252f86, 0x1ca2ff9,
  49055. 0x0f4adf1, 0x0ebb396, 0x0fefc05, 0x178e939, 0x18ef5b5, 0x0623610,
  49056. 0x1a6a4ec, 0x079e784, 0x11ecd76, 0x0d5b44a, 0x06961b4 },
  49057. { 0x135e2ac, 0x1ac3f65, 0x136741e, 0x16af5e2, 0x1ed5546, 0x1450260,
  49058. 0x1e96f6c, 0x1e1d942, 0x0709d54, 0x0fc8ea2, 0x1d003a8, 0x13fb38d,
  49059. 0x10a6e71, 0x1dc670c, 0x12e23b7, 0x07fa49c, 0x0dd246e, 0x0fcbc0f,
  49060. 0x1956bd7, 0x0241cd6, 0x1ca7d67, 0x0ec9a09, 0x169e0b4, 0x00ff443,
  49061. 0x020a297, 0x091b4bf, 0x0953a10, 0x1d6a3e6, 0x051f9f1, 0x06cf1b0,
  49062. 0x1a4b895, 0x0e79cb7, 0x1aec42b, 0x1bca7ee, 0x0cbb34f, 0x1313534,
  49063. 0x0781aad, 0x1271178, 0x1484865, 0x018a6ea, 0x06a63a9 },
  49064. { 0x17acbbb, 0x0a7001e, 0x0421d95, 0x156e9ec, 0x0c01668, 0x0628cd9,
  49065. 0x059c8e2, 0x09fc945, 0x03eb94d, 0x0b33b8a, 0x1b4bd80, 0x19be19a,
  49066. 0x1f086a3, 0x1d9b87b, 0x1960085, 0x07cf9f0, 0x0c15a4d, 0x0b2c440,
  49067. 0x0e8fd28, 0x1ab02cb, 0x11ddd6e, 0x09ae523, 0x0af31e0, 0x0894aed,
  49068. 0x1f074e8, 0x175404d, 0x0dba940, 0x0a75036, 0x021ed3a, 0x0983870,
  49069. 0x197082e, 0x10c2fe2, 0x027f892, 0x0e685c6, 0x111a08d, 0x034a8ec,
  49070. 0x0255296, 0x044ffec, 0x1643bff, 0x045a2a3, 0x051ed4a },
  49071. { 0x09701b4, 0x14b1d22, 0x0bc8df5, 0x07764f9, 0x0a8d91a, 0x194b2ff,
  49072. 0x0f856d5, 0x0fa7df3, 0x1db50bf, 0x0d3d02a, 0x10ee6dd, 0x101d9cc,
  49073. 0x1efd674, 0x1675aea, 0x09834b5, 0x1912fe5, 0x00c5ed7, 0x1b47e19,
  49074. 0x0339a17, 0x0a79ec5, 0x015e41c, 0x0fb8833, 0x038a5c4, 0x0a01d98,
  49075. 0x1213823, 0x1243d43, 0x01b0a7f, 0x1e1524c, 0x0f9712a, 0x1f9570f,
  49076. 0x0fe4f7c, 0x1a5a2d3, 0x15f6fb1, 0x0bc9e06, 0x1899d2a, 0x0dd6f5f,
  49077. 0x09f4925, 0x19eca57, 0x1739505, 0x1785716, 0x02d6951 },
  49078. { 0x04e222e, 0x03ecfc8, 0x0427740, 0x1f0de9c, 0x133f248, 0x014f771,
  49079. 0x13a2e3d, 0x031a932, 0x1cfc775, 0x0ab9a0a, 0x1d0bc4a, 0x1474161,
  49080. 0x196e7fe, 0x013a1a8, 0x0572df7, 0x0e3418f, 0x166711e, 0x0c10547,
  49081. 0x0e1d3d5, 0x12bb385, 0x162783d, 0x1c73870, 0x152d935, 0x1254e85,
  49082. 0x153f58b, 0x136c921, 0x0511ed7, 0x0440916, 0x1931a03, 0x19865e7,
  49083. 0x1a02eb5, 0x14f5e44, 0x1c4d089, 0x1c9fcba, 0x1306e0e, 0x1c8c920,
  49084. 0x165b3ae, 0x075d010, 0x117c289, 0x0f1c119, 0x065c48e },
  49085. { 0x0222c22, 0x039e76f, 0x0ed0687, 0x1bf9d44, 0x1683d8c, 0x0a1d832,
  49086. 0x12c52c8, 0x0ee0603, 0x159fcec, 0x0256fc7, 0x0133bca, 0x1038624,
  49087. 0x07fb1c5, 0x0a39a88, 0x134fbba, 0x11181ea, 0x10b4d31, 0x16dfb3f,
  49088. 0x03c6344, 0x07e5a22, 0x001376a, 0x1403e9f, 0x0e027e8, 0x1cfd9c0,
  49089. 0x10a4625, 0x0977837, 0x16ca257, 0x1050cfd, 0x10553ad, 0x1a44845,
  49090. 0x117841b, 0x1de48a8, 0x0280fa6, 0x0d1e5f1, 0x1e16a36, 0x1a805aa,
  49091. 0x1438ba2, 0x1eecffe, 0x089bfd8, 0x058f4d6, 0x036b5cd },
  49092. { 0x05679a7, 0x1a7102a, 0x1d421ff, 0x028a418, 0x04d80b4, 0x02ce6c3,
  49093. 0x15fea6d, 0x1472146, 0x1c85af1, 0x0cf579c, 0x0d697a8, 0x1af31b2,
  49094. 0x0a0d475, 0x1c0d33c, 0x140660d, 0x1d020e8, 0x1790cc2, 0x03a41cb,
  49095. 0x1d04891, 0x043a225, 0x1a37c6a, 0x1c9b528, 0x0343a17, 0x14e9bf1,
  49096. 0x0151eea, 0x0e27fa8, 0x1e4f3e6, 0x09c3054, 0x0a9ab61, 0x1ef89bb,
  49097. 0x1fd1564, 0x0a44713, 0x0f73caf, 0x02f450c, 0x0583dd1, 0x11a4f99,
  49098. 0x19a51dc, 0x097a629, 0x0ff601a, 0x089b673, 0x008d7c1 },
  49099. { 0x0cca773, 0x006cb1f, 0x055a027, 0x05a9184, 0x07ea919, 0x15eb20c,
  49100. 0x135d36d, 0x1bfe1d9, 0x02a678c, 0x19891ba, 0x01edf9d, 0x1b17a2b,
  49101. 0x067a966, 0x1098526, 0x1068405, 0x02f7be7, 0x0385fce, 0x03e6374,
  49102. 0x0379ea9, 0x12b7715, 0x08e395e, 0x1ac4c18, 0x0ff87a2, 0x08ed294,
  49103. 0x1243ee3, 0x15f80cb, 0x0aec334, 0x07fd388, 0x1b2b49f, 0x093207c,
  49104. 0x07ed641, 0x18e6cfa, 0x0385e8b, 0x10a3da6, 0x02bad7b, 0x123a60a,
  49105. 0x04004ad, 0x161c3c8, 0x0080a38, 0x1dd756e, 0x05f2aa8 },
  49106. { 0x066524b, 0x06a3209, 0x1d9b882, 0x01a1433, 0x17bf388, 0x08375fd,
  49107. 0x1a17b68, 0x08d4b54, 0x1e642dd, 0x134f469, 0x0b93582, 0x18c38d0,
  49108. 0x0cef349, 0x07e5a9a, 0x1dbb8ec, 0x0cf704d, 0x12705eb, 0x13ed5d0,
  49109. 0x02f817d, 0x1764fc3, 0x05d12ba, 0x1d4716c, 0x0566bf2, 0x1b3a70d,
  49110. 0x12d1ae2, 0x03776e7, 0x187a9bc, 0x13b8a5c, 0x0e5ae85, 0x1c5a433,
  49111. 0x11f0a09, 0x00579a7, 0x1ff0340, 0x1f417ec, 0x11d9e12, 0x09d1095,
  49112. 0x03c9f22, 0x0b24c04, 0x1e5268c, 0x13168df, 0x062501a },
  49113. { 0x1264086, 0x1becd56, 0x12f558f, 0x174bc1c, 0x0a6a33d, 0x069eb3e,
  49114. 0x0c00a32, 0x033d04a, 0x046e64b, 0x1446d64, 0x0914da8, 0x032e415,
  49115. 0x0cfa3c9, 0x16aa9f5, 0x0c326c3, 0x157a702, 0x0e02ea8, 0x1b11403,
  49116. 0x1b33f9d, 0x17ea9b9, 0x1b7052f, 0x18a7868, 0x0f66a38, 0x1362e83,
  49117. 0x12133d5, 0x14528ce, 0x1269bfa, 0x1ae8203, 0x04eb10f, 0x1bd05ae,
  49118. 0x17b46b3, 0x123f3b4, 0x0499b73, 0x152c33c, 0x1127037, 0x1557549,
  49119. 0x01f3531, 0x0e2fb9d, 0x1199732, 0x1fdfa7f, 0x0497b15 },
  49120. { 0x05568e9, 0x165d57a, 0x09be295, 0x1d8e325, 0x1491a0f, 0x1929cd7,
  49121. 0x0f74e6a, 0x153b760, 0x04ac37d, 0x032917c, 0x03d6d32, 0x1744054,
  49122. 0x1f8c8cd, 0x114e29c, 0x027f1d6, 0x1e05d02, 0x131ca90, 0x1ce6836,
  49123. 0x1885b6f, 0x03e0887, 0x1d918f3, 0x165d1f5, 0x066a9a2, 0x1800fe9,
  49124. 0x0d0d242, 0x1e71540, 0x1e1aa6d, 0x1b1bff7, 0x108edcd, 0x1f426b1,
  49125. 0x1290174, 0x00d0025, 0x0fa33fe, 0x10838ed, 0x144fb7a, 0x0d85dd7,
  49126. 0x0ff637e, 0x173f2e1, 0x132dede, 0x0d93ca2, 0x018d46a },
  49127. { 0x18b7802, 0x05d9153, 0x0bd21a3, 0x0492f97, 0x0745ddb, 0x17456e8,
  49128. 0x0bcf90a, 0x1c989d6, 0x0b4ceb4, 0x0055e6d, 0x17f502b, 0x064b464,
  49129. 0x052e0d8, 0x09d639a, 0x1f815c4, 0x0e372d9, 0x188b141, 0x1ba03d3,
  49130. 0x169e94a, 0x160c06d, 0x16ac70e, 0x1cec28b, 0x0ac2cdb, 0x052a9e7,
  49131. 0x09d297c, 0x0d68a08, 0x03735c1, 0x0e1bd39, 0x15e7513, 0x1ae6bdd,
  49132. 0x030fc36, 0x140dce1, 0x1f93d41, 0x18286a2, 0x1e29fa4, 0x1221aa9,
  49133. 0x1a38fef, 0x137c722, 0x0b901a7, 0x003a7ec, 0x0550446 },
  49134. { 0x0cb9cc9, 0x0e48803, 0x0053471, 0x0e83a00, 0x142074d, 0x11b7dc2,
  49135. 0x198f844, 0x104f9b0, 0x029ad5f, 0x0b90fff, 0x07f20ce, 0x17f452a,
  49136. 0x0f1d21f, 0x00068a2, 0x1781b9d, 0x05cd639, 0x16b9179, 0x148212c,
  49137. 0x06b5459, 0x0b91ca5, 0x1e98336, 0x02cd777, 0x188883a, 0x1855dc7,
  49138. 0x1318970, 0x05e5e5a, 0x0e7fc40, 0x0ef947b, 0x12973f4, 0x00bb7a9,
  49139. 0x06c9c1d, 0x13457a0, 0x12118ac, 0x1cfc9d0, 0x0824f75, 0x17e684a,
  49140. 0x06f5d7d, 0x1d47fbe, 0x1b13d58, 0x1f9af61, 0x00da313 },
  49141. { 0x1aa2557, 0x12d460a, 0x1a70dc4, 0x1801127, 0x0a21d70, 0x1c5411e,
  49142. 0x0e6519e, 0x05490e2, 0x07cb004, 0x09f4d3a, 0x0b38603, 0x09ff93c,
  49143. 0x022d2bf, 0x024d756, 0x14c6834, 0x00cc1aa, 0x016f03d, 0x02694d3,
  49144. 0x1c6dfc0, 0x1aa1ac3, 0x050c473, 0x1de51ef, 0x0ebc3b2, 0x1851e4e,
  49145. 0x19bea09, 0x132714a, 0x03e1c11, 0x1af85d4, 0x1083ef6, 0x1270b98,
  49146. 0x152b7eb, 0x128384a, 0x0940c26, 0x11681a8, 0x1042845, 0x1c882ce,
  49147. 0x1e82290, 0x01186c0, 0x12b3188, 0x1d1b682, 0x063630b },
  49148. { 0x07d2e41, 0x0a91145, 0x01e6fe3, 0x07d6c5f, 0x09e7582, 0x0016c4a,
  49149. 0x0cf75b1, 0x15a369a, 0x0de2c59, 0x01f026b, 0x0770e22, 0x11e8937,
  49150. 0x0cbf3f3, 0x1a5b862, 0x065f462, 0x1408b3b, 0x00c13ce, 0x08fb4d9,
  49151. 0x038981b, 0x1ae04ab, 0x1b79ca3, 0x1b930e8, 0x0f53f65, 0x0286df4,
  49152. 0x0afa85a, 0x003ab57, 0x02ed10f, 0x0d367d3, 0x18f6be3, 0x0c3672a,
  49153. 0x027f394, 0x1f1591f, 0x10cd478, 0x0d53975, 0x1cdf579, 0x00d00e9,
  49154. 0x08544eb, 0x0c22e03, 0x023b4a5, 0x0e3e2cd, 0x0306a98 },
  49155. { 0x14ec136, 0x08f4eb1, 0x163ef11, 0x141cdec, 0x1edf27c, 0x0da0900,
  49156. 0x0054b03, 0x0cf537c, 0x0c5bfee, 0x1db7790, 0x15808e1, 0x0471345,
  49157. 0x1935283, 0x03d7dc4, 0x1959363, 0x185bcc1, 0x1c00ac9, 0x1a57915,
  49158. 0x0aa748a, 0x0dec630, 0x101b28e, 0x00fa993, 0x101d71c, 0x00ebf23,
  49159. 0x018f882, 0x088fb6a, 0x146faa9, 0x13f4c51, 0x12a13df, 0x1d0bb73,
  49160. 0x0715479, 0x0efe980, 0x106215b, 0x0eac449, 0x1cc64f2, 0x08e3574,
  49161. 0x18e57cd, 0x01f5f02, 0x0f8dd91, 0x083d020, 0x02833ac },
  49162. { 0x1a5ec5c, 0x125c346, 0x0c91f95, 0x103811b, 0x0c3d9da, 0x0bd3945,
  49163. 0x07c2e31, 0x1853af8, 0x19d343d, 0x08957f3, 0x180ce4d, 0x099ffb8,
  49164. 0x01b438e, 0x0e7d0ca, 0x1689c03, 0x00892fa, 0x1f82732, 0x16af991,
  49165. 0x0e4f1b9, 0x0f4b1c2, 0x04311b8, 0x08825d5, 0x1b2da2f, 0x04569af,
  49166. 0x01c5a47, 0x1d5604e, 0x1c81ad7, 0x085f552, 0x16327ef, 0x1e6b4cb,
  49167. 0x1678772, 0x010ef0f, 0x15ba9e4, 0x000c8b2, 0x1d5f797, 0x117ab38,
  49168. 0x0bcf353, 0x1810768, 0x18c0d9c, 0x0a9493a, 0x0120cd4 },
  49169. { 0x0b0f9ee, 0x0dc7a65, 0x03bbaff, 0x00599cb, 0x1c003ef, 0x068332d,
  49170. 0x1a1056a, 0x0e936d4, 0x09b9577, 0x01769d3, 0x06ad719, 0x0fe08e4,
  49171. 0x133de48, 0x10d2786, 0x0bfce00, 0x1bb9bde, 0x15829db, 0x15e8b7a,
  49172. 0x1a4f7fc, 0x00b6961, 0x0ec12ef, 0x0905e4d, 0x1787ea8, 0x0cff525,
  49173. 0x0e2c2d4, 0x11a336d, 0x117accf, 0x0b1b5ec, 0x0103cb7, 0x0cfb478,
  49174. 0x0c299eb, 0x137c048, 0x11f693a, 0x02a5e0a, 0x125bad0, 0x1daad30,
  49175. 0x1019336, 0x18b3bf3, 0x1a8fa3b, 0x02cffbd, 0x0021cfd },
  49176. { 0x15c36f3, 0x1b8afef, 0x095171c, 0x0fac95a, 0x103bde3, 0x07bb89b,
  49177. 0x03443cb, 0x190aa6d, 0x10f3993, 0x12f63db, 0x0b93287, 0x0eec609,
  49178. 0x0bfdb16, 0x1e9dd8c, 0x03dc5f8, 0x07ab41b, 0x13f6634, 0x0a93383,
  49179. 0x158022d, 0x16a5de2, 0x070ffae, 0x1c91252, 0x0e5eb57, 0x0556a35,
  49180. 0x0e391ed, 0x01657c3, 0x1e65d0c, 0x1818fca, 0x0ae28ad, 0x140bfe8,
  49181. 0x073223e, 0x17f1dab, 0x07c22df, 0x145db40, 0x08c7ac4, 0x06bbdb8,
  49182. 0x020595a, 0x16e6ce5, 0x1de39c7, 0x08d8e79, 0x007265b },
  49183. { 0x166232f, 0x0ccf85e, 0x1c59cf7, 0x138804e, 0x059aaf8, 0x0307e26,
  49184. 0x1b7e96e, 0x0775f04, 0x07a943f, 0x1cf5455, 0x110a348, 0x1634a47,
  49185. 0x1a0e0e1, 0x14b9dca, 0x1a838e9, 0x0ea76ab, 0x0aa2557, 0x1f51cce,
  49186. 0x1a55ec7, 0x1bee5e0, 0x0302f8a, 0x009de9a, 0x00e27cd, 0x148752e,
  49187. 0x127d0f8, 0x0b7999f, 0x02b6bde, 0x1b38181, 0x012aa2c, 0x124da4e,
  49188. 0x1a5b732, 0x0f4158d, 0x188deee, 0x004076e, 0x1d74191, 0x1b1e8ea,
  49189. 0x0cc2f4b, 0x0eb33e8, 0x125b1ba, 0x09663a2, 0x036c575 },
  49190. { 0x123d84b, 0x0023779, 0x113e448, 0x04fcf13, 0x0699112, 0x0dc02ad,
  49191. 0x0bd3a48, 0x09c961d, 0x0807997, 0x19cc225, 0x1e31e58, 0x0cd4e81,
  49192. 0x09c9054, 0x06b6f7a, 0x06343df, 0x1c97438, 0x06b4b23, 0x0a94bed,
  49193. 0x1060031, 0x13bfe78, 0x07771c0, 0x0d9bf7b, 0x1b1241d, 0x0a27bda,
  49194. 0x03a4050, 0x182d4a6, 0x05ac2c5, 0x1ace85d, 0x0af5ae3, 0x024a624,
  49195. 0x17b01e1, 0x192b045, 0x0c01532, 0x06ca7a0, 0x1797059, 0x0b45bb5,
  49196. 0x02975eb, 0x054564d, 0x0513bf2, 0x0c2328d, 0x006fbf8 },
  49197. { 0x145aa97, 0x099c71f, 0x1facb59, 0x103a081, 0x183b58c, 0x0f7c5ce,
  49198. 0x1d66c3f, 0x0f80bfd, 0x0e4d741, 0x1f5838d, 0x08688de, 0x03eb661,
  49199. 0x03982b6, 0x1db2de8, 0x17ca8ab, 0x0d7e698, 0x09d5cbf, 0x0f2055e,
  49200. 0x01984a9, 0x1864dbe, 0x0e28422, 0x0ecab8d, 0x124879a, 0x1a6869d,
  49201. 0x0b10b23, 0x099be44, 0x1e7681e, 0x0da5d2a, 0x19cf4d9, 0x03509b0,
  49202. 0x0860cf5, 0x1b2bddf, 0x1d19653, 0x147876c, 0x104680f, 0x0254fb0,
  49203. 0x04bb5ab, 0x1214a98, 0x0a7a979, 0x1fa3e1f, 0x05e9ca0 },
  49204. { 0x17c5dc4, 0x0a2b88c, 0x16896f5, 0x1fcf152, 0x02da40b, 0x0d87597,
  49205. 0x07bf3ff, 0x0f8cbf7, 0x00d1746, 0x0a96e16, 0x031a8fa, 0x18f78eb,
  49206. 0x1ac1fc9, 0x0a01a54, 0x1e558b3, 0x096adf8, 0x1be61f6, 0x19371b7,
  49207. 0x1a11ca2, 0x18973c3, 0x0c8a6ad, 0x09d47cd, 0x1fc597f, 0x1c7c026,
  49208. 0x13a4503, 0x071bde4, 0x0d9591e, 0x1598aa2, 0x0ddc77e, 0x0b8b832,
  49209. 0x0534ce4, 0x0ed26d2, 0x1b318dc, 0x012533a, 0x071cd89, 0x08d363e,
  49210. 0x09955f3, 0x01022da, 0x1abe233, 0x1678d06, 0x0940622 },
  49211. { 0x1997973, 0x0665b86, 0x04551c4, 0x1ba7f1e, 0x1b29625, 0x0bd5ea9,
  49212. 0x113556e, 0x14b19e1, 0x0673e14, 0x1190f05, 0x18891b1, 0x1f3a7a4,
  49213. 0x110541a, 0x17e41d8, 0x1b61d51, 0x0a549bc, 0x1a8f016, 0x123f4be,
  49214. 0x16600ad, 0x05674d5, 0x04b20f8, 0x1ad74e2, 0x1a6a901, 0x1a57eee,
  49215. 0x15de2ce, 0x06d579f, 0x0925e90, 0x1de3d51, 0x03ba9c1, 0x03041e1,
  49216. 0x120b83e, 0x1e32145, 0x0a998a4, 0x119b46c, 0x12333f7, 0x03c5693,
  49217. 0x1de6bd7, 0x1a4c125, 0x1b6dae7, 0x0c8f0b7, 0x080bb16 },
  49218. { 0x1145cb5, 0x0baff7e, 0x020c179, 0x0358bcd, 0x155ee56, 0x09d9398,
  49219. 0x1c33e1e, 0x0708c3c, 0x0133b23, 0x18aa9ef, 0x1ee81e7, 0x0187454,
  49220. 0x1a2fb9e, 0x1f38437, 0x0ff5aa0, 0x1972787, 0x1008bb4, 0x0db5d42,
  49221. 0x1be0b6f, 0x0daf12e, 0x09ff0b6, 0x1b2a75a, 0x1f569bf, 0x0416644,
  49222. 0x1d2371f, 0x06e66b2, 0x09538a7, 0x13d4938, 0x118ff97, 0x0cb1e58,
  49223. 0x02d925d, 0x198b000, 0x09598dd, 0x03bce4b, 0x0460443, 0x0b2a20f,
  49224. 0x03b85a3, 0x1e0aa43, 0x08d43b7, 0x1d48242, 0x0077ba5 },
  49225. { 0x1d86f61, 0x11c69e6, 0x02ac2ce, 0x0a0a054, 0x0312144, 0x1681392,
  49226. 0x1b71601, 0x01e3225, 0x08a32f1, 0x0ee0fcc, 0x031d800, 0x03a21d0,
  49227. 0x13bb1d3, 0x1a32745, 0x1bb1f97, 0x093dda8, 0x1369abf, 0x1eab4d7,
  49228. 0x136b79d, 0x10dd4e5, 0x19209d2, 0x06a2d6a, 0x0af9c08, 0x1335cfe,
  49229. 0x1236e62, 0x003d5f2, 0x174fd57, 0x1262f37, 0x150e80c, 0x0cad291,
  49230. 0x01a04e2, 0x15fe0eb, 0x101265c, 0x1cb2984, 0x06cbd1c, 0x02b6790,
  49231. 0x1bc77d2, 0x1bac0ec, 0x08b8aeb, 0x1be8b23, 0x06b2006 },
  49232. { 0x05b1bc1, 0x128544b, 0x13f6cbf, 0x152c576, 0x131f536, 0x073fccc,
  49233. 0x034cc00, 0x0bdaae3, 0x153d512, 0x0394792, 0x0972be1, 0x0309a42,
  49234. 0x1e4f8a6, 0x1abfb3c, 0x1c69c04, 0x180b4a9, 0x00c1531, 0x0b854fa,
  49235. 0x1ea2ddd, 0x01972ed, 0x0ce910d, 0x0f4ee09, 0x0d1dbd0, 0x0abf129,
  49236. 0x17a7527, 0x0d22e46, 0x01895d0, 0x0d825c2, 0x17b16cd, 0x17dc648,
  49237. 0x08098a9, 0x071ad61, 0x0d116e6, 0x1c74192, 0x0300cb0, 0x19092a8,
  49238. 0x06868af, 0x0dc88e3, 0x0d54215, 0x14d7a4d, 0x053217e },
  49239. { 0x19f52b4, 0x0023992, 0x11b3f21, 0x17cc422, 0x168da9c, 0x05e9374,
  49240. 0x0e17b2b, 0x0892c9d, 0x1e4a543, 0x1bed516, 0x093fdea, 0x1090703,
  49241. 0x0f6dc3b, 0x00e40af, 0x1ea5acd, 0x163c340, 0x1e8c3d4, 0x0627d74,
  49242. 0x0b3a7aa, 0x071a3c8, 0x052f0f9, 0x061ae60, 0x09c9f6b, 0x140de0f,
  49243. 0x001c9e9, 0x0d0e40f, 0x0d29b59, 0x13c11b9, 0x04a9a6a, 0x08b9b02,
  49244. 0x16fe38b, 0x1e57a52, 0x1893dd0, 0x00d894c, 0x0de7e5e, 0x05411a6,
  49245. 0x01830ac, 0x1eb000b, 0x0fbbd92, 0x03db35b, 0x0038693 },
  49246. { 0x09885a5, 0x1d5d9e8, 0x0c1f435, 0x0fc6ab7, 0x0d9d2b6, 0x175d76f,
  49247. 0x0e33d4d, 0x1ac7784, 0x0699ce4, 0x0e5173c, 0x1653358, 0x088e222,
  49248. 0x12354ff, 0x0198b56, 0x12f9c24, 0x1eb88ab, 0x1fd49ff, 0x020c33c,
  49249. 0x1e71b10, 0x159aea1, 0x121a75b, 0x0414b93, 0x19dfb72, 0x1dea05e,
  49250. 0x16887e5, 0x107412c, 0x1efcc83, 0x0b3d26c, 0x1dccb24, 0x1b77c5d,
  49251. 0x0f60738, 0x16ecd0c, 0x1a097fc, 0x036dc0d, 0x075b563, 0x179a744,
  49252. 0x14a8748, 0x04b3e6d, 0x0708039, 0x0922a08, 0x02caaf7 },
  49253. { 0x0d20424, 0x0c00337, 0x151513e, 0x06448e2, 0x13e4ea2, 0x0d46435,
  49254. 0x14695e0, 0x0164d1d, 0x17ae5b7, 0x06855ba, 0x14e6092, 0x06406ad,
  49255. 0x046ca8b, 0x16f98fd, 0x1a39a04, 0x1b9e539, 0x032d925, 0x15c84e9,
  49256. 0x159c8f7, 0x191ef1e, 0x16f9302, 0x14d5d64, 0x045c975, 0x1a342e0,
  49257. 0x047ca57, 0x1f3b2b5, 0x070628a, 0x176baa2, 0x10d9d96, 0x02f8d6a,
  49258. 0x062d5b9, 0x0e160aa, 0x0e886e2, 0x07fc89b, 0x1cf4276, 0x1d8f8e3,
  49259. 0x1350361, 0x10ddf14, 0x0ef6196, 0x0648bfc, 0x086d7f5 },
  49260. { 0x0bf719a, 0x0b75b58, 0x044e67c, 0x111787b, 0x1697509, 0x0680da5,
  49261. 0x039489b, 0x039f5ca, 0x090898d, 0x1f1d62a, 0x1b199b4, 0x13b710f,
  49262. 0x184da3b, 0x1df522d, 0x0c01913, 0x160b0b0, 0x1d98355, 0x19b4f9d,
  49263. 0x1e6f304, 0x047350a, 0x18110fb, 0x1cb715e, 0x13d6d14, 0x0331fa4,
  49264. 0x13baf24, 0x08e803f, 0x0e20df5, 0x114cedb, 0x075b166, 0x1531757,
  49265. 0x0f1a3bb, 0x07b6c10, 0x1fe5f94, 0x1b62d2f, 0x143df60, 0x0aa5929,
  49266. 0x0bc1ff8, 0x061e37e, 0x0d37569, 0x1c70d81, 0x0682a55 },
  49267. { 0x07495aa, 0x11ad22c, 0x117723c, 0x18698e4, 0x0276026, 0x0d23719,
  49268. 0x03316dd, 0x1cfad5c, 0x1ecc3e5, 0x0869cb2, 0x0598a62, 0x085e285,
  49269. 0x071b133, 0x0543b91, 0x0649f9a, 0x14d1791, 0x07e2324, 0x10aa1f9,
  49270. 0x0737086, 0x08ed089, 0x10ac6c4, 0x078a296, 0x06f1ff5, 0x09608b9,
  49271. 0x10a31ff, 0x1089661, 0x0214bdd, 0x02ba8d4, 0x1dd7a64, 0x1829637,
  49272. 0x046b5cd, 0x0f698f9, 0x0ecc3ab, 0x06b866e, 0x006dda2, 0x0ba59be,
  49273. 0x040d390, 0x0792a17, 0x1373415, 0x14dfdfc, 0x002227f },
  49274. { 0x151948b, 0x0f7ecdb, 0x0974601, 0x0dfbfa4, 0x0efeed4, 0x1645914,
  49275. 0x038253c, 0x1cb9625, 0x196f7c5, 0x088485f, 0x0fb2827, 0x0089699,
  49276. 0x040959d, 0x0704658, 0x12557e6, 0x09f9c43, 0x19d68fa, 0x15e0f93,
  49277. 0x1c42ba6, 0x03c29c0, 0x07f4b02, 0x0fc408b, 0x19345ba, 0x193e34a,
  49278. 0x1c22ebb, 0x1757ad2, 0x1f8d083, 0x1e6e2db, 0x04e8435, 0x1c8aeae,
  49279. 0x0065c7a, 0x051ff75, 0x0fc55fc, 0x1babc32, 0x1535f74, 0x00684fc,
  49280. 0x15ebc7d, 0x1735310, 0x05de111, 0x134524d, 0x0547e24 },
  49281. { 0x1ffda27, 0x1434550, 0x1d411c1, 0x18f2ab9, 0x14e6cdc, 0x11f9ec5,
  49282. 0x1478429, 0x015eca2, 0x09de5e7, 0x1a093f5, 0x10a08d6, 0x1375f26,
  49283. 0x113d2c0, 0x1517bea, 0x126760e, 0x1804a31, 0x11dddee, 0x15062dd,
  49284. 0x0f73c73, 0x1bbf080, 0x1eda7ff, 0x14b0b7e, 0x195f934, 0x06543e1,
  49285. 0x1656979, 0x071e922, 0x00c6475, 0x08ebc1d, 0x00218b7, 0x1f50e11,
  49286. 0x014d1e6, 0x117964a, 0x0eb5c90, 0x099737e, 0x13a8f18, 0x1638d0b,
  49287. 0x1fe6c1e, 0x16e3a2d, 0x03bab10, 0x181a561, 0x045a41c },
  49288. { 0x1bbf0e1, 0x0d963a6, 0x1c38faa, 0x1f42f9e, 0x01ff962, 0x15a6332,
  49289. 0x09d617b, 0x0fdb83d, 0x0a9beb1, 0x1aa0969, 0x15d0693, 0x1ea5450,
  49290. 0x1f2c9e4, 0x0c27e88, 0x17df692, 0x0309d27, 0x1dc0df3, 0x0d957de,
  49291. 0x10878dd, 0x047a4a4, 0x181e963, 0x1224efb, 0x121ef87, 0x0b137d5,
  49292. 0x001ed3d, 0x16e8a2b, 0x14a3ffd, 0x1e17b37, 0x0f298c0, 0x0cea450,
  49293. 0x110b4c9, 0x1b11cd2, 0x02d7a77, 0x0157b1b, 0x1adadab, 0x0550980,
  49294. 0x1087da0, 0x028564e, 0x10322ea, 0x19285dc, 0x0128763 },
  49295. { 0x0bac178, 0x00783d6, 0x1db8a6a, 0x0869611, 0x1cc2004, 0x1f6f693,
  49296. 0x07451c3, 0x0cfd2c6, 0x1866157, 0x108aed1, 0x021522c, 0x0b89961,
  49297. 0x037c75f, 0x0d17470, 0x0a7484e, 0x02ea4b6, 0x0668b88, 0x07f4fed,
  49298. 0x0779faf, 0x1b1b118, 0x01233f1, 0x0f0190c, 0x0d1d959, 0x1932be7,
  49299. 0x05561b1, 0x18d839b, 0x02c4fad, 0x02c1963, 0x13a0eb2, 0x1289ccd,
  49300. 0x1d1fa36, 0x1641f9a, 0x08ca1f9, 0x136b92f, 0x019ed04, 0x1ed4fc0,
  49301. 0x08bb637, 0x01025bb, 0x1d3487a, 0x199f89e, 0x075e96b },
  49302. { 0x119716e, 0x08fee06, 0x1494627, 0x10f8708, 0x1f58505, 0x0c3e956,
  49303. 0x11b47aa, 0x01ec950, 0x16c0715, 0x15b5fc1, 0x1f56dc4, 0x1a8c9ad,
  49304. 0x1f91d85, 0x07a9faa, 0x1e220d9, 0x1225352, 0x1d88150, 0x030041d,
  49305. 0x0a1dbd2, 0x0e4d07d, 0x0489a76, 0x1d60ad9, 0x1a02cb9, 0x1a3b325,
  49306. 0x0f8d242, 0x0494c2f, 0x073cf79, 0x18af605, 0x0876279, 0x1c1e58a,
  49307. 0x01ff80b, 0x115cb6d, 0x0ba4fe4, 0x1c0cb57, 0x026d75a, 0x1b150de,
  49308. 0x016e523, 0x07ab35d, 0x0252762, 0x135744d, 0x0309a6e },
  49309. { 0x1fbe97a, 0x1f7285e, 0x1137bc9, 0x1f718a1, 0x1a5fe70, 0x104fae0,
  49310. 0x1ac05ff, 0x18b98f7, 0x1bed36c, 0x1d0ad42, 0x03b4ea3, 0x19b6eaa,
  49311. 0x01c0c3a, 0x15c8434, 0x007be1f, 0x0b9978b, 0x162c49d, 0x050ad99,
  49312. 0x1e8993a, 0x162e283, 0x0e880fb, 0x07c70f7, 0x099fe36, 0x1856c7a,
  49313. 0x0cfd621, 0x17ee98e, 0x154ef9f, 0x049b7cf, 0x0a358a9, 0x03bfed9,
  49314. 0x10750ba, 0x0ebad15, 0x19673c7, 0x1f52ae7, 0x03f5c53, 0x05c6b2f,
  49315. 0x1769b20, 0x19b329a, 0x0de27ba, 0x115aeb2, 0x0045825 },
  49316. { 0x042dbdf, 0x18d3a50, 0x1e8977d, 0x0eaef3b, 0x0d40585, 0x17332b9,
  49317. 0x12e9c34, 0x05c1ccd, 0x1ca2e89, 0x02eb3a2, 0x19ad7ca, 0x1bde1e1,
  49318. 0x03f56a8, 0x1183b3e, 0x1ba1476, 0x0d739c1, 0x0584334, 0x14c602b,
  49319. 0x1acf1d0, 0x1f9c4da, 0x1e00b35, 0x1f9cbbb, 0x102256f, 0x16db10d,
  49320. 0x0f6a6e7, 0x025c1e4, 0x0d3c0a4, 0x1dc2908, 0x04ec34b, 0x08ad974,
  49321. 0x045fdd2, 0x12da213, 0x0af663c, 0x1d6605d, 0x1d5f907, 0x1200970,
  49322. 0x0f86c02, 0x1c4072b, 0x1cd628a, 0x1c12b6e, 0x053f4a3 },
  49323. { 0x1fc48e7, 0x1846744, 0x0bac46e, 0x0f5f56b, 0x1a60c57, 0x00e5ad5,
  49324. 0x12fe283, 0x16de0d7, 0x079757c, 0x0977d75, 0x064581f, 0x0162ec6,
  49325. 0x09e26d9, 0x15bbdbd, 0x0a86ad8, 0x1e57e85, 0x0cd285d, 0x01c7760,
  49326. 0x0ea3dfc, 0x128febe, 0x15b5d35, 0x077e0e5, 0x05f2370, 0x0b08b9f,
  49327. 0x0cca0c4, 0x1797f5c, 0x0492789, 0x0dd1b31, 0x1ed89a1, 0x0736a41,
  49328. 0x1cdf099, 0x0a3b220, 0x1a3f145, 0x14cf809, 0x18b8c17, 0x070a02a,
  49329. 0x0908d56, 0x1cc6ba3, 0x148daab, 0x0a7ae47, 0x00a99e6 },
  49330. { 0x1bc0559, 0x1b7a355, 0x05808d4, 0x1735434, 0x0163067, 0x0b40dae,
  49331. 0x148a430, 0x00e453f, 0x11378e9, 0x092a5f0, 0x04e8b58, 0x0af556f,
  49332. 0x1bc60ff, 0x0332a96, 0x1cb7e2d, 0x0146d4d, 0x0938c17, 0x14d698c,
  49333. 0x06dd366, 0x1b357c5, 0x0523c5c, 0x19fbc24, 0x13dd1c9, 0x01c60c7,
  49334. 0x0a93a0d, 0x1ec6093, 0x0d09238, 0x1c4043c, 0x03ddfaf, 0x01f7419,
  49335. 0x19f65cd, 0x0664c73, 0x1768775, 0x12aa44f, 0x10c5d4c, 0x152ca1f,
  49336. 0x1eebf7e, 0x0aede89, 0x12f02d6, 0x08a021f, 0x03a95cb },
  49337. { 0x1d7ff2e, 0x134659c, 0x123e553, 0x1783ab8, 0x0dd1cb4, 0x14a1c54,
  49338. 0x0b1ddc5, 0x19c0552, 0x091cad8, 0x0b2e058, 0x142349e, 0x1156659,
  49339. 0x1a0c579, 0x134815e, 0x16f0f0e, 0x1a43034, 0x1255186, 0x1aa2e84,
  49340. 0x09f9936, 0x0ef9b7a, 0x12daf00, 0x1246684, 0x0055f2a, 0x0a65566,
  49341. 0x1a3a024, 0x1d19517, 0x0d0732a, 0x0bf6c73, 0x04aee6a, 0x16e0a3a,
  49342. 0x16805c0, 0x19b7527, 0x05bb436, 0x1c278a4, 0x1d98ca5, 0x0726b2f,
  49343. 0x1ad672c, 0x189e0ee, 0x1c91575, 0x05c0616, 0x0366d22 },
  49344. { 0x13ea5b2, 0x1a43aab, 0x1137542, 0x17521b4, 0x0fce401, 0x0d01880,
  49345. 0x1e995e8, 0x0c0f6a7, 0x1cf1144, 0x1154052, 0x02fd25c, 0x1e0b4a7,
  49346. 0x010b8eb, 0x0995669, 0x050451f, 0x1a0fb5c, 0x12c7b5a, 0x1b34938,
  49347. 0x1d23281, 0x0bfdce7, 0x18d86dc, 0x0c95c53, 0x063b452, 0x05e2eb3,
  49348. 0x13145dd, 0x1c72745, 0x057e5c6, 0x06811bc, 0x11b3684, 0x136ed6f,
  49349. 0x1f8157a, 0x1cb2656, 0x1b76e73, 0x049fea5, 0x054f4c2, 0x148850e,
  49350. 0x0661bfd, 0x1ee6690, 0x1f4945c, 0x132f3bd, 0x09072ba },
  49351. { 0x020ea39, 0x0f26ecb, 0x1ba11d3, 0x1f90639, 0x1bf1649, 0x1d4e21f,
  49352. 0x02ec734, 0x1aa161d, 0x13f3df1, 0x11c1437, 0x1b26cda, 0x05671e1,
  49353. 0x034ed07, 0x194e04f, 0x193261d, 0x044854d, 0x0c68ad1, 0x1751f45,
  49354. 0x0f7e96e, 0x01c457f, 0x15926ae, 0x07d8507, 0x1585c7b, 0x10e3f1a,
  49355. 0x0886d6b, 0x1ed19d9, 0x04d7846, 0x16337d5, 0x0f153f6, 0x0d203f8,
  49356. 0x1b93605, 0x0fad805, 0x0608d97, 0x047a33f, 0x0f66daa, 0x08fd1e4,
  49357. 0x039d165, 0x164b292, 0x1b0a49a, 0x17a6aa8, 0x08d92c6 },
  49358. { 0x1eb0ff7, 0x06be755, 0x0be2cf8, 0x087c1c8, 0x1be3525, 0x00424cf,
  49359. 0x0c89b7a, 0x186afa3, 0x11cd44b, 0x167170f, 0x13fb867, 0x1b7886b,
  49360. 0x1c1245a, 0x1c9fac0, 0x13ba103, 0x1728f0e, 0x19cbda0, 0x148b53b,
  49361. 0x095eb82, 0x1902b5f, 0x01b0abc, 0x16f8531, 0x05eb7b0, 0x1f217b9,
  49362. 0x0502b81, 0x11edf35, 0x054ef79, 0x097f3bc, 0x084c255, 0x0d5fbc4,
  49363. 0x1c2a23f, 0x19776a8, 0x0aa52b1, 0x09f7a98, 0x05b0a41, 0x15f00a7,
  49364. 0x0dd827e, 0x01ec4c4, 0x1970235, 0x02eb835, 0x04e4bec },
  49365. { 0x0c09676, 0x041d17e, 0x0a52fe1, 0x1e33d53, 0x057c4a3, 0x0152eea,
  49366. 0x0bbcf5c, 0x1b14d0a, 0x0843fe7, 0x1c8afe9, 0x0d45639, 0x15302dc,
  49367. 0x10644bb, 0x0f6ba37, 0x06e5742, 0x1e16b1a, 0x181b90a, 0x123b822,
  49368. 0x13f44d7, 0x0978d7a, 0x13a50bd, 0x13da741, 0x09b7381, 0x0ad5343,
  49369. 0x08f30ff, 0x1ff1607, 0x03b0b18, 0x1390100, 0x1508a8a, 0x1052cc7,
  49370. 0x0e91270, 0x0652502, 0x0b94cb3, 0x140d101, 0x14a3b1f, 0x0ec8fc7,
  49371. 0x1487767, 0x133e8d5, 0x1b491cb, 0x1eadf3b, 0x07a4aa3 },
  49372. { 0x07a0045, 0x178dd71, 0x0d41567, 0x1f64859, 0x1c812d4, 0x07c6926,
  49373. 0x1e390e7, 0x0a84748, 0x19b3f9c, 0x1aa27e2, 0x087f3e5, 0x02655ff,
  49374. 0x1b5ac68, 0x1a51641, 0x1e3fb80, 0x0976ee9, 0x00fcd3f, 0x14b6632,
  49375. 0x0144ba9, 0x1b9d3b6, 0x181e775, 0x0ee6e71, 0x19f7286, 0x1a7fcaa,
  49376. 0x0b3f3a9, 0x1a7e0f7, 0x0868649, 0x11c17e8, 0x169b123, 0x17da146,
  49377. 0x1e05664, 0x13fa13b, 0x0fcebde, 0x15aefa4, 0x093ed06, 0x0bb93bf,
  49378. 0x00a269c, 0x1ebee46, 0x0b78432, 0x0f7efe1, 0x060282a },
  49379. { 0x0eea2e7, 0x1f29c6e, 0x1875f01, 0x1078840, 0x18a322c, 0x0fb28b1,
  49380. 0x0a3e53c, 0x020ced0, 0x1c7776a, 0x10db4fd, 0x1ad017c, 0x082f6bc,
  49381. 0x02c63a3, 0x08d3db2, 0x067c962, 0x0288099, 0x0a82cad, 0x09c3496,
  49382. 0x021a6f3, 0x105ffc0, 0x066af1e, 0x070b7f2, 0x10c2dc5, 0x0032271,
  49383. 0x142f919, 0x1572fdb, 0x003e945, 0x1202cda, 0x073a43e, 0x1bd66c6,
  49384. 0x1c95543, 0x1f78b86, 0x16a407d, 0x01cf696, 0x14e5a33, 0x01c8f4e,
  49385. 0x0a5fbe7, 0x09436ca, 0x0e508ff, 0x18e478d, 0x05f4ae9 },
  49386. { 0x1f4d561, 0x116ed29, 0x064b65a, 0x002db43, 0x086d45d, 0x0a58289,
  49387. 0x007eff7, 0x1d48934, 0x19f2195, 0x0a44506, 0x1986cc9, 0x161546e,
  49388. 0x02c4151, 0x1cf2f70, 0x0311c7b, 0x1102f73, 0x06ea865, 0x1525e54,
  49389. 0x09a3f02, 0x15b70ef, 0x06a9bbc, 0x04b5b9b, 0x022cd19, 0x0cc385b,
  49390. 0x098d415, 0x1061977, 0x1b24050, 0x0b67698, 0x0752aff, 0x139a979,
  49391. 0x07288d4, 0x0a21c9b, 0x164ce73, 0x0554017, 0x1c9ab29, 0x072734f,
  49392. 0x001aa50, 0x09f148a, 0x0bf4a73, 0x047b88d, 0x092a014 },
  49393. { 0x02f7dbd, 0x125f08e, 0x1feba7c, 0x1f6faa4, 0x1a8c900, 0x0478946,
  49394. 0x096ee19, 0x0832c7c, 0x0481419, 0x15b89f1, 0x1d5bee6, 0x1a02f4c,
  49395. 0x1de87f7, 0x02c6c85, 0x1376178, 0x0d57a4e, 0x07a8256, 0x0c11ff7,
  49396. 0x1090065, 0x0461aee, 0x046e9f6, 0x16565af, 0x0115e7c, 0x14990fc,
  49397. 0x0626316, 0x02b9511, 0x0f666c2, 0x1943348, 0x08789e9, 0x15d1f24,
  49398. 0x0f61b70, 0x1280d87, 0x160b5b9, 0x04abf7c, 0x0a2e258, 0x16de588,
  49399. 0x161c515, 0x1a43830, 0x12e6e41, 0x03d5511, 0x00fc8fe },
  49400. { 0x0b90f2d, 0x10df6ff, 0x1565a2b, 0x1949162, 0x1393bb3, 0x074b1af,
  49401. 0x0be73d9, 0x18457cc, 0x0f8be75, 0x0a61208, 0x1dd4a4d, 0x0e06bcd,
  49402. 0x11bd7ea, 0x0b16559, 0x1921a38, 0x1e7ff84, 0x070c860, 0x1589c8f,
  49403. 0x16260df, 0x0cf8ea3, 0x0941df3, 0x1a15f99, 0x18542da, 0x182631f,
  49404. 0x0f46e78, 0x0b04af4, 0x0e8b12c, 0x167e3b5, 0x1afbf32, 0x1ae7380,
  49405. 0x1171b33, 0x0bd10e9, 0x0d27530, 0x16e5f1d, 0x1945771, 0x1a7250b,
  49406. 0x199892d, 0x0aa6c36, 0x1e27cf2, 0x0c5bfa6, 0x02d0ba8 },
  49407. { 0x072e1af, 0x0c7745a, 0x0f33ab3, 0x1d6ed57, 0x0b354ea, 0x0c9fdef,
  49408. 0x02fe343, 0x00d36a4, 0x1fe6fc7, 0x066b06b, 0x18bce7f, 0x1bbd49d,
  49409. 0x1ea9353, 0x0d40f28, 0x0c2497a, 0x0ceeebd, 0x1a1d136, 0x0f719a6,
  49410. 0x14d535a, 0x05193fa, 0x0d54c1d, 0x0ac952f, 0x0e5dc5d, 0x1ee1b03,
  49411. 0x0367fb7, 0x13d2e9f, 0x0aa4ceb, 0x17cfdd9, 0x1cfbb77, 0x18fcf11,
  49412. 0x0049933, 0x11292ed, 0x1129f4a, 0x111ad86, 0x169026d, 0x14e0a6e,
  49413. 0x08a376d, 0x1b263aa, 0x16ff333, 0x0249a83, 0x0963c87 },
  49414. { 0x036a814, 0x14865ef, 0x0ad6eb8, 0x0ae6762, 0x1bdb019, 0x1ff070c,
  49415. 0x1619fdd, 0x1d41d75, 0x129720c, 0x13e8cfe, 0x07b1c82, 0x0ca3205,
  49416. 0x1e434d7, 0x1da8c88, 0x1abfc5e, 0x0fec10a, 0x19ad80a, 0x168512e,
  49417. 0x0123041, 0x150d5ff, 0x149cffc, 0x1ca1d6b, 0x14fa2f7, 0x1cd2d76,
  49418. 0x00284e3, 0x10afdcf, 0x0bbbb90, 0x1d6cc61, 0x0f3c633, 0x1dcf176,
  49419. 0x102763e, 0x09c0181, 0x1da4ffa, 0x1df5638, 0x1965755, 0x1f652d7,
  49420. 0x08cec7e, 0x08fdd6d, 0x15ef45d, 0x079feab, 0x02d03eb },
  49421. { 0x0f2ec1d, 0x1492f82, 0x1b8bac5, 0x0c1a28f, 0x0878f27, 0x0cecf05,
  49422. 0x1d812ab, 0x0b6885b, 0x13f7103, 0x08efa25, 0x05756e2, 0x0567197,
  49423. 0x03c2827, 0x0f74769, 0x053bed5, 0x1e7c6de, 0x00f13b0, 0x179e223,
  49424. 0x0f5ccd7, 0x1f37aed, 0x1a6e889, 0x18fbaad, 0x0227b9d, 0x04336d9,
  49425. 0x184feed, 0x008b134, 0x1fb0bb9, 0x1a898e6, 0x0fcd372, 0x02d131f,
  49426. 0x1aee50e, 0x0cc6f04, 0x109321b, 0x15bd3ec, 0x09e4fb9, 0x0f849f1,
  49427. 0x07cf61b, 0x0546925, 0x0b3668f, 0x1838a97, 0x0842e40 },
  49428. { 0x061d843, 0x1476b53, 0x0335689, 0x149eb66, 0x02328cc, 0x08f0bb8,
  49429. 0x1fb444c, 0x0ce2dcd, 0x0c66959, 0x086f65a, 0x0b8a01a, 0x17ecaf6,
  49430. 0x10bdac5, 0x0f7f216, 0x1fe0b28, 0x1945f04, 0x00aca5f, 0x162aa76,
  49431. 0x1791541, 0x04ed83b, 0x1513ac5, 0x047183b, 0x0dfd32c, 0x10f2f99,
  49432. 0x16d9acc, 0x1694657, 0x10364cc, 0x0b2c902, 0x1a409fd, 0x114b942,
  49433. 0x04f31ab, 0x0c447a1, 0x173c2a5, 0x07e04bb, 0x1ab144a, 0x185aa4c,
  49434. 0x1c31fe6, 0x0b5be5d, 0x04ca296, 0x1359592, 0x00e6331 },
  49435. { 0x0360ac2, 0x097d6f8, 0x016ad73, 0x1c50bcc, 0x06b660d, 0x0dcd8a4,
  49436. 0x13c4389, 0x0a9058d, 0x1aa9ac5, 0x0afd1c6, 0x101c3a7, 0x0370a4d,
  49437. 0x0d3dfcf, 0x1fe6629, 0x1e6a5ac, 0x18fea06, 0x0290bfc, 0x0f1b2ce,
  49438. 0x074f9a8, 0x147b6ad, 0x02d55b1, 0x1acdbda, 0x0d054a2, 0x045400d,
  49439. 0x1efa49c, 0x1db49a6, 0x026d338, 0x01e7003, 0x0baf329, 0x1e0259d,
  49440. 0x18ac1ce, 0x1ff0713, 0x1a5a222, 0x0d1ad93, 0x1547fe9, 0x0416f53,
  49441. 0x08e1a7c, 0x1cf6779, 0x1c16924, 0x14430e4, 0x088839d },
  49442. { 0x01ce29a, 0x1361838, 0x15415ad, 0x0cb1303, 0x1acaf12, 0x0fcf909,
  49443. 0x1f03041, 0x027a9b5, 0x0373e3d, 0x172b8f3, 0x1b8f2bf, 0x190df45,
  49444. 0x1ae7269, 0x0e901c2, 0x132992b, 0x1d359eb, 0x1573000, 0x190bf93,
  49445. 0x19c9cfb, 0x09b68e1, 0x0776c93, 0x1b9aadb, 0x10a53d3, 0x180a300,
  49446. 0x036b96f, 0x0858fd5, 0x0ec1486, 0x1f1163b, 0x0aef528, 0x0dc874f,
  49447. 0x040d5e4, 0x1b6d037, 0x17fb2eb, 0x0e1b4f9, 0x1475105, 0x1273a14,
  49448. 0x1d2e21c, 0x0ce6538, 0x0309bf1, 0x1fd43ea, 0x064128c },
  49449. { 0x0f5b0b5, 0x13c5174, 0x0167c0d, 0x19a681e, 0x1c7e249, 0x053e762,
  49450. 0x011064f, 0x1308288, 0x0bc83af, 0x1ae51a3, 0x02eec01, 0x0067f55,
  49451. 0x17f39f0, 0x19c1187, 0x063c3b7, 0x1e68a7a, 0x00cd448, 0x0bc6ff8,
  49452. 0x146a91d, 0x045181a, 0x08d1849, 0x0418649, 0x175389c, 0x0259fa7,
  49453. 0x1a6868f, 0x1036335, 0x0e22ce8, 0x122093b, 0x0dae010, 0x082c80b,
  49454. 0x1f76197, 0x1c4a7c6, 0x199e905, 0x0c38da2, 0x0309f3a, 0x1c6459e,
  49455. 0x174a132, 0x07aa6d0, 0x12f6805, 0x0137b57, 0x093634a },
  49456. { 0x1a2e304, 0x13593d4, 0x04918a0, 0x0d83498, 0x057e186, 0x1c0b886,
  49457. 0x0e0c888, 0x1fd2275, 0x1a9847c, 0x14db5c2, 0x1d1bf5f, 0x19e256b,
  49458. 0x0d29655, 0x001c733, 0x0555cae, 0x0bd56e5, 0x0016fa9, 0x0f265d3,
  49459. 0x077b6a0, 0x0220e37, 0x161ebbc, 0x0d1f8e7, 0x05fc002, 0x07c19f7,
  49460. 0x0777b37, 0x11da9b9, 0x1344e75, 0x005f213, 0x07d78e3, 0x196d27c,
  49461. 0x18c7b59, 0x168090e, 0x02077a3, 0x011591b, 0x0cb6773, 0x0f88118,
  49462. 0x06deeee, 0x062df91, 0x0d5f92d, 0x0cf780c, 0x0266cb4 },
  49463. { 0x16363e8, 0x120aa5a, 0x136dbea, 0x1078354, 0x0b4fd07, 0x0f32cba,
  49464. 0x03778ae, 0x108286b, 0x0fa004b, 0x19a571f, 0x0446996, 0x05d9e33,
  49465. 0x18cf44b, 0x129b5fb, 0x12aa0ce, 0x1b92aab, 0x0b98870, 0x0b0370f,
  49466. 0x07cd447, 0x0650fa1, 0x1364e3c, 0x15ceae7, 0x1a2cbd3, 0x157193c,
  49467. 0x0e89263, 0x108e0aa, 0x1b0daad, 0x0a91051, 0x17d1201, 0x1fe5d0d,
  49468. 0x15c24ca, 0x0a62b71, 0x0e7b5bc, 0x19d60bf, 0x0347dd1, 0x06f05fa,
  49469. 0x1c8f2af, 0x1814d41, 0x13b86f2, 0x036a48a, 0x04b1d5a },
  49470. { 0x1d52c0c, 0x128ba31, 0x06744bf, 0x1c31181, 0x1735525, 0x071cab1,
  49471. 0x0558cd8, 0x086b8c4, 0x0acfa5a, 0x059f8e5, 0x1a041e2, 0x1414f2f,
  49472. 0x0a90123, 0x18af040, 0x0c7dad6, 0x1b5b574, 0x012fca3, 0x06bef2f,
  49473. 0x17d4472, 0x0e6c361, 0x1d4e328, 0x0a32bab, 0x1f32003, 0x00fd922,
  49474. 0x10f3d52, 0x0718840, 0x04c3ba8, 0x1a9cade, 0x05a2ec0, 0x17099f5,
  49475. 0x142efdf, 0x17cd577, 0x1c07762, 0x1fb0cb7, 0x1738482, 0x159063f,
  49476. 0x1622d42, 0x1a1cfd5, 0x12c9f81, 0x07ea11c, 0x08186b9 },
  49477. { 0x1312867, 0x0e8aa04, 0x16d3186, 0x0b7f5ef, 0x1e042c0, 0x0faeed3,
  49478. 0x059a07d, 0x105839e, 0x1a4fc3d, 0x055282b, 0x02e3f94, 0x1acb9cd,
  49479. 0x04ed30e, 0x1f5a6b2, 0x0c0702e, 0x0092fd9, 0x044831c, 0x03daee2,
  49480. 0x0df66c7, 0x1cd4013, 0x1c91351, 0x1ceca3b, 0x12ee18e, 0x1a82214,
  49481. 0x0589105, 0x1bd55d3, 0x110d602, 0x0010d9e, 0x1e357e3, 0x003b485,
  49482. 0x13ac4e7, 0x04f6a42, 0x0bfff1a, 0x1d5ab89, 0x1b5c8b0, 0x14f39f8,
  49483. 0x134a9bf, 0x01ef2bf, 0x0aca91d, 0x12f93dc, 0x00bf97e },
  49484. { 0x1a19e96, 0x027646e, 0x1a2e5bb, 0x14d860d, 0x14ce18e, 0x1b48c52,
  49485. 0x184ad97, 0x132fd06, 0x10d9a0d, 0x1637b45, 0x1730246, 0x0f48c5f,
  49486. 0x1398a69, 0x0ade1f0, 0x13897c6, 0x12e60cb, 0x0dab393, 0x10c4b76,
  49487. 0x0bc4a01, 0x10341e6, 0x07df9eb, 0x170e96e, 0x14f5d05, 0x08e6b33,
  49488. 0x07976ad, 0x01cf116, 0x0a7d7bd, 0x1bc6f53, 0x09d94e3, 0x0055cf3,
  49489. 0x121adeb, 0x0153a17, 0x0bfa9e0, 0x1789073, 0x1c3559d, 0x1eaed50,
  49490. 0x1eaac23, 0x0c8dda7, 0x0aaecef, 0x0587c81, 0x08fe548 },
  49491. { 0x09a4d1e, 0x133e167, 0x00e216b, 0x069e3a4, 0x0c3eb80, 0x0830c92,
  49492. 0x03ce897, 0x038b8d9, 0x1308fb4, 0x01ef056, 0x10a53a0, 0x0b79ce3,
  49493. 0x1a9961f, 0x1817586, 0x1881e37, 0x1d16db8, 0x115b64a, 0x1e43f7a,
  49494. 0x02d3463, 0x0f3e3ca, 0x1f43696, 0x10a90cc, 0x1170026, 0x0c814bf,
  49495. 0x084be0f, 0x0b353ea, 0x048f6ad, 0x1923176, 0x075d2c4, 0x08a6321,
  49496. 0x15a99f0, 0x195a5bd, 0x1a913b9, 0x1ae46ca, 0x062dad2, 0x0c313da,
  49497. 0x142d3bf, 0x15b1035, 0x0f0fd2b, 0x0d37791, 0x03928c6 },
  49498. { 0x0cb4b64, 0x1f5256d, 0x0687792, 0x09e4c2f, 0x03f62a4, 0x0889520,
  49499. 0x12539ea, 0x03de755, 0x1d36f33, 0x02247de, 0x0e17124, 0x057880f,
  49500. 0x1b42604, 0x1090dbb, 0x1629658, 0x1d308b5, 0x04f67ce, 0x098b3a5,
  49501. 0x18ecbc3, 0x1d177c9, 0x10eb7fa, 0x0ed3e49, 0x1a077db, 0x0b3a1a8,
  49502. 0x0fa98c2, 0x0fed6f7, 0x1afa870, 0x1629b3c, 0x1405d11, 0x0e4590e,
  49503. 0x150eeab, 0x0e7124e, 0x01dff93, 0x0e6f278, 0x0cfbc1c, 0x130386b,
  49504. 0x1150d0d, 0x026970c, 0x0d3d85c, 0x11e6aa2, 0x06ccc88 },
  49505. { 0x0d7504c, 0x1b7873d, 0x1777e34, 0x1fef2b3, 0x1ca3265, 0x0f33d55,
  49506. 0x07b7bfb, 0x05e1b9a, 0x0baebf3, 0x13b7a67, 0x1b73f04, 0x0dcc029,
  49507. 0x176825a, 0x0cd6c75, 0x0306a0a, 0x19c3c17, 0x0a909b8, 0x1189012,
  49508. 0x12f4d46, 0x1fb3173, 0x08becb8, 0x1c7d58f, 0x092104d, 0x0e7959f,
  49509. 0x10f5d39, 0x12a0bf6, 0x1096754, 0x02fc290, 0x191393a, 0x1c21ba5,
  49510. 0x1a54f56, 0x0359479, 0x1792b21, 0x07c0ac7, 0x0443230, 0x1a06bfe,
  49511. 0x0d4ed7b, 0x1d31abd, 0x0bbe5ab, 0x10164df, 0x02f1519 },
  49512. { 0x1d2d439, 0x118ed14, 0x0554321, 0x0578073, 0x121fbbc, 0x02dbad8,
  49513. 0x05e49b0, 0x1d87cb5, 0x0b6ce47, 0x0b67a60, 0x031961b, 0x0ecf3b1,
  49514. 0x17baaa1, 0x199aad0, 0x076e79f, 0x0b50a06, 0x1d80aef, 0x1c1c0f1,
  49515. 0x168c6f7, 0x1b65202, 0x1d7dc71, 0x1a4a4c7, 0x18e3dad, 0x17dddec,
  49516. 0x1f3f913, 0x1d9a276, 0x07d2ad9, 0x0c2e64e, 0x02df11e, 0x16387e9,
  49517. 0x048e880, 0x040b89d, 0x1be0389, 0x1cc907b, 0x0216a3a, 0x1438432,
  49518. 0x1eb54aa, 0x002e745, 0x03595b2, 0x16e158b, 0x0354b05 },
  49519. { 0x09170e9, 0x0f11b3d, 0x0335c5c, 0x1a995aa, 0x01eec42, 0x0ee67d8,
  49520. 0x0093cf3, 0x035ff7d, 0x1a66cae, 0x19f4671, 0x11f4069, 0x14ff2cb,
  49521. 0x1eb7138, 0x0e1ecb8, 0x01638fd, 0x14e5600, 0x0c32ff0, 0x1a92c8d,
  49522. 0x0ef39db, 0x1f6b797, 0x1a18a32, 0x1c54fc0, 0x1cc906a, 0x14d0c61,
  49523. 0x13332ec, 0x09df98e, 0x11120bc, 0x08f5f3f, 0x081be28, 0x110bd23,
  49524. 0x1e5865b, 0x1cabdf9, 0x138f932, 0x06382cc, 0x12e1c2b, 0x047cfb5,
  49525. 0x0f09fac, 0x0df449e, 0x08e8750, 0x1895c6a, 0x048dc55 },
  49526. { 0x1092193, 0x11c1352, 0x1c32398, 0x04d1312, 0x046ec36, 0x04f5a0f,
  49527. 0x15abc97, 0x08a5e26, 0x083c7d2, 0x0bc0320, 0x0038e10, 0x1ecf2fa,
  49528. 0x1c982de, 0x12890a8, 0x0badb9e, 0x110d270, 0x0778af5, 0x10aa708,
  49529. 0x09473c0, 0x00e0eb1, 0x1c58187, 0x1bb8989, 0x137aea7, 0x02ab209,
  49530. 0x1b973ba, 0x19d2eb3, 0x0c7435e, 0x0a393e9, 0x0af2cd8, 0x0eb8c5c,
  49531. 0x18867ca, 0x130d71a, 0x194ccff, 0x1ce19e5, 0x092ee4e, 0x110e4bc,
  49532. 0x06e38c6, 0x0e7262b, 0x1008501, 0x1ba16db, 0x05f6a8e },
  49533. { 0x19a8690, 0x02652c7, 0x101e0dc, 0x0c5eed4, 0x1f36976, 0x1008141,
  49534. 0x0b631a4, 0x19ff782, 0x0bce3a4, 0x06ac78b, 0x0ac9b53, 0x0c94095,
  49535. 0x0878046, 0x07522bd, 0x173eee9, 0x12f2800, 0x1b3b8a5, 0x0a9bca8,
  49536. 0x1f87dce, 0x0573c89, 0x17974ca, 0x06ef992, 0x1910a2b, 0x14487b7,
  49537. 0x1a3420e, 0x00f3246, 0x0fd0f38, 0x19ccac5, 0x1db490c, 0x0210f93,
  49538. 0x1c2103c, 0x117f6f9, 0x16ccb70, 0x1cbe98a, 0x00356a1, 0x1736669,
  49539. 0x1eb814b, 0x09703d4, 0x01eb0b8, 0x0e594ff, 0x01ca650 },
  49540. { 0x19d25a0, 0x190e795, 0x1b6feec, 0x14814e8, 0x06affdc, 0x11b45ab,
  49541. 0x14c3967, 0x11f8382, 0x07d8006, 0x1768f52, 0x1f75a15, 0x11fcac8,
  49542. 0x089b74d, 0x04dbc6d, 0x05ad41e, 0x067223b, 0x0438bbe, 0x19cdba9,
  49543. 0x1616317, 0x1a887c1, 0x0a34ef8, 0x04cb235, 0x1374b6d, 0x0cea878,
  49544. 0x13bd1e6, 0x0c2bfd6, 0x01a2602, 0x01ae218, 0x1acabad, 0x1f9924f,
  49545. 0x04a7deb, 0x029f343, 0x15dec1c, 0x183d082, 0x0e647ec, 0x09594cc,
  49546. 0x15ffff6, 0x027ec89, 0x0f3bab1, 0x16d975a, 0x0462caf },
  49547. { 0x03237dd, 0x05323ef, 0x1010598, 0x190570e, 0x15f735c, 0x1d2afc4,
  49548. 0x07d6777, 0x095ef0f, 0x0726b91, 0x0f7821f, 0x0f8a605, 0x127a392,
  49549. 0x1118753, 0x1778c19, 0x08af9d1, 0x1425743, 0x1fc25a9, 0x1a73f46,
  49550. 0x070e45f, 0x1f92fb5, 0x1e41dfe, 0x0185175, 0x0f21d74, 0x065a399,
  49551. 0x1d235a7, 0x16987ba, 0x1b66ea9, 0x0dfdcff, 0x1485760, 0x07d5b2f,
  49552. 0x102a9e1, 0x0a27f07, 0x1155e22, 0x1ce8991, 0x1c60fa3, 0x1ba5f6e,
  49553. 0x1546eaf, 0x148a81d, 0x0d820a8, 0x118d9b2, 0x01293c9 },
  49554. { 0x1d53b77, 0x00928a4, 0x0b1dc9e, 0x1b2dd5f, 0x06ab403, 0x1b5b88d,
  49555. 0x11f6d28, 0x1836faf, 0x087e771, 0x11c6384, 0x0dd48a0, 0x157e676,
  49556. 0x0d495f6, 0x0643a98, 0x0c0a272, 0x0223561, 0x186e77b, 0x16541e5,
  49557. 0x06f4627, 0x181f714, 0x17c7be1, 0x1d8d74e, 0x1633ecb, 0x08187d0,
  49558. 0x023c549, 0x083e82e, 0x05d2b64, 0x0dcf3c8, 0x0e71421, 0x1f82832,
  49559. 0x13e8291, 0x1fbfac2, 0x0929cd4, 0x14c45e3, 0x0130e51, 0x03db64b,
  49560. 0x046f8fb, 0x125af9f, 0x052e9cf, 0x142d1d5, 0x053b79a },
  49561. { 0x0bbb6a1, 0x1d7e722, 0x1ca085b, 0x00cf042, 0x13a5bba, 0x0ec9cd6,
  49562. 0x12cc2a7, 0x1fdde3c, 0x1f19efa, 0x117579e, 0x1b00500, 0x179cf69,
  49563. 0x18fed5a, 0x0896339, 0x05a3b99, 0x11344c9, 0x06929fe, 0x09188cc,
  49564. 0x1ce5f01, 0x073b1a8, 0x16c40d5, 0x0a11a2c, 0x19002f1, 0x08cc23a,
  49565. 0x07f5853, 0x107dc94, 0x0f27576, 0x0813320, 0x1af2a80, 0x04cbe41,
  49566. 0x18797bd, 0x06502a3, 0x09dc01b, 0x0088264, 0x12a5610, 0x1a2a1f6,
  49567. 0x13872c9, 0x137beaf, 0x1a0cd02, 0x1a2ad85, 0x08290d6 },
  49568. { 0x0546946, 0x11be36c, 0x1febe11, 0x12d3d8a, 0x1a134a3, 0x04803f6,
  49569. 0x166935e, 0x013a846, 0x00dc7b8, 0x012abff, 0x1e12a6d, 0x0a5a5ac,
  49570. 0x1fe62ae, 0x05e56da, 0x1c53298, 0x1f94b44, 0x1e633aa, 0x0e61046,
  49571. 0x1659e04, 0x01dab9d, 0x1660238, 0x14ed990, 0x1b9ad57, 0x0ea46b4,
  49572. 0x0d02ca6, 0x0708df5, 0x06ccfe8, 0x0398ddf, 0x0a2a085, 0x1f13783,
  49573. 0x13ff488, 0x1d88f67, 0x0f332e1, 0x14c2700, 0x05ee82a, 0x088b3e5,
  49574. 0x0e952e1, 0x10ecb4f, 0x0aec1be, 0x156609f, 0x0506ef1 },
  49575. { 0x1bff163, 0x075939a, 0x061046d, 0x1fd53f5, 0x1130b96, 0x1593e73,
  49576. 0x1acfe77, 0x1aacd59, 0x19dd1c3, 0x16d78d2, 0x01d6aa8, 0x14fd4e6,
  49577. 0x18f5090, 0x11838da, 0x09abce7, 0x15b386d, 0x13ddf73, 0x15146b1,
  49578. 0x1722685, 0x0a99597, 0x1c3cdd3, 0x11ea6e5, 0x17fa8d0, 0x13b25a3,
  49579. 0x074d237, 0x1b2b776, 0x1e3bb59, 0x02948ad, 0x0feb1fe, 0x1ba1fd4,
  49580. 0x11feaf9, 0x1731f97, 0x004ccf8, 0x138370a, 0x1effdc6, 0x10d99a5,
  49581. 0x0d85c67, 0x179feda, 0x00d136a, 0x17e2a40, 0x0415b7d },
  49582. { 0x18377a7, 0x082c33e, 0x09ca5c0, 0x1197006, 0x068a3d6, 0x1d26190,
  49583. 0x14a27c0, 0x121facf, 0x193c8f2, 0x1e384ae, 0x168ae12, 0x0279d3c,
  49584. 0x1b712fa, 0x07f5cf9, 0x1ab1b18, 0x0a985f8, 0x0d96e0e, 0x0866d1b,
  49585. 0x18c8280, 0x132ea30, 0x0f11454, 0x08cbf80, 0x1e4c632, 0x126ca11,
  49586. 0x04c3fe6, 0x05500ee, 0x0617c1a, 0x0d345df, 0x15511c7, 0x0778515,
  49587. 0x014d48b, 0x168245c, 0x06965ed, 0x0ea1f80, 0x0bf305d, 0x13f9c1f,
  49588. 0x0c831d5, 0x0ee4def, 0x01e7549, 0x1e35eb1, 0x01ec314 },
  49589. { 0x08310c2, 0x1ff7796, 0x1dd0198, 0x148afc7, 0x0a7e14d, 0x1a3443d,
  49590. 0x043f394, 0x18a7256, 0x1637ec2, 0x0f251c7, 0x0be37f3, 0x06416a8,
  49591. 0x1150773, 0x1bef0b8, 0x04c0be7, 0x1378c68, 0x063ae4b, 0x180c58e,
  49592. 0x14be79b, 0x0388ddb, 0x0fa0f00, 0x0b93766, 0x14eec2a, 0x08dc18f,
  49593. 0x1b99d77, 0x1765498, 0x1fd61d6, 0x01916de, 0x139c82e, 0x18be4b4,
  49594. 0x192eccb, 0x07bcb4c, 0x05135d2, 0x1fd35bb, 0x12d14aa, 0x1ce326d,
  49595. 0x0dc105d, 0x0e60479, 0x15e22b5, 0x024fffe, 0x017e91d },
  49596. { 0x1e051ca, 0x16769db, 0x1b52fa4, 0x1a338ee, 0x0644d4f, 0x033c25e,
  49597. 0x12d4802, 0x0639156, 0x1ce9d6b, 0x1533113, 0x07a71cf, 0x1347a51,
  49598. 0x0e39524, 0x08950cf, 0x1427997, 0x0b5d8a8, 0x0928c36, 0x153dea3,
  49599. 0x1e58f83, 0x132fc8e, 0x132d354, 0x0bdaccb, 0x035d965, 0x1a9476c,
  49600. 0x04aeb91, 0x1144cac, 0x1077acf, 0x1cca7d4, 0x0571df6, 0x0c76ab9,
  49601. 0x1e729f2, 0x16315c3, 0x101a38f, 0x1dcbf79, 0x1f098fd, 0x0a2c53e,
  49602. 0x0fc4a0d, 0x1211415, 0x030077c, 0x0967bba, 0x0118f3b },
  49603. { 0x0d4762b, 0x050543d, 0x05d5d28, 0x1518b1a, 0x1aef84d, 0x1bb6c30,
  49604. 0x1258133, 0x1162dfe, 0x07e60d9, 0x05f43c3, 0x1076eb0, 0x1ff67d9,
  49605. 0x1a83637, 0x0eeb0a3, 0x1129825, 0x08dcb84, 0x0345b08, 0x0d1f0bc,
  49606. 0x1de9301, 0x1d6d0dc, 0x0695735, 0x07efbac, 0x16f062d, 0x1bfca5e,
  49607. 0x18d0b1b, 0x1d08ab0, 0x1401c56, 0x0f1d981, 0x1d617f8, 0x1e8d616,
  49608. 0x04076f6, 0x0436c2e, 0x1d2b631, 0x0c9e110, 0x09e513d, 0x08459d1,
  49609. 0x04f1702, 0x0da9b52, 0x19c9cee, 0x0f91a07, 0x001d0a6 },
  49610. { 0x046533c, 0x1211b0f, 0x0ab9ee5, 0x01f7118, 0x0947799, 0x16250c7,
  49611. 0x1745a90, 0x08a0336, 0x1d83c7a, 0x09af40e, 0x198f8dc, 0x17ba996,
  49612. 0x0374a69, 0x13b606b, 0x19fb36f, 0x11b4cf6, 0x12111e6, 0x101eaa2,
  49613. 0x0ba1942, 0x199d6ba, 0x1b37596, 0x1e95781, 0x1355cb7, 0x17ab2a5,
  49614. 0x04ba1fa, 0x0b4a91b, 0x1ad3b61, 0x1e8fa8a, 0x10d5d47, 0x1ab964a,
  49615. 0x0116b62, 0x090dc5f, 0x0dd2dfa, 0x1d82265, 0x0d0f15a, 0x0dbaa4f,
  49616. 0x197c08e, 0x16dd124, 0x0c83f26, 0x00cfb4c, 0x01b625b },
  49617. { 0x1d8446d, 0x1d53da7, 0x0fad137, 0x035edfd, 0x001b2f0, 0x041c5ae,
  49618. 0x10e23fa, 0x1177e88, 0x1bba975, 0x19e21a7, 0x15af27c, 0x19750e2,
  49619. 0x0b2b971, 0x0fa484c, 0x0917970, 0x18bbad6, 0x1342b41, 0x1c3ee5a,
  49620. 0x13614b5, 0x1f018c6, 0x1a34db1, 0x0c1219e, 0x1b5b8c9, 0x0fbe184,
  49621. 0x020653f, 0x1b2fb34, 0x10d832c, 0x0994acf, 0x06656ac, 0x15614c1,
  49622. 0x1a0c87e, 0x17e0d2e, 0x1f5ca6f, 0x1b31c89, 0x04869c1, 0x1c2a72f,
  49623. 0x0400736, 0x18a1944, 0x05236f7, 0x12c33f9, 0x0333eca },
  49624. { 0x0775d81, 0x1bca456, 0x0f288cc, 0x1fa83b7, 0x18c2518, 0x1e74a41,
  49625. 0x1e93ef3, 0x1cec478, 0x054703f, 0x169b11b, 0x0ced6ea, 0x074827f,
  49626. 0x102b3a1, 0x1fae00f, 0x0cd5969, 0x12cc2bb, 0x0dc5235, 0x0eb9204,
  49627. 0x1585ba4, 0x0ff1ca3, 0x19995a1, 0x15e592d, 0x04305bb, 0x126e87d,
  49628. 0x08cf133, 0x053f9af, 0x0b952d9, 0x10fb4e9, 0x0d449d9, 0x191532e,
  49629. 0x17555ec, 0x06fcf62, 0x05082a5, 0x089a7bb, 0x1d0bcb3, 0x0c9a4b8,
  49630. 0x0ccf074, 0x0ece03a, 0x144d6ba, 0x0210e51, 0x072fc21 },
  49631. { 0x16004c8, 0x15901fc, 0x17fea41, 0x1e8b00a, 0x183f95c, 0x19ac84e,
  49632. 0x1619d57, 0x1ddaefa, 0x1e550c8, 0x14f537d, 0x0182052, 0x1952ab4,
  49633. 0x0291c8c, 0x1e74103, 0x07fb9e2, 0x1f0bc94, 0x0069a3d, 0x175cd6f,
  49634. 0x14f7999, 0x1b9e18f, 0x0d51fbb, 0x0dae99b, 0x08a28e4, 0x05ff878,
  49635. 0x18d285c, 0x12dbb07, 0x0cbdec5, 0x1dc91bc, 0x1770401, 0x1ec22b0,
  49636. 0x0800e00, 0x13bdff3, 0x173f648, 0x11ad272, 0x0e3a85f, 0x0dc344e,
  49637. 0x0840a6c, 0x0778be4, 0x164b48e, 0x1f1623d, 0x0480946 },
  49638. { 0x171f119, 0x1a3d47e, 0x1a56131, 0x1ca7d66, 0x19e65c5, 0x0c2c3d0,
  49639. 0x19e198a, 0x1e81c5e, 0x1ab18d6, 0x052444c, 0x02e3012, 0x00498c6,
  49640. 0x12a1a99, 0x16557c4, 0x05d4258, 0x1ac4909, 0x0bae20f, 0x064434d,
  49641. 0x10adf75, 0x05609ad, 0x17d03b7, 0x1b04c97, 0x189dd7a, 0x00dcd09,
  49642. 0x1c06e7d, 0x0038044, 0x0792ef4, 0x167686c, 0x0846e4c, 0x1335a5d,
  49643. 0x07a86b9, 0x08c8c9b, 0x01c2eb2, 0x029cfe0, 0x0f9b07e, 0x0ff0de5,
  49644. 0x0f68afc, 0x1474576, 0x1a4085b, 0x1fb8e70, 0x08dab61 },
  49645. { 0x14d1d45, 0x0e481ea, 0x0e890a9, 0x1dfe9f3, 0x0cd4297, 0x0a3c5a5,
  49646. 0x0d480d3, 0x0345b11, 0x108c462, 0x0d95d15, 0x195008d, 0x1376690,
  49647. 0x06d3d23, 0x088f997, 0x19dabb6, 0x1fb843b, 0x1cf3f06, 0x143bfc5,
  49648. 0x1b14540, 0x0e29833, 0x100d802, 0x15d2c83, 0x0841113, 0x1b992af,
  49649. 0x0229f31, 0x1f6c34a, 0x0ee05a7, 0x1d9cef5, 0x0f080e5, 0x050a965,
  49650. 0x1c556fa, 0x197af9d, 0x0b21b14, 0x0bf709f, 0x0b459ee, 0x193bdef,
  49651. 0x118f690, 0x1e543c8, 0x0a79f80, 0x05bf336, 0x06f77e6 },
  49652. { 0x00bbf59, 0x0def6f2, 0x0b5a89c, 0x06c8035, 0x177ba45, 0x0a0e688,
  49653. 0x180d5cd, 0x05e2eab, 0x04b71b0, 0x032da33, 0x0cd67cd, 0x0227502,
  49654. 0x0722eb7, 0x179c756, 0x04aa3f5, 0x1e76b2f, 0x12fff3b, 0x188d500,
  49655. 0x0170fef, 0x15f57ff, 0x0c4299a, 0x1783606, 0x047828b, 0x076f675,
  49656. 0x15d5777, 0x00518a6, 0x1b59a61, 0x1cbc5ce, 0x1a8be6a, 0x1039972,
  49657. 0x002184d, 0x1839eab, 0x06d7578, 0x1688177, 0x003da2f, 0x164689c,
  49658. 0x0184f0e, 0x0ebc434, 0x13e01e6, 0x12387a5, 0x063819c },
  49659. { 0x084b073, 0x1c970bc, 0x1fab294, 0x19d624c, 0x1ec3a1f, 0x181c53c,
  49660. 0x1d7c241, 0x0e07a0f, 0x0e4c47b, 0x195603e, 0x05ae472, 0x09dc37f,
  49661. 0x1ff9666, 0x157527d, 0x1d5d624, 0x0ca01d7, 0x191fade, 0x02d55f9,
  49662. 0x1c74481, 0x066ede2, 0x181ac5b, 0x08d069e, 0x07fd831, 0x0d50896,
  49663. 0x0cfe797, 0x12d0859, 0x0af6984, 0x0263993, 0x1d453ee, 0x0b69a75,
  49664. 0x10783f0, 0x0a096d7, 0x0d0319a, 0x1c655e0, 0x0f9c28b, 0x0fc8741,
  49665. 0x15e49b4, 0x057f762, 0x15fbb20, 0x02504cb, 0x067d48d },
  49666. { 0x02d56d6, 0x0acd3f5, 0x098c1a3, 0x1c4e901, 0x171abd0, 0x19b366e,
  49667. 0x076c2b9, 0x178d7a2, 0x007204e, 0x1db1ce5, 0x198a4fe, 0x05cfeef,
  49668. 0x1d89a24, 0x1add461, 0x19f28ad, 0x1f351bd, 0x03d64a2, 0x02396ee,
  49669. 0x1586804, 0x053be8e, 0x09d4842, 0x02e2db2, 0x057d8b2, 0x1924f9b,
  49670. 0x16b1b4d, 0x0cb7eea, 0x017b981, 0x1d17624, 0x129401f, 0x152855f,
  49671. 0x010fbf2, 0x021a383, 0x0900d0f, 0x00efaea, 0x0ea4a2c, 0x0a59e22,
  49672. 0x1f0e43f, 0x0bf5e18, 0x1371e8f, 0x071d070, 0x027950e },
  49673. { 0x1d0fa79, 0x10ff870, 0x17a7aac, 0x060916b, 0x0b9fd03, 0x11ba65a,
  49674. 0x11a24bf, 0x0d69926, 0x04eb21f, 0x1a413fd, 0x179f9ee, 0x1ef3524,
  49675. 0x1146716, 0x1eea629, 0x10afcd9, 0x0dbbe28, 0x14cd2e9, 0x09039ca,
  49676. 0x140aaa2, 0x02835d0, 0x0cc94e0, 0x0d4777b, 0x03b8038, 0x1019b5f,
  49677. 0x0849158, 0x0232ae7, 0x11a58a0, 0x1e7574b, 0x15dfbff, 0x027c2e8,
  49678. 0x094cd73, 0x13ed09e, 0x1f0440c, 0x12dec53, 0x14feec7, 0x175d008,
  49679. 0x1f2225a, 0x04cc09f, 0x175c687, 0x108f364, 0x054ff78 },
  49680. { 0x040b068, 0x177186f, 0x14789f1, 0x17cde74, 0x1226465, 0x1d90fb4,
  49681. 0x11813e8, 0x02bc494, 0x1c04181, 0x052d2d6, 0x0434ad4, 0x08831bf,
  49682. 0x0fe3285, 0x0e58600, 0x1d3963f, 0x011c776, 0x13b4a2c, 0x0e3478d,
  49683. 0x13367b2, 0x1be1021, 0x0a9f339, 0x0e5bc37, 0x0454d8b, 0x0ab5d5b,
  49684. 0x05e31c9, 0x035944a, 0x162da9b, 0x0d45803, 0x18a427d, 0x016e1b3,
  49685. 0x0b01a7a, 0x0519260, 0x1875500, 0x080f30b, 0x05967e8, 0x0d159b5,
  49686. 0x0e30b28, 0x0722b9f, 0x0c3f939, 0x10a7e30, 0x08adbad },
  49687. { 0x169d524, 0x1708f84, 0x11e4182, 0x0fe7379, 0x142fdaf, 0x00fe617,
  49688. 0x19d99f3, 0x09e79d8, 0x0e2336d, 0x0b5ce79, 0x103dfd1, 0x0bbd1c3,
  49689. 0x0e6aa1f, 0x04c27d8, 0x0f0ab48, 0x096519b, 0x1a61b46, 0x1a04867,
  49690. 0x090fcfb, 0x10de602, 0x07e740d, 0x0666af4, 0x056c5b3, 0x04d9a83,
  49691. 0x1168c30, 0x198201f, 0x0e05b01, 0x17c70d9, 0x007a1dd, 0x0379ac2,
  49692. 0x0bc53ae, 0x02e2fc3, 0x188b4f8, 0x1e4b67a, 0x06999b2, 0x036eb88,
  49693. 0x027e71c, 0x0160d50, 0x1797fcd, 0x06d8128, 0x0739300 },
  49694. { 0x0cdaf42, 0x1babe91, 0x0aae553, 0x1be8303, 0x188b591, 0x08a792b,
  49695. 0x1a067d5, 0x1791730, 0x0f18fd5, 0x0b21704, 0x13ae45a, 0x0ba2045,
  49696. 0x0592b30, 0x1527b4c, 0x05640f9, 0x1395c2e, 0x09d6117, 0x125ebeb,
  49697. 0x0a7006a, 0x1bfabba, 0x08ccdac, 0x0d6c888, 0x1c17775, 0x1591e2a,
  49698. 0x0c7b164, 0x197a1a5, 0x06d4918, 0x034a29c, 0x1fc4476, 0x130db98,
  49699. 0x0c516e7, 0x1c12c36, 0x1561348, 0x17911e7, 0x059dcfa, 0x0738515,
  49700. 0x0a7c99d, 0x0880c15, 0x197896f, 0x095c852, 0x08bc6ec },
  49701. { 0x1f2a32b, 0x172e073, 0x08c3425, 0x1812711, 0x1f54800, 0x0f1b067,
  49702. 0x10df100, 0x14c0dfc, 0x0bb6054, 0x12afe4e, 0x1ea9b99, 0x10c108a,
  49703. 0x17510e1, 0x1594d95, 0x0b3f288, 0x1b4c341, 0x1e351b7, 0x1399241,
  49704. 0x0f9b232, 0x08e3dcd, 0x09a1e31, 0x0e45b2e, 0x195950c, 0x1acb977,
  49705. 0x0c3b948, 0x1547e4d, 0x06ba6ca, 0x0611f84, 0x00aa6ad, 0x0f86d53,
  49706. 0x1535a9f, 0x1305f81, 0x044d96a, 0x1d26b94, 0x10b1611, 0x0b56025,
  49707. 0x1ceb895, 0x1e47b8e, 0x1f854ac, 0x0fb7d38, 0x08e8543 },
  49708. };
  49709. /* Perform the modular exponentiation in Fp* for SAKKE.
  49710. *
  49711. * Base is fixed to be the g parameter - a precomputed table is used.
  49712. *
  49713. * Striping: 128 points at a distance of 8 combined.
  49714. * Total of 256 points in table.
  49715. * Square and multiply performed in Fp*.
  49716. *
  49717. * base [in] Base. MP integer.
  49718. * exp [in] Exponent. MP integer.
  49719. * res [out] Result. MP integer.
  49720. * returns 0 on success, MP_READ_E if there are too many bytes in an array
  49721. * and MEMORY_E if memory allocation fails.
  49722. */
  49723. int sp_ModExp_Fp_star_1024(const mp_int* base, mp_int* exp, mp_int* res)
  49724. {
  49725. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  49726. defined(WOLFSSL_SP_SMALL_STACK)
  49727. sp_digit* td;
  49728. sp_digit* t;
  49729. sp_digit* tx;
  49730. sp_digit* ty;
  49731. #else
  49732. sp_digit t[36 * 2 * 42];
  49733. sp_digit tx[2 * 42];
  49734. sp_digit ty[2 * 42];
  49735. #endif
  49736. sp_digit* r = NULL;
  49737. unsigned char e[128];
  49738. int err = MP_OKAY;
  49739. int i;
  49740. int y;
  49741. (void)base;
  49742. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  49743. defined(WOLFSSL_SP_SMALL_STACK)
  49744. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 38 * 42 * 2, NULL,
  49745. DYNAMIC_TYPE_TMP_BUFFER);
  49746. if (td == NULL) {
  49747. err = MEMORY_E;
  49748. }
  49749. #endif
  49750. if (err == MP_OKAY) {
  49751. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  49752. defined(WOLFSSL_SP_SMALL_STACK)
  49753. t = td;
  49754. tx = td + 36 * 42 * 2;
  49755. ty = td + 37 * 42 * 2;
  49756. #endif
  49757. r = ty;
  49758. (void)mp_to_unsigned_bin_len(exp, e, 128);
  49759. XMEMCPY(tx, p1024_norm_mod, sizeof(sp_digit) * 42);
  49760. y = e[112] >> 7;
  49761. y |= (e[96] >> 7) << 1;
  49762. y |= (e[80] >> 7) << 2;
  49763. y |= (e[64] >> 7) << 3;
  49764. y |= (e[48] >> 7) << 4;
  49765. y |= (e[32] >> 7) << 5;
  49766. y |= (e[16] >> 7) << 6;
  49767. y |= (e[0] >> 7) << 7;
  49768. XMEMCPY(ty, sp_1024_g_table[y], sizeof(sp_digit) * 42);
  49769. for (i = 126; i >= 0; i--) {
  49770. y = (e[127 - (i / 8)] >> (i & 0x7)) & 1;
  49771. y |= ((e[111 - (i / 8)] >> (i & 0x7)) & 1) << 1;
  49772. y |= ((e[95 - (i / 8)] >> (i & 0x7)) & 1) << 2;
  49773. y |= ((e[79 - (i / 8)] >> (i & 0x7)) & 1) << 3;
  49774. y |= ((e[63 - (i / 8)] >> (i & 0x7)) & 1) << 4;
  49775. y |= ((e[47 - (i / 8)] >> (i & 0x7)) & 1) << 5;
  49776. y |= ((e[31 - (i / 8)] >> (i & 0x7)) & 1) << 6;
  49777. y |= ((e[15 - (i / 8)] >> (i & 0x7)) & 1) << 7;
  49778. sp_1024_proj_sqr_42(tx, ty, t);
  49779. sp_1024_proj_mul_qx1_42(tx, ty, sp_1024_g_table[y], t);
  49780. }
  49781. }
  49782. if (err == MP_OKAY) {
  49783. sp_1024_mont_inv_42(tx, tx, t);
  49784. sp_1024_mont_mul_42(r, tx, ty, p1024_mod, p1024_mp_mod);
  49785. XMEMSET(r + 42, 0, sizeof(sp_digit) * 42);
  49786. sp_1024_mont_reduce_42(r, p1024_mod, p1024_mp_mod);
  49787. err = sp_1024_to_mp(r, res);
  49788. }
  49789. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  49790. defined(WOLFSSL_SP_SMALL_STACK)
  49791. if (td != NULL) {
  49792. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  49793. }
  49794. #endif
  49795. return err;
  49796. }
  49797. #endif /* WOLFSSL_SP_SMALL */
  49798. /* Multiply p* by q* in projective coordinates.
  49799. *
  49800. * p.x' = (p.x * q.x) - (p.y * q.y)
  49801. * p.y' = (p.x * q.y) + (p.y * q.x)
  49802. * But applying Karatsuba:
  49803. * v0 = p.x * q.x
  49804. * v1 = p.y * q.y
  49805. * p.x' = v0 - v1
  49806. * p.y' = (px + py) * (qx + qy) - v0 - v1
  49807. *
  49808. * px [in,out] A single precision integer - X ordinate of number to multiply.
  49809. * py [in,out] A single precision integer - Y ordinate of number to multiply.
  49810. * qx [in] A single precision integer - X ordinate of number of
  49811. * multiplier.
  49812. * qy [in] A single precision integer - Y ordinate of number of
  49813. * multiplier.
  49814. * t [in] Two single precision integers - temps.
  49815. */
  49816. static void sp_1024_proj_mul_42(sp_digit* px, sp_digit* py,
  49817. const sp_digit* qx, const sp_digit* qy, sp_digit* t)
  49818. {
  49819. sp_digit* t1 = t;
  49820. sp_digit* t2 = t + 2 * 42;
  49821. /* t1 = px + py */
  49822. sp_1024_mont_add_42(t1, px, py, p1024_mod);
  49823. /* t2 = qx + qy */
  49824. sp_1024_mont_add_42(t2, qx, qy, p1024_mod);
  49825. /* t2 = (px + py) * (qx + qy) */
  49826. sp_1024_mont_mul_42(t2, t1, t2, p1024_mod, p1024_mp_mod);
  49827. /* t1 = py * qy */
  49828. sp_1024_mont_mul_42(t1, py, qy, p1024_mod, p1024_mp_mod);
  49829. /* t2 = (px + py) * (qx + qy) - (py * qy) */
  49830. sp_1024_mont_sub_42(t2, t2, t1, p1024_mod);
  49831. /* px = px * qx */
  49832. sp_1024_mont_mul_42(px, px, qx, p1024_mod, p1024_mp_mod);
  49833. /* py = (px + py) * (qx + qy) - (py * qy) - (px * qx) */
  49834. sp_1024_mont_sub_42(py, t2, px, p1024_mod);
  49835. /* px = (px * qx) - (py * qy)*/
  49836. sp_1024_mont_sub_42(px, px, t1, p1024_mod);
  49837. }
  49838. #ifndef WOLFSSL_SP_SMALL
  49839. /*
  49840. * Convert point from projective to affine but keep in Montgomery form.
  49841. *
  49842. * p [in,out] Point to convert.
  49843. * t [in] Temporary numbers: 2.
  49844. */
  49845. static void sp_1024_mont_map_42(sp_point_1024* p, sp_digit* t)
  49846. {
  49847. sp_digit* t1 = t;
  49848. sp_digit* t2 = t + 2 * 42;
  49849. sp_1024_mont_inv_42(t1, p->z, t2);
  49850. sp_1024_mont_sqr_42(t2, t1, p1024_mod, p1024_mp_mod);
  49851. sp_1024_mont_mul_42(t1, t2, t1, p1024_mod, p1024_mp_mod);
  49852. sp_1024_mont_mul_42(p->x, p->x, t2, p1024_mod, p1024_mp_mod);
  49853. sp_1024_mont_mul_42(p->y, p->y, t1, p1024_mod, p1024_mp_mod);
  49854. XMEMCPY(p->z, p1024_norm_mod, sizeof(sp_digit) * 42);
  49855. }
  49856. #endif /* WOLFSSL_SP_SMALL */
  49857. /*
  49858. * Calculate gradient of line through P, P and [-2]P, accumulate line and
  49859. * double P.
  49860. *
  49861. * Calculations:
  49862. * l = 3 * (p.x^2 - p.z^4) = 3 * (p.x - p.z^2) * (p.x + p.z^2)
  49863. * r.x = l * (p.x + q.x * p.z^2) - 2 * p.y^2
  49864. * r.y = 2 * p.y * p.z^3 * q.y (= p'.z * p.z^2 * q.y)
  49865. * v* = v*^2 * r*
  49866. * p'.x = l^2 - 8 * p.y^2 * p.x
  49867. * p'.y = (4 * p.y^2 * p.x - p'.x) * l - 8 * p.y^4
  49868. * p'.z = 2 * p.y * p.z
  49869. *
  49870. * @param [in,out] vx X-ordinate of projective value in F*.
  49871. * @param [in,out] vy Y-ordinate of projective value in F*.
  49872. * @param [in,out] p ECC point - point on E(F_p^2) to double.
  49873. * @param [in] q ECC point - second point on E(F_P^2).
  49874. * @param [in] t SP temporaries (6 used).
  49875. */
  49876. static void sp_1024_accumulate_line_dbl_42(sp_digit* vx, sp_digit* vy,
  49877. sp_point_1024* p, const sp_point_1024* q, sp_digit* t)
  49878. {
  49879. sp_digit* t1 = t + 0 * 42;
  49880. sp_digit* pz2 = t + 2 * 42;
  49881. sp_digit* rx = t + 4 * 42;
  49882. sp_digit* ry = t + 6 * 42;
  49883. sp_digit* l = t + 8 * 42;
  49884. sp_digit* ty = t + 10 * 42;
  49885. /* v = v^2 */
  49886. sp_1024_proj_sqr_42(vx, vy, t);
  49887. /* pz2 = p.z^2 */
  49888. sp_1024_mont_sqr_42(pz2, p->z, p1024_mod, p1024_mp_mod);
  49889. /* t1 = p.x + p.z^2 */
  49890. sp_1024_mont_add_42(ty, p->x, pz2, p1024_mod);
  49891. /* l = p.x - p.z^2 */
  49892. sp_1024_mont_sub_42(l, p->x, pz2, p1024_mod);
  49893. /* t1 = (p.x + p.z^2) * (p.x - p.z^2) = p.x^2 - p.z^4 */
  49894. sp_1024_mont_mul_42(t1, l, ty, p1024_mod, p1024_mp_mod);
  49895. /* l = 3 * (p.x^2 - p.z^4) */
  49896. sp_1024_mont_tpl_42(l, t1, p1024_mod);
  49897. /* t1 = q.x * p.z^2 */
  49898. sp_1024_mont_mul_42(t1, q->x, pz2, p1024_mod, p1024_mp_mod);
  49899. /* t1 = p.x + q.x * p.z^2 */
  49900. sp_1024_mont_add_42(t1, p->x, t1, p1024_mod);
  49901. /* r.x = l * (p.x + q.x * p.z^2) */
  49902. sp_1024_mont_mul_42(rx, l, t1, p1024_mod, p1024_mp_mod);
  49903. /* r.y = 2 * p.y */
  49904. sp_1024_mont_dbl_42(ry, p->y, p1024_mod);
  49905. /* ty = 4 * p.y ^ 2 */
  49906. sp_1024_mont_sqr_42(ty, ry, p1024_mod, p1024_mp_mod);
  49907. /* t1 = 2 * p.y ^ 2 */
  49908. sp_1024_mont_div2_42(t1, ty, p1024_mod);
  49909. /* r.x -= 2 * (p.y ^ 2) */
  49910. sp_1024_mont_sub_42(rx, rx, t1, p1024_mod);
  49911. /* p'.z = p.y * 2 * p.z */
  49912. sp_1024_mont_mul_42(p->z, p->z, ry, p1024_mod, p1024_mp_mod);
  49913. /* r.y = p'.z * p.z^2 */
  49914. sp_1024_mont_mul_42(t1, p->z, pz2, p1024_mod, p1024_mp_mod);
  49915. /* r.y = p'.z * p.z^2 * q.y */
  49916. sp_1024_mont_mul_42(ry, t1, q->y, p1024_mod, p1024_mp_mod);
  49917. /* v = v^2 * r */
  49918. sp_1024_proj_mul_42(vx, vy, rx, ry, t);
  49919. /* Double point using previously calculated values
  49920. * l = 3 * (p.x - p.z^2).(p.x + p.z^2)
  49921. * ty = 4 * p.y^2
  49922. * p'.z = 2 * p.y * p.z
  49923. */
  49924. /* t1 = (4 * p.y^2) ^ 2 = 16 * p.y^4 */
  49925. sp_1024_mont_sqr_42(t1, ty, p1024_mod, p1024_mp_mod);
  49926. /* t1 = 16 * p.y^4 / 2 = 8 * p.y^4 */
  49927. sp_1024_mont_div2_42(t1, t1, p1024_mod);
  49928. /* p'.y = 4 * p.y^2 * p.x */
  49929. sp_1024_mont_mul_42(p->y, ty, p->x, p1024_mod, p1024_mp_mod);
  49930. /* p'.x = l^2 */
  49931. sp_1024_mont_sqr_42(p->x, l, p1024_mod, p1024_mp_mod);
  49932. /* p'.x = l^2 - 4 * p.y^2 * p.x */
  49933. sp_1024_mont_sub_42(p->x, p->x, p->y, p1024_mod);
  49934. /* p'.x = l^2 - 8 * p.y^2 * p.x */
  49935. sp_1024_mont_sub_42(p->x, p->x, p->y, p1024_mod);
  49936. /* p'.y = 4 * p.y^2 * p.x - p.x' */
  49937. sp_1024_mont_sub_42(ty, p->y, p->x, p1024_mod);
  49938. /* p'.y = (4 * p.y^2 * p.x - p'.x) * l */
  49939. sp_1024_mont_mul_42(p->y, ty, l, p1024_mod, p1024_mp_mod);
  49940. /* p'.y = (4 * p.y^2 * p.x - p'.x) * l - 8 * p.y^4 */
  49941. sp_1024_mont_sub_42(p->y, p->y, t1, p1024_mod);
  49942. }
  49943. #ifdef WOLFSSL_SP_SMALL
  49944. /*
  49945. * Calculate gradient of line through C, P and -C-P, accumulate line and
  49946. * add P to C.
  49947. *
  49948. * Calculations:
  49949. * r.x = (q.x + p.x) * c.y - (q.x * c.z^2 + c.x) * p.y * c.z
  49950. * r.y = (c.x - p.x * c.z^2) * q.y * c.z
  49951. * v* = v* * r*
  49952. * r = p.y * c.z^3 - c.y
  49953. * c'.x = r^2 + h^3 - 2 * c.x * h^2
  49954. * c'.y = r * (c'.x - c.x * h^2) - c.y * h^3
  49955. * c'.z = (c.x - p.x * c.z^2) * c.z
  49956. *
  49957. * @param [in,out] vx X-ordinate of projective value in F*.
  49958. * @param [in,out] vy Y-ordinate of projective value in F*.
  49959. * @param [in,out] c ECC point - current point on E(F_p^2) to be added
  49960. * to.
  49961. * @param [in] p ECC point - point on E(F_p^2) to add.
  49962. * @param [in] q ECC point - second point on E(F_P^2).
  49963. * @param [in] qx_px SP that is a constant value across adds.
  49964. * @param [in] t SP temporaries (6 used).
  49965. */
  49966. static void sp_1024_accumulate_line_add_one_42(sp_digit* vx, sp_digit* vy,
  49967. sp_point_1024* c, sp_point_1024* p, sp_point_1024* q, sp_digit* qx_px,
  49968. sp_digit* t)
  49969. {
  49970. sp_digit* t1 = t;
  49971. sp_digit* t2 = t + 2 * 42;
  49972. sp_digit* rx = t + 4 * 42;
  49973. sp_digit* ry = t + 6 * 42;
  49974. sp_digit* h = t + 8 * 42;
  49975. sp_digit* r = t + 10 * 42;
  49976. /* r.x = (q.x + p.x) * c.y */
  49977. sp_1024_mont_mul_42(rx, qx_px, c->y, p1024_mod, p1024_mp_mod);
  49978. /* t2 = c.z^2 */
  49979. sp_1024_mont_sqr_42(t2, c->z, p1024_mod, p1024_mp_mod);
  49980. /* t1 = q.x * c.z^2 */
  49981. sp_1024_mont_mul_42(t1, q->x, t2, p1024_mod, p1024_mp_mod);
  49982. /* t1 = q.x * c.z^2 + c.x */
  49983. sp_1024_mont_add_42(h, t1, c->x, p1024_mod);
  49984. /* r = p.y * c.z */
  49985. sp_1024_mont_mul_42(ry, p->y, c->z, p1024_mod, p1024_mp_mod);
  49986. /* t1 = (q.x * c.z^2 + c.x) * p.y * c.z */
  49987. sp_1024_mont_mul_42(t1, h, ry, p1024_mod, p1024_mp_mod);
  49988. /* r = p.y * c.z * c.z^2 = p.y * c.z^3 */
  49989. sp_1024_mont_mul_42(r, ry, t2, p1024_mod, p1024_mp_mod);
  49990. /* r.x -= (q.x * c.z^2 + c.x) * p.y * c.z */
  49991. sp_1024_mont_sub_42(rx, rx, t1, p1024_mod);
  49992. /* t1 = p.x * c.z^2 */
  49993. sp_1024_mont_mul_42(t1, p->x, t2, p1024_mod, p1024_mp_mod);
  49994. /* h = c.x - p.x * c.z^2 */
  49995. sp_1024_mont_sub_42(h, c->x, t1, p1024_mod);
  49996. /* c'.z = (c.x - p.x * c.z^2) * c.z */
  49997. sp_1024_mont_mul_42(c->z, h, c->z, p1024_mod, p1024_mp_mod);
  49998. /* r.y = (c.x - p.x * c.z^2) * c.z * q.y */
  49999. sp_1024_mont_mul_42(ry, c->z, q->y, p1024_mod, p1024_mp_mod);
  50000. /* v = v * r */
  50001. sp_1024_proj_mul_42(vx, vy, rx, ry, t);
  50002. /* Add p to c using previously calculated values.
  50003. * h = c.x - p.x * c.z^2
  50004. * r = p.y * c.z^3
  50005. * c'.z = (c.x - p.x * c.z^2) * c.z
  50006. */
  50007. /* r = p.y * c.z^3 - c.y */
  50008. sp_1024_mont_sub_42(r, r, c->y, p1024_mod);
  50009. /* t1 = r^2 */
  50010. sp_1024_mont_sqr_42(t1, r, p1024_mod, p1024_mp_mod);
  50011. /* t2 = h^2 */
  50012. sp_1024_mont_sqr_42(rx, h, p1024_mod, p1024_mp_mod);
  50013. /* ry = c.x * h^2 */
  50014. sp_1024_mont_mul_42(ry, c->x, rx, p1024_mod, p1024_mp_mod);
  50015. /* t2 = h^3 */
  50016. sp_1024_mont_mul_42(t2, rx, h, p1024_mod, p1024_mp_mod);
  50017. /* c->x = r^2 + h^3 */
  50018. sp_1024_mont_add_42(c->x, t1, t2, p1024_mod);
  50019. /* t1 = 2 * c.x * h^2 */
  50020. sp_1024_mont_dbl_42(t1, ry, p1024_mod);
  50021. /* c'.x = r^2 + h^3 - 2 * c.x * h^2 */
  50022. sp_1024_mont_sub_42(c->x, c->x, t1, p1024_mod);
  50023. /* ry = c'.x - c.x * h^2 */
  50024. sp_1024_mont_sub_42(t1, c->x, ry, p1024_mod);
  50025. /* ry = r * (c'.x - c.x * h^2) */
  50026. sp_1024_mont_mul_42(ry, t1, r, p1024_mod, p1024_mp_mod);
  50027. /* t2 = c.y * h^3 */
  50028. sp_1024_mont_mul_42(t1, t2, c->y, p1024_mod, p1024_mp_mod);
  50029. /* c'.y = r * (c'.x - c.x * h^2) - c.y * h^3 */
  50030. sp_1024_mont_sub_42(c->y, ry, t1, p1024_mod);
  50031. }
  50032. /*
  50033. * Calculate r = pairing <P, Q>.
  50034. *
  50035. * That is, multiply base in PF_p[q] by the scalar s, such that s.P = Q.
  50036. *
  50037. * @param [in] key SAKKE key.
  50038. * @param [in] p First point on E(F_p)[q].
  50039. * @param [in] q Second point on E(F_p)[q].
  50040. * @param [in] r Result of calculation.
  50041. * @return 0 on success.
  50042. * @return MEMORY_E when dynamic memory allocation fails.
  50043. * @return Other -ve value on internal failure.
  50044. */
  50045. int sp_Pairing_1024(const ecc_point* pm, const ecc_point* qm, mp_int* res)
  50046. {
  50047. int err = MP_OKAY;
  50048. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50049. defined(WOLFSSL_SP_SMALL_STACK)
  50050. sp_digit* td = NULL;
  50051. sp_digit* t;
  50052. sp_digit* vx;
  50053. sp_digit* vy;
  50054. sp_digit* qx_px;
  50055. #else
  50056. sp_digit t[36 * 2 * 42];
  50057. sp_digit vx[2 * 42];
  50058. sp_digit vy[2 * 42];
  50059. sp_digit qx_px[2 * 42];
  50060. sp_point_1024 pd;
  50061. sp_point_1024 qd;
  50062. sp_point_1024 cd;
  50063. #endif
  50064. sp_point_1024* p = NULL;
  50065. sp_point_1024* q = NULL;
  50066. sp_point_1024* c = NULL;
  50067. sp_digit* r = NULL;
  50068. int i;
  50069. err = sp_1024_point_new_42(NULL, pd, p);
  50070. if (err == MP_OKAY) {
  50071. err = sp_1024_point_new_42(NULL, qd, q);
  50072. }
  50073. if (err == MP_OKAY) {
  50074. err = sp_1024_point_new_42(NULL, cd, c);
  50075. }
  50076. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50077. defined(WOLFSSL_SP_SMALL_STACK)
  50078. if (err == MP_OKAY) {
  50079. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 39 * 42 * 2, NULL,
  50080. DYNAMIC_TYPE_TMP_BUFFER);
  50081. if (td == NULL) {
  50082. err = MEMORY_E;
  50083. }
  50084. }
  50085. #endif
  50086. if (err == MP_OKAY) {
  50087. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50088. defined(WOLFSSL_SP_SMALL_STACK)
  50089. t = td;
  50090. vx = td + 36 * 42 * 2;
  50091. vy = td + 37 * 42 * 2;
  50092. qx_px = td + 38 * 42 * 2;
  50093. #endif
  50094. r = vy;
  50095. sp_1024_point_from_ecc_point_42(p, pm);
  50096. sp_1024_point_from_ecc_point_42(q, qm);
  50097. err = sp_1024_mod_mul_norm_42(p->x, p->x, p1024_mod);
  50098. }
  50099. if (err == MP_OKAY) {
  50100. err = sp_1024_mod_mul_norm_42(p->y, p->y, p1024_mod);
  50101. }
  50102. if (err == MP_OKAY) {
  50103. err = sp_1024_mod_mul_norm_42(p->z, p->z, p1024_mod);
  50104. }
  50105. if (err == MP_OKAY) {
  50106. err = sp_1024_mod_mul_norm_42(q->x, q->x, p1024_mod);
  50107. }
  50108. if (err == MP_OKAY) {
  50109. err = sp_1024_mod_mul_norm_42(q->y, q->y, p1024_mod);
  50110. }
  50111. if (err == MP_OKAY) {
  50112. XMEMCPY(c, p, sizeof(sp_point_1024));
  50113. XMEMSET(vx, 0, sizeof(sp_digit) * 2 * 42);
  50114. vx[0] = 1;
  50115. XMEMSET(vy, 0, sizeof(sp_digit) * 2 * 42);
  50116. sp_1024_mont_add_42(qx_px, q->x, p->x, p1024_mod);
  50117. for (i = 1020; i >= 0; i--) {
  50118. /* Accumulate line into v and double point. */
  50119. sp_1024_accumulate_line_dbl_42(vx, vy, c, q, t);
  50120. if ((i > 0) && ((p1024_order[i / 25] >> (i % 25)) & 1)) {
  50121. /* Accumulate line into v and add P into C. */
  50122. sp_1024_accumulate_line_add_one_42(vx, vy, c, p, q, qx_px, t);
  50123. }
  50124. }
  50125. /* Final exponentiation */
  50126. sp_1024_proj_sqr_42(vx, vy, t);
  50127. sp_1024_proj_sqr_42(vx, vy, t);
  50128. /* Convert from PF_p[q] to F_p */
  50129. sp_1024_mont_inv_42(vx, vx, t);
  50130. sp_1024_mont_mul_42(r, vx, vy, p1024_mod, p1024_mp_mod);
  50131. XMEMSET(r + 42, 0, sizeof(sp_digit) * 42);
  50132. sp_1024_mont_reduce_42(r, p1024_mod, p1024_mp_mod);
  50133. err = sp_1024_to_mp(r, res);
  50134. }
  50135. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50136. defined(WOLFSSL_SP_SMALL_STACK)
  50137. if (td != NULL) {
  50138. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  50139. }
  50140. #endif
  50141. sp_1024_point_free_42(c, 1, NULL);
  50142. sp_1024_point_free_42(q, 1, NULL);
  50143. sp_1024_point_free_42(p, 1, NULL);
  50144. return err;
  50145. }
  50146. #else
  50147. /*
  50148. * Calculate gradient of line through C, P and -C-P, accumulate line and
  50149. * add P to C.
  50150. *
  50151. * Both C and P have z ordinates to use in the calculation.
  50152. *
  50153. * Calculations:
  50154. * r.x = (q.x * c.z^2 + c.x) * p.y * c.z - (q.x * p.z^2 + p.x) * c.y * p.z
  50155. * r.y = (p.x * c.z^2 - c.x * p.z^2) * q.y * p.z * c.z
  50156. * v* = v* * r*
  50157. * h = p.x * c.z^2 - c.x * p.z^2
  50158. * r = p.y * c.z^3 - c.y * p.z^3
  50159. * c'.x = r^2 - h^3 - 2 * c.x * p.z^2 * h^2
  50160. * c'.y = r * (c.x * p.z^2 * h^2 - c'.x) - c.y * p.z^3 * h^3
  50161. * c'.z = (p.x * c.z^2 - c.x * p.z^2) * c.z
  50162. *
  50163. * @param [in,out] vx X-ordinate of projective value in F*.
  50164. * @param [in,out] vy Y-ordinate of projective value in F*.
  50165. * @param [in,out] c ECC point - current point on E(F_p^2) to be added
  50166. * to.
  50167. * @param [in,out] p ECC point - point on E(F_p^2) to add.
  50168. * @param [in,out] q ECC point - second point on E(F_P^2).
  50169. * @param [in,out] t SP temporaries (6 used).
  50170. * @param [in,out] neg Indicates to use negative P.
  50171. * @return 0 on success.
  50172. * @return MEMORY_E when dynamic memory allocation fails.
  50173. * @return Other -ve value on internal failure.
  50174. */
  50175. static void sp_1024_accumulate_line_add_n_42(sp_digit* vx, sp_digit* vy,
  50176. const sp_point_1024* p, const sp_point_1024* q,
  50177. sp_point_1024* c, sp_digit* t, int neg)
  50178. {
  50179. sp_digit* t1 = t;
  50180. sp_digit* t2 = t + 2 * 42;
  50181. sp_digit* rx = t + 4 * 42;
  50182. sp_digit* ry = t + 6 * 42;
  50183. sp_digit* h = t + 8 * 42;
  50184. sp_digit* r = t + 10 * 42;
  50185. /* h = p.z^2 */
  50186. sp_1024_mont_sqr_42(h, p->z, p1024_mod, p1024_mp_mod);
  50187. /* rx = q.x * p.z^2 */
  50188. sp_1024_mont_mul_42(rx, q->x, h, p1024_mod, p1024_mp_mod);
  50189. /* rx = q.x * p.z^2 + p.x */
  50190. sp_1024_mont_add_42(t2, rx, p->x, p1024_mod);
  50191. /* c.y = c.y * p.z */
  50192. sp_1024_mont_mul_42(t1, c->y, p->z, p1024_mod, p1024_mp_mod);
  50193. /* r.x = (q.x * p.z^2 + p.x) * c.y * p.z */
  50194. sp_1024_mont_mul_42(rx, t2, t1, p1024_mod, p1024_mp_mod);
  50195. /* c.y = c.y * p.z^3 */
  50196. sp_1024_mont_mul_42(c->y, t1, h, p1024_mod, p1024_mp_mod);
  50197. /* t2 = c.z^2 */
  50198. sp_1024_mont_sqr_42(t2, c->z, p1024_mod, p1024_mp_mod);
  50199. /* t1 = q.x * c.z^2 */
  50200. sp_1024_mont_mul_42(t1, q->x, t2, p1024_mod, p1024_mp_mod);
  50201. /* t1 = q.x * c.z^2 + c.x */
  50202. sp_1024_mont_add_42(t1, t1, c->x, p1024_mod);
  50203. /* c.x = c.x * p.z^2 */
  50204. sp_1024_mont_mul_42(c->x, c->x, h, p1024_mod, p1024_mp_mod);
  50205. /* r = p.y * c.z */
  50206. sp_1024_mont_mul_42(r, p->y, c->z, p1024_mod, p1024_mp_mod);
  50207. if (neg) {
  50208. /* r = -p.y * c.z */
  50209. sp_1024_mont_sub_42(r, p1024_mod, r, p1024_mod);
  50210. }
  50211. /* t1 = (q.x * c.z^2 + c.x) * p.y * c.z */
  50212. sp_1024_mont_mul_42(ry, t1, r, p1024_mod, p1024_mp_mod);
  50213. /* r.x -= (q.x * c.z^2 + c.x) * p.y * c.z */
  50214. sp_1024_mont_sub_42(rx, ry, rx, p1024_mod);
  50215. /* t1 = p.x * c.z^2 */
  50216. sp_1024_mont_mul_42(t1, p->x, t2, p1024_mod, p1024_mp_mod);
  50217. /* h = p.x * c.z^2 - c.x * p.z^2 */
  50218. sp_1024_mont_sub_42(h, t1, c->x, p1024_mod);
  50219. /* c'.z = (p.x * c.z^2 - c.x * p.z^2) * c.z */
  50220. sp_1024_mont_mul_42(t1, h, c->z, p1024_mod, p1024_mp_mod);
  50221. /* c'.z = (p.x * c.z^2 - c.x * p.z^2) * c.z * p.z */
  50222. sp_1024_mont_mul_42(c->z, t1, p->z, p1024_mod, p1024_mp_mod);
  50223. /* r.y = (p.x * c.z^2 - c.x * p.z^2) * c.z * p.z * q.y */
  50224. sp_1024_mont_mul_42(ry, c->z, q->y, p1024_mod, p1024_mp_mod);
  50225. /* r = p.y * c.z^3 */
  50226. sp_1024_mont_mul_42(t1, r, t2, p1024_mod, p1024_mp_mod);
  50227. /* r = p.y * c.z^3 - c.y * p.z^3 */
  50228. sp_1024_mont_sub_42(r, t1, c->y, p1024_mod);
  50229. /* v = v * r */
  50230. sp_1024_proj_mul_42(vx, vy, rx, ry, t);
  50231. /* Add p to c using previously calculated values.
  50232. * h = p.x * c.z^2 - c.x * p.z^2
  50233. * r = p.y * c.z^3 - c.y * p.z^3
  50234. * c'.z = (p.x * c.z^2 - c.x * p.z^2) * c.z
  50235. */
  50236. /* t1 = r^2 */
  50237. sp_1024_mont_sqr_42(t1, r, p1024_mod, p1024_mp_mod);
  50238. /* t2 = h^2 */
  50239. sp_1024_mont_sqr_42(rx, h, p1024_mod, p1024_mp_mod);
  50240. /* ry = c.x * p.z^2 * h^2 */
  50241. sp_1024_mont_mul_42(ry, rx, c->x, p1024_mod, p1024_mp_mod);
  50242. /* t2 = h^3 */
  50243. sp_1024_mont_mul_42(t2, rx, h, p1024_mod, p1024_mp_mod);
  50244. /* c'.x = r^2 - h^3 */
  50245. sp_1024_mont_sub_42(c->x, t1, t2, p1024_mod);
  50246. /* t1 = 2 * c.x * p.z^2 * h^2 */
  50247. sp_1024_mont_dbl_42(t1, ry, p1024_mod);
  50248. /* c'.x = r^2 - h^3 - 2 * c.x * p.z^2 * h^2 */
  50249. sp_1024_mont_sub_42(c->x, c->x, t1, p1024_mod);
  50250. /* ry = c.x * p.z^2 * h^2 - c'.x */
  50251. sp_1024_mont_sub_42(t1, ry, c->x, p1024_mod);
  50252. /* ry = r * (c.x * p.z^2 * h^2 - c'.x) */
  50253. sp_1024_mont_mul_42(ry, t1, r, p1024_mod, p1024_mp_mod);
  50254. /* t2 = c.y * p.z^3 * h^3 */
  50255. sp_1024_mont_mul_42(t1, t2, c->y, p1024_mod, p1024_mp_mod);
  50256. /* c'.y = r * (c.x * p.z^2 * h^2 - c'.x) - c.y * p.z^3 * h^3 */
  50257. sp_1024_mont_sub_42(c->y, ry, t1, p1024_mod);
  50258. }
  50259. /*
  50260. * Perform n accumulate doubles and doubles of P.
  50261. *
  50262. * py = 2 * p.y
  50263. *
  50264. * For each double:
  50265. * Calculate gradient of line through P, P and [-2]P, accumulate line and
  50266. * double P.
  50267. *
  50268. * Calculations:
  50269. * l = 3 * (p.x^2 - p.z^4) = 3 * (p.x - p.z^2) * (p.x + p.z^2)
  50270. * r.x = l * (p.x + q.x * p.z^2) - py^2 / 2
  50271. * r.y = py * p.z^3 * q.y (= p'.z * p.z^2 * q.y)
  50272. * v* = v*^2 * r*
  50273. * p'.x = l^2 - 2 * py^2 * p.x
  50274. * py' = (py^2 * p.x - p'.x) * l - py^4 (= 2 * p'.y)
  50275. * p'.z = py * p.z
  50276. *
  50277. * Finally:
  50278. * p'.y = py' / 2
  50279. *
  50280. * @param [in,out] vx X-ordinate of projective value in F*.
  50281. * @param [in,out] vy Y-ordinate of projective value in F*.
  50282. * @param [in,out] p ECC point - point on E(F_p^2) to double.
  50283. * @param [in] q ECC point - second point on E(F_P^2).
  50284. * @param [in] n Number of times to double.
  50285. * @param [in] t SP temporaries (6 used).
  50286. */
  50287. static void sp_1024_accumulate_line_dbl_n_42(sp_digit* vx, sp_digit* vy,
  50288. sp_point_1024* p, const sp_point_1024* q, int n, sp_digit* t)
  50289. {
  50290. sp_digit* t1 = t + 0 * 42;
  50291. sp_digit* pz2 = t + 2 * 42;
  50292. sp_digit* rx = t + 4 * 42;
  50293. sp_digit* ry = t + 6 * 42;
  50294. sp_digit* l = t + 8 * 42;
  50295. sp_digit* ty = t + 10 * 42;
  50296. int i;
  50297. /* py = 2 * p.y */
  50298. sp_1024_mont_dbl_42(p->y, p->y, p1024_mod);
  50299. for (i = 0; i < n; i++) {
  50300. /* v = v^2 */
  50301. sp_1024_proj_sqr_42(vx, vy, t);
  50302. /* pz2 = p.z^2 */
  50303. sp_1024_mont_sqr_42(pz2, p->z, p1024_mod, p1024_mp_mod);
  50304. /* t1 = p.x + p.z^2 */
  50305. sp_1024_mont_add_42(t1, p->x, pz2, p1024_mod);
  50306. /* l = p.x - p.z^2 */
  50307. sp_1024_mont_sub_42(l, p->x, pz2, p1024_mod);
  50308. /* t1 = (p.x + p.z^2) * (p.x - p.z^2) = p.x^2 - p.z^4 */
  50309. sp_1024_mont_mul_42(ty, l, t1, p1024_mod, p1024_mp_mod);
  50310. /* l = 3 * (p.x^2 - p.z^4) */
  50311. sp_1024_mont_tpl_42(l, ty, p1024_mod);
  50312. /* t1 = q.x * p.z^2 */
  50313. sp_1024_mont_mul_42(t1, q->x, pz2, p1024_mod, p1024_mp_mod);
  50314. /* t1 = p.x + q.x * p.z^2 */
  50315. sp_1024_mont_add_42(t1, p->x, t1, p1024_mod);
  50316. /* r.x = l * (p.x + q.x * p.z^2) */
  50317. sp_1024_mont_mul_42(rx, l, t1, p1024_mod, p1024_mp_mod);
  50318. /* ty = py ^ 2 */
  50319. sp_1024_mont_sqr_42(ty, p->y, p1024_mod, p1024_mp_mod);
  50320. /* t1 = py ^ 2 / 2 */
  50321. sp_1024_mont_div2_42(t1, ty, p1024_mod);
  50322. /* r.x -= py ^ 2 / 2 */
  50323. sp_1024_mont_sub_42(rx, rx, t1, p1024_mod);
  50324. /* p'.z = py * pz */
  50325. sp_1024_mont_mul_42(p->z, p->z, p->y, p1024_mod, p1024_mp_mod);
  50326. /* r.y = p'.z * p.z^2 */
  50327. sp_1024_mont_mul_42(t1, p->z, pz2, p1024_mod, p1024_mp_mod);
  50328. /* r.y = p'.z * p.z^2 * q.y */
  50329. sp_1024_mont_mul_42(ry, t1, q->y, p1024_mod, p1024_mp_mod);
  50330. /* v = v^2 * r */
  50331. sp_1024_proj_mul_42(vx, vy, rx, ry, t);
  50332. /* Double point using previously calculated values
  50333. * l = 3 * (p.x - p.z^2).(p.x + p.z^2)
  50334. * ty = py^2
  50335. * p'.z = py * p.z
  50336. */
  50337. /* t1 = py^2 ^ 2 = py^4 */
  50338. sp_1024_mont_sqr_42(t1, ty, p1024_mod, p1024_mp_mod);
  50339. /* py' = py^2 * p. x */
  50340. sp_1024_mont_mul_42(p->y, ty, p->x, p1024_mod, p1024_mp_mod);
  50341. /* p'.x = l^2 */
  50342. sp_1024_mont_sqr_42(p->x, l, p1024_mod, p1024_mp_mod);
  50343. /* p'.x = l^2 - py^2 * p.x */
  50344. sp_1024_mont_sub_42(p->x, p->x, p->y, p1024_mod);
  50345. /* p'.x = l^2 - 2 * p.y^2 * p.x */
  50346. sp_1024_mont_sub_42(p->x, p->x, p->y, p1024_mod);
  50347. /* py' = py^2 * p.x - p.x' */
  50348. sp_1024_mont_sub_42(ty, p->y, p->x, p1024_mod);
  50349. /* py' = (p.y^2 * p.x - p'.x) * l */
  50350. sp_1024_mont_mul_42(p->y, ty, l, p1024_mod, p1024_mp_mod);
  50351. /* py' = (p.y^2 * p.x - p'.x) * l * 2 */
  50352. sp_1024_mont_dbl_42(p->y, p->y, p1024_mod);
  50353. /* py' = (p.y^2 * p.x - p'.x) * l * 2 - p.y^4 */
  50354. sp_1024_mont_sub_42(p->y, p->y, t1, p1024_mod);
  50355. }
  50356. /* p'.y = py' / 2 */
  50357. sp_1024_mont_div2_42(p->y, p->y, p1024_mod);
  50358. }
  50359. /* Operations to perform based on order - 1.
  50360. * Sliding window. Start at bottom and stop when bottom bit is one.
  50361. * Subtract if top bit in window is one.
  50362. * Width of 6 bits.
  50363. * Pairs: #dbls, add/subtract window value
  50364. */
  50365. static const signed char sp_1024_order_op[] = {
  50366. 5, 6, -13, 9, -21, 6, -5, 8, 31, 6, 3, 6, -27, 6, 25, 9,
  50367. -1, 6, -11, 6, -13, 6, -7, 6, -15, 6, -29, 7, 25, 6, -9, 6,
  50368. -19, 7, 3, 6, 11, 9, -23, 6, 1, 6, 27, 6, 1, 7, -25, 8,
  50369. 13, 7, -13, 7, -23, 10, 19, 7, 7, 7, -3, 7, 27, 6, -7, 7,
  50370. -21, 7, 11, 7, 31, 8, 1, 7, -23, 6, -17, 6, -3, 10, 11, 6,
  50371. -21, 7, -27, 11, -29, 6, -1, 10, 15, 8, 27, 7, 17, 6, 17, 7,
  50372. -13, 8, 13, 6, 21, 7, -29, 6, 19, 7, -25, 6, 11, 9, 29, 7,
  50373. -7, 8, 27, 7, 29, 10, -1, 8, -7, 8, 17, 6, 17, 7, -27, 7,
  50374. -21, 6, -9, 6, -27, 12, -23, 6, 19, 6, 13, 6, -11, 7, 27, 6,
  50375. 17, 6, -7, 6, -25, 7, -29, 6, 9, 7, 7, 6, 13, 6, -25, 6,
  50376. -19, 6, 13, 6, -11, 6, 5, 8, 19, 6, -21, 8, 23, 7, 27, 6,
  50377. -13, 6, -19, 11, 29, 7, -15, 6, -9, 7, -21, 10, -3, 7, 21, 10,
  50378. 25, 6, -15, 6, -23, 6, 21, 6, 1, 6, 21, 7, -3, 6, -3, 7,
  50379. -7, 6, -23, 7, 7, 8, 15, 9, 5, 6, -11, 6, 21, 11, -27, 7,
  50380. 27, 6, -11, 6, 31, 6, -21, 6, 19, 6, -7, 8, -7, 13, -3, 6,
  50381. -7, 7, -3, 6, 1, 6, 7, 8, 19, 8, 11, 9, -9, 7, -31, 12,
  50382. 25, 6, -17, 9, -15, 7, 5, 6, 25, 7, -5, 7, -25, 6, 17, 8,
  50383. -19, 6, -13, 6, 27, 8, 1, 7, -5, 7, -1, 6, 21, 6, 3, 10,
  50384. -3, 1,
  50385. };
  50386. /*
  50387. * Calculate r = pairing <P, Q>.
  50388. *
  50389. * That is, multiply base in PF_p[q] by the scalar s, such that s.P = Q.
  50390. *
  50391. * Sliding window. Start at bottom and stop when bottom bit is one.
  50392. * Subtract if top bit in window is one.
  50393. * Width of 6 bits.
  50394. *
  50395. * @param [in] pm First point on E(F_p)[q].
  50396. * @param [in] qm Second point on E(F_p)[q].
  50397. * @param [in] res Result of calculation.
  50398. * @return 0 on success.
  50399. * @return MEMORY_E when dynamic memory allocation fails.
  50400. */
  50401. int sp_Pairing_1024(const ecc_point* pm, const ecc_point* qm, mp_int* res)
  50402. {
  50403. int err;
  50404. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50405. defined(WOLFSSL_SP_SMALL_STACK)
  50406. sp_digit* td = NULL;
  50407. sp_digit* t;
  50408. sp_digit* vx;
  50409. sp_digit* vy;
  50410. sp_digit (*pre_vx)[84];
  50411. sp_digit (*pre_vy)[84];
  50412. sp_digit (*pre_nvy)[84];
  50413. sp_point_1024* pre_p;
  50414. #else
  50415. sp_digit t[36 * 2 * 42];
  50416. sp_digit vx[2 * 42];
  50417. sp_digit vy[2 * 42];
  50418. sp_digit pre_vx[16][84];
  50419. sp_digit pre_vy[16][84];
  50420. sp_digit pre_nvy[16][84];
  50421. sp_point_1024 pre_p[16];
  50422. sp_point_1024 pd;
  50423. sp_point_1024 qd;
  50424. sp_point_1024 cd;
  50425. #endif
  50426. sp_point_1024* p = NULL;
  50427. sp_point_1024* q = NULL;
  50428. sp_point_1024* c = NULL;
  50429. sp_digit* r = NULL;
  50430. int i;
  50431. int j;
  50432. err = sp_1024_point_new_42(NULL, pd, p);
  50433. if (err == MP_OKAY) {
  50434. err = sp_1024_point_new_42(NULL, qd, q);
  50435. }
  50436. if (err == MP_OKAY) {
  50437. err = sp_1024_point_new_42(NULL, cd, c);
  50438. }
  50439. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50440. defined(WOLFSSL_SP_SMALL_STACK)
  50441. if (err == MP_OKAY) {
  50442. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 86 * 42 * 2 + 16 * sizeof(sp_point_1024), NULL,
  50443. DYNAMIC_TYPE_TMP_BUFFER);
  50444. if (td == NULL) {
  50445. err = MEMORY_E;
  50446. }
  50447. }
  50448. #endif
  50449. if (err == MP_OKAY) {
  50450. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50451. defined(WOLFSSL_SP_SMALL_STACK)
  50452. t = td;
  50453. vx = td + 36 * 42 * 2;
  50454. vy = td + 37 * 42 * 2;
  50455. pre_vx = (sp_digit(*)[84])(td + 38 * 42 * 2);
  50456. pre_vy = (sp_digit(*)[84])(td + 54 * 42 * 2);
  50457. pre_nvy = (sp_digit(*)[84])(td + 70 * 42 * 2);
  50458. pre_p = (sp_point_1024*)(td + 86 * 42 * 2);
  50459. #endif
  50460. r = vy;
  50461. sp_1024_point_from_ecc_point_42(p, pm);
  50462. sp_1024_point_from_ecc_point_42(q, qm);
  50463. err = sp_1024_mod_mul_norm_42(p->x, p->x, p1024_mod);
  50464. }
  50465. if (err == MP_OKAY) {
  50466. err = sp_1024_mod_mul_norm_42(p->y, p->y, p1024_mod);
  50467. }
  50468. if (err == MP_OKAY) {
  50469. err = sp_1024_mod_mul_norm_42(p->z, p->z, p1024_mod);
  50470. }
  50471. if (err == MP_OKAY) {
  50472. err = sp_1024_mod_mul_norm_42(q->x, q->x, p1024_mod);
  50473. }
  50474. if (err == MP_OKAY) {
  50475. err = sp_1024_mod_mul_norm_42(q->y, q->y, p1024_mod);
  50476. }
  50477. if (err == MP_OKAY) {
  50478. /* Generate pre-computation table: 1, 3, ... , 31 */
  50479. XMEMCPY(&pre_p[0], p, sizeof(sp_point_1024));
  50480. XMEMSET(pre_vx[0], 0, sizeof(sp_digit) * 2 * 42);
  50481. pre_vx[0][0] = 1;
  50482. XMEMSET(pre_vy[0], 0, sizeof(sp_digit) * 2 * 42);
  50483. sp_1024_mont_sub_42(pre_nvy[0], p1024_mod, pre_vy[0], p1024_mod);
  50484. /* [2]P for adding */
  50485. XMEMCPY(c, p, sizeof(sp_point_1024));
  50486. XMEMSET(vx, 0, sizeof(sp_digit) * 2 * 42);
  50487. vx[0] = 1;
  50488. XMEMSET(vy, 0, sizeof(sp_digit) * 2 * 42);
  50489. sp_1024_accumulate_line_dbl_42(vx, vy, c, q, t);
  50490. /* 3, 5, ... */
  50491. for (i = 1; i < 16; i++) {
  50492. XMEMCPY(&pre_p[i], &pre_p[i-1], sizeof(sp_point_1024));
  50493. XMEMCPY(pre_vx[i], pre_vx[i-1], sizeof(sp_digit) * 2 * 42);
  50494. XMEMCPY(pre_vy[i], pre_vy[i-1], sizeof(sp_digit) * 2 * 42);
  50495. sp_1024_proj_mul_42(pre_vx[i], pre_vy[i], vx, vy, t);
  50496. sp_1024_accumulate_line_add_n_42(pre_vx[i], pre_vy[i], c,
  50497. q, &pre_p[i], t, 0);
  50498. sp_1024_mont_sub_42(pre_nvy[i], p1024_mod, pre_vy[i], p1024_mod);
  50499. }
  50500. j = sp_1024_order_op[0] / 2;
  50501. XMEMCPY(c, &pre_p[j], sizeof(sp_point_1024));
  50502. XMEMCPY(vx, pre_vx[j], sizeof(sp_digit) * 2 * 42);
  50503. XMEMCPY(vy, pre_vy[j], sizeof(sp_digit) * 2 * 42);
  50504. /* Accumulate line into v and double point n times. */
  50505. sp_1024_accumulate_line_dbl_n_42(vx, vy, c, q,
  50506. sp_1024_order_op[1], t);
  50507. for (i = 2; i < 290; i += 2) {
  50508. j = sp_1024_order_op[i];
  50509. if (j > 0) {
  50510. j /= 2;
  50511. /* Accumulate line into v and add P into C. */
  50512. sp_1024_proj_mul_42(vx, vy, pre_vx[j], pre_vy[j], t);
  50513. sp_1024_accumulate_line_add_n_42(vx, vy, &pre_p[j], q, c,
  50514. t, 0);
  50515. }
  50516. else {
  50517. j = -j / 2;
  50518. /* Accumulate line into v and add P into C. */
  50519. sp_1024_proj_mul_42(vx, vy, pre_vx[j], pre_nvy[j], t);
  50520. sp_1024_accumulate_line_add_n_42(vx, vy, &pre_p[j], q, c,
  50521. t, 1);
  50522. }
  50523. /* Accumulate line into v and double point n times. */
  50524. sp_1024_accumulate_line_dbl_n_42(vx, vy, c, q,
  50525. sp_1024_order_op[i + 1], t);
  50526. }
  50527. /* Final exponentiation */
  50528. sp_1024_proj_sqr_42(vx, vy, t);
  50529. sp_1024_proj_sqr_42(vx, vy, t);
  50530. /* Convert from PF_p[q] to F_p */
  50531. sp_1024_mont_inv_42(vx, vx, t);
  50532. sp_1024_mont_mul_42(r, vx, vy, p1024_mod, p1024_mp_mod);
  50533. XMEMSET(r + 42, 0, sizeof(sp_digit) * 42);
  50534. sp_1024_mont_reduce_42(r, p1024_mod, p1024_mp_mod);
  50535. err = sp_1024_to_mp(r, res);
  50536. }
  50537. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50538. defined(WOLFSSL_SP_SMALL_STACK)
  50539. if (td != NULL) {
  50540. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  50541. }
  50542. #endif
  50543. sp_1024_point_free_42(c, 1, NULL);
  50544. sp_1024_point_free_42(q, 1, NULL);
  50545. sp_1024_point_free_42(p, 1, NULL);
  50546. return err;
  50547. }
  50548. #endif /* WOLFSSL_SP_SMALL */
  50549. #ifdef WOLFSSL_SP_SMALL
  50550. /*
  50551. * Generate table for pairing.
  50552. *
  50553. * Small implementation does not use a table - returns 0 length.
  50554. *
  50555. * pm [in] Point to generate table for.
  50556. * table [in] Generated table.
  50557. * len [in,out] On in, the size of the buffer.
  50558. * On out, length of table generated.
  50559. * @return 0 on success.
  50560. * LENGTH_ONLY_E when table is NULL and only length returned.
  50561. * BUFFER_E when len is too small.
  50562. */
  50563. int sp_Pairing_gen_precomp_1024(const ecc_point* pm, byte* table,
  50564. word32* len)
  50565. {
  50566. int err = 0;
  50567. if (table == NULL) {
  50568. *len = 0;
  50569. err = LENGTH_ONLY_E;
  50570. }
  50571. else if (*len != 0) {
  50572. err = BUFFER_E;
  50573. }
  50574. (void)*pm;
  50575. return err;
  50576. }
  50577. /*
  50578. * Calculate r = pairing <P, Q>.
  50579. *
  50580. * That is, multiply base in PF_p[q] by the scalar s, such that s.P = Q.
  50581. *
  50582. * Small implementation does not use a table - use the normal implementation.
  50583. *
  50584. * @param [in] pm First point on E(F_p)[q].
  50585. * @param [in] qm Second point on E(F_p)[q].
  50586. * @param [in] res Result of calculation.
  50587. * @param [in] table Precomputed table of values.
  50588. * @param [in] len Length of precomputed table of values in bytes.
  50589. * @return 0 on success.
  50590. * @return MEMORY_E when dynamic memory allocation fails.
  50591. */
  50592. int sp_Pairing_precomp_1024(const ecc_point* pm, const ecc_point* qm,
  50593. mp_int* res, const byte* table, word32 len)
  50594. {
  50595. (void)table;
  50596. (void)len;
  50597. return sp_Pairing_1024(pm, qm, res);
  50598. }
  50599. #else
  50600. /*
  50601. * Calc l and c for the point when doubling p.
  50602. *
  50603. * l = 3 * (p.x^2 - 1) / (2 * p.y)
  50604. * c = l * p.x - p.y
  50605. *
  50606. * @param [out] lr Gradient result - table entry.
  50607. * @param [out] cr Constant result - table entry.
  50608. * @param [in] px X-ordinate of point to double.
  50609. * @param [in] py Y-ordinate of point to double.
  50610. * @param [in] t SP temporaries (3 used).
  50611. */
  50612. static void sp_1024_accum_dbl_calc_lc_42(sp_digit* lr, sp_digit* cr,
  50613. const sp_digit* px, const sp_digit* py, sp_digit* t)
  50614. {
  50615. sp_digit* t1 = t + 33 * 2 * 42;
  50616. sp_digit* t2 = t + 34 * 2 * 42;
  50617. sp_digit* l = t + 35 * 2 * 42;
  50618. /* l = 1 / 2 * p.y */
  50619. sp_1024_mont_dbl_42(l, py, p1024_mod);
  50620. sp_1024_mont_inv_42(l, l, t);
  50621. /* t1 = p.x^2 */
  50622. sp_1024_mont_sqr_42(t1, px, p1024_mod, p1024_mp_mod);
  50623. /* t1 = p.x - 1 */
  50624. sp_1024_mont_sub_42(t1, t1, p1024_norm_mod, p1024_mod);
  50625. /* t1 = 3 * (p.x^2 - 1) */
  50626. sp_1024_mont_dbl_42(t2, t1, p1024_mod);
  50627. sp_1024_mont_add_42(t1, t1, t2, p1024_mod);
  50628. /* t1 = 3 * (p.x^2 - 1) / (2 * p.y) */
  50629. sp_1024_mont_mul_42(l, l, t1, p1024_mod, p1024_mp_mod);
  50630. /* t2 = l * p.x */
  50631. sp_1024_mont_mul_42(t2, l, px, p1024_mod, p1024_mp_mod);
  50632. /* c = t2 = l * p.x - p.y */
  50633. sp_1024_mont_sub_42(t2, t2, py, p1024_mod);
  50634. XMEMCPY(lr, l, sizeof(sp_digit) * 42);
  50635. XMEMCPY(cr, t2, sizeof(sp_digit) * 42);
  50636. }
  50637. /*
  50638. * Calc l and c when adding p and c.
  50639. *
  50640. * l = (c.y - p.y) / (c.x - p.x)
  50641. * c = (p.x * c.y - cx * p.y) / (cx - p.x)
  50642. *
  50643. * @param [out] lr Gradient result - table entry.
  50644. * @param [out] cr Constant result - table entry.
  50645. * @param [in] px X-ordinate of point to add.
  50646. * @param [in] py Y-ordinate of point to add.
  50647. * @param [in] cx X-ordinate of current point.
  50648. * @param [in] cy Y-ordinate of current point.
  50649. * @param [in] t SP temporaries (3 used).
  50650. */
  50651. static void sp_1024_accum_add_calc_lc_42(sp_digit* lr, sp_digit* cr,
  50652. const sp_digit* px, const sp_digit* py, const sp_digit* cx,
  50653. const sp_digit* cy, sp_digit* t)
  50654. {
  50655. sp_digit* t1 = t + 33 * 2 * 42;
  50656. sp_digit* c = t + 34 * 2 * 42;
  50657. sp_digit* l = t + 35 * 2 * 42;
  50658. /* l = 1 / (c.x - p.x) */
  50659. sp_1024_mont_sub_42(l, cx, px, p1024_mod);
  50660. sp_1024_mont_inv_42(l, l, t);
  50661. /* c = p.x * c.y */
  50662. sp_1024_mont_mul_42(c, px, cy, p1024_mod, p1024_mp_mod);
  50663. /* t1 = c.x * p.y */
  50664. sp_1024_mont_mul_42(t1, cx, py, p1024_mod, p1024_mp_mod);
  50665. /* c = (p.x * c.y) - (c.x * p.y) */
  50666. sp_1024_mont_sub_42(c, c, t1, p1024_mod);
  50667. /* c = ((p.x * c.y) - (c.x * p.y)) / (c.x - p.x) */
  50668. sp_1024_mont_mul_42(c, c, l, p1024_mod, p1024_mp_mod);
  50669. /* t1 = c.y - p.y */
  50670. sp_1024_mont_sub_42(t1, cy, py, p1024_mod);
  50671. /* l = (c.y - p.y) / (c.x - p.x) */
  50672. sp_1024_mont_mul_42(l, t1, l, p1024_mod, p1024_mp_mod);
  50673. XMEMCPY(lr, l, sizeof(sp_digit) * 42);
  50674. XMEMCPY(cr, c, sizeof(sp_digit) * 42);
  50675. }
  50676. /*
  50677. * Calculate vx and vy given gradient l and constant c and point q.
  50678. *
  50679. * l is a the gradient and is multiplied by q->x.
  50680. * c is a the constant that is added to the multiplicative result.
  50681. * q->y is the y-ordinate in result to multiply.
  50682. *
  50683. * if dbl
  50684. * v* = v*^2
  50685. * r.x = l * q.x + c
  50686. * r.y = q->y
  50687. * v* = v* * r*
  50688. *
  50689. * @param [in,out] vx X-ordinate of projective value in F*.
  50690. * @param [in,out] vy Y-ordinate of projective value in F*.
  50691. * @param [in] l Gradient to multiply with.
  50692. * @param [in] c Constant to add with.
  50693. * @param [in] q ECC point - second point on E(F_P^2).
  50694. * @param [in] t SP temporaries (3 used).
  50695. * @param [in] dbl Indicates whether this is for doubling. Otherwise
  50696. * adding.
  50697. */
  50698. static void sp_1024_accumulate_line_lc_42(sp_digit* vx, sp_digit* vy,
  50699. const sp_digit* l, const sp_digit* c, const sp_point_1024* q,
  50700. sp_digit* t, int dbl)
  50701. {
  50702. sp_digit* rx = t + 4 * 2 * 42;
  50703. /* v = v^2 */
  50704. if (dbl) {
  50705. sp_1024_proj_sqr_42(vx, vy, t);
  50706. }
  50707. /* rx = l * q.x + c */
  50708. sp_1024_mont_mul_42(rx, l, q->x, p1024_mod, p1024_mp_mod);
  50709. sp_1024_mont_add_42(rx, rx, c, p1024_mod);
  50710. /* v = v^2 * r */
  50711. sp_1024_proj_mul_42(vx, vy, rx, q->y, t);
  50712. }
  50713. /* Operations to perform based on order - 1.
  50714. * Sliding window. Start at bottom and stop when bottom bit is one.
  50715. * Subtract if top bit in window is one.
  50716. * Width of 6 bits.
  50717. * Pairs: #dbls, add/subtract window value
  50718. */
  50719. static const signed char sp_1024_order_op_pre[] = {
  50720. 5, 6, -13, 9, -21, 6, -5, 8, 31, 6, 3, 6, -27, 6, 25, 9,
  50721. -1, 6, -11, 6, -13, 6, -7, 6, -15, 6, -29, 7, 25, 6, -9, 6,
  50722. -19, 7, 3, 6, 11, 9, -23, 6, 1, 6, 27, 6, 1, 7, -25, 8,
  50723. 13, 7, -13, 7, -23, 10, 19, 7, 7, 7, -3, 7, 27, 6, -7, 7,
  50724. -21, 7, 11, 7, 31, 8, 1, 7, -23, 6, -17, 6, -3, 10, 11, 6,
  50725. -21, 7, -27, 11, -29, 6, -1, 10, 15, 8, 27, 7, 17, 6, 17, 7,
  50726. -13, 8, 13, 6, 21, 7, -29, 6, 19, 7, -25, 6, 11, 9, 29, 7,
  50727. -7, 8, 27, 7, 29, 10, -1, 8, -7, 8, 17, 6, 17, 7, -27, 7,
  50728. -21, 6, -9, 6, -27, 12, -23, 6, 19, 6, 13, 6, -11, 7, 27, 6,
  50729. 17, 6, -7, 6, -25, 7, -29, 6, 9, 7, 7, 6, 13, 6, -25, 6,
  50730. -19, 6, 13, 6, -11, 6, 5, 8, 19, 6, -21, 8, 23, 7, 27, 6,
  50731. -13, 6, -19, 11, 29, 7, -15, 6, -9, 7, -21, 10, -3, 7, 21, 10,
  50732. 25, 6, -15, 6, -23, 6, 21, 6, 1, 6, 21, 7, -3, 6, -3, 7,
  50733. -7, 6, -23, 7, 7, 8, 15, 9, 5, 6, -11, 6, 21, 11, -27, 7,
  50734. 27, 6, -11, 6, 31, 6, -21, 6, 19, 6, -7, 8, -7, 13, -3, 6,
  50735. -7, 7, -3, 6, 1, 6, 7, 8, 19, 8, 11, 9, -9, 7, -31, 12,
  50736. 25, 6, -17, 9, -15, 7, 5, 6, 25, 7, -5, 7, -25, 6, 17, 8,
  50737. -19, 6, -13, 6, 27, 8, 1, 7, -5, 7, -1, 6, 21, 6, 3, 10,
  50738. -3, 1,
  50739. };
  50740. /*
  50741. * Generate table for pairing.
  50742. *
  50743. * Calculate the graident (l) and constant (c) at each step of the way.
  50744. * Sliding window. Start at bottom and stop when bottom bit is one.
  50745. * Subtract if top bit in window is one.
  50746. * Width of 6 bits.
  50747. *
  50748. * pm [in] Point to generate table for.
  50749. * table [in] Generated table.
  50750. * len [in,out] On in, the size of the buffer.
  50751. * On out, length of table generated.
  50752. * @return 0 on success.
  50753. * LENGTH_ONLY_E when table is NULL and only length returned.
  50754. * BUFFER_E when len is too small.
  50755. * MEMORY_E when dynamic memory allocation fauls.
  50756. */
  50757. int sp_Pairing_gen_precomp_1024(const ecc_point* pm, byte* table,
  50758. word32* len)
  50759. {
  50760. int err = 0;
  50761. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50762. defined(WOLFSSL_SP_SMALL_STACK)
  50763. sp_digit* td = NULL;
  50764. sp_digit* t;
  50765. sp_point_1024* pre_p;
  50766. #else
  50767. sp_digit t[36 * 2 * 42];
  50768. sp_point_1024 pre_p[16];
  50769. sp_point_1024 pd;
  50770. sp_point_1024 cd;
  50771. sp_point_1024 negd;
  50772. #endif
  50773. sp_point_1024* p = NULL;
  50774. sp_point_1024* c = NULL;
  50775. sp_point_1024* neg = NULL;
  50776. int i;
  50777. int j;
  50778. int k;
  50779. sp_table_entry_1024* precomp = (sp_table_entry_1024*)table;
  50780. if (table == NULL) {
  50781. *len = sizeof(sp_table_entry_1024) * 1167;
  50782. err = LENGTH_ONLY_E;
  50783. }
  50784. if ((err == MP_OKAY) &&
  50785. (*len < (int)(sizeof(sp_table_entry_1024) * 1167))) {
  50786. err = BUFFER_E;
  50787. }
  50788. if (err == MP_OKAY) {
  50789. err = sp_1024_point_new_42(NULL, pd, p);
  50790. }
  50791. if (err == MP_OKAY) {
  50792. err = sp_1024_point_new_42(NULL, cd, c);
  50793. }
  50794. if (err == MP_OKAY) {
  50795. err = sp_1024_point_new_42(NULL, negd, neg);
  50796. }
  50797. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50798. defined(WOLFSSL_SP_SMALL_STACK)
  50799. if (err == MP_OKAY) {
  50800. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 36 * 42 * 2 + 16 *
  50801. sizeof(sp_point_1024), NULL, DYNAMIC_TYPE_TMP_BUFFER);
  50802. if (td == NULL) {
  50803. err = MEMORY_E;
  50804. }
  50805. }
  50806. #endif
  50807. if (err == MP_OKAY) {
  50808. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50809. defined(WOLFSSL_SP_SMALL_STACK)
  50810. t = td;
  50811. pre_p = (sp_point_1024*)(td + 36 * 42 * 2);
  50812. #endif
  50813. sp_1024_point_from_ecc_point_42(p, pm);
  50814. err = sp_1024_mod_mul_norm_42(p->x, p->x, p1024_mod);
  50815. }
  50816. if (err == MP_OKAY) {
  50817. err = sp_1024_mod_mul_norm_42(p->y, p->y, p1024_mod);
  50818. }
  50819. if (err == MP_OKAY) {
  50820. XMEMCPY(p->z, p1024_norm_mod, sizeof(p1024_norm_mod));
  50821. neg->infinity = 0;
  50822. c->infinity = 0;
  50823. /* Generate pre-computation table: 1, 3, ... , 31 */
  50824. XMEMCPY(&pre_p[0], p, sizeof(sp_point_1024));
  50825. /* [2]P for adding */
  50826. sp_1024_proj_point_dbl_42(c, p, t);
  50827. /* 1, 3, ... */
  50828. for (i = 1; i < 16; i++) {
  50829. sp_1024_proj_point_add_42(&pre_p[i], &pre_p[i-1], c, t);
  50830. sp_1024_mont_map_42(&pre_p[i], t);
  50831. }
  50832. k = 0;
  50833. j = sp_1024_order_op_pre[0] / 2;
  50834. XMEMCPY(c, &pre_p[j], sizeof(sp_point_1024));
  50835. for (j = 0; j < sp_1024_order_op_pre[1]; j++) {
  50836. sp_1024_accum_dbl_calc_lc_42(precomp[k].x, precomp[k].y, c->x,
  50837. c->y, t);
  50838. k++;
  50839. sp_1024_proj_point_dbl_42(c, c, t);
  50840. sp_1024_mont_map_42(c, t);
  50841. }
  50842. for (i = 2; i < 290; i += 2) {
  50843. j = sp_1024_order_op_pre[i];
  50844. if (j > 0) {
  50845. sp_1024_accum_add_calc_lc_42(precomp[k].x, precomp[k].y,
  50846. pre_p[j/2].x, pre_p[j/2].y, c->x, c->y, t);
  50847. k++;
  50848. sp_1024_proj_point_add_42(c, c, &pre_p[j/2], t);
  50849. sp_1024_mont_map_42(c, t);
  50850. }
  50851. else {
  50852. XMEMCPY(neg->x, pre_p[-j / 2].x, sizeof(pre_p->x));
  50853. sp_1024_mont_sub_42(neg->y, p1024_mod, pre_p[-j / 2].y,
  50854. p1024_mod);
  50855. XMEMCPY(neg->z, pre_p[-j / 2].z, sizeof(pre_p->z));
  50856. sp_1024_accum_add_calc_lc_42(precomp[k].x, precomp[k].y,
  50857. neg->x, neg->y, c->x, c->y, t);
  50858. k++;
  50859. sp_1024_proj_point_add_42(c, c, neg, t);
  50860. sp_1024_mont_map_42(c, t);
  50861. }
  50862. for (j = 0; j < sp_1024_order_op_pre[i + 1]; j++) {
  50863. sp_1024_accum_dbl_calc_lc_42(precomp[k].x, precomp[k].y, c->x,
  50864. c->y, t);
  50865. k++;
  50866. sp_1024_proj_point_dbl_42(c, c, t);
  50867. sp_1024_mont_map_42(c, t);
  50868. }
  50869. }
  50870. *len = sizeof(sp_table_entry_1024) * 1167;
  50871. }
  50872. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50873. defined(WOLFSSL_SP_SMALL_STACK)
  50874. if (td != NULL) {
  50875. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  50876. }
  50877. #endif
  50878. sp_1024_point_free_42(neg, 1, NULL);
  50879. sp_1024_point_free_42(c, 1, NULL);
  50880. sp_1024_point_free_42(p, 1, NULL);
  50881. return err;
  50882. }
  50883. /*
  50884. * Calculate r = pairing <P, Q>.
  50885. *
  50886. * That is, multiply base in PF_p[q] by the scalar s, such that s.P = Q.
  50887. *
  50888. * Sliding window. Start at bottom and stop when bottom bit is one.
  50889. * Subtract if top bit in window is one.
  50890. * Width of 6 bits.
  50891. * Pre-generate values in window (1, 3, ...) - only V.
  50892. * Table contains all gradient l and a constant for each point on the path.
  50893. *
  50894. * @param [in] pm First point on E(F_p)[q].
  50895. * @param [in] qm Second point on E(F_p)[q].
  50896. * @param [in] res Result of calculation.
  50897. * @param [in] table Precomputed table of values.
  50898. * @param [in] len Length of precomputed table of values in bytes.
  50899. * @return 0 on success.
  50900. * @return MEMORY_E when dynamic memory allocation fails.
  50901. */
  50902. int sp_Pairing_precomp_1024(const ecc_point* pm, const ecc_point* qm,
  50903. mp_int* res, const byte* table, word32 len)
  50904. {
  50905. int err = 0;
  50906. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50907. defined(WOLFSSL_SP_SMALL_STACK)
  50908. sp_digit* td = NULL;
  50909. sp_digit* t;
  50910. sp_digit* vx;
  50911. sp_digit* vy;
  50912. sp_digit (*pre_vx)[84];
  50913. sp_digit (*pre_vy)[84];
  50914. sp_digit (*pre_nvy)[84];
  50915. #else
  50916. sp_digit t[36 * 2 * 42];
  50917. sp_digit vx[2 * 42];
  50918. sp_digit vy[2 * 42];
  50919. sp_digit pre_vx[16][84];
  50920. sp_digit pre_vy[16][84];
  50921. sp_digit pre_nvy[16][84];
  50922. sp_point_1024 pd;
  50923. sp_point_1024 qd;
  50924. sp_point_1024 cd;
  50925. #endif
  50926. sp_point_1024* p = NULL;
  50927. sp_point_1024* q = NULL;
  50928. sp_point_1024* c = NULL;
  50929. sp_digit* r = NULL;
  50930. int i;
  50931. int j;
  50932. int k;
  50933. const sp_table_entry_1024* precomp = (const sp_table_entry_1024*)table;
  50934. if (len < (int)(sizeof(sp_table_entry_1024) * 1167)) {
  50935. err = BUFFER_E;
  50936. }
  50937. if (err == MP_OKAY) {
  50938. err = sp_1024_point_new_42(NULL, pd, p);
  50939. }
  50940. if (err == MP_OKAY) {
  50941. err = sp_1024_point_new_42(NULL, qd, q);
  50942. }
  50943. if (err == MP_OKAY) {
  50944. err = sp_1024_point_new_42(NULL, cd, c);
  50945. }
  50946. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50947. defined(WOLFSSL_SP_SMALL_STACK)
  50948. if (err == MP_OKAY) {
  50949. td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 86 * 42 * 2, NULL,
  50950. DYNAMIC_TYPE_TMP_BUFFER);
  50951. if (td == NULL) {
  50952. err = MEMORY_E;
  50953. }
  50954. }
  50955. #endif
  50956. if (err == MP_OKAY) {
  50957. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  50958. defined(WOLFSSL_SP_SMALL_STACK)
  50959. t = td;
  50960. vx = td + 36 * 42 * 2;
  50961. vy = td + 37 * 42 * 2;
  50962. pre_vx = (sp_digit(*)[84])(td + 38 * 42 * 2);
  50963. pre_vy = (sp_digit(*)[84])(td + 54 * 42 * 2);
  50964. pre_nvy = (sp_digit(*)[84])(td + 70 * 42 * 2);
  50965. #endif
  50966. r = vy;
  50967. sp_1024_point_from_ecc_point_42(p, pm);
  50968. sp_1024_point_from_ecc_point_42(q, qm);
  50969. err = sp_1024_mod_mul_norm_42(p->x, p->x, p1024_mod);
  50970. }
  50971. if (err == MP_OKAY) {
  50972. err = sp_1024_mod_mul_norm_42(p->y, p->y, p1024_mod);
  50973. }
  50974. if (err == MP_OKAY) {
  50975. err = sp_1024_mod_mul_norm_42(p->z, p->z, p1024_mod);
  50976. }
  50977. if (err == MP_OKAY) {
  50978. err = sp_1024_mod_mul_norm_42(q->x, q->x, p1024_mod);
  50979. }
  50980. if (err == MP_OKAY) {
  50981. err = sp_1024_mod_mul_norm_42(q->y, q->y, p1024_mod);
  50982. }
  50983. if (err == MP_OKAY) {
  50984. /* Generate pre-computation table: 1, 3, ... , 31 */
  50985. XMEMSET(pre_vx[0], 0, sizeof(sp_digit) * 2 * 42);
  50986. pre_vx[0][0] = 1;
  50987. XMEMSET(pre_vy[0], 0, sizeof(sp_digit) * 2 * 42);
  50988. sp_1024_mont_sub_42(pre_nvy[0], p1024_mod, pre_vy[0], p1024_mod);
  50989. /* [2]P for adding */
  50990. XMEMCPY(c, p, sizeof(sp_point_1024));
  50991. XMEMSET(vx, 0, sizeof(sp_digit) * 2 * 42);
  50992. vx[0] = 1;
  50993. XMEMSET(vy, 0, sizeof(sp_digit) * 2 * 42);
  50994. sp_1024_accumulate_line_dbl_42(vx, vy, c, q, t);
  50995. /* 3, 5, ... */
  50996. for (i = 1; i < 16; i++) {
  50997. XMEMCPY(pre_vx[i], pre_vx[i-1], sizeof(sp_digit) * 2 * 42);
  50998. XMEMCPY(pre_vy[i], pre_vy[i-1], sizeof(sp_digit) * 2 * 42);
  50999. sp_1024_proj_mul_42(pre_vx[i], pre_vy[i], vx, vy, t);
  51000. sp_1024_accumulate_line_add_n_42(pre_vx[i], pre_vy[i], c,
  51001. q, p, t, 0);
  51002. sp_1024_mont_sub_42(pre_nvy[i], p1024_mod, pre_vy[i],
  51003. p1024_mod);
  51004. }
  51005. XMEMCPY(c->z, p1024_norm_mod, sizeof(sp_digit) * 42);
  51006. c->infinity = 0;
  51007. j = sp_1024_order_op_pre[0] / 2;
  51008. XMEMCPY(vx, pre_vx[j], sizeof(sp_digit) * 2 * 42);
  51009. XMEMCPY(vy, pre_vy[j], sizeof(sp_digit) * 2 * 42);
  51010. k = 0;
  51011. for (j = 0; j < sp_1024_order_op_pre[1]; j++) {
  51012. /* Accumulate line into v and double point. */
  51013. sp_1024_accumulate_line_lc_42(vx, vy, precomp[k].x,
  51014. precomp[k].y, q, t, 1);
  51015. k++;
  51016. }
  51017. for (i = 2; i < 290; i += 2) {
  51018. sp_1024_accumulate_line_lc_42(vx, vy, precomp[k].x,
  51019. precomp[k].y, q, t, 0);
  51020. k++;
  51021. j = sp_1024_order_op_pre[i];
  51022. if (j > 0) {
  51023. j /= 2;
  51024. /* Accumulate line into v. */
  51025. sp_1024_proj_mul_42(vx, vy, pre_vx[j], pre_vy[j], t);
  51026. }
  51027. else {
  51028. j = -j / 2;
  51029. /* Accumulate line into v. */
  51030. sp_1024_proj_mul_42(vx, vy, pre_vx[j], pre_nvy[j], t);
  51031. }
  51032. for (j = 0; j < sp_1024_order_op_pre[i + 1]; j++) {
  51033. /* Accumulate line into v and double point. */
  51034. sp_1024_accumulate_line_lc_42(vx, vy, precomp[k].x,
  51035. precomp[k].y, q, t, 1);
  51036. k++;
  51037. }
  51038. }
  51039. /* Final exponentiation */
  51040. sp_1024_proj_sqr_42(vx, vy, t);
  51041. sp_1024_proj_sqr_42(vx, vy, t);
  51042. /* Convert from PF_p[q] to F_p */
  51043. sp_1024_mont_inv_42(vx, vx, t);
  51044. sp_1024_mont_mul_42(r, vx, vy, p1024_mod, p1024_mp_mod);
  51045. XMEMSET(r + 42, 0, sizeof(sp_digit) * 42);
  51046. sp_1024_mont_reduce_42(r, p1024_mod, p1024_mp_mod);
  51047. err = sp_1024_to_mp(r, res);
  51048. }
  51049. #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
  51050. defined(WOLFSSL_SP_SMALL_STACK)
  51051. if (td != NULL) {
  51052. XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
  51053. }
  51054. #endif
  51055. sp_1024_point_free_42(c, 1, NULL);
  51056. sp_1024_point_free_42(q, 1, NULL);
  51057. sp_1024_point_free_42(p, 1, NULL);
  51058. return err;
  51059. }
  51060. #endif /* WOLFSSL_SP_SMALL */
  51061. #ifdef HAVE_ECC_CHECK_KEY
  51062. /* Read big endian unsigned byte array into r.
  51063. *
  51064. * r A single precision integer.
  51065. * size Maximum number of bytes to convert
  51066. * a Byte array.
  51067. * n Number of bytes in array to read.
  51068. */
  51069. static void sp_1024_from_bin(sp_digit* r, int size, const byte* a, int n)
  51070. {
  51071. int i;
  51072. int j = 0;
  51073. word32 s = 0;
  51074. r[0] = 0;
  51075. for (i = n-1; i >= 0; i--) {
  51076. r[j] |= (((sp_digit)a[i]) << s);
  51077. if (s >= 17U) {
  51078. r[j] &= 0x1ffffff;
  51079. s = 25U - s;
  51080. if (j + 1 >= size) {
  51081. break;
  51082. }
  51083. r[++j] = (sp_digit)a[i] >> s;
  51084. s = 8U - s;
  51085. }
  51086. else {
  51087. s += 8U;
  51088. }
  51089. }
  51090. for (j++; j < size; j++) {
  51091. r[j] = 0;
  51092. }
  51093. }
  51094. /* Check that the x and y oridinates are a valid point on the curve.
  51095. *
  51096. * point EC point.
  51097. * heap Heap to use if dynamically allocating.
  51098. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
  51099. * not on the curve and MP_OKAY otherwise.
  51100. */
  51101. static int sp_1024_ecc_is_point_42(const sp_point_1024* point,
  51102. void* heap)
  51103. {
  51104. #ifdef WOLFSSL_SP_SMALL_STACK
  51105. sp_digit* t1 = NULL;
  51106. #else
  51107. sp_digit t1[42 * 4];
  51108. #endif
  51109. sp_digit* t2 = NULL;
  51110. sp_int32 n;
  51111. int err = MP_OKAY;
  51112. #ifdef WOLFSSL_SP_SMALL_STACK
  51113. t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 42 * 4, heap, DYNAMIC_TYPE_ECC);
  51114. if (t1 == NULL)
  51115. err = MEMORY_E;
  51116. #endif
  51117. (void)heap;
  51118. if (err == MP_OKAY) {
  51119. t2 = t1 + 2 * 42;
  51120. /* y^2 - x^3 - a.x = b */
  51121. sp_1024_sqr_42(t1, point->y);
  51122. (void)sp_1024_mod_42(t1, t1, p1024_mod);
  51123. sp_1024_sqr_42(t2, point->x);
  51124. (void)sp_1024_mod_42(t2, t2, p1024_mod);
  51125. sp_1024_mul_42(t2, t2, point->x);
  51126. (void)sp_1024_mod_42(t2, t2, p1024_mod);
  51127. sp_1024_mont_sub_42(t1, t1, t2, p1024_mod);
  51128. /* y^2 - x^3 + 3.x = b, when a = -3 */
  51129. sp_1024_mont_add_42(t1, t1, point->x, p1024_mod);
  51130. sp_1024_mont_add_42(t1, t1, point->x, p1024_mod);
  51131. sp_1024_mont_add_42(t1, t1, point->x, p1024_mod);
  51132. n = sp_1024_cmp_42(t1, p1024_mod);
  51133. sp_1024_cond_sub_42(t1, t1, p1024_mod, ~(n >> 24));
  51134. sp_1024_norm_42(t1);
  51135. if (!sp_1024_iszero_42(t1)) {
  51136. err = MP_VAL;
  51137. }
  51138. }
  51139. #ifdef WOLFSSL_SP_SMALL_STACK
  51140. if (t1 != NULL)
  51141. XFREE(t1, heap, DYNAMIC_TYPE_ECC);
  51142. #endif
  51143. return err;
  51144. }
  51145. /* Check that the x and y oridinates are a valid point on the curve.
  51146. *
  51147. * pX X ordinate of EC point.
  51148. * pY Y ordinate of EC point.
  51149. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
  51150. * not on the curve and MP_OKAY otherwise.
  51151. */
  51152. int sp_ecc_is_point_1024(const mp_int* pX, const mp_int* pY)
  51153. {
  51154. #ifdef WOLFSSL_SP_SMALL_STACK
  51155. sp_point_1024* pub = NULL;
  51156. #else
  51157. sp_point_1024 pub[1];
  51158. #endif
  51159. const byte one[1] = { 1 };
  51160. int err = MP_OKAY;
  51161. #ifdef WOLFSSL_SP_SMALL_STACK
  51162. pub = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024), NULL,
  51163. DYNAMIC_TYPE_ECC);
  51164. if (pub == NULL)
  51165. err = MEMORY_E;
  51166. #endif
  51167. if (err == MP_OKAY) {
  51168. sp_1024_from_mp(pub->x, 42, pX);
  51169. sp_1024_from_mp(pub->y, 42, pY);
  51170. sp_1024_from_bin(pub->z, 42, one, (int)sizeof(one));
  51171. err = sp_1024_ecc_is_point_42(pub, NULL);
  51172. }
  51173. #ifdef WOLFSSL_SP_SMALL_STACK
  51174. if (pub != NULL)
  51175. XFREE(pub, NULL, DYNAMIC_TYPE_ECC);
  51176. #endif
  51177. return err;
  51178. }
  51179. /* Check that the private scalar generates the EC point (px, py), the point is
  51180. * on the curve and the point has the correct order.
  51181. *
  51182. * pX X ordinate of EC point.
  51183. * pY Y ordinate of EC point.
  51184. * privm Private scalar that generates EC point.
  51185. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
  51186. * not on the curve, ECC_INF_E if the point does not have the correct order,
  51187. * ECC_PRIV_KEY_E when the private scalar doesn't generate the EC point and
  51188. * MP_OKAY otherwise.
  51189. */
  51190. int sp_ecc_check_key_1024(const mp_int* pX, const mp_int* pY,
  51191. const mp_int* privm, void* heap)
  51192. {
  51193. #ifdef WOLFSSL_SP_SMALL_STACK
  51194. sp_digit* priv = NULL;
  51195. sp_point_1024* pub = NULL;
  51196. #else
  51197. sp_digit priv[42];
  51198. sp_point_1024 pub[2];
  51199. #endif
  51200. sp_point_1024* p = NULL;
  51201. const byte one[1] = { 1 };
  51202. int err = MP_OKAY;
  51203. /* Quick check the lengs of public key ordinates and private key are in
  51204. * range. Proper check later.
  51205. */
  51206. if (((mp_count_bits(pX) > 1024) ||
  51207. (mp_count_bits(pY) > 1024) ||
  51208. ((privm != NULL) && (mp_count_bits(privm) > 1024)))) {
  51209. err = ECC_OUT_OF_RANGE_E;
  51210. }
  51211. #ifdef WOLFSSL_SP_SMALL_STACK
  51212. if (err == MP_OKAY) {
  51213. pub = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024) * 2, heap,
  51214. DYNAMIC_TYPE_ECC);
  51215. if (pub == NULL)
  51216. err = MEMORY_E;
  51217. }
  51218. if (err == MP_OKAY && privm) {
  51219. priv = (sp_digit*)XMALLOC(sizeof(sp_digit) * 42, heap,
  51220. DYNAMIC_TYPE_ECC);
  51221. if (priv == NULL)
  51222. err = MEMORY_E;
  51223. }
  51224. #endif
  51225. if (err == MP_OKAY) {
  51226. p = pub + 1;
  51227. sp_1024_from_mp(pub->x, 42, pX);
  51228. sp_1024_from_mp(pub->y, 42, pY);
  51229. sp_1024_from_bin(pub->z, 42, one, (int)sizeof(one));
  51230. if (privm)
  51231. sp_1024_from_mp(priv, 42, privm);
  51232. /* Check point at infinitiy. */
  51233. if ((sp_1024_iszero_42(pub->x) != 0) &&
  51234. (sp_1024_iszero_42(pub->y) != 0)) {
  51235. err = ECC_INF_E;
  51236. }
  51237. }
  51238. /* Check range of X and Y */
  51239. if ((err == MP_OKAY) &&
  51240. ((sp_1024_cmp_42(pub->x, p1024_mod) >= 0) ||
  51241. (sp_1024_cmp_42(pub->y, p1024_mod) >= 0))) {
  51242. err = ECC_OUT_OF_RANGE_E;
  51243. }
  51244. if (err == MP_OKAY) {
  51245. /* Check point is on curve */
  51246. err = sp_1024_ecc_is_point_42(pub, heap);
  51247. }
  51248. if (err == MP_OKAY) {
  51249. /* Point * order = infinity */
  51250. err = sp_1024_ecc_mulmod_42(p, pub, p1024_order, 1, 1, heap);
  51251. }
  51252. /* Check result is infinity */
  51253. if ((err == MP_OKAY) && ((sp_1024_iszero_42(p->x) == 0) ||
  51254. (sp_1024_iszero_42(p->y) == 0))) {
  51255. err = ECC_INF_E;
  51256. }
  51257. if (privm) {
  51258. if (err == MP_OKAY) {
  51259. /* Base * private = point */
  51260. err = sp_1024_ecc_mulmod_base_42(p, priv, 1, 1, heap);
  51261. }
  51262. /* Check result is public key */
  51263. if ((err == MP_OKAY) &&
  51264. ((sp_1024_cmp_42(p->x, pub->x) != 0) ||
  51265. (sp_1024_cmp_42(p->y, pub->y) != 0))) {
  51266. err = ECC_PRIV_KEY_E;
  51267. }
  51268. }
  51269. #ifdef WOLFSSL_SP_SMALL_STACK
  51270. if (pub != NULL)
  51271. XFREE(pub, heap, DYNAMIC_TYPE_ECC);
  51272. if (priv != NULL)
  51273. XFREE(priv, heap, DYNAMIC_TYPE_ECC);
  51274. #endif
  51275. return err;
  51276. }
  51277. #endif
  51278. #endif /* WOLFSSL_SP_1024 */
  51279. #endif /* WOLFCRYPT_HAVE_SAKKE */
  51280. #endif /* WOLFSSL_HAVE_SP_ECC */
  51281. #endif /* SP_WORD_SIZE == 32 */
  51282. #endif /* !WOLFSSL_SP_ASM */
  51283. #endif /* WOLFSSL_HAVE_SP_RSA | WOLFSSL_HAVE_SP_DH | WOLFSSL_HAVE_SP_ECC */