subghz_protocol_keeloq.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. #include "subghz_protocol_keeloq.h"
  2. #include <furi.h>
  3. #include <m-string.h>
  4. #include <m-array.h>
  5. /*
  6. * Keeloq
  7. * https://ru.wikipedia.org/wiki/KeeLoq
  8. * https://phreakerclub.com/forum/showthread.php?t=1094
  9. *
  10. */
  11. #define KEELOQ_NLF 0x3A5C742E
  12. #define bit(x,n) (((x)>>(n))&1)
  13. #define g5(x,a,b,c,d,e) (bit(x,a)+bit(x,b)*2+bit(x,c)*4+bit(x,d)*8+bit(x,e)*16)
  14. /*
  15. * KeeLoq learning types
  16. * https://phreakerclub.com/forum/showthread.php?t=67
  17. */
  18. #define KEELOQ_LEARNING_UNKNOWN 0u
  19. #define KEELOQ_LEARNING_SIMPLE 1u
  20. #define KEELOQ_LEARNING_NORMAL 2u
  21. #define KEELOQ_LEARNING_SECURE 3u
  22. typedef struct {
  23. string_t name;
  24. uint64_t key;
  25. uint16_t type;
  26. } KeeLoqManufactureCode;
  27. ARRAY_DEF(KeeLoqManufactureCodeArray, KeeLoqManufactureCode, M_POD_OPLIST)
  28. #define M_OPL_KeeLoqManufactureCodeArray_t() ARRAY_OPLIST(KeeLoqManufactureCodeArray, M_POD_OPLIST)
  29. struct SubGhzProtocolKeeloq {
  30. SubGhzProtocolCommon common;
  31. KeeLoqManufactureCodeArray_t manufacture_codes;
  32. const char* manufacture_name;
  33. };
  34. /** Simple Learning Encrypt
  35. * @param data - serial number (28bit)
  36. * @param key - manufacture (64bit)
  37. * @return ?
  38. */
  39. inline uint32_t subghz_protocol_keeloq_encrypt(const uint32_t data, const uint64_t key) {
  40. uint32_t x = data, r;
  41. for (r = 0; r < 528; r++)
  42. x = (x>>1)^((bit(x,0)^bit(x,16)^(uint32_t)bit(key,r&63)^bit(KEELOQ_NLF,g5(x,1,9,20,26,31)))<<31);
  43. return x;
  44. }
  45. /** Simple Learning Decrypt
  46. * @param data - serial number (28bit)
  47. * @param key - manufacture (64bit)
  48. * @return ?
  49. */
  50. inline uint32_t subghz_protocol_keeloq_decrypt(const uint32_t data, const uint64_t key) {
  51. uint32_t x = data, r;
  52. for (r = 0; r < 528; r++)
  53. x = (x<<1)^bit(x,31)^bit(x,15)^(uint32_t)bit(key,(15-r)&63)^bit(KEELOQ_NLF,g5(x,0,8,19,25,30));
  54. return x;
  55. }
  56. /** Normal Learning
  57. * @param data - serial number (28bit)
  58. * @param key - manufacture (64bit)
  59. * @return ?
  60. */
  61. inline uint64_t subghz_protocol_keeloq_normal_learning(uint32_t data, const uint64_t key){
  62. uint32_t k1,k2;
  63. data&=0x0FFFFFFF;
  64. data|=0x20000000;
  65. k1=subghz_protocol_keeloq_decrypt(data, key);
  66. data&=0x0FFFFFFF;
  67. data|=0x60000000;
  68. k2=subghz_protocol_keeloq_decrypt(data, key);
  69. return ((uint64_t)k2<<32)| k1; // key - shifrovanoya
  70. }
  71. SubGhzProtocolKeeloq* subghz_protocol_keeloq_alloc() {
  72. SubGhzProtocolKeeloq* instance = furi_alloc(sizeof(SubGhzProtocolKeeloq));
  73. instance->common.name = "KeeLoq";
  74. instance->common.code_min_count_bit_for_found = 64;
  75. instance->common.te_shot = 400;
  76. instance->common.te_long = 800;
  77. instance->common.te_delta = 140;
  78. instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_keeloq_to_str;
  79. KeeLoqManufactureCodeArray_init(instance->manufacture_codes);
  80. return instance;
  81. }
  82. void subghz_protocol_keeloq_free(SubGhzProtocolKeeloq* instance) {
  83. furi_assert(instance);
  84. for
  85. M_EACH(manufacture_code, instance->manufacture_codes, KeeLoqManufactureCodeArray_t) {
  86. string_clear(manufacture_code->name);
  87. manufacture_code->key = 0;
  88. }
  89. KeeLoqManufactureCodeArray_clear(instance->manufacture_codes);
  90. free(instance);
  91. }
  92. void subghz_protocol_keeloq_add_manafacture_key(SubGhzProtocolKeeloq* instance, const char* name, uint64_t key, uint16_t type) {
  93. KeeLoqManufactureCode* manufacture_code = KeeLoqManufactureCodeArray_push_raw(instance->manufacture_codes);
  94. string_init_set_str(manufacture_code->name, name);
  95. manufacture_code->key = key;
  96. manufacture_code->type = type;
  97. }
  98. uint8_t subghz_protocol_keeloq_check_remote_controller_selector(SubGhzProtocolKeeloq* instance, uint32_t fix , uint32_t hop) {
  99. uint16_t end_serial = (uint16_t)(fix&0x3FF);
  100. uint8_t btn = (uint8_t)(fix>>28);
  101. uint32_t decrypt = 0;
  102. uint64_t man_normal_learning;
  103. for
  104. M_EACH(manufacture_code, instance->manufacture_codes, KeeLoqManufactureCodeArray_t) {
  105. switch (manufacture_code->type){
  106. case KEELOQ_LEARNING_SIMPLE:
  107. //Simple Learning
  108. decrypt = subghz_protocol_keeloq_decrypt(hop, manufacture_code->key);
  109. if((decrypt>>28 == btn) && ((((uint16_t)(decrypt>>16)) & 0x3FF) == end_serial)){
  110. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  111. instance->common.cnt = decrypt & 0x0000FFFF;
  112. return 1;
  113. }
  114. break;
  115. case KEELOQ_LEARNING_NORMAL:
  116. // Normal_Learning
  117. // https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
  118. man_normal_learning = subghz_protocol_keeloq_normal_learning(fix, manufacture_code->key);
  119. decrypt=subghz_protocol_keeloq_decrypt(hop, man_normal_learning);
  120. if( (decrypt>>28 ==btn)&& ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
  121. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  122. instance->common.cnt = decrypt & 0x0000FFFF;
  123. return 1;
  124. }
  125. break;
  126. case KEELOQ_LEARNING_UNKNOWN:
  127. // Simple Learning
  128. decrypt=subghz_protocol_keeloq_decrypt(hop, manufacture_code->key);
  129. if( (decrypt>>28 ==btn) && ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
  130. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  131. instance->common.cnt = decrypt & 0x0000FFFF;
  132. return 1;
  133. }
  134. // Check for mirrored man
  135. uint64_t man_rev=0;
  136. uint64_t man_rev_byte=0;
  137. for(uint8_t i=0; i<64; i+=8){
  138. man_rev_byte=(uint8_t)(manufacture_code->key >> i);
  139. man_rev = man_rev | man_rev_byte << (56-i);
  140. }
  141. decrypt=subghz_protocol_keeloq_decrypt(hop, man_rev);
  142. if( (decrypt>>28 ==btn) && ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
  143. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  144. instance->common.cnt= decrypt&0x0000FFFF;
  145. return 1;
  146. }
  147. //###########################
  148. // Normal_Learning
  149. // https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
  150. man_normal_learning = subghz_protocol_keeloq_normal_learning(fix, manufacture_code->key);
  151. decrypt=subghz_protocol_keeloq_decrypt(hop, man_normal_learning);
  152. if( (decrypt>>28 ==btn)&& ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
  153. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  154. instance->common.cnt= decrypt&0x0000FFFF;
  155. return 1;
  156. }
  157. // Check for mirrored man
  158. man_rev=0;
  159. man_rev_byte=0;
  160. for(uint8_t i=0; i<64; i+=8){
  161. man_rev_byte = (uint8_t)(manufacture_code->key >> i);
  162. man_rev = man_rev | man_rev_byte << (56-i);
  163. }
  164. man_normal_learning = subghz_protocol_keeloq_normal_learning(fix, man_rev);
  165. decrypt=subghz_protocol_keeloq_decrypt(hop, man_normal_learning);
  166. if( (decrypt>>28 ==btn) && ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
  167. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  168. instance->common.cnt= decrypt&0x0000FFFF;
  169. return 1;
  170. }
  171. break;
  172. }
  173. }
  174. instance->manufacture_name = "Unknown";
  175. instance->common.cnt=0;
  176. return 0;
  177. }
  178. void subghz_protocol_keeloq_check_remote_controller(SubGhzProtocolKeeloq* instance) {
  179. uint64_t key = subghz_protocol_common_reverse_key(instance->common.code_found, instance->common.code_count_bit);
  180. uint32_t key_fix = key >> 32;
  181. uint32_t key_hop = key & 0x00000000ffffffff;
  182. // Check key AN-Motors
  183. if((key_hop >> 24) == ((key_hop>>16)&0x00ff) && (key_fix>>28) ==((key_hop>>12)&0x0f) ){
  184. instance->manufacture_name = "AN-Motors";
  185. instance->common.cnt = key_hop>>16;
  186. } else {
  187. subghz_protocol_keeloq_check_remote_controller_selector(instance, key_fix, key_hop);
  188. }
  189. if (instance->common.callback) instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context);
  190. }
  191. void subghz_protocol_keeloq_send_bit(SubGhzProtocolKeeloq* instance, uint8_t bit) {
  192. if (bit) {
  193. // send bit 1
  194. SUBGHZ_TX_PIN_HIGTH();
  195. delay_us(instance->common.te_shot);
  196. SUBGHZ_TX_PIN_LOW();
  197. delay_us(instance->common.te_long);
  198. } else {
  199. // send bit 0
  200. SUBGHZ_TX_PIN_HIGTH();
  201. delay_us(instance->common.te_long);
  202. SUBGHZ_TX_PIN_LOW();
  203. delay_us(instance->common.te_shot);
  204. }
  205. }
  206. void subghz_protocol_keeloq_send_key(SubGhzProtocolKeeloq* instance, uint64_t key, uint8_t bit, uint8_t repeat) {
  207. while (repeat--) {
  208. // Send header
  209. for (uint8_t i = 11; i > 0; i--) {
  210. SUBGHZ_TX_PIN_HIGTH();
  211. delay_us(instance->common.te_shot);
  212. SUBGHZ_TX_PIN_LOW();
  213. delay_us(instance->common.te_shot);
  214. }
  215. delay_us(instance->common.te_shot * 9); //+1 up Send header
  216. for (uint8_t i = bit; i > 0; i--) {
  217. subghz_protocol_keeloq_send_bit(instance, bit_read(key, i - 1));
  218. }
  219. // +send 2 status bit
  220. subghz_protocol_keeloq_send_bit(instance, 0);
  221. subghz_protocol_keeloq_send_bit(instance, 0);
  222. // send end
  223. subghz_protocol_keeloq_send_bit(instance, 0);
  224. delay_us(instance->common.te_shot * 2); //+2 interval END SEND
  225. }
  226. }
  227. void subghz_protocol_keeloq_parse(SubGhzProtocolKeeloq* instance, LevelPair data) {
  228. switch (instance->common.parser_step) {
  229. case 0:
  230. if ((data.level == ApiHalSubGhzCaptureLevelHigh) && DURATION_DIFF(data.duration, instance->common.te_shot)< instance->common.te_delta) {
  231. instance->common.parser_step = 1;
  232. instance->common.header_count++;
  233. } else {
  234. instance->common.parser_step = 0;
  235. }
  236. break;
  237. case 1:
  238. if ((data.level == ApiHalSubGhzCaptureLevelLow) && (DURATION_DIFF(data.duration, instance->common.te_shot ) < instance->common.te_delta)) {
  239. instance->common.parser_step = 0;
  240. break;
  241. }
  242. if ((instance->common.header_count > 2) && ( DURATION_DIFF(data.duration, instance->common.te_shot * 10)< instance->common.te_delta * 10)) {
  243. // Found header
  244. instance->common.parser_step = 2;
  245. instance->common.code_found = 0;
  246. instance->common.code_count_bit = 0;
  247. } else {
  248. instance->common.parser_step = 0;
  249. instance->common.header_count = 0;
  250. }
  251. break;
  252. case 2:
  253. if (data.level == ApiHalSubGhzCaptureLevelHigh) {
  254. instance->common.te_last = data.duration;
  255. instance->common.parser_step = 3;
  256. }
  257. break;
  258. case 3:
  259. if (data.level == ApiHalSubGhzCaptureLevelLow) {
  260. if (data.duration >= (instance->common.te_shot * 2 + instance->common.te_delta)) {
  261. // Found end TX
  262. instance->common.parser_step = 0;
  263. if (instance->common.code_count_bit >= instance->common.code_min_count_bit_for_found) {
  264. //&& (instance->common.code_last_found != instance->common.code_found )) {
  265. instance->common.code_last_found = instance->common.code_found;
  266. //ToDo out data display
  267. subghz_protocol_keeloq_check_remote_controller(instance);
  268. //Print_Code(&KEELOQ);
  269. //Reverse_Code(KEELOQ.Code);
  270. instance->common.code_found = 0;
  271. instance->common.code_count_bit = 0;
  272. instance->common.header_count = 0;
  273. }
  274. break;
  275. } else if ((DURATION_DIFF(instance->common.te_last, instance->common.te_shot) < instance->common.te_delta)
  276. && (DURATION_DIFF(data.duration, instance->common.te_long) < instance->common.te_delta)) {
  277. if (instance->common.code_count_bit < instance->common.code_min_count_bit_for_found) {
  278. subghz_protocol_common_add_bit(&instance->common, 1);
  279. }
  280. instance->common.parser_step = 2;
  281. } else if ((DURATION_DIFF(instance->common.te_last, instance->common.te_long) < instance->common.te_delta)
  282. && (DURATION_DIFF(data.duration, instance->common.te_shot) < instance->common.te_delta)) {
  283. if (instance->common.code_count_bit < instance->common.code_min_count_bit_for_found) {
  284. subghz_protocol_common_add_bit(&instance->common, 0);
  285. }
  286. instance->common.parser_step = 2;
  287. } else {
  288. instance->common.parser_step = 0;
  289. instance->common.header_count = 0;
  290. }
  291. } else {
  292. instance->common.parser_step = 0;
  293. instance->common.header_count = 0;
  294. }
  295. break;
  296. }
  297. }
  298. void subghz_protocol_keeloq_to_str(SubGhzProtocolKeeloq* instance, string_t output) {
  299. //snprintf(BufTX, sizeof(BufTX),"Protocol %s: %d Bit | KEY:0x%llX HEX \n\r", common->Name_Protocol, common->Count_BIT, common->Code);
  300. uint32_t code_found_hi = instance->common.code_found >> 32;
  301. uint32_t code_found_lo = instance->common.code_found & 0x00000000ffffffff;
  302. uint64_t code_found_reverse = subghz_protocol_common_reverse_key(instance->common.code_found, instance->common.code_count_bit);
  303. uint32_t code_found_reverse_hi = code_found_reverse>>32;
  304. uint32_t code_found_reverse_lo = code_found_reverse&0x00000000ffffffff;
  305. if (code_found_hi>0) {
  306. string_cat_printf(
  307. output,
  308. "Protocol %s, %d Bit\r\n"
  309. " KEY:0x%lX%08lX\r\n"
  310. " YEK:0x%lX%08lX\r\n",
  311. instance->common.name,
  312. instance->common.code_count_bit,
  313. code_found_hi,
  314. code_found_lo,
  315. code_found_reverse_hi,
  316. code_found_reverse_lo
  317. );
  318. } else {
  319. string_cat_printf(
  320. output,
  321. "Protocol %s, %d Bit\r\n"
  322. " KEY:0x%lX%lX\r\n"
  323. " YEK:0x%lX%lX\r\n",
  324. instance->common.name,
  325. instance->common.code_count_bit,
  326. code_found_hi,
  327. code_found_lo,
  328. code_found_reverse_hi,
  329. code_found_reverse_lo
  330. );
  331. }
  332. string_cat_printf(
  333. output,
  334. " MF:%s FIX:%lX\r\n"
  335. " HOP:%lX CNT:%04X BTN:%02lX\r\n",
  336. instance->manufacture_name,
  337. code_found_reverse_hi,
  338. code_found_reverse_lo,
  339. instance->common.cnt, //need manufacture code
  340. code_found_reverse_hi >> 28
  341. );
  342. }