mag_helpers.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586
  1. #include "mag_helpers.h"
  2. #define TAG "MagHelpers"
  3. #define GPIO_PIN_A &gpio_ext_pa6
  4. #define GPIO_PIN_B &gpio_ext_pa7
  5. #define GPIO_PIN_ENABLE &gpio_ext_pa4
  6. #define RFID_PIN_OUT &gpio_rfid_carrier_out
  7. #define ZERO_PREFIX 25 // n zeros prefix
  8. #define ZERO_BETWEEN 53 // n zeros between tracks
  9. #define ZERO_SUFFIX 25 // n zeros suffix
  10. // bits per char on a given track
  11. const uint8_t bitlen[] = {7, 5, 5};
  12. // char offset by track
  13. const int sublen[] = {32, 48, 48};
  14. uint8_t bit_dir = 0;
  15. uint8_t last_value = 2;
  16. void bitbang_raw(bool value, MagSetting* setting) {
  17. switch(setting->tx) {
  18. case MagTxStateRFID:
  19. furi_hal_gpio_write(RFID_PIN_OUT, value);
  20. break;
  21. case MagTxStateGPIOA6A7:
  22. furi_hal_gpio_write(GPIO_PIN_A, value);
  23. furi_hal_gpio_write(GPIO_PIN_B, !value);
  24. break;
  25. case MagTxCC1101_434:
  26. case MagTxCC1101_868:
  27. if(last_value == 2 || value != (bool)last_value) {
  28. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  29. furi_delay_us(64);
  30. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  31. }
  32. break;
  33. default:
  34. break;
  35. }
  36. last_value = value;
  37. }
  38. void play_bit_rf(bool bit, MagSetting* setting) {
  39. bit_dir ^= 1;
  40. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  41. furi_delay_us(64);
  42. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  43. furi_delay_us(setting->us_clock);
  44. if(bit) {
  45. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  46. furi_delay_us(64);
  47. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  48. }
  49. furi_delay_us(setting->us_clock);
  50. furi_delay_us(setting->us_interpacket);
  51. }
  52. void play_bit_rfid(uint8_t send_bit, MagSetting* setting) {
  53. // internal TX over RFID coil
  54. bit_dir ^= 1;
  55. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  56. furi_delay_us(setting->us_clock);
  57. if(send_bit) {
  58. bit_dir ^= 1;
  59. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  60. }
  61. furi_delay_us(setting->us_clock);
  62. furi_delay_us(setting->us_interpacket);
  63. }
  64. void play_bit_gpio(uint8_t send_bit, MagSetting* setting) {
  65. // external TX over motor driver wired to PIN_A and PIN_B
  66. bit_dir ^= 1;
  67. furi_hal_gpio_write(GPIO_PIN_A, bit_dir);
  68. furi_hal_gpio_write(GPIO_PIN_B, !bit_dir);
  69. furi_delay_us(setting->us_clock);
  70. if(send_bit) {
  71. bit_dir ^= 1;
  72. furi_hal_gpio_write(GPIO_PIN_A, bit_dir);
  73. furi_hal_gpio_write(GPIO_PIN_B, !bit_dir);
  74. }
  75. furi_delay_us(setting->us_clock);
  76. furi_delay_us(setting->us_interpacket);
  77. }
  78. bool play_bit(uint8_t send_bit, MagSetting* setting) {
  79. // Initialize configured TX method
  80. switch(setting->tx) {
  81. case MagTxStateRFID:
  82. play_bit_rfid(send_bit, setting);
  83. break;
  84. case MagTxStateGPIOA6A7:
  85. play_bit_gpio(send_bit, setting);
  86. break;
  87. case MagTxCC1101_434:
  88. case MagTxCC1101_868:
  89. play_bit_rf(send_bit & 0x01, setting);
  90. break;
  91. default:
  92. return false;
  93. }
  94. return true;
  95. }
  96. void tx_init_rfid() {
  97. // initialize RFID system for TX
  98. furi_hal_power_enable_otg();
  99. furi_hal_ibutton_start_drive();
  100. furi_hal_ibutton_pin_low();
  101. // Initializing at GpioSpeedLow seems sufficient for our needs; no improvements seen by increasing speed setting
  102. // this doesn't seem to make a difference, leaving it in
  103. furi_hal_gpio_init(&gpio_rfid_data_in, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  104. furi_hal_gpio_write(&gpio_rfid_data_in, false);
  105. // false->ground RFID antenna; true->don't ground
  106. // skotopes (RFID dev) say normally you'd want RFID_PULL in high for signal forming, while modulating RFID_OUT
  107. // dunaevai135 had it low in their old code. Leaving low, as it doesn't seem to make a difference on my janky antenna
  108. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  109. furi_hal_gpio_write(&gpio_nfc_irq_rfid_pull, false);
  110. furi_hal_gpio_init(RFID_PIN_OUT, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  111. furi_delay_ms(300);
  112. }
  113. void tx_deinit_rfid() {
  114. // reset RFID system
  115. furi_hal_gpio_write(RFID_PIN_OUT, 0);
  116. furi_hal_rfid_pins_reset();
  117. furi_hal_power_disable_otg();
  118. }
  119. void tx_init_gpio() {
  120. furi_hal_power_enable_otg();
  121. // gpio_item_configure_all_pins(GpioModeOutputPushPull);
  122. furi_hal_gpio_init(GPIO_PIN_A, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  123. furi_hal_gpio_init(GPIO_PIN_B, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  124. furi_hal_gpio_init(GPIO_PIN_ENABLE, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  125. furi_hal_gpio_write(GPIO_PIN_ENABLE, 1);
  126. // had some issues with ~300; bumped higher temporarily
  127. furi_delay_ms(500);
  128. }
  129. void tx_deinit_gpio() {
  130. furi_hal_gpio_write(GPIO_PIN_A, 0);
  131. furi_hal_gpio_write(GPIO_PIN_B, 0);
  132. furi_hal_gpio_write(GPIO_PIN_ENABLE, 0);
  133. // set back to analog output mode?
  134. //gpio_item_configure_all_pins(GpioModeAnalog);
  135. furi_hal_power_disable_otg();
  136. }
  137. void tx_init_rf(int hz) {
  138. // presets and frequency will need some experimenting
  139. furi_hal_subghz_reset();
  140. furi_hal_subghz_load_preset(FuriHalSubGhzPresetOok650Async);
  141. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetGFSK9_99KbAsync);
  142. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetMSK99_97KbAsync);
  143. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev238Async);
  144. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev476Async);
  145. furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  146. furi_hal_subghz_set_frequency_and_path(hz);
  147. furi_hal_subghz_tx();
  148. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  149. }
  150. void tx_deinit_rf() {
  151. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  152. furi_hal_subghz_reset();
  153. furi_hal_subghz_idle();
  154. }
  155. bool tx_init(MagSetting* setting) {
  156. // Initialize configured TX method
  157. switch(setting->tx) {
  158. case MagTxStateRFID:
  159. tx_init_rfid();
  160. break;
  161. case MagTxStateGPIOA6A7:
  162. tx_init_gpio();
  163. break;
  164. case MagTxCC1101_434:
  165. tx_init_rf(434000000);
  166. break;
  167. case MagTxCC1101_868:
  168. tx_init_rf(868000000);
  169. break;
  170. default:
  171. return false;
  172. }
  173. return true;
  174. }
  175. bool tx_deinit(MagSetting* setting) {
  176. // Reset configured TX method
  177. switch(setting->tx) {
  178. case MagTxStateRFID:
  179. tx_deinit_rfid();
  180. break;
  181. case MagTxStateGPIOA6A7:
  182. tx_deinit_gpio();
  183. break;
  184. case MagTxCC1101_434:
  185. case MagTxCC1101_868:
  186. tx_deinit_rf();
  187. break;
  188. default:
  189. return false;
  190. }
  191. return true;
  192. }
  193. // due for deprecation
  194. void track_to_bits(uint8_t* bit_array, const char* track_data, uint8_t track_index) {
  195. // convert individual track to bits
  196. int tmp, crc, lrc = 0;
  197. int i = 0;
  198. // convert track data to bits
  199. for(uint8_t j = 0; track_data[j] != '\0'; j++) {
  200. crc = 1;
  201. tmp = track_data[j] - sublen[track_index];
  202. for(uint8_t k = 0; k < bitlen[track_index] - 1; k++) {
  203. crc ^= tmp & 1;
  204. lrc ^= (tmp & 1) << k;
  205. bit_array[i] = tmp & 1;
  206. i++;
  207. tmp >>= 1;
  208. }
  209. bit_array[i] = crc;
  210. i++;
  211. }
  212. FURI_LOG_D(TAG, "LRC");
  213. // finish calculating final "byte" (LRC)
  214. tmp = lrc;
  215. crc = 1;
  216. for(uint8_t j = 0; j < bitlen[track_index] - 1; j++) {
  217. crc ^= tmp & 1;
  218. bit_array[i] = tmp & 1;
  219. i++;
  220. tmp >>= 1;
  221. }
  222. bit_array[i] = crc;
  223. i++;
  224. // My makeshift end sentinel. All other values 0/1
  225. bit_array[i] = 2;
  226. i++;
  227. // Log the output (messy but works)
  228. //char output[500] = {0x0};
  229. /*FuriString* tmp_str;
  230. tmp_str = furi_string_alloc();
  231. for(uint8_t j = 0; bit_array[j] != 2; j++) {
  232. furi_string_cat_printf(tmp_str, "%d", (bit_array[j] & 1));
  233. //strcat(output, furi_string_get_cstr(tmp_str));
  234. }
  235. FURI_LOG_D(TAG, "Track %d: %s", (track_index + 1), track_data);
  236. FURI_LOG_D(TAG, "Track %d: %s", (track_index + 1), furi_string_get_cstr(tmp_str));*/
  237. //furi_string_free(tmp_str);
  238. }
  239. void mag_spoof_bitwise(Mag* mag) {
  240. MagSetting* setting = mag->setting;
  241. FuriString* ft1 = mag->mag_dev->dev_data.track[0].str;
  242. FuriString* ft2 = mag->mag_dev->dev_data.track[1].str;
  243. char* data1;
  244. char* data2;
  245. data1 = malloc(furi_string_size(ft1) + 1);
  246. data2 = malloc(furi_string_size(ft2) + 1);
  247. strncpy(data1, furi_string_get_cstr(ft1), furi_string_size(ft1));
  248. strncpy(data2, furi_string_get_cstr(ft2), furi_string_size(ft2));
  249. if(furi_log_get_level() >= FuriLogLevelDebug) {
  250. debug_msr_string(data1, BITS_TRACK1, OFFSET_TRACK1);
  251. debug_msr_string(data2, BITS_TRACK2, OFFSET_TRACK2);
  252. }
  253. uint8_t bits_t1_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  254. uint8_t bits_t1_manchester[128] = {0x00}; // twice the above
  255. uint16_t bits_t1_count = msr_encode(
  256. data1, (uint8_t*)bits_t1_manchester, (uint8_t*)bits_t1_raw, BITS_TRACK1, OFFSET_TRACK1);
  257. uint8_t bits_t2_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  258. uint8_t bits_t2_manchester[128] = {0x00}; // twice the above
  259. uint16_t bits_t2_count = msr_encode(
  260. data2, (uint8_t*)bits_t2_manchester, (uint8_t*)bits_t2_raw, BITS_TRACK2, OFFSET_TRACK2);
  261. if(furi_log_get_level() >= FuriLogLevelDebug) {
  262. printf("Manchester bitcount: T1: %d, T2: %d\r\n", bits_t1_count, bits_t2_count);
  263. printf("T1 raw: ");
  264. for(int i = 0; i < bits_t1_count / 16; i++) printf("%02x ", bits_t1_raw[i]);
  265. printf("\r\n");
  266. printf("T1 manchester: ");
  267. for(int i = 0; i < bits_t1_count / 8; i++) printf("%02x ", bits_t1_manchester[i]);
  268. printf("\r\n");
  269. printf("T2 raw: ");
  270. for(int i = 0; i < bits_t2_count / 16; i++) printf("%02x ", bits_t2_raw[i]);
  271. printf("\r\n");
  272. printf("T2 manchester: ");
  273. for(int i = 0; i < bits_t2_count / 8; i++) printf("%02x ", bits_t2_manchester[i]);
  274. printf("\r\n");
  275. printf("Bitwise emulation done\r\n\r\n");
  276. }
  277. if(!tx_init(setting)) return;
  278. last_value = 2;
  279. FURI_CRITICAL_ENTER();
  280. bool bit = false;
  281. if((setting->track == MagTrackStateAll))
  282. for(uint16_t i = 0; i < ZERO_PREFIX; i++) {
  283. bit ^= 0xFF;
  284. bitbang_raw(bit, setting);
  285. furi_delay_us(setting->us_clock * 2);
  286. }
  287. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateOne))
  288. for(uint16_t i = 0; i < bits_t1_count; i++) {
  289. uint8_t byte = i / 8;
  290. uint8_t bitmask = 1 << (7 - (i % 8));
  291. /* this comment is mostly for zw's convenience:
  292. *
  293. * bits are stored in their arrays like on a card (LSB first). This is not how usually bits are stored in a
  294. * byte, with the MSB first. the var bitmask creates the pattern to iterate through each bit, LSB first, like so
  295. * 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x80... masking bits one by one from the current byte
  296. *
  297. * i've chosen this LSB approach since bits and bytes are hard enough to visualize with the 5/8 and 7/8 encoding
  298. * MSR uses. It's a biiit more complicated to process, but visualizing it with printf or a debugger is
  299. * infinitely easier
  300. *
  301. * Encoding the following pairs of 5 bits as 5/8: A1234 B1234 C1234 D1234
  302. * using this LSB format looks like: A1234B12 34C1234D 12340000
  303. * using the MSB format, looks like: 21B4321A D4321C43 00004321
  304. * this means reading each byte backwards when printing/debugging, and the jumping 16 bits ahead, reading 8 more
  305. * bits backward, jumping 16 more bits ahead.
  306. *
  307. * I find this much more convenient for debugging, with the tiny incovenience of reading the bits in reverse
  308. * order. THus, the reason for the bitmask above
  309. */
  310. bit = !!(bits_t1_manchester[byte] & bitmask);
  311. // TODO: reimplement timing delays. Replace fixed furi_hal_cortex_delay_us to wait instead to a specific value
  312. // for DWT->CYCCNT. Note timer is aliased to 64us as per
  313. // #define FURI_HAL_CORTEX_INSTRUCTIONS_PER_MICROSECOND (SystemCoreClock / 1000000) | furi_hal_cortex.c
  314. bitbang_raw(bit, setting);
  315. furi_delay_us(setting->us_clock);
  316. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  317. }
  318. if((setting->track == MagTrackStateAll))
  319. for(uint16_t i = 0; i < ZERO_BETWEEN; i++) {
  320. bit ^= 0xFF;
  321. bitbang_raw(bit, setting);
  322. furi_delay_us(setting->us_clock * 2);
  323. }
  324. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateTwo))
  325. for(uint16_t i = 0; i < bits_t2_count; i++) {
  326. uint16_t j = bits_t2_count - i - 1;
  327. uint8_t byte = j / 8;
  328. uint8_t bitmask = 1 << (7 - (j % 8));
  329. bool bit = !!(bits_t2_manchester[byte] & bitmask);
  330. bitbang_raw(bit, setting);
  331. furi_delay_us(setting->us_clock);
  332. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  333. }
  334. if((setting->track == MagTrackStateAll))
  335. for(uint16_t i = 0; i < ZERO_SUFFIX; i++) {
  336. bit ^= 0xFF;
  337. bitbang_raw(bit, setting);
  338. furi_delay_us(setting->us_clock * 2);
  339. }
  340. FURI_CRITICAL_EXIT();
  341. free(data1);
  342. free(data2);
  343. tx_deinit(setting);
  344. }
  345. // due for deprecation
  346. void mag_spoof(Mag* mag) {
  347. MagSetting* setting = mag->setting;
  348. // precompute tracks (WIP; ignores reverse and 3rd track)
  349. // likely will be reworked to antirez's bitmap method anyway...
  350. const char* data1 = furi_string_get_cstr(mag->mag_dev->dev_data.track[0].str);
  351. const char* data2 = furi_string_get_cstr(mag->mag_dev->dev_data.track[1].str);
  352. uint8_t bit_array1[2 * (strlen(data1) * bitlen[0]) + 1];
  353. uint8_t bit_array2[2 * (strlen(data2) * bitlen[1]) + 1];
  354. track_to_bits(bit_array1, data1, 0);
  355. track_to_bits(bit_array2, data2, 1);
  356. bool spoofed = false;
  357. do {
  358. // Initialize configured TX method
  359. if(!tx_init(setting)) break;
  360. // Critical timing section (need to eliminate ifs? does this impact timing?)
  361. FURI_CRITICAL_ENTER();
  362. // Prefix of zeros
  363. for(uint16_t i = 0; i < ZERO_PREFIX; i++) {
  364. if(!play_bit(0, setting)) break;
  365. }
  366. // Track 1
  367. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateOne)) {
  368. for(uint16_t i = 0; bit_array1[i] != 2; i++) {
  369. if(!play_bit((bit_array1[i] & 1), setting)) break;
  370. }
  371. }
  372. // Zeros between tracks
  373. if(setting->track == MagTrackStateAll) {
  374. for(uint16_t i = 0; i < ZERO_BETWEEN; i++) {
  375. if(!play_bit(0, setting)) break;
  376. }
  377. }
  378. // Track 2 (TODO: Reverse track)
  379. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateTwo)) {
  380. for(uint16_t i = 0; bit_array2[i] != 2; i++) {
  381. if(!play_bit((bit_array2[i] & 1), setting)) break;
  382. }
  383. }
  384. // Suffix of zeros
  385. for(uint16_t i = 0; i < ZERO_SUFFIX; i++) {
  386. if(!play_bit(0, setting)) break;
  387. }
  388. FURI_CRITICAL_EXIT();
  389. // Reset configured TX method
  390. if(!tx_deinit(setting)) break;
  391. spoofed = true;
  392. } while(0);
  393. UNUSED(spoofed);
  394. /*if(!spoofed) {
  395. // error handling?
  396. // cleanup?
  397. }*/
  398. }
  399. uint16_t add_bit(bool value, uint8_t* out, uint16_t count) {
  400. uint8_t bit = count % 8;
  401. uint8_t byte = count / 8;
  402. if(value) {
  403. out[byte] |= 0x01;
  404. }
  405. if(bit < 7) out[byte] <<= 1;
  406. return count + 1;
  407. }
  408. uint16_t add_bit_manchester(bool value, uint8_t* out, uint16_t count) {
  409. static bool toggle = 0;
  410. toggle ^= 0x01;
  411. count = add_bit(toggle, out, count);
  412. if(value) toggle ^= 0x01;
  413. count = add_bit(toggle, out, count);
  414. return count;
  415. }
  416. uint16_t msr_encode(
  417. char* data,
  418. uint8_t* out_manchester,
  419. uint8_t* out_raw,
  420. uint8_t track_bits,
  421. uint8_t track_ascii_offset) {
  422. /*
  423. * track_bits - the number of raw (data) bits on the track. on ISO cards, that's 7 for track 1, or 5 for 2/3 - this is samy's bitlen
  424. * - this count includes the parity bit
  425. * track_ascii_offset - how much the ascii values are offset. track 1 makes space (ascii 32) become data 0x00,
  426. * - tracks 2/3 make ascii "0" become data 0x00 - this is samy's sublen
  427. *
  428. */
  429. uint16_t raw_bits_count = 0;
  430. uint16_t output_count = 0;
  431. int tmp, crc, lrc = 0;
  432. for(int i = 0; i < PREFIX_NUM_ZEROES; i++) {
  433. output_count = add_bit_manchester(0, out_manchester, output_count);
  434. raw_bits_count = add_bit(0, out_raw, raw_bits_count);
  435. }
  436. for(int i = 0; *(data + i) != 0; i++) {
  437. crc = 1;
  438. tmp = *(data + i) - track_ascii_offset;
  439. for(int j = 0; j < track_bits - 1; j++) {
  440. crc ^= tmp & 1;
  441. lrc ^= (tmp & 1) << j;
  442. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  443. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  444. tmp >>= 1;
  445. }
  446. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  447. output_count = add_bit_manchester(crc, out_manchester, output_count);
  448. }
  449. // LRC byte
  450. tmp = lrc;
  451. crc = 1;
  452. for(int j = 0; j < track_bits - 1; j++) {
  453. crc ^= tmp & 0x01;
  454. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  455. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  456. tmp >>= 1;
  457. }
  458. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  459. output_count = add_bit_manchester(crc, out_manchester, output_count);
  460. return output_count;
  461. }
  462. void debug_msr_string(char* data, uint8_t track_bits, uint8_t track_ascii_offset) {
  463. uint8_t bits_raw[64] = {0}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  464. uint8_t bits_manchester[128] = {0}; // twice the above
  465. int numbits = 0;
  466. printf("Encoding [%s] with %d bits\r\n", data, track_bits);
  467. numbits = msr_encode(
  468. data, (uint8_t*)bits_manchester, (uint8_t*)bits_raw, track_bits, track_ascii_offset);
  469. printf("Got %d bits\r\n", numbits);
  470. printf("Raw byte stream: ");
  471. for(int i = 0; i < numbits / 8 / 2; i++) {
  472. printf("%02x", bits_raw[i]);
  473. if(i % 4 == 3) printf(" ");
  474. }
  475. printf("\r\n");
  476. printf("Bits ");
  477. int space_counter = 0;
  478. for(int i = 0; i < numbits / 2; i++) {
  479. if(i < PREFIX_NUM_ZEROES) {
  480. printf("X");
  481. continue;
  482. } else if(i == PREFIX_NUM_ZEROES) {
  483. printf(" ");
  484. space_counter = 0;
  485. }
  486. printf("%01x", (bits_raw[i / 8] & (1 << (7 - (i % 8)))) != 0);
  487. if((space_counter) % track_bits == track_bits - 1) printf(" ");
  488. space_counter++;
  489. }
  490. printf("\r\n");
  491. printf("Manchester encoded, byte stream: ");
  492. for(int i = 0; i < numbits / 8; i++) {
  493. printf("%02x", bits_manchester[i]);
  494. if(i % 4 == 3) printf(" ");
  495. }
  496. printf("\r\n\r\n");
  497. }