furi_hal_nfc.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553
  1. #include "furi_hal_nfc.h"
  2. #include <st25r3916.h>
  3. #include <rfal_rf.h>
  4. #include <furi.h>
  5. #include <m-string.h>
  6. #include <lib/nfc_protocols/nfca.h>
  7. #define TAG "FuriHalNfc"
  8. static const uint32_t clocks_in_ms = 64 * 1000;
  9. osEventFlagsId_t event = NULL;
  10. #define EVENT_FLAG_INTERRUPT (1UL << 0)
  11. #define EVENT_FLAG_STATE_CHANGED (1UL << 1)
  12. #define EVENT_FLAG_STOP (1UL << 2)
  13. #define EVENT_FLAG_ALL (EVENT_FLAG_INTERRUPT | EVENT_FLAG_STATE_CHANGED | EVENT_FLAG_STOP)
  14. void furi_hal_nfc_init() {
  15. ReturnCode ret = rfalNfcInitialize();
  16. if(ret == ERR_NONE) {
  17. furi_hal_nfc_start_sleep();
  18. event = osEventFlagsNew(NULL);
  19. FURI_LOG_I(TAG, "Init OK");
  20. } else {
  21. FURI_LOG_W(TAG, "Initialization failed, RFAL returned: %d", ret);
  22. }
  23. }
  24. bool furi_hal_nfc_is_busy() {
  25. return rfalNfcGetState() != RFAL_NFC_STATE_IDLE;
  26. }
  27. void furi_hal_nfc_field_on() {
  28. furi_hal_nfc_exit_sleep();
  29. st25r3916TxRxOn();
  30. }
  31. void furi_hal_nfc_field_off() {
  32. st25r3916TxRxOff();
  33. furi_hal_nfc_start_sleep();
  34. }
  35. void furi_hal_nfc_start_sleep() {
  36. rfalLowPowerModeStart();
  37. }
  38. void furi_hal_nfc_exit_sleep() {
  39. rfalLowPowerModeStop();
  40. }
  41. bool furi_hal_nfc_detect(FuriHalNfcDevData* nfc_data, uint32_t timeout) {
  42. furi_assert(nfc_data);
  43. rfalNfcDevice* dev_list = NULL;
  44. uint8_t dev_cnt = 0;
  45. bool detected = false;
  46. rfalLowPowerModeStop();
  47. rfalNfcState state = rfalNfcGetState();
  48. if(state == RFAL_NFC_STATE_NOTINIT) {
  49. rfalNfcInitialize();
  50. }
  51. rfalNfcDiscoverParam params;
  52. params.compMode = RFAL_COMPLIANCE_MODE_EMV;
  53. params.techs2Find = RFAL_NFC_POLL_TECH_A | RFAL_NFC_POLL_TECH_B | RFAL_NFC_POLL_TECH_F |
  54. RFAL_NFC_POLL_TECH_V | RFAL_NFC_POLL_TECH_AP2P | RFAL_NFC_POLL_TECH_ST25TB;
  55. params.totalDuration = 1000;
  56. params.devLimit = 3;
  57. params.wakeupEnabled = false;
  58. params.wakeupConfigDefault = true;
  59. params.nfcfBR = RFAL_BR_212;
  60. params.ap2pBR = RFAL_BR_424;
  61. params.maxBR = RFAL_BR_KEEP;
  62. params.GBLen = RFAL_NFCDEP_GB_MAX_LEN;
  63. params.notifyCb = NULL;
  64. uint32_t start = DWT->CYCCNT;
  65. rfalNfcDiscover(&params);
  66. while(true) {
  67. rfalNfcWorker();
  68. state = rfalNfcGetState();
  69. if(state == RFAL_NFC_STATE_ACTIVATED) {
  70. detected = true;
  71. break;
  72. }
  73. FURI_LOG_T(TAG, "Current state %d", state);
  74. if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
  75. start = DWT->CYCCNT;
  76. continue;
  77. }
  78. if(state == RFAL_NFC_STATE_POLL_SELECT) {
  79. rfalNfcSelect(0);
  80. }
  81. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  82. rfalNfcDeactivate(true);
  83. FURI_LOG_T(TAG, "Timeout");
  84. break;
  85. }
  86. osDelay(1);
  87. }
  88. rfalNfcGetDevicesFound(&dev_list, &dev_cnt);
  89. if(detected) {
  90. if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCA) {
  91. nfc_data->type = FuriHalNfcTypeA;
  92. nfc_data->atqa[0] = dev_list[0].dev.nfca.sensRes.anticollisionInfo;
  93. nfc_data->atqa[1] = dev_list[0].dev.nfca.sensRes.platformInfo;
  94. nfc_data->sak = dev_list[0].dev.nfca.selRes.sak;
  95. uint8_t* cuid_start = dev_list[0].nfcid;
  96. if(dev_list[0].nfcidLen == 7) {
  97. cuid_start = &dev_list[0].nfcid[3];
  98. }
  99. nfc_data->cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
  100. (cuid_start[3]);
  101. } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCB) {
  102. nfc_data->type = FuriHalNfcTypeB;
  103. } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCF) {
  104. nfc_data->type = FuriHalNfcTypeF;
  105. } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCV) {
  106. nfc_data->type = FuriHalNfcTypeV;
  107. }
  108. if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_RF) {
  109. nfc_data->interface = FuriHalNfcInterfaceRf;
  110. } else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_ISODEP) {
  111. nfc_data->interface = FuriHalNfcInterfaceIsoDep;
  112. } else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_NFCDEP) {
  113. nfc_data->interface = FuriHalNfcInterfaceNfcDep;
  114. }
  115. nfc_data->uid_len = dev_list[0].nfcidLen;
  116. memcpy(nfc_data->uid, dev_list[0].nfcid, nfc_data->uid_len);
  117. }
  118. return detected;
  119. }
  120. bool furi_hal_nfc_activate_nfca(uint32_t timeout, uint32_t* cuid) {
  121. rfalNfcDevice* dev_list;
  122. uint8_t dev_cnt = 0;
  123. rfalLowPowerModeStop();
  124. rfalNfcState state = rfalNfcGetState();
  125. if(state == RFAL_NFC_STATE_NOTINIT) {
  126. rfalNfcInitialize();
  127. }
  128. rfalNfcDiscoverParam params = {
  129. .compMode = RFAL_COMPLIANCE_MODE_NFC,
  130. .techs2Find = RFAL_NFC_POLL_TECH_A,
  131. .totalDuration = 1000,
  132. .devLimit = 3,
  133. .wakeupEnabled = false,
  134. .wakeupConfigDefault = true,
  135. .nfcfBR = RFAL_BR_212,
  136. .ap2pBR = RFAL_BR_424,
  137. .maxBR = RFAL_BR_KEEP,
  138. .GBLen = RFAL_NFCDEP_GB_MAX_LEN,
  139. .notifyCb = NULL,
  140. };
  141. uint32_t start = DWT->CYCCNT;
  142. rfalNfcDiscover(&params);
  143. while(state != RFAL_NFC_STATE_ACTIVATED) {
  144. rfalNfcWorker();
  145. state = rfalNfcGetState();
  146. FURI_LOG_T(TAG, "Current state %d", state);
  147. if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
  148. start = DWT->CYCCNT;
  149. continue;
  150. }
  151. if(state == RFAL_NFC_STATE_POLL_SELECT) {
  152. rfalNfcSelect(0);
  153. }
  154. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  155. rfalNfcDeactivate(true);
  156. FURI_LOG_T(TAG, "Timeout");
  157. return false;
  158. }
  159. osThreadYield();
  160. }
  161. rfalNfcGetDevicesFound(&dev_list, &dev_cnt);
  162. // Take first device and set cuid
  163. if(cuid) {
  164. uint8_t* cuid_start = dev_list[0].nfcid;
  165. if(dev_list[0].nfcidLen == 7) {
  166. cuid_start = &dev_list[0].nfcid[3];
  167. }
  168. *cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
  169. (cuid_start[3]);
  170. FURI_LOG_T(TAG, "Activated tag with cuid: %lX", *cuid);
  171. }
  172. return true;
  173. }
  174. bool furi_hal_nfc_listen(
  175. uint8_t* uid,
  176. uint8_t uid_len,
  177. uint8_t* atqa,
  178. uint8_t sak,
  179. bool activate_after_sak,
  180. uint32_t timeout) {
  181. rfalNfcState state = rfalNfcGetState();
  182. if(state == RFAL_NFC_STATE_NOTINIT) {
  183. rfalNfcInitialize();
  184. } else if(state >= RFAL_NFC_STATE_ACTIVATED) {
  185. rfalNfcDeactivate(false);
  186. }
  187. rfalLowPowerModeStop();
  188. rfalNfcDiscoverParam params = {
  189. .compMode = RFAL_COMPLIANCE_MODE_NFC,
  190. .techs2Find = RFAL_NFC_LISTEN_TECH_A,
  191. .totalDuration = 1000,
  192. .devLimit = 1,
  193. .wakeupEnabled = false,
  194. .wakeupConfigDefault = true,
  195. .nfcfBR = RFAL_BR_212,
  196. .ap2pBR = RFAL_BR_424,
  197. .maxBR = RFAL_BR_KEEP,
  198. .GBLen = RFAL_NFCDEP_GB_MAX_LEN,
  199. .notifyCb = NULL,
  200. .activate_after_sak = activate_after_sak,
  201. };
  202. params.lmConfigPA.nfcidLen = uid_len;
  203. memcpy(params.lmConfigPA.nfcid, uid, uid_len);
  204. params.lmConfigPA.SENS_RES[0] = atqa[0];
  205. params.lmConfigPA.SENS_RES[1] = atqa[1];
  206. params.lmConfigPA.SEL_RES = sak;
  207. rfalNfcDiscover(&params);
  208. uint32_t start = DWT->CYCCNT;
  209. while(state != RFAL_NFC_STATE_ACTIVATED) {
  210. rfalNfcWorker();
  211. state = rfalNfcGetState();
  212. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  213. rfalNfcDeactivate(true);
  214. return false;
  215. }
  216. osThreadYield();
  217. }
  218. return true;
  219. }
  220. void rfal_interrupt_callback_handler() {
  221. osEventFlagsSet(event, EVENT_FLAG_INTERRUPT);
  222. }
  223. void rfal_state_changed_callback(void* context) {
  224. osEventFlagsSet(event, EVENT_FLAG_STATE_CHANGED);
  225. }
  226. void furi_hal_nfc_stop() {
  227. if(event) {
  228. osEventFlagsSet(event, EVENT_FLAG_STOP);
  229. }
  230. }
  231. bool furi_hal_nfc_emulate_nfca(
  232. uint8_t* uid,
  233. uint8_t uid_len,
  234. uint8_t* atqa,
  235. uint8_t sak,
  236. FuriHalNfcEmulateCallback callback,
  237. void* context,
  238. uint32_t timeout) {
  239. rfalSetUpperLayerCallback(rfal_interrupt_callback_handler);
  240. rfal_set_state_changed_callback(rfal_state_changed_callback);
  241. rfalLmConfPA config;
  242. config.nfcidLen = uid_len;
  243. memcpy(config.nfcid, uid, uid_len);
  244. memcpy(config.SENS_RES, atqa, RFAL_LM_SENS_RES_LEN);
  245. config.SEL_RES = sak;
  246. uint8_t buff_rx[256];
  247. uint16_t buff_rx_size = 256;
  248. uint16_t buff_rx_len = 0;
  249. uint8_t buff_tx[256];
  250. uint16_t buff_tx_len = 0;
  251. uint32_t data_type = FURI_HAL_NFC_TXRX_DEFAULT;
  252. rfalLowPowerModeStop();
  253. if(rfalListenStart(
  254. RFAL_LM_MASK_NFCA,
  255. &config,
  256. NULL,
  257. NULL,
  258. buff_rx,
  259. rfalConvBytesToBits(buff_rx_size),
  260. &buff_rx_len)) {
  261. rfalListenStop();
  262. FURI_LOG_E(TAG, "Failed to start listen mode");
  263. return false;
  264. }
  265. while(true) {
  266. buff_rx_len = 0;
  267. buff_tx_len = 0;
  268. uint32_t flag = osEventFlagsWait(event, EVENT_FLAG_ALL, osFlagsWaitAny, timeout);
  269. if(flag == osErrorTimeout || flag == EVENT_FLAG_STOP) {
  270. break;
  271. }
  272. bool data_received = false;
  273. buff_rx_len = 0;
  274. rfalWorker();
  275. rfalLmState state = rfalListenGetState(&data_received, NULL);
  276. if(data_received) {
  277. rfalTransceiveBlockingRx();
  278. if(nfca_emulation_handler(buff_rx, buff_rx_len, buff_tx, &buff_tx_len)) {
  279. if(rfalListenSleepStart(
  280. RFAL_LM_STATE_SLEEP_A,
  281. buff_rx,
  282. rfalConvBytesToBits(buff_rx_size),
  283. &buff_rx_len)) {
  284. FURI_LOG_E(TAG, "Failed to enter sleep mode");
  285. break;
  286. } else {
  287. continue;
  288. }
  289. }
  290. if(buff_tx_len) {
  291. ReturnCode ret = rfalTransceiveBitsBlockingTx(
  292. buff_tx,
  293. buff_tx_len,
  294. buff_rx,
  295. sizeof(buff_rx),
  296. &buff_rx_len,
  297. data_type,
  298. RFAL_FWT_NONE);
  299. if(ret) {
  300. FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
  301. break;
  302. }
  303. continue;
  304. }
  305. if((state == RFAL_LM_STATE_ACTIVE_A || state == RFAL_LM_STATE_ACTIVE_Ax)) {
  306. if(callback) {
  307. callback(buff_rx, buff_rx_len, buff_tx, &buff_tx_len, &data_type, context);
  308. }
  309. if(!rfalIsExtFieldOn()) {
  310. break;
  311. }
  312. if(buff_tx_len) {
  313. ReturnCode ret = rfalTransceiveBitsBlockingTx(
  314. buff_tx,
  315. buff_tx_len,
  316. buff_rx,
  317. sizeof(buff_rx),
  318. &buff_rx_len,
  319. data_type,
  320. RFAL_FWT_NONE);
  321. if(ret) {
  322. FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
  323. continue;
  324. }
  325. } else {
  326. break;
  327. }
  328. }
  329. }
  330. }
  331. rfalListenStop();
  332. return true;
  333. }
  334. ReturnCode furi_hal_nfc_data_exchange(
  335. uint8_t* tx_buff,
  336. uint16_t tx_len,
  337. uint8_t** rx_buff,
  338. uint16_t** rx_len,
  339. bool deactivate) {
  340. furi_assert(rx_buff);
  341. furi_assert(rx_len);
  342. ReturnCode ret;
  343. rfalNfcState state = RFAL_NFC_STATE_ACTIVATED;
  344. ret = rfalNfcDataExchangeStart(tx_buff, tx_len, rx_buff, rx_len, 0, RFAL_TXRX_FLAGS_DEFAULT);
  345. if(ret != ERR_NONE) {
  346. return ret;
  347. }
  348. uint32_t start = DWT->CYCCNT;
  349. while(state != RFAL_NFC_STATE_DATAEXCHANGE_DONE) {
  350. rfalNfcWorker();
  351. state = rfalNfcGetState();
  352. ret = rfalNfcDataExchangeGetStatus();
  353. if(ret == ERR_BUSY) {
  354. if(DWT->CYCCNT - start > 1000 * clocks_in_ms) {
  355. ret = ERR_TIMEOUT;
  356. break;
  357. }
  358. continue;
  359. } else {
  360. start = DWT->CYCCNT;
  361. }
  362. taskYIELD();
  363. }
  364. if(deactivate) {
  365. rfalNfcDeactivate(false);
  366. rfalLowPowerModeStart();
  367. }
  368. return ret;
  369. }
  370. static uint32_t furi_hal_nfc_tx_rx_get_flag(FuriHalNfcTxRxType type) {
  371. uint32_t flags = 0;
  372. if(type == FuriHalNfcTxRxTypeRxNoCrc) {
  373. flags = RFAL_TXRX_FLAGS_CRC_RX_KEEP;
  374. } else if(type == FuriHalNfcTxRxTypeRxKeepPar) {
  375. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  376. RFAL_TXRX_FLAGS_PAR_RX_KEEP;
  377. } else if(type == FuriHalNfcTxRxTypeRaw) {
  378. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  379. RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE;
  380. }
  381. return flags;
  382. }
  383. static uint16_t furi_hal_nfc_data_and_parity_to_bitstream(
  384. uint8_t* data,
  385. uint16_t len,
  386. uint8_t* parity,
  387. uint8_t* out) {
  388. furi_assert(data);
  389. furi_assert(out);
  390. uint8_t next_par_bit = 0;
  391. uint16_t curr_bit_pos = 0;
  392. for(uint16_t i = 0; i < len; i++) {
  393. next_par_bit = FURI_BIT(parity[i / 8], 7 - (i % 8));
  394. if(curr_bit_pos % 8 == 0) {
  395. out[curr_bit_pos / 8] = data[i];
  396. curr_bit_pos += 8;
  397. out[curr_bit_pos / 8] = next_par_bit;
  398. curr_bit_pos++;
  399. } else {
  400. out[curr_bit_pos / 8] |= data[i] << curr_bit_pos % 8;
  401. out[curr_bit_pos / 8 + 1] = data[i] >> (8 - curr_bit_pos % 8);
  402. out[curr_bit_pos / 8 + 1] |= next_par_bit << curr_bit_pos % 8;
  403. curr_bit_pos += 9;
  404. }
  405. }
  406. return curr_bit_pos;
  407. }
  408. uint16_t furi_hal_nfc_bitstream_to_data_and_parity(
  409. uint8_t* in_buff,
  410. uint16_t in_buff_bits,
  411. uint8_t* out_data,
  412. uint8_t* out_parity) {
  413. if(in_buff_bits % 9 != 0) {
  414. return 0;
  415. }
  416. uint8_t curr_byte = 0;
  417. uint16_t bit_processed = 0;
  418. memset(out_parity, 0, in_buff_bits / 9);
  419. while(bit_processed < in_buff_bits) {
  420. out_data[curr_byte] = in_buff[bit_processed / 8] >> bit_processed % 8;
  421. out_data[curr_byte] |= in_buff[bit_processed / 8 + 1] << (8 - bit_processed % 8);
  422. out_parity[curr_byte / 8] |= FURI_BIT(in_buff[bit_processed / 8 + 1], bit_processed % 8)
  423. << (7 - curr_byte % 8);
  424. bit_processed += 9;
  425. curr_byte++;
  426. }
  427. return curr_byte;
  428. }
  429. bool furi_hal_nfc_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
  430. furi_assert(tx_rx);
  431. ReturnCode ret;
  432. rfalNfcState state = RFAL_NFC_STATE_ACTIVATED;
  433. uint8_t temp_tx_buff[FURI_HAL_NFC_DATA_BUFF_SIZE] = {};
  434. uint16_t temp_tx_bits = 0;
  435. uint8_t* temp_rx_buff = NULL;
  436. uint16_t* temp_rx_bits = NULL;
  437. // Prepare data for FIFO if necessary
  438. uint32_t flags = furi_hal_nfc_tx_rx_get_flag(tx_rx->tx_rx_type);
  439. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw) {
  440. temp_tx_bits = furi_hal_nfc_data_and_parity_to_bitstream(
  441. tx_rx->tx_data, tx_rx->tx_bits / 8, tx_rx->tx_parity, temp_tx_buff);
  442. ret = rfalNfcDataExchangeCustomStart(
  443. temp_tx_buff, temp_tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags);
  444. } else {
  445. ret = rfalNfcDataExchangeCustomStart(
  446. tx_rx->tx_data, tx_rx->tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags);
  447. }
  448. if(ret != ERR_NONE) {
  449. FURI_LOG_E(TAG, "Failed to start data exchange");
  450. return false;
  451. }
  452. uint32_t start = DWT->CYCCNT;
  453. while(state != RFAL_NFC_STATE_DATAEXCHANGE_DONE) {
  454. rfalNfcWorker();
  455. state = rfalNfcGetState();
  456. ret = rfalNfcDataExchangeGetStatus();
  457. if(ret == ERR_BUSY) {
  458. if(DWT->CYCCNT - start > timeout_ms * clocks_in_ms) {
  459. FURI_LOG_D(TAG, "Timeout during data exchange");
  460. return false;
  461. }
  462. continue;
  463. } else {
  464. start = DWT->CYCCNT;
  465. }
  466. osThreadYield();
  467. }
  468. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw) {
  469. tx_rx->rx_bits = 8 * furi_hal_nfc_bitstream_to_data_and_parity(
  470. temp_rx_buff, *temp_rx_bits, tx_rx->rx_data, tx_rx->rx_parity);
  471. } else {
  472. memcpy(tx_rx->rx_data, temp_rx_buff, MIN(*temp_rx_bits / 8, FURI_HAL_NFC_DATA_BUFF_SIZE));
  473. tx_rx->rx_bits = *temp_rx_bits;
  474. }
  475. return true;
  476. }
  477. ReturnCode furi_hal_nfc_exchange_full(
  478. uint8_t* tx_buff,
  479. uint16_t tx_len,
  480. uint8_t* rx_buff,
  481. uint16_t rx_cap,
  482. uint16_t* rx_len) {
  483. ReturnCode err;
  484. uint8_t* part_buff;
  485. uint16_t* part_len_bits;
  486. uint16_t part_len_bytes;
  487. err = furi_hal_nfc_data_exchange(tx_buff, tx_len, &part_buff, &part_len_bits, false);
  488. part_len_bytes = *part_len_bits / 8;
  489. if(part_len_bytes > rx_cap) {
  490. return ERR_OVERRUN;
  491. }
  492. memcpy(rx_buff, part_buff, part_len_bytes);
  493. *rx_len = part_len_bytes;
  494. while(err == ERR_NONE && rx_buff[0] == 0xAF) {
  495. err = furi_hal_nfc_data_exchange(rx_buff, 1, &part_buff, &part_len_bits, false);
  496. part_len_bytes = *part_len_bits / 8;
  497. if(part_len_bytes > rx_cap - *rx_len) {
  498. return ERR_OVERRUN;
  499. }
  500. if(part_len_bytes == 0) {
  501. return ERR_PROTO;
  502. }
  503. memcpy(rx_buff + *rx_len, part_buff + 1, part_len_bytes - 1);
  504. *rx_buff = *part_buff;
  505. *rx_len += part_len_bytes - 1;
  506. }
  507. return err;
  508. }
  509. void furi_hal_nfc_sleep() {
  510. rfalNfcDeactivate(false);
  511. rfalLowPowerModeStart();
  512. }