| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- /*
- * Copyright 2019 Google Inc. All Rights Reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #ifndef CARDBOARD_SDK_UTIL_ROTATION_H_
- #define CARDBOARD_SDK_UTIL_ROTATION_H_
- #include "matrix_3x3.h"
- #include "vector.h"
- #include "vectorutils.h"
- namespace cardboard {
- // The Rotation class represents a rotation around a 3-dimensional axis. It
- // uses normalized quaternions internally to make the math robust.
- class Rotation {
- public:
- // Convenience typedefs for vector of the correct type.
- typedef Vector<3> VectorType;
- typedef Vector<4> QuaternionType;
- // The default constructor creates an identity Rotation, which has no effect.
- Rotation() {
- quat_.Set(0, 0, 0, 1);
- }
- // Returns an identity Rotation, which has no effect.
- static Rotation Identity() {
- return Rotation();
- }
- // Sets the Rotation from a quaternion (4D vector), which is first normalized.
- void SetQuaternion(const QuaternionType& quaternion) {
- quat_ = Normalized(quaternion);
- }
- // Returns the Rotation as a normalized quaternion (4D vector).
- const QuaternionType& GetQuaternion() const {
- return quat_;
- }
- // Sets the Rotation to rotate by the given angle around the given axis,
- // following the right-hand rule. The axis does not need to be unit
- // length. If it is zero length, this results in an identity Rotation.
- void SetAxisAndAngle(const VectorType& axis, double angle);
- // Returns the right-hand rule axis and angle corresponding to the
- // Rotation. If the Rotation is the identity rotation, this returns the +X
- // axis and an angle of 0.
- void GetAxisAndAngle(VectorType* axis, double* angle) const;
- // Convenience function that constructs and returns a Rotation given an axis
- // and angle.
- static Rotation FromAxisAndAngle(const VectorType& axis, double angle) {
- Rotation r;
- r.SetAxisAndAngle(axis, angle);
- return r;
- }
- // Convenience function that constructs and returns a Rotation given a
- // quaternion.
- static Rotation FromQuaternion(const QuaternionType& quat) {
- Rotation r;
- r.SetQuaternion(quat);
- return r;
- }
- // Convenience function that constructs and returns a Rotation given a
- // rotation matrix R with $R^\top R = I && det(R) = 1$.
- static Rotation FromRotationMatrix(const Matrix3x3& mat);
- // Convenience function that constructs and returns a Rotation given Euler
- // angles that are applied in the order of rotate-Z by roll, rotate-X by
- // pitch, rotate-Y by yaw (same as GetRollPitchYaw).
- static Rotation FromRollPitchYaw(double roll, double pitch, double yaw) {
- VectorType x(1, 0, 0), y(0, 1, 0), z(0, 0, 1);
- return FromAxisAndAngle(z, roll) * (FromAxisAndAngle(x, pitch) * FromAxisAndAngle(y, yaw));
- }
- // Convenience function that constructs and returns a Rotation given Euler
- // angles that are applied in the order of rotate-Y by yaw, rotate-X by
- // pitch, rotate-Z by roll (same as GetYawPitchRoll).
- static Rotation FromYawPitchRoll(double yaw, double pitch, double roll) {
- VectorType x(1, 0, 0), y(0, 1, 0), z(0, 0, 1);
- return FromAxisAndAngle(y, yaw) * (FromAxisAndAngle(x, pitch) * FromAxisAndAngle(z, roll));
- }
- // Constructs and returns a Rotation that rotates one vector to another along
- // the shortest arc. This returns an identity rotation if either vector has
- // zero length.
- static Rotation RotateInto(const VectorType& from, const VectorType& to);
- // The negation operator returns the inverse rotation.
- friend Rotation operator-(const Rotation& r) {
- // Because we store normalized quaternions, the inverse is found by
- // negating the vector part.
- return Rotation(-r.quat_[0], -r.quat_[1], -r.quat_[2], r.quat_[3]);
- }
- // Appends a rotation to this one.
- Rotation& operator*=(const Rotation& r) {
- const QuaternionType& qr = r.quat_;
- QuaternionType& qt = quat_;
- SetQuaternion(QuaternionType(
- qr[3] * qt[0] + qr[0] * qt[3] + qr[2] * qt[1] - qr[1] * qt[2],
- qr[3] * qt[1] + qr[1] * qt[3] + qr[0] * qt[2] - qr[2] * qt[0],
- qr[3] * qt[2] + qr[2] * qt[3] + qr[1] * qt[0] - qr[0] * qt[1],
- qr[3] * qt[3] - qr[0] * qt[0] - qr[1] * qt[1] - qr[2] * qt[2]));
- return *this;
- }
- // Binary multiplication operator - returns a composite Rotation.
- friend const Rotation operator*(const Rotation& r0, const Rotation& r1) {
- Rotation r = r0;
- r *= r1;
- return r;
- }
- // Multiply a Rotation and a Vector to get a Vector.
- VectorType operator*(const VectorType& v) const;
- private:
- // Private constructor that builds a Rotation from quaternion components.
- Rotation(double q0, double q1, double q2, double q3)
- : quat_(q0, q1, q2, q3) {
- }
- // Applies a Rotation to a Vector to rotate the Vector. Method borrowed from:
- // http://blog.molecular-matters.com/2013/05/24/a-faster-quaternion-vector-multiplication/
- VectorType ApplyToVector(const VectorType& v) const {
- VectorType im(quat_[0], quat_[1], quat_[2]);
- VectorType temp = 2.0 * Cross(im, v);
- return v + quat_[3] * temp + Cross(im, temp);
- }
- // The rotation represented as a normalized quaternion. (Unit quaternions are
- // required for constructing rotation matrices, so it makes sense to always
- // store them that way.) The vector part is in the first 3 elements, and the
- // scalar part is in the last element.
- QuaternionType quat_;
- };
- } // namespace cardboard
- #endif // CARDBOARD_SDK_UTIL_ROTATION_H_
|