mag_helpers.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479
  1. #include "mag_helpers.h"
  2. #define TAG "MagHelpers"
  3. // Haviv Board - pins gpio_ext_pa7 & gpio_ext_pa6 was swapped.
  4. #define GPIO_PIN_A &gpio_ext_pa7
  5. #define GPIO_PIN_B &gpio_ext_pa6
  6. #define GPIO_PIN_ENABLE &gpio_ext_pa4
  7. #define RFID_PIN_OUT &gpio_rfid_carrier_out
  8. #define ZERO_PREFIX 25 // n zeros prefix
  9. #define ZERO_BETWEEN 53 // n zeros between tracks
  10. #define ZERO_SUFFIX 25 // n zeros suffix
  11. // bits per char on a given track
  12. const uint8_t bitlen[] = {7, 5, 5};
  13. // char offset by track
  14. const int sublen[] = {32, 48, 48};
  15. uint8_t last_value = 2;
  16. void play_halfbit(bool value, MagSetting* setting) {
  17. switch(setting->tx) {
  18. case MagTxStateRFID:
  19. furi_hal_gpio_write(RFID_PIN_OUT, value);
  20. /*furi_hal_gpio_write(RFID_PIN_OUT, !value);
  21. furi_hal_gpio_write(RFID_PIN_OUT, value);
  22. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  23. furi_hal_gpio_write(RFID_PIN_OUT, value);*/
  24. break;
  25. case MagTxStateGPIO:
  26. furi_hal_gpio_write(GPIO_PIN_A, value);
  27. furi_hal_gpio_write(GPIO_PIN_B, !value);
  28. break;
  29. case MagTxStatePiezo:
  30. furi_hal_gpio_write(&gpio_speaker, value);
  31. /*furi_hal_gpio_write(&gpio_speaker, !value);
  32. furi_hal_gpio_write(&gpio_speaker, value);
  33. furi_hal_gpio_write(&gpio_speaker, !value);
  34. furi_hal_gpio_write(&gpio_speaker, value);*/
  35. break;
  36. case MagTxStateLF_P:
  37. furi_hal_gpio_write(RFID_PIN_OUT, value);
  38. furi_hal_gpio_write(&gpio_speaker, value);
  39. /* // Weaker but cleaner signal
  40. if(value) {
  41. furi_hal_gpio_write(RFID_PIN_OUT, value);
  42. furi_hal_gpio_write(&gpio_speaker, value);
  43. furi_delay_us(10);
  44. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  45. furi_hal_gpio_write(&gpio_speaker, !value);
  46. } else {
  47. furi_delay_us(10);
  48. }*/
  49. /*furi_hal_gpio_write(RFID_PIN_OUT, value);
  50. furi_hal_gpio_write(&gpio_speaker, value);
  51. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  52. furi_hal_gpio_write(&gpio_speaker, !value);
  53. furi_hal_gpio_write(RFID_PIN_OUT, value);
  54. furi_hal_gpio_write(&gpio_speaker, value);*/
  55. break;
  56. case MagTxStateNFC:
  57. // turn on for duration of half-bit? or "blip" the field on / off?
  58. // getting nothing from the mag reader either way
  59. //(value) ? furi_hal_nfc_ll_txrx_on() : furi_hal_nfc_ll_txrx_off();
  60. if(last_value == 2 || value != (bool)last_value) {
  61. //furi_hal_nfc_ll_txrx_on();
  62. //furi_delay_us(64);
  63. //furi_hal_nfc_ll_txrx_off();
  64. }
  65. break;
  66. case MagTxCC1101_434:
  67. case MagTxCC1101_868:
  68. if(last_value == 2 || value != (bool)last_value) {
  69. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  70. furi_delay_us(64);
  71. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  72. }
  73. break;
  74. default:
  75. break;
  76. }
  77. last_value = value;
  78. }
  79. void play_track(uint8_t* bits_manchester, uint16_t n_bits, MagSetting* setting, bool reverse) {
  80. for(uint16_t i = 0; i < n_bits; i++) {
  81. uint16_t j = (reverse) ? (n_bits - i - 1) : i;
  82. uint8_t byte = j / 8;
  83. uint8_t bitmask = 1 << (7 - (j % 8));
  84. /* Bits are stored in their arrays like on a card (LSB first). This is not how usually bits are stored in a
  85. * byte, with the MSB first. the var bitmask creates the pattern to iterate through each bit, LSB first, like so
  86. * 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x80... masking bits one by one from the current byte
  87. *
  88. * I've chosen this LSB approach since bits and bytes are hard enough to visualize with the 5/8 and 7/8 encoding
  89. * MSR uses. It's a biiit more complicated to process, but visualizing it with printf or a debugger is
  90. * infinitely easier
  91. *
  92. * Encoding the following pairs of 5 bits as 5/8: A1234 B1234 C1234 D1234
  93. * using this LSB format looks like: A1234B12 34C1234D 12340000
  94. * using the MSB format, looks like: 21B4321A D4321C43 00004321
  95. * this means reading each byte backwards when printing/debugging, and the jumping 16 bits ahead, reading 8 more
  96. * bits backward, jumping 16 more bits ahead.
  97. *
  98. * I find this much more convenient for debugging, with the tiny incovenience of reading the bits in reverse
  99. * order. Thus, the reason for the bitmask above
  100. */
  101. bool bit = !!(bits_manchester[byte] & bitmask);
  102. // TODO: reimplement timing delays. Replace fixed furi_hal_cortex_delay_us to wait instead to a specific value
  103. // for DWT->CYCCNT. Note timer is aliased to 64us as per
  104. // #define FURI_HAL_CORTEX_INSTRUCTIONS_PER_MICROSECOND (SystemCoreClock / 1000000) | furi_hal_cortex.c
  105. play_halfbit(bit, setting);
  106. furi_delay_us(setting->us_clock);
  107. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  108. }
  109. }
  110. void tx_init_rfid() {
  111. // initialize RFID system for TX
  112. furi_hal_ibutton_pin_configure();
  113. // furi_hal_ibutton_start_drive();
  114. furi_hal_ibutton_pin_write(false);
  115. // Initializing at GpioSpeedLow seems sufficient for our needs; no improvements seen by increasing speed setting
  116. // this doesn't seem to make a difference, leaving it in
  117. furi_hal_gpio_init(&gpio_rfid_data_in, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  118. furi_hal_gpio_write(&gpio_rfid_data_in, false);
  119. // false->ground RFID antenna; true->don't ground
  120. // skotopes (RFID dev) say normally you'd want RFID_PULL in high for signal forming, while modulating RFID_OUT
  121. // dunaevai135 had it low in their old code. Leaving low, as it doesn't seem to make a difference on my janky antenna
  122. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  123. furi_hal_gpio_write(&gpio_nfc_irq_rfid_pull, false);
  124. furi_hal_gpio_init(RFID_PIN_OUT, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  125. furi_delay_ms(300);
  126. }
  127. void tx_deinit_rfid() {
  128. // reset RFID system
  129. furi_hal_gpio_write(RFID_PIN_OUT, 0);
  130. furi_hal_rfid_pins_reset();
  131. }
  132. void tx_init_rf(int hz) {
  133. // presets and frequency will need some experimenting
  134. furi_hal_subghz_reset();
  135. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetOok650Async);
  136. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetGFSK9_99KbAsync);
  137. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetMSK99_97KbAsync);
  138. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev238Async);
  139. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev476Async);
  140. furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  141. furi_hal_subghz_set_frequency_and_path(hz);
  142. furi_hal_subghz_tx();
  143. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  144. }
  145. void tx_init_piezo() {
  146. // TODO: some special mutex acquire procedure? c.f. furi_hal_speaker.c
  147. furi_hal_gpio_init(&gpio_speaker, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  148. }
  149. void tx_deinit_piezo() {
  150. // TODO: some special mutex release procedure?
  151. furi_hal_gpio_init(&gpio_speaker, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  152. }
  153. bool tx_init(MagSetting* setting) {
  154. // Initialize configured TX method
  155. switch(setting->tx) {
  156. case MagTxStateRFID:
  157. tx_init_rfid();
  158. break;
  159. case MagTxStateGPIO:
  160. // gpio_item_configure_all_pins(GpioModeOutputPushPull);
  161. furi_hal_gpio_init(GPIO_PIN_A, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  162. furi_hal_gpio_init(GPIO_PIN_B, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  163. furi_hal_gpio_init(GPIO_PIN_ENABLE, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  164. furi_hal_gpio_write(GPIO_PIN_ENABLE, 1);
  165. // had some issues with ~300; bumped higher temporarily
  166. furi_delay_ms(500);
  167. break;
  168. case MagTxStatePiezo:
  169. tx_init_piezo();
  170. break;
  171. case MagTxStateLF_P:
  172. tx_init_piezo();
  173. tx_init_rfid();
  174. break;
  175. case MagTxStateNFC:
  176. //furi_hal_nfc_exit_sleep();
  177. break;
  178. case MagTxCC1101_434:
  179. tx_init_rf(434000000);
  180. break;
  181. case MagTxCC1101_868:
  182. tx_init_rf(868000000);
  183. break;
  184. default:
  185. return false;
  186. }
  187. return true;
  188. }
  189. bool tx_deinit(MagSetting* setting) {
  190. // Reset configured TX method
  191. switch(setting->tx) {
  192. case MagTxStateRFID:
  193. tx_deinit_rfid();
  194. break;
  195. case MagTxStateGPIO:
  196. furi_hal_gpio_write(GPIO_PIN_A, 0);
  197. furi_hal_gpio_write(GPIO_PIN_B, 0);
  198. furi_hal_gpio_write(GPIO_PIN_ENABLE, 0);
  199. // set back to analog output mode? - YES
  200. furi_hal_gpio_init(GPIO_PIN_A, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  201. furi_hal_gpio_init(GPIO_PIN_B, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  202. furi_hal_gpio_init(GPIO_PIN_ENABLE, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  203. //gpio_item_configure_all_pins(GpioModeAnalog);
  204. break;
  205. case MagTxStatePiezo:
  206. tx_deinit_piezo();
  207. break;
  208. case MagTxStateLF_P:
  209. tx_deinit_piezo();
  210. tx_deinit_rfid();
  211. break;
  212. case MagTxStateNFC:
  213. //furi_hal_nfc_ll_txrx_off();
  214. //furi_hal_nfc_start_sleep();
  215. break;
  216. case MagTxCC1101_434:
  217. case MagTxCC1101_868:
  218. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  219. furi_hal_subghz_reset();
  220. furi_hal_subghz_idle();
  221. break;
  222. default:
  223. return false;
  224. }
  225. return true;
  226. }
  227. void mag_spoof(Mag* mag) {
  228. MagSetting* setting = mag->setting;
  229. // TODO: cleanup this section. Possibly move precompute + tx_init to emulate_on_enter?
  230. FuriString* ft1 = mag->mag_dev->dev_data.track[0].str;
  231. FuriString* ft2 = mag->mag_dev->dev_data.track[1].str;
  232. FuriString* ft3 = mag->mag_dev->dev_data.track[2].str;
  233. char *data1, *data2, *data3;
  234. data1 = malloc(furi_string_size(ft1) + 1);
  235. data2 = malloc(furi_string_size(ft2) + 1);
  236. data3 = malloc(furi_string_size(ft3) + 1);
  237. strncpy(data1, furi_string_get_cstr(ft1), furi_string_size(ft1));
  238. strncpy(data2, furi_string_get_cstr(ft2), furi_string_size(ft2));
  239. strncpy(data3, furi_string_get_cstr(ft3), furi_string_size(ft3));
  240. if(furi_log_get_level() >= FuriLogLevelDebug) {
  241. debug_mag_string(data1, bitlen[0], sublen[0]);
  242. debug_mag_string(data2, bitlen[1], sublen[1]);
  243. debug_mag_string(data3, bitlen[2], sublen[2]);
  244. }
  245. uint8_t bits_t1_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  246. uint8_t bits_t1_manchester[128] = {0x00}; // twice the above
  247. uint16_t bits_t1_count = mag_encode(
  248. data1, (uint8_t*)bits_t1_manchester, (uint8_t*)bits_t1_raw, bitlen[0], sublen[0]);
  249. uint8_t bits_t2_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  250. uint8_t bits_t2_manchester[128] = {0x00}; // twice the above
  251. uint16_t bits_t2_count = mag_encode(
  252. data2, (uint8_t*)bits_t2_manchester, (uint8_t*)bits_t2_raw, bitlen[1], sublen[1]);
  253. uint8_t bits_t3_raw[64] = {0x00};
  254. uint8_t bits_t3_manchester[128] = {0x00};
  255. uint16_t bits_t3_count = mag_encode(
  256. data3, (uint8_t*)bits_t3_manchester, (uint8_t*)bits_t3_raw, bitlen[2], sublen[2]);
  257. if(furi_log_get_level() >= FuriLogLevelDebug) {
  258. printf(
  259. "Manchester bitcount: T1: %d, T2: %d, T3: %d\r\n",
  260. bits_t1_count,
  261. bits_t2_count,
  262. bits_t3_count);
  263. printf("T1 raw: ");
  264. for(int i = 0; i < bits_t1_count / 16; i++) printf("%02x ", bits_t1_raw[i]);
  265. printf("\r\nT1 manchester: ");
  266. for(int i = 0; i < bits_t1_count / 8; i++) printf("%02x ", bits_t1_manchester[i]);
  267. printf("\r\nT2 raw: ");
  268. for(int i = 0; i < bits_t2_count / 16; i++) printf("%02x ", bits_t2_raw[i]);
  269. printf("\r\nT2 manchester: ");
  270. for(int i = 0; i < bits_t2_count / 8; i++) printf("%02x ", bits_t2_manchester[i]);
  271. printf("\r\nT3 raw: ");
  272. for(int i = 0; i < bits_t3_count / 16; i++) printf("%02x ", bits_t3_raw[i]);
  273. printf("\r\nT3 manchester: ");
  274. for(int i = 0; i < bits_t3_count / 8; i++) printf("%02x ", bits_t3_manchester[i]);
  275. printf("\r\nBitwise emulation done\r\n\r\n");
  276. }
  277. last_value = 2;
  278. bool bit = false;
  279. if(!tx_init(setting)) return;
  280. FURI_CRITICAL_ENTER();
  281. for(uint16_t i = 0; i < (ZERO_PREFIX * 2); i++) {
  282. // is this right?
  283. if(!!(i % 2)) bit ^= 1;
  284. play_halfbit(bit, setting);
  285. furi_delay_us(setting->us_clock);
  286. }
  287. if((setting->track == MagTrackStateOneAndTwo) || (setting->track == MagTrackStateOne))
  288. play_track((uint8_t*)bits_t1_manchester, bits_t1_count, setting, false);
  289. if((setting->track == MagTrackStateOneAndTwo))
  290. for(uint16_t i = 0; i < (ZERO_BETWEEN * 2); i++) {
  291. if(!!(i % 2)) bit ^= 1;
  292. play_halfbit(bit, setting);
  293. furi_delay_us(setting->us_clock);
  294. }
  295. if((setting->track == MagTrackStateOneAndTwo) || (setting->track == MagTrackStateTwo))
  296. play_track(
  297. (uint8_t*)bits_t2_manchester,
  298. bits_t2_count,
  299. setting,
  300. (setting->reverse == MagReverseStateOn));
  301. if((setting->track == MagTrackStateThree))
  302. play_track((uint8_t*)bits_t3_manchester, bits_t3_count, setting, false);
  303. for(uint16_t i = 0; i < (ZERO_SUFFIX * 2); i++) {
  304. if(!!(i % 2)) bit ^= 1;
  305. play_halfbit(bit, setting);
  306. furi_delay_us(setting->us_clock);
  307. }
  308. FURI_CRITICAL_EXIT();
  309. free(data1);
  310. free(data2);
  311. free(data3);
  312. tx_deinit(setting);
  313. }
  314. uint16_t add_bit(bool value, uint8_t* out, uint16_t count) {
  315. uint8_t bit = count % 8;
  316. uint8_t byte = count / 8;
  317. if(value) {
  318. out[byte] |= 0x01;
  319. }
  320. if(bit < 7) out[byte] <<= 1;
  321. return count + 1;
  322. }
  323. uint16_t add_bit_manchester(bool value, uint8_t* out, uint16_t count) {
  324. static bool toggle = 0;
  325. toggle ^= 0x01;
  326. count = add_bit(toggle, out, count);
  327. if(value) toggle ^= 0x01;
  328. count = add_bit(toggle, out, count);
  329. return count;
  330. }
  331. uint16_t mag_encode(
  332. char* data,
  333. uint8_t* out_manchester,
  334. uint8_t* out_raw,
  335. uint8_t track_bits,
  336. uint8_t track_ascii_offset) {
  337. /*
  338. * track_bits - the number of raw (data) bits on the track. on ISO cards, that's 7 for track 1, or 5 for 2/3 - this is samy's bitlen
  339. * - this count includes the parity bit
  340. * track_ascii_offset - how much the ascii values are offset. track 1 makes space (ascii 32) become data 0x00,
  341. * - tracks 2/3 make ascii "0" become data 0x00 - this is samy's sublen
  342. *
  343. */
  344. uint16_t raw_bits_count = 0;
  345. uint16_t output_count = 0;
  346. int tmp, crc, lrc = 0;
  347. /* // why are we adding zeros to the encoded string if we're also doing it while playing?
  348. for(int i = 0; i < ZERO_PREFIX; i++) {
  349. output_count = add_bit_manchester(0, out_manchester, output_count);
  350. raw_bits_count = add_bit(0, out_raw, raw_bits_count);
  351. }*/
  352. for(int i = 0; *(data + i) != 0; i++) {
  353. crc = 1;
  354. tmp = *(data + i) - track_ascii_offset;
  355. for(int j = 0; j < track_bits - 1; j++) {
  356. crc ^= tmp & 1;
  357. lrc ^= (tmp & 1) << j;
  358. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  359. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  360. tmp >>= 1;
  361. }
  362. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  363. output_count = add_bit_manchester(crc, out_manchester, output_count);
  364. }
  365. // LRC byte
  366. tmp = lrc;
  367. crc = 1;
  368. for(int j = 0; j < track_bits - 1; j++) {
  369. crc ^= tmp & 0x01;
  370. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  371. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  372. tmp >>= 1;
  373. }
  374. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  375. output_count = add_bit_manchester(crc, out_manchester, output_count);
  376. return output_count;
  377. }
  378. void debug_mag_string(char* data, uint8_t track_bits, uint8_t track_ascii_offset) {
  379. uint8_t bits_raw[64] = {0}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  380. uint8_t bits_manchester[128] = {0}; // twice the above
  381. int numbits = 0;
  382. printf("Encoding [%s] with %d bits\r\n", data, track_bits);
  383. numbits = mag_encode(
  384. data, (uint8_t*)bits_manchester, (uint8_t*)bits_raw, track_bits, track_ascii_offset);
  385. printf("Got %d bits\r\n", numbits);
  386. printf("Raw byte stream: ");
  387. for(int i = 0; i < numbits / 8 / 2; i++) {
  388. printf("%02x", bits_raw[i]);
  389. if(i % 4 == 3) printf(" ");
  390. }
  391. printf("\r\n");
  392. printf("Bits ");
  393. int space_counter = 0;
  394. for(int i = 0; i < numbits / 2; i++) {
  395. /*if(i < ZERO_PREFIX) {
  396. printf("X");
  397. continue;
  398. } else if(i == ZERO_PREFIX) {
  399. printf(" ");
  400. space_counter = 0;
  401. }*/
  402. printf("%01x", (bits_raw[i / 8] & (1 << (7 - (i % 8)))) != 0);
  403. if((space_counter) % track_bits == track_bits - 1) printf(" ");
  404. space_counter++;
  405. }
  406. printf("\r\n");
  407. printf("Manchester encoded, byte stream: ");
  408. for(int i = 0; i < numbits / 8; i++) {
  409. printf("%02x", bits_manchester[i]);
  410. if(i % 4 == 3) printf(" ");
  411. }
  412. printf("\r\n\r\n");
  413. }