| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 |
- //-----------------------------------------------------------------------------
- // Borrowed initially from https://github.com/holiman/loclass
- // Copyright (C) 2014 Martin Holst Swende
- // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
- //
- // This program is free software: you can redistribute it and/or modify
- // it under the terms of the GNU General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // This program is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // See LICENSE.txt for the text of the license.
- //-----------------------------------------------------------------------------
- // WARNING
- //
- // THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
- //
- // USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
- // PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
- // AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
- //
- // THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
- //-----------------------------------------------------------------------------
- // It is a reconstruction of the cipher engine used in iClass, and RFID techology.
- //
- // The implementation is based on the work performed by
- // Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
- // Milosch Meriac in the paper "Dismantling IClass".
- //-----------------------------------------------------------------------------
- /*
- This file contains an optimized version of the MAC-calculation algorithm. Some measurements on
- a std laptop showed it runs in about 1/3 of the time:
- Std: 0.428962
- Opt: 0.151609
- Additionally, it is self-reliant, not requiring e.g. bitstreams from the cipherutils, thus can
- be easily dropped into a code base.
- The optimizations have been performed in the following steps:
- * Parameters passed by reference instead of by value.
- * Iteration instead of recursion, un-nesting recursive loops into for-loops.
- * Handling of bytes instead of individual bits, for less shuffling and masking
- * Less creation of "objects", structs, and instead reuse of alloc:ed memory
- * Inlining some functions via #define:s
- As a consequence, this implementation is less generic. Also, I haven't bothered documenting this.
- For a thorough documentation, check out the MAC-calculation within cipher.c instead.
- -- MHS 2015
- **/
- /**
- The runtime of opt_doTagMAC_2() with the MHS optimized version was 403 microseconds on Proxmark3.
- This was still to slow for some newer readers which didn't want to wait that long.
- Further optimizations to speedup the MAC calculations:
- * Optimized opt_Tt logic
- * Look up table for opt_select
- * Removing many unnecessary bit maskings (& 0x1)
- * updating state in place instead of alternating use of a second state structure
- * remove the necessity to reverse bits of input and output bytes
- opt_doTagMAC_2() now completes in 270 microseconds.
- -- piwi 2019
- **/
- /**
- add the possibility to do iCLASS on device only
- -- iceman 2020
- **/
- #include "optimized_cipher.h"
- #include "optimized_elite.h"
- #include "optimized_ikeys.h"
- #include "optimized_cipherutils.h"
- static const uint8_t loclass_opt_select_LUT[256] = {
- 00, 03, 02, 01, 02, 03, 00, 01, 04, 07, 07, 04, 06, 07, 05, 04, 01, 02, 03, 00, 02, 03, 00, 01,
- 05, 06, 06, 05, 06, 07, 05, 04, 06, 05, 04, 07, 04, 05, 06, 07, 06, 05, 05, 06, 04, 05, 07, 06,
- 07, 04, 05, 06, 04, 05, 06, 07, 07, 04, 04, 07, 04, 05, 07, 06, 06, 05, 04, 07, 04, 05, 06, 07,
- 02, 01, 01, 02, 00, 01, 03, 02, 03, 00, 01, 02, 00, 01, 02, 03, 07, 04, 04, 07, 04, 05, 07, 06,
- 00, 03, 02, 01, 02, 03, 00, 01, 00, 03, 03, 00, 02, 03, 01, 00, 05, 06, 07, 04, 06, 07, 04, 05,
- 05, 06, 06, 05, 06, 07, 05, 04, 02, 01, 00, 03, 00, 01, 02, 03, 06, 05, 05, 06, 04, 05, 07, 06,
- 03, 00, 01, 02, 00, 01, 02, 03, 07, 04, 04, 07, 04, 05, 07, 06, 02, 01, 00, 03, 00, 01, 02, 03,
- 02, 01, 01, 02, 00, 01, 03, 02, 03, 00, 01, 02, 00, 01, 02, 03, 03, 00, 00, 03, 00, 01, 03, 02,
- 04, 07, 06, 05, 06, 07, 04, 05, 00, 03, 03, 00, 02, 03, 01, 00, 01, 02, 03, 00, 02, 03, 00, 01,
- 05, 06, 06, 05, 06, 07, 05, 04, 04, 07, 06, 05, 06, 07, 04, 05, 04, 07, 07, 04, 06, 07, 05, 04,
- 01, 02, 03, 00, 02, 03, 00, 01, 01, 02, 02, 01, 02, 03, 01, 00};
- /********************** the table above has been generated with this code: ********
- #include "util.h"
- static void init_opt_select_LUT(void) {
- for (int r = 0; r < 256; r++) {
- uint8_t r_ls2 = r << 2;
- uint8_t r_and_ls2 = r & r_ls2;
- uint8_t r_or_ls2 = r | r_ls2;
- uint8_t z0 = (r_and_ls2 >> 5) ^ ((r & ~r_ls2) >> 4) ^ ( r_or_ls2 >> 3);
- uint8_t z1 = (r_or_ls2 >> 6) ^ ( r_or_ls2 >> 1) ^ (r >> 5) ^ r;
- uint8_t z2 = ((r & ~r_ls2) >> 4) ^ (r_and_ls2 >> 3) ^ r;
- loclass_opt_select_LUT[r] = (z0 & 4) | (z1 & 2) | (z2 & 1);
- }
- print_result("", loclass_opt_select_LUT, 256);
- }
- ***********************************************************************************/
- static inline void loclass_opt_successor(const uint8_t* k, LoclassState_t* s, uint8_t y) {
- uint16_t Tt = s->t & 0xc533;
- Tt = Tt ^ (Tt >> 1);
- Tt = Tt ^ (Tt >> 4);
- Tt = Tt ^ (Tt >> 10);
- Tt = Tt ^ (Tt >> 8);
- s->t = (s->t >> 1);
- s->t |= (Tt ^ (s->r >> 7) ^ (s->r >> 3)) << 15;
- uint8_t opt_B = s->b;
- opt_B ^= s->b >> 6;
- opt_B ^= s->b >> 5;
- opt_B ^= s->b >> 4;
- s->b = s->b >> 1;
- s->b |= (opt_B ^ s->r) << 7;
- uint8_t Tt1 = Tt & 0x01;
- uint8_t opt_select = loclass_opt_select_LUT[s->r] ^ Tt1 ^ ((Tt1 ^ (y & 0x01)) << 1);
- uint8_t r = s->r;
- s->r = (k[opt_select] ^ s->b) + s->l;
- s->l = s->r + r;
- }
- static inline void loclass_opt_suc(
- const uint8_t* k,
- LoclassState_t* s,
- const uint8_t* in,
- uint8_t length,
- bool add32Zeroes) {
- for(int i = 0; i < length; i++) {
- uint8_t head = in[i];
- for(int j = 0; j < 8; j++) {
- loclass_opt_successor(k, s, head);
- head >>= 1;
- }
- }
- // For tag MAC, an additional 32 zeroes
- if(add32Zeroes) {
- for(int i = 0; i < 32; i++) {
- loclass_opt_successor(k, s, 0);
- }
- }
- }
- static inline void loclass_opt_output(const uint8_t* k, LoclassState_t* s, uint8_t* buffer) {
- for(uint8_t times = 0; times < 4; times++) {
- uint8_t bout = 0;
- bout |= (s->r & 0x4) >> 2;
- loclass_opt_successor(k, s, 0);
- bout |= (s->r & 0x4) >> 1;
- loclass_opt_successor(k, s, 0);
- bout |= (s->r & 0x4);
- loclass_opt_successor(k, s, 0);
- bout |= (s->r & 0x4) << 1;
- loclass_opt_successor(k, s, 0);
- bout |= (s->r & 0x4) << 2;
- loclass_opt_successor(k, s, 0);
- bout |= (s->r & 0x4) << 3;
- loclass_opt_successor(k, s, 0);
- bout |= (s->r & 0x4) << 4;
- loclass_opt_successor(k, s, 0);
- bout |= (s->r & 0x4) << 5;
- loclass_opt_successor(k, s, 0);
- buffer[times] = bout;
- }
- }
- static void loclass_opt_MAC(uint8_t* k, uint8_t* input, uint8_t* out) {
- LoclassState_t _init = {
- ((k[0] ^ 0x4c) + 0xEC) & 0xFF, // l
- ((k[0] ^ 0x4c) + 0x21) & 0xFF, // r
- 0x4c, // b
- 0xE012 // t
- };
- loclass_opt_suc(k, &_init, input, 12, false);
- loclass_opt_output(k, &_init, out);
- }
- static void loclass_opt_MAC_N(uint8_t* k, uint8_t* input, uint8_t in_size, uint8_t* out) {
- LoclassState_t _init = {
- ((k[0] ^ 0x4c) + 0xEC) & 0xFF, // l
- ((k[0] ^ 0x4c) + 0x21) & 0xFF, // r
- 0x4c, // b
- 0xE012 // t
- };
- loclass_opt_suc(k, &_init, input, in_size, false);
- loclass_opt_output(k, &_init, out);
- }
- void loclass_opt_doReaderMAC(uint8_t* cc_nr_p, uint8_t* div_key_p, uint8_t mac[4]) {
- uint8_t dest[] = {0, 0, 0, 0, 0, 0, 0, 0};
- loclass_opt_MAC(div_key_p, cc_nr_p, dest);
- memcpy(mac, dest, 4);
- }
- void loclass_opt_doReaderMAC_2(
- LoclassState_t _init,
- uint8_t* nr,
- uint8_t mac[4],
- const uint8_t* div_key_p) {
- loclass_opt_suc(div_key_p, &_init, nr, 4, false);
- loclass_opt_output(div_key_p, &_init, mac);
- }
- void loclass_doMAC_N(uint8_t* in_p, uint8_t in_size, uint8_t* div_key_p, uint8_t mac[4]) {
- uint8_t dest[] = {0, 0, 0, 0, 0, 0, 0, 0};
- loclass_opt_MAC_N(div_key_p, in_p, in_size, dest);
- memcpy(mac, dest, 4);
- }
- void loclass_opt_doTagMAC(uint8_t* cc_p, const uint8_t* div_key_p, uint8_t mac[4]) {
- LoclassState_t _init = {
- ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF, // l
- ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF, // r
- 0x4c, // b
- 0xE012 // t
- };
- loclass_opt_suc(div_key_p, &_init, cc_p, 12, true);
- loclass_opt_output(div_key_p, &_init, mac);
- }
- /**
- * The tag MAC can be divided (both can, but no point in dividing the reader mac) into
- * two functions, since the first 8 bytes are known, we can pre-calculate the state
- * reached after feeding CC to the cipher.
- * @param cc_p
- * @param div_key_p
- * @return the cipher state
- */
- LoclassState_t loclass_opt_doTagMAC_1(uint8_t* cc_p, const uint8_t* div_key_p) {
- LoclassState_t _init = {
- ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF, // l
- ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF, // r
- 0x4c, // b
- 0xE012 // t
- };
- loclass_opt_suc(div_key_p, &_init, cc_p, 8, false);
- return _init;
- }
- /**
- * The second part of the tag MAC calculation, since the CC is already calculated into the state,
- * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag
- * MAC response.
- * @param _init - precalculated cipher state
- * @param nr - the reader challenge
- * @param mac - where to store the MAC
- * @param div_key_p - the key to use
- */
- void loclass_opt_doTagMAC_2(
- LoclassState_t _init,
- uint8_t* nr,
- uint8_t mac[4],
- const uint8_t* div_key_p) {
- loclass_opt_suc(div_key_p, &_init, nr, 4, true);
- loclass_opt_output(div_key_p, &_init, mac);
- }
- /**
- * The second part of the tag MAC calculation, since the CC is already calculated into the state,
- * this function is fed only the NR, and generates both the reader and tag MACs.
- * @param _init - precalculated cipher state
- * @param nr - the reader challenge
- * @param rmac - where to store the reader MAC
- * @param tmac - where to store the tag MAC
- * @param div_key_p - the key to use
- */
- void loclass_opt_doBothMAC_2(
- LoclassState_t _init,
- uint8_t* nr,
- uint8_t rmac[4],
- uint8_t tmac[4],
- const uint8_t* div_key_p) {
- LoclassState_t* s = &_init;
- loclass_opt_suc(div_key_p, s, nr, 4, false);
- loclass_opt_output(div_key_p, s, rmac);
- loclass_opt_output(div_key_p, s, tmac);
- }
- void loclass_iclass_calc_div_key(
- const uint8_t* csn,
- const uint8_t* key,
- uint8_t* div_key,
- bool elite) {
- if(elite) {
- uint8_t keytable[128] = {0};
- uint8_t key_index[8] = {0};
- uint8_t key_sel[8] = {0};
- uint8_t key_sel_p[8] = {0};
- loclass_hash2(key, keytable);
- loclass_hash1(csn, key_index);
- for(uint8_t i = 0; i < 8; i++) key_sel[i] = keytable[key_index[i]];
- //Permute from iclass format to standard format
- loclass_permutekey_rev(key_sel, key_sel_p);
- loclass_diversifyKey(csn, key_sel_p, div_key);
- } else {
- loclass_diversifyKey(csn, key, div_key);
- }
- }
|