BMP280.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252
  1. /*
  2. Unitemp - Universal temperature reader
  3. Copyright (C) 2022 Victor Nikitchuk (https://github.com/quen0n)
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <https://www.gnu.org/licenses/>.
  14. */
  15. #include "BMP280.h"
  16. const SensorType BMP280 = {
  17. .typename = "BMP280",
  18. .interface = &I2C,
  19. .datatype = UT_DATA_TYPE_TEMP_PRESS,
  20. .pollingInterval = 500,
  21. .allocator = unitemp_BMP280_alloc,
  22. .mem_releaser = unitemp_BMP280_free,
  23. .initializer = unitemp_BMP280_init,
  24. .deinitializer = unitemp_BMP280_deinit,
  25. .updater = unitemp_BMP280_update};
  26. //Интервал обновления калибровочных значений
  27. #define BMP280_CAL_UPDATE_INTERVAL 60000
  28. #define TEMP_CAL_START_ADDR 0x88
  29. #define PRESS_CAL_START_ADDR 0x8E
  30. #define BMP280_ID 0x58
  31. #define BMP280_REG_STATUS 0xF3
  32. #define BMP280_REG_CTRL_MEAS 0xF4
  33. #define BMP280_REG_CONFIG 0xF5
  34. //Преддескретизация температуры
  35. #define BMP280_TEMP_OVERSAMPLING_SKIP 0b00000000
  36. #define BMP280_TEMP_OVERSAMPLING_1 0b00100000
  37. #define BMP280_TEMP_OVERSAMPLING_2 0b01000000
  38. #define BMP280_TEMP_OVERSAMPLING_4 0b01100000
  39. #define BMP280_TEMP_OVERSAMPLING_8 0b10000000
  40. #define BMP280_TEMP_OVERSAMPLING_16 0b10100000
  41. //Преддескретизация давления
  42. #define BMP280_PRESS_OVERSAMPLING_SKIP 0b00000000
  43. #define BMP280_PRESS_OVERSAMPLING_1 0b00000100
  44. #define BMP280_PRESS_OVERSAMPLING_2 0b00001000
  45. #define BMP280_PRESS_OVERSAMPLING_4 0b00001100
  46. #define BMP280_PRESS_OVERSAMPLING_8 0b00010000
  47. #define BMP280_PRESS_OVERSAMPLING_16 0b00010100
  48. //Режимы работы датчика
  49. #define BMP280_MODE_SLEEP 0b00000000 //Спит и мало кушает
  50. #define BMP280_MODE_FORCED 0b00000001 //Обновляет значения 1 раз, после чего уходит в сон
  51. #define BMP280_MODE_NORMAL 0b00000011 //Регулярно обновляет значения
  52. //Период обновления в нормальном режиме
  53. #define BMP280_STANDBY_TIME_0_5 0b00000000
  54. #define BMP280_STANDBY_TIME_62_5 0b00100000
  55. #define BMP280_STANDBY_TIME_125 0b01000000
  56. #define BMP280_STANDBY_TIME_250 0b01100000
  57. #define BMP280_STANDBY_TIME_500 0b10000000
  58. #define BMP280_STANDBY_TIME_1000 0b10100000
  59. #define BMP280_STANDBY_TIME_2000 0b11000000
  60. #define BMP280_STANDBY_TIME_4000 0b11100000
  61. //Коэффициент фильтрации значений
  62. #define BMP280_FILTER_COEFF_1 0b00000000
  63. #define BMP280_FILTER_COEFF_2 0b00000100
  64. #define BMP280_FILTER_COEFF_4 0b00001000
  65. #define BMP280_FILTER_COEFF_8 0b00001100
  66. #define BMP280_FILTER_COEFF_16 0b00010000
  67. //Разрешить работу по SPI
  68. #define BMP280_SPI_3W_ENABLE 0b00000001
  69. #define BMP280_SPI_3W_DISABLE 0b00000000
  70. static double bmp280_compensate_T_double(I2CSensor* i2c_sensor, int32_t adc_T) {
  71. BMP280_instance* bmp280_instance = (BMP280_instance*)i2c_sensor->sensorInstance;
  72. double var1, var2, T;
  73. var1 = (((double)adc_T) / (double)16384.0 -
  74. ((double)bmp280_instance->temp_cal.dig_T1) / (double)1024.0) *
  75. ((double)bmp280_instance->temp_cal.dig_T2);
  76. var2 = ((((double)adc_T) / (double)131072.0 -
  77. ((double)bmp280_instance->temp_cal.dig_T1) / (double)8192.0) *
  78. (((double)adc_T) / (double)131072.0 -
  79. ((double)bmp280_instance->temp_cal.dig_T1) / (double)8192.0)) *
  80. ((double)bmp280_instance->temp_cal.dig_T3);
  81. bmp280_instance->t_fine = var1 + var2;
  82. T = (var1 + var2) / (double)5120.0;
  83. return T;
  84. }
  85. static double bmp280_compensate_P_double(I2CSensor* i2c_sensor, int32_t adc_P) {
  86. BMP280_instance* bmp280_instance = (BMP280_instance*)i2c_sensor->sensorInstance;
  87. double var1, var2, p;
  88. var1 = ((double)bmp280_instance->t_fine / (double)2.0) - (double)64000.0;
  89. var2 = var1 * var1 * ((double)bmp280_instance->press_cal.dig_P6) / (double)32768.0;
  90. var2 = var2 + var1 * ((double)bmp280_instance->press_cal.dig_P5) * (double)2.0;
  91. var2 = (var2 / (double)4.0) + (((double)bmp280_instance->press_cal.dig_P4) * (double)65536.0);
  92. var1 = (((double)bmp280_instance->press_cal.dig_P3) * var1 * var1 / (double)524288.0 +
  93. ((double)bmp280_instance->press_cal.dig_P2) * var1) /
  94. (double)524288.0;
  95. var1 = ((double)1.0 + var1 / (double)32768.0) * ((double)bmp280_instance->press_cal.dig_P1);
  96. if(var1 == (double)0.0) {
  97. return 0; // avoid exception caused by division by zero
  98. }
  99. p = (double)1048576.0 - (double)adc_P;
  100. p = (p - (var2 / (double)4096.0)) * (double)6250.0 / var1;
  101. var1 = ((double)bmp280_instance->press_cal.dig_P9) * p * p / (double)2147483648.0;
  102. var2 = p * ((double)bmp280_instance->press_cal.dig_P8) / (double)32768.0;
  103. p = p + (var1 + var2 + ((double)bmp280_instance->press_cal.dig_P7)) / (double)16.0;
  104. return p;
  105. }
  106. static bool bmp280_readCalValues(I2CSensor* i2c_sensor) {
  107. BMP280_instance* bmp280_instance = (BMP280_instance*)i2c_sensor->sensorInstance;
  108. if(!unitemp_i2c_readRegArray(
  109. i2c_sensor, TEMP_CAL_START_ADDR, 6, (uint8_t*)&bmp280_instance->temp_cal))
  110. return false;
  111. #ifdef UNITEMP_DEBUG
  112. FURI_LOG_D(
  113. APP_NAME,
  114. "Sensor BMP280 (0x%02X) calibration values: T1: %d, T2: %d, T3: %d",
  115. i2c_sensor->currentI2CAdr,
  116. bmp280_instance->temp_cal.dig_T1,
  117. bmp280_instance->temp_cal.dig_T2,
  118. bmp280_instance->temp_cal.dig_T3);
  119. #endif
  120. if(!unitemp_i2c_readRegArray(
  121. i2c_sensor, PRESS_CAL_START_ADDR, 18, (uint8_t*)&bmp280_instance->press_cal))
  122. return false;
  123. #ifdef UNITEMP_DEBUG
  124. FURI_LOG_D(
  125. APP_NAME,
  126. "Sensor BMP280 (0x%02X): P1-9: %d, %d, %d, %d, %d, %d, %d, %d, %d",
  127. i2c_sensor->currentI2CAdr,
  128. bmp280_instance->press_cal.dig_P1,
  129. bmp280_instance->press_cal.dig_P2,
  130. bmp280_instance->press_cal.dig_P3,
  131. bmp280_instance->press_cal.dig_P4,
  132. bmp280_instance->press_cal.dig_P5,
  133. bmp280_instance->press_cal.dig_P6,
  134. bmp280_instance->press_cal.dig_P7,
  135. bmp280_instance->press_cal.dig_P8,
  136. bmp280_instance->press_cal.dig_P9);
  137. #endif
  138. bmp280_instance->last_cal_update_time = furi_get_tick();
  139. return true;
  140. }
  141. static bool bmp280_isMeasuring(Sensor* sensor) {
  142. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  143. return (bool)((unitemp_i2c_readReg(i2c_sensor, BMP280_REG_STATUS) & 0x08) >> 3);
  144. }
  145. bool unitemp_BMP280_alloc(Sensor* sensor, char* args) {
  146. UNUSED(args);
  147. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  148. BMP280_instance* bmp280_instance = malloc(sizeof(BMP280_instance));
  149. if(bmp280_instance == NULL) {
  150. FURI_LOG_E(APP_NAME, "Failed to allocation sensor %s instance", sensor->name);
  151. return false;
  152. }
  153. i2c_sensor->sensorInstance = bmp280_instance;
  154. i2c_sensor->minI2CAdr = 0x76;
  155. i2c_sensor->maxI2CAdr = 0x77;
  156. return true;
  157. }
  158. bool unitemp_BMP280_init(Sensor* sensor) {
  159. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  160. //Перезагрузка
  161. unitemp_i2c_writeReg(i2c_sensor, 0xE0, 0xB6);
  162. //Чтение ID датчика
  163. uint8_t id = unitemp_i2c_readReg(i2c_sensor, 0xD0);
  164. if(id != BMP280_ID) {
  165. FURI_LOG_E(
  166. APP_NAME,
  167. "Sensor %s returned wrong ID 0x%02X, expected 0x%02X",
  168. sensor->name,
  169. id,
  170. BMP280_ID);
  171. return false;
  172. }
  173. //Чтение калибровочных значений
  174. if(!bmp280_readCalValues(i2c_sensor)) {
  175. FURI_LOG_E(APP_NAME, "Failed to read calibration values sensor %s", sensor->name);
  176. return false;
  177. }
  178. //Настройка режимов работы
  179. unitemp_i2c_writeReg(
  180. i2c_sensor,
  181. BMP280_REG_CTRL_MEAS,
  182. BMP280_TEMP_OVERSAMPLING_2 | BMP280_PRESS_OVERSAMPLING_4 | BMP280_MODE_NORMAL);
  183. //Настройка периода опроса и фильтрации значений
  184. unitemp_i2c_writeReg(
  185. i2c_sensor,
  186. BMP280_REG_CONFIG,
  187. BMP280_STANDBY_TIME_500 | BMP280_FILTER_COEFF_16 | BMP280_SPI_3W_DISABLE);
  188. return true;
  189. }
  190. bool unitemp_BMP280_deinit(Sensor* sensor) {
  191. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  192. //Перевод в сон
  193. unitemp_i2c_writeReg(i2c_sensor, BMP280_REG_CTRL_MEAS, BMP280_MODE_SLEEP);
  194. return true;
  195. }
  196. UnitempStatus unitemp_BMP280_update(Sensor* sensor) {
  197. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  198. BMP280_instance* instance = i2c_sensor->sensorInstance;
  199. uint32_t t = furi_get_tick();
  200. if(furi_get_tick() - instance->last_cal_update_time > BMP280_CAL_UPDATE_INTERVAL) {
  201. bmp280_readCalValues(i2c_sensor);
  202. }
  203. uint8_t buff[3];
  204. //Проверка инициализированности датчика
  205. unitemp_i2c_readRegArray(i2c_sensor, 0xF4, 2, buff);
  206. if(buff[0] == 0) {
  207. FURI_LOG_W(APP_NAME, "Sensor %s is not initialized!", sensor->name);
  208. return UT_SENSORSTATUS_ERROR;
  209. }
  210. while(bmp280_isMeasuring(sensor)) {
  211. if(furi_get_tick() - t > 100) {
  212. return UT_SENSORSTATUS_TIMEOUT;
  213. }
  214. }
  215. if(!unitemp_i2c_readRegArray(i2c_sensor, 0xFA, 3, buff)) return UT_SENSORSTATUS_TIMEOUT;
  216. int32_t adc_T = ((int32_t)buff[0] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4);
  217. if(!unitemp_i2c_readRegArray(i2c_sensor, 0xF7, 3, buff)) return UT_SENSORSTATUS_TIMEOUT;
  218. int32_t adc_P = ((int32_t)buff[0] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4);
  219. sensor->temp = bmp280_compensate_T_double(i2c_sensor, adc_T);
  220. sensor->pressure = bmp280_compensate_P_double(i2c_sensor, adc_P);
  221. return UT_SENSORSTATUS_OK;
  222. }
  223. bool unitemp_BMP280_free(Sensor* sensor) {
  224. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  225. free(i2c_sensor->sensorInstance);
  226. return true;
  227. }