| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- //-----------------------------------------------------------------------------
- // Borrowed initially from https://github.com/holiman/loclass
- // Copyright (C) 2014 Martin Holst Swende
- // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
- //
- // This program is free software: you can redistribute it and/or modify
- // it under the terms of the GNU General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // This program is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // See LICENSE.txt for the text of the license.
- //-----------------------------------------------------------------------------
- // WARNING
- //
- // THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
- //
- // USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
- // PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
- // AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
- //
- // THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
- //-----------------------------------------------------------------------------
- // It is a reconstruction of the cipher engine used in iClass, and RFID techology.
- //
- // The implementation is based on the work performed by
- // Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
- // Milosch Meriac in the paper "Dismantling IClass".
- //-----------------------------------------------------------------------------
- /**
- From "Dismantling iclass":
- This section describes in detail the built-in key diversification algorithm of iClass.
- Besides the obvious purpose of deriving a card key from a master key, this
- algorithm intends to circumvent weaknesses in the cipher by preventing the
- usage of certain ‘weak’ keys. In order to compute a diversified key, the iClass
- reader first encrypts the card identity id with the master key K, using single
- DES. The resulting ciphertext is then input to a function called loclass_hash0 which
- outputs the diversified key k.
- k = loclass_hash0(DES enc (id, K))
- Here the DES encryption of id with master key K outputs a cryptogram c
- of 64 bits. These 64 bits are divided as c = x, y, z [0] , . . . , z [7] ∈ F 82 × F 82 × (F 62 ) 8
- which is used as input to the loclass_hash0 function. This function introduces some
- obfuscation by performing a number of permutations, complement and modulo
- operations, see Figure 2.5. Besides that, it checks for and removes patterns like
- similar key bytes, which could produce a strong bias in the cipher. Finally, the
- output of loclass_hash0 is the diversified card key k = k [0] , . . . , k [7] ∈ (F 82 ) 8 .
- **/
- #include "optimized_ikeys.h"
- #include <stdint.h>
- #include <stdbool.h>
- #include <inttypes.h>
- #include <mbedtls/des.h>
- #include "optimized_cipherutils.h"
- static const uint8_t loclass_pi[35] = {0x0F, 0x17, 0x1B, 0x1D, 0x1E, 0x27, 0x2B, 0x2D, 0x2E,
- 0x33, 0x35, 0x39, 0x36, 0x3A, 0x3C, 0x47, 0x4B, 0x4D,
- 0x4E, 0x53, 0x55, 0x56, 0x59, 0x5A, 0x5C, 0x63, 0x65,
- 0x66, 0x69, 0x6A, 0x6C, 0x71, 0x72, 0x74, 0x78};
- /**
- * @brief The key diversification algorithm uses 6-bit bytes.
- * This implementation uses 64 bit uint to pack seven of them into one
- * variable. When they are there, they are placed as follows:
- * XXXX XXXX N0 .... N7, occupying the last 48 bits.
- *
- * This function picks out one from such a collection
- * @param all
- * @param n bitnumber
- * @return
- */
- static uint8_t loclass_getSixBitByte(uint64_t c, int n) {
- return (c >> (42 - 6 * n)) & 0x3F;
- }
- /**
- * @brief Puts back a six-bit 'byte' into a uint64_t.
- * @param c buffer
- * @param z the value to place there
- * @param n bitnumber.
- */
- static void loclass_pushbackSixBitByte(uint64_t* c, uint8_t z, int n) {
- //0x XXXX YYYY ZZZZ ZZZZ ZZZZ
- // ^z0 ^z7
- //z0: 1111 1100 0000 0000
- uint64_t masked = z & 0x3F;
- uint64_t eraser = 0x3F;
- masked <<= 42 - 6 * n;
- eraser <<= 42 - 6 * n;
- //masked <<= 6*n;
- //eraser <<= 6*n;
- eraser = ~eraser;
- (*c) &= eraser;
- (*c) |= masked;
- }
- /**
- * @brief Swaps the z-values.
- * If the input value has format XYZ0Z1...Z7, the output will have the format
- * XYZ7Z6...Z0 instead
- * @param c
- * @return
- */
- static uint64_t loclass_swapZvalues(uint64_t c) {
- uint64_t newz = 0;
- loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 0), 7);
- loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 1), 6);
- loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 2), 5);
- loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 3), 4);
- loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 4), 3);
- loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 5), 2);
- loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 6), 1);
- loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 7), 0);
- newz |= (c & 0xFFFF000000000000);
- return newz;
- }
- /**
- * @return 4 six-bit bytes chunked into a uint64_t,as 00..00a0a1a2a3
- */
- static uint64_t loclass_ck(int i, int j, uint64_t z) {
- if(i == 1 && j == -1) {
- // loclass_ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
- return z;
- } else if(j == -1) {
- // loclass_ck(i, −1, z [0] . . . z [3] ) = loclass_ck(i − 1, i − 2, z [0] . . . z [3] )
- return loclass_ck(i - 1, i - 2, z);
- }
- if(loclass_getSixBitByte(z, i) == loclass_getSixBitByte(z, j)) {
- //loclass_ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] )
- uint64_t newz = 0;
- int c;
- for(c = 0; c < 4; c++) {
- uint8_t val = loclass_getSixBitByte(z, c);
- if(c == i)
- loclass_pushbackSixBitByte(&newz, j, c);
- else
- loclass_pushbackSixBitByte(&newz, val, c);
- }
- return loclass_ck(i, j - 1, newz);
- } else {
- return loclass_ck(i, j - 1, z);
- }
- }
- /**
- Definition 8.
- Let the function check : (F 62 ) 8 → (F 62 ) 8 be defined as
- check(z [0] . . . z [7] ) = loclass_ck(3, 2, z [0] . . . z [3] ) · loclass_ck(3, 2, z [4] . . . z [7] )
- where loclass_ck : N × N × (F 62 ) 4 → (F 62 ) 4 is defined as
- loclass_ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
- loclass_ck(i, −1, z [0] . . . z [3] ) = loclass_ck(i − 1, i − 2, z [0] . . . z [3] )
- loclass_ck(i, j, z [0] . . . z [3] ) =
- loclass_ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] ), if z [i] = z [j] ;
- loclass_ck(i, j − 1, z [0] . . . z [3] ), otherwise
- otherwise.
- **/
- static uint64_t loclass_check(uint64_t z) {
- //These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
- // loclass_ck(3, 2, z [0] . . . z [3] )
- uint64_t ck1 = loclass_ck(3, 2, z);
- // loclass_ck(3, 2, z [4] . . . z [7] )
- uint64_t ck2 = loclass_ck(3, 2, z << 24);
- //The loclass_ck function will place the values
- // in the middle of z.
- ck1 &= 0x00000000FFFFFF000000;
- ck2 &= 0x00000000FFFFFF000000;
- return ck1 | ck2 >> 24;
- }
- static void loclass_permute(
- LoclassBitstreamIn_t* p_in,
- uint64_t z,
- int l,
- int r,
- LoclassBitstreamOut_t* out) {
- if(loclass_bitsLeft(p_in) == 0) return;
- bool pn = loclass_tailBit(p_in);
- if(pn) { // pn = 1
- uint8_t zl = loclass_getSixBitByte(z, l);
- loclass_push6bits(out, zl + 1);
- loclass_permute(p_in, z, l + 1, r, out);
- } else { // otherwise
- uint8_t zr = loclass_getSixBitByte(z, r);
- loclass_push6bits(out, zr);
- loclass_permute(p_in, z, l, r + 1, out);
- }
- }
- /**
- * @brief
- *Definition 11. Let the function loclass_hash0 : F 82 × F 82 × (F 62 ) 8 → (F 82 ) 8 be defined as
- * loclass_hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
- * z'[i] = (z[i] mod (63-i)) + i i = 0...3
- * z'[i+4] = (z[i+4] mod (64-i)) + i i = 0...3
- * ẑ = check(z');
- * @param c
- * @param k this is where the diversified key is put (should be 8 bytes)
- * @return
- */
- void loclass_hash0(uint64_t c, uint8_t k[8]) {
- c = loclass_swapZvalues(c);
- //These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
- // x = 8 bits
- // y = 8 bits
- // z0-z7 6 bits each : 48 bits
- uint8_t x = (c & 0xFF00000000000000) >> 56;
- uint8_t y = (c & 0x00FF000000000000) >> 48;
- uint64_t zP = 0;
- for(int n = 0; n < 4; n++) {
- uint8_t zn = loclass_getSixBitByte(c, n);
- uint8_t zn4 = loclass_getSixBitByte(c, n + 4);
- uint8_t _zn = (zn % (63 - n)) + n;
- uint8_t _zn4 = (zn4 % (64 - n)) + n;
- loclass_pushbackSixBitByte(&zP, _zn, n);
- loclass_pushbackSixBitByte(&zP, _zn4, n + 4);
- }
- uint64_t zCaret = loclass_check(zP);
- uint8_t p = loclass_pi[x % 35];
- if(x & 1) //Check if x7 is 1
- p = ~p;
- LoclassBitstreamIn_t p_in = {&p, 8, 0};
- uint8_t outbuffer[] = {0, 0, 0, 0, 0, 0, 0, 0};
- LoclassBitstreamOut_t out = {outbuffer, 0, 0};
- loclass_permute(&p_in, zCaret, 0, 4, &out); //returns 48 bits? or 6 8-bytes
- //Out is now a buffer containing six-bit bytes, should be 48 bits
- // if all went well
- //Shift z-values down onto the lower segment
- uint64_t zTilde = loclass_x_bytes_to_num(outbuffer, sizeof(outbuffer));
- zTilde >>= 16;
- for(int i = 0; i < 8; i++) {
- // the key on index i is first a bit from y
- // then six bits from z,
- // then a bit from p
- // Init with zeroes
- k[i] = 0;
- // First, place yi leftmost in k
- //k[i] |= (y << i) & 0x80 ;
- // First, place y(7-i) leftmost in k
- k[i] |= (y << (7 - i)) & 0x80;
- uint8_t zTilde_i = loclass_getSixBitByte(zTilde, i);
- // zTildeI is now on the form 00XXXXXX
- // with one leftshift, it'll be
- // 0XXXXXX0
- // So after leftshift, we can OR it into k
- // However, when doing complement, we need to
- // again MASK 0XXXXXX0 (0x7E)
- zTilde_i <<= 1;
- //Finally, add bit from p or p-mod
- //Shift bit i into rightmost location (mask only after complement)
- uint8_t p_i = p >> i & 0x1;
- if(k[i]) { // yi = 1
- k[i] |= ~zTilde_i & 0x7E;
- k[i] |= p_i & 1;
- k[i] += 1;
- } else { // otherwise
- k[i] |= zTilde_i & 0x7E;
- k[i] |= (~p_i) & 1;
- }
- }
- }
- /**
- * @brief Performs Elite-class key diversification
- * @param csn
- * @param key
- * @param div_key
- */
- void loclass_diversifyKey(const uint8_t* csn, const uint8_t* key, uint8_t* div_key) {
- mbedtls_des_context loclass_ctx_enc;
- // Prepare the DES key
- mbedtls_des_setkey_enc(&loclass_ctx_enc, key);
- uint8_t crypted_csn[8] = {0};
- // Calculate DES(CSN, KEY)
- mbedtls_des_crypt_ecb(&loclass_ctx_enc, csn, crypted_csn);
- //Calculate HASH0(DES))
- uint64_t c_csn = loclass_x_bytes_to_num(crypted_csn, sizeof(crypted_csn));
- loclass_hash0(c_csn, div_key);
- }
|