| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694 |
- /* Copyright (C) 2022-2023 Salvatore Sanfilippo -- All Rights Reserved
- * See the LICENSE file for information about the license. */
- #include "app.h"
- bool decode_signal(RawSamplesBuffer* s, uint64_t len, ProtoViewMsgInfo* info);
- /* =============================================================================
- * Protocols table.
- *
- * Supported protocols go here, with the relevant implementation inside
- * protocols/<name>.c
- * ===========================================================================*/
- extern ProtoViewDecoder Oregon2Decoder;
- extern ProtoViewDecoder B4B1Decoder;
- extern ProtoViewDecoder RenaultTPMSDecoder;
- extern ProtoViewDecoder ToyotaTPMSDecoder;
- extern ProtoViewDecoder SchraderTPMSDecoder;
- extern ProtoViewDecoder SchraderEG53MA4TPMSDecoder;
- extern ProtoViewDecoder CitroenTPMSDecoder;
- extern ProtoViewDecoder FordTPMSDecoder;
- extern ProtoViewDecoder KeeloqDecoder;
- extern ProtoViewDecoder ProtoViewChatDecoder;
- extern ProtoViewDecoder UnknownDecoder;
- ProtoViewDecoder* Decoders[] = {
- &Oregon2Decoder, /* Oregon sensors v2.1 protocol. */
- &B4B1Decoder, /* PT, SC, ... 24 bits remotes. */
- &RenaultTPMSDecoder, /* Renault TPMS. */
- &ToyotaTPMSDecoder, /* Toyota TPMS. */
- &SchraderTPMSDecoder, /* Schrader TPMS. */
- &SchraderEG53MA4TPMSDecoder, /* Schrader EG53MA4 TPMS. */
- &CitroenTPMSDecoder, /* Citroen TPMS. */
- &FordTPMSDecoder, /* Ford TPMS. */
- &KeeloqDecoder, /* Keeloq remote. */
- &ProtoViewChatDecoder, /* Protoview simple text messages. */
- /* Warning: the following decoder must stay at the end of the
- * list. Otherwise would detect most signals and prevent the actaul
- * decoders from handling them. */
- &UnknownDecoder, /* General protocol detector. */
- NULL};
- /* =============================================================================
- * Raw signal detection
- * ===========================================================================*/
- /* Return the time difference between a and b, always >= 0 since
- * the absolute value is returned. */
- uint32_t duration_delta(uint32_t a, uint32_t b) {
- return a > b ? a - b : b - a;
- }
- /* Reset the current signal, so that a new one can be detected. */
- void reset_current_signal(ProtoViewApp* app) {
- app->signal_bestlen = 0;
- app->signal_offset = 0;
- app->signal_decoded = false;
- raw_samples_reset(DetectedSamples);
- raw_samples_reset(RawSamples);
- free_msg_info(app->msg_info);
- app->msg_info = NULL;
- }
- /* This function starts scanning samples at offset idx looking for the
- * longest run of pulses, either high or low, that are not much different
- * from each other, for a maximum of three duration classes.
- * So for instance 50 successive pulses that are roughly long 340us or 670us
- * will be sensed as a coherent signal (example: 312, 361, 700, 334, 667, ...)
- *
- * The classes are counted separtely for high and low signals (RF on / off)
- * because many devices tend to have different pulse lenghts depending on
- * the level of the pulse.
- *
- * For instance Oregon2 sensors, in the case of protocol 2.1 will send
- * pulses of ~400us (RF on) VS ~580us (RF off). */
- #define SEARCH_CLASSES 3
- uint32_t search_coherent_signal(RawSamplesBuffer* s, uint32_t idx, uint32_t min_duration) {
- struct {
- uint32_t dur[2]; /* dur[0] = low, dur[1] = high */
- uint32_t count[2]; /* Associated observed frequency. */
- } classes[SEARCH_CLASSES];
- memset(classes, 0, sizeof(classes));
- // Set a min/max duration limit for samples to be considered part of a
- // coherent signal. The maximum length is fixed while the minimum
- // is passed as argument, as depends on the data rate and in general
- // on the signal to analyze.
- uint32_t max_duration = 4000;
- uint32_t len = 0; /* Observed len of coherent samples. */
- s->short_pulse_dur = 0;
- for(uint32_t j = idx; j < idx + s->total; j++) {
- bool level;
- uint32_t dur;
- raw_samples_get(s, j, &level, &dur);
- if(dur < min_duration || dur > max_duration) break; /* return. */
- /* Let's see if it matches a class we already have or if we
- * can populate a new (yet empty) class. */
- uint32_t k;
- for(k = 0; k < SEARCH_CLASSES; k++) {
- if(classes[k].count[level] == 0) {
- classes[k].dur[level] = dur;
- classes[k].count[level] = 1;
- break; /* Sample accepted. */
- } else {
- uint32_t classavg = classes[k].dur[level];
- uint32_t count = classes[k].count[level];
- uint32_t delta = duration_delta(dur, classavg);
- /* Is the difference in duration between this signal and
- * the class we are inspecting less than a given percentage?
- * If so, accept this signal. */
- if(delta < classavg / 5) { /* 100%/5 = 20%. */
- /* It is useful to compute the average of the class
- * we are observing. We know how many samples we got so
- * far, so we can recompute the average easily.
- * By always having a better estimate of the pulse len
- * we can avoid missing next samples in case the first
- * observed samples are too off. */
- classavg = ((classavg * count) + dur) / (count + 1);
- classes[k].dur[level] = classavg;
- classes[k].count[level]++;
- break; /* Sample accepted. */
- }
- }
- }
- if(k == SEARCH_CLASSES) break; /* No match, return. */
- /* If we are here, we accepted this sample. Try with the next
- * one. */
- len++;
- }
- /* Update the buffer setting the shortest pulse we found
- * among the three classes. This will be used when scaling
- * for visualization. */
- uint32_t short_dur[2] = {0, 0};
- for(int j = 0; j < SEARCH_CLASSES; j++) {
- for(int level = 0; level < 2; level++) {
- if(classes[j].dur[level] == 0) continue;
- if(classes[j].count[level] < 3) continue;
- if(short_dur[level] == 0 || short_dur[level] > classes[j].dur[level]) {
- short_dur[level] = classes[j].dur[level];
- }
- }
- }
- /* Use the average between high and low short pulses duration.
- * Often they are a bit different, and using the average is more robust
- * when we do decoding sampling at short_pulse_dur intervals. */
- if(short_dur[0] == 0) short_dur[0] = short_dur[1];
- if(short_dur[1] == 0) short_dur[1] = short_dur[0];
- s->short_pulse_dur = (short_dur[0] + short_dur[1]) / 2;
- return len;
- }
- /* Called when we detect a message. Just blinks when the message was
- * not decoded. Vibrates, too, when the message was correctly decoded. */
- void notify_signal_detected(ProtoViewApp* app, bool decoded) {
- static const NotificationSequence decoded_seq = {
- &message_vibro_on,
- &message_green_255,
- &message_delay_50,
- &message_green_0,
- &message_vibro_off,
- NULL};
- static const NotificationSequence unknown_seq = {
- &message_red_255, &message_delay_50, &message_red_0, NULL};
- if(decoded)
- notification_message(app->notification, &decoded_seq);
- else
- notification_message(app->notification, &unknown_seq);
- }
- /* Search the source buffer with the stored signal (last N samples received)
- * in order to find a coherent signal. If a signal that does not appear to
- * be just noise is found, it is set in DetectedSamples global signal
- * buffer, that is what is rendered on the screen. */
- void scan_for_signal(ProtoViewApp* app, RawSamplesBuffer* source, uint32_t min_duration) {
- /* We need to work on a copy: the source buffer may be populated
- * by the background thread receiving data. */
- RawSamplesBuffer* copy = raw_samples_alloc();
- raw_samples_copy(copy, source);
- /* Try to seek on data that looks to have a regular high low high low
- * pattern. */
- uint32_t minlen = 18; /* Min run of coherent samples. With less
- than a few samples it's very easy to
- mistake noise for signal. */
- uint32_t i = 0;
- while(i < copy->total - 1) {
- uint32_t thislen = search_coherent_signal(copy, i, min_duration);
- /* For messages that are long enough, attempt decoding. */
- if(thislen > minlen) {
- /* Allocate the message information that some decoder may
- * fill, in case it is able to decode a message. */
- ProtoViewMsgInfo* info = malloc(sizeof(ProtoViewMsgInfo));
- init_msg_info(info, app);
- info->short_pulse_dur = copy->short_pulse_dur;
- uint32_t saved_idx = copy->idx; /* Save index, see later. */
- /* decode_signal() expects the detected signal to start
- * from index zero .*/
- raw_samples_center(copy, i);
- bool decoded = decode_signal(copy, thislen, info);
- copy->idx = saved_idx; /* Restore the index as we are scanning
- the signal in the loop. */
- /* Accept this signal as the new signal if either it's longer
- * than the previous undecoded one, or the previous one was
- * unknown and this is decoded. */
- bool oldsignal_not_decoded = app->signal_decoded == false ||
- app->msg_info->decoder == &UnknownDecoder;
- if(oldsignal_not_decoded &&
- (thislen > app->signal_bestlen || (decoded && info->decoder != &UnknownDecoder))) {
- free_msg_info(app->msg_info);
- app->msg_info = info;
- app->signal_bestlen = thislen;
- app->signal_decoded = decoded;
- raw_samples_copy(DetectedSamples, copy);
- raw_samples_center(DetectedSamples, i);
- FURI_LOG_E(
- TAG,
- "===> Displayed sample updated (%d samples %lu us)",
- (int)thislen,
- DetectedSamples->short_pulse_dur);
- adjust_raw_view_scale(app, DetectedSamples->short_pulse_dur);
- if(app->msg_info->decoder != &UnknownDecoder) notify_signal_detected(app, decoded);
- } else {
- /* If the structure was not filled, discard it. Otherwise
- * now the owner is app->msg_info. */
- free_msg_info(info);
- }
- }
- i += thislen ? thislen : 1;
- }
- raw_samples_free(copy);
- }
- /* =============================================================================
- * Decoding
- *
- * The following code will translates the raw singals as received by
- * the CC1101 into logical signals: a bitmap of 0s and 1s sampled at
- * the detected data clock interval.
- *
- * Then the converted signal is passed to the protocols decoders, that look
- * for protocol-specific information. We stop at the first decoder that is
- * able to decode the data, so protocols here should be registered in
- * order of complexity and specificity, with the generic ones at the end.
- * ===========================================================================*/
- /* Set the 'bitpos' bit to value 'val', in the specified bitmap
- * 'b' of len 'blen'.
- * Out of range bits will silently be discarded. */
- void bitmap_set(uint8_t* b, uint32_t blen, uint32_t bitpos, bool val) {
- uint32_t byte = bitpos / 8;
- uint32_t bit = 7 - (bitpos & 7);
- if(byte >= blen) return;
- if(val)
- b[byte] |= 1 << bit;
- else
- b[byte] &= ~(1 << bit);
- }
- /* Get the bit 'bitpos' of the bitmap 'b' of 'blen' bytes.
- * Out of range bits return false (not bit set). */
- bool bitmap_get(uint8_t* b, uint32_t blen, uint32_t bitpos) {
- uint32_t byte = bitpos / 8;
- uint32_t bit = 7 - (bitpos & 7);
- if(byte >= blen) return 0;
- return (b[byte] & (1 << bit)) != 0;
- }
- /* Copy 'count' bits from the bitmap 's' of 'slen' total bytes, to the
- * bitmap 'd' of 'dlen' total bytes. The bits are copied starting from
- * offset 'soff' of the source bitmap to the offset 'doff' of the
- * destination bitmap. */
- void bitmap_copy(
- uint8_t* d,
- uint32_t dlen,
- uint32_t doff,
- uint8_t* s,
- uint32_t slen,
- uint32_t soff,
- uint32_t count) {
- /* If we are byte-aligned in both source and destination, use a fast
- * path for the number of bytes we can consume this way. */
- if((doff & 7) == 0 && (soff & 7) == 0) {
- uint32_t didx = doff / 8;
- uint32_t sidx = soff / 8;
- while(count > 8 && didx < dlen && sidx < slen) {
- d[didx++] = s[sidx++];
- count -= 8;
- }
- doff = didx * 8;
- soff = sidx * 8;
- /* Note that if we entered this path, the count at the end
- * of the loop will be < 8. */
- }
- /* Copy the bits needed to reach an offset where we can copy
- * two half bytes of src to a full byte of destination. */
- while(count > 8 && (doff & 7) != 0) {
- bool bit = bitmap_get(s, slen, soff++);
- bitmap_set(d, dlen, doff++, bit);
- count--;
- }
- /* If we are here and count > 8, we have an offset that is byte aligned
- * to the destination bitmap, but not aligned to the source bitmap.
- * We can copy fast enough by shifting each two bytes of the original
- * bitmap.
- *
- * This is how it works:
- *
- * dst:
- * +--------+--------+--------+
- * | 0 | 1 | 2 |
- * | | | | <- data to fill
- * +--------+--------+--------+
- * ^
- * |
- * doff = 8
- *
- * src:
- * +--------+--------+--------+
- * | 0 | 1 | 2 |
- * |hellowor|ld!HELLO|WORLDS!!| <- data to copy
- * +--------+--------+--------+
- * ^
- * |
- * soff = 11
- *
- * skew = 11%8 = 3
- * each destination byte in dst will receive:
- *
- * dst[doff/8] = (src[soff/8] << skew) | (src[soff/8+1] >> (8-skew))
- *
- * dstbyte = doff/8 = 8/8 = 1
- * srcbyte = soff/8 = 11/8 = 1
- *
- * so dst[1] will get:
- * src[1] << 3, that is "ld!HELLO" << 3 = "HELLO..."
- * xored with
- * src[2] << 5, that is "WORLDS!!" >> 5 = ".....WOR"
- * That is "HELLOWOR"
- */
- if(count > 8) {
- uint8_t skew = soff % 8; /* Don't worry, compiler will optimize. */
- uint32_t didx = doff / 8;
- uint32_t sidx = soff / 8;
- while(count > 8 && didx < dlen && sidx < slen) {
- d[didx] = ((s[sidx] << skew) | (s[sidx + 1] >> (8 - skew)));
- sidx++;
- didx++;
- soff += 8;
- doff += 8;
- count -= 8;
- }
- }
- /* Here count is guaranteed to be < 8.
- * Copy the final bits bit by bit. */
- while(count) {
- bool bit = bitmap_get(s, slen, soff++);
- bitmap_set(d, dlen, doff++, bit);
- count--;
- }
- }
- /* We decode bits assuming the first bit we receive is the MSB
- * (see bitmap_set/get functions). Certain devices send data
- * encoded in the reverse way. */
- void bitmap_reverse_bytes_bits(uint8_t* p, uint32_t len) {
- for(uint32_t j = 0; j < len; j++) {
- uint32_t b = p[j];
- /* Step 1: swap the two nibbles: 12345678 -> 56781234 */
- b = (b & 0xf0) >> 4 | (b & 0x0f) << 4;
- /* Step 2: swap adjacent pairs : 56781234 -> 78563412 */
- b = (b & 0xcc) >> 2 | (b & 0x33) << 2;
- /* Step 3: swap adjacent bits : 78563412 -> 87654321 */
- b = (b & 0xaa) >> 1 | (b & 0x55) << 1;
- p[j] = b;
- }
- }
- /* Return true if the specified sequence of bits, provided as a string in the
- * form "11010110..." is found in the 'b' bitmap of 'blen' bits at 'bitpos'
- * position. */
- bool bitmap_match_bits(uint8_t* b, uint32_t blen, uint32_t bitpos, const char* bits) {
- for(size_t j = 0; bits[j]; j++) {
- bool expected = (bits[j] == '1') ? true : false;
- if(bitmap_get(b, blen, bitpos + j) != expected) return false;
- }
- return true;
- }
- /* Search for the specified bit sequence (see bitmap_match_bits() for details)
- * in the bitmap 'b' of 'blen' bytes, looking forward at most 'maxbits' ahead.
- * Returns the offset (in bits) of the match, or BITMAP_SEEK_NOT_FOUND if not
- * found.
- *
- * Note: there are better algorithms, such as Boyer-Moore. Here we hope that
- * for the kind of patterns we search we'll have a lot of early stops so
- * we use a vanilla approach. */
- uint32_t bitmap_seek_bits(
- uint8_t* b,
- uint32_t blen,
- uint32_t startpos,
- uint32_t maxbits,
- const char* bits) {
- uint32_t endpos = startpos + blen * 8;
- uint32_t end2 = startpos + maxbits;
- if(end2 < endpos) endpos = end2;
- for(uint32_t j = startpos; j < endpos; j++)
- if(bitmap_match_bits(b, blen, j, bits)) return j;
- return BITMAP_SEEK_NOT_FOUND;
- }
- /* Compare bitmaps b1 and b2 (possibly overlapping or the same bitmap),
- * at the specified offsets, for cmplen bits. Returns true if the
- * exact same bits are found, otherwise false. */
- bool bitmap_match_bitmap(
- uint8_t* b1,
- uint32_t b1len,
- uint32_t b1off,
- uint8_t* b2,
- uint32_t b2len,
- uint32_t b2off,
- uint32_t cmplen) {
- for(uint32_t j = 0; j < cmplen; j++) {
- bool bit1 = bitmap_get(b1, b1len, b1off + j);
- bool bit2 = bitmap_get(b2, b2len, b2off + j);
- if(bit1 != bit2) return false;
- }
- return true;
- }
- /* Convert 'len' bitmap bits of the bitmap 'bitmap' into a null terminated
- * string, stored at 'dst', that must have space at least for len+1 bytes.
- * The bits are extracted from the specified offset. */
- void bitmap_to_string(char* dst, uint8_t* b, uint32_t blen, uint32_t off, uint32_t len) {
- for(uint32_t j = 0; j < len; j++)
- dst[j] = bitmap_get(b, blen, off + j) ? '1' : '0';
- dst[len] = 0;
- }
- /* Set the pattern 'pat' into the bitmap 'b' of max length 'blen' bytes,
- * starting from the specified offset.
- *
- * The pattern is given as a string of 0s and 1s characters, like "01101001".
- * This function is useful in order to set the test vectors in the protocol
- * decoders, to see if the decoding works regardless of the fact we are able
- * to actually receive a given signal. */
- void bitmap_set_pattern(uint8_t* b, uint32_t blen, uint32_t off, const char* pat) {
- uint32_t i = 0;
- while(pat[i]) {
- bitmap_set(b, blen, i + off, pat[i] == '1');
- i++;
- }
- }
- /* Take the raw signal and turn it into a sequence of bits inside the
- * buffer 'b'. Note that such 0s and 1s are NOT the actual data in the
- * signal, but is just a low level representation of the line code. Basically
- * if the short pulse we find in the signal is 320us, we convert high and
- * low levels in the raw sample in this way:
- *
- * If for instance we see a high level lasting ~600 us, we will add
- * two 1s bit. If then the signal goes down for 330us, we will add one zero,
- * and so forth. So for each period of high and low we find the closest
- * multiple and set the relevant number of bits.
- *
- * In case of a short pulse of 320us detected, 320*2 is the closest to a
- * high pulse of 600us, so 2 bits will be set.
- *
- * In other terms what this function does is sampling the signal at
- * fixed 'rate' intervals.
- *
- * This representation makes it simple to decode the signal at a higher
- * level later, translating it from Marshal coding or other line codes
- * to the actual bits/bytes.
- *
- * The 'idx' argument marks the detected signal start index into the
- * raw samples buffer. The 'count' tells the function how many raw
- * samples to convert into bits. The function returns the number of
- * bits set into the buffer 'b'. The 'rate' argument, in microseconds, is
- * the detected short-pulse duration. We expect the line code to be
- * meaningful when interpreted at multiples of 'rate'. */
- uint32_t convert_signal_to_bits(
- uint8_t* b,
- uint32_t blen,
- RawSamplesBuffer* s,
- uint32_t idx,
- uint32_t count,
- uint32_t rate) {
- if(rate == 0) return 0; /* We can't perform the conversion. */
- uint32_t bitpos = 0;
- for(uint32_t j = 0; j < count; j++) {
- uint32_t dur;
- bool level;
- raw_samples_get(s, j + idx, &level, &dur);
- uint32_t numbits = dur / rate; /* full bits that surely fit. */
- uint32_t rest = dur % rate; /* How much we are left with. */
- if(rest > rate / 2) numbits++; /* There is another one. */
- /* Limit how much a single sample can spawn. There are likely no
- * protocols doing such long pulses when the rate is low. */
- if(numbits > 1024) numbits = 1024;
- if(0) /* Super verbose, so not under the DEBUG_MSG define. */
- FURI_LOG_E(TAG, "%lu converted into %lu (%d) bits", dur, numbits, (int)level);
- /* If the signal is too short, let's claim it an interference
- * and ignore it completely. */
- if(numbits == 0) continue;
- while(numbits--)
- bitmap_set(b, blen, bitpos++, level);
- }
- return bitpos;
- }
- /* This function converts the line code used to the final data representation.
- * The representation is put inside 'buf', for up to 'buflen' bytes of total
- * data. For instance in order to convert manchester you can use "10" and "01"
- * as zero and one patterns. However this function does not handle differential
- * encodings. See below for convert_from_diff_manchester().
- *
- * The function returns the number of bits converted. It will stop as soon
- * as it finds a pattern that does not match zero or one patterns, or when
- * the end of the bitmap pointed by 'bits' is reached (the length is
- * specified in bytes by the caller, via the 'len' parameters).
- *
- * The decoding starts at the specified offset (in bits) 'off'. */
- uint32_t convert_from_line_code(
- uint8_t* buf,
- uint64_t buflen,
- uint8_t* bits,
- uint32_t len,
- uint32_t off,
- const char* zero_pattern,
- const char* one_pattern) {
- uint32_t decoded = 0; /* Number of bits extracted. */
- len *= 8; /* Convert bytes to bits. */
- while(off < len) {
- bool bitval;
- if(bitmap_match_bits(bits, len, off, zero_pattern)) {
- bitval = false;
- off += strlen(zero_pattern);
- } else if(bitmap_match_bits(bits, len, off, one_pattern)) {
- bitval = true;
- off += strlen(one_pattern);
- } else {
- break;
- }
- bitmap_set(buf, buflen, decoded++, bitval);
- if(decoded / 8 == buflen) break; /* No space left on target buffer. */
- }
- return decoded;
- }
- /* Convert the differential Manchester code to bits. This is similar to
- * convert_from_line_code() but specific for diff-Manchester. The user must
- * supply the value of the previous symbol before this stream, since
- * in differential codings the next bits depend on the previous one.
- *
- * Parameters and return values are like convert_from_line_code(). */
- uint32_t convert_from_diff_manchester(
- uint8_t* buf,
- uint64_t buflen,
- uint8_t* bits,
- uint32_t len,
- uint32_t off,
- bool previous) {
- uint32_t decoded = 0;
- len *= 8; /* Conver to bits. */
- for(uint32_t j = off; j < len; j += 2) {
- bool b0 = bitmap_get(bits, len, j);
- bool b1 = bitmap_get(bits, len, j + 1);
- if(b0 == previous) break; /* Each new bit must switch value. */
- bitmap_set(buf, buflen, decoded++, b0 == b1);
- previous = b1;
- if(decoded / 8 == buflen) break; /* No space left on target buffer. */
- }
- return decoded;
- }
- /* Free the message info and allocated data. */
- void free_msg_info(ProtoViewMsgInfo* i) {
- if(i == NULL) return;
- fieldset_free(i->fieldset);
- free(i->bits);
- free(i);
- }
- /* Reset the message info structure before passing it to the decoding
- * functions. */
- void init_msg_info(ProtoViewMsgInfo* i, ProtoViewApp* app) {
- UNUSED(app);
- memset(i, 0, sizeof(ProtoViewMsgInfo));
- i->bits = NULL;
- i->fieldset = fieldset_new();
- }
- /* This function is called when a new signal is detected. It converts it
- * to a bitstream, and the calls the protocol specific functions for
- * decoding. If the signal was decoded correctly by some protocol, true
- * is returned. Otherwise false is returned. */
- bool decode_signal(RawSamplesBuffer* s, uint64_t len, ProtoViewMsgInfo* info) {
- uint32_t bitmap_bits_size = 4096 * 8;
- uint32_t bitmap_size = bitmap_bits_size / 8;
- /* We call the decoders with an offset a few samples before the actual
- * signal detected and for a len of a few bits after its end. */
- uint32_t before_samples = 32;
- uint32_t after_samples = 100;
- uint8_t* bitmap = malloc(bitmap_size);
- uint32_t bits = convert_signal_to_bits(
- bitmap,
- bitmap_size,
- s,
- -before_samples,
- len + before_samples + after_samples,
- s->short_pulse_dur);
- if(DEBUG_MSG) { /* Useful for debugging purposes. Don't remove. */
- char* str = malloc(1024);
- uint32_t j;
- for(j = 0; j < bits && j < 1023; j++) {
- str[j] = bitmap_get(bitmap, bitmap_size, j) ? '1' : '0';
- }
- str[j] = 0;
- FURI_LOG_E(TAG, "%lu bits sampled: %s", bits, str);
- free(str);
- }
- /* Try all the decoders available. */
- int j = 0;
- bool decoded = false;
- while(Decoders[j]) {
- uint32_t start_time = furi_get_tick();
- decoded = Decoders[j]->decode(bitmap, bitmap_size, bits, info);
- uint32_t delta = furi_get_tick() - start_time;
- FURI_LOG_E(TAG, "Decoder %s took %lu ms", Decoders[j]->name, (unsigned long)delta);
- if(decoded) {
- info->decoder = Decoders[j];
- break;
- }
- j++;
- }
- if(!decoded) {
- FURI_LOG_E(TAG, "No decoding possible");
- } else {
- FURI_LOG_E(TAG, "+++ Decoded %s", info->decoder->name);
- /* The message was correctly decoded: fill the info structure
- * with the decoded signal. The decoder may not implement offset/len
- * filling of the structure. In such case we have no info and
- * pulses_count will be set to zero. */
- if(info->pulses_count) {
- info->bits_bytes = (info->pulses_count + 7) / 8; // Round to full byte.
- info->bits = malloc(info->bits_bytes);
- bitmap_copy(
- info->bits,
- info->bits_bytes,
- 0,
- bitmap,
- bitmap_size,
- info->start_off,
- info->pulses_count);
- }
- }
- free(bitmap);
- return decoded;
- }
|