SCD30.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. /*
  2. Unitemp - Universal temperature reader
  3. Copyright (C) 2022-2023 Victor Nikitchuk (https://github.com/quen0n)
  4. Contributed by divinebird (https://github.com/divinebird)
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <https://www.gnu.org/licenses/>.
  15. */
  16. // Some information may be seen on https://github.com/sparkfun/SparkFun_SCD30_Arduino_Library
  17. #include "SCD30.h"
  18. #include "../interfaces/I2CSensor.h"
  19. #include "../interfaces/endianness.h"
  20. //#include <3rdparty/everest/include/everest/kremlin/c_endianness.h>
  21. typedef union {
  22. uint16_t array16[2];
  23. uint8_t array8[4];
  24. float value;
  25. } ByteToFl;
  26. const SensorType SCD30 = {
  27. .typename = "SCD30",
  28. .interface = &I2C,
  29. .datatype = UT_DATA_TYPE_TEMP_HUM_CO2,
  30. .pollingInterval = 2000,
  31. .allocator = unitemp_SCD30_alloc,
  32. .mem_releaser = unitemp_SCD30_free,
  33. .initializer = unitemp_SCD30_init,
  34. .deinitializer = unitemp_SCD30_deinit,
  35. .updater = unitemp_SCD30_update};
  36. #define SCD30_ID 0x61
  37. #define COMMAND_CONTINUOUS_MEASUREMENT 0x0010
  38. #define COMMAND_SET_MEASUREMENT_INTERVAL 0x4600
  39. #define COMMAND_GET_DATA_READY 0x0202
  40. #define COMMAND_READ_MEASUREMENT 0x0300
  41. #define COMMAND_AUTOMATIC_SELF_CALIBRATION 0x5306
  42. #define COMMAND_SET_FORCED_RECALIBRATION_FACTOR 0x5204
  43. #define COMMAND_SET_TEMPERATURE_OFFSET 0x5403
  44. #define COMMAND_SET_ALTITUDE_COMPENSATION 0x5102
  45. #define COMMAND_RESET 0xD304 // Soft reset
  46. #define COMMAND_STOP_MEAS 0x0104
  47. #define COMMAND_READ_FW_VER 0xD100
  48. static bool dataAvailable(Sensor* sensor) __attribute__((unused));
  49. static bool readMeasurement(Sensor* sensor) __attribute__((unused));
  50. static void reset(Sensor* sensor) __attribute__((unused));
  51. static bool setAutoSelfCalibration(Sensor* sensor, bool enable) __attribute__((unused));
  52. static bool getAutoSelfCalibration(Sensor* sensor) __attribute__((unused));
  53. static bool getFirmwareVersion(Sensor* sensor, uint16_t* val) __attribute__((unused));
  54. static bool setForcedRecalibrationFactor(Sensor* sensor, uint16_t concentration)
  55. __attribute__((unused));
  56. static uint16_t getAltitudeCompensation(Sensor* sensor) __attribute__((unused));
  57. static bool setAltitudeCompensation(Sensor* sensor, uint16_t altitude) __attribute__((unused));
  58. static bool setAmbientPressure(Sensor* sensor, uint16_t pressure_mbar) __attribute__((unused));
  59. static float getTemperatureOffset(Sensor* sensor) __attribute__((unused));
  60. static bool setTemperatureOffset(Sensor* sensor, float tempOffset) __attribute__((unused));
  61. static bool beginMeasuringWithSettings(Sensor* sensor, uint16_t pressureOffset)
  62. __attribute__((unused));
  63. static bool beginMeasuring(Sensor* sensor) __attribute__((unused));
  64. static bool stopMeasurement(Sensor* sensor) __attribute__((unused));
  65. static bool setMeasurementInterval(Sensor* sensor, uint16_t interval) __attribute__((unused));
  66. static uint16_t getMeasurementInterval(Sensor* sensor) __attribute__((unused));
  67. bool unitemp_SCD30_alloc(Sensor* sensor, char* args) {
  68. UNUSED(args);
  69. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  70. i2c_sensor->minI2CAdr = SCD30_ID << 1;
  71. i2c_sensor->maxI2CAdr = SCD30_ID << 1;
  72. return true;
  73. }
  74. bool unitemp_SCD30_free(Sensor* sensor) {
  75. //Нечего высвобождать, так как ничего не было выделено
  76. UNUSED(sensor);
  77. return true;
  78. }
  79. bool unitemp_SCD30_init(Sensor* sensor) {
  80. if(beginMeasuring(sensor) == true) { // Start continuous measurements
  81. setMeasurementInterval(sensor, SCD30.pollingInterval / 1000);
  82. setAutoSelfCalibration(sensor, true);
  83. setAmbientPressure(sensor, 0);
  84. } else
  85. return false;
  86. return true;
  87. }
  88. bool unitemp_SCD30_deinit(Sensor* sensor) {
  89. return stopMeasurement(sensor);
  90. }
  91. UnitempStatus unitemp_SCD30_update(Sensor* sensor) {
  92. readMeasurement(sensor);
  93. return UT_SENSORSTATUS_OK;
  94. }
  95. static uint8_t computeCRC8(uint8_t* message, uint8_t len) {
  96. uint8_t crc = 0xFF; // Init with 0xFF
  97. for(uint8_t x = 0; x < len; x++) {
  98. crc ^= message[x]; // XOR-in the next input byte
  99. for(uint8_t i = 0; i < 8; i++) {
  100. if((crc & 0x80) != 0)
  101. crc = (uint8_t)((crc << 1) ^ 0x31);
  102. else
  103. crc <<= 1;
  104. }
  105. }
  106. return crc; // No output reflection
  107. }
  108. // Sends a command along with arguments and CRC
  109. static bool sendCommandWithCRC(Sensor* sensor, uint16_t command, uint16_t arguments) {
  110. static const uint8_t cmdSize = 5;
  111. uint8_t bytes[cmdSize];
  112. uint8_t* pointer = bytes;
  113. store16_be(pointer, command);
  114. pointer += 2;
  115. uint8_t* argPos = pointer;
  116. store16_be(pointer, arguments);
  117. pointer += 2;
  118. *pointer = computeCRC8(argPos, pointer - argPos);
  119. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  120. return unitemp_i2c_writeArray(i2c_sensor, cmdSize, bytes);
  121. }
  122. // Sends just a command, no arguments, no CRC
  123. static bool sendCommand(Sensor* sensor, uint16_t command) {
  124. static const uint8_t cmdSize = 2;
  125. uint8_t bytes[cmdSize];
  126. store16_be(bytes, command);
  127. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  128. return unitemp_i2c_writeArray(i2c_sensor, cmdSize, bytes);
  129. }
  130. static uint16_t readRegister(Sensor* sensor, uint16_t registerAddress) {
  131. static const uint8_t regSize = 2;
  132. if(!sendCommand(sensor, registerAddress)) return 0; // Sensor did not ACK
  133. furi_delay_ms(3);
  134. uint8_t bytes[regSize];
  135. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  136. if(!unitemp_i2c_readArray(i2c_sensor, regSize, bytes)) return 0;
  137. return load16_be(bytes);
  138. }
  139. static bool loadWord(uint8_t* buff, uint16_t* val) {
  140. uint16_t tmp = load16_be(buff);
  141. uint8_t expectedCRC = computeCRC8(buff, 2);
  142. if(buff[2] != expectedCRC) return false;
  143. *val = tmp;
  144. return true;
  145. }
  146. static bool getSettingValue(Sensor* sensor, uint16_t registerAddress, uint16_t* val) {
  147. static const uint8_t respSize = 3;
  148. if(!sendCommand(sensor, registerAddress)) return false; // Sensor did not ACK
  149. furi_delay_ms(3);
  150. uint8_t bytes[respSize];
  151. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  152. if(!unitemp_i2c_readArray(i2c_sensor, respSize, bytes)) return false;
  153. return loadWord(bytes, val);
  154. }
  155. static bool loadFloat(uint8_t* buff, float* val) {
  156. // ByteToFl tmp;
  157. size_t cntr = 0;
  158. uint8_t floatBuff[4];
  159. for(size_t i = 0; i < 2; i++) {
  160. floatBuff[cntr++] = buff[0];
  161. floatBuff[cntr++] = buff[1];
  162. uint8_t expectedCRC = computeCRC8(buff, 2);
  163. if(buff[2] != expectedCRC) return false;
  164. buff += 3;
  165. }
  166. uint32_t tmpVal = load32_be(floatBuff);
  167. memcpy(val, &tmpVal, sizeof(float));
  168. return true;
  169. }
  170. // Get 18 bytes from SCD30
  171. // Updates global variables with floats
  172. // Returns true if success
  173. static bool readMeasurement(Sensor* sensor) {
  174. // Verify we have data from the sensor
  175. if(!dataAvailable(sensor)) {
  176. return false;
  177. }
  178. if(!sendCommand(sensor, COMMAND_READ_MEASUREMENT)) {
  179. FURI_LOG_E(APP_NAME, "Sensor did not ACK");
  180. return false; // Sensor did not ACK
  181. }
  182. float tempCO2 = 0;
  183. float tempHumidity = 0;
  184. float tempTemperature = 0;
  185. furi_delay_ms(3);
  186. static const uint8_t respSize = 18;
  187. uint8_t buff[respSize];
  188. uint8_t* bytes = buff;
  189. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  190. if(!unitemp_i2c_readArray(i2c_sensor, respSize, bytes)) {
  191. FURI_LOG_E(APP_NAME, "Error while read measures");
  192. return false;
  193. }
  194. bool error = false;
  195. if(loadFloat(bytes, &tempCO2)) {
  196. sensor->co2 = tempCO2;
  197. } else {
  198. FURI_LOG_E(APP_NAME, "Error while parsing CO2");
  199. error = true;
  200. }
  201. bytes += 6;
  202. if(loadFloat(bytes, &tempTemperature)) {
  203. sensor->temp = tempTemperature;
  204. } else {
  205. FURI_LOG_E(APP_NAME, "Error while parsing temp");
  206. error = true;
  207. }
  208. bytes += 6;
  209. if(loadFloat(bytes, &tempHumidity)) {
  210. sensor->hum = tempHumidity;
  211. } else {
  212. FURI_LOG_E(APP_NAME, "Error while parsing humidity");
  213. error = true;
  214. }
  215. return !error;
  216. }
  217. static void reset(Sensor* sensor) {
  218. sendCommand(sensor, COMMAND_RESET);
  219. }
  220. static bool setAutoSelfCalibration(Sensor* sensor, bool enable) {
  221. return sendCommandWithCRC(
  222. sensor, COMMAND_AUTOMATIC_SELF_CALIBRATION, enable); // Activate continuous ASC
  223. }
  224. // Get the current ASC setting
  225. static bool getAutoSelfCalibration(Sensor* sensor) {
  226. return 1 == readRegister(sensor, COMMAND_AUTOMATIC_SELF_CALIBRATION);
  227. }
  228. static bool getFirmwareVersion(Sensor* sensor, uint16_t* val) {
  229. return getSettingValue(sensor, COMMAND_READ_FW_VER, val);
  230. }
  231. // Set the forced recalibration factor. See 1.3.7.
  232. // The reference CO2 concentration has to be within the range 400 ppm ≤ cref(CO2) ≤ 2000 ppm.
  233. static bool setForcedRecalibrationFactor(Sensor* sensor, uint16_t concentration) {
  234. if(concentration < 400 || concentration > 2000) {
  235. return false; // Error check.
  236. }
  237. return sendCommandWithCRC(sensor, COMMAND_SET_FORCED_RECALIBRATION_FACTOR, concentration);
  238. }
  239. // Get the temperature offset. See 1.3.8.
  240. static float getTemperatureOffset(Sensor* sensor) {
  241. union {
  242. int16_t signed16;
  243. uint16_t unsigned16;
  244. } signedUnsigned; // Avoid any ambiguity casting int16_t to uint16_t
  245. signedUnsigned.unsigned16 = readRegister(sensor, COMMAND_SET_TEMPERATURE_OFFSET);
  246. return ((float)signedUnsigned.signed16) / 100.0;
  247. }
  248. static bool setTemperatureOffset(Sensor* sensor, float tempOffset) {
  249. // Temp offset is only positive. See: https://github.com/sparkfun/SparkFun_SCD30_Arduino_Library/issues/27#issuecomment-971986826
  250. //"The SCD30 offset temperature is obtained by subtracting the reference temperature from the SCD30 output temperature"
  251. // https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/9.5_CO2/Sensirion_CO2_Sensors_SCD30_Low_Power_Mode.pdf
  252. if(tempOffset < 0.0) return false;
  253. uint16_t value = tempOffset * 100;
  254. return sendCommandWithCRC(sensor, COMMAND_SET_TEMPERATURE_OFFSET, value);
  255. }
  256. // Get the altitude compenstation. See 1.3.9.
  257. static uint16_t getAltitudeCompensation(Sensor* sensor) {
  258. return readRegister(sensor, COMMAND_SET_ALTITUDE_COMPENSATION);
  259. }
  260. // Set the altitude compenstation. See 1.3.9.
  261. static bool setAltitudeCompensation(Sensor* sensor, uint16_t altitude) {
  262. return sendCommandWithCRC(sensor, COMMAND_SET_ALTITUDE_COMPENSATION, altitude);
  263. }
  264. // Set the pressure compenstation. This is passed during measurement startup.
  265. // mbar can be 700 to 1200
  266. static bool setAmbientPressure(Sensor* sensor, uint16_t pressure_mbar) {
  267. if(pressure_mbar != 0 || pressure_mbar < 700 || pressure_mbar > 1200) {
  268. return false;
  269. }
  270. return sendCommandWithCRC(sensor, COMMAND_CONTINUOUS_MEASUREMENT, pressure_mbar);
  271. }
  272. // Begins continuous measurements
  273. // Continuous measurement status is saved in non-volatile memory. When the sensor
  274. // is powered down while continuous measurement mode is active SCD30 will measure
  275. // continuously after repowering without sending the measurement command.
  276. // Returns true if successful
  277. static bool beginMeasuringWithSettings(Sensor* sensor, uint16_t pressureOffset) {
  278. return sendCommandWithCRC(sensor, COMMAND_CONTINUOUS_MEASUREMENT, pressureOffset);
  279. }
  280. // Overload - no pressureOffset
  281. static bool beginMeasuring(Sensor* sensor) {
  282. return beginMeasuringWithSettings(sensor, 0);
  283. }
  284. // Stop continuous measurement
  285. static bool stopMeasurement(Sensor* sensor) {
  286. return sendCommand(sensor, COMMAND_STOP_MEAS);
  287. }
  288. // Sets interval between measurements
  289. // 2 seconds to 1800 seconds (30 minutes)
  290. static bool setMeasurementInterval(Sensor* sensor, uint16_t interval) {
  291. if(interval < 2 || interval > 1800) return false;
  292. if(!sendCommandWithCRC(sensor, COMMAND_SET_MEASUREMENT_INTERVAL, interval)) return false;
  293. uint16_t verInterval = readRegister(sensor, COMMAND_SET_MEASUREMENT_INTERVAL);
  294. if(verInterval != interval) {
  295. FURI_LOG_E(APP_NAME, "Measure interval wrong! Val: %02x", verInterval);
  296. return false;
  297. }
  298. return true;
  299. }
  300. // Gets interval between measurements
  301. // 2 seconds to 1800 seconds (30 minutes)
  302. static uint16_t getMeasurementInterval(Sensor* sensor) {
  303. uint16_t interval = 0;
  304. getSettingValue(sensor, COMMAND_SET_MEASUREMENT_INTERVAL, &interval);
  305. return interval;
  306. }
  307. // Returns true when data is available
  308. static bool dataAvailable(Sensor* sensor) {
  309. return 1 == readRegister(sensor, COMMAND_GET_DATA_READY);
  310. }