asm_arm.inc 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820
  1. /* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
  2. #ifndef _UECC_ASM_ARM_H_
  3. #define _UECC_ASM_ARM_H_
  4. #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
  5. #define uECC_MIN_WORDS 8
  6. #endif
  7. #if uECC_SUPPORTS_secp224r1
  8. #undef uECC_MIN_WORDS
  9. #define uECC_MIN_WORDS 7
  10. #endif
  11. #if uECC_SUPPORTS_secp192r1
  12. #undef uECC_MIN_WORDS
  13. #define uECC_MIN_WORDS 6
  14. #endif
  15. #if uECC_SUPPORTS_secp160r1
  16. #undef uECC_MIN_WORDS
  17. #define uECC_MIN_WORDS 5
  18. #endif
  19. #if (uECC_PLATFORM == uECC_arm_thumb)
  20. #define REG_RW "+l"
  21. #define REG_WRITE "=l"
  22. #else
  23. #define REG_RW "+r"
  24. #define REG_WRITE "=r"
  25. #endif
  26. #if (uECC_PLATFORM == uECC_arm_thumb || uECC_PLATFORM == uECC_arm_thumb2)
  27. #define REG_RW_LO "+l"
  28. #define REG_WRITE_LO "=l"
  29. #else
  30. #define REG_RW_LO "+r"
  31. #define REG_WRITE_LO "=r"
  32. #endif
  33. #if (uECC_PLATFORM == uECC_arm_thumb2)
  34. #define RESUME_SYNTAX
  35. #else
  36. #define RESUME_SYNTAX ".syntax divided \n\t"
  37. #endif
  38. #if (uECC_OPTIMIZATION_LEVEL >= 2)
  39. uECC_VLI_API uECC_word_t uECC_vli_add(uECC_word_t *result,
  40. const uECC_word_t *left,
  41. const uECC_word_t *right,
  42. wordcount_t num_words) {
  43. #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
  44. #if (uECC_PLATFORM == uECC_arm_thumb) || (uECC_PLATFORM == uECC_arm_thumb2)
  45. uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 2 + 1;
  46. #else /* ARM */
  47. uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 4;
  48. #endif
  49. #endif
  50. uint32_t carry;
  51. uint32_t left_word;
  52. uint32_t right_word;
  53. __asm__ volatile (
  54. ".syntax unified \n\t"
  55. "movs %[carry], #0 \n\t"
  56. #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
  57. "adr %[left], 1f \n\t"
  58. ".align 4 \n\t"
  59. "adds %[jump], %[left] \n\t"
  60. #endif
  61. "ldmia %[lptr]!, {%[left]} \n\t"
  62. "ldmia %[rptr]!, {%[right]} \n\t"
  63. "adds %[left], %[right] \n\t"
  64. "stmia %[dptr]!, {%[left]} \n\t"
  65. #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
  66. "bx %[jump] \n\t"
  67. #endif
  68. "1: \n\t"
  69. REPEAT(DEC(uECC_MAX_WORDS),
  70. "ldmia %[lptr]!, {%[left]} \n\t"
  71. "ldmia %[rptr]!, {%[right]} \n\t"
  72. "adcs %[left], %[right] \n\t"
  73. "stmia %[dptr]!, {%[left]} \n\t")
  74. "adcs %[carry], %[carry] \n\t"
  75. RESUME_SYNTAX
  76. : [dptr] REG_RW_LO (result), [lptr] REG_RW_LO (left), [rptr] REG_RW_LO (right),
  77. #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
  78. [jump] REG_RW_LO (jump),
  79. #endif
  80. [carry] REG_WRITE_LO (carry), [left] REG_WRITE_LO (left_word),
  81. [right] REG_WRITE_LO (right_word)
  82. :
  83. : "cc", "memory"
  84. );
  85. return carry;
  86. }
  87. #define asm_add 1
  88. uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result,
  89. const uECC_word_t *left,
  90. const uECC_word_t *right,
  91. wordcount_t num_words) {
  92. #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
  93. #if (uECC_PLATFORM == uECC_arm_thumb) || (uECC_PLATFORM == uECC_arm_thumb2)
  94. uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 2 + 1;
  95. #else /* ARM */
  96. uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 4;
  97. #endif
  98. #endif
  99. uint32_t carry;
  100. uint32_t left_word;
  101. uint32_t right_word;
  102. __asm__ volatile (
  103. ".syntax unified \n\t"
  104. "movs %[carry], #0 \n\t"
  105. #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
  106. "adr %[left], 1f \n\t"
  107. ".align 4 \n\t"
  108. "adds %[jump], %[left] \n\t"
  109. #endif
  110. "ldmia %[lptr]!, {%[left]} \n\t"
  111. "ldmia %[rptr]!, {%[right]} \n\t"
  112. "subs %[left], %[right] \n\t"
  113. "stmia %[dptr]!, {%[left]} \n\t"
  114. #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
  115. "bx %[jump] \n\t"
  116. #endif
  117. "1: \n\t"
  118. REPEAT(DEC(uECC_MAX_WORDS),
  119. "ldmia %[lptr]!, {%[left]} \n\t"
  120. "ldmia %[rptr]!, {%[right]} \n\t"
  121. "sbcs %[left], %[right] \n\t"
  122. "stmia %[dptr]!, {%[left]} \n\t")
  123. "adcs %[carry], %[carry] \n\t"
  124. RESUME_SYNTAX
  125. : [dptr] REG_RW_LO (result), [lptr] REG_RW_LO (left), [rptr] REG_RW_LO (right),
  126. #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
  127. [jump] REG_RW_LO (jump),
  128. #endif
  129. [carry] REG_WRITE_LO (carry), [left] REG_WRITE_LO (left_word),
  130. [right] REG_WRITE_LO (right_word)
  131. :
  132. : "cc", "memory"
  133. );
  134. return !carry; /* Note that on ARM, carry flag set means "no borrow" when subtracting
  135. (for some reason...) */
  136. }
  137. #define asm_sub 1
  138. #endif /* (uECC_OPTIMIZATION_LEVEL >= 2) */
  139. #if (uECC_OPTIMIZATION_LEVEL >= 3)
  140. #if (uECC_PLATFORM != uECC_arm_thumb)
  141. #if uECC_ARM_USE_UMAAL
  142. #include "asm_arm_mult_square_umaal.inc"
  143. #else
  144. #include "asm_arm_mult_square.inc"
  145. #endif
  146. #if (uECC_OPTIMIZATION_LEVEL == 3)
  147. uECC_VLI_API void uECC_vli_mult(uint32_t *result,
  148. const uint32_t *left,
  149. const uint32_t *right,
  150. wordcount_t num_words) {
  151. register uint32_t *r0 __asm__("r0") = result;
  152. register const uint32_t *r1 __asm__("r1") = left;
  153. register const uint32_t *r2 __asm__("r2") = right;
  154. register uint32_t r3 __asm__("r3") = num_words;
  155. __asm__ volatile (
  156. ".syntax unified \n\t"
  157. #if (uECC_MIN_WORDS == 5)
  158. FAST_MULT_ASM_5
  159. #if (uECC_MAX_WORDS > 5)
  160. FAST_MULT_ASM_5_TO_6
  161. #endif
  162. #if (uECC_MAX_WORDS > 6)
  163. FAST_MULT_ASM_6_TO_7
  164. #endif
  165. #if (uECC_MAX_WORDS > 7)
  166. FAST_MULT_ASM_7_TO_8
  167. #endif
  168. #elif (uECC_MIN_WORDS == 6)
  169. FAST_MULT_ASM_6
  170. #if (uECC_MAX_WORDS > 6)
  171. FAST_MULT_ASM_6_TO_7
  172. #endif
  173. #if (uECC_MAX_WORDS > 7)
  174. FAST_MULT_ASM_7_TO_8
  175. #endif
  176. #elif (uECC_MIN_WORDS == 7)
  177. FAST_MULT_ASM_7
  178. #if (uECC_MAX_WORDS > 7)
  179. FAST_MULT_ASM_7_TO_8
  180. #endif
  181. #elif (uECC_MIN_WORDS == 8)
  182. FAST_MULT_ASM_8
  183. #endif
  184. "1: \n\t"
  185. RESUME_SYNTAX
  186. : "+r" (r0), "+r" (r1), "+r" (r2)
  187. : "r" (r3)
  188. : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
  189. );
  190. }
  191. #define asm_mult 1
  192. #if uECC_SQUARE_FUNC
  193. uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
  194. const uECC_word_t *left,
  195. wordcount_t num_words) {
  196. register uint32_t *r0 __asm__("r0") = result;
  197. register const uint32_t *r1 __asm__("r1") = left;
  198. register uint32_t r2 __asm__("r2") = num_words;
  199. __asm__ volatile (
  200. ".syntax unified \n\t"
  201. #if (uECC_MIN_WORDS == 5)
  202. FAST_SQUARE_ASM_5
  203. #if (uECC_MAX_WORDS > 5)
  204. FAST_SQUARE_ASM_5_TO_6
  205. #endif
  206. #if (uECC_MAX_WORDS > 6)
  207. FAST_SQUARE_ASM_6_TO_7
  208. #endif
  209. #if (uECC_MAX_WORDS > 7)
  210. FAST_SQUARE_ASM_7_TO_8
  211. #endif
  212. #elif (uECC_MIN_WORDS == 6)
  213. FAST_SQUARE_ASM_6
  214. #if (uECC_MAX_WORDS > 6)
  215. FAST_SQUARE_ASM_6_TO_7
  216. #endif
  217. #if (uECC_MAX_WORDS > 7)
  218. FAST_SQUARE_ASM_7_TO_8
  219. #endif
  220. #elif (uECC_MIN_WORDS == 7)
  221. FAST_SQUARE_ASM_7
  222. #if (uECC_MAX_WORDS > 7)
  223. FAST_SQUARE_ASM_7_TO_8
  224. #endif
  225. #elif (uECC_MIN_WORDS == 8)
  226. FAST_SQUARE_ASM_8
  227. #endif
  228. "1: \n\t"
  229. RESUME_SYNTAX
  230. : "+r" (r0), "+r" (r1)
  231. : "r" (r2)
  232. : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
  233. );
  234. }
  235. #define asm_square 1
  236. #endif /* uECC_SQUARE_FUNC */
  237. #else /* (uECC_OPTIMIZATION_LEVEL > 3) */
  238. uECC_VLI_API void uECC_vli_mult(uint32_t *result,
  239. const uint32_t *left,
  240. const uint32_t *right,
  241. wordcount_t num_words) {
  242. register uint32_t *r0 __asm__("r0") = result;
  243. register const uint32_t *r1 __asm__("r1") = left;
  244. register const uint32_t *r2 __asm__("r2") = right;
  245. register uint32_t r3 __asm__("r3") = num_words;
  246. #if uECC_SUPPORTS_secp160r1
  247. if (num_words == 5) {
  248. __asm__ volatile (
  249. ".syntax unified \n\t"
  250. FAST_MULT_ASM_5
  251. RESUME_SYNTAX
  252. : "+r" (r0), "+r" (r1), "+r" (r2)
  253. : "r" (r3)
  254. : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
  255. );
  256. return;
  257. }
  258. #endif
  259. #if uECC_SUPPORTS_secp192r1
  260. if (num_words == 6) {
  261. __asm__ volatile (
  262. ".syntax unified \n\t"
  263. FAST_MULT_ASM_6
  264. RESUME_SYNTAX
  265. : "+r" (r0), "+r" (r1), "+r" (r2)
  266. : "r" (r3)
  267. : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
  268. );
  269. return;
  270. }
  271. #endif
  272. #if uECC_SUPPORTS_secp224r1
  273. if (num_words == 7) {
  274. __asm__ volatile (
  275. ".syntax unified \n\t"
  276. FAST_MULT_ASM_7
  277. RESUME_SYNTAX
  278. : "+r" (r0), "+r" (r1), "+r" (r2)
  279. : "r" (r3)
  280. : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
  281. );
  282. return;
  283. }
  284. #endif
  285. #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
  286. if (num_words == 8) {
  287. __asm__ volatile (
  288. ".syntax unified \n\t"
  289. FAST_MULT_ASM_8
  290. RESUME_SYNTAX
  291. : "+r" (r0), "+r" (r1), "+r" (r2)
  292. : "r" (r3)
  293. : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
  294. );
  295. return;
  296. }
  297. #endif
  298. }
  299. #define asm_mult 1
  300. #if uECC_SQUARE_FUNC
  301. uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
  302. const uECC_word_t *left,
  303. wordcount_t num_words) {
  304. register uint32_t *r0 __asm__("r0") = result;
  305. register const uint32_t *r1 __asm__("r1") = left;
  306. register uint32_t r2 __asm__("r2") = num_words;
  307. #if uECC_SUPPORTS_secp160r1
  308. if (num_words == 5) {
  309. __asm__ volatile (
  310. ".syntax unified \n\t"
  311. FAST_SQUARE_ASM_5
  312. RESUME_SYNTAX
  313. : "+r" (r0), "+r" (r1)
  314. : "r" (r2)
  315. : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
  316. );
  317. return;
  318. }
  319. #endif
  320. #if uECC_SUPPORTS_secp192r1
  321. if (num_words == 6) {
  322. __asm__ volatile (
  323. ".syntax unified \n\t"
  324. FAST_SQUARE_ASM_6
  325. RESUME_SYNTAX
  326. : "+r" (r0), "+r" (r1)
  327. : "r" (r2)
  328. : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
  329. );
  330. return;
  331. }
  332. #endif
  333. #if uECC_SUPPORTS_secp224r1
  334. if (num_words == 7) {
  335. __asm__ volatile (
  336. ".syntax unified \n\t"
  337. FAST_SQUARE_ASM_7
  338. RESUME_SYNTAX
  339. : "+r" (r0), "+r" (r1)
  340. : "r" (r2)
  341. : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
  342. );
  343. return;
  344. }
  345. #endif
  346. #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
  347. if (num_words == 8) {
  348. __asm__ volatile (
  349. ".syntax unified \n\t"
  350. FAST_SQUARE_ASM_8
  351. RESUME_SYNTAX
  352. : "+r" (r0), "+r" (r1)
  353. : "r" (r2)
  354. : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
  355. );
  356. return;
  357. }
  358. #endif
  359. }
  360. #define asm_square 1
  361. #endif /* uECC_SQUARE_FUNC */
  362. #endif /* (uECC_OPTIMIZATION_LEVEL > 3) */
  363. #endif /* uECC_PLATFORM != uECC_arm_thumb */
  364. #endif /* (uECC_OPTIMIZATION_LEVEL >= 3) */
  365. /* ---- "Small" implementations ---- */
  366. #if !asm_add
  367. uECC_VLI_API uECC_word_t uECC_vli_add(uECC_word_t *result,
  368. const uECC_word_t *left,
  369. const uECC_word_t *right,
  370. wordcount_t num_words) {
  371. uint32_t carry = 0;
  372. uint32_t left_word;
  373. uint32_t right_word;
  374. __asm__ volatile (
  375. ".syntax unified \n\t"
  376. "1: \n\t"
  377. "ldmia %[lptr]!, {%[left]} \n\t" /* Load left word. */
  378. "ldmia %[rptr]!, {%[right]} \n\t" /* Load right word. */
  379. "lsrs %[carry], #1 \n\t" /* Set up carry flag (carry = 0 after this). */
  380. "adcs %[left], %[left], %[right] \n\t" /* Add with carry. */
  381. "adcs %[carry], %[carry], %[carry] \n\t" /* Store carry bit. */
  382. "stmia %[dptr]!, {%[left]} \n\t" /* Store result word. */
  383. "subs %[ctr], #1 \n\t" /* Decrement counter. */
  384. "bne 1b \n\t" /* Loop until counter == 0. */
  385. RESUME_SYNTAX
  386. : [dptr] REG_RW (result), [lptr] REG_RW (left), [rptr] REG_RW (right),
  387. [ctr] REG_RW (num_words), [carry] REG_RW (carry),
  388. [left] REG_WRITE (left_word), [right] REG_WRITE (right_word)
  389. :
  390. : "cc", "memory"
  391. );
  392. return carry;
  393. }
  394. #define asm_add 1
  395. #endif
  396. #if !asm_sub
  397. uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result,
  398. const uECC_word_t *left,
  399. const uECC_word_t *right,
  400. wordcount_t num_words) {
  401. uint32_t carry = 1; /* carry = 1 initially (means don't borrow) */
  402. uint32_t left_word;
  403. uint32_t right_word;
  404. __asm__ volatile (
  405. ".syntax unified \n\t"
  406. "1: \n\t"
  407. "ldmia %[lptr]!, {%[left]} \n\t" /* Load left word. */
  408. "ldmia %[rptr]!, {%[right]} \n\t" /* Load right word. */
  409. "lsrs %[carry], #1 \n\t" /* Set up carry flag (carry = 0 after this). */
  410. "sbcs %[left], %[left], %[right] \n\t" /* Subtract with borrow. */
  411. "adcs %[carry], %[carry], %[carry] \n\t" /* Store carry bit. */
  412. "stmia %[dptr]!, {%[left]} \n\t" /* Store result word. */
  413. "subs %[ctr], #1 \n\t" /* Decrement counter. */
  414. "bne 1b \n\t" /* Loop until counter == 0. */
  415. RESUME_SYNTAX
  416. : [dptr] REG_RW (result), [lptr] REG_RW (left), [rptr] REG_RW (right),
  417. [ctr] REG_RW (num_words), [carry] REG_RW (carry),
  418. [left] REG_WRITE (left_word), [right] REG_WRITE (right_word)
  419. :
  420. : "cc", "memory"
  421. );
  422. return !carry;
  423. }
  424. #define asm_sub 1
  425. #endif
  426. #if !asm_mult
  427. uECC_VLI_API void uECC_vli_mult(uECC_word_t *result,
  428. const uECC_word_t *left,
  429. const uECC_word_t *right,
  430. wordcount_t num_words) {
  431. #if (uECC_PLATFORM != uECC_arm_thumb)
  432. uint32_t c0 = 0;
  433. uint32_t c1 = 0;
  434. uint32_t c2 = 0;
  435. uint32_t k = 0;
  436. uint32_t i;
  437. uint32_t t0, t1;
  438. __asm__ volatile (
  439. ".syntax unified \n\t"
  440. "1: \n\t" /* outer loop (k < num_words) */
  441. "movs %[i], #0 \n\t" /* i = 0 */
  442. "b 3f \n\t"
  443. "2: \n\t" /* outer loop (k >= num_words) */
  444. "movs %[i], %[k] \n\t" /* i = k */
  445. "subs %[i], %[last_word] \n\t" /* i = k - (num_words - 1) (times 4) */
  446. "3: \n\t" /* inner loop */
  447. "subs %[t0], %[k], %[i] \n\t" /* t0 = k-i */
  448. "ldr %[t1], [%[right], %[t0]] \n\t" /* t1 = right[k - i] */
  449. "ldr %[t0], [%[left], %[i]] \n\t" /* t0 = left[i] */
  450. "umull %[t0], %[t1], %[t0], %[t1] \n\t" /* (t0, t1) = left[i] * right[k - i] */
  451. "adds %[c0], %[c0], %[t0] \n\t" /* add low word to c0 */
  452. "adcs %[c1], %[c1], %[t1] \n\t" /* add high word to c1, including carry */
  453. "adcs %[c2], %[c2], #0 \n\t" /* add carry to c2 */
  454. "adds %[i], #4 \n\t" /* i += 4 */
  455. "cmp %[i], %[last_word] \n\t" /* i > (num_words - 1) (times 4)? */
  456. "bgt 4f \n\t" /* if so, exit the loop */
  457. "cmp %[i], %[k] \n\t" /* i <= k? */
  458. "ble 3b \n\t" /* if so, continue looping */
  459. "4: \n\t" /* end inner loop */
  460. "str %[c0], [%[result], %[k]] \n\t" /* result[k] = c0 */
  461. "mov %[c0], %[c1] \n\t" /* c0 = c1 */
  462. "mov %[c1], %[c2] \n\t" /* c1 = c2 */
  463. "movs %[c2], #0 \n\t" /* c2 = 0 */
  464. "adds %[k], #4 \n\t" /* k += 4 */
  465. "cmp %[k], %[last_word] \n\t" /* k <= (num_words - 1) (times 4) ? */
  466. "ble 1b \n\t" /* if so, loop back, start with i = 0 */
  467. "cmp %[k], %[last_word], lsl #1 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */
  468. "ble 2b \n\t" /* if so, loop back, start with i = (k + 1) - num_words */
  469. /* end outer loop */
  470. "str %[c0], [%[result], %[k]] \n\t" /* result[num_words * 2 - 1] = c0 */
  471. RESUME_SYNTAX
  472. : [c0] "+r" (c0), [c1] "+r" (c1), [c2] "+r" (c2),
  473. [k] "+r" (k), [i] "=&r" (i), [t0] "=&r" (t0), [t1] "=&r" (t1)
  474. : [result] "r" (result), [left] "r" (left), [right] "r" (right),
  475. [last_word] "r" ((num_words - 1) * 4)
  476. : "cc", "memory"
  477. );
  478. #else /* Thumb-1 */
  479. uint32_t r4, r5, r6, r7;
  480. __asm__ volatile (
  481. ".syntax unified \n\t"
  482. "subs %[r3], #1 \n\t" /* r3 = num_words - 1 */
  483. "lsls %[r3], #2 \n\t" /* r3 = (num_words - 1) * 4 */
  484. "mov r8, %[r3] \n\t" /* r8 = (num_words - 1) * 4 */
  485. "lsls %[r3], #1 \n\t" /* r3 = (num_words - 1) * 8 */
  486. "mov r9, %[r3] \n\t" /* r9 = (num_words - 1) * 8 */
  487. "movs %[r3], #0 \n\t" /* c0 = 0 */
  488. "movs %[r4], #0 \n\t" /* c1 = 0 */
  489. "movs %[r5], #0 \n\t" /* c2 = 0 */
  490. "movs %[r6], #0 \n\t" /* k = 0 */
  491. "push {%[r0]} \n\t" /* keep result on the stack */
  492. "1: \n\t" /* outer loop (k < num_words) */
  493. "movs %[r7], #0 \n\t" /* r7 = i = 0 */
  494. "b 3f \n\t"
  495. "2: \n\t" /* outer loop (k >= num_words) */
  496. "movs %[r7], %[r6] \n\t" /* r7 = k */
  497. "mov %[r0], r8 \n\t" /* r0 = (num_words - 1) * 4 */
  498. "subs %[r7], %[r0] \n\t" /* r7 = i = k - (num_words - 1) (times 4) */
  499. "3: \n\t" /* inner loop */
  500. "mov r10, %[r3] \n\t"
  501. "mov r11, %[r4] \n\t"
  502. "mov r12, %[r5] \n\t"
  503. "mov r14, %[r6] \n\t"
  504. "subs %[r0], %[r6], %[r7] \n\t" /* r0 = k - i */
  505. "ldr %[r4], [%[r2], %[r0]] \n\t" /* r4 = right[k - i] */
  506. "ldr %[r0], [%[r1], %[r7]] \n\t" /* r0 = left[i] */
  507. "lsrs %[r3], %[r0], #16 \n\t" /* r3 = a1 */
  508. "uxth %[r0], %[r0] \n\t" /* r0 = a0 */
  509. "lsrs %[r5], %[r4], #16 \n\t" /* r5 = b1 */
  510. "uxth %[r4], %[r4] \n\t" /* r4 = b0 */
  511. "movs %[r6], %[r3] \n\t" /* r6 = a1 */
  512. "muls %[r6], %[r5], %[r6] \n\t" /* r6 = a1 * b1 */
  513. "muls %[r3], %[r4], %[r3] \n\t" /* r3 = b0 * a1 */
  514. "muls %[r5], %[r0], %[r5] \n\t" /* r5 = a0 * b1 */
  515. "muls %[r0], %[r4], %[r0] \n\t" /* r0 = a0 * b0 */
  516. /* Add middle terms */
  517. "lsls %[r4], %[r3], #16 \n\t"
  518. "lsrs %[r3], %[r3], #16 \n\t"
  519. "adds %[r0], %[r4] \n\t"
  520. "adcs %[r6], %[r3] \n\t"
  521. "lsls %[r4], %[r5], #16 \n\t"
  522. "lsrs %[r5], %[r5], #16 \n\t"
  523. "adds %[r0], %[r4] \n\t"
  524. "adcs %[r6], %[r5] \n\t"
  525. "mov %[r3], r10\n\t"
  526. "mov %[r4], r11\n\t"
  527. "mov %[r5], r12\n\t"
  528. "adds %[r3], %[r0] \n\t" /* add low word to c0 */
  529. "adcs %[r4], %[r6] \n\t" /* add high word to c1, including carry */
  530. "movs %[r0], #0 \n\t" /* r0 = 0 (does not affect carry bit) */
  531. "adcs %[r5], %[r0] \n\t" /* add carry to c2 */
  532. "mov %[r6], r14\n\t" /* r6 = k */
  533. "adds %[r7], #4 \n\t" /* i += 4 */
  534. "cmp %[r7], r8 \n\t" /* i > (num_words - 1) (times 4)? */
  535. "bgt 4f \n\t" /* if so, exit the loop */
  536. "cmp %[r7], %[r6] \n\t" /* i <= k? */
  537. "ble 3b \n\t" /* if so, continue looping */
  538. "4: \n\t" /* end inner loop */
  539. "ldr %[r0], [sp, #0] \n\t" /* r0 = result */
  540. "str %[r3], [%[r0], %[r6]] \n\t" /* result[k] = c0 */
  541. "mov %[r3], %[r4] \n\t" /* c0 = c1 */
  542. "mov %[r4], %[r5] \n\t" /* c1 = c2 */
  543. "movs %[r5], #0 \n\t" /* c2 = 0 */
  544. "adds %[r6], #4 \n\t" /* k += 4 */
  545. "cmp %[r6], r8 \n\t" /* k <= (num_words - 1) (times 4) ? */
  546. "ble 1b \n\t" /* if so, loop back, start with i = 0 */
  547. "cmp %[r6], r9 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */
  548. "ble 2b \n\t" /* if so, loop back, with i = (k + 1) - num_words */
  549. /* end outer loop */
  550. "str %[r3], [%[r0], %[r6]] \n\t" /* result[num_words * 2 - 1] = c0 */
  551. "pop {%[r0]} \n\t" /* pop result off the stack */
  552. ".syntax divided \n\t"
  553. : [r3] "+l" (num_words), [r4] "=&l" (r4),
  554. [r5] "=&l" (r5), [r6] "=&l" (r6), [r7] "=&l" (r7)
  555. : [r0] "l" (result), [r1] "l" (left), [r2] "l" (right)
  556. : "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
  557. );
  558. #endif
  559. }
  560. #define asm_mult 1
  561. #endif
  562. #if uECC_SQUARE_FUNC
  563. #if !asm_square
  564. uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
  565. const uECC_word_t *left,
  566. wordcount_t num_words) {
  567. #if (uECC_PLATFORM != uECC_arm_thumb)
  568. uint32_t c0 = 0;
  569. uint32_t c1 = 0;
  570. uint32_t c2 = 0;
  571. uint32_t k = 0;
  572. uint32_t i, tt;
  573. uint32_t t0, t1;
  574. __asm__ volatile (
  575. ".syntax unified \n\t"
  576. "1: \n\t" /* outer loop (k < num_words) */
  577. "movs %[i], #0 \n\t" /* i = 0 */
  578. "b 3f \n\t"
  579. "2: \n\t" /* outer loop (k >= num_words) */
  580. "movs %[i], %[k] \n\t" /* i = k */
  581. "subs %[i], %[last_word] \n\t" /* i = k - (num_words - 1) (times 4) */
  582. "3: \n\t" /* inner loop */
  583. "subs %[tt], %[k], %[i] \n\t" /* tt = k-i */
  584. "ldr %[t1], [%[left], %[tt]] \n\t" /* t1 = left[k - i] */
  585. "ldr %[t0], [%[left], %[i]] \n\t" /* t0 = left[i] */
  586. "umull %[t0], %[t1], %[t0], %[t1] \n\t" /* (t0, t1) = left[i] * right[k - i] */
  587. "cmp %[i], %[tt] \n\t" /* (i < k - i) ? */
  588. "bge 4f \n\t" /* if i >= k - i, skip */
  589. "adds %[c0], %[c0], %[t0] \n\t" /* add low word to c0 */
  590. "adcs %[c1], %[c1], %[t1] \n\t" /* add high word to c1, including carry */
  591. "adcs %[c2], %[c2], #0 \n\t" /* add carry to c2 */
  592. "4: \n\t"
  593. "adds %[c0], %[c0], %[t0] \n\t" /* add low word to c0 */
  594. "adcs %[c1], %[c1], %[t1] \n\t" /* add high word to c1, including carry */
  595. "adcs %[c2], %[c2], #0 \n\t" /* add carry to c2 */
  596. "adds %[i], #4 \n\t" /* i += 4 */
  597. "cmp %[i], %[k] \n\t" /* i >= k? */
  598. "bge 5f \n\t" /* if so, exit the loop */
  599. "subs %[tt], %[k], %[i] \n\t" /* tt = k - i */
  600. "cmp %[i], %[tt] \n\t" /* i <= k - i? */
  601. "ble 3b \n\t" /* if so, continue looping */
  602. "5: \n\t" /* end inner loop */
  603. "str %[c0], [%[result], %[k]] \n\t" /* result[k] = c0 */
  604. "mov %[c0], %[c1] \n\t" /* c0 = c1 */
  605. "mov %[c1], %[c2] \n\t" /* c1 = c2 */
  606. "movs %[c2], #0 \n\t" /* c2 = 0 */
  607. "adds %[k], #4 \n\t" /* k += 4 */
  608. "cmp %[k], %[last_word] \n\t" /* k <= (num_words - 1) (times 4) ? */
  609. "ble 1b \n\t" /* if so, loop back, start with i = 0 */
  610. "cmp %[k], %[last_word], lsl #1 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */
  611. "ble 2b \n\t" /* if so, loop back, start with i = (k + 1) - num_words */
  612. /* end outer loop */
  613. "str %[c0], [%[result], %[k]] \n\t" /* result[num_words * 2 - 1] = c0 */
  614. RESUME_SYNTAX
  615. : [c0] "+r" (c0), [c1] "+r" (c1), [c2] "+r" (c2),
  616. [k] "+r" (k), [i] "=&r" (i), [tt] "=&r" (tt), [t0] "=&r" (t0), [t1] "=&r" (t1)
  617. : [result] "r" (result), [left] "r" (left), [last_word] "r" ((num_words - 1) * 4)
  618. : "cc", "memory"
  619. );
  620. #else
  621. uint32_t r3, r4, r5, r6, r7;
  622. __asm__ volatile (
  623. ".syntax unified \n\t"
  624. "subs %[r2], #1 \n\t" /* r2 = num_words - 1 */
  625. "lsls %[r2], #2 \n\t" /* r2 = (num_words - 1) * 4 */
  626. "mov r8, %[r2] \n\t" /* r8 = (num_words - 1) * 4 */
  627. "lsls %[r2], #1 \n\t" /* r2 = (num_words - 1) * 8 */
  628. "mov r9, %[r2] \n\t" /* r9 = (num_words - 1) * 8 */
  629. "movs %[r2], #0 \n\t" /* c0 = 0 */
  630. "movs %[r3], #0 \n\t" /* c1 = 0 */
  631. "movs %[r4], #0 \n\t" /* c2 = 0 */
  632. "movs %[r5], #0 \n\t" /* k = 0 */
  633. "push {%[r0]} \n\t" /* keep result on the stack */
  634. "1: \n\t" /* outer loop (k < num_words) */
  635. "movs %[r6], #0 \n\t" /* r6 = i = 0 */
  636. "b 3f \n\t"
  637. "2: \n\t" /* outer loop (k >= num_words) */
  638. "movs %[r6], %[r5] \n\t" /* r6 = k */
  639. "mov %[r0], r8 \n\t" /* r0 = (num_words - 1) * 4 */
  640. "subs %[r6], %[r0] \n\t" /* r6 = i = k - (num_words - 1) (times 4) */
  641. "3: \n\t" /* inner loop */
  642. "mov r10, %[r2] \n\t"
  643. "mov r11, %[r3] \n\t"
  644. "mov r12, %[r4] \n\t"
  645. "mov r14, %[r5] \n\t"
  646. "subs %[r7], %[r5], %[r6] \n\t" /* r7 = k - i */
  647. "ldr %[r3], [%[r1], %[r7]] \n\t" /* r3 = left[k - i] */
  648. "ldr %[r0], [%[r1], %[r6]] \n\t" /* r0 = left[i] */
  649. "lsrs %[r2], %[r0], #16 \n\t" /* r2 = a1 */
  650. "uxth %[r0], %[r0] \n\t" /* r0 = a0 */
  651. "lsrs %[r4], %[r3], #16 \n\t" /* r4 = b1 */
  652. "uxth %[r3], %[r3] \n\t" /* r3 = b0 */
  653. "movs %[r5], %[r2] \n\t" /* r5 = a1 */
  654. "muls %[r5], %[r4], %[r5] \n\t" /* r5 = a1 * b1 */
  655. "muls %[r2], %[r3], %[r2] \n\t" /* r2 = b0 * a1 */
  656. "muls %[r4], %[r0], %[r4] \n\t" /* r4 = a0 * b1 */
  657. "muls %[r0], %[r3], %[r0] \n\t" /* r0 = a0 * b0 */
  658. /* Add middle terms */
  659. "lsls %[r3], %[r2], #16 \n\t"
  660. "lsrs %[r2], %[r2], #16 \n\t"
  661. "adds %[r0], %[r3] \n\t"
  662. "adcs %[r5], %[r2] \n\t"
  663. "lsls %[r3], %[r4], #16 \n\t"
  664. "lsrs %[r4], %[r4], #16 \n\t"
  665. "adds %[r0], %[r3] \n\t"
  666. "adcs %[r5], %[r4] \n\t"
  667. /* Add to acc, doubling if necessary */
  668. "mov %[r2], r10\n\t"
  669. "mov %[r3], r11\n\t"
  670. "mov %[r4], r12\n\t"
  671. "cmp %[r6], %[r7] \n\t" /* (i < k - i) ? */
  672. "bge 4f \n\t" /* if i >= k - i, skip */
  673. "movs %[r7], #0 \n\t" /* r7 = 0 */
  674. "adds %[r2], %[r0] \n\t" /* add low word to c0 */
  675. "adcs %[r3], %[r5] \n\t" /* add high word to c1, including carry */
  676. "adcs %[r4], %[r7] \n\t" /* add carry to c2 */
  677. "4: \n\t"
  678. "movs %[r7], #0 \n\t" /* r7 = 0 */
  679. "adds %[r2], %[r0] \n\t" /* add low word to c0 */
  680. "adcs %[r3], %[r5] \n\t" /* add high word to c1, including carry */
  681. "adcs %[r4], %[r7] \n\t" /* add carry to c2 */
  682. "mov %[r5], r14\n\t" /* r5 = k */
  683. "adds %[r6], #4 \n\t" /* i += 4 */
  684. "cmp %[r6], %[r5] \n\t" /* i >= k? */
  685. "bge 5f \n\t" /* if so, exit the loop */
  686. "subs %[r7], %[r5], %[r6] \n\t" /* r7 = k - i */
  687. "cmp %[r6], %[r7] \n\t" /* i <= k - i? */
  688. "ble 3b \n\t" /* if so, continue looping */
  689. "5: \n\t" /* end inner loop */
  690. "ldr %[r0], [sp, #0] \n\t" /* r0 = result */
  691. "str %[r2], [%[r0], %[r5]] \n\t" /* result[k] = c0 */
  692. "mov %[r2], %[r3] \n\t" /* c0 = c1 */
  693. "mov %[r3], %[r4] \n\t" /* c1 = c2 */
  694. "movs %[r4], #0 \n\t" /* c2 = 0 */
  695. "adds %[r5], #4 \n\t" /* k += 4 */
  696. "cmp %[r5], r8 \n\t" /* k <= (num_words - 1) (times 4) ? */
  697. "ble 1b \n\t" /* if so, loop back, start with i = 0 */
  698. "cmp %[r5], r9 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */
  699. "ble 2b \n\t" /* if so, loop back, with i = (k + 1) - num_words */
  700. /* end outer loop */
  701. "str %[r2], [%[r0], %[r5]] \n\t" /* result[num_words * 2 - 1] = c0 */
  702. "pop {%[r0]} \n\t" /* pop result off the stack */
  703. ".syntax divided \n\t"
  704. : [r2] "+l" (num_words), [r3] "=&l" (r3), [r4] "=&l" (r4),
  705. [r5] "=&l" (r5), [r6] "=&l" (r6), [r7] "=&l" (r7)
  706. : [r0] "l" (result), [r1] "l" (left)
  707. : "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
  708. );
  709. #endif
  710. }
  711. #define asm_square 1
  712. #endif
  713. #endif /* uECC_SQUARE_FUNC */
  714. #endif /* _UECC_ASM_ARM_H_ */