furi_hal_nfc.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. #include "furi_hal_nfc.h"
  2. #include <st25r3916.h>
  3. #include <rfal_rf.h>
  4. #include <furi.h>
  5. #include <m-string.h>
  6. #include <lib/nfc_protocols/nfca.h>
  7. #define TAG "FuriHalNfc"
  8. static const uint32_t clocks_in_ms = 64 * 1000;
  9. osEventFlagsId_t event = NULL;
  10. #define EVENT_FLAG_INTERRUPT (1UL << 0)
  11. #define EVENT_FLAG_STATE_CHANGED (1UL << 1)
  12. #define EVENT_FLAG_STOP (1UL << 2)
  13. #define EVENT_FLAG_ALL (EVENT_FLAG_INTERRUPT | EVENT_FLAG_STATE_CHANGED | EVENT_FLAG_STOP)
  14. void furi_hal_nfc_init() {
  15. ReturnCode ret = rfalNfcInitialize();
  16. if(ret == ERR_NONE) {
  17. furi_hal_nfc_start_sleep();
  18. event = osEventFlagsNew(NULL);
  19. FURI_LOG_I(TAG, "Init OK");
  20. } else {
  21. FURI_LOG_W(TAG, "Initialization failed, RFAL returned: %d", ret);
  22. }
  23. }
  24. bool furi_hal_nfc_is_busy() {
  25. return rfalNfcGetState() != RFAL_NFC_STATE_IDLE;
  26. }
  27. void furi_hal_nfc_field_on() {
  28. furi_hal_nfc_exit_sleep();
  29. st25r3916TxRxOn();
  30. }
  31. void furi_hal_nfc_field_off() {
  32. st25r3916TxRxOff();
  33. furi_hal_nfc_start_sleep();
  34. }
  35. void furi_hal_nfc_start_sleep() {
  36. rfalLowPowerModeStart();
  37. }
  38. void furi_hal_nfc_exit_sleep() {
  39. rfalLowPowerModeStop();
  40. }
  41. bool furi_hal_nfc_detect(
  42. rfalNfcDevice** dev_list,
  43. uint8_t* dev_cnt,
  44. uint32_t timeout,
  45. bool deactivate) {
  46. furi_assert(dev_list);
  47. furi_assert(dev_cnt);
  48. rfalLowPowerModeStop();
  49. rfalNfcState state = rfalNfcGetState();
  50. if(state == RFAL_NFC_STATE_NOTINIT) {
  51. rfalNfcInitialize();
  52. }
  53. rfalNfcDiscoverParam params;
  54. params.compMode = RFAL_COMPLIANCE_MODE_EMV;
  55. params.techs2Find = RFAL_NFC_POLL_TECH_A | RFAL_NFC_POLL_TECH_B | RFAL_NFC_POLL_TECH_F |
  56. RFAL_NFC_POLL_TECH_V | RFAL_NFC_POLL_TECH_AP2P | RFAL_NFC_POLL_TECH_ST25TB;
  57. params.totalDuration = 1000;
  58. params.devLimit = 3;
  59. params.wakeupEnabled = false;
  60. params.wakeupConfigDefault = true;
  61. params.nfcfBR = RFAL_BR_212;
  62. params.ap2pBR = RFAL_BR_424;
  63. params.maxBR = RFAL_BR_KEEP;
  64. params.GBLen = RFAL_NFCDEP_GB_MAX_LEN;
  65. params.notifyCb = NULL;
  66. uint32_t start = DWT->CYCCNT;
  67. rfalNfcDiscover(&params);
  68. while(state != RFAL_NFC_STATE_ACTIVATED) {
  69. rfalNfcWorker();
  70. state = rfalNfcGetState();
  71. FURI_LOG_T(TAG, "Current state %d", state);
  72. if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
  73. start = DWT->CYCCNT;
  74. continue;
  75. }
  76. if(state == RFAL_NFC_STATE_POLL_SELECT) {
  77. rfalNfcSelect(0);
  78. }
  79. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  80. rfalNfcDeactivate(true);
  81. FURI_LOG_T(TAG, "Timeout");
  82. return false;
  83. }
  84. osThreadYield();
  85. }
  86. rfalNfcGetDevicesFound(dev_list, dev_cnt);
  87. if(deactivate) {
  88. rfalNfcDeactivate(false);
  89. rfalLowPowerModeStart();
  90. }
  91. return true;
  92. }
  93. bool furi_hal_nfc_activate_nfca(uint32_t timeout, uint32_t* cuid) {
  94. rfalNfcDevice* dev_list;
  95. uint8_t dev_cnt = 0;
  96. rfalLowPowerModeStop();
  97. rfalNfcState state = rfalNfcGetState();
  98. if(state == RFAL_NFC_STATE_NOTINIT) {
  99. rfalNfcInitialize();
  100. }
  101. rfalNfcDiscoverParam params = {
  102. .compMode = RFAL_COMPLIANCE_MODE_NFC,
  103. .techs2Find = RFAL_NFC_POLL_TECH_A,
  104. .totalDuration = 1000,
  105. .devLimit = 3,
  106. .wakeupEnabled = false,
  107. .wakeupConfigDefault = true,
  108. .nfcfBR = RFAL_BR_212,
  109. .ap2pBR = RFAL_BR_424,
  110. .maxBR = RFAL_BR_KEEP,
  111. .GBLen = RFAL_NFCDEP_GB_MAX_LEN,
  112. .notifyCb = NULL,
  113. };
  114. uint32_t start = DWT->CYCCNT;
  115. rfalNfcDiscover(&params);
  116. while(state != RFAL_NFC_STATE_ACTIVATED) {
  117. rfalNfcWorker();
  118. state = rfalNfcGetState();
  119. FURI_LOG_T(TAG, "Current state %d", state);
  120. if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
  121. start = DWT->CYCCNT;
  122. continue;
  123. }
  124. if(state == RFAL_NFC_STATE_POLL_SELECT) {
  125. rfalNfcSelect(0);
  126. }
  127. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  128. rfalNfcDeactivate(true);
  129. FURI_LOG_T(TAG, "Timeout");
  130. return false;
  131. }
  132. osThreadYield();
  133. }
  134. rfalNfcGetDevicesFound(&dev_list, &dev_cnt);
  135. // Take first device and set cuid
  136. if(cuid) {
  137. uint8_t* cuid_start = dev_list[0].nfcid;
  138. if(dev_list[0].nfcidLen == 7) {
  139. cuid_start = &dev_list[0].nfcid[3];
  140. }
  141. *cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
  142. (cuid_start[3]);
  143. FURI_LOG_T(TAG, "Activated tag with cuid: %lX", *cuid);
  144. }
  145. return true;
  146. }
  147. bool furi_hal_nfc_listen(
  148. uint8_t* uid,
  149. uint8_t uid_len,
  150. uint8_t* atqa,
  151. uint8_t sak,
  152. bool activate_after_sak,
  153. uint32_t timeout) {
  154. rfalNfcState state = rfalNfcGetState();
  155. if(state == RFAL_NFC_STATE_NOTINIT) {
  156. rfalNfcInitialize();
  157. } else if(state >= RFAL_NFC_STATE_ACTIVATED) {
  158. rfalNfcDeactivate(false);
  159. }
  160. rfalLowPowerModeStop();
  161. rfalNfcDiscoverParam params = {
  162. .compMode = RFAL_COMPLIANCE_MODE_NFC,
  163. .techs2Find = RFAL_NFC_LISTEN_TECH_A,
  164. .totalDuration = 1000,
  165. .devLimit = 1,
  166. .wakeupEnabled = false,
  167. .wakeupConfigDefault = true,
  168. .nfcfBR = RFAL_BR_212,
  169. .ap2pBR = RFAL_BR_424,
  170. .maxBR = RFAL_BR_KEEP,
  171. .GBLen = RFAL_NFCDEP_GB_MAX_LEN,
  172. .notifyCb = NULL,
  173. .activate_after_sak = activate_after_sak,
  174. };
  175. params.lmConfigPA.nfcidLen = uid_len;
  176. memcpy(params.lmConfigPA.nfcid, uid, uid_len);
  177. params.lmConfigPA.SENS_RES[0] = atqa[0];
  178. params.lmConfigPA.SENS_RES[1] = atqa[1];
  179. params.lmConfigPA.SEL_RES = sak;
  180. rfalNfcDiscover(&params);
  181. uint32_t start = DWT->CYCCNT;
  182. while(state != RFAL_NFC_STATE_ACTIVATED) {
  183. rfalNfcWorker();
  184. state = rfalNfcGetState();
  185. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  186. rfalNfcDeactivate(true);
  187. return false;
  188. }
  189. osThreadYield();
  190. }
  191. return true;
  192. }
  193. void rfal_interrupt_callback_handler() {
  194. osEventFlagsSet(event, EVENT_FLAG_INTERRUPT);
  195. }
  196. void rfal_state_changed_callback(void* context) {
  197. osEventFlagsSet(event, EVENT_FLAG_STATE_CHANGED);
  198. }
  199. void furi_hal_nfc_stop() {
  200. if(event) {
  201. osEventFlagsSet(event, EVENT_FLAG_STOP);
  202. }
  203. }
  204. bool furi_hal_nfc_emulate_nfca(
  205. uint8_t* uid,
  206. uint8_t uid_len,
  207. uint8_t* atqa,
  208. uint8_t sak,
  209. FuriHalNfcEmulateCallback callback,
  210. void* context,
  211. uint32_t timeout) {
  212. rfalSetUpperLayerCallback(rfal_interrupt_callback_handler);
  213. rfal_set_state_changed_callback(rfal_state_changed_callback);
  214. rfalLmConfPA config;
  215. config.nfcidLen = uid_len;
  216. memcpy(config.nfcid, uid, uid_len);
  217. memcpy(config.SENS_RES, atqa, RFAL_LM_SENS_RES_LEN);
  218. config.SEL_RES = sak;
  219. uint8_t buff_rx[256];
  220. uint16_t buff_rx_size = 256;
  221. uint16_t buff_rx_len = 0;
  222. uint8_t buff_tx[256];
  223. uint16_t buff_tx_len = 0;
  224. uint32_t data_type = FURI_HAL_NFC_TXRX_DEFAULT;
  225. rfalLowPowerModeStop();
  226. if(rfalListenStart(
  227. RFAL_LM_MASK_NFCA,
  228. &config,
  229. NULL,
  230. NULL,
  231. buff_rx,
  232. rfalConvBytesToBits(buff_rx_size),
  233. &buff_rx_len)) {
  234. rfalListenStop();
  235. FURI_LOG_E(TAG, "Failed to start listen mode");
  236. return false;
  237. }
  238. while(true) {
  239. buff_rx_len = 0;
  240. buff_tx_len = 0;
  241. uint32_t flag = osEventFlagsWait(event, EVENT_FLAG_ALL, osFlagsWaitAny, timeout);
  242. if(flag == osErrorTimeout || flag == EVENT_FLAG_STOP) {
  243. break;
  244. }
  245. bool data_received = false;
  246. buff_rx_len = 0;
  247. rfalWorker();
  248. rfalLmState state = rfalListenGetState(&data_received, NULL);
  249. if(data_received) {
  250. rfalTransceiveBlockingRx();
  251. if(nfca_emulation_handler(buff_rx, buff_rx_len, buff_tx, &buff_tx_len)) {
  252. if(rfalListenSleepStart(
  253. RFAL_LM_STATE_SLEEP_A,
  254. buff_rx,
  255. rfalConvBytesToBits(buff_rx_size),
  256. &buff_rx_len)) {
  257. FURI_LOG_E(TAG, "Failed to enter sleep mode");
  258. break;
  259. } else {
  260. continue;
  261. }
  262. }
  263. if(buff_tx_len) {
  264. ReturnCode ret = rfalTransceiveBitsBlockingTx(
  265. buff_tx,
  266. buff_tx_len,
  267. buff_rx,
  268. sizeof(buff_rx),
  269. &buff_rx_len,
  270. data_type,
  271. RFAL_FWT_NONE);
  272. if(ret) {
  273. FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
  274. break;
  275. }
  276. continue;
  277. }
  278. if((state == RFAL_LM_STATE_ACTIVE_A || state == RFAL_LM_STATE_ACTIVE_Ax)) {
  279. if(callback) {
  280. callback(buff_rx, buff_rx_len, buff_tx, &buff_tx_len, &data_type, context);
  281. }
  282. if(!rfalIsExtFieldOn()) {
  283. break;
  284. }
  285. if(buff_tx_len) {
  286. ReturnCode ret = rfalTransceiveBitsBlockingTx(
  287. buff_tx,
  288. buff_tx_len,
  289. buff_rx,
  290. sizeof(buff_rx),
  291. &buff_rx_len,
  292. data_type,
  293. RFAL_FWT_NONE);
  294. if(ret) {
  295. FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
  296. continue;
  297. }
  298. } else {
  299. break;
  300. }
  301. }
  302. }
  303. }
  304. rfalListenStop();
  305. return true;
  306. }
  307. bool furi_hal_nfc_get_first_frame(uint8_t** rx_buff, uint16_t** rx_len) {
  308. ReturnCode ret =
  309. rfalNfcDataExchangeStart(NULL, 0, rx_buff, rx_len, 0, RFAL_TXRX_FLAGS_DEFAULT);
  310. return ret == ERR_NONE;
  311. }
  312. ReturnCode furi_hal_nfc_data_exchange(
  313. uint8_t* tx_buff,
  314. uint16_t tx_len,
  315. uint8_t** rx_buff,
  316. uint16_t** rx_len,
  317. bool deactivate) {
  318. furi_assert(rx_buff);
  319. furi_assert(rx_len);
  320. ReturnCode ret;
  321. rfalNfcState state = RFAL_NFC_STATE_ACTIVATED;
  322. ret = rfalNfcDataExchangeStart(tx_buff, tx_len, rx_buff, rx_len, 0, RFAL_TXRX_FLAGS_DEFAULT);
  323. if(ret != ERR_NONE) {
  324. return ret;
  325. }
  326. uint32_t start = DWT->CYCCNT;
  327. while(state != RFAL_NFC_STATE_DATAEXCHANGE_DONE) {
  328. rfalNfcWorker();
  329. state = rfalNfcGetState();
  330. ret = rfalNfcDataExchangeGetStatus();
  331. if(ret == ERR_BUSY) {
  332. if(DWT->CYCCNT - start > 1000 * clocks_in_ms) {
  333. ret = ERR_TIMEOUT;
  334. break;
  335. }
  336. continue;
  337. } else {
  338. start = DWT->CYCCNT;
  339. }
  340. taskYIELD();
  341. }
  342. if(deactivate) {
  343. rfalNfcDeactivate(false);
  344. rfalLowPowerModeStart();
  345. }
  346. return ret;
  347. }
  348. static uint16_t furi_hal_nfc_data_and_parity_to_bitstream(
  349. uint8_t* data,
  350. uint16_t len,
  351. uint8_t* parity,
  352. uint8_t* out) {
  353. furi_assert(data);
  354. furi_assert(out);
  355. uint8_t next_par_bit = 0;
  356. uint16_t curr_bit_pos = 0;
  357. for(uint16_t i = 0; i < len; i++) {
  358. next_par_bit = FURI_BIT(parity[i / 8], 7 - (i % 8));
  359. if(curr_bit_pos % 8 == 0) {
  360. out[curr_bit_pos / 8] = data[i];
  361. curr_bit_pos += 8;
  362. out[curr_bit_pos / 8] = next_par_bit;
  363. curr_bit_pos++;
  364. } else {
  365. out[curr_bit_pos / 8] |= data[i] << curr_bit_pos % 8;
  366. out[curr_bit_pos / 8 + 1] = data[i] >> (8 - curr_bit_pos % 8);
  367. out[curr_bit_pos / 8 + 1] |= next_par_bit << curr_bit_pos % 8;
  368. curr_bit_pos += 9;
  369. }
  370. }
  371. return curr_bit_pos;
  372. }
  373. uint16_t furi_hal_nfc_bitstream_to_data_and_parity(
  374. uint8_t* in_buff,
  375. uint16_t in_buff_bits,
  376. uint8_t* out_data,
  377. uint8_t* out_parity) {
  378. if(in_buff_bits % 9 != 0) {
  379. return 0;
  380. }
  381. uint8_t curr_byte = 0;
  382. uint16_t bit_processed = 0;
  383. memset(out_parity, 0, in_buff_bits / 9);
  384. while(bit_processed < in_buff_bits) {
  385. out_data[curr_byte] = in_buff[bit_processed / 8] >> bit_processed % 8;
  386. out_data[curr_byte] |= in_buff[bit_processed / 8 + 1] << (8 - bit_processed % 8);
  387. out_parity[curr_byte / 8] |= FURI_BIT(in_buff[bit_processed / 8 + 1], bit_processed % 8)
  388. << (7 - curr_byte % 8);
  389. bit_processed += 9;
  390. curr_byte++;
  391. }
  392. return curr_byte;
  393. }
  394. bool furi_hal_nfc_tx_rx(FuriHalNfcTxRxContext* tx_rx_ctx) {
  395. furi_assert(tx_rx_ctx);
  396. ReturnCode ret;
  397. rfalNfcState state = RFAL_NFC_STATE_ACTIVATED;
  398. uint8_t temp_tx_buff[FURI_HAL_NFC_DATA_BUFF_SIZE] = {};
  399. uint16_t temp_tx_bits = 0;
  400. uint8_t* temp_rx_buff = NULL;
  401. uint16_t* temp_rx_bits = NULL;
  402. // Prepare data for FIFO if necessary
  403. if(tx_rx_ctx->tx_rx_type == FURI_HAL_NFC_TXRX_RAW) {
  404. temp_tx_bits = furi_hal_nfc_data_and_parity_to_bitstream(
  405. tx_rx_ctx->tx_data, tx_rx_ctx->tx_bits / 8, tx_rx_ctx->tx_parity, temp_tx_buff);
  406. ret = rfalNfcDataExchangeCustomStart(
  407. temp_tx_buff,
  408. temp_tx_bits,
  409. &temp_rx_buff,
  410. &temp_rx_bits,
  411. RFAL_FWT_NONE,
  412. tx_rx_ctx->tx_rx_type);
  413. } else {
  414. ret = rfalNfcDataExchangeCustomStart(
  415. tx_rx_ctx->tx_data,
  416. tx_rx_ctx->tx_bits,
  417. &temp_rx_buff,
  418. &temp_rx_bits,
  419. RFAL_FWT_NONE,
  420. tx_rx_ctx->tx_rx_type);
  421. }
  422. if(ret != ERR_NONE) {
  423. return false;
  424. }
  425. uint32_t start = DWT->CYCCNT;
  426. while(state != RFAL_NFC_STATE_DATAEXCHANGE_DONE) {
  427. rfalNfcWorker();
  428. state = rfalNfcGetState();
  429. ret = rfalNfcDataExchangeGetStatus();
  430. if(ret == ERR_BUSY) {
  431. if(DWT->CYCCNT - start > 4 * clocks_in_ms) {
  432. return false;
  433. }
  434. continue;
  435. } else {
  436. start = DWT->CYCCNT;
  437. }
  438. taskYIELD();
  439. }
  440. if(tx_rx_ctx->tx_rx_type == FURI_HAL_NFC_TXRX_RAW) {
  441. tx_rx_ctx->rx_bits =
  442. 8 * furi_hal_nfc_bitstream_to_data_and_parity(
  443. temp_rx_buff, *temp_rx_bits, tx_rx_ctx->rx_data, tx_rx_ctx->rx_parity);
  444. } else {
  445. memcpy(tx_rx_ctx->rx_data, temp_rx_buff, *temp_rx_bits / 8);
  446. }
  447. return true;
  448. }
  449. void furi_hal_nfc_deactivate() {
  450. rfalNfcDeactivate(false);
  451. rfalLowPowerModeStart();
  452. }