| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789227902279122792227932279422795227962279722798227992280022801228022280322804228052280622807228082280922810228112281222813228142281522816228172281822819228202282122822228232282422825228262282722828228292283022831228322283322834228352283622837228382283922840228412284222843228442284522846228472284822849228502285122852228532285422855228562285722858228592286022861228622286322864228652286622867228682286922870228712287222873228742287522876228772287822879228802288122882228832288422885228862288722888228892289022891228922289322894228952289622897228982289922900229012290222903229042290522906229072290822909229102291122912229132291422915229162291722918229192292022921229222292322924229252292622927229282292922930229312293222933229342293522936229372293822939229402294122942229432294422945229462294722948229492295022951229522295322954229552295622957229582295922960229612296222963229642296522966229672296822969229702297122972229732297422975229762297722978229792298022981229822298322984229852298622987229882298922990229912299222993229942299522996229972299822999230002300123002230032300423005230062300723008230092301023011230122301323014230152301623017230182301923020230212302223023230242302523026230272302823029230302303123032230332303423035230362303723038230392304023041230422304323044230452304623047230482304923050230512305223053230542305523056230572305823059230602306123062230632306423065230662306723068230692307023071230722307323074230752307623077230782307923080230812308223083230842308523086230872308823089230902309123092230932309423095230962309723098230992310023101231022310323104231052310623107231082310923110231112311223113231142311523116231172311823119231202312123122231232312423125231262312723128231292313023131231322313323134231352313623137231382313923140231412314223143231442314523146231472314823149231502315123152231532315423155231562315723158231592316023161231622316323164231652316623167231682316923170231712317223173231742317523176231772317823179231802318123182231832318423185231862318723188231892319023191231922319323194231952319623197231982319923200232012320223203232042320523206232072320823209232102321123212232132321423215232162321723218232192322023221232222322323224232252322623227232282322923230232312323223233232342323523236232372323823239232402324123242232432324423245232462324723248232492325023251232522325323254232552325623257232582325923260232612326223263232642326523266232672326823269232702327123272232732327423275232762327723278232792328023281232822328323284232852328623287232882328923290232912329223293232942329523296232972329823299233002330123302233032330423305233062330723308233092331023311233122331323314233152331623317233182331923320233212332223323233242332523326233272332823329233302333123332233332333423335233362333723338233392334023341233422334323344233452334623347233482334923350233512335223353233542335523356233572335823359233602336123362233632336423365233662336723368233692337023371233722337323374233752337623377233782337923380233812338223383233842338523386233872338823389233902339123392233932339423395233962339723398233992340023401234022340323404234052340623407234082340923410234112341223413234142341523416234172341823419234202342123422234232342423425234262342723428234292343023431234322343323434234352343623437234382343923440234412344223443234442344523446234472344823449234502345123452234532345423455234562345723458234592346023461234622346323464234652346623467234682346923470234712347223473234742347523476234772347823479234802348123482234832348423485234862348723488234892349023491234922349323494234952349623497234982349923500235012350223503235042350523506235072350823509235102351123512235132351423515235162351723518235192352023521235222352323524235252352623527235282352923530235312353223533235342353523536235372353823539235402354123542235432354423545235462354723548235492355023551235522355323554235552355623557235582355923560235612356223563235642356523566235672356823569235702357123572235732357423575235762357723578235792358023581235822358323584235852358623587235882358923590235912359223593235942359523596235972359823599236002360123602236032360423605236062360723608236092361023611236122361323614236152361623617236182361923620236212362223623236242362523626236272362823629236302363123632236332363423635236362363723638236392364023641236422364323644236452364623647236482364923650236512365223653236542365523656236572365823659236602366123662236632366423665236662366723668236692367023671236722367323674236752367623677236782367923680236812368223683236842368523686236872368823689236902369123692236932369423695236962369723698236992370023701237022370323704237052370623707237082370923710237112371223713237142371523716237172371823719237202372123722237232372423725237262372723728237292373023731237322373323734237352373623737237382373923740237412374223743237442374523746237472374823749237502375123752237532375423755237562375723758237592376023761237622376323764237652376623767237682376923770237712377223773237742377523776237772377823779237802378123782237832378423785237862378723788237892379023791237922379323794237952379623797237982379923800238012380223803238042380523806238072380823809238102381123812238132381423815238162381723818238192382023821238222382323824238252382623827238282382923830238312383223833238342383523836238372383823839238402384123842238432384423845238462384723848238492385023851238522385323854238552385623857238582385923860238612386223863238642386523866238672386823869238702387123872238732387423875238762387723878238792388023881238822388323884238852388623887238882388923890238912389223893238942389523896238972389823899239002390123902239032390423905239062390723908239092391023911239122391323914239152391623917239182391923920239212392223923239242392523926239272392823929239302393123932239332393423935239362393723938239392394023941239422394323944239452394623947239482394923950239512395223953239542395523956239572395823959239602396123962239632396423965239662396723968239692397023971239722397323974239752397623977239782397923980239812398223983239842398523986239872398823989239902399123992239932399423995239962399723998239992400024001240022400324004240052400624007240082400924010240112401224013240142401524016240172401824019240202402124022240232402424025240262402724028240292403024031240322403324034240352403624037240382403924040240412404224043240442404524046240472404824049240502405124052240532405424055240562405724058240592406024061240622406324064240652406624067240682406924070240712407224073240742407524076240772407824079240802408124082240832408424085240862408724088240892409024091240922409324094240952409624097240982409924100241012410224103241042410524106241072410824109241102411124112241132411424115241162411724118241192412024121241222412324124241252412624127241282412924130241312413224133241342413524136241372413824139241402414124142241432414424145241462414724148241492415024151241522415324154241552415624157241582415924160241612416224163241642416524166241672416824169241702417124172241732417424175241762417724178241792418024181241822418324184241852418624187241882418924190241912419224193241942419524196241972419824199242002420124202242032420424205242062420724208242092421024211242122421324214242152421624217242182421924220242212422224223242242422524226242272422824229242302423124232242332423424235242362423724238242392424024241242422424324244242452424624247242482424924250242512425224253242542425524256242572425824259242602426124262242632426424265242662426724268242692427024271242722427324274242752427624277242782427924280242812428224283242842428524286242872428824289242902429124292242932429424295242962429724298242992430024301243022430324304243052430624307243082430924310243112431224313243142431524316243172431824319243202432124322243232432424325243262432724328243292433024331243322433324334243352433624337243382433924340243412434224343243442434524346243472434824349243502435124352243532435424355243562435724358243592436024361243622436324364243652436624367243682436924370243712437224373243742437524376243772437824379243802438124382243832438424385243862438724388243892439024391243922439324394243952439624397243982439924400244012440224403244042440524406244072440824409244102441124412244132441424415244162441724418244192442024421244222442324424244252442624427244282442924430244312443224433244342443524436244372443824439244402444124442244432444424445244462444724448244492445024451244522445324454244552445624457244582445924460244612446224463244642446524466244672446824469244702447124472244732447424475244762447724478244792448024481244822448324484244852448624487244882448924490244912449224493244942449524496244972449824499245002450124502245032450424505245062450724508245092451024511245122451324514245152451624517245182451924520245212452224523245242452524526245272452824529245302453124532245332453424535245362453724538245392454024541245422454324544245452454624547245482454924550245512455224553245542455524556245572455824559245602456124562245632456424565245662456724568245692457024571245722457324574245752457624577245782457924580245812458224583245842458524586245872458824589245902459124592245932459424595245962459724598245992460024601246022460324604246052460624607246082460924610246112461224613246142461524616246172461824619246202462124622246232462424625246262462724628246292463024631246322463324634246352463624637246382463924640246412464224643246442464524646246472464824649246502465124652246532465424655246562465724658246592466024661246622466324664246652466624667246682466924670246712467224673246742467524676246772467824679246802468124682246832468424685246862468724688246892469024691246922469324694246952469624697246982469924700247012470224703247042470524706247072470824709247102471124712247132471424715247162471724718247192472024721247222472324724247252472624727247282472924730247312473224733247342473524736247372473824739247402474124742247432474424745247462474724748247492475024751247522475324754247552475624757247582475924760247612476224763247642476524766247672476824769247702477124772247732477424775247762477724778247792478024781247822478324784247852478624787247882478924790247912479224793247942479524796247972479824799248002480124802248032480424805248062480724808248092481024811248122481324814248152481624817248182481924820248212482224823248242482524826248272482824829248302483124832248332483424835248362483724838248392484024841248422484324844248452484624847248482484924850248512485224853248542485524856248572485824859248602486124862248632486424865248662486724868248692487024871248722487324874248752487624877248782487924880248812488224883248842488524886248872488824889248902489124892248932489424895248962489724898248992490024901249022490324904249052490624907249082490924910249112491224913249142491524916249172491824919249202492124922249232492424925249262492724928249292493024931249322493324934249352493624937249382493924940249412494224943249442494524946249472494824949249502495124952249532495424955249562495724958249592496024961249622496324964249652496624967249682496924970249712497224973249742497524976249772497824979249802498124982249832498424985249862498724988249892499024991249922499324994249952499624997249982499925000250012500225003250042500525006250072500825009250102501125012250132501425015250162501725018250192502025021250222502325024250252502625027250282502925030250312503225033250342503525036250372503825039250402504125042250432504425045250462504725048250492505025051250522505325054250552505625057250582505925060250612506225063250642506525066250672506825069250702507125072250732507425075250762507725078250792508025081250822508325084250852508625087250882508925090250912509225093250942509525096250972509825099251002510125102251032510425105251062510725108251092511025111251122511325114251152511625117251182511925120251212512225123251242512525126251272512825129251302513125132251332513425135251362513725138251392514025141251422514325144251452514625147251482514925150251512515225153251542515525156251572515825159251602516125162251632516425165251662516725168251692517025171251722517325174251752517625177251782517925180251812518225183251842518525186251872518825189251902519125192251932519425195251962519725198251992520025201252022520325204252052520625207252082520925210252112521225213252142521525216252172521825219252202522125222252232522425225252262522725228252292523025231252322523325234252352523625237252382523925240252412524225243252442524525246252472524825249252502525125252252532525425255252562525725258252592526025261252622526325264252652526625267252682526925270252712527225273252742527525276252772527825279252802528125282252832528425285252862528725288252892529025291252922529325294252952529625297252982529925300253012530225303253042530525306253072530825309253102531125312253132531425315253162531725318253192532025321253222532325324253252532625327253282532925330253312533225333253342533525336253372533825339253402534125342253432534425345253462534725348253492535025351253522535325354253552535625357253582535925360253612536225363253642536525366253672536825369253702537125372253732537425375253762537725378253792538025381253822538325384253852538625387253882538925390253912539225393253942539525396253972539825399254002540125402254032540425405254062540725408254092541025411254122541325414254152541625417254182541925420254212542225423254242542525426254272542825429254302543125432254332543425435254362543725438254392544025441254422544325444254452544625447254482544925450254512545225453254542545525456254572545825459254602546125462254632546425465254662546725468254692547025471254722547325474254752547625477254782547925480254812548225483254842548525486254872548825489254902549125492254932549425495254962549725498254992550025501255022550325504255052550625507255082550925510255112551225513255142551525516255172551825519255202552125522255232552425525255262552725528255292553025531255322553325534255352553625537255382553925540255412554225543255442554525546255472554825549255502555125552255532555425555255562555725558255592556025561255622556325564255652556625567255682556925570255712557225573255742557525576255772557825579255802558125582255832558425585255862558725588255892559025591255922559325594255952559625597255982559925600256012560225603256042560525606256072560825609256102561125612256132561425615256162561725618256192562025621256222562325624256252562625627256282562925630256312563225633256342563525636256372563825639256402564125642256432564425645256462564725648256492565025651256522565325654256552565625657256582565925660256612566225663256642566525666256672566825669256702567125672256732567425675256762567725678256792568025681256822568325684256852568625687256882568925690256912569225693256942569525696256972569825699257002570125702257032570425705257062570725708257092571025711257122571325714257152571625717257182571925720257212572225723257242572525726257272572825729257302573125732257332573425735257362573725738257392574025741257422574325744257452574625747257482574925750257512575225753257542575525756257572575825759257602576125762257632576425765257662576725768257692577025771257722577325774257752577625777257782577925780257812578225783257842578525786257872578825789257902579125792257932579425795257962579725798257992580025801258022580325804258052580625807258082580925810258112581225813258142581525816258172581825819258202582125822258232582425825258262582725828258292583025831258322583325834258352583625837258382583925840258412584225843258442584525846258472584825849258502585125852258532585425855258562585725858258592586025861258622586325864258652586625867258682586925870258712587225873258742587525876258772587825879258802588125882258832588425885258862588725888258892589025891258922589325894258952589625897258982589925900259012590225903259042590525906259072590825909259102591125912259132591425915259162591725918259192592025921259222592325924259252592625927259282592925930259312593225933259342593525936259372593825939259402594125942259432594425945259462594725948259492595025951259522595325954259552595625957259582595925960259612596225963259642596525966259672596825969259702597125972259732597425975259762597725978259792598025981259822598325984259852598625987259882598925990259912599225993259942599525996259972599825999260002600126002260032600426005260062600726008260092601026011260122601326014260152601626017260182601926020260212602226023260242602526026260272602826029260302603126032260332603426035260362603726038260392604026041260422604326044260452604626047260482604926050260512605226053260542605526056260572605826059260602606126062260632606426065260662606726068260692607026071260722607326074260752607626077260782607926080260812608226083260842608526086260872608826089260902609126092260932609426095260962609726098260992610026101261022610326104261052610626107261082610926110261112611226113261142611526116261172611826119261202612126122261232612426125261262612726128261292613026131261322613326134261352613626137261382613926140261412614226143261442614526146261472614826149261502615126152261532615426155261562615726158261592616026161261622616326164261652616626167261682616926170261712617226173261742617526176261772617826179261802618126182261832618426185261862618726188261892619026191261922619326194261952619626197261982619926200262012620226203262042620526206262072620826209262102621126212262132621426215262162621726218262192622026221262222622326224262252622626227262282622926230262312623226233262342623526236262372623826239262402624126242262432624426245262462624726248262492625026251262522625326254262552625626257262582625926260262612626226263262642626526266262672626826269262702627126272262732627426275262762627726278262792628026281262822628326284262852628626287262882628926290262912629226293262942629526296262972629826299263002630126302263032630426305263062630726308263092631026311263122631326314263152631626317263182631926320263212632226323263242632526326263272632826329263302633126332263332633426335263362633726338263392634026341263422634326344263452634626347263482634926350263512635226353263542635526356263572635826359263602636126362263632636426365263662636726368263692637026371263722637326374263752637626377263782637926380263812638226383263842638526386263872638826389263902639126392263932639426395263962639726398263992640026401264022640326404264052640626407264082640926410264112641226413264142641526416264172641826419264202642126422264232642426425264262642726428264292643026431264322643326434264352643626437264382643926440264412644226443264442644526446264472644826449264502645126452264532645426455264562645726458264592646026461264622646326464264652646626467264682646926470264712647226473264742647526476264772647826479264802648126482264832648426485264862648726488264892649026491264922649326494264952649626497264982649926500265012650226503265042650526506265072650826509265102651126512265132651426515265162651726518265192652026521265222652326524265252652626527265282652926530265312653226533265342653526536265372653826539265402654126542265432654426545265462654726548265492655026551265522655326554265552655626557265582655926560265612656226563265642656526566265672656826569265702657126572265732657426575265762657726578265792658026581265822658326584265852658626587265882658926590265912659226593265942659526596265972659826599266002660126602266032660426605266062660726608266092661026611266122661326614266152661626617266182661926620266212662226623266242662526626266272662826629266302663126632266332663426635266362663726638266392664026641266422664326644266452664626647266482664926650266512665226653266542665526656266572665826659266602666126662266632666426665266662666726668266692667026671266722667326674266752667626677266782667926680266812668226683266842668526686266872668826689266902669126692266932669426695266962669726698266992670026701267022670326704267052670626707267082670926710267112671226713267142671526716267172671826719267202672126722267232672426725267262672726728267292673026731267322673326734267352673626737267382673926740267412674226743267442674526746267472674826749267502675126752267532675426755267562675726758267592676026761267622676326764267652676626767267682676926770267712677226773267742677526776267772677826779267802678126782267832678426785267862678726788267892679026791267922679326794267952679626797267982679926800268012680226803268042680526806268072680826809268102681126812268132681426815268162681726818268192682026821268222682326824268252682626827268282682926830268312683226833268342683526836268372683826839268402684126842268432684426845268462684726848268492685026851268522685326854268552685626857268582685926860268612686226863268642686526866268672686826869268702687126872268732687426875268762687726878268792688026881268822688326884268852688626887268882688926890268912689226893268942689526896268972689826899269002690126902269032690426905269062690726908269092691026911269122691326914269152691626917269182691926920269212692226923269242692526926269272692826929269302693126932269332693426935269362693726938269392694026941269422694326944269452694626947269482694926950269512695226953269542695526956269572695826959269602696126962269632696426965269662696726968269692697026971269722697326974269752697626977269782697926980269812698226983269842698526986269872698826989269902699126992269932699426995269962699726998269992700027001270022700327004270052700627007270082700927010270112701227013270142701527016270172701827019270202702127022270232702427025270262702727028270292703027031270322703327034270352703627037270382703927040270412704227043270442704527046270472704827049270502705127052270532705427055270562705727058270592706027061270622706327064270652706627067270682706927070270712707227073270742707527076270772707827079270802708127082270832708427085270862708727088270892709027091270922709327094270952709627097270982709927100271012710227103271042710527106271072710827109271102711127112271132711427115271162711727118271192712027121271222712327124271252712627127271282712927130271312713227133271342713527136271372713827139271402714127142271432714427145271462714727148271492715027151271522715327154271552715627157271582715927160271612716227163271642716527166271672716827169271702717127172271732717427175271762717727178271792718027181271822718327184271852718627187271882718927190271912719227193271942719527196271972719827199272002720127202272032720427205272062720727208272092721027211272122721327214272152721627217272182721927220272212722227223272242722527226272272722827229272302723127232272332723427235272362723727238272392724027241272422724327244272452724627247272482724927250272512725227253272542725527256272572725827259272602726127262272632726427265272662726727268272692727027271272722727327274272752727627277272782727927280272812728227283272842728527286272872728827289272902729127292272932729427295272962729727298272992730027301273022730327304273052730627307273082730927310273112731227313273142731527316273172731827319273202732127322273232732427325273262732727328273292733027331273322733327334273352733627337273382733927340273412734227343273442734527346273472734827349273502735127352273532735427355273562735727358273592736027361273622736327364273652736627367273682736927370273712737227373273742737527376273772737827379273802738127382273832738427385273862738727388273892739027391273922739327394273952739627397273982739927400274012740227403274042740527406274072740827409274102741127412274132741427415274162741727418274192742027421274222742327424274252742627427274282742927430274312743227433274342743527436274372743827439274402744127442274432744427445274462744727448274492745027451274522745327454274552745627457274582745927460274612746227463274642746527466274672746827469274702747127472274732747427475274762747727478274792748027481274822748327484274852748627487274882748927490274912749227493274942749527496274972749827499275002750127502275032750427505275062750727508275092751027511275122751327514275152751627517275182751927520275212752227523275242752527526275272752827529275302753127532275332753427535275362753727538275392754027541275422754327544275452754627547275482754927550275512755227553275542755527556275572755827559275602756127562275632756427565275662756727568275692757027571275722757327574275752757627577275782757927580275812758227583275842758527586275872758827589275902759127592275932759427595275962759727598275992760027601276022760327604276052760627607276082760927610276112761227613276142761527616276172761827619276202762127622276232762427625276262762727628276292763027631276322763327634276352763627637276382763927640276412764227643276442764527646276472764827649276502765127652276532765427655276562765727658276592766027661276622766327664276652766627667276682766927670276712767227673276742767527676276772767827679276802768127682276832768427685276862768727688276892769027691276922769327694276952769627697276982769927700277012770227703277042770527706277072770827709277102771127712277132771427715277162771727718277192772027721277222772327724277252772627727277282772927730277312773227733277342773527736277372773827739277402774127742277432774427745277462774727748277492775027751277522775327754277552775627757277582775927760277612776227763277642776527766277672776827769277702777127772277732777427775277762777727778277792778027781277822778327784277852778627787277882778927790277912779227793277942779527796277972779827799278002780127802278032780427805278062780727808278092781027811278122781327814278152781627817278182781927820278212782227823278242782527826278272782827829278302783127832278332783427835278362783727838278392784027841278422784327844278452784627847278482784927850278512785227853278542785527856278572785827859278602786127862278632786427865278662786727868278692787027871278722787327874278752787627877278782787927880278812788227883278842788527886278872788827889278902789127892278932789427895278962789727898278992790027901279022790327904279052790627907279082790927910279112791227913279142791527916279172791827919279202792127922279232792427925279262792727928279292793027931279322793327934279352793627937279382793927940279412794227943279442794527946279472794827949279502795127952279532795427955279562795727958279592796027961279622796327964279652796627967279682796927970279712797227973279742797527976279772797827979279802798127982279832798427985279862798727988279892799027991279922799327994279952799627997279982799928000280012800228003280042800528006280072800828009280102801128012280132801428015280162801728018280192802028021280222802328024280252802628027280282802928030280312803228033280342803528036280372803828039280402804128042280432804428045280462804728048280492805028051280522805328054280552805628057280582805928060280612806228063280642806528066280672806828069280702807128072280732807428075280762807728078280792808028081280822808328084280852808628087280882808928090280912809228093280942809528096280972809828099281002810128102281032810428105281062810728108281092811028111281122811328114281152811628117281182811928120281212812228123281242812528126281272812828129281302813128132281332813428135281362813728138281392814028141281422814328144281452814628147281482814928150281512815228153281542815528156281572815828159281602816128162281632816428165281662816728168281692817028171281722817328174281752817628177281782817928180281812818228183281842818528186281872818828189281902819128192281932819428195281962819728198281992820028201282022820328204282052820628207282082820928210282112821228213282142821528216282172821828219282202822128222282232822428225282262822728228282292823028231282322823328234282352823628237282382823928240282412824228243282442824528246282472824828249282502825128252282532825428255282562825728258282592826028261282622826328264282652826628267282682826928270282712827228273282742827528276282772827828279282802828128282282832828428285282862828728288282892829028291282922829328294282952829628297282982829928300283012830228303283042830528306283072830828309283102831128312283132831428315283162831728318283192832028321283222832328324283252832628327283282832928330283312833228333283342833528336283372833828339283402834128342283432834428345283462834728348283492835028351283522835328354283552835628357283582835928360283612836228363283642836528366283672836828369283702837128372283732837428375283762837728378283792838028381283822838328384283852838628387283882838928390283912839228393283942839528396283972839828399284002840128402284032840428405284062840728408284092841028411284122841328414284152841628417284182841928420284212842228423284242842528426284272842828429284302843128432284332843428435284362843728438284392844028441284422844328444284452844628447284482844928450284512845228453284542845528456284572845828459284602846128462284632846428465284662846728468284692847028471284722847328474284752847628477284782847928480284812848228483284842848528486284872848828489284902849128492284932849428495284962849728498284992850028501285022850328504285052850628507285082850928510285112851228513285142851528516285172851828519285202852128522285232852428525285262852728528285292853028531285322853328534285352853628537285382853928540285412854228543285442854528546285472854828549285502855128552285532855428555285562855728558285592856028561285622856328564285652856628567285682856928570285712857228573285742857528576285772857828579285802858128582285832858428585285862858728588285892859028591285922859328594285952859628597285982859928600286012860228603286042860528606286072860828609286102861128612286132861428615286162861728618286192862028621286222862328624286252862628627286282862928630286312863228633286342863528636286372863828639286402864128642286432864428645286462864728648286492865028651286522865328654286552865628657286582865928660286612866228663286642866528666286672866828669286702867128672286732867428675286762867728678286792868028681286822868328684286852868628687286882868928690286912869228693286942869528696286972869828699287002870128702287032870428705287062870728708287092871028711287122871328714287152871628717287182871928720287212872228723287242872528726287272872828729287302873128732287332873428735287362873728738287392874028741287422874328744287452874628747287482874928750287512875228753287542875528756287572875828759287602876128762287632876428765287662876728768287692877028771287722877328774287752877628777287782877928780287812878228783287842878528786287872878828789287902879128792287932879428795287962879728798287992880028801288022880328804288052880628807288082880928810288112881228813288142881528816288172881828819288202882128822288232882428825288262882728828288292883028831288322883328834288352883628837288382883928840288412884228843288442884528846288472884828849288502885128852288532885428855288562885728858288592886028861288622886328864288652886628867288682886928870288712887228873288742887528876288772887828879288802888128882288832888428885288862888728888288892889028891288922889328894288952889628897288982889928900289012890228903289042890528906289072890828909289102891128912289132891428915289162891728918289192892028921289222892328924289252892628927289282892928930289312893228933289342893528936289372893828939289402894128942289432894428945289462894728948289492895028951289522895328954289552895628957289582895928960289612896228963289642896528966289672896828969289702897128972289732897428975289762897728978289792898028981289822898328984289852898628987289882898928990289912899228993289942899528996289972899828999290002900129002290032900429005290062900729008290092901029011290122901329014290152901629017290182901929020290212902229023290242902529026290272902829029290302903129032290332903429035290362903729038290392904029041290422904329044290452904629047290482904929050290512905229053290542905529056290572905829059290602906129062290632906429065290662906729068290692907029071290722907329074290752907629077290782907929080290812908229083290842908529086290872908829089290902909129092290932909429095290962909729098290992910029101291022910329104291052910629107291082910929110291112911229113291142911529116291172911829119291202912129122291232912429125291262912729128291292913029131291322913329134291352913629137291382913929140291412914229143291442914529146291472914829149291502915129152291532915429155291562915729158291592916029161291622916329164291652916629167291682916929170291712917229173291742917529176291772917829179291802918129182291832918429185291862918729188291892919029191291922919329194291952919629197291982919929200292012920229203292042920529206292072920829209292102921129212292132921429215292162921729218292192922029221292222922329224292252922629227292282922929230292312923229233292342923529236292372923829239292402924129242292432924429245292462924729248292492925029251292522925329254292552925629257292582925929260292612926229263292642926529266292672926829269292702927129272292732927429275292762927729278292792928029281292822928329284292852928629287292882928929290292912929229293292942929529296292972929829299293002930129302293032930429305293062930729308293092931029311293122931329314293152931629317293182931929320293212932229323293242932529326293272932829329293302933129332293332933429335293362933729338293392934029341293422934329344293452934629347293482934929350293512935229353293542935529356293572935829359293602936129362293632936429365293662936729368293692937029371293722937329374293752937629377293782937929380293812938229383293842938529386293872938829389293902939129392293932939429395293962939729398293992940029401294022940329404294052940629407294082940929410294112941229413294142941529416294172941829419294202942129422294232942429425294262942729428294292943029431294322943329434294352943629437294382943929440294412944229443294442944529446294472944829449294502945129452294532945429455294562945729458294592946029461294622946329464294652946629467294682946929470294712947229473294742947529476294772947829479294802948129482294832948429485294862948729488294892949029491294922949329494294952949629497294982949929500295012950229503295042950529506295072950829509295102951129512295132951429515295162951729518295192952029521295222952329524295252952629527295282952929530295312953229533295342953529536295372953829539295402954129542295432954429545295462954729548295492955029551295522955329554295552955629557295582955929560295612956229563295642956529566295672956829569295702957129572295732957429575295762957729578295792958029581295822958329584295852958629587295882958929590295912959229593295942959529596295972959829599296002960129602296032960429605296062960729608296092961029611296122961329614296152961629617296182961929620296212962229623296242962529626296272962829629296302963129632296332963429635296362963729638296392964029641296422964329644296452964629647296482964929650296512965229653296542965529656296572965829659296602966129662296632966429665296662966729668296692967029671296722967329674296752967629677296782967929680296812968229683296842968529686296872968829689296902969129692296932969429695296962969729698296992970029701297022970329704297052970629707297082970929710297112971229713297142971529716297172971829719297202972129722297232972429725297262972729728297292973029731297322973329734297352973629737297382973929740297412974229743297442974529746297472974829749297502975129752297532975429755297562975729758297592976029761297622976329764297652976629767297682976929770297712977229773297742977529776297772977829779297802978129782297832978429785297862978729788297892979029791297922979329794297952979629797297982979929800298012980229803298042980529806298072980829809298102981129812298132981429815298162981729818298192982029821298222982329824298252982629827298282982929830298312983229833298342983529836298372983829839298402984129842298432984429845298462984729848298492985029851298522985329854298552985629857298582985929860298612986229863298642986529866298672986829869298702987129872298732987429875298762987729878298792988029881298822988329884298852988629887298882988929890298912989229893298942989529896298972989829899299002990129902299032990429905299062990729908299092991029911299122991329914299152991629917299182991929920299212992229923299242992529926299272992829929299302993129932299332993429935299362993729938299392994029941299422994329944299452994629947299482994929950299512995229953299542995529956299572995829959299602996129962299632996429965299662996729968299692997029971299722997329974299752997629977299782997929980299812998229983299842998529986299872998829989299902999129992299932999429995299962999729998299993000030001300023000330004300053000630007300083000930010300113001230013300143001530016300173001830019300203002130022300233002430025300263002730028300293003030031300323003330034300353003630037300383003930040300413004230043300443004530046300473004830049300503005130052300533005430055300563005730058300593006030061300623006330064300653006630067300683006930070300713007230073300743007530076300773007830079300803008130082300833008430085300863008730088300893009030091300923009330094300953009630097300983009930100301013010230103301043010530106301073010830109301103011130112301133011430115301163011730118301193012030121301223012330124301253012630127301283012930130301313013230133301343013530136301373013830139301403014130142301433014430145301463014730148301493015030151301523015330154301553015630157301583015930160301613016230163301643016530166301673016830169301703017130172301733017430175301763017730178301793018030181301823018330184301853018630187301883018930190301913019230193301943019530196301973019830199302003020130202302033020430205302063020730208302093021030211302123021330214302153021630217302183021930220302213022230223302243022530226302273022830229302303023130232302333023430235302363023730238302393024030241302423024330244302453024630247302483024930250302513025230253302543025530256302573025830259302603026130262302633026430265302663026730268302693027030271302723027330274302753027630277302783027930280302813028230283302843028530286302873028830289302903029130292302933029430295302963029730298302993030030301303023030330304303053030630307303083030930310303113031230313303143031530316303173031830319303203032130322303233032430325303263032730328303293033030331303323033330334303353033630337303383033930340303413034230343303443034530346303473034830349303503035130352303533035430355303563035730358303593036030361303623036330364303653036630367303683036930370303713037230373303743037530376303773037830379303803038130382303833038430385303863038730388303893039030391303923039330394303953039630397303983039930400304013040230403304043040530406304073040830409304103041130412304133041430415304163041730418304193042030421304223042330424304253042630427304283042930430304313043230433304343043530436304373043830439304403044130442304433044430445304463044730448304493045030451304523045330454304553045630457304583045930460304613046230463304643046530466304673046830469304703047130472304733047430475304763047730478304793048030481304823048330484304853048630487304883048930490304913049230493304943049530496304973049830499305003050130502305033050430505305063050730508305093051030511305123051330514305153051630517305183051930520305213052230523305243052530526305273052830529305303053130532305333053430535305363053730538305393054030541305423054330544305453054630547305483054930550305513055230553305543055530556305573055830559305603056130562305633056430565305663056730568305693057030571305723057330574305753057630577305783057930580305813058230583305843058530586305873058830589305903059130592305933059430595305963059730598305993060030601306023060330604306053060630607306083060930610306113061230613306143061530616306173061830619306203062130622306233062430625306263062730628306293063030631306323063330634306353063630637306383063930640306413064230643306443064530646306473064830649306503065130652306533065430655306563065730658306593066030661306623066330664306653066630667306683066930670306713067230673306743067530676306773067830679306803068130682306833068430685306863068730688306893069030691306923069330694306953069630697306983069930700307013070230703307043070530706307073070830709307103071130712307133071430715307163071730718307193072030721307223072330724307253072630727307283072930730307313073230733307343073530736307373073830739307403074130742307433074430745307463074730748307493075030751307523075330754307553075630757307583075930760307613076230763307643076530766307673076830769307703077130772307733077430775307763077730778307793078030781307823078330784307853078630787307883078930790307913079230793307943079530796307973079830799308003080130802308033080430805308063080730808308093081030811308123081330814308153081630817308183081930820308213082230823308243082530826308273082830829308303083130832308333083430835308363083730838308393084030841308423084330844308453084630847308483084930850308513085230853308543085530856308573085830859308603086130862308633086430865308663086730868308693087030871308723087330874308753087630877308783087930880308813088230883308843088530886308873088830889308903089130892308933089430895308963089730898308993090030901309023090330904309053090630907309083090930910309113091230913309143091530916309173091830919309203092130922309233092430925309263092730928309293093030931309323093330934309353093630937309383093930940309413094230943309443094530946309473094830949309503095130952309533095430955309563095730958309593096030961309623096330964309653096630967309683096930970309713097230973309743097530976309773097830979309803098130982309833098430985309863098730988309893099030991309923099330994309953099630997309983099931000310013100231003310043100531006310073100831009310103101131012310133101431015310163101731018310193102031021310223102331024310253102631027310283102931030310313103231033310343103531036310373103831039310403104131042310433104431045310463104731048310493105031051310523105331054310553105631057310583105931060310613106231063310643106531066310673106831069310703107131072310733107431075310763107731078310793108031081310823108331084310853108631087310883108931090310913109231093310943109531096310973109831099311003110131102311033110431105311063110731108311093111031111311123111331114311153111631117311183111931120311213112231123311243112531126311273112831129311303113131132311333113431135311363113731138311393114031141311423114331144311453114631147311483114931150311513115231153311543115531156311573115831159311603116131162311633116431165311663116731168311693117031171311723117331174311753117631177311783117931180311813118231183311843118531186311873118831189311903119131192311933119431195311963119731198311993120031201312023120331204312053120631207312083120931210312113121231213312143121531216312173121831219312203122131222312233122431225312263122731228312293123031231312323123331234312353123631237312383123931240312413124231243312443124531246312473124831249312503125131252312533125431255312563125731258312593126031261312623126331264312653126631267312683126931270312713127231273312743127531276312773127831279312803128131282312833128431285312863128731288312893129031291312923129331294312953129631297312983129931300313013130231303313043130531306313073130831309313103131131312313133131431315313163131731318313193132031321313223132331324313253132631327313283132931330313313133231333313343133531336313373133831339313403134131342313433134431345313463134731348313493135031351313523135331354313553135631357313583135931360313613136231363313643136531366313673136831369313703137131372313733137431375313763137731378313793138031381313823138331384313853138631387313883138931390313913139231393313943139531396313973139831399314003140131402314033140431405314063140731408314093141031411314123141331414314153141631417314183141931420314213142231423314243142531426314273142831429314303143131432314333143431435314363143731438314393144031441314423144331444314453144631447314483144931450314513145231453314543145531456314573145831459314603146131462314633146431465314663146731468314693147031471314723147331474314753147631477314783147931480314813148231483314843148531486314873148831489314903149131492314933149431495314963149731498314993150031501315023150331504315053150631507315083150931510315113151231513315143151531516315173151831519315203152131522315233152431525315263152731528315293153031531315323153331534315353153631537315383153931540315413154231543315443154531546315473154831549315503155131552315533155431555315563155731558315593156031561315623156331564315653156631567315683156931570315713157231573315743157531576315773157831579315803158131582315833158431585315863158731588315893159031591315923159331594315953159631597315983159931600316013160231603316043160531606316073160831609316103161131612316133161431615316163161731618316193162031621316223162331624316253162631627316283162931630316313163231633316343163531636316373163831639316403164131642316433164431645316463164731648316493165031651316523165331654316553165631657316583165931660316613166231663316643166531666316673166831669316703167131672316733167431675316763167731678316793168031681316823168331684316853168631687316883168931690316913169231693316943169531696316973169831699317003170131702317033170431705317063170731708317093171031711317123171331714317153171631717317183171931720317213172231723317243172531726317273172831729317303173131732317333173431735317363173731738317393174031741317423174331744317453174631747317483174931750317513175231753317543175531756317573175831759317603176131762317633176431765317663176731768317693177031771317723177331774317753177631777317783177931780317813178231783317843178531786317873178831789317903179131792317933179431795317963179731798317993180031801318023180331804318053180631807318083180931810318113181231813318143181531816318173181831819318203182131822318233182431825318263182731828318293183031831318323183331834318353183631837318383183931840318413184231843318443184531846318473184831849318503185131852318533185431855318563185731858318593186031861318623186331864318653186631867318683186931870318713187231873318743187531876318773187831879318803188131882318833188431885318863188731888318893189031891318923189331894318953189631897318983189931900319013190231903319043190531906319073190831909319103191131912319133191431915319163191731918319193192031921319223192331924319253192631927319283192931930319313193231933319343193531936319373193831939319403194131942319433194431945319463194731948319493195031951319523195331954319553195631957319583195931960319613196231963319643196531966319673196831969319703197131972319733197431975319763197731978319793198031981319823198331984319853198631987319883198931990319913199231993319943199531996319973199831999320003200132002320033200432005320063200732008320093201032011320123201332014320153201632017320183201932020320213202232023320243202532026320273202832029320303203132032320333203432035320363203732038320393204032041320423204332044320453204632047320483204932050320513205232053320543205532056320573205832059320603206132062320633206432065320663206732068320693207032071320723207332074320753207632077320783207932080320813208232083320843208532086320873208832089320903209132092320933209432095320963209732098320993210032101321023210332104321053210632107321083210932110321113211232113321143211532116321173211832119321203212132122321233212432125321263212732128321293213032131321323213332134321353213632137321383213932140321413214232143321443214532146321473214832149321503215132152321533215432155321563215732158321593216032161321623216332164321653216632167321683216932170321713217232173321743217532176321773217832179321803218132182321833218432185321863218732188321893219032191321923219332194321953219632197321983219932200322013220232203322043220532206322073220832209322103221132212322133221432215322163221732218322193222032221322223222332224322253222632227322283222932230322313223232233322343223532236322373223832239322403224132242322433224432245322463224732248322493225032251322523225332254322553225632257322583225932260322613226232263322643226532266322673226832269322703227132272322733227432275322763227732278322793228032281322823228332284322853228632287322883228932290322913229232293322943229532296322973229832299323003230132302323033230432305323063230732308323093231032311323123231332314323153231632317323183231932320323213232232323323243232532326323273232832329323303233132332323333233432335323363233732338323393234032341323423234332344323453234632347323483234932350323513235232353323543235532356323573235832359323603236132362323633236432365323663236732368323693237032371323723237332374323753237632377323783237932380323813238232383323843238532386323873238832389323903239132392323933239432395323963239732398323993240032401324023240332404324053240632407324083240932410324113241232413324143241532416324173241832419324203242132422324233242432425324263242732428324293243032431324323243332434324353243632437324383243932440324413244232443324443244532446324473244832449324503245132452324533245432455324563245732458324593246032461324623246332464324653246632467324683246932470324713247232473324743247532476324773247832479324803248132482324833248432485324863248732488324893249032491324923249332494324953249632497324983249932500325013250232503325043250532506325073250832509325103251132512325133251432515325163251732518325193252032521325223252332524325253252632527325283252932530325313253232533325343253532536325373253832539325403254132542325433254432545325463254732548325493255032551325523255332554325553255632557325583255932560325613256232563325643256532566325673256832569325703257132572325733257432575325763257732578325793258032581325823258332584325853258632587325883258932590325913259232593325943259532596325973259832599326003260132602326033260432605326063260732608326093261032611326123261332614326153261632617326183261932620326213262232623326243262532626326273262832629326303263132632326333263432635326363263732638326393264032641326423264332644326453264632647326483264932650326513265232653326543265532656326573265832659326603266132662326633266432665326663266732668326693267032671326723267332674326753267632677326783267932680326813268232683326843268532686326873268832689326903269132692326933269432695326963269732698326993270032701327023270332704327053270632707327083270932710327113271232713327143271532716327173271832719327203272132722327233272432725327263272732728327293273032731327323273332734327353273632737327383273932740327413274232743327443274532746327473274832749327503275132752327533275432755327563275732758327593276032761327623276332764327653276632767327683276932770327713277232773327743277532776327773277832779327803278132782327833278432785327863278732788327893279032791327923279332794327953279632797327983279932800328013280232803328043280532806328073280832809328103281132812328133281432815328163281732818328193282032821328223282332824328253282632827328283282932830328313283232833328343283532836328373283832839328403284132842328433284432845328463284732848328493285032851328523285332854328553285632857328583285932860328613286232863328643286532866328673286832869328703287132872328733287432875328763287732878328793288032881328823288332884328853288632887328883288932890328913289232893328943289532896328973289832899329003290132902329033290432905329063290732908329093291032911329123291332914329153291632917329183291932920329213292232923329243292532926329273292832929329303293132932329333293432935329363293732938329393294032941329423294332944329453294632947329483294932950329513295232953329543295532956329573295832959329603296132962329633296432965329663296732968329693297032971329723297332974329753297632977329783297932980329813298232983329843298532986329873298832989329903299132992329933299432995329963299732998329993300033001330023300333004330053300633007330083300933010330113301233013330143301533016330173301833019330203302133022330233302433025330263302733028330293303033031330323303333034330353303633037330383303933040330413304233043330443304533046330473304833049330503305133052330533305433055330563305733058330593306033061330623306333064330653306633067330683306933070330713307233073330743307533076330773307833079330803308133082330833308433085330863308733088330893309033091330923309333094330953309633097330983309933100331013310233103331043310533106331073310833109331103311133112331133311433115331163311733118331193312033121331223312333124331253312633127331283312933130331313313233133331343313533136331373313833139331403314133142331433314433145331463314733148331493315033151331523315333154331553315633157331583315933160331613316233163331643316533166331673316833169331703317133172331733317433175331763317733178331793318033181331823318333184331853318633187331883318933190331913319233193331943319533196331973319833199332003320133202332033320433205332063320733208332093321033211332123321333214332153321633217332183321933220332213322233223332243322533226332273322833229332303323133232332333323433235332363323733238332393324033241332423324333244332453324633247332483324933250332513325233253332543325533256332573325833259332603326133262332633326433265332663326733268332693327033271332723327333274332753327633277332783327933280332813328233283332843328533286332873328833289332903329133292332933329433295332963329733298332993330033301333023330333304333053330633307333083330933310333113331233313333143331533316333173331833319333203332133322333233332433325333263332733328333293333033331333323333333334333353333633337333383333933340333413334233343333443334533346333473334833349333503335133352333533335433355333563335733358333593336033361333623336333364333653336633367333683336933370333713337233373333743337533376333773337833379333803338133382333833338433385333863338733388333893339033391333923339333394333953339633397333983339933400334013340233403334043340533406334073340833409334103341133412334133341433415334163341733418334193342033421334223342333424334253342633427334283342933430334313343233433334343343533436334373343833439334403344133442334433344433445334463344733448334493345033451334523345333454334553345633457334583345933460334613346233463334643346533466334673346833469334703347133472334733347433475334763347733478334793348033481334823348333484334853348633487334883348933490334913349233493334943349533496334973349833499335003350133502335033350433505335063350733508335093351033511335123351333514335153351633517335183351933520335213352233523335243352533526335273352833529335303353133532335333353433535335363353733538335393354033541335423354333544335453354633547335483354933550335513355233553335543355533556335573355833559335603356133562335633356433565335663356733568335693357033571335723357333574335753357633577335783357933580335813358233583335843358533586335873358833589335903359133592335933359433595335963359733598335993360033601336023360333604336053360633607336083360933610336113361233613336143361533616336173361833619336203362133622336233362433625336263362733628336293363033631336323363333634336353363633637336383363933640336413364233643336443364533646336473364833649336503365133652336533365433655336563365733658336593366033661336623366333664336653366633667336683366933670336713367233673336743367533676336773367833679336803368133682336833368433685336863368733688336893369033691336923369333694336953369633697336983369933700337013370233703337043370533706337073370833709337103371133712337133371433715337163371733718337193372033721337223372333724337253372633727337283372933730337313373233733337343373533736337373373833739337403374133742337433374433745337463374733748337493375033751337523375333754337553375633757337583375933760337613376233763337643376533766337673376833769337703377133772337733377433775337763377733778337793378033781337823378333784337853378633787337883378933790337913379233793337943379533796337973379833799338003380133802338033380433805338063380733808338093381033811338123381333814338153381633817338183381933820338213382233823338243382533826338273382833829338303383133832338333383433835338363383733838338393384033841338423384333844338453384633847338483384933850338513385233853338543385533856338573385833859338603386133862338633386433865338663386733868338693387033871338723387333874338753387633877338783387933880338813388233883338843388533886338873388833889338903389133892338933389433895338963389733898338993390033901339023390333904339053390633907339083390933910339113391233913339143391533916339173391833919339203392133922339233392433925339263392733928339293393033931339323393333934339353393633937339383393933940339413394233943339443394533946339473394833949339503395133952339533395433955339563395733958339593396033961339623396333964339653396633967339683396933970339713397233973339743397533976339773397833979339803398133982339833398433985339863398733988339893399033991339923399333994339953399633997339983399934000340013400234003340043400534006340073400834009340103401134012340133401434015340163401734018340193402034021340223402334024340253402634027340283402934030340313403234033340343403534036340373403834039340403404134042340433404434045340463404734048340493405034051340523405334054340553405634057340583405934060340613406234063340643406534066340673406834069340703407134072340733407434075340763407734078340793408034081340823408334084340853408634087340883408934090340913409234093340943409534096340973409834099341003410134102341033410434105341063410734108341093411034111341123411334114341153411634117341183411934120341213412234123341243412534126341273412834129341303413134132341333413434135341363413734138341393414034141341423414334144341453414634147341483414934150341513415234153341543415534156341573415834159341603416134162341633416434165341663416734168341693417034171341723417334174341753417634177341783417934180341813418234183341843418534186341873418834189341903419134192341933419434195341963419734198341993420034201342023420334204342053420634207342083420934210342113421234213342143421534216342173421834219342203422134222342233422434225342263422734228342293423034231342323423334234342353423634237342383423934240342413424234243342443424534246342473424834249342503425134252342533425434255342563425734258342593426034261342623426334264342653426634267342683426934270342713427234273342743427534276342773427834279342803428134282342833428434285342863428734288342893429034291342923429334294342953429634297342983429934300343013430234303343043430534306343073430834309343103431134312343133431434315343163431734318343193432034321343223432334324343253432634327343283432934330343313433234333343343433534336343373433834339343403434134342343433434434345343463434734348343493435034351343523435334354343553435634357343583435934360343613436234363343643436534366343673436834369343703437134372343733437434375343763437734378343793438034381343823438334384343853438634387343883438934390343913439234393343943439534396343973439834399344003440134402344033440434405344063440734408344093441034411344123441334414344153441634417344183441934420344213442234423344243442534426344273442834429344303443134432344333443434435344363443734438344393444034441344423444334444344453444634447344483444934450344513445234453344543445534456344573445834459344603446134462344633446434465344663446734468344693447034471344723447334474344753447634477344783447934480344813448234483344843448534486344873448834489344903449134492344933449434495344963449734498344993450034501345023450334504345053450634507345083450934510345113451234513345143451534516345173451834519345203452134522345233452434525345263452734528345293453034531345323453334534345353453634537345383453934540345413454234543345443454534546345473454834549345503455134552345533455434555345563455734558345593456034561345623456334564345653456634567345683456934570345713457234573345743457534576345773457834579345803458134582345833458434585345863458734588345893459034591345923459334594345953459634597345983459934600346013460234603346043460534606346073460834609346103461134612346133461434615346163461734618346193462034621346223462334624346253462634627346283462934630346313463234633346343463534636346373463834639346403464134642346433464434645346463464734648346493465034651346523465334654346553465634657346583465934660346613466234663346643466534666346673466834669346703467134672346733467434675346763467734678346793468034681346823468334684346853468634687346883468934690346913469234693346943469534696346973469834699347003470134702347033470434705347063470734708347093471034711347123471334714347153471634717347183471934720347213472234723347243472534726347273472834729347303473134732347333473434735347363473734738347393474034741347423474334744347453474634747347483474934750347513475234753347543475534756347573475834759347603476134762347633476434765347663476734768347693477034771347723477334774347753477634777347783477934780347813478234783347843478534786347873478834789347903479134792347933479434795347963479734798347993480034801348023480334804348053480634807348083480934810348113481234813348143481534816348173481834819348203482134822348233482434825348263482734828348293483034831348323483334834348353483634837348383483934840348413484234843348443484534846348473484834849348503485134852348533485434855348563485734858348593486034861348623486334864348653486634867348683486934870348713487234873348743487534876348773487834879348803488134882348833488434885348863488734888348893489034891348923489334894348953489634897348983489934900349013490234903349043490534906349073490834909349103491134912349133491434915349163491734918349193492034921349223492334924349253492634927349283492934930349313493234933349343493534936349373493834939349403494134942349433494434945349463494734948349493495034951349523495334954349553495634957349583495934960349613496234963349643496534966349673496834969349703497134972349733497434975349763497734978349793498034981349823498334984349853498634987349883498934990349913499234993349943499534996349973499834999350003500135002350033500435005350063500735008350093501035011350123501335014350153501635017350183501935020350213502235023350243502535026350273502835029350303503135032350333503435035350363503735038350393504035041350423504335044350453504635047350483504935050350513505235053350543505535056350573505835059350603506135062350633506435065350663506735068350693507035071350723507335074350753507635077350783507935080350813508235083350843508535086350873508835089350903509135092350933509435095350963509735098350993510035101351023510335104351053510635107351083510935110351113511235113351143511535116351173511835119351203512135122351233512435125351263512735128351293513035131351323513335134351353513635137351383513935140351413514235143351443514535146351473514835149351503515135152351533515435155351563515735158351593516035161351623516335164351653516635167351683516935170351713517235173351743517535176351773517835179351803518135182351833518435185351863518735188351893519035191351923519335194351953519635197351983519935200352013520235203352043520535206352073520835209352103521135212352133521435215352163521735218352193522035221352223522335224352253522635227352283522935230352313523235233352343523535236352373523835239352403524135242352433524435245352463524735248352493525035251352523525335254352553525635257352583525935260352613526235263352643526535266352673526835269352703527135272352733527435275352763527735278352793528035281352823528335284352853528635287352883528935290352913529235293352943529535296352973529835299353003530135302353033530435305353063530735308353093531035311353123531335314353153531635317353183531935320353213532235323353243532535326353273532835329353303533135332353333533435335353363533735338353393534035341353423534335344353453534635347353483534935350353513535235353353543535535356353573535835359353603536135362353633536435365353663536735368353693537035371353723537335374353753537635377353783537935380353813538235383353843538535386353873538835389353903539135392353933539435395353963539735398353993540035401354023540335404354053540635407354083540935410354113541235413354143541535416354173541835419354203542135422354233542435425354263542735428354293543035431354323543335434354353543635437354383543935440354413544235443354443544535446354473544835449354503545135452354533545435455354563545735458354593546035461354623546335464354653546635467354683546935470354713547235473354743547535476354773547835479354803548135482354833548435485354863548735488354893549035491354923549335494354953549635497354983549935500355013550235503355043550535506355073550835509355103551135512355133551435515355163551735518355193552035521355223552335524355253552635527355283552935530355313553235533355343553535536355373553835539355403554135542355433554435545355463554735548355493555035551355523555335554355553555635557355583555935560355613556235563355643556535566355673556835569355703557135572355733557435575355763557735578355793558035581355823558335584355853558635587355883558935590355913559235593355943559535596355973559835599356003560135602356033560435605356063560735608356093561035611356123561335614356153561635617356183561935620356213562235623356243562535626356273562835629356303563135632356333563435635356363563735638356393564035641356423564335644356453564635647356483564935650356513565235653356543565535656356573565835659356603566135662356633566435665356663566735668356693567035671356723567335674356753567635677356783567935680356813568235683356843568535686356873568835689356903569135692356933569435695356963569735698356993570035701357023570335704357053570635707357083570935710357113571235713357143571535716357173571835719357203572135722357233572435725357263572735728357293573035731357323573335734357353573635737357383573935740357413574235743357443574535746357473574835749357503575135752357533575435755357563575735758357593576035761357623576335764357653576635767357683576935770357713577235773357743577535776357773577835779357803578135782357833578435785357863578735788357893579035791357923579335794357953579635797357983579935800358013580235803358043580535806358073580835809358103581135812358133581435815358163581735818358193582035821358223582335824358253582635827358283582935830358313583235833358343583535836358373583835839358403584135842358433584435845358463584735848358493585035851358523585335854358553585635857358583585935860358613586235863358643586535866358673586835869358703587135872358733587435875358763587735878358793588035881358823588335884358853588635887358883588935890358913589235893358943589535896358973589835899359003590135902359033590435905359063590735908359093591035911359123591335914359153591635917359183591935920359213592235923359243592535926359273592835929359303593135932359333593435935359363593735938359393594035941359423594335944359453594635947359483594935950359513595235953359543595535956359573595835959359603596135962359633596435965359663596735968359693597035971359723597335974359753597635977359783597935980359813598235983359843598535986359873598835989359903599135992359933599435995359963599735998359993600036001360023600336004360053600636007360083600936010360113601236013360143601536016360173601836019360203602136022360233602436025360263602736028360293603036031360323603336034360353603636037360383603936040360413604236043360443604536046360473604836049360503605136052360533605436055360563605736058360593606036061360623606336064360653606636067360683606936070360713607236073360743607536076360773607836079360803608136082360833608436085360863608736088360893609036091360923609336094360953609636097360983609936100361013610236103361043610536106361073610836109361103611136112361133611436115361163611736118361193612036121361223612336124361253612636127361283612936130361313613236133361343613536136361373613836139361403614136142361433614436145361463614736148361493615036151361523615336154361553615636157361583615936160361613616236163361643616536166361673616836169361703617136172361733617436175361763617736178361793618036181361823618336184361853618636187361883618936190361913619236193361943619536196361973619836199362003620136202362033620436205362063620736208362093621036211362123621336214362153621636217362183621936220362213622236223362243622536226362273622836229362303623136232362333623436235362363623736238362393624036241362423624336244362453624636247362483624936250362513625236253362543625536256362573625836259362603626136262362633626436265362663626736268362693627036271362723627336274362753627636277362783627936280362813628236283362843628536286362873628836289362903629136292362933629436295362963629736298362993630036301363023630336304363053630636307363083630936310363113631236313363143631536316363173631836319363203632136322363233632436325363263632736328363293633036331363323633336334363353633636337363383633936340363413634236343363443634536346363473634836349363503635136352363533635436355363563635736358363593636036361363623636336364363653636636367363683636936370363713637236373363743637536376363773637836379363803638136382363833638436385363863638736388363893639036391363923639336394363953639636397363983639936400364013640236403364043640536406364073640836409364103641136412364133641436415364163641736418364193642036421364223642336424364253642636427364283642936430364313643236433364343643536436364373643836439364403644136442364433644436445364463644736448364493645036451364523645336454364553645636457364583645936460364613646236463364643646536466364673646836469364703647136472364733647436475364763647736478364793648036481364823648336484364853648636487364883648936490364913649236493364943649536496364973649836499365003650136502365033650436505365063650736508365093651036511365123651336514365153651636517365183651936520365213652236523365243652536526365273652836529365303653136532365333653436535365363653736538365393654036541365423654336544365453654636547365483654936550365513655236553365543655536556365573655836559365603656136562365633656436565365663656736568365693657036571365723657336574365753657636577365783657936580365813658236583365843658536586365873658836589365903659136592365933659436595365963659736598365993660036601366023660336604366053660636607366083660936610366113661236613366143661536616366173661836619366203662136622366233662436625366263662736628366293663036631366323663336634366353663636637366383663936640366413664236643366443664536646366473664836649366503665136652366533665436655366563665736658366593666036661366623666336664366653666636667366683666936670366713667236673366743667536676366773667836679366803668136682366833668436685366863668736688366893669036691366923669336694366953669636697366983669936700367013670236703367043670536706367073670836709367103671136712367133671436715367163671736718367193672036721367223672336724367253672636727367283672936730367313673236733367343673536736367373673836739367403674136742367433674436745367463674736748367493675036751367523675336754367553675636757367583675936760367613676236763367643676536766367673676836769367703677136772367733677436775367763677736778367793678036781367823678336784367853678636787367883678936790367913679236793367943679536796367973679836799368003680136802368033680436805368063680736808368093681036811368123681336814368153681636817368183681936820368213682236823368243682536826368273682836829368303683136832368333683436835368363683736838368393684036841368423684336844368453684636847368483684936850368513685236853368543685536856368573685836859368603686136862368633686436865368663686736868368693687036871368723687336874368753687636877368783687936880368813688236883368843688536886368873688836889368903689136892368933689436895368963689736898368993690036901369023690336904369053690636907369083690936910369113691236913369143691536916369173691836919369203692136922369233692436925369263692736928369293693036931369323693336934369353693636937369383693936940369413694236943369443694536946369473694836949369503695136952369533695436955369563695736958369593696036961369623696336964369653696636967369683696936970369713697236973369743697536976369773697836979369803698136982369833698436985369863698736988369893699036991369923699336994369953699636997369983699937000370013700237003370043700537006370073700837009370103701137012370133701437015370163701737018370193702037021370223702337024370253702637027370283702937030370313703237033370343703537036370373703837039370403704137042370433704437045370463704737048370493705037051370523705337054370553705637057370583705937060370613706237063370643706537066370673706837069370703707137072370733707437075370763707737078370793708037081370823708337084370853708637087370883708937090370913709237093370943709537096370973709837099371003710137102371033710437105371063710737108371093711037111371123711337114371153711637117371183711937120371213712237123371243712537126371273712837129371303713137132371333713437135371363713737138371393714037141371423714337144371453714637147371483714937150371513715237153371543715537156371573715837159371603716137162371633716437165371663716737168371693717037171371723717337174371753717637177371783717937180371813718237183371843718537186371873718837189371903719137192371933719437195371963719737198371993720037201372023720337204372053720637207372083720937210372113721237213372143721537216372173721837219372203722137222372233722437225372263722737228372293723037231372323723337234372353723637237372383723937240372413724237243372443724537246372473724837249372503725137252372533725437255372563725737258372593726037261372623726337264372653726637267372683726937270372713727237273372743727537276372773727837279372803728137282372833728437285372863728737288372893729037291372923729337294372953729637297372983729937300373013730237303373043730537306373073730837309373103731137312373133731437315373163731737318373193732037321373223732337324373253732637327373283732937330373313733237333373343733537336373373733837339373403734137342373433734437345373463734737348373493735037351373523735337354373553735637357373583735937360373613736237363373643736537366373673736837369373703737137372373733737437375373763737737378373793738037381373823738337384373853738637387373883738937390373913739237393373943739537396373973739837399374003740137402374033740437405374063740737408374093741037411374123741337414374153741637417374183741937420374213742237423374243742537426374273742837429374303743137432374333743437435374363743737438374393744037441374423744337444374453744637447374483744937450374513745237453374543745537456374573745837459374603746137462374633746437465374663746737468374693747037471374723747337474374753747637477374783747937480374813748237483374843748537486374873748837489374903749137492374933749437495374963749737498374993750037501375023750337504375053750637507375083750937510375113751237513375143751537516375173751837519375203752137522375233752437525375263752737528375293753037531375323753337534375353753637537375383753937540375413754237543375443754537546375473754837549375503755137552375533755437555375563755737558375593756037561375623756337564375653756637567375683756937570375713757237573375743757537576375773757837579375803758137582375833758437585375863758737588375893759037591375923759337594375953759637597375983759937600376013760237603376043760537606376073760837609376103761137612376133761437615376163761737618376193762037621376223762337624376253762637627376283762937630376313763237633376343763537636376373763837639376403764137642376433764437645376463764737648376493765037651376523765337654376553765637657376583765937660376613766237663376643766537666376673766837669376703767137672376733767437675376763767737678376793768037681376823768337684376853768637687376883768937690376913769237693376943769537696376973769837699377003770137702377033770437705377063770737708377093771037711377123771337714377153771637717377183771937720377213772237723377243772537726377273772837729377303773137732377333773437735377363773737738377393774037741377423774337744377453774637747377483774937750377513775237753377543775537756377573775837759377603776137762377633776437765377663776737768377693777037771377723777337774377753777637777377783777937780377813778237783377843778537786377873778837789377903779137792377933779437795377963779737798377993780037801378023780337804378053780637807378083780937810378113781237813378143781537816378173781837819378203782137822378233782437825378263782737828378293783037831378323783337834378353783637837378383783937840378413784237843378443784537846378473784837849378503785137852378533785437855378563785737858378593786037861378623786337864378653786637867378683786937870378713787237873378743787537876378773787837879378803788137882378833788437885378863788737888378893789037891378923789337894378953789637897378983789937900379013790237903379043790537906379073790837909379103791137912379133791437915379163791737918379193792037921379223792337924379253792637927379283792937930379313793237933379343793537936379373793837939379403794137942379433794437945379463794737948379493795037951379523795337954379553795637957379583795937960379613796237963379643796537966379673796837969379703797137972379733797437975379763797737978379793798037981379823798337984379853798637987379883798937990379913799237993379943799537996379973799837999380003800138002380033800438005380063800738008380093801038011380123801338014380153801638017380183801938020380213802238023380243802538026380273802838029380303803138032380333803438035380363803738038380393804038041380423804338044380453804638047380483804938050380513805238053380543805538056380573805838059380603806138062380633806438065380663806738068380693807038071380723807338074380753807638077380783807938080380813808238083380843808538086380873808838089380903809138092380933809438095380963809738098380993810038101381023810338104381053810638107381083810938110381113811238113381143811538116381173811838119381203812138122381233812438125381263812738128381293813038131381323813338134381353813638137381383813938140381413814238143381443814538146381473814838149381503815138152381533815438155381563815738158381593816038161381623816338164381653816638167381683816938170381713817238173381743817538176381773817838179381803818138182381833818438185381863818738188381893819038191381923819338194381953819638197381983819938200382013820238203382043820538206382073820838209382103821138212382133821438215382163821738218382193822038221382223822338224382253822638227382283822938230382313823238233382343823538236382373823838239382403824138242382433824438245382463824738248382493825038251382523825338254382553825638257382583825938260382613826238263382643826538266382673826838269382703827138272382733827438275382763827738278382793828038281382823828338284382853828638287382883828938290382913829238293382943829538296382973829838299383003830138302383033830438305383063830738308383093831038311383123831338314383153831638317383183831938320383213832238323383243832538326383273832838329383303833138332383333833438335383363833738338383393834038341383423834338344383453834638347383483834938350383513835238353383543835538356383573835838359383603836138362383633836438365383663836738368383693837038371383723837338374383753837638377383783837938380383813838238383383843838538386383873838838389383903839138392383933839438395383963839738398383993840038401384023840338404384053840638407384083840938410384113841238413384143841538416384173841838419384203842138422384233842438425384263842738428384293843038431384323843338434384353843638437384383843938440384413844238443384443844538446384473844838449384503845138452384533845438455384563845738458384593846038461384623846338464384653846638467384683846938470384713847238473384743847538476384773847838479384803848138482384833848438485384863848738488384893849038491384923849338494384953849638497384983849938500385013850238503385043850538506385073850838509385103851138512385133851438515385163851738518385193852038521385223852338524385253852638527385283852938530385313853238533385343853538536385373853838539385403854138542385433854438545385463854738548385493855038551385523855338554385553855638557385583855938560385613856238563385643856538566385673856838569385703857138572385733857438575385763857738578385793858038581385823858338584385853858638587385883858938590385913859238593385943859538596385973859838599386003860138602386033860438605386063860738608386093861038611386123861338614386153861638617386183861938620386213862238623386243862538626386273862838629386303863138632386333863438635386363863738638386393864038641386423864338644386453864638647386483864938650386513865238653386543865538656386573865838659386603866138662386633866438665386663866738668386693867038671386723867338674386753867638677386783867938680386813868238683386843868538686386873868838689386903869138692386933869438695386963869738698386993870038701387023870338704387053870638707387083870938710387113871238713387143871538716387173871838719387203872138722387233872438725387263872738728387293873038731387323873338734387353873638737387383873938740387413874238743387443874538746387473874838749387503875138752387533875438755387563875738758387593876038761387623876338764387653876638767387683876938770387713877238773387743877538776387773877838779387803878138782387833878438785387863878738788387893879038791387923879338794387953879638797387983879938800388013880238803388043880538806388073880838809388103881138812388133881438815388163881738818388193882038821388223882338824388253882638827388283882938830388313883238833388343883538836388373883838839388403884138842388433884438845388463884738848388493885038851388523885338854388553885638857388583885938860388613886238863388643886538866388673886838869388703887138872388733887438875388763887738878388793888038881388823888338884388853888638887388883888938890388913889238893388943889538896388973889838899389003890138902389033890438905389063890738908389093891038911389123891338914389153891638917389183891938920389213892238923389243892538926389273892838929389303893138932389333893438935389363893738938389393894038941389423894338944389453894638947389483894938950389513895238953389543895538956389573895838959389603896138962389633896438965389663896738968389693897038971389723897338974389753897638977389783897938980389813898238983389843898538986389873898838989389903899138992389933899438995389963899738998389993900039001390023900339004390053900639007390083900939010390113901239013390143901539016390173901839019390203902139022390233902439025390263902739028390293903039031390323903339034390353903639037390383903939040390413904239043390443904539046390473904839049390503905139052390533905439055390563905739058390593906039061390623906339064390653906639067390683906939070390713907239073390743907539076390773907839079390803908139082390833908439085390863908739088390893909039091390923909339094390953909639097390983909939100391013910239103391043910539106391073910839109391103911139112391133911439115391163911739118391193912039121391223912339124391253912639127391283912939130391313913239133391343913539136391373913839139391403914139142391433914439145391463914739148391493915039151391523915339154391553915639157391583915939160391613916239163391643916539166391673916839169391703917139172391733917439175391763917739178391793918039181391823918339184391853918639187391883918939190391913919239193391943919539196391973919839199392003920139202392033920439205392063920739208392093921039211392123921339214392153921639217392183921939220392213922239223392243922539226392273922839229392303923139232392333923439235392363923739238392393924039241392423924339244392453924639247392483924939250392513925239253392543925539256392573925839259392603926139262392633926439265392663926739268392693927039271392723927339274392753927639277392783927939280392813928239283392843928539286392873928839289392903929139292392933929439295392963929739298392993930039301393023930339304393053930639307393083930939310393113931239313393143931539316393173931839319393203932139322393233932439325393263932739328393293933039331393323933339334393353933639337393383933939340393413934239343393443934539346393473934839349393503935139352393533935439355393563935739358393593936039361393623936339364393653936639367393683936939370393713937239373393743937539376393773937839379393803938139382393833938439385393863938739388393893939039391393923939339394393953939639397393983939939400394013940239403394043940539406394073940839409394103941139412394133941439415394163941739418394193942039421394223942339424394253942639427394283942939430394313943239433394343943539436394373943839439394403944139442394433944439445394463944739448394493945039451394523945339454394553945639457394583945939460394613946239463394643946539466394673946839469394703947139472394733947439475394763947739478394793948039481394823948339484394853948639487394883948939490394913949239493394943949539496394973949839499395003950139502395033950439505395063950739508395093951039511395123951339514395153951639517395183951939520395213952239523395243952539526395273952839529395303953139532395333953439535395363953739538395393954039541395423954339544395453954639547395483954939550395513955239553395543955539556395573955839559395603956139562395633956439565395663956739568395693957039571395723957339574395753957639577395783957939580395813958239583395843958539586395873958839589395903959139592395933959439595395963959739598395993960039601396023960339604396053960639607396083960939610396113961239613396143961539616396173961839619396203962139622396233962439625396263962739628396293963039631396323963339634396353963639637396383963939640396413964239643396443964539646396473964839649396503965139652396533965439655396563965739658396593966039661396623966339664396653966639667396683966939670396713967239673396743967539676396773967839679396803968139682396833968439685396863968739688396893969039691396923969339694396953969639697396983969939700397013970239703397043970539706397073970839709397103971139712397133971439715397163971739718397193972039721397223972339724397253972639727397283972939730397313973239733397343973539736397373973839739397403974139742397433974439745397463974739748397493975039751397523975339754397553975639757397583975939760397613976239763397643976539766397673976839769397703977139772397733977439775397763977739778397793978039781397823978339784397853978639787397883978939790397913979239793397943979539796397973979839799398003980139802398033980439805398063980739808398093981039811398123981339814398153981639817398183981939820398213982239823398243982539826398273982839829398303983139832398333983439835398363983739838398393984039841398423984339844398453984639847398483984939850398513985239853398543985539856398573985839859398603986139862398633986439865398663986739868398693987039871398723987339874398753987639877398783987939880398813988239883398843988539886398873988839889398903989139892398933989439895398963989739898398993990039901399023990339904399053990639907399083990939910399113991239913399143991539916399173991839919399203992139922399233992439925399263992739928399293993039931399323993339934399353993639937399383993939940399413994239943399443994539946399473994839949399503995139952399533995439955399563995739958399593996039961399623996339964399653996639967399683996939970399713997239973399743997539976399773997839979399803998139982399833998439985399863998739988399893999039991399923999339994399953999639997399983999940000400014000240003400044000540006400074000840009400104001140012400134001440015400164001740018400194002040021400224002340024400254002640027400284002940030400314003240033400344003540036400374003840039400404004140042400434004440045400464004740048400494005040051400524005340054400554005640057400584005940060400614006240063400644006540066400674006840069400704007140072400734007440075400764007740078400794008040081400824008340084400854008640087400884008940090400914009240093400944009540096400974009840099401004010140102401034010440105401064010740108401094011040111401124011340114401154011640117401184011940120401214012240123401244012540126401274012840129401304013140132401334013440135401364013740138401394014040141401424014340144401454014640147401484014940150401514015240153401544015540156401574015840159401604016140162401634016440165401664016740168401694017040171401724017340174401754017640177401784017940180401814018240183401844018540186401874018840189401904019140192401934019440195401964019740198401994020040201402024020340204402054020640207402084020940210402114021240213402144021540216402174021840219402204022140222402234022440225402264022740228402294023040231402324023340234402354023640237402384023940240402414024240243402444024540246402474024840249402504025140252402534025440255402564025740258402594026040261402624026340264402654026640267402684026940270402714027240273402744027540276402774027840279402804028140282402834028440285402864028740288402894029040291402924029340294402954029640297402984029940300403014030240303403044030540306403074030840309403104031140312403134031440315403164031740318403194032040321403224032340324403254032640327403284032940330403314033240333403344033540336403374033840339403404034140342403434034440345403464034740348403494035040351403524035340354403554035640357403584035940360403614036240363403644036540366403674036840369403704037140372403734037440375403764037740378403794038040381403824038340384403854038640387403884038940390403914039240393403944039540396403974039840399404004040140402404034040440405404064040740408404094041040411404124041340414404154041640417404184041940420404214042240423404244042540426404274042840429404304043140432404334043440435404364043740438404394044040441404424044340444404454044640447404484044940450404514045240453404544045540456404574045840459404604046140462404634046440465404664046740468404694047040471404724047340474404754047640477404784047940480404814048240483404844048540486404874048840489404904049140492404934049440495404964049740498404994050040501405024050340504405054050640507405084050940510405114051240513405144051540516405174051840519405204052140522405234052440525405264052740528405294053040531405324053340534405354053640537405384053940540405414054240543405444054540546405474054840549405504055140552405534055440555405564055740558405594056040561405624056340564405654056640567405684056940570405714057240573405744057540576405774057840579405804058140582405834058440585405864058740588405894059040591405924059340594405954059640597405984059940600406014060240603406044060540606406074060840609406104061140612406134061440615406164061740618406194062040621406224062340624406254062640627406284062940630406314063240633406344063540636406374063840639406404064140642406434064440645406464064740648406494065040651406524065340654406554065640657406584065940660406614066240663406644066540666406674066840669406704067140672406734067440675406764067740678406794068040681406824068340684406854068640687406884068940690406914069240693406944069540696406974069840699407004070140702407034070440705407064070740708407094071040711407124071340714407154071640717407184071940720407214072240723407244072540726407274072840729407304073140732407334073440735407364073740738407394074040741407424074340744407454074640747407484074940750407514075240753407544075540756407574075840759407604076140762407634076440765407664076740768407694077040771407724077340774407754077640777407784077940780407814078240783407844078540786407874078840789407904079140792407934079440795407964079740798407994080040801408024080340804408054080640807408084080940810408114081240813408144081540816408174081840819408204082140822408234082440825408264082740828408294083040831408324083340834408354083640837408384083940840408414084240843408444084540846408474084840849408504085140852408534085440855408564085740858408594086040861408624086340864408654086640867408684086940870408714087240873408744087540876408774087840879408804088140882408834088440885408864088740888408894089040891408924089340894408954089640897408984089940900409014090240903409044090540906409074090840909409104091140912409134091440915409164091740918409194092040921409224092340924409254092640927409284092940930409314093240933409344093540936409374093840939409404094140942409434094440945409464094740948409494095040951409524095340954409554095640957409584095940960409614096240963409644096540966409674096840969409704097140972409734097440975409764097740978409794098040981409824098340984409854098640987409884098940990409914099240993409944099540996409974099840999410004100141002410034100441005410064100741008410094101041011410124101341014410154101641017410184101941020410214102241023410244102541026410274102841029410304103141032410334103441035410364103741038410394104041041410424104341044410454104641047410484104941050410514105241053410544105541056410574105841059410604106141062410634106441065410664106741068410694107041071410724107341074410754107641077410784107941080410814108241083410844108541086410874108841089410904109141092410934109441095410964109741098410994110041101411024110341104411054110641107411084110941110411114111241113411144111541116411174111841119411204112141122411234112441125411264112741128411294113041131411324113341134411354113641137411384113941140411414114241143411444114541146411474114841149411504115141152411534115441155411564115741158411594116041161411624116341164411654116641167411684116941170411714117241173411744117541176411774117841179411804118141182411834118441185411864118741188411894119041191411924119341194411954119641197411984119941200412014120241203412044120541206412074120841209412104121141212412134121441215412164121741218412194122041221412224122341224412254122641227412284122941230412314123241233412344123541236412374123841239412404124141242412434124441245412464124741248412494125041251412524125341254412554125641257412584125941260412614126241263412644126541266412674126841269412704127141272412734127441275412764127741278412794128041281412824128341284412854128641287412884128941290412914129241293412944129541296412974129841299413004130141302413034130441305413064130741308413094131041311413124131341314413154131641317413184131941320413214132241323413244132541326413274132841329413304133141332413334133441335413364133741338413394134041341413424134341344413454134641347413484134941350413514135241353413544135541356413574135841359413604136141362413634136441365413664136741368413694137041371413724137341374413754137641377413784137941380413814138241383413844138541386413874138841389413904139141392413934139441395413964139741398413994140041401414024140341404414054140641407414084140941410414114141241413414144141541416414174141841419414204142141422414234142441425414264142741428414294143041431414324143341434414354143641437414384143941440414414144241443414444144541446414474144841449414504145141452414534145441455414564145741458414594146041461414624146341464414654146641467414684146941470414714147241473414744147541476414774147841479414804148141482414834148441485414864148741488414894149041491414924149341494414954149641497414984149941500415014150241503415044150541506415074150841509415104151141512415134151441515415164151741518415194152041521415224152341524415254152641527415284152941530415314153241533415344153541536415374153841539415404154141542415434154441545415464154741548415494155041551415524155341554415554155641557415584155941560415614156241563415644156541566415674156841569415704157141572415734157441575415764157741578415794158041581415824158341584415854158641587415884158941590415914159241593415944159541596415974159841599416004160141602416034160441605416064160741608416094161041611416124161341614416154161641617416184161941620416214162241623416244162541626416274162841629416304163141632416334163441635416364163741638416394164041641416424164341644416454164641647416484164941650416514165241653416544165541656416574165841659416604166141662416634166441665416664166741668416694167041671416724167341674416754167641677416784167941680416814168241683416844168541686416874168841689416904169141692416934169441695416964169741698416994170041701417024170341704417054170641707417084170941710417114171241713417144171541716417174171841719417204172141722417234172441725417264172741728417294173041731417324173341734417354173641737417384173941740417414174241743417444174541746417474174841749417504175141752417534175441755417564175741758417594176041761417624176341764417654176641767417684176941770417714177241773417744177541776417774177841779417804178141782417834178441785417864178741788417894179041791417924179341794417954179641797417984179941800418014180241803418044180541806418074180841809418104181141812418134181441815418164181741818418194182041821418224182341824418254182641827418284182941830418314183241833418344183541836418374183841839418404184141842418434184441845418464184741848418494185041851418524185341854418554185641857418584185941860418614186241863418644186541866418674186841869418704187141872418734187441875418764187741878418794188041881418824188341884418854188641887418884188941890418914189241893418944189541896418974189841899419004190141902419034190441905419064190741908419094191041911419124191341914419154191641917419184191941920419214192241923419244192541926419274192841929419304193141932419334193441935419364193741938419394194041941419424194341944419454194641947419484194941950419514195241953419544195541956419574195841959419604196141962419634196441965419664196741968419694197041971419724197341974419754197641977419784197941980419814198241983419844198541986419874198841989419904199141992419934199441995419964199741998419994200042001420024200342004420054200642007420084200942010420114201242013420144201542016420174201842019420204202142022420234202442025420264202742028420294203042031420324203342034420354203642037420384203942040420414204242043420444204542046420474204842049420504205142052420534205442055420564205742058420594206042061420624206342064420654206642067420684206942070420714207242073420744207542076420774207842079420804208142082420834208442085420864208742088420894209042091420924209342094420954209642097420984209942100421014210242103421044210542106421074210842109421104211142112421134211442115421164211742118421194212042121421224212342124421254212642127421284212942130421314213242133421344213542136421374213842139421404214142142421434214442145421464214742148421494215042151421524215342154421554215642157421584215942160421614216242163421644216542166421674216842169421704217142172421734217442175421764217742178421794218042181421824218342184421854218642187421884218942190421914219242193421944219542196421974219842199422004220142202422034220442205422064220742208422094221042211422124221342214422154221642217422184221942220422214222242223422244222542226422274222842229422304223142232422334223442235422364223742238422394224042241422424224342244422454224642247422484224942250422514225242253422544225542256422574225842259422604226142262422634226442265422664226742268422694227042271422724227342274422754227642277422784227942280422814228242283422844228542286422874228842289422904229142292422934229442295422964229742298422994230042301423024230342304423054230642307423084230942310423114231242313423144231542316423174231842319423204232142322423234232442325423264232742328423294233042331423324233342334423354233642337423384233942340423414234242343423444234542346423474234842349423504235142352423534235442355423564235742358423594236042361423624236342364423654236642367423684236942370423714237242373423744237542376423774237842379423804238142382423834238442385423864238742388423894239042391423924239342394423954239642397423984239942400424014240242403424044240542406424074240842409424104241142412424134241442415424164241742418424194242042421424224242342424424254242642427424284242942430424314243242433424344243542436424374243842439424404244142442424434244442445424464244742448424494245042451424524245342454424554245642457424584245942460424614246242463424644246542466424674246842469424704247142472424734247442475424764247742478424794248042481424824248342484424854248642487424884248942490424914249242493424944249542496424974249842499425004250142502425034250442505425064250742508425094251042511425124251342514425154251642517425184251942520425214252242523425244252542526425274252842529425304253142532425334253442535425364253742538425394254042541425424254342544425454254642547425484254942550425514255242553425544255542556425574255842559425604256142562425634256442565425664256742568425694257042571425724257342574425754257642577425784257942580425814258242583425844258542586425874258842589425904259142592425934259442595425964259742598425994260042601426024260342604426054260642607426084260942610426114261242613426144261542616426174261842619426204262142622426234262442625426264262742628426294263042631426324263342634426354263642637426384263942640426414264242643426444264542646426474264842649426504265142652426534265442655426564265742658426594266042661426624266342664426654266642667426684266942670426714267242673426744267542676426774267842679426804268142682426834268442685426864268742688426894269042691426924269342694426954269642697426984269942700427014270242703427044270542706427074270842709427104271142712427134271442715427164271742718427194272042721427224272342724427254272642727427284272942730427314273242733427344273542736427374273842739427404274142742427434274442745427464274742748427494275042751427524275342754427554275642757427584275942760427614276242763427644276542766427674276842769427704277142772427734277442775427764277742778427794278042781427824278342784427854278642787427884278942790427914279242793427944279542796427974279842799428004280142802428034280442805428064280742808428094281042811428124281342814428154281642817428184281942820428214282242823428244282542826428274282842829428304283142832428334283442835428364283742838428394284042841428424284342844428454284642847428484284942850428514285242853428544285542856428574285842859428604286142862428634286442865428664286742868428694287042871428724287342874428754287642877428784287942880428814288242883428844288542886428874288842889428904289142892428934289442895428964289742898428994290042901429024290342904429054290642907429084290942910429114291242913429144291542916429174291842919429204292142922429234292442925429264292742928429294293042931429324293342934429354293642937429384293942940429414294242943429444294542946429474294842949429504295142952429534295442955429564295742958429594296042961429624296342964429654296642967429684296942970429714297242973429744297542976429774297842979429804298142982429834298442985429864298742988429894299042991429924299342994429954299642997429984299943000430014300243003430044300543006430074300843009430104301143012430134301443015430164301743018430194302043021430224302343024430254302643027430284302943030430314303243033430344303543036430374303843039430404304143042430434304443045430464304743048430494305043051430524305343054430554305643057430584305943060430614306243063430644306543066430674306843069430704307143072430734307443075430764307743078430794308043081430824308343084430854308643087430884308943090430914309243093430944309543096430974309843099431004310143102431034310443105431064310743108431094311043111431124311343114431154311643117431184311943120431214312243123431244312543126431274312843129431304313143132431334313443135431364313743138431394314043141431424314343144431454314643147431484314943150431514315243153431544315543156431574315843159431604316143162431634316443165431664316743168431694317043171431724317343174431754317643177431784317943180431814318243183431844318543186431874318843189431904319143192431934319443195431964319743198431994320043201432024320343204432054320643207432084320943210432114321243213432144321543216432174321843219432204322143222432234322443225432264322743228432294323043231432324323343234432354323643237432384323943240432414324243243432444324543246432474324843249432504325143252432534325443255432564325743258432594326043261432624326343264432654326643267432684326943270432714327243273432744327543276432774327843279432804328143282432834328443285432864328743288432894329043291432924329343294432954329643297432984329943300433014330243303433044330543306433074330843309433104331143312433134331443315433164331743318433194332043321433224332343324433254332643327433284332943330433314333243333433344333543336433374333843339433404334143342433434334443345433464334743348433494335043351433524335343354433554335643357433584335943360433614336243363433644336543366433674336843369433704337143372433734337443375433764337743378433794338043381433824338343384433854338643387433884338943390433914339243393433944339543396433974339843399434004340143402434034340443405434064340743408434094341043411434124341343414434154341643417434184341943420434214342243423434244342543426434274342843429434304343143432434334343443435434364343743438434394344043441434424344343444434454344643447434484344943450434514345243453434544345543456434574345843459434604346143462434634346443465434664346743468434694347043471434724347343474434754347643477434784347943480434814348243483434844348543486434874348843489434904349143492434934349443495434964349743498434994350043501435024350343504435054350643507435084350943510435114351243513435144351543516435174351843519435204352143522435234352443525435264352743528435294353043531435324353343534435354353643537435384353943540435414354243543435444354543546435474354843549435504355143552435534355443555435564355743558435594356043561435624356343564435654356643567435684356943570435714357243573435744357543576435774357843579435804358143582435834358443585435864358743588435894359043591435924359343594435954359643597435984359943600436014360243603436044360543606436074360843609436104361143612436134361443615436164361743618436194362043621436224362343624436254362643627436284362943630436314363243633436344363543636436374363843639436404364143642436434364443645436464364743648436494365043651436524365343654436554365643657436584365943660436614366243663436644366543666436674366843669436704367143672436734367443675436764367743678436794368043681436824368343684436854368643687436884368943690436914369243693436944369543696436974369843699437004370143702437034370443705437064370743708437094371043711437124371343714437154371643717437184371943720437214372243723437244372543726437274372843729437304373143732437334373443735437364373743738437394374043741437424374343744437454374643747437484374943750437514375243753437544375543756437574375843759437604376143762437634376443765437664376743768437694377043771437724377343774437754377643777437784377943780437814378243783437844378543786437874378843789437904379143792437934379443795437964379743798437994380043801438024380343804438054380643807438084380943810438114381243813438144381543816438174381843819438204382143822438234382443825438264382743828438294383043831438324383343834438354383643837438384383943840438414384243843438444384543846438474384843849438504385143852438534385443855438564385743858438594386043861438624386343864438654386643867438684386943870438714387243873438744387543876438774387843879438804388143882438834388443885438864388743888438894389043891438924389343894438954389643897438984389943900439014390243903439044390543906439074390843909439104391143912439134391443915439164391743918439194392043921439224392343924439254392643927439284392943930439314393243933439344393543936439374393843939439404394143942439434394443945439464394743948439494395043951439524395343954439554395643957439584395943960439614396243963439644396543966439674396843969439704397143972439734397443975439764397743978439794398043981439824398343984439854398643987439884398943990439914399243993439944399543996439974399843999440004400144002440034400444005440064400744008440094401044011440124401344014440154401644017440184401944020440214402244023440244402544026440274402844029440304403144032440334403444035440364403744038440394404044041440424404344044440454404644047440484404944050440514405244053440544405544056440574405844059440604406144062440634406444065440664406744068440694407044071440724407344074440754407644077440784407944080440814408244083440844408544086440874408844089440904409144092440934409444095440964409744098440994410044101441024410344104441054410644107441084410944110441114411244113441144411544116441174411844119441204412144122441234412444125441264412744128441294413044131441324413344134441354413644137441384413944140441414414244143441444414544146441474414844149441504415144152441534415444155441564415744158441594416044161441624416344164441654416644167441684416944170441714417244173441744417544176441774417844179441804418144182441834418444185441864418744188441894419044191441924419344194441954419644197441984419944200442014420244203442044420544206442074420844209442104421144212442134421444215442164421744218442194422044221442224422344224442254422644227442284422944230442314423244233442344423544236442374423844239442404424144242442434424444245442464424744248442494425044251442524425344254442554425644257442584425944260442614426244263442644426544266442674426844269442704427144272442734427444275442764427744278442794428044281442824428344284442854428644287442884428944290442914429244293442944429544296442974429844299443004430144302443034430444305443064430744308443094431044311443124431344314443154431644317443184431944320443214432244323443244432544326443274432844329443304433144332443334433444335443364433744338443394434044341443424434344344443454434644347443484434944350443514435244353443544435544356443574435844359443604436144362443634436444365443664436744368443694437044371443724437344374443754437644377443784437944380443814438244383443844438544386443874438844389443904439144392443934439444395443964439744398443994440044401444024440344404444054440644407444084440944410444114441244413444144441544416444174441844419444204442144422444234442444425444264442744428444294443044431444324443344434444354443644437444384443944440444414444244443444444444544446444474444844449444504445144452444534445444455444564445744458444594446044461444624446344464444654446644467444684446944470444714447244473444744447544476444774447844479444804448144482444834448444485444864448744488444894449044491444924449344494444954449644497444984449944500445014450244503445044450544506445074450844509445104451144512445134451444515445164451744518445194452044521445224452344524445254452644527445284452944530445314453244533445344453544536445374453844539445404454144542445434454444545445464454744548445494455044551445524455344554445554455644557445584455944560445614456244563445644456544566445674456844569445704457144572445734457444575445764457744578445794458044581445824458344584445854458644587445884458944590445914459244593445944459544596445974459844599446004460144602446034460444605446064460744608446094461044611446124461344614446154461644617446184461944620446214462244623446244462544626446274462844629446304463144632446334463444635446364463744638446394464044641446424464344644446454464644647446484464944650446514465244653446544465544656446574465844659446604466144662446634466444665446664466744668446694467044671446724467344674446754467644677446784467944680446814468244683446844468544686446874468844689446904469144692446934469444695446964469744698446994470044701447024470344704447054470644707447084470944710447114471244713447144471544716447174471844719447204472144722447234472444725447264472744728447294473044731447324473344734447354473644737447384473944740447414474244743447444474544746447474474844749447504475144752447534475444755447564475744758447594476044761447624476344764447654476644767447684476944770447714477244773447744477544776447774477844779447804478144782447834478444785447864478744788447894479044791447924479344794447954479644797447984479944800448014480244803448044480544806448074480844809448104481144812448134481444815448164481744818448194482044821448224482344824448254482644827448284482944830448314483244833448344483544836448374483844839448404484144842448434484444845448464484744848448494485044851448524485344854448554485644857448584485944860448614486244863448644486544866448674486844869448704487144872448734487444875448764487744878448794488044881448824488344884448854488644887448884488944890448914489244893448944489544896448974489844899449004490144902449034490444905449064490744908449094491044911449124491344914449154491644917449184491944920449214492244923449244492544926449274492844929449304493144932449334493444935449364493744938449394494044941449424494344944449454494644947449484494944950449514495244953449544495544956449574495844959449604496144962449634496444965449664496744968449694497044971449724497344974449754497644977449784497944980449814498244983449844498544986449874498844989449904499144992449934499444995449964499744998449994500045001450024500345004450054500645007450084500945010450114501245013450144501545016450174501845019450204502145022450234502445025450264502745028450294503045031450324503345034450354503645037450384503945040450414504245043450444504545046450474504845049450504505145052450534505445055450564505745058450594506045061450624506345064450654506645067450684506945070450714507245073450744507545076450774507845079450804508145082450834508445085450864508745088450894509045091450924509345094450954509645097450984509945100451014510245103451044510545106451074510845109451104511145112451134511445115451164511745118451194512045121451224512345124451254512645127451284512945130451314513245133451344513545136451374513845139451404514145142451434514445145451464514745148451494515045151451524515345154451554515645157451584515945160451614516245163451644516545166451674516845169451704517145172451734517445175451764517745178451794518045181451824518345184451854518645187451884518945190451914519245193451944519545196451974519845199452004520145202452034520445205452064520745208452094521045211452124521345214452154521645217452184521945220452214522245223452244522545226452274522845229452304523145232452334523445235452364523745238452394524045241452424524345244452454524645247452484524945250452514525245253452544525545256452574525845259452604526145262452634526445265452664526745268452694527045271452724527345274452754527645277452784527945280452814528245283452844528545286452874528845289452904529145292452934529445295452964529745298452994530045301453024530345304453054530645307453084530945310453114531245313453144531545316453174531845319453204532145322453234532445325453264532745328453294533045331453324533345334453354533645337453384533945340453414534245343453444534545346453474534845349453504535145352453534535445355453564535745358453594536045361453624536345364453654536645367453684536945370453714537245373453744537545376453774537845379453804538145382453834538445385453864538745388453894539045391453924539345394453954539645397453984539945400454014540245403454044540545406454074540845409454104541145412454134541445415454164541745418454194542045421454224542345424454254542645427454284542945430454314543245433454344543545436454374543845439454404544145442454434544445445454464544745448454494545045451454524545345454454554545645457454584545945460454614546245463454644546545466454674546845469454704547145472454734547445475454764547745478454794548045481454824548345484454854548645487454884548945490454914549245493454944549545496454974549845499455004550145502455034550445505455064550745508455094551045511455124551345514455154551645517455184551945520455214552245523455244552545526455274552845529455304553145532455334553445535455364553745538455394554045541455424554345544455454554645547455484554945550455514555245553455544555545556455574555845559455604556145562455634556445565455664556745568455694557045571455724557345574455754557645577455784557945580455814558245583455844558545586455874558845589455904559145592455934559445595455964559745598455994560045601456024560345604456054560645607456084560945610456114561245613456144561545616456174561845619456204562145622456234562445625456264562745628456294563045631456324563345634456354563645637456384563945640456414564245643456444564545646456474564845649456504565145652456534565445655456564565745658456594566045661456624566345664456654566645667456684566945670456714567245673456744567545676456774567845679456804568145682456834568445685456864568745688456894569045691456924569345694456954569645697456984569945700457014570245703457044570545706457074570845709457104571145712457134571445715457164571745718457194572045721457224572345724457254572645727457284572945730457314573245733457344573545736457374573845739457404574145742457434574445745457464574745748457494575045751457524575345754457554575645757457584575945760457614576245763457644576545766457674576845769457704577145772457734577445775457764577745778457794578045781457824578345784457854578645787457884578945790457914579245793457944579545796457974579845799458004580145802458034580445805458064580745808458094581045811458124581345814458154581645817458184581945820458214582245823458244582545826458274582845829458304583145832458334583445835458364583745838458394584045841458424584345844458454584645847458484584945850458514585245853458544585545856458574585845859458604586145862458634586445865458664586745868458694587045871458724587345874458754587645877458784587945880458814588245883458844588545886458874588845889458904589145892458934589445895458964589745898458994590045901459024590345904459054590645907459084590945910459114591245913459144591545916459174591845919459204592145922459234592445925459264592745928459294593045931459324593345934459354593645937459384593945940459414594245943459444594545946459474594845949459504595145952459534595445955459564595745958459594596045961459624596345964459654596645967459684596945970459714597245973459744597545976459774597845979459804598145982459834598445985459864598745988459894599045991459924599345994459954599645997459984599946000460014600246003460044600546006460074600846009460104601146012460134601446015460164601746018460194602046021460224602346024460254602646027460284602946030460314603246033460344603546036460374603846039460404604146042460434604446045460464604746048460494605046051460524605346054460554605646057460584605946060460614606246063460644606546066460674606846069460704607146072460734607446075460764607746078460794608046081460824608346084460854608646087460884608946090460914609246093460944609546096460974609846099461004610146102461034610446105461064610746108461094611046111461124611346114461154611646117461184611946120461214612246123461244612546126461274612846129461304613146132461334613446135461364613746138461394614046141461424614346144461454614646147461484614946150461514615246153461544615546156461574615846159461604616146162461634616446165461664616746168461694617046171461724617346174461754617646177461784617946180461814618246183461844618546186461874618846189461904619146192461934619446195461964619746198461994620046201462024620346204462054620646207462084620946210462114621246213462144621546216462174621846219462204622146222462234622446225462264622746228462294623046231462324623346234462354623646237462384623946240462414624246243462444624546246462474624846249462504625146252462534625446255462564625746258462594626046261462624626346264462654626646267462684626946270462714627246273462744627546276462774627846279462804628146282462834628446285462864628746288462894629046291462924629346294462954629646297462984629946300463014630246303463044630546306463074630846309463104631146312463134631446315463164631746318463194632046321463224632346324463254632646327463284632946330463314633246333463344633546336463374633846339463404634146342463434634446345463464634746348463494635046351463524635346354463554635646357463584635946360463614636246363463644636546366463674636846369463704637146372463734637446375463764637746378463794638046381463824638346384463854638646387463884638946390463914639246393463944639546396463974639846399464004640146402464034640446405464064640746408464094641046411464124641346414464154641646417464184641946420464214642246423464244642546426464274642846429464304643146432464334643446435464364643746438464394644046441464424644346444464454644646447464484644946450464514645246453464544645546456464574645846459464604646146462464634646446465464664646746468464694647046471464724647346474464754647646477464784647946480464814648246483464844648546486464874648846489464904649146492464934649446495464964649746498464994650046501465024650346504465054650646507465084650946510465114651246513465144651546516465174651846519465204652146522465234652446525465264652746528465294653046531465324653346534465354653646537465384653946540465414654246543465444654546546465474654846549465504655146552465534655446555465564655746558465594656046561465624656346564465654656646567465684656946570465714657246573465744657546576465774657846579465804658146582465834658446585465864658746588465894659046591465924659346594465954659646597465984659946600466014660246603466044660546606466074660846609466104661146612466134661446615466164661746618466194662046621466224662346624466254662646627466284662946630466314663246633466344663546636466374663846639466404664146642466434664446645466464664746648466494665046651466524665346654466554665646657466584665946660466614666246663466644666546666466674666846669466704667146672466734667446675466764667746678466794668046681466824668346684466854668646687466884668946690466914669246693466944669546696466974669846699467004670146702467034670446705467064670746708467094671046711467124671346714467154671646717467184671946720467214672246723467244672546726467274672846729467304673146732467334673446735467364673746738467394674046741467424674346744467454674646747467484674946750467514675246753467544675546756467574675846759467604676146762467634676446765467664676746768467694677046771467724677346774467754677646777467784677946780467814678246783467844678546786467874678846789467904679146792467934679446795467964679746798467994680046801468024680346804468054680646807468084680946810468114681246813468144681546816468174681846819468204682146822468234682446825468264682746828468294683046831468324683346834468354683646837468384683946840468414684246843468444684546846468474684846849468504685146852468534685446855468564685746858468594686046861468624686346864468654686646867468684686946870468714687246873468744687546876468774687846879468804688146882468834688446885468864688746888468894689046891468924689346894468954689646897468984689946900469014690246903469044690546906469074690846909469104691146912469134691446915469164691746918469194692046921469224692346924469254692646927469284692946930469314693246933469344693546936469374693846939469404694146942469434694446945469464694746948469494695046951469524695346954469554695646957469584695946960469614696246963469644696546966469674696846969469704697146972469734697446975469764697746978469794698046981469824698346984469854698646987469884698946990469914699246993469944699546996469974699846999470004700147002470034700447005470064700747008470094701047011470124701347014470154701647017470184701947020470214702247023470244702547026470274702847029470304703147032470334703447035470364703747038470394704047041470424704347044470454704647047470484704947050470514705247053470544705547056470574705847059470604706147062470634706447065470664706747068470694707047071470724707347074470754707647077470784707947080470814708247083470844708547086470874708847089470904709147092470934709447095470964709747098470994710047101471024710347104471054710647107471084710947110471114711247113471144711547116471174711847119471204712147122471234712447125471264712747128471294713047131471324713347134471354713647137471384713947140471414714247143471444714547146471474714847149471504715147152471534715447155471564715747158471594716047161471624716347164471654716647167471684716947170471714717247173471744717547176471774717847179471804718147182471834718447185471864718747188471894719047191471924719347194471954719647197471984719947200472014720247203472044720547206472074720847209472104721147212472134721447215472164721747218472194722047221472224722347224472254722647227472284722947230472314723247233472344723547236472374723847239472404724147242472434724447245472464724747248472494725047251472524725347254472554725647257472584725947260472614726247263472644726547266472674726847269472704727147272472734727447275472764727747278472794728047281472824728347284472854728647287472884728947290472914729247293472944729547296472974729847299473004730147302473034730447305473064730747308473094731047311473124731347314473154731647317473184731947320473214732247323473244732547326473274732847329473304733147332473334733447335473364733747338473394734047341473424734347344473454734647347473484734947350473514735247353473544735547356473574735847359473604736147362473634736447365473664736747368473694737047371473724737347374473754737647377473784737947380473814738247383473844738547386473874738847389473904739147392473934739447395473964739747398473994740047401474024740347404474054740647407474084740947410474114741247413474144741547416474174741847419474204742147422474234742447425474264742747428474294743047431474324743347434474354743647437474384743947440474414744247443474444744547446474474744847449474504745147452474534745447455474564745747458474594746047461474624746347464474654746647467474684746947470474714747247473474744747547476474774747847479474804748147482474834748447485474864748747488474894749047491474924749347494474954749647497474984749947500475014750247503475044750547506475074750847509475104751147512475134751447515475164751747518475194752047521475224752347524475254752647527475284752947530475314753247533475344753547536475374753847539475404754147542475434754447545475464754747548475494755047551475524755347554475554755647557475584755947560475614756247563475644756547566475674756847569475704757147572475734757447575475764757747578475794758047581475824758347584475854758647587475884758947590475914759247593475944759547596475974759847599476004760147602476034760447605476064760747608476094761047611476124761347614476154761647617476184761947620476214762247623476244762547626476274762847629476304763147632476334763447635476364763747638476394764047641476424764347644476454764647647476484764947650476514765247653476544765547656476574765847659476604766147662476634766447665476664766747668476694767047671476724767347674476754767647677476784767947680476814768247683476844768547686476874768847689476904769147692476934769447695476964769747698476994770047701477024770347704477054770647707477084770947710477114771247713477144771547716477174771847719477204772147722477234772447725477264772747728477294773047731477324773347734477354773647737477384773947740477414774247743477444774547746477474774847749477504775147752477534775447755477564775747758477594776047761477624776347764477654776647767477684776947770477714777247773477744777547776477774777847779477804778147782477834778447785477864778747788477894779047791477924779347794477954779647797477984779947800478014780247803478044780547806478074780847809478104781147812478134781447815478164781747818478194782047821478224782347824478254782647827478284782947830478314783247833478344783547836478374783847839478404784147842478434784447845478464784747848478494785047851478524785347854478554785647857478584785947860478614786247863478644786547866478674786847869478704787147872478734787447875478764787747878478794788047881478824788347884478854788647887478884788947890478914789247893478944789547896478974789847899479004790147902479034790447905479064790747908479094791047911479124791347914479154791647917479184791947920479214792247923479244792547926479274792847929479304793147932479334793447935479364793747938479394794047941479424794347944479454794647947479484794947950479514795247953479544795547956479574795847959479604796147962479634796447965479664796747968479694797047971479724797347974479754797647977479784797947980479814798247983479844798547986479874798847989479904799147992479934799447995479964799747998479994800048001480024800348004480054800648007480084800948010480114801248013480144801548016480174801848019480204802148022480234802448025480264802748028480294803048031480324803348034480354803648037480384803948040480414804248043480444804548046480474804848049480504805148052480534805448055480564805748058480594806048061480624806348064480654806648067480684806948070480714807248073480744807548076480774807848079480804808148082480834808448085480864808748088480894809048091480924809348094480954809648097480984809948100481014810248103481044810548106481074810848109481104811148112481134811448115481164811748118481194812048121481224812348124481254812648127481284812948130481314813248133481344813548136481374813848139481404814148142481434814448145481464814748148481494815048151481524815348154481554815648157481584815948160481614816248163481644816548166481674816848169481704817148172481734817448175481764817748178481794818048181481824818348184481854818648187481884818948190481914819248193481944819548196481974819848199482004820148202482034820448205482064820748208482094821048211482124821348214482154821648217482184821948220482214822248223482244822548226482274822848229482304823148232482334823448235482364823748238482394824048241482424824348244482454824648247482484824948250482514825248253482544825548256482574825848259482604826148262482634826448265482664826748268482694827048271482724827348274482754827648277482784827948280482814828248283482844828548286482874828848289482904829148292482934829448295482964829748298482994830048301483024830348304483054830648307483084830948310483114831248313483144831548316483174831848319483204832148322483234832448325483264832748328483294833048331483324833348334483354833648337483384833948340483414834248343483444834548346483474834848349483504835148352483534835448355483564835748358483594836048361483624836348364483654836648367483684836948370483714837248373483744837548376483774837848379483804838148382483834838448385483864838748388483894839048391483924839348394483954839648397483984839948400484014840248403484044840548406484074840848409484104841148412484134841448415484164841748418484194842048421484224842348424484254842648427484284842948430484314843248433484344843548436484374843848439484404844148442484434844448445484464844748448484494845048451484524845348454484554845648457484584845948460484614846248463484644846548466484674846848469484704847148472484734847448475484764847748478484794848048481484824848348484484854848648487484884848948490484914849248493484944849548496484974849848499485004850148502485034850448505485064850748508485094851048511485124851348514485154851648517485184851948520485214852248523485244852548526485274852848529485304853148532485334853448535485364853748538485394854048541485424854348544485454854648547485484854948550485514855248553485544855548556485574855848559485604856148562485634856448565485664856748568485694857048571485724857348574485754857648577485784857948580485814858248583485844858548586485874858848589485904859148592485934859448595485964859748598485994860048601486024860348604486054860648607486084860948610486114861248613486144861548616486174861848619486204862148622486234862448625486264862748628486294863048631486324863348634486354863648637486384863948640486414864248643486444864548646486474864848649486504865148652486534865448655486564865748658486594866048661486624866348664486654866648667486684866948670486714867248673486744867548676486774867848679486804868148682486834868448685486864868748688486894869048691486924869348694486954869648697486984869948700487014870248703487044870548706487074870848709487104871148712487134871448715487164871748718487194872048721487224872348724487254872648727487284872948730487314873248733487344873548736487374873848739487404874148742487434874448745487464874748748487494875048751487524875348754487554875648757487584875948760487614876248763487644876548766487674876848769487704877148772487734877448775487764877748778487794878048781487824878348784487854878648787487884878948790487914879248793487944879548796487974879848799488004880148802488034880448805488064880748808488094881048811488124881348814488154881648817488184881948820488214882248823488244882548826488274882848829488304883148832488334883448835488364883748838488394884048841488424884348844488454884648847488484884948850488514885248853488544885548856488574885848859488604886148862488634886448865488664886748868488694887048871488724887348874488754887648877488784887948880488814888248883488844888548886488874888848889488904889148892488934889448895488964889748898488994890048901489024890348904489054890648907489084890948910489114891248913489144891548916489174891848919489204892148922489234892448925489264892748928489294893048931489324893348934489354893648937489384893948940489414894248943489444894548946489474894848949489504895148952489534895448955489564895748958489594896048961489624896348964489654896648967489684896948970489714897248973489744897548976489774897848979489804898148982489834898448985489864898748988489894899048991489924899348994489954899648997489984899949000490014900249003490044900549006490074900849009490104901149012490134901449015490164901749018490194902049021490224902349024490254902649027490284902949030490314903249033490344903549036490374903849039490404904149042490434904449045490464904749048490494905049051490524905349054490554905649057490584905949060490614906249063490644906549066490674906849069490704907149072490734907449075490764907749078490794908049081490824908349084490854908649087490884908949090490914909249093490944909549096490974909849099491004910149102491034910449105491064910749108491094911049111491124911349114491154911649117491184911949120491214912249123491244912549126491274912849129491304913149132491334913449135491364913749138491394914049141491424914349144491454914649147491484914949150491514915249153491544915549156491574915849159491604916149162491634916449165491664916749168491694917049171491724917349174491754917649177491784917949180491814918249183491844918549186491874918849189491904919149192491934919449195491964919749198491994920049201492024920349204492054920649207492084920949210492114921249213492144921549216492174921849219492204922149222492234922449225492264922749228492294923049231492324923349234492354923649237492384923949240492414924249243492444924549246492474924849249492504925149252492534925449255492564925749258492594926049261492624926349264492654926649267492684926949270492714927249273492744927549276492774927849279492804928149282492834928449285492864928749288492894929049291492924929349294492954929649297492984929949300493014930249303493044930549306493074930849309493104931149312493134931449315493164931749318493194932049321493224932349324493254932649327493284932949330493314933249333493344933549336493374933849339493404934149342493434934449345493464934749348493494935049351493524935349354493554935649357493584935949360493614936249363493644936549366493674936849369493704937149372493734937449375493764937749378493794938049381493824938349384493854938649387493884938949390493914939249393493944939549396493974939849399494004940149402494034940449405494064940749408494094941049411494124941349414494154941649417494184941949420494214942249423494244942549426494274942849429494304943149432494334943449435494364943749438494394944049441494424944349444494454944649447494484944949450494514945249453494544945549456494574945849459494604946149462494634946449465494664946749468494694947049471494724947349474494754947649477494784947949480494814948249483494844948549486494874948849489494904949149492494934949449495494964949749498494994950049501495024950349504495054950649507495084950949510495114951249513495144951549516495174951849519495204952149522495234952449525495264952749528495294953049531495324953349534495354953649537495384953949540495414954249543495444954549546495474954849549495504955149552495534955449555495564955749558495594956049561495624956349564495654956649567495684956949570495714957249573495744957549576495774957849579495804958149582495834958449585495864958749588495894959049591495924959349594495954959649597495984959949600496014960249603496044960549606496074960849609496104961149612496134961449615496164961749618496194962049621496224962349624496254962649627496284962949630496314963249633496344963549636496374963849639496404964149642496434964449645496464964749648496494965049651496524965349654496554965649657496584965949660496614966249663496644966549666496674966849669496704967149672496734967449675496764967749678496794968049681496824968349684496854968649687496884968949690496914969249693496944969549696496974969849699497004970149702497034970449705497064970749708497094971049711497124971349714497154971649717497184971949720497214972249723497244972549726497274972849729497304973149732497334973449735497364973749738497394974049741497424974349744497454974649747497484974949750497514975249753497544975549756497574975849759497604976149762497634976449765497664976749768497694977049771497724977349774497754977649777497784977949780497814978249783497844978549786497874978849789497904979149792497934979449795497964979749798497994980049801498024980349804498054980649807498084980949810498114981249813498144981549816498174981849819498204982149822498234982449825498264982749828498294983049831498324983349834498354983649837498384983949840498414984249843498444984549846498474984849849498504985149852498534985449855498564985749858498594986049861498624986349864498654986649867498684986949870498714987249873498744987549876498774987849879498804988149882498834988449885498864988749888498894989049891498924989349894498954989649897498984989949900499014990249903499044990549906499074990849909499104991149912499134991449915499164991749918499194992049921499224992349924499254992649927499284992949930499314993249933499344993549936499374993849939499404994149942499434994449945499464994749948499494995049951499524995349954499554995649957499584995949960499614996249963499644996549966499674996849969499704997149972499734997449975499764997749978499794998049981499824998349984499854998649987499884998949990499914999249993499944999549996499974999849999500005000150002500035000450005500065000750008500095001050011500125001350014500155001650017500185001950020500215002250023500245002550026500275002850029500305003150032500335003450035500365003750038500395004050041500425004350044500455004650047500485004950050500515005250053500545005550056500575005850059500605006150062500635006450065500665006750068500695007050071500725007350074500755007650077500785007950080500815008250083500845008550086500875008850089500905009150092500935009450095500965009750098500995010050101501025010350104501055010650107501085010950110501115011250113501145011550116501175011850119501205012150122501235012450125501265012750128501295013050131501325013350134501355013650137501385013950140501415014250143501445014550146501475014850149501505015150152501535015450155501565015750158501595016050161501625016350164501655016650167501685016950170501715017250173501745017550176501775017850179501805018150182501835018450185501865018750188501895019050191501925019350194501955019650197501985019950200502015020250203502045020550206502075020850209502105021150212502135021450215502165021750218502195022050221502225022350224502255022650227502285022950230502315023250233502345023550236502375023850239502405024150242502435024450245502465024750248502495025050251502525025350254502555025650257502585025950260502615026250263502645026550266502675026850269502705027150272502735027450275502765027750278502795028050281502825028350284502855028650287502885028950290502915029250293502945029550296502975029850299503005030150302503035030450305503065030750308503095031050311503125031350314503155031650317503185031950320503215032250323503245032550326503275032850329503305033150332503335033450335503365033750338503395034050341503425034350344503455034650347503485034950350503515035250353503545035550356503575035850359503605036150362503635036450365503665036750368503695037050371503725037350374503755037650377503785037950380503815038250383503845038550386503875038850389503905039150392503935039450395503965039750398503995040050401504025040350404504055040650407504085040950410504115041250413504145041550416504175041850419504205042150422504235042450425504265042750428504295043050431504325043350434504355043650437504385043950440504415044250443504445044550446504475044850449504505045150452504535045450455504565045750458504595046050461504625046350464504655046650467504685046950470504715047250473504745047550476504775047850479504805048150482504835048450485504865048750488504895049050491504925049350494504955049650497504985049950500505015050250503505045050550506505075050850509505105051150512505135051450515505165051750518505195052050521505225052350524505255052650527505285052950530505315053250533505345053550536505375053850539505405054150542505435054450545505465054750548505495055050551505525055350554505555055650557505585055950560505615056250563505645056550566505675056850569505705057150572505735057450575505765057750578505795058050581505825058350584505855058650587505885058950590505915059250593505945059550596505975059850599506005060150602506035060450605506065060750608506095061050611506125061350614506155061650617506185061950620506215062250623506245062550626506275062850629506305063150632506335063450635506365063750638506395064050641506425064350644506455064650647506485064950650506515065250653506545065550656506575065850659506605066150662506635066450665506665066750668506695067050671506725067350674506755067650677506785067950680506815068250683506845068550686506875068850689506905069150692506935069450695506965069750698506995070050701507025070350704507055070650707507085070950710507115071250713507145071550716507175071850719507205072150722507235072450725507265072750728507295073050731507325073350734507355073650737507385073950740507415074250743507445074550746507475074850749507505075150752507535075450755507565075750758507595076050761507625076350764507655076650767507685076950770507715077250773507745077550776507775077850779507805078150782507835078450785507865078750788507895079050791507925079350794507955079650797507985079950800508015080250803508045080550806508075080850809508105081150812508135081450815508165081750818508195082050821508225082350824508255082650827508285082950830508315083250833508345083550836508375083850839508405084150842508435084450845508465084750848508495085050851508525085350854508555085650857508585085950860508615086250863508645086550866508675086850869508705087150872508735087450875508765087750878508795088050881508825088350884508855088650887508885088950890508915089250893508945089550896508975089850899509005090150902509035090450905509065090750908509095091050911509125091350914509155091650917509185091950920509215092250923509245092550926509275092850929509305093150932509335093450935509365093750938509395094050941509425094350944509455094650947509485094950950509515095250953509545095550956509575095850959509605096150962509635096450965509665096750968509695097050971509725097350974509755097650977509785097950980509815098250983509845098550986509875098850989509905099150992509935099450995509965099750998509995100051001510025100351004510055100651007510085100951010510115101251013510145101551016510175101851019510205102151022510235102451025510265102751028510295103051031510325103351034510355103651037510385103951040510415104251043510445104551046510475104851049510505105151052510535105451055510565105751058510595106051061510625106351064510655106651067510685106951070510715107251073510745107551076510775107851079510805108151082510835108451085510865108751088510895109051091510925109351094510955109651097510985109951100511015110251103511045110551106511075110851109511105111151112511135111451115511165111751118511195112051121511225112351124511255112651127511285112951130511315113251133511345113551136511375113851139511405114151142511435114451145511465114751148511495115051151511525115351154511555115651157511585115951160511615116251163511645116551166511675116851169511705117151172511735117451175511765117751178511795118051181511825118351184511855118651187511885118951190511915119251193511945119551196511975119851199512005120151202512035120451205512065120751208512095121051211512125121351214512155121651217512185121951220512215122251223512245122551226512275122851229512305123151232512335123451235512365123751238512395124051241512425124351244512455124651247512485124951250512515125251253512545125551256512575125851259512605126151262512635126451265512665126751268512695127051271512725127351274512755127651277512785127951280512815128251283512845128551286512875128851289512905129151292512935129451295512965129751298512995130051301513025130351304513055130651307513085130951310513115131251313513145131551316513175131851319513205132151322513235132451325513265132751328513295133051331513325133351334513355133651337513385133951340513415134251343513445134551346513475134851349513505135151352513535135451355513565135751358513595136051361513625136351364513655136651367513685136951370513715137251373513745137551376513775137851379513805138151382513835138451385513865138751388513895139051391513925139351394513955139651397513985139951400514015140251403514045140551406514075140851409514105141151412514135141451415514165141751418514195142051421514225142351424514255142651427514285142951430514315143251433514345143551436514375143851439514405144151442514435144451445514465144751448514495145051451514525145351454514555145651457514585145951460514615146251463514645146551466514675146851469514705147151472514735147451475514765147751478514795148051481514825148351484514855148651487514885148951490514915149251493514945149551496514975149851499515005150151502515035150451505515065150751508515095151051511515125151351514515155151651517515185151951520515215152251523515245152551526515275152851529515305153151532515335153451535515365153751538515395154051541515425154351544515455154651547515485154951550515515155251553515545155551556515575155851559515605156151562515635156451565515665156751568515695157051571515725157351574515755157651577515785157951580515815158251583515845158551586515875158851589515905159151592515935159451595515965159751598515995160051601516025160351604516055160651607516085160951610516115161251613516145161551616516175161851619516205162151622516235162451625516265162751628516295163051631516325163351634516355163651637516385163951640516415164251643516445164551646516475164851649516505165151652516535165451655516565165751658516595166051661516625166351664516655166651667516685166951670516715167251673516745167551676516775167851679516805168151682516835168451685516865168751688516895169051691516925169351694516955169651697516985169951700517015170251703517045170551706517075170851709517105171151712517135171451715517165171751718517195172051721517225172351724517255172651727517285172951730517315173251733517345173551736517375173851739517405174151742517435174451745517465174751748517495175051751517525175351754517555175651757517585175951760517615176251763517645176551766517675176851769517705177151772517735177451775517765177751778517795178051781517825178351784517855178651787517885178951790517915179251793517945179551796517975179851799518005180151802518035180451805518065180751808518095181051811518125181351814518155181651817518185181951820518215182251823518245182551826518275182851829518305183151832518335183451835518365183751838518395184051841518425184351844518455184651847518485184951850518515185251853518545185551856518575185851859518605186151862518635186451865518665186751868518695187051871518725187351874518755187651877518785187951880518815188251883518845188551886518875188851889518905189151892518935189451895518965189751898518995190051901519025190351904519055190651907519085190951910519115191251913519145191551916519175191851919519205192151922519235192451925519265192751928519295193051931519325193351934519355193651937519385193951940519415194251943519445194551946519475194851949519505195151952519535195451955519565195751958519595196051961519625196351964519655196651967519685196951970519715197251973519745197551976519775197851979519805198151982519835198451985519865198751988519895199051991519925199351994519955199651997519985199952000520015200252003520045200552006520075200852009520105201152012520135201452015520165201752018520195202052021520225202352024520255202652027520285202952030520315203252033520345203552036520375203852039520405204152042520435204452045520465204752048520495205052051520525205352054520555205652057520585205952060520615206252063520645206552066520675206852069520705207152072520735207452075520765207752078520795208052081520825208352084520855208652087520885208952090520915209252093520945209552096520975209852099521005210152102521035210452105521065210752108521095211052111521125211352114521155211652117521185211952120521215212252123521245212552126521275212852129521305213152132521335213452135521365213752138521395214052141521425214352144521455214652147521485214952150521515215252153521545215552156521575215852159521605216152162521635216452165521665216752168521695217052171521725217352174521755217652177521785217952180521815218252183521845218552186521875218852189521905219152192521935219452195521965219752198521995220052201522025220352204522055220652207522085220952210522115221252213522145221552216522175221852219522205222152222522235222452225522265222752228522295223052231522325223352234522355223652237522385223952240522415224252243522445224552246522475224852249522505225152252522535225452255522565225752258522595226052261522625226352264522655226652267522685226952270522715227252273522745227552276522775227852279522805228152282522835228452285522865228752288522895229052291522925229352294522955229652297522985229952300523015230252303523045230552306523075230852309523105231152312523135231452315523165231752318523195232052321523225232352324523255232652327523285232952330523315233252333523345233552336523375233852339523405234152342523435234452345523465234752348523495235052351523525235352354523555235652357523585235952360523615236252363523645236552366523675236852369523705237152372523735237452375523765237752378523795238052381523825238352384523855238652387523885238952390523915239252393523945239552396523975239852399524005240152402524035240452405524065240752408524095241052411524125241352414524155241652417524185241952420524215242252423524245242552426524275242852429524305243152432524335243452435524365243752438524395244052441524425244352444524455244652447524485244952450524515245252453524545245552456524575245852459524605246152462524635246452465524665246752468524695247052471524725247352474524755247652477524785247952480524815248252483524845248552486524875248852489524905249152492524935249452495524965249752498524995250052501525025250352504525055250652507525085250952510525115251252513525145251552516525175251852519525205252152522525235252452525525265252752528525295253052531525325253352534525355253652537525385253952540525415254252543525445254552546525475254852549525505255152552525535255452555525565255752558525595256052561525625256352564525655256652567525685256952570525715257252573525745257552576525775257852579525805258152582525835258452585525865258752588525895259052591525925259352594525955259652597525985259952600526015260252603526045260552606526075260852609526105261152612526135261452615526165261752618526195262052621526225262352624526255262652627526285262952630526315263252633526345263552636526375263852639526405264152642526435264452645526465264752648526495265052651526525265352654526555265652657526585265952660526615266252663526645266552666526675266852669526705267152672526735267452675526765267752678526795268052681526825268352684526855268652687526885268952690526915269252693526945269552696526975269852699527005270152702527035270452705527065270752708527095271052711527125271352714527155271652717527185271952720527215272252723527245272552726527275272852729527305273152732527335273452735527365273752738527395274052741527425274352744527455274652747527485274952750527515275252753527545275552756527575275852759527605276152762527635276452765527665276752768527695277052771527725277352774527755277652777527785277952780527815278252783527845278552786527875278852789527905279152792527935279452795527965279752798527995280052801528025280352804528055280652807528085280952810528115281252813528145281552816528175281852819528205282152822528235282452825528265282752828528295283052831528325283352834528355283652837528385283952840528415284252843528445284552846528475284852849528505285152852528535285452855528565285752858528595286052861528625286352864528655286652867528685286952870528715287252873528745287552876528775287852879528805288152882528835288452885528865288752888528895289052891528925289352894528955289652897528985289952900529015290252903529045290552906529075290852909529105291152912529135291452915529165291752918529195292052921529225292352924529255292652927529285292952930529315293252933529345293552936529375293852939529405294152942529435294452945529465294752948529495295052951529525295352954529555295652957529585295952960529615296252963529645296552966529675296852969529705297152972529735297452975529765297752978529795298052981529825298352984529855298652987529885298952990529915299252993529945299552996529975299852999530005300153002530035300453005530065300753008530095301053011530125301353014530155301653017530185301953020530215302253023530245302553026530275302853029530305303153032530335303453035530365303753038530395304053041530425304353044530455304653047530485304953050530515305253053530545305553056530575305853059530605306153062530635306453065530665306753068530695307053071530725307353074530755307653077530785307953080530815308253083530845308553086530875308853089530905309153092530935309453095530965309753098530995310053101531025310353104531055310653107531085310953110531115311253113531145311553116531175311853119531205312153122531235312453125531265312753128531295313053131531325313353134531355313653137531385313953140531415314253143531445314553146531475314853149531505315153152531535315453155531565315753158531595316053161531625316353164531655316653167531685316953170531715317253173531745317553176531775317853179531805318153182531835318453185531865318753188531895319053191531925319353194531955319653197531985319953200532015320253203532045320553206532075320853209532105321153212532135321453215532165321753218532195322053221532225322353224532255322653227532285322953230532315323253233532345323553236532375323853239532405324153242532435324453245532465324753248532495325053251532525325353254532555325653257532585325953260532615326253263532645326553266532675326853269532705327153272532735327453275532765327753278532795328053281532825328353284532855328653287532885328953290532915329253293532945329553296532975329853299533005330153302533035330453305533065330753308533095331053311533125331353314533155331653317533185331953320533215332253323533245332553326533275332853329533305333153332533335333453335533365333753338533395334053341533425334353344533455334653347533485334953350533515335253353533545335553356533575335853359533605336153362533635336453365533665336753368533695337053371533725337353374533755337653377533785337953380533815338253383533845338553386533875338853389533905339153392533935339453395533965339753398533995340053401534025340353404534055340653407534085340953410534115341253413534145341553416534175341853419534205342153422534235342453425534265342753428534295343053431534325343353434534355343653437534385343953440534415344253443534445344553446534475344853449534505345153452534535345453455534565345753458534595346053461534625346353464534655346653467534685346953470534715347253473534745347553476534775347853479534805348153482534835348453485534865348753488534895349053491534925349353494534955349653497534985349953500535015350253503535045350553506535075350853509535105351153512535135351453515535165351753518535195352053521535225352353524535255352653527535285352953530535315353253533535345353553536535375353853539535405354153542535435354453545535465354753548535495355053551535525355353554535555355653557535585355953560535615356253563535645356553566535675356853569535705357153572535735357453575535765357753578535795358053581535825358353584535855358653587535885358953590535915359253593535945359553596535975359853599536005360153602536035360453605536065360753608536095361053611536125361353614536155361653617536185361953620536215362253623536245362553626536275362853629536305363153632536335363453635536365363753638536395364053641536425364353644536455364653647536485364953650536515365253653536545365553656536575365853659536605366153662536635366453665536665366753668536695367053671536725367353674536755367653677536785367953680536815368253683536845368553686536875368853689536905369153692536935369453695536965369753698536995370053701537025370353704537055370653707537085370953710537115371253713537145371553716537175371853719537205372153722537235372453725537265372753728537295373053731537325373353734537355373653737537385373953740537415374253743537445374553746537475374853749537505375153752537535375453755537565375753758537595376053761537625376353764537655376653767537685376953770537715377253773537745377553776537775377853779537805378153782537835378453785537865378753788537895379053791537925379353794537955379653797537985379953800538015380253803538045380553806538075380853809538105381153812538135381453815538165381753818538195382053821538225382353824538255382653827538285382953830538315383253833538345383553836538375383853839538405384153842538435384453845538465384753848538495385053851538525385353854538555385653857538585385953860538615386253863538645386553866538675386853869538705387153872538735387453875538765387753878538795388053881538825388353884538855388653887538885388953890538915389253893538945389553896538975389853899539005390153902539035390453905539065390753908539095391053911539125391353914539155391653917539185391953920539215392253923539245392553926539275392853929539305393153932539335393453935539365393753938539395394053941539425394353944539455394653947539485394953950539515395253953539545395553956539575395853959539605396153962539635396453965539665396753968539695397053971539725397353974539755397653977539785397953980539815398253983539845398553986539875398853989539905399153992539935399453995539965399753998539995400054001540025400354004540055400654007540085400954010540115401254013540145401554016540175401854019540205402154022540235402454025540265402754028540295403054031540325403354034540355403654037540385403954040540415404254043540445404554046540475404854049540505405154052540535405454055540565405754058540595406054061540625406354064540655406654067540685406954070540715407254073540745407554076540775407854079540805408154082540835408454085540865408754088540895409054091540925409354094540955409654097540985409954100541015410254103541045410554106541075410854109541105411154112541135411454115541165411754118541195412054121541225412354124541255412654127541285412954130541315413254133541345413554136541375413854139541405414154142541435414454145541465414754148541495415054151541525415354154541555415654157541585415954160541615416254163541645416554166541675416854169541705417154172541735417454175541765417754178541795418054181541825418354184541855418654187541885418954190541915419254193541945419554196541975419854199542005420154202542035420454205542065420754208542095421054211542125421354214542155421654217542185421954220542215422254223542245422554226542275422854229542305423154232542335423454235542365423754238542395424054241542425424354244542455424654247542485424954250542515425254253542545425554256542575425854259542605426154262542635426454265542665426754268542695427054271542725427354274542755427654277542785427954280542815428254283542845428554286542875428854289542905429154292542935429454295542965429754298542995430054301543025430354304543055430654307543085430954310543115431254313543145431554316543175431854319543205432154322543235432454325543265432754328543295433054331543325433354334543355433654337543385433954340543415434254343543445434554346543475434854349543505435154352543535435454355543565435754358543595436054361543625436354364543655436654367543685436954370543715437254373543745437554376543775437854379543805438154382543835438454385543865438754388543895439054391543925439354394543955439654397543985439954400544015440254403544045440554406544075440854409544105441154412544135441454415544165441754418544195442054421544225442354424544255442654427544285442954430544315443254433544345443554436544375443854439544405444154442544435444454445544465444754448544495445054451544525445354454544555445654457544585445954460544615446254463544645446554466544675446854469544705447154472544735447454475544765447754478544795448054481544825448354484544855448654487544885448954490544915449254493544945449554496544975449854499545005450154502545035450454505545065450754508545095451054511545125451354514545155451654517545185451954520545215452254523545245452554526545275452854529545305453154532545335453454535545365453754538545395454054541545425454354544545455454654547545485454954550545515455254553545545455554556545575455854559545605456154562545635456454565545665456754568545695457054571545725457354574545755457654577545785457954580545815458254583545845458554586545875458854589545905459154592545935459454595545965459754598545995460054601546025460354604546055460654607546085460954610546115461254613546145461554616546175461854619546205462154622546235462454625546265462754628546295463054631546325463354634546355463654637546385463954640546415464254643546445464554646546475464854649546505465154652546535465454655546565465754658546595466054661546625466354664546655466654667546685466954670546715467254673546745467554676546775467854679546805468154682546835468454685546865468754688546895469054691546925469354694546955469654697546985469954700547015470254703547045470554706547075470854709547105471154712547135471454715547165471754718547195472054721547225472354724547255472654727547285472954730547315473254733547345473554736547375473854739547405474154742547435474454745547465474754748547495475054751547525475354754547555475654757547585475954760547615476254763547645476554766547675476854769547705477154772547735477454775547765477754778547795478054781547825478354784547855478654787547885478954790547915479254793547945479554796547975479854799548005480154802548035480454805548065480754808548095481054811548125481354814548155481654817548185481954820548215482254823548245482554826548275482854829548305483154832548335483454835548365483754838548395484054841548425484354844548455484654847548485484954850548515485254853548545485554856548575485854859548605486154862548635486454865548665486754868548695487054871548725487354874548755487654877548785487954880548815488254883548845488554886548875488854889548905489154892548935489454895548965489754898548995490054901549025490354904 |
- /* sp.c
- *
- * Copyright (C) 2006-2023 wolfSSL Inc.
- *
- * This file is part of wolfSSL.
- *
- * wolfSSL is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * wolfSSL is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
- */
- /* Implementation by Sean Parkinson. */
- #ifdef HAVE_CONFIG_H
- #include <config.h>
- #endif
- #include <wolfssl/wolfcrypt/settings.h>
- #if defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH) || \
- defined(WOLFSSL_HAVE_SP_ECC)
- #include <wolfssl/wolfcrypt/error-crypt.h>
- #include <wolfssl/wolfcrypt/cpuid.h>
- #ifdef NO_INLINE
- #include <wolfssl/wolfcrypt/misc.h>
- #else
- #define WOLFSSL_MISC_INCLUDED
- #include <wolfcrypt/src/misc.c>
- #endif
- #ifdef RSA_LOW_MEM
- #ifndef SP_RSA_PRIVATE_EXP_D
- #define SP_RSA_PRIVATE_EXP_D
- #endif
- #ifndef WOLFSSL_SP_SMALL
- #define WOLFSSL_SP_SMALL
- #endif
- #endif
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- #undef WOLFSSL_SP_SMALL_STACK
- #define WOLFSSL_SP_SMALL_STACK
- #endif
- #include <wolfssl/wolfcrypt/sp.h>
- #ifdef __IAR_SYSTEMS_ICC__
- #define __asm__ asm
- #define __volatile__ volatile
- #define WOLFSSL_NO_VAR_ASSIGN_REG
- #endif /* __IAR_SYSTEMS_ICC__ */
- #ifdef __KEIL__
- #define __asm__ __asm
- #define __volatile__ volatile
- #endif
- #ifndef WOLFSSL_SP_ASM
- #if SP_WORD_SIZE == 32
- #define SP_PRINT_NUM(var, name, total, words, bits) \
- do { \
- int ii; \
- byte nb[(bits + 7) / 8]; \
- sp_digit _s[words]; \
- XMEMCPY(_s, var, sizeof(_s)); \
- sp_##total##_norm_##words(_s); \
- sp_##total##_to_bin_##words(_s, nb); \
- fprintf(stderr, name "=0x"); \
- for (ii=0; ii<(bits + 7) / 8; ii++) \
- fprintf(stderr, "%02x", nb[ii]); \
- fprintf(stderr, "\n"); \
- } while (0)
- #define SP_PRINT_VAL(var, name) \
- fprintf(stderr, name "=0x" SP_PRINT_FMT "\n", var)
- #define SP_PRINT_INT(var, name) \
- fprintf(stderr, name "=%d\n", var)
- #if ((defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)) && \
- ((!defined(WC_NO_CACHE_RESISTANT) && \
- (defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH))) || \
- (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP))) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || (defined(WOLFSSL_SP_SMALL) && \
- defined(WOLFSSL_HAVE_SP_ECC) && (!defined(WOLFSSL_SP_NO_256) || \
- defined(WOLFSSL_SP_384) || defined(WOLFSSL_SP_521) || \
- defined(WOLFSSL_SP_1024)))
- /* Mask for address to obfuscate which of the two address will be used. */
- static const size_t addr_mask[2] = { 0, (size_t)-1 };
- #endif
- #if defined(WOLFSSL_SP_NONBLOCK) && (!defined(WOLFSSL_SP_NO_MALLOC) || \
- !defined(WOLFSSL_SP_SMALL))
- #error SP non-blocking requires small and no-malloc (WOLFSSL_SP_SMALL and WOLFSSL_SP_NO_MALLOC)
- #endif
- #if defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)
- #ifndef WOLFSSL_SP_NO_2048
- /* Read big endian unsigned byte array into r.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a Byte array.
- * n Number of bytes in array to read.
- */
- static void sp_2048_from_bin(sp_digit* r, int size, const byte* a, int n)
- {
- int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = n-1; i >= 0; i--) {
- r[j] |= (((sp_digit)a[i]) << s);
- if (s >= 21U) {
- r[j] &= 0x1fffffff;
- s = 29U - s;
- if (j + 1 >= size) {
- break;
- }
- r[++j] = (sp_digit)a[i] >> s;
- s = 8U - s;
- }
- else {
- s += 8U;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- }
- /* Convert an mp_int to an array of sp_digit.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a A multi-precision integer.
- */
- static void sp_2048_from_mp(sp_digit* r, int size, const mp_int* a)
- {
- #if DIGIT_BIT == 29
- int i;
- sp_digit j = (sp_digit)0 - (sp_digit)a->used;
- int o = 0;
- for (i = 0; i < size; i++) {
- sp_digit mask = (sp_digit)0 - (j >> 28);
- r[i] = a->dp[o] & mask;
- j++;
- o += (int)(j >> 28);
- }
- #elif DIGIT_BIT > 29
- unsigned int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i] << s);
- r[j] &= 0x1fffffff;
- s = 29U - s;
- if (j + 1 >= size) {
- break;
- }
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- while ((s + 29U) <= (word32)DIGIT_BIT) {
- s += 29U;
- r[j] &= 0x1fffffff;
- if (j + 1 >= size) {
- break;
- }
- if (s < (word32)DIGIT_BIT) {
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- }
- else {
- r[++j] = (sp_digit)0;
- }
- }
- s = (word32)DIGIT_BIT - s;
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #else
- unsigned int i;
- int j = 0;
- int s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i]) << s;
- if (s + DIGIT_BIT >= 29) {
- r[j] &= 0x1fffffff;
- if (j + 1 >= size) {
- break;
- }
- s = 29 - s;
- if (s == DIGIT_BIT) {
- r[++j] = 0;
- s = 0;
- }
- else {
- r[++j] = a->dp[i] >> s;
- s = DIGIT_BIT - s;
- }
- }
- else {
- s += DIGIT_BIT;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #endif
- }
- /* Write r as big endian to byte array.
- * Fixed length number of bytes written: 256
- *
- * r A single precision integer.
- * a Byte array.
- */
- static void sp_2048_to_bin_72(sp_digit* r, byte* a)
- {
- int i;
- int j;
- int s = 0;
- int b;
- for (i=0; i<71; i++) {
- r[i+1] += r[i] >> 29;
- r[i] &= 0x1fffffff;
- }
- j = 2055 / 8 - 1;
- a[j] = 0;
- for (i=0; i<71 && j>=0; i++) {
- b = 0;
- /* lint allow cast of mismatch sp_digit and int */
- a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
- b += 8 - s;
- if (j < 0) {
- break;
- }
- while (b < 29) {
- a[j--] = (byte)(r[i] >> b);
- b += 8;
- if (j < 0) {
- break;
- }
- }
- s = 8 - (b - 29);
- if (j >= 0) {
- a[j] = 0;
- }
- if (s != 0) {
- j++;
- }
- }
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) && (!defined(WOLFSSL_RSA_PUBLIC_ONLY) || !defined(WOLFSSL_SP_SMALL))) || defined(WOLFSSL_HAVE_SP_DH)
- /* Normalize the values in each word to 29 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_2048_norm_36(sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 35; i++) {
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- #else
- int i;
- for (i = 0; i < 32; i += 8) {
- a[i+1] += a[i+0] >> 29; a[i+0] &= 0x1fffffff;
- a[i+2] += a[i+1] >> 29; a[i+1] &= 0x1fffffff;
- a[i+3] += a[i+2] >> 29; a[i+2] &= 0x1fffffff;
- a[i+4] += a[i+3] >> 29; a[i+3] &= 0x1fffffff;
- a[i+5] += a[i+4] >> 29; a[i+4] &= 0x1fffffff;
- a[i+6] += a[i+5] >> 29; a[i+5] &= 0x1fffffff;
- a[i+7] += a[i+6] >> 29; a[i+6] &= 0x1fffffff;
- a[i+8] += a[i+7] >> 29; a[i+7] &= 0x1fffffff;
- }
- a[33] += a[32] >> 29; a[32] &= 0x1fffffff;
- a[34] += a[33] >> 29; a[33] &= 0x1fffffff;
- a[35] += a[34] >> 29; a[34] &= 0x1fffffff;
- #endif /* WOLFSSL_SP_SMALL */
- }
- #endif /* (WOLFSSL_HAVE_SP_RSA && (!WOLFSSL_RSA_PUBLIC_ONLY || !WOLFSSL_SP_SMALL)) || WOLFSSL_HAVE_SP_DH */
- /* Normalize the values in each word to 29 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_2048_norm_72(sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 71; i++) {
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- #else
- int i;
- for (i = 0; i < 64; i += 8) {
- a[i+1] += a[i+0] >> 29; a[i+0] &= 0x1fffffff;
- a[i+2] += a[i+1] >> 29; a[i+1] &= 0x1fffffff;
- a[i+3] += a[i+2] >> 29; a[i+2] &= 0x1fffffff;
- a[i+4] += a[i+3] >> 29; a[i+3] &= 0x1fffffff;
- a[i+5] += a[i+4] >> 29; a[i+4] &= 0x1fffffff;
- a[i+6] += a[i+5] >> 29; a[i+5] &= 0x1fffffff;
- a[i+7] += a[i+6] >> 29; a[i+6] &= 0x1fffffff;
- a[i+8] += a[i+7] >> 29; a[i+7] &= 0x1fffffff;
- }
- a[65] += a[64] >> 29; a[64] &= 0x1fffffff;
- a[66] += a[65] >> 29; a[65] &= 0x1fffffff;
- a[67] += a[66] >> 29; a[66] &= 0x1fffffff;
- a[68] += a[67] >> 29; a[67] &= 0x1fffffff;
- a[69] += a[68] >> 29; a[68] &= 0x1fffffff;
- a[70] += a[69] >> 29; a[69] &= 0x1fffffff;
- a[71] += a[70] >> 29; a[70] &= 0x1fffffff;
- #endif /* WOLFSSL_SP_SMALL */
- }
- #ifndef WOLFSSL_SP_SMALL
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_2048_mul_12(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_uint64 t0;
- sp_uint64 t1;
- sp_digit t[12];
- t0 = ((sp_uint64)a[ 0]) * b[ 0];
- t1 = ((sp_uint64)a[ 0]) * b[ 1]
- + ((sp_uint64)a[ 1]) * b[ 0];
- t[ 0] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_uint64)a[ 0]) * b[ 2]
- + ((sp_uint64)a[ 1]) * b[ 1]
- + ((sp_uint64)a[ 2]) * b[ 0];
- t[ 1] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_uint64)a[ 0]) * b[ 3]
- + ((sp_uint64)a[ 1]) * b[ 2]
- + ((sp_uint64)a[ 2]) * b[ 1]
- + ((sp_uint64)a[ 3]) * b[ 0];
- t[ 2] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_uint64)a[ 0]) * b[ 4]
- + ((sp_uint64)a[ 1]) * b[ 3]
- + ((sp_uint64)a[ 2]) * b[ 2]
- + ((sp_uint64)a[ 3]) * b[ 1]
- + ((sp_uint64)a[ 4]) * b[ 0];
- t[ 3] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_uint64)a[ 0]) * b[ 5]
- + ((sp_uint64)a[ 1]) * b[ 4]
- + ((sp_uint64)a[ 2]) * b[ 3]
- + ((sp_uint64)a[ 3]) * b[ 2]
- + ((sp_uint64)a[ 4]) * b[ 1]
- + ((sp_uint64)a[ 5]) * b[ 0];
- t[ 4] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_uint64)a[ 0]) * b[ 6]
- + ((sp_uint64)a[ 1]) * b[ 5]
- + ((sp_uint64)a[ 2]) * b[ 4]
- + ((sp_uint64)a[ 3]) * b[ 3]
- + ((sp_uint64)a[ 4]) * b[ 2]
- + ((sp_uint64)a[ 5]) * b[ 1]
- + ((sp_uint64)a[ 6]) * b[ 0];
- t[ 5] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_uint64)a[ 0]) * b[ 7]
- + ((sp_uint64)a[ 1]) * b[ 6]
- + ((sp_uint64)a[ 2]) * b[ 5]
- + ((sp_uint64)a[ 3]) * b[ 4]
- + ((sp_uint64)a[ 4]) * b[ 3]
- + ((sp_uint64)a[ 5]) * b[ 2]
- + ((sp_uint64)a[ 6]) * b[ 1]
- + ((sp_uint64)a[ 7]) * b[ 0];
- t[ 6] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_uint64)a[ 0]) * b[ 8]
- + ((sp_uint64)a[ 1]) * b[ 7]
- + ((sp_uint64)a[ 2]) * b[ 6]
- + ((sp_uint64)a[ 3]) * b[ 5]
- + ((sp_uint64)a[ 4]) * b[ 4]
- + ((sp_uint64)a[ 5]) * b[ 3]
- + ((sp_uint64)a[ 6]) * b[ 2]
- + ((sp_uint64)a[ 7]) * b[ 1]
- + ((sp_uint64)a[ 8]) * b[ 0];
- t[ 7] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_uint64)a[ 0]) * b[ 9]
- + ((sp_uint64)a[ 1]) * b[ 8]
- + ((sp_uint64)a[ 2]) * b[ 7]
- + ((sp_uint64)a[ 3]) * b[ 6]
- + ((sp_uint64)a[ 4]) * b[ 5]
- + ((sp_uint64)a[ 5]) * b[ 4]
- + ((sp_uint64)a[ 6]) * b[ 3]
- + ((sp_uint64)a[ 7]) * b[ 2]
- + ((sp_uint64)a[ 8]) * b[ 1]
- + ((sp_uint64)a[ 9]) * b[ 0];
- t[ 8] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_uint64)a[ 0]) * b[10]
- + ((sp_uint64)a[ 1]) * b[ 9]
- + ((sp_uint64)a[ 2]) * b[ 8]
- + ((sp_uint64)a[ 3]) * b[ 7]
- + ((sp_uint64)a[ 4]) * b[ 6]
- + ((sp_uint64)a[ 5]) * b[ 5]
- + ((sp_uint64)a[ 6]) * b[ 4]
- + ((sp_uint64)a[ 7]) * b[ 3]
- + ((sp_uint64)a[ 8]) * b[ 2]
- + ((sp_uint64)a[ 9]) * b[ 1]
- + ((sp_uint64)a[10]) * b[ 0];
- t[ 9] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_uint64)a[ 0]) * b[11]
- + ((sp_uint64)a[ 1]) * b[10]
- + ((sp_uint64)a[ 2]) * b[ 9]
- + ((sp_uint64)a[ 3]) * b[ 8]
- + ((sp_uint64)a[ 4]) * b[ 7]
- + ((sp_uint64)a[ 5]) * b[ 6]
- + ((sp_uint64)a[ 6]) * b[ 5]
- + ((sp_uint64)a[ 7]) * b[ 4]
- + ((sp_uint64)a[ 8]) * b[ 3]
- + ((sp_uint64)a[ 9]) * b[ 2]
- + ((sp_uint64)a[10]) * b[ 1]
- + ((sp_uint64)a[11]) * b[ 0];
- t[10] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_uint64)a[ 1]) * b[11]
- + ((sp_uint64)a[ 2]) * b[10]
- + ((sp_uint64)a[ 3]) * b[ 9]
- + ((sp_uint64)a[ 4]) * b[ 8]
- + ((sp_uint64)a[ 5]) * b[ 7]
- + ((sp_uint64)a[ 6]) * b[ 6]
- + ((sp_uint64)a[ 7]) * b[ 5]
- + ((sp_uint64)a[ 8]) * b[ 4]
- + ((sp_uint64)a[ 9]) * b[ 3]
- + ((sp_uint64)a[10]) * b[ 2]
- + ((sp_uint64)a[11]) * b[ 1];
- t[11] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_uint64)a[ 2]) * b[11]
- + ((sp_uint64)a[ 3]) * b[10]
- + ((sp_uint64)a[ 4]) * b[ 9]
- + ((sp_uint64)a[ 5]) * b[ 8]
- + ((sp_uint64)a[ 6]) * b[ 7]
- + ((sp_uint64)a[ 7]) * b[ 6]
- + ((sp_uint64)a[ 8]) * b[ 5]
- + ((sp_uint64)a[ 9]) * b[ 4]
- + ((sp_uint64)a[10]) * b[ 3]
- + ((sp_uint64)a[11]) * b[ 2];
- r[12] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_uint64)a[ 3]) * b[11]
- + ((sp_uint64)a[ 4]) * b[10]
- + ((sp_uint64)a[ 5]) * b[ 9]
- + ((sp_uint64)a[ 6]) * b[ 8]
- + ((sp_uint64)a[ 7]) * b[ 7]
- + ((sp_uint64)a[ 8]) * b[ 6]
- + ((sp_uint64)a[ 9]) * b[ 5]
- + ((sp_uint64)a[10]) * b[ 4]
- + ((sp_uint64)a[11]) * b[ 3];
- r[13] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_uint64)a[ 4]) * b[11]
- + ((sp_uint64)a[ 5]) * b[10]
- + ((sp_uint64)a[ 6]) * b[ 9]
- + ((sp_uint64)a[ 7]) * b[ 8]
- + ((sp_uint64)a[ 8]) * b[ 7]
- + ((sp_uint64)a[ 9]) * b[ 6]
- + ((sp_uint64)a[10]) * b[ 5]
- + ((sp_uint64)a[11]) * b[ 4];
- r[14] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_uint64)a[ 5]) * b[11]
- + ((sp_uint64)a[ 6]) * b[10]
- + ((sp_uint64)a[ 7]) * b[ 9]
- + ((sp_uint64)a[ 8]) * b[ 8]
- + ((sp_uint64)a[ 9]) * b[ 7]
- + ((sp_uint64)a[10]) * b[ 6]
- + ((sp_uint64)a[11]) * b[ 5];
- r[15] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_uint64)a[ 6]) * b[11]
- + ((sp_uint64)a[ 7]) * b[10]
- + ((sp_uint64)a[ 8]) * b[ 9]
- + ((sp_uint64)a[ 9]) * b[ 8]
- + ((sp_uint64)a[10]) * b[ 7]
- + ((sp_uint64)a[11]) * b[ 6];
- r[16] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_uint64)a[ 7]) * b[11]
- + ((sp_uint64)a[ 8]) * b[10]
- + ((sp_uint64)a[ 9]) * b[ 9]
- + ((sp_uint64)a[10]) * b[ 8]
- + ((sp_uint64)a[11]) * b[ 7];
- r[17] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_uint64)a[ 8]) * b[11]
- + ((sp_uint64)a[ 9]) * b[10]
- + ((sp_uint64)a[10]) * b[ 9]
- + ((sp_uint64)a[11]) * b[ 8];
- r[18] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_uint64)a[ 9]) * b[11]
- + ((sp_uint64)a[10]) * b[10]
- + ((sp_uint64)a[11]) * b[ 9];
- r[19] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_uint64)a[10]) * b[11]
- + ((sp_uint64)a[11]) * b[10];
- r[20] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_uint64)a[11]) * b[11];
- r[21] = t1 & 0x1fffffff; t0 += t1 >> 29;
- r[22] = t0 & 0x1fffffff;
- r[23] = (sp_digit)(t0 >> 29);
- XMEMCPY(r, t, sizeof(t));
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_2048_add_12(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- r[ 0] = a[ 0] + b[ 0];
- r[ 1] = a[ 1] + b[ 1];
- r[ 2] = a[ 2] + b[ 2];
- r[ 3] = a[ 3] + b[ 3];
- r[ 4] = a[ 4] + b[ 4];
- r[ 5] = a[ 5] + b[ 5];
- r[ 6] = a[ 6] + b[ 6];
- r[ 7] = a[ 7] + b[ 7];
- r[ 8] = a[ 8] + b[ 8];
- r[ 9] = a[ 9] + b[ 9];
- r[10] = a[10] + b[10];
- r[11] = a[11] + b[11];
- return 0;
- }
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_2048_sub_24(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 24; i += 8) {
- r[i + 0] = a[i + 0] - b[i + 0];
- r[i + 1] = a[i + 1] - b[i + 1];
- r[i + 2] = a[i + 2] - b[i + 2];
- r[i + 3] = a[i + 3] - b[i + 3];
- r[i + 4] = a[i + 4] - b[i + 4];
- r[i + 5] = a[i + 5] - b[i + 5];
- r[i + 6] = a[i + 6] - b[i + 6];
- r[i + 7] = a[i + 7] - b[i + 7];
- }
- return 0;
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_2048_add_24(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 24; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- return 0;
- }
- /* Normalize the values in each word to 29 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_2048_norm_12(sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 11; i++) {
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- #else
- a[1] += a[0] >> 29; a[0] &= 0x1fffffff;
- a[2] += a[1] >> 29; a[1] &= 0x1fffffff;
- a[3] += a[2] >> 29; a[2] &= 0x1fffffff;
- a[4] += a[3] >> 29; a[3] &= 0x1fffffff;
- a[5] += a[4] >> 29; a[4] &= 0x1fffffff;
- a[6] += a[5] >> 29; a[5] &= 0x1fffffff;
- a[7] += a[6] >> 29; a[6] &= 0x1fffffff;
- a[8] += a[7] >> 29; a[7] &= 0x1fffffff;
- a[9] += a[8] >> 29; a[8] &= 0x1fffffff;
- a[10] += a[9] >> 29; a[9] &= 0x1fffffff;
- a[11] += a[10] >> 29; a[10] &= 0x1fffffff;
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Normalize the values in each word to 29 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_2048_norm_24(sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 23; i++) {
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- #else
- int i;
- for (i = 0; i < 16; i += 8) {
- a[i+1] += a[i+0] >> 29; a[i+0] &= 0x1fffffff;
- a[i+2] += a[i+1] >> 29; a[i+1] &= 0x1fffffff;
- a[i+3] += a[i+2] >> 29; a[i+2] &= 0x1fffffff;
- a[i+4] += a[i+3] >> 29; a[i+3] &= 0x1fffffff;
- a[i+5] += a[i+4] >> 29; a[i+4] &= 0x1fffffff;
- a[i+6] += a[i+5] >> 29; a[i+5] &= 0x1fffffff;
- a[i+7] += a[i+6] >> 29; a[i+6] &= 0x1fffffff;
- a[i+8] += a[i+7] >> 29; a[i+7] &= 0x1fffffff;
- }
- a[17] += a[16] >> 29; a[16] &= 0x1fffffff;
- a[18] += a[17] >> 29; a[17] &= 0x1fffffff;
- a[19] += a[18] >> 29; a[18] &= 0x1fffffff;
- a[20] += a[19] >> 29; a[19] &= 0x1fffffff;
- a[21] += a[20] >> 29; a[20] &= 0x1fffffff;
- a[22] += a[21] >> 29; a[21] &= 0x1fffffff;
- a[23] += a[22] >> 29; a[22] &= 0x1fffffff;
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_2048_mul_36(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_digit p0[24];
- sp_digit p1[24];
- sp_digit p2[24];
- sp_digit p3[24];
- sp_digit p4[24];
- sp_digit p5[24];
- sp_digit t0[24];
- sp_digit t1[24];
- sp_digit t2[24];
- sp_digit a0[12];
- sp_digit a1[12];
- sp_digit a2[12];
- sp_digit b0[12];
- sp_digit b1[12];
- sp_digit b2[12];
- (void)sp_2048_add_12(a0, a, &a[12]);
- sp_2048_norm_12(a0);
- (void)sp_2048_add_12(b0, b, &b[12]);
- sp_2048_norm_12(b0);
- (void)sp_2048_add_12(a1, &a[12], &a[24]);
- sp_2048_norm_12(a1);
- (void)sp_2048_add_12(b1, &b[12], &b[24]);
- sp_2048_norm_12(b1);
- (void)sp_2048_add_12(a2, a0, &a[24]);
- sp_2048_norm_12(a1);
- (void)sp_2048_add_12(b2, b0, &b[24]);
- sp_2048_norm_12(b2);
- sp_2048_mul_12(p0, a, b);
- sp_2048_mul_12(p2, &a[12], &b[12]);
- sp_2048_mul_12(p4, &a[24], &b[24]);
- sp_2048_mul_12(p1, a0, b0);
- sp_2048_mul_12(p3, a1, b1);
- sp_2048_mul_12(p5, a2, b2);
- XMEMSET(r, 0, sizeof(*r)*2U*36U);
- (void)sp_2048_sub_24(t0, p3, p2);
- (void)sp_2048_sub_24(t1, p1, p2);
- (void)sp_2048_sub_24(t2, p5, t0);
- (void)sp_2048_sub_24(t2, t2, t1);
- sp_2048_norm_24(t2);
- (void)sp_2048_sub_24(t0, t0, p4);
- sp_2048_norm_24(t0);
- (void)sp_2048_sub_24(t1, t1, p0);
- sp_2048_norm_24(t1);
- (void)sp_2048_add_24(r, r, p0);
- (void)sp_2048_add_24(&r[12], &r[12], t1);
- (void)sp_2048_add_24(&r[24], &r[24], t2);
- (void)sp_2048_add_24(&r[36], &r[36], t0);
- (void)sp_2048_add_24(&r[48], &r[48], p4);
- sp_2048_norm_72(r);
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_2048_add_36(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 32; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- r[32] = a[32] + b[32];
- r[33] = a[33] + b[33];
- r[34] = a[34] + b[34];
- r[35] = a[35] + b[35];
- return 0;
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_2048_add_72(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 72; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- return 0;
- }
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_2048_sub_72(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 72; i += 8) {
- r[i + 0] = a[i + 0] - b[i + 0];
- r[i + 1] = a[i + 1] - b[i + 1];
- r[i + 2] = a[i + 2] - b[i + 2];
- r[i + 3] = a[i + 3] - b[i + 3];
- r[i + 4] = a[i + 4] - b[i + 4];
- r[i + 5] = a[i + 5] - b[i + 5];
- r[i + 6] = a[i + 6] - b[i + 6];
- r[i + 7] = a[i + 7] - b[i + 7];
- }
- return 0;
- }
- /* Normalize the values in each word to 29 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_2048_norm_144(sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 143; i++) {
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- #else
- int i;
- for (i = 0; i < 136; i += 8) {
- a[i+1] += a[i+0] >> 29; a[i+0] &= 0x1fffffff;
- a[i+2] += a[i+1] >> 29; a[i+1] &= 0x1fffffff;
- a[i+3] += a[i+2] >> 29; a[i+2] &= 0x1fffffff;
- a[i+4] += a[i+3] >> 29; a[i+3] &= 0x1fffffff;
- a[i+5] += a[i+4] >> 29; a[i+4] &= 0x1fffffff;
- a[i+6] += a[i+5] >> 29; a[i+5] &= 0x1fffffff;
- a[i+7] += a[i+6] >> 29; a[i+6] &= 0x1fffffff;
- a[i+8] += a[i+7] >> 29; a[i+7] &= 0x1fffffff;
- }
- a[137] += a[136] >> 29; a[136] &= 0x1fffffff;
- a[138] += a[137] >> 29; a[137] &= 0x1fffffff;
- a[139] += a[138] >> 29; a[138] &= 0x1fffffff;
- a[140] += a[139] >> 29; a[139] &= 0x1fffffff;
- a[141] += a[140] >> 29; a[140] &= 0x1fffffff;
- a[142] += a[141] >> 29; a[141] &= 0x1fffffff;
- a[143] += a[142] >> 29; a[142] &= 0x1fffffff;
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_2048_mul_72(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_digit* z0 = r;
- sp_digit z1[72];
- sp_digit* a1 = z1;
- sp_digit b1[36];
- sp_digit* z2 = r + 72;
- (void)sp_2048_add_36(a1, a, &a[36]);
- sp_2048_norm_36(a1);
- (void)sp_2048_add_36(b1, b, &b[36]);
- sp_2048_norm_36(b1);
- sp_2048_mul_36(z2, &a[36], &b[36]);
- sp_2048_mul_36(z0, a, b);
- sp_2048_mul_36(z1, a1, b1);
- (void)sp_2048_sub_72(z1, z1, z2);
- (void)sp_2048_sub_72(z1, z1, z0);
- (void)sp_2048_add_72(r + 36, r + 36, z1);
- sp_2048_norm_144(r);
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_2048_sqr_12(sp_digit* r, const sp_digit* a)
- {
- sp_uint64 t0;
- sp_uint64 t1;
- sp_digit t[12];
- t0 = ((sp_uint64)a[ 0]) * a[ 0];
- t1 = (((sp_uint64)a[ 0]) * a[ 1]) * 2;
- t[ 0] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_uint64)a[ 0]) * a[ 2]) * 2
- + ((sp_uint64)a[ 1]) * a[ 1];
- t[ 1] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_uint64)a[ 0]) * a[ 3]
- + ((sp_uint64)a[ 1]) * a[ 2]) * 2;
- t[ 2] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_uint64)a[ 0]) * a[ 4]
- + ((sp_uint64)a[ 1]) * a[ 3]) * 2
- + ((sp_uint64)a[ 2]) * a[ 2];
- t[ 3] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_uint64)a[ 0]) * a[ 5]
- + ((sp_uint64)a[ 1]) * a[ 4]
- + ((sp_uint64)a[ 2]) * a[ 3]) * 2;
- t[ 4] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_uint64)a[ 0]) * a[ 6]
- + ((sp_uint64)a[ 1]) * a[ 5]
- + ((sp_uint64)a[ 2]) * a[ 4]) * 2
- + ((sp_uint64)a[ 3]) * a[ 3];
- t[ 5] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_uint64)a[ 0]) * a[ 7]
- + ((sp_uint64)a[ 1]) * a[ 6]
- + ((sp_uint64)a[ 2]) * a[ 5]
- + ((sp_uint64)a[ 3]) * a[ 4]) * 2;
- t[ 6] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_uint64)a[ 0]) * a[ 8]
- + ((sp_uint64)a[ 1]) * a[ 7]
- + ((sp_uint64)a[ 2]) * a[ 6]
- + ((sp_uint64)a[ 3]) * a[ 5]) * 2
- + ((sp_uint64)a[ 4]) * a[ 4];
- t[ 7] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_uint64)a[ 0]) * a[ 9]
- + ((sp_uint64)a[ 1]) * a[ 8]
- + ((sp_uint64)a[ 2]) * a[ 7]
- + ((sp_uint64)a[ 3]) * a[ 6]
- + ((sp_uint64)a[ 4]) * a[ 5]) * 2;
- t[ 8] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_uint64)a[ 0]) * a[10]
- + ((sp_uint64)a[ 1]) * a[ 9]
- + ((sp_uint64)a[ 2]) * a[ 8]
- + ((sp_uint64)a[ 3]) * a[ 7]
- + ((sp_uint64)a[ 4]) * a[ 6]) * 2
- + ((sp_uint64)a[ 5]) * a[ 5];
- t[ 9] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_uint64)a[ 0]) * a[11]
- + ((sp_uint64)a[ 1]) * a[10]
- + ((sp_uint64)a[ 2]) * a[ 9]
- + ((sp_uint64)a[ 3]) * a[ 8]
- + ((sp_uint64)a[ 4]) * a[ 7]
- + ((sp_uint64)a[ 5]) * a[ 6]) * 2;
- t[10] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_uint64)a[ 1]) * a[11]
- + ((sp_uint64)a[ 2]) * a[10]
- + ((sp_uint64)a[ 3]) * a[ 9]
- + ((sp_uint64)a[ 4]) * a[ 8]
- + ((sp_uint64)a[ 5]) * a[ 7]) * 2
- + ((sp_uint64)a[ 6]) * a[ 6];
- t[11] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_uint64)a[ 2]) * a[11]
- + ((sp_uint64)a[ 3]) * a[10]
- + ((sp_uint64)a[ 4]) * a[ 9]
- + ((sp_uint64)a[ 5]) * a[ 8]
- + ((sp_uint64)a[ 6]) * a[ 7]) * 2;
- r[12] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_uint64)a[ 3]) * a[11]
- + ((sp_uint64)a[ 4]) * a[10]
- + ((sp_uint64)a[ 5]) * a[ 9]
- + ((sp_uint64)a[ 6]) * a[ 8]) * 2
- + ((sp_uint64)a[ 7]) * a[ 7];
- r[13] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_uint64)a[ 4]) * a[11]
- + ((sp_uint64)a[ 5]) * a[10]
- + ((sp_uint64)a[ 6]) * a[ 9]
- + ((sp_uint64)a[ 7]) * a[ 8]) * 2;
- r[14] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_uint64)a[ 5]) * a[11]
- + ((sp_uint64)a[ 6]) * a[10]
- + ((sp_uint64)a[ 7]) * a[ 9]) * 2
- + ((sp_uint64)a[ 8]) * a[ 8];
- r[15] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_uint64)a[ 6]) * a[11]
- + ((sp_uint64)a[ 7]) * a[10]
- + ((sp_uint64)a[ 8]) * a[ 9]) * 2;
- r[16] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_uint64)a[ 7]) * a[11]
- + ((sp_uint64)a[ 8]) * a[10]) * 2
- + ((sp_uint64)a[ 9]) * a[ 9];
- r[17] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_uint64)a[ 8]) * a[11]
- + ((sp_uint64)a[ 9]) * a[10]) * 2;
- r[18] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_uint64)a[ 9]) * a[11]) * 2
- + ((sp_uint64)a[10]) * a[10];
- r[19] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_uint64)a[10]) * a[11]) * 2;
- r[20] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_uint64)a[11]) * a[11];
- r[21] = t1 & 0x1fffffff; t0 += t1 >> 29;
- r[22] = t0 & 0x1fffffff;
- r[23] = (sp_digit)(t0 >> 29);
- XMEMCPY(r, t, sizeof(t));
- }
- /* Square a into r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_2048_sqr_36(sp_digit* r, const sp_digit* a)
- {
- sp_digit p0[24];
- sp_digit p1[24];
- sp_digit p2[24];
- sp_digit p3[24];
- sp_digit p4[24];
- sp_digit p5[24];
- sp_digit t0[24];
- sp_digit t1[24];
- sp_digit t2[24];
- sp_digit a0[12];
- sp_digit a1[12];
- sp_digit a2[12];
- (void)sp_2048_add_12(a0, a, &a[12]);
- sp_2048_norm_12(a0);
- (void)sp_2048_add_12(a1, &a[12], &a[24]);
- sp_2048_norm_12(a1);
- (void)sp_2048_add_12(a2, a0, &a[24]);
- sp_2048_norm_12(a2);
- sp_2048_sqr_12(p0, a);
- sp_2048_sqr_12(p2, &a[12]);
- sp_2048_sqr_12(p4, &a[24]);
- sp_2048_sqr_12(p1, a0);
- sp_2048_sqr_12(p3, a1);
- sp_2048_sqr_12(p5, a2);
- XMEMSET(r, 0, sizeof(*r)*2U*36U);
- (void)sp_2048_sub_24(t0, p3, p2);
- (void)sp_2048_sub_24(t1, p1, p2);
- (void)sp_2048_sub_24(t2, p5, t0);
- (void)sp_2048_sub_24(t2, t2, t1);
- sp_2048_norm_24(t2);
- (void)sp_2048_sub_24(t0, t0, p4);
- sp_2048_norm_24(t0);
- (void)sp_2048_sub_24(t1, t1, p0);
- sp_2048_norm_24(t1);
- (void)sp_2048_add_24(r, r, p0);
- (void)sp_2048_add_24(&r[12], &r[12], t1);
- (void)sp_2048_add_24(&r[24], &r[24], t2);
- (void)sp_2048_add_24(&r[36], &r[36], t0);
- (void)sp_2048_add_24(&r[48], &r[48], p4);
- sp_2048_norm_72(r);
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_2048_sqr_72(sp_digit* r, const sp_digit* a)
- {
- sp_digit* z0 = r;
- sp_digit z1[72];
- sp_digit* a1 = z1;
- sp_digit* z2 = r + 72;
- (void)sp_2048_add_36(a1, a, &a[36]);
- sp_2048_norm_36(a1);
- sp_2048_sqr_36(z2, &a[36]);
- sp_2048_sqr_36(z0, a);
- sp_2048_sqr_36(z1, a1);
- (void)sp_2048_sub_72(z1, z1, z2);
- (void)sp_2048_sub_72(z1, z1, z0);
- (void)sp_2048_add_72(r + 36, r + 36, z1);
- sp_2048_norm_144(r);
- }
- #endif /* !WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_2048_add_72(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 72; i++) {
- r[i] = a[i] + b[i];
- }
- return 0;
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_2048_sub_72(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 72; i++) {
- r[i] = a[i] - b[i];
- }
- return 0;
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_2048_mul_72(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 lo;
- c = ((sp_uint64)a[71]) * b[71];
- r[143] = (sp_digit)(c >> 29);
- c &= 0x1fffffff;
- for (k = 141; k >= 0; k--) {
- if (k >= 72) {
- i = k - 71;
- imax = 71;
- }
- else {
- i = 0;
- imax = k;
- }
- if (imax - i > 15) {
- int imaxlo;
- lo = 0;
- for (imaxlo = i; imaxlo <= imax; imaxlo += 15) {
- for (; i <= imax && i < imaxlo + 15; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 29;
- lo &= 0x1fffffff;
- }
- r[k + 2] += (sp_digit)(c >> 29);
- r[k + 1] = (sp_digit)(c & 0x1fffffff);
- c = lo & 0x1fffffff;
- }
- else {
- lo = 0;
- for (; i <= imax; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 29;
- r[k + 2] += (sp_digit)(c >> 29);
- r[k + 1] = (sp_digit)(c & 0x1fffffff);
- c = lo & 0x1fffffff;
- }
- }
- r[0] = (sp_digit)c;
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_2048_sqr_72(sp_digit* r, const sp_digit* a)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 t;
- c = ((sp_uint64)a[71]) * a[71];
- r[143] = (sp_digit)(c >> 29);
- c = (c & 0x1fffffff) << 29;
- for (k = 141; k >= 0; k--) {
- i = (k + 1) / 2;
- if ((k & 1) == 0) {
- c += ((sp_uint64)a[i]) * a[i];
- i++;
- }
- if (k < 71) {
- imax = k;
- }
- else {
- imax = 71;
- }
- if (imax - i >= 14) {
- int imaxlo;
- sp_uint64 hi;
- hi = c >> 29;
- c &= 0x1fffffff;
- for (imaxlo = i; imaxlo <= imax; imaxlo += 14) {
- t = 0;
- for (; i <= imax && i < imaxlo + 14; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- hi += c >> 29;
- c &= 0x1fffffff;
- }
- r[k + 2] += (sp_digit)(hi >> 29);
- r[k + 1] = (sp_digit)(hi & 0x1fffffff);
- c <<= 29;
- }
- else
- {
- t = 0;
- for (; i <= imax; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- r[k + 2] += (sp_digit) (c >> 58);
- r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
- c = (c & 0x1fffffff) << 29;
- }
- }
- r[0] = (sp_digit)(c >> 29);
- }
- #endif /* WOLFSSL_SP_SMALL */
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
- #ifdef WOLFSSL_SP_SMALL
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_2048_add_36(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 36; i++) {
- r[i] = a[i] + b[i];
- }
- return 0;
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_2048_sub_36(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 36; i++) {
- r[i] = a[i] - b[i];
- }
- return 0;
- }
- #else
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_2048_sub_36(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 32; i += 8) {
- r[i + 0] = a[i + 0] - b[i + 0];
- r[i + 1] = a[i + 1] - b[i + 1];
- r[i + 2] = a[i + 2] - b[i + 2];
- r[i + 3] = a[i + 3] - b[i + 3];
- r[i + 4] = a[i + 4] - b[i + 4];
- r[i + 5] = a[i + 5] - b[i + 5];
- r[i + 6] = a[i + 6] - b[i + 6];
- r[i + 7] = a[i + 7] - b[i + 7];
- }
- r[32] = a[32] - b[32];
- r[33] = a[33] - b[33];
- r[34] = a[34] - b[34];
- r[35] = a[35] - b[35];
- return 0;
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_2048_mul_36(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 lo;
- c = ((sp_uint64)a[35]) * b[35];
- r[71] = (sp_digit)(c >> 29);
- c &= 0x1fffffff;
- for (k = 69; k >= 0; k--) {
- if (k >= 36) {
- i = k - 35;
- imax = 35;
- }
- else {
- i = 0;
- imax = k;
- }
- if (imax - i > 15) {
- int imaxlo;
- lo = 0;
- for (imaxlo = i; imaxlo <= imax; imaxlo += 15) {
- for (; i <= imax && i < imaxlo + 15; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 29;
- lo &= 0x1fffffff;
- }
- r[k + 2] += (sp_digit)(c >> 29);
- r[k + 1] = (sp_digit)(c & 0x1fffffff);
- c = lo & 0x1fffffff;
- }
- else {
- lo = 0;
- for (; i <= imax; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 29;
- r[k + 2] += (sp_digit)(c >> 29);
- r[k + 1] = (sp_digit)(c & 0x1fffffff);
- c = lo & 0x1fffffff;
- }
- }
- r[0] = (sp_digit)c;
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_2048_sqr_36(sp_digit* r, const sp_digit* a)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 t;
- c = ((sp_uint64)a[35]) * a[35];
- r[71] = (sp_digit)(c >> 29);
- c = (c & 0x1fffffff) << 29;
- for (k = 69; k >= 0; k--) {
- i = (k + 1) / 2;
- if ((k & 1) == 0) {
- c += ((sp_uint64)a[i]) * a[i];
- i++;
- }
- if (k < 35) {
- imax = k;
- }
- else {
- imax = 35;
- }
- if (imax - i >= 14) {
- int imaxlo;
- sp_uint64 hi;
- hi = c >> 29;
- c &= 0x1fffffff;
- for (imaxlo = i; imaxlo <= imax; imaxlo += 14) {
- t = 0;
- for (; i <= imax && i < imaxlo + 14; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- hi += c >> 29;
- c &= 0x1fffffff;
- }
- r[k + 2] += (sp_digit)(hi >> 29);
- r[k + 1] = (sp_digit)(hi & 0x1fffffff);
- c <<= 29;
- }
- else
- {
- t = 0;
- for (; i <= imax; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- r[k + 2] += (sp_digit) (c >> 58);
- r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
- c = (c & 0x1fffffff) << 29;
- }
- }
- r[0] = (sp_digit)(c >> 29);
- }
- #endif /* WOLFSSL_SP_SMALL */
- #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) | WOLFSSL_HAVE_SP_DH */
- /* Calculate the bottom digit of -1/a mod 2^n.
- *
- * a A single precision number.
- * rho Bottom word of inverse.
- */
- static void sp_2048_mont_setup(const sp_digit* a, sp_digit* rho)
- {
- sp_digit x;
- sp_digit b;
- b = a[0];
- x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
- x *= 2 - b * x; /* here x*a==1 mod 2**8 */
- x *= 2 - b * x; /* here x*a==1 mod 2**16 */
- x *= 2 - b * x; /* here x*a==1 mod 2**32 */
- x &= 0x1fffffff;
- /* rho = -1/m mod b */
- *rho = ((sp_digit)1 << 29) - x;
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_2048_mul_d_72(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 72; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- }
- r[72] = (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t = 0;
- sp_digit t2;
- sp_int64 p[4];
- int i;
- for (i = 0; i < 72; i += 4) {
- p[0] = tb * a[i + 0];
- p[1] = tb * a[i + 1];
- p[2] = tb * a[i + 2];
- p[3] = tb * a[i + 3];
- t += p[0];
- t2 = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- r[i + 0] = (sp_digit)t2;
- t += p[1];
- t2 = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- r[i + 1] = (sp_digit)t2;
- t += p[2];
- t2 = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- r[i + 2] = (sp_digit)t2;
- t += p[3];
- t2 = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- r[i + 3] = (sp_digit)t2;
- }
- r[72] = (sp_digit)(t & 0x1fffffff);
- #endif /* WOLFSSL_SP_SMALL */
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
- /* r = 2^n mod m where n is the number of bits to reduce by.
- * Given m must be 2048 bits, just need to subtract.
- *
- * r A single precision number.
- * m A single precision number.
- */
- static void sp_2048_mont_norm_36(sp_digit* r, const sp_digit* m)
- {
- /* Set r = 2^n - 1. */
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i=0; i<35; i++) {
- r[i] = 0x1fffffff;
- }
- #else
- int i;
- for (i = 0; i < 32; i += 8) {
- r[i + 0] = 0x1fffffff;
- r[i + 1] = 0x1fffffff;
- r[i + 2] = 0x1fffffff;
- r[i + 3] = 0x1fffffff;
- r[i + 4] = 0x1fffffff;
- r[i + 5] = 0x1fffffff;
- r[i + 6] = 0x1fffffff;
- r[i + 7] = 0x1fffffff;
- }
- r[32] = 0x1fffffff;
- r[33] = 0x1fffffff;
- r[34] = 0x1fffffff;
- #endif /* WOLFSSL_SP_SMALL */
- r[35] = 0x1ffL;
- /* r = (2^n - 1) mod n */
- (void)sp_2048_sub_36(r, r, m);
- /* Add one so r = 2^n mod m */
- r[0] += 1;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_2048_cmp_36(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i=35; i>=0; i--) {
- r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
- }
- #else
- int i;
- r |= (a[35] - b[35]) & (0 - (sp_digit)1);
- r |= (a[34] - b[34]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[33] - b[33]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[32] - b[32]) & ~(((sp_digit)0 - r) >> 28);
- for (i = 24; i >= 0; i -= 8) {
- r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 28);
- }
- #endif /* WOLFSSL_SP_SMALL */
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_2048_cond_sub_36(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 36; i++) {
- r[i] = a[i] - (b[i] & m);
- }
- #else
- int i;
- for (i = 0; i < 32; i += 8) {
- r[i + 0] = a[i + 0] - (b[i + 0] & m);
- r[i + 1] = a[i + 1] - (b[i + 1] & m);
- r[i + 2] = a[i + 2] - (b[i + 2] & m);
- r[i + 3] = a[i + 3] - (b[i + 3] & m);
- r[i + 4] = a[i + 4] - (b[i + 4] & m);
- r[i + 5] = a[i + 5] - (b[i + 5] & m);
- r[i + 6] = a[i + 6] - (b[i + 6] & m);
- r[i + 7] = a[i + 7] - (b[i + 7] & m);
- }
- r[32] = a[32] - (b[32] & m);
- r[33] = a[33] - (b[33] & m);
- r[34] = a[34] - (b[34] & m);
- r[35] = a[35] - (b[35] & m);
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_2048_mul_add_36(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifndef WOLFSSL_SP_LARGE_CODE
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 36; i++) {
- t += r[i];
- t += tb * a[i];
- r[i] = ((sp_digit)t) & 0x1fffffff;
- t >>= 29;
- }
- r[36] += (sp_digit)t;
- #else
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t[4];
- int i;
- t[0] = 0;
- for (i = 0; i < 32; i += 4) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- r[i+0] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[i+1] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[i+2] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[i+3] = t[3] & 0x1fffffff;
- t[0] = t[3] >> 29;
- }
- t[0] += (tb * a[32]) + r[32];
- t[1] = (tb * a[33]) + r[33];
- t[2] = (tb * a[34]) + r[34];
- t[3] = (tb * a[35]) + r[35];
- r[32] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[33] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[34] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[35] = t[3] & 0x1fffffff;
- r[36] += (sp_digit)(t[3] >> 29);
- #else
- sp_int64 tb = b;
- sp_int64 t[8];
- int i;
- t[0] = 0;
- for (i = 0; i < 32; i += 8) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- t[4] = (tb * a[i+4]) + r[i+4];
- t[5] = (tb * a[i+5]) + r[i+5];
- t[6] = (tb * a[i+6]) + r[i+6];
- t[7] = (tb * a[i+7]) + r[i+7];
- r[i+0] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[i+1] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[i+2] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[i+3] = t[3] & 0x1fffffff;
- t[4] += t[3] >> 29;
- r[i+4] = t[4] & 0x1fffffff;
- t[5] += t[4] >> 29;
- r[i+5] = t[5] & 0x1fffffff;
- t[6] += t[5] >> 29;
- r[i+6] = t[6] & 0x1fffffff;
- t[7] += t[6] >> 29;
- r[i+7] = t[7] & 0x1fffffff;
- t[0] = t[7] >> 29;
- }
- t[0] += (tb * a[32]) + r[32];
- t[1] = (tb * a[33]) + r[33];
- t[2] = (tb * a[34]) + r[34];
- t[3] = (tb * a[35]) + r[35];
- r[32] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[33] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[34] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[35] = t[3] & 0x1fffffff;
- r[36] += (sp_digit)(t[3] >> 29);
- #endif /* WOLFSSL_SP_SMALL */
- #endif /* !WOLFSSL_SP_LARGE_CODE */
- }
- /* Shift the result in the high 1024 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_2048_mont_shift_36(sp_digit* r, const sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- sp_int64 n = a[35] >> 9;
- n += ((sp_int64)a[36]) << 20;
- for (i = 0; i < 35; i++) {
- r[i] = n & 0x1fffffff;
- n >>= 29;
- n += ((sp_int64)a[37 + i]) << 20;
- }
- r[35] = (sp_digit)n;
- #else
- int i;
- sp_int64 n = a[35] >> 9;
- n += ((sp_int64)a[36]) << 20;
- for (i = 0; i < 32; i += 8) {
- r[i + 0] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 37]) << 20;
- r[i + 1] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 38]) << 20;
- r[i + 2] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 39]) << 20;
- r[i + 3] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 40]) << 20;
- r[i + 4] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 41]) << 20;
- r[i + 5] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 42]) << 20;
- r[i + 6] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 43]) << 20;
- r[i + 7] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 44]) << 20;
- }
- r[32] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[69]) << 20;
- r[33] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[70]) << 20;
- r[34] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[71]) << 20;
- r[35] = (sp_digit)n;
- #endif /* WOLFSSL_SP_SMALL */
- XMEMSET(&r[36], 0, sizeof(*r) * 36U);
- }
- /* Reduce the number back to 2048 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_2048_mont_reduce_36(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_2048_norm_36(a + 36);
- for (i=0; i<35; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
- sp_2048_mul_add_36(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1ffL;
- sp_2048_mul_add_36(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- sp_2048_mont_shift_36(a, a);
- over = a[35] - m[35];
- sp_2048_cond_sub_36(a, a, m, ~((over - 1) >> 31));
- sp_2048_norm_36(a);
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_2048_mont_mul_36(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_2048_mul_36(r, a, b);
- sp_2048_mont_reduce_36(r, m, mp);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_2048_mont_sqr_36(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_2048_sqr_36(r, a);
- sp_2048_mont_reduce_36(r, m, mp);
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_2048_mul_d_36(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 36; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- }
- r[36] = (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t = 0;
- sp_digit t2;
- sp_int64 p[4];
- int i;
- for (i = 0; i < 36; i += 4) {
- p[0] = tb * a[i + 0];
- p[1] = tb * a[i + 1];
- p[2] = tb * a[i + 2];
- p[3] = tb * a[i + 3];
- t += p[0];
- t2 = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- r[i + 0] = (sp_digit)t2;
- t += p[1];
- t2 = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- r[i + 1] = (sp_digit)t2;
- t += p[2];
- t2 = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- r[i + 2] = (sp_digit)t2;
- t += p[3];
- t2 = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- r[i + 3] = (sp_digit)t2;
- }
- r[36] = (sp_digit)(t & 0x1fffffff);
- #endif /* WOLFSSL_SP_SMALL */
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_2048_cond_add_36(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 36; i++) {
- r[i] = a[i] + (b[i] & m);
- }
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifndef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_2048_cond_add_36(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 32; i += 8) {
- r[i + 0] = a[i + 0] + (b[i + 0] & m);
- r[i + 1] = a[i + 1] + (b[i + 1] & m);
- r[i + 2] = a[i + 2] + (b[i + 2] & m);
- r[i + 3] = a[i + 3] + (b[i + 3] & m);
- r[i + 4] = a[i + 4] + (b[i + 4] & m);
- r[i + 5] = a[i + 5] + (b[i + 5] & m);
- r[i + 6] = a[i + 6] + (b[i + 6] & m);
- r[i + 7] = a[i + 7] + (b[i + 7] & m);
- }
- r[32] = a[32] + (b[32] & m);
- r[33] = a[33] + (b[33] & m);
- r[34] = a[34] + (b[34] & m);
- r[35] = a[35] + (b[35] & m);
- }
- #endif /* !WOLFSSL_SP_SMALL */
- SP_NOINLINE static void sp_2048_rshift_36(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- #ifdef WOLFSSL_SP_SMALL
- for (i=0; i<35; i++) {
- r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
- }
- #else
- for (i=0; i<32; i += 8) {
- r[i+0] = (a[i+0] >> n) | ((a[i+1] << (29 - n)) & 0x1fffffff);
- r[i+1] = (a[i+1] >> n) | ((a[i+2] << (29 - n)) & 0x1fffffff);
- r[i+2] = (a[i+2] >> n) | ((a[i+3] << (29 - n)) & 0x1fffffff);
- r[i+3] = (a[i+3] >> n) | ((a[i+4] << (29 - n)) & 0x1fffffff);
- r[i+4] = (a[i+4] >> n) | ((a[i+5] << (29 - n)) & 0x1fffffff);
- r[i+5] = (a[i+5] >> n) | ((a[i+6] << (29 - n)) & 0x1fffffff);
- r[i+6] = (a[i+6] >> n) | ((a[i+7] << (29 - n)) & 0x1fffffff);
- r[i+7] = (a[i+7] >> n) | ((a[i+8] << (29 - n)) & 0x1fffffff);
- }
- r[32] = (a[32] >> n) | ((a[33] << (29 - n)) & 0x1fffffff);
- r[33] = (a[33] >> n) | ((a[34] << (29 - n)) & 0x1fffffff);
- r[34] = (a[34] >> n) | ((a[35] << (29 - n)) & 0x1fffffff);
- #endif /* WOLFSSL_SP_SMALL */
- r[35] = a[35] >> n;
- }
- static WC_INLINE sp_digit sp_2048_div_word_36(sp_digit d1, sp_digit d0,
- sp_digit div)
- {
- #ifdef SP_USE_DIVTI3
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- return d / div;
- #elif defined(__x86_64__) || defined(__i386__)
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_uint32 lo = (sp_uint32)d;
- sp_digit hi = (sp_digit)(d >> 32);
- __asm__ __volatile__ (
- "idiv %2"
- : "+a" (lo)
- : "d" (hi), "r" (div)
- : "cc"
- );
- return (sp_digit)lo;
- #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_digit dv = (div >> 1) + 1;
- sp_digit t1 = (sp_digit)(d >> 29);
- sp_digit t0 = (sp_digit)(d & 0x1fffffff);
- sp_digit t2;
- sp_digit sign;
- sp_digit r;
- int i;
- sp_int64 m;
- r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- t1 -= dv & (0 - r);
- for (i = 27; i >= 1; i--) {
- t1 += t1 + (((sp_uint32)t0 >> 28) & 1);
- t0 <<= 1;
- t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- r += r + t2;
- t1 -= dv & (0 - t2);
- t1 += t2;
- }
- r += r + 1;
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 29);
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 58) - (sp_digit)(d >> 58);
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- return r;
- #else
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_digit r = 0;
- sp_digit t;
- sp_digit dv = (div >> 14) + 1;
- t = (sp_digit)(d >> 28);
- t = (t / dv) << 14;
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)(d >> 13);
- t = t / (dv << 1);
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)d;
- t = t / div;
- r += t;
- d -= (sp_int64)t * div;
- return r;
- #endif
- }
- static WC_INLINE sp_digit sp_2048_word_div_word_36(sp_digit d, sp_digit div)
- {
- #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
- defined(SP_DIV_WORD_USE_DIV)
- return d / div;
- #else
- return (sp_digit)((sp_uint32)(div - d) >> 31);
- #endif
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Full implementation.
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_2048_div_36(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- #ifndef WOLFSSL_SP_DIV_32
- #endif
- sp_digit dv;
- sp_digit r1;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 36 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 36 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 72 + 1;
- sd = t2 + 36 + 1;
- sp_2048_mul_d_36(sd, d, (sp_digit)1 << 20);
- sp_2048_mul_d_72(t1, a, (sp_digit)1 << 20);
- dv = sd[35];
- t1[36 + 36] += t1[36 + 36 - 1] >> 29;
- t1[36 + 36 - 1] &= 0x1fffffff;
- for (i=36; i>=0; i--) {
- r1 = sp_2048_div_word_36(t1[36 + i], t1[36 + i - 1], dv);
- sp_2048_mul_d_36(t2, sd, r1);
- (void)sp_2048_sub_36(&t1[i], &t1[i], t2);
- sp_2048_norm_36(&t1[i]);
- t1[36 + i] -= t2[36];
- t1[36 + i] += t1[36 + i - 1] >> 29;
- t1[36 + i - 1] &= 0x1fffffff;
- r1 = sp_2048_div_word_36(-t1[36 + i], -t1[36 + i - 1], dv);
- r1 -= t1[36 + i];
- sp_2048_mul_d_36(t2, sd, r1);
- (void)sp_2048_add_36(&t1[i], &t1[i], t2);
- t1[36 + i] += t1[36 + i - 1] >> 29;
- t1[36 + i - 1] &= 0x1fffffff;
- }
- t1[36 - 1] += t1[36 - 2] >> 29;
- t1[36 - 2] &= 0x1fffffff;
- r1 = sp_2048_word_div_word_36(t1[36 - 1], dv);
- sp_2048_mul_d_36(t2, sd, r1);
- sp_2048_sub_36(t1, t1, t2);
- XMEMCPY(r, t1, sizeof(*r) * 72U);
- for (i=0; i<35; i++) {
- r[i+1] += r[i] >> 29;
- r[i] &= 0x1fffffff;
- }
- sp_2048_cond_add_36(r, r, sd, r[35] >> 31);
- sp_2048_norm_36(r);
- sp_2048_rshift_36(r, r, 20);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_2048_mod_36(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_2048_div_36(a, m, NULL, r);
- }
- /* Modular exponentiate a to the e mod m. (r = a^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * a A single precision number being exponentiated.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even or exponent is 0.
- */
- static int sp_2048_mod_exp_36(sp_digit* r, const sp_digit* a, const sp_digit* e,
- int bits, const sp_digit* m, int reduceA)
- {
- #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 72];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 36 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 36 * 2);
- XMEMSET(t[i], 0, sizeof(sp_digit) * 36U * 2U);
- }
- sp_2048_mont_setup(m, &mp);
- sp_2048_mont_norm_36(norm, m);
- if (reduceA != 0) {
- err = sp_2048_mod_36(t[1], a, m);
- }
- else {
- XMEMCPY(t[1], a, sizeof(sp_digit) * 36U);
- }
- }
- if (err == MP_OKAY) {
- sp_2048_mul_36(t[1], t[1], norm);
- err = sp_2048_mod_36(t[1], t[1], m);
- }
- if (err == MP_OKAY) {
- i = bits / 29;
- c = bits % 29;
- n = e[i--] << (29 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 29;
- }
- y = (int)((n >> 28) & 1);
- n <<= 1;
- sp_2048_mont_mul_36(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 36 * 2);
- sp_2048_mont_sqr_36(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 36 * 2);
- }
- sp_2048_mont_reduce_36(t[0], m, mp);
- n = sp_2048_cmp_36(t[0], m);
- sp_2048_cond_sub_36(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 36 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #elif !defined(WC_NO_CACHE_RESISTANT)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 72];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 36 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 36 * 2);
- }
- sp_2048_mont_setup(m, &mp);
- sp_2048_mont_norm_36(norm, m);
- if (reduceA != 0) {
- err = sp_2048_mod_36(t[1], a, m);
- if (err == MP_OKAY) {
- sp_2048_mul_36(t[1], t[1], norm);
- err = sp_2048_mod_36(t[1], t[1], m);
- }
- }
- else {
- sp_2048_mul_36(t[1], a, norm);
- err = sp_2048_mod_36(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- i = bits / 29;
- c = bits % 29;
- n = e[i--] << (29 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 29;
- }
- y = (int)((n >> 28) & 1);
- n <<= 1;
- sp_2048_mont_mul_36(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 36 * 2);
- sp_2048_mont_sqr_36(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 36 * 2);
- }
- sp_2048_mont_reduce_36(t[0], m, mp);
- n = sp_2048_cmp_36(t[0], m);
- sp_2048_cond_sub_36(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 36 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[(32 * 72) + 72];
- #endif
- sp_digit* t[32];
- sp_digit* rt = NULL;
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((32 * 72) + 72), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<32; i++)
- t[i] = td + i * 72;
- rt = td + 2304;
- sp_2048_mont_setup(m, &mp);
- sp_2048_mont_norm_36(norm, m);
- if (reduceA != 0) {
- err = sp_2048_mod_36(t[1], a, m);
- if (err == MP_OKAY) {
- sp_2048_mul_36(t[1], t[1], norm);
- err = sp_2048_mod_36(t[1], t[1], m);
- }
- }
- else {
- sp_2048_mul_36(t[1], a, norm);
- err = sp_2048_mod_36(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- sp_2048_mont_sqr_36(t[ 2], t[ 1], m, mp);
- sp_2048_mont_mul_36(t[ 3], t[ 2], t[ 1], m, mp);
- sp_2048_mont_sqr_36(t[ 4], t[ 2], m, mp);
- sp_2048_mont_mul_36(t[ 5], t[ 3], t[ 2], m, mp);
- sp_2048_mont_sqr_36(t[ 6], t[ 3], m, mp);
- sp_2048_mont_mul_36(t[ 7], t[ 4], t[ 3], m, mp);
- sp_2048_mont_sqr_36(t[ 8], t[ 4], m, mp);
- sp_2048_mont_mul_36(t[ 9], t[ 5], t[ 4], m, mp);
- sp_2048_mont_sqr_36(t[10], t[ 5], m, mp);
- sp_2048_mont_mul_36(t[11], t[ 6], t[ 5], m, mp);
- sp_2048_mont_sqr_36(t[12], t[ 6], m, mp);
- sp_2048_mont_mul_36(t[13], t[ 7], t[ 6], m, mp);
- sp_2048_mont_sqr_36(t[14], t[ 7], m, mp);
- sp_2048_mont_mul_36(t[15], t[ 8], t[ 7], m, mp);
- sp_2048_mont_sqr_36(t[16], t[ 8], m, mp);
- sp_2048_mont_mul_36(t[17], t[ 9], t[ 8], m, mp);
- sp_2048_mont_sqr_36(t[18], t[ 9], m, mp);
- sp_2048_mont_mul_36(t[19], t[10], t[ 9], m, mp);
- sp_2048_mont_sqr_36(t[20], t[10], m, mp);
- sp_2048_mont_mul_36(t[21], t[11], t[10], m, mp);
- sp_2048_mont_sqr_36(t[22], t[11], m, mp);
- sp_2048_mont_mul_36(t[23], t[12], t[11], m, mp);
- sp_2048_mont_sqr_36(t[24], t[12], m, mp);
- sp_2048_mont_mul_36(t[25], t[13], t[12], m, mp);
- sp_2048_mont_sqr_36(t[26], t[13], m, mp);
- sp_2048_mont_mul_36(t[27], t[14], t[13], m, mp);
- sp_2048_mont_sqr_36(t[28], t[14], m, mp);
- sp_2048_mont_mul_36(t[29], t[15], t[14], m, mp);
- sp_2048_mont_sqr_36(t[30], t[15], m, mp);
- sp_2048_mont_mul_36(t[31], t[16], t[15], m, mp);
- bits = ((bits + 4) / 5) * 5;
- i = ((bits + 28) / 29) - 1;
- c = bits % 29;
- if (c == 0) {
- c = 29;
- }
- if (i < 36) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 5) {
- n |= e[i--] << (3 - c);
- c += 29;
- }
- y = (int)((n >> 27) & 0x1f);
- n <<= 5;
- c -= 5;
- XMEMCPY(rt, t[y], sizeof(sp_digit) * 72);
- while ((i >= 0) || (c >= 5)) {
- if (c >= 5) {
- y = (byte)((n >> 27) & 0x1f);
- n <<= 5;
- c -= 5;
- }
- else if (c == 0) {
- n = e[i--] << 3;
- y = (byte)((n >> 27) & 0x1f);
- n <<= 5;
- c = 24;
- }
- else {
- y = (byte)((n >> 27) & 0x1f);
- n = e[i--] << 3;
- c = 5 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 29 - c;
- }
- sp_2048_mont_sqr_36(rt, rt, m, mp);
- sp_2048_mont_sqr_36(rt, rt, m, mp);
- sp_2048_mont_sqr_36(rt, rt, m, mp);
- sp_2048_mont_sqr_36(rt, rt, m, mp);
- sp_2048_mont_sqr_36(rt, rt, m, mp);
- sp_2048_mont_mul_36(rt, rt, t[y], m, mp);
- }
- sp_2048_mont_reduce_36(rt, m, mp);
- n = sp_2048_cmp_36(rt, m);
- sp_2048_cond_sub_36(rt, rt, m, ~(n >> 31));
- XMEMCPY(r, rt, sizeof(sp_digit) * 72);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #endif
- }
- #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) | WOLFSSL_HAVE_SP_DH */
- /* r = 2^n mod m where n is the number of bits to reduce by.
- * Given m must be 2048 bits, just need to subtract.
- *
- * r A single precision number.
- * m A single precision number.
- */
- static void sp_2048_mont_norm_72(sp_digit* r, const sp_digit* m)
- {
- /* Set r = 2^n - 1. */
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i=0; i<70; i++) {
- r[i] = 0x1fffffff;
- }
- #else
- int i;
- for (i = 0; i < 64; i += 8) {
- r[i + 0] = 0x1fffffff;
- r[i + 1] = 0x1fffffff;
- r[i + 2] = 0x1fffffff;
- r[i + 3] = 0x1fffffff;
- r[i + 4] = 0x1fffffff;
- r[i + 5] = 0x1fffffff;
- r[i + 6] = 0x1fffffff;
- r[i + 7] = 0x1fffffff;
- }
- r[64] = 0x1fffffff;
- r[65] = 0x1fffffff;
- r[66] = 0x1fffffff;
- r[67] = 0x1fffffff;
- r[68] = 0x1fffffff;
- r[69] = 0x1fffffff;
- #endif /* WOLFSSL_SP_SMALL */
- r[70] = 0x3ffffL;
- r[71] = 0;
- /* r = (2^n - 1) mod n */
- (void)sp_2048_sub_72(r, r, m);
- /* Add one so r = 2^n mod m */
- r[0] += 1;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_2048_cmp_72(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i=71; i>=0; i--) {
- r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
- }
- #else
- int i;
- for (i = 64; i >= 0; i -= 8) {
- r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 28);
- }
- #endif /* WOLFSSL_SP_SMALL */
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_2048_cond_sub_72(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 72; i++) {
- r[i] = a[i] - (b[i] & m);
- }
- #else
- int i;
- for (i = 0; i < 72; i += 8) {
- r[i + 0] = a[i + 0] - (b[i + 0] & m);
- r[i + 1] = a[i + 1] - (b[i + 1] & m);
- r[i + 2] = a[i + 2] - (b[i + 2] & m);
- r[i + 3] = a[i + 3] - (b[i + 3] & m);
- r[i + 4] = a[i + 4] - (b[i + 4] & m);
- r[i + 5] = a[i + 5] - (b[i + 5] & m);
- r[i + 6] = a[i + 6] - (b[i + 6] & m);
- r[i + 7] = a[i + 7] - (b[i + 7] & m);
- }
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_2048_mul_add_72(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifndef WOLFSSL_SP_LARGE_CODE
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 72; i++) {
- t += r[i];
- t += tb * a[i];
- r[i] = ((sp_digit)t) & 0x1fffffff;
- t >>= 29;
- }
- r[72] += (sp_digit)t;
- #else
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t[4];
- int i;
- t[0] = 0;
- for (i = 0; i < 68; i += 4) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- r[i+0] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[i+1] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[i+2] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[i+3] = t[3] & 0x1fffffff;
- t[0] = t[3] >> 29;
- }
- t[0] += (tb * a[68]) + r[68];
- t[1] = (tb * a[69]) + r[69];
- t[2] = (tb * a[70]) + r[70];
- t[3] = (tb * a[71]) + r[71];
- r[68] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[69] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[70] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[71] = t[3] & 0x1fffffff;
- r[72] += (sp_digit)(t[3] >> 29);
- #else
- sp_int64 tb = b;
- sp_int64 t[8];
- int i;
- t[0] = 0;
- for (i = 0; i < 64; i += 8) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- t[4] = (tb * a[i+4]) + r[i+4];
- t[5] = (tb * a[i+5]) + r[i+5];
- t[6] = (tb * a[i+6]) + r[i+6];
- t[7] = (tb * a[i+7]) + r[i+7];
- r[i+0] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[i+1] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[i+2] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[i+3] = t[3] & 0x1fffffff;
- t[4] += t[3] >> 29;
- r[i+4] = t[4] & 0x1fffffff;
- t[5] += t[4] >> 29;
- r[i+5] = t[5] & 0x1fffffff;
- t[6] += t[5] >> 29;
- r[i+6] = t[6] & 0x1fffffff;
- t[7] += t[6] >> 29;
- r[i+7] = t[7] & 0x1fffffff;
- t[0] = t[7] >> 29;
- }
- t[0] += (tb * a[64]) + r[64];
- t[1] = (tb * a[65]) + r[65];
- t[2] = (tb * a[66]) + r[66];
- t[3] = (tb * a[67]) + r[67];
- t[4] = (tb * a[68]) + r[68];
- t[5] = (tb * a[69]) + r[69];
- t[6] = (tb * a[70]) + r[70];
- t[7] = (tb * a[71]) + r[71];
- r[64] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[65] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[66] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[67] = t[3] & 0x1fffffff;
- t[4] += t[3] >> 29;
- r[68] = t[4] & 0x1fffffff;
- t[5] += t[4] >> 29;
- r[69] = t[5] & 0x1fffffff;
- t[6] += t[5] >> 29;
- r[70] = t[6] & 0x1fffffff;
- t[7] += t[6] >> 29;
- r[71] = t[7] & 0x1fffffff;
- r[72] += (sp_digit)(t[7] >> 29);
- #endif /* WOLFSSL_SP_SMALL */
- #endif /* !WOLFSSL_SP_LARGE_CODE */
- }
- /* Shift the result in the high 2048 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_2048_mont_shift_72(sp_digit* r, const sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- sp_int64 n = a[70] >> 18;
- n += ((sp_int64)a[71]) << 11;
- for (i = 0; i < 70; i++) {
- r[i] = n & 0x1fffffff;
- n >>= 29;
- n += ((sp_int64)a[72 + i]) << 11;
- }
- r[70] = (sp_digit)n;
- #else
- int i;
- sp_int64 n = a[70] >> 18;
- n += ((sp_int64)a[71]) << 11;
- for (i = 0; i < 64; i += 8) {
- r[i + 0] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 72]) << 11;
- r[i + 1] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 73]) << 11;
- r[i + 2] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 74]) << 11;
- r[i + 3] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 75]) << 11;
- r[i + 4] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 76]) << 11;
- r[i + 5] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 77]) << 11;
- r[i + 6] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 78]) << 11;
- r[i + 7] = n & 0x1fffffff;
- n >>= 29; n += ((sp_int64)a[i + 79]) << 11;
- }
- r[64] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[136]) << 11;
- r[65] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[137]) << 11;
- r[66] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[138]) << 11;
- r[67] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[139]) << 11;
- r[68] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[140]) << 11;
- r[69] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[141]) << 11;
- r[70] = (sp_digit)n;
- #endif /* WOLFSSL_SP_SMALL */
- XMEMSET(&r[71], 0, sizeof(*r) * 71U);
- }
- /* Reduce the number back to 2048 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_2048_mont_reduce_72(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_2048_norm_72(a + 71);
- #ifdef WOLFSSL_SP_DH
- if (mp != 1) {
- for (i=0; i<70; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
- sp_2048_mul_add_72(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffL;
- sp_2048_mul_add_72(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- else {
- for (i=0; i<70; i++) {
- mu = a[i] & 0x1fffffff;
- sp_2048_mul_add_72(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- }
- mu = a[i] & 0x3ffffL;
- sp_2048_mul_add_72(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- #else
- for (i=0; i<70; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
- sp_2048_mul_add_72(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffL;
- sp_2048_mul_add_72(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- #endif
- sp_2048_mont_shift_72(a, a);
- over = a[70] - m[70];
- sp_2048_cond_sub_72(a, a, m, ~((over - 1) >> 31));
- sp_2048_norm_72(a);
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_2048_mont_mul_72(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_2048_mul_72(r, a, b);
- sp_2048_mont_reduce_72(r, m, mp);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_2048_mont_sqr_72(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_2048_sqr_72(r, a);
- sp_2048_mont_reduce_72(r, m, mp);
- }
- /* Normalize the values in each word to 29 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_2048_norm_71(sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 70; i++) {
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- #else
- int i;
- for (i = 0; i < 64; i += 8) {
- a[i+1] += a[i+0] >> 29; a[i+0] &= 0x1fffffff;
- a[i+2] += a[i+1] >> 29; a[i+1] &= 0x1fffffff;
- a[i+3] += a[i+2] >> 29; a[i+2] &= 0x1fffffff;
- a[i+4] += a[i+3] >> 29; a[i+3] &= 0x1fffffff;
- a[i+5] += a[i+4] >> 29; a[i+4] &= 0x1fffffff;
- a[i+6] += a[i+5] >> 29; a[i+5] &= 0x1fffffff;
- a[i+7] += a[i+6] >> 29; a[i+6] &= 0x1fffffff;
- a[i+8] += a[i+7] >> 29; a[i+7] &= 0x1fffffff;
- }
- a[65] += a[64] >> 29; a[64] &= 0x1fffffff;
- a[66] += a[65] >> 29; a[65] &= 0x1fffffff;
- a[67] += a[66] >> 29; a[66] &= 0x1fffffff;
- a[68] += a[67] >> 29; a[67] &= 0x1fffffff;
- a[69] += a[68] >> 29; a[68] &= 0x1fffffff;
- a[70] += a[69] >> 29; a[69] &= 0x1fffffff;
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_2048_mul_d_144(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 144; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- }
- r[144] = (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t = 0;
- sp_digit t2;
- sp_int64 p[4];
- int i;
- for (i = 0; i < 144; i += 4) {
- p[0] = tb * a[i + 0];
- p[1] = tb * a[i + 1];
- p[2] = tb * a[i + 2];
- p[3] = tb * a[i + 3];
- t += p[0];
- t2 = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- r[i + 0] = (sp_digit)t2;
- t += p[1];
- t2 = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- r[i + 1] = (sp_digit)t2;
- t += p[2];
- t2 = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- r[i + 2] = (sp_digit)t2;
- t += p[3];
- t2 = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- r[i + 3] = (sp_digit)t2;
- }
- r[144] = (sp_digit)(t & 0x1fffffff);
- #endif /* WOLFSSL_SP_SMALL */
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_2048_cond_add_72(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 72; i++) {
- r[i] = a[i] + (b[i] & m);
- }
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifndef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_2048_cond_add_72(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 72; i += 8) {
- r[i + 0] = a[i + 0] + (b[i + 0] & m);
- r[i + 1] = a[i + 1] + (b[i + 1] & m);
- r[i + 2] = a[i + 2] + (b[i + 2] & m);
- r[i + 3] = a[i + 3] + (b[i + 3] & m);
- r[i + 4] = a[i + 4] + (b[i + 4] & m);
- r[i + 5] = a[i + 5] + (b[i + 5] & m);
- r[i + 6] = a[i + 6] + (b[i + 6] & m);
- r[i + 7] = a[i + 7] + (b[i + 7] & m);
- }
- }
- #endif /* !WOLFSSL_SP_SMALL */
- SP_NOINLINE static void sp_2048_rshift_72(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- #ifdef WOLFSSL_SP_SMALL
- for (i=0; i<71; i++) {
- r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
- }
- #else
- for (i=0; i<64; i += 8) {
- r[i+0] = (a[i+0] >> n) | ((a[i+1] << (29 - n)) & 0x1fffffff);
- r[i+1] = (a[i+1] >> n) | ((a[i+2] << (29 - n)) & 0x1fffffff);
- r[i+2] = (a[i+2] >> n) | ((a[i+3] << (29 - n)) & 0x1fffffff);
- r[i+3] = (a[i+3] >> n) | ((a[i+4] << (29 - n)) & 0x1fffffff);
- r[i+4] = (a[i+4] >> n) | ((a[i+5] << (29 - n)) & 0x1fffffff);
- r[i+5] = (a[i+5] >> n) | ((a[i+6] << (29 - n)) & 0x1fffffff);
- r[i+6] = (a[i+6] >> n) | ((a[i+7] << (29 - n)) & 0x1fffffff);
- r[i+7] = (a[i+7] >> n) | ((a[i+8] << (29 - n)) & 0x1fffffff);
- }
- r[64] = (a[64] >> n) | ((a[65] << (29 - n)) & 0x1fffffff);
- r[65] = (a[65] >> n) | ((a[66] << (29 - n)) & 0x1fffffff);
- r[66] = (a[66] >> n) | ((a[67] << (29 - n)) & 0x1fffffff);
- r[67] = (a[67] >> n) | ((a[68] << (29 - n)) & 0x1fffffff);
- r[68] = (a[68] >> n) | ((a[69] << (29 - n)) & 0x1fffffff);
- r[69] = (a[69] >> n) | ((a[70] << (29 - n)) & 0x1fffffff);
- r[70] = (a[70] >> n) | ((a[71] << (29 - n)) & 0x1fffffff);
- #endif /* WOLFSSL_SP_SMALL */
- r[71] = a[71] >> n;
- }
- static WC_INLINE sp_digit sp_2048_div_word_72(sp_digit d1, sp_digit d0,
- sp_digit div)
- {
- #ifdef SP_USE_DIVTI3
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- return d / div;
- #elif defined(__x86_64__) || defined(__i386__)
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_uint32 lo = (sp_uint32)d;
- sp_digit hi = (sp_digit)(d >> 32);
- __asm__ __volatile__ (
- "idiv %2"
- : "+a" (lo)
- : "d" (hi), "r" (div)
- : "cc"
- );
- return (sp_digit)lo;
- #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_digit dv = (div >> 1) + 1;
- sp_digit t1 = (sp_digit)(d >> 29);
- sp_digit t0 = (sp_digit)(d & 0x1fffffff);
- sp_digit t2;
- sp_digit sign;
- sp_digit r;
- int i;
- sp_int64 m;
- r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- t1 -= dv & (0 - r);
- for (i = 27; i >= 1; i--) {
- t1 += t1 + (((sp_uint32)t0 >> 28) & 1);
- t0 <<= 1;
- t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- r += r + t2;
- t1 -= dv & (0 - t2);
- t1 += t2;
- }
- r += r + 1;
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 29);
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 58) - (sp_digit)(d >> 58);
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- return r;
- #else
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_digit r = 0;
- sp_digit t;
- sp_digit dv = (div >> 14) + 1;
- t = (sp_digit)(d >> 28);
- t = (t / dv) << 14;
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)(d >> 13);
- t = t / (dv << 1);
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)d;
- t = t / div;
- r += t;
- d -= (sp_int64)t * div;
- return r;
- #endif
- }
- static WC_INLINE sp_digit sp_2048_word_div_word_72(sp_digit d, sp_digit div)
- {
- #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
- defined(SP_DIV_WORD_USE_DIV)
- return d / div;
- #else
- return (sp_digit)((sp_uint32)(div - d) >> 31);
- #endif
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Full implementation.
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_2048_div_72(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- #ifndef WOLFSSL_SP_DIV_32
- #endif
- sp_digit dv;
- sp_digit r1;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 72 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 72 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 144 + 1;
- sd = t2 + 72 + 1;
- sp_2048_mul_d_72(sd, d, (sp_digit)1 << 11);
- sp_2048_mul_d_144(t1, a, (sp_digit)1 << 11);
- dv = sd[70];
- t1[71 + 71] += t1[71 + 71 - 1] >> 29;
- t1[71 + 71 - 1] &= 0x1fffffff;
- for (i=71; i>=0; i--) {
- r1 = sp_2048_div_word_72(t1[71 + i], t1[71 + i - 1], dv);
- sp_2048_mul_d_72(t2, sd, r1);
- (void)sp_2048_sub_72(&t1[i], &t1[i], t2);
- sp_2048_norm_71(&t1[i]);
- t1[71 + i] += t1[71 + i - 1] >> 29;
- t1[71 + i - 1] &= 0x1fffffff;
- r1 = sp_2048_div_word_72(-t1[71 + i], -t1[71 + i - 1], dv);
- r1 -= t1[71 + i];
- sp_2048_mul_d_72(t2, sd, r1);
- (void)sp_2048_add_72(&t1[i], &t1[i], t2);
- t1[71 + i] += t1[71 + i - 1] >> 29;
- t1[71 + i - 1] &= 0x1fffffff;
- }
- t1[71 - 1] += t1[71 - 2] >> 29;
- t1[71 - 2] &= 0x1fffffff;
- r1 = sp_2048_word_div_word_72(t1[71 - 1], dv);
- sp_2048_mul_d_72(t2, sd, r1);
- sp_2048_sub_72(t1, t1, t2);
- XMEMCPY(r, t1, sizeof(*r) * 144U);
- for (i=0; i<70; i++) {
- r[i+1] += r[i] >> 29;
- r[i] &= 0x1fffffff;
- }
- sp_2048_cond_add_72(r, r, sd, r[70] >> 31);
- sp_2048_norm_71(r);
- sp_2048_rshift_72(r, r, 11);
- r[71] = 0;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_2048_mod_72(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_2048_div_72(a, m, NULL, r);
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || \
- defined(WOLFSSL_HAVE_SP_DH)
- /* Modular exponentiate a to the e mod m. (r = a^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * a A single precision number being exponentiated.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even or exponent is 0.
- */
- static int sp_2048_mod_exp_72(sp_digit* r, const sp_digit* a, const sp_digit* e,
- int bits, const sp_digit* m, int reduceA)
- {
- #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 144];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 72 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 72 * 2);
- XMEMSET(t[i], 0, sizeof(sp_digit) * 72U * 2U);
- }
- sp_2048_mont_setup(m, &mp);
- sp_2048_mont_norm_72(norm, m);
- if (reduceA != 0) {
- err = sp_2048_mod_72(t[1], a, m);
- }
- else {
- XMEMCPY(t[1], a, sizeof(sp_digit) * 72U);
- }
- }
- if (err == MP_OKAY) {
- sp_2048_mul_72(t[1], t[1], norm);
- err = sp_2048_mod_72(t[1], t[1], m);
- }
- if (err == MP_OKAY) {
- i = bits / 29;
- c = bits % 29;
- n = e[i--] << (29 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 29;
- }
- y = (int)((n >> 28) & 1);
- n <<= 1;
- sp_2048_mont_mul_72(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 72 * 2);
- sp_2048_mont_sqr_72(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 72 * 2);
- }
- sp_2048_mont_reduce_72(t[0], m, mp);
- n = sp_2048_cmp_72(t[0], m);
- sp_2048_cond_sub_72(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 72 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #elif !defined(WC_NO_CACHE_RESISTANT)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 144];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 72 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 72 * 2);
- }
- sp_2048_mont_setup(m, &mp);
- sp_2048_mont_norm_72(norm, m);
- if (reduceA != 0) {
- err = sp_2048_mod_72(t[1], a, m);
- if (err == MP_OKAY) {
- sp_2048_mul_72(t[1], t[1], norm);
- err = sp_2048_mod_72(t[1], t[1], m);
- }
- }
- else {
- sp_2048_mul_72(t[1], a, norm);
- err = sp_2048_mod_72(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- i = bits / 29;
- c = bits % 29;
- n = e[i--] << (29 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 29;
- }
- y = (int)((n >> 28) & 1);
- n <<= 1;
- sp_2048_mont_mul_72(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 72 * 2);
- sp_2048_mont_sqr_72(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 72 * 2);
- }
- sp_2048_mont_reduce_72(t[0], m, mp);
- n = sp_2048_cmp_72(t[0], m);
- sp_2048_cond_sub_72(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 72 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[(16 * 144) + 144];
- #endif
- sp_digit* t[16];
- sp_digit* rt = NULL;
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((16 * 144) + 144), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<16; i++)
- t[i] = td + i * 144;
- rt = td + 2304;
- sp_2048_mont_setup(m, &mp);
- sp_2048_mont_norm_72(norm, m);
- if (reduceA != 0) {
- err = sp_2048_mod_72(t[1], a, m);
- if (err == MP_OKAY) {
- sp_2048_mul_72(t[1], t[1], norm);
- err = sp_2048_mod_72(t[1], t[1], m);
- }
- }
- else {
- sp_2048_mul_72(t[1], a, norm);
- err = sp_2048_mod_72(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- sp_2048_mont_sqr_72(t[ 2], t[ 1], m, mp);
- sp_2048_mont_mul_72(t[ 3], t[ 2], t[ 1], m, mp);
- sp_2048_mont_sqr_72(t[ 4], t[ 2], m, mp);
- sp_2048_mont_mul_72(t[ 5], t[ 3], t[ 2], m, mp);
- sp_2048_mont_sqr_72(t[ 6], t[ 3], m, mp);
- sp_2048_mont_mul_72(t[ 7], t[ 4], t[ 3], m, mp);
- sp_2048_mont_sqr_72(t[ 8], t[ 4], m, mp);
- sp_2048_mont_mul_72(t[ 9], t[ 5], t[ 4], m, mp);
- sp_2048_mont_sqr_72(t[10], t[ 5], m, mp);
- sp_2048_mont_mul_72(t[11], t[ 6], t[ 5], m, mp);
- sp_2048_mont_sqr_72(t[12], t[ 6], m, mp);
- sp_2048_mont_mul_72(t[13], t[ 7], t[ 6], m, mp);
- sp_2048_mont_sqr_72(t[14], t[ 7], m, mp);
- sp_2048_mont_mul_72(t[15], t[ 8], t[ 7], m, mp);
- bits = ((bits + 3) / 4) * 4;
- i = ((bits + 28) / 29) - 1;
- c = bits % 29;
- if (c == 0) {
- c = 29;
- }
- if (i < 72) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 4) {
- n |= e[i--] << (3 - c);
- c += 29;
- }
- y = (int)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- XMEMCPY(rt, t[y], sizeof(sp_digit) * 144);
- while ((i >= 0) || (c >= 4)) {
- if (c >= 4) {
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- }
- else if (c == 0) {
- n = e[i--] << 3;
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c = 25;
- }
- else {
- y = (byte)((n >> 28) & 0xf);
- n = e[i--] << 3;
- c = 4 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 29 - c;
- }
- sp_2048_mont_sqr_72(rt, rt, m, mp);
- sp_2048_mont_sqr_72(rt, rt, m, mp);
- sp_2048_mont_sqr_72(rt, rt, m, mp);
- sp_2048_mont_sqr_72(rt, rt, m, mp);
- sp_2048_mont_mul_72(rt, rt, t[y], m, mp);
- }
- sp_2048_mont_reduce_72(rt, m, mp);
- n = sp_2048_cmp_72(rt, m);
- sp_2048_cond_sub_72(rt, rt, m, ~(n >> 31));
- XMEMCPY(r, rt, sizeof(sp_digit) * 144);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #endif
- }
- #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) || */
- /* WOLFSSL_HAVE_SP_DH */
- #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
- #ifdef WOLFSSL_HAVE_SP_RSA
- /* RSA public key operation.
- *
- * in Array of bytes representing the number to exponentiate, base.
- * inLen Number of bytes in base.
- * em Public exponent.
- * mm Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 256 bytes long.
- * outLen Number of bytes in result.
- * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
- * an array is too long and MEMORY_E when dynamic memory allocation fails.
- */
- int sp_RsaPublic_2048(const byte* in, word32 inLen, const mp_int* em,
- const mp_int* mm, byte* out, word32* outLen)
- {
- #ifdef WOLFSSL_SP_SMALL
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[72 * 5];
- #endif
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- sp_digit* norm = NULL;
- sp_uint64 e[1] = {0};
- sp_digit mp = 0;
- int i;
- int err = MP_OKAY;
- if (*outLen < 256U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(em) > 64) {
- err = MP_READ_E;
- }
- else if (inLen > 256U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 2048) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 5, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- r = a + 72 * 2;
- m = r + 72 * 2;
- norm = r;
- sp_2048_from_bin(a, 72, in, inLen);
- #if DIGIT_BIT >= 64
- e[0] = (sp_uint64)em->dp[0];
- #else
- e[0] = (sp_uint64)em->dp[0];
- if (em->used > 1) {
- e[0] |= ((sp_uint64)em->dp[1]) << DIGIT_BIT;
- }
- #endif
- if (e[0] == 0) {
- err = MP_EXPTMOD_E;
- }
- }
- if (err == MP_OKAY) {
- sp_2048_from_mp(m, 72, mm);
- sp_2048_mont_setup(m, &mp);
- sp_2048_mont_norm_72(norm, m);
- }
- if (err == MP_OKAY) {
- sp_2048_mul_72(a, a, norm);
- err = sp_2048_mod_72(a, a, m);
- }
- if (err == MP_OKAY) {
- for (i=63; i>=0; i--) {
- if ((e[0] >> i) != 0) {
- break;
- }
- }
- XMEMCPY(r, a, sizeof(sp_digit) * 72 * 2);
- for (i--; i>=0; i--) {
- sp_2048_mont_sqr_72(r, r, m, mp);
- if (((e[0] >> i) & 1) == 1) {
- sp_2048_mont_mul_72(r, r, a, m, mp);
- }
- }
- sp_2048_mont_reduce_72(r, m, mp);
- mp = sp_2048_cmp_72(r, m);
- sp_2048_cond_sub_72(r, r, m, ~(mp >> 31));
- sp_2048_to_bin_72(r, out);
- *outLen = 256;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[72 * 5];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- sp_uint64 e[1] = {0};
- int err = MP_OKAY;
- if (*outLen < 256U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(em) > 64) {
- err = MP_READ_E;
- }
- else if (inLen > 256U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 2048) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 5, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d;
- r = a + 72 * 2;
- m = r + 72 * 2;
- sp_2048_from_bin(a, 72, in, inLen);
- #if DIGIT_BIT >= 64
- e[0] = (sp_uint64)em->dp[0];
- #else
- e[0] = (sp_uint64)em->dp[0];
- if (em->used > 1) {
- e[0] |= ((sp_uint64)em->dp[1]) << DIGIT_BIT;
- }
- #endif
- if (e[0] == 0) {
- err = MP_EXPTMOD_E;
- }
- }
- if (err == MP_OKAY) {
- sp_2048_from_mp(m, 72, mm);
- if (e[0] == 0x3) {
- sp_2048_sqr_72(r, a);
- err = sp_2048_mod_72(r, r, m);
- if (err == MP_OKAY) {
- sp_2048_mul_72(r, a, r);
- err = sp_2048_mod_72(r, r, m);
- }
- }
- else {
- sp_digit* norm = r;
- int i;
- sp_digit mp;
- sp_2048_mont_setup(m, &mp);
- sp_2048_mont_norm_72(norm, m);
- sp_2048_mul_72(a, a, norm);
- err = sp_2048_mod_72(a, a, m);
- if (err == MP_OKAY) {
- for (i=63; i>=0; i--) {
- if ((e[0] >> i) != 0) {
- break;
- }
- }
- XMEMCPY(r, a, sizeof(sp_digit) * 144U);
- for (i--; i>=0; i--) {
- sp_2048_mont_sqr_72(r, r, m, mp);
- if (((e[0] >> i) & 1) == 1) {
- sp_2048_mont_mul_72(r, r, a, m, mp);
- }
- }
- sp_2048_mont_reduce_72(r, m, mp);
- mp = sp_2048_cmp_72(r, m);
- sp_2048_cond_sub_72(r, r, m, ~(mp >> 31));
- }
- }
- }
- if (err == MP_OKAY) {
- sp_2048_to_bin_72(r, out);
- *outLen = 256;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- }
- #ifndef WOLFSSL_RSA_PUBLIC_ONLY
- #if !defined(SP_RSA_PRIVATE_EXP_D) && !defined(RSA_LOW_MEM)
- #endif /* !SP_RSA_PRIVATE_EXP_D & !RSA_LOW_MEM */
- /* RSA private key operation.
- *
- * in Array of bytes representing the number to exponentiate, base.
- * inLen Number of bytes in base.
- * dm Private exponent.
- * pm First prime.
- * qm Second prime.
- * dpm First prime's CRT exponent.
- * dqm Second prime's CRT exponent.
- * qim Inverse of second prime mod p.
- * mm Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 256 bytes long.
- * outLen Number of bytes in result.
- * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
- * an array is too long and MEMORY_E when dynamic memory allocation fails.
- */
- int sp_RsaPrivate_2048(const byte* in, word32 inLen, const mp_int* dm,
- const mp_int* pm, const mp_int* qm, const mp_int* dpm, const mp_int* dqm,
- const mp_int* qim, const mp_int* mm, byte* out, word32* outLen)
- {
- #if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM)
- #if defined(WOLFSSL_SP_SMALL)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[72 * 4];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)pm;
- (void)qm;
- (void)dpm;
- (void)dqm;
- (void)qim;
- if (*outLen < 256U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(dm) > 2048) {
- err = MP_READ_E;
- }
- else if (inLen > 256) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 2048) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 4, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d + 72;
- m = a + 144;
- r = a;
- sp_2048_from_bin(a, 72, in, inLen);
- sp_2048_from_mp(d, 72, dm);
- sp_2048_from_mp(m, 72, mm);
- err = sp_2048_mod_exp_72(r, a, d, 2048, m, 0);
- }
- if (err == MP_OKAY) {
- sp_2048_to_bin_72(r, out);
- *outLen = 256;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- #endif
- {
- /* only "a" and "r" are sensitive and need zeroized (same pointer) */
- if (a != NULL)
- ForceZero(a, sizeof(sp_digit) * 72);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[72 * 4];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)pm;
- (void)qm;
- (void)dpm;
- (void)dqm;
- (void)qim;
- if (*outLen < 256U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(dm) > 2048) {
- err = MP_READ_E;
- }
- else if (inLen > 256U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 2048) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 4, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d + 72;
- m = a + 144;
- r = a;
- sp_2048_from_bin(a, 72, in, inLen);
- sp_2048_from_mp(d, 72, dm);
- sp_2048_from_mp(m, 72, mm);
- err = sp_2048_mod_exp_72(r, a, d, 2048, m, 0);
- }
- if (err == MP_OKAY) {
- sp_2048_to_bin_72(r, out);
- *outLen = 256;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- #endif
- {
- /* only "a" and "r" are sensitive and need zeroized (same pointer) */
- if (a != NULL)
- ForceZero(a, sizeof(sp_digit) * 72);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- #else
- #if defined(WOLFSSL_SP_SMALL)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[36 * 8];
- #endif
- sp_digit* p = NULL;
- sp_digit* dp = NULL;
- sp_digit* dq = NULL;
- sp_digit* qi = NULL;
- sp_digit* tmpa = NULL;
- sp_digit* tmpb = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)dm;
- (void)mm;
- if (*outLen < 256U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (inLen > 256) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 2048) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(pm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(qm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 36 * 8, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = a + 72;
- qi = dq = dp = p + 36;
- tmpa = qi + 36;
- tmpb = tmpa + 72;
- r = a;
- sp_2048_from_bin(a, 72, in, inLen);
- sp_2048_from_mp(p, 36, pm);
- sp_2048_from_mp(dp, 36, dpm);
- err = sp_2048_mod_exp_36(tmpa, a, dp, 1024, p, 1);
- }
- if (err == MP_OKAY) {
- sp_2048_from_mp(p, 36, qm);
- sp_2048_from_mp(dq, 36, dqm);
- err = sp_2048_mod_exp_36(tmpb, a, dq, 1024, p, 1);
- }
- if (err == MP_OKAY) {
- sp_2048_from_mp(p, 36, pm);
- (void)sp_2048_sub_36(tmpa, tmpa, tmpb);
- sp_2048_norm_36(tmpa);
- sp_2048_cond_add_36(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[35] >> 31));
- sp_2048_cond_add_36(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[35] >> 31));
- sp_2048_norm_36(tmpa);
- sp_2048_from_mp(qi, 36, qim);
- sp_2048_mul_36(tmpa, tmpa, qi);
- err = sp_2048_mod_36(tmpa, tmpa, p);
- }
- if (err == MP_OKAY) {
- sp_2048_from_mp(p, 36, qm);
- sp_2048_mul_36(tmpa, p, tmpa);
- (void)sp_2048_add_72(r, tmpb, tmpa);
- sp_2048_norm_72(r);
- sp_2048_to_bin_72(r, out);
- *outLen = 256;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- #endif
- {
- ForceZero(a, sizeof(sp_digit) * 36 * 8);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[36 * 13];
- #endif
- sp_digit* p = NULL;
- sp_digit* q = NULL;
- sp_digit* dp = NULL;
- sp_digit* dq = NULL;
- sp_digit* qi = NULL;
- sp_digit* tmpa = NULL;
- sp_digit* tmpb = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)dm;
- (void)mm;
- if (*outLen < 256U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (inLen > 256U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 2048) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(pm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(qm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 36 * 13, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = a + 72 * 2;
- q = p + 36;
- dp = q + 36;
- dq = dp + 36;
- qi = dq + 36;
- tmpa = qi + 36;
- tmpb = tmpa + 72;
- r = a;
- sp_2048_from_bin(a, 72, in, inLen);
- sp_2048_from_mp(p, 36, pm);
- sp_2048_from_mp(q, 36, qm);
- sp_2048_from_mp(dp, 36, dpm);
- sp_2048_from_mp(dq, 36, dqm);
- sp_2048_from_mp(qi, 36, qim);
- err = sp_2048_mod_exp_36(tmpa, a, dp, 1024, p, 1);
- }
- if (err == MP_OKAY) {
- err = sp_2048_mod_exp_36(tmpb, a, dq, 1024, q, 1);
- }
- if (err == MP_OKAY) {
- (void)sp_2048_sub_36(tmpa, tmpa, tmpb);
- sp_2048_norm_36(tmpa);
- sp_2048_cond_add_36(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[35] >> 31));
- sp_2048_cond_add_36(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[35] >> 31));
- sp_2048_norm_36(tmpa);
- sp_2048_mul_36(tmpa, tmpa, qi);
- err = sp_2048_mod_36(tmpa, tmpa, p);
- }
- if (err == MP_OKAY) {
- sp_2048_mul_36(tmpa, tmpa, q);
- (void)sp_2048_add_72(r, tmpb, tmpa);
- sp_2048_norm_72(r);
- sp_2048_to_bin_72(r, out);
- *outLen = 256;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- #endif
- {
- ForceZero(a, sizeof(sp_digit) * 36 * 13);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- #endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */
- }
- #endif /* !WOLFSSL_RSA_PUBLIC_ONLY */
- #endif /* WOLFSSL_HAVE_SP_RSA */
- #if defined(WOLFSSL_HAVE_SP_DH) || (defined(WOLFSSL_HAVE_SP_RSA) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY))
- /* Convert an array of sp_digit to an mp_int.
- *
- * a A single precision integer.
- * r A multi-precision integer.
- */
- static int sp_2048_to_mp(const sp_digit* a, mp_int* r)
- {
- int err;
- err = mp_grow(r, (2048 + DIGIT_BIT - 1) / DIGIT_BIT);
- if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
- #if DIGIT_BIT == 29
- XMEMCPY(r->dp, a, sizeof(sp_digit) * 71);
- r->used = 71;
- mp_clamp(r);
- #elif DIGIT_BIT < 29
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 71; i++) {
- r->dp[j] |= (mp_digit)(a[i] << s);
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- s = DIGIT_BIT - s;
- r->dp[++j] = (mp_digit)(a[i] >> s);
- while (s + DIGIT_BIT <= 29) {
- s += DIGIT_BIT;
- r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- if (s == SP_WORD_SIZE) {
- r->dp[j] = 0;
- }
- else {
- r->dp[j] = (mp_digit)(a[i] >> s);
- }
- }
- s = 29 - s;
- }
- r->used = (2048 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #else
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 71; i++) {
- r->dp[j] |= ((mp_digit)a[i]) << s;
- if (s + 29 >= DIGIT_BIT) {
- #if DIGIT_BIT != 32 && DIGIT_BIT != 64
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- #endif
- s = DIGIT_BIT - s;
- r->dp[++j] = a[i] >> s;
- s = 29 - s;
- }
- else {
- s += 29;
- }
- }
- r->used = (2048 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #endif
- }
- return err;
- }
- /* Perform the modular exponentiation for Diffie-Hellman.
- *
- * base Base. MP integer.
- * exp Exponent. MP integer.
- * mod Modulus. MP integer.
- * res Result. MP integer.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_ModExp_2048(const mp_int* base, const mp_int* exp, const mp_int* mod,
- mp_int* res)
- {
- #ifdef WOLFSSL_SP_SMALL
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[72 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 2048) {
- err = MP_READ_E;
- }
- else if (expBits > 2048) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 2048) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 4, NULL,
- DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 72 * 2;
- m = e + 72;
- r = b;
- sp_2048_from_mp(b, 72, base);
- sp_2048_from_mp(e, 72, exp);
- sp_2048_from_mp(m, 72, mod);
- err = sp_2048_mod_exp_72(r, b, e, mp_count_bits(exp), m, 0);
- }
- if (err == MP_OKAY) {
- err = sp_2048_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 72U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[72 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 2048) {
- err = MP_READ_E;
- }
- else if (expBits > 2048) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 2048) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 4, NULL, DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 72 * 2;
- m = e + 72;
- r = b;
- sp_2048_from_mp(b, 72, base);
- sp_2048_from_mp(e, 72, exp);
- sp_2048_from_mp(m, 72, mod);
- err = sp_2048_mod_exp_72(r, b, e, expBits, m, 0);
- }
- if (err == MP_OKAY) {
- err = sp_2048_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 72U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #endif
- }
- #ifdef WOLFSSL_HAVE_SP_DH
- #ifdef HAVE_FFDHE_2048
- SP_NOINLINE static void sp_2048_lshift_72(sp_digit* r, const sp_digit* a,
- byte n)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- r[72] = a[71] >> (29 - n);
- for (i=71; i>0; i--) {
- r[i] = ((a[i] << n) | (a[i-1] >> (29 - n))) & 0x1fffffff;
- }
- #else
- sp_int_digit s;
- sp_int_digit t;
- s = (sp_int_digit)a[71];
- r[72] = s >> (29U - n);
- s = (sp_int_digit)(a[71]); t = (sp_int_digit)(a[70]);
- r[71] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[70]); t = (sp_int_digit)(a[69]);
- r[70] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[69]); t = (sp_int_digit)(a[68]);
- r[69] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[68]); t = (sp_int_digit)(a[67]);
- r[68] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[67]); t = (sp_int_digit)(a[66]);
- r[67] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[66]); t = (sp_int_digit)(a[65]);
- r[66] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[65]); t = (sp_int_digit)(a[64]);
- r[65] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[64]); t = (sp_int_digit)(a[63]);
- r[64] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[63]); t = (sp_int_digit)(a[62]);
- r[63] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[62]); t = (sp_int_digit)(a[61]);
- r[62] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[61]); t = (sp_int_digit)(a[60]);
- r[61] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[60]); t = (sp_int_digit)(a[59]);
- r[60] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[59]); t = (sp_int_digit)(a[58]);
- r[59] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[58]); t = (sp_int_digit)(a[57]);
- r[58] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[57]); t = (sp_int_digit)(a[56]);
- r[57] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[56]); t = (sp_int_digit)(a[55]);
- r[56] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[55]); t = (sp_int_digit)(a[54]);
- r[55] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[54]); t = (sp_int_digit)(a[53]);
- r[54] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[53]); t = (sp_int_digit)(a[52]);
- r[53] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[52]); t = (sp_int_digit)(a[51]);
- r[52] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[51]); t = (sp_int_digit)(a[50]);
- r[51] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[50]); t = (sp_int_digit)(a[49]);
- r[50] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[49]); t = (sp_int_digit)(a[48]);
- r[49] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[48]); t = (sp_int_digit)(a[47]);
- r[48] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[47]); t = (sp_int_digit)(a[46]);
- r[47] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[46]); t = (sp_int_digit)(a[45]);
- r[46] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[45]); t = (sp_int_digit)(a[44]);
- r[45] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[44]); t = (sp_int_digit)(a[43]);
- r[44] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[43]); t = (sp_int_digit)(a[42]);
- r[43] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[42]); t = (sp_int_digit)(a[41]);
- r[42] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[41]); t = (sp_int_digit)(a[40]);
- r[41] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[40]); t = (sp_int_digit)(a[39]);
- r[40] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[39]); t = (sp_int_digit)(a[38]);
- r[39] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[38]); t = (sp_int_digit)(a[37]);
- r[38] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[37]); t = (sp_int_digit)(a[36]);
- r[37] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[36]); t = (sp_int_digit)(a[35]);
- r[36] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[35]); t = (sp_int_digit)(a[34]);
- r[35] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[34]); t = (sp_int_digit)(a[33]);
- r[34] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[33]); t = (sp_int_digit)(a[32]);
- r[33] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[32]); t = (sp_int_digit)(a[31]);
- r[32] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[31]); t = (sp_int_digit)(a[30]);
- r[31] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[30]); t = (sp_int_digit)(a[29]);
- r[30] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[29]); t = (sp_int_digit)(a[28]);
- r[29] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[28]); t = (sp_int_digit)(a[27]);
- r[28] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[27]); t = (sp_int_digit)(a[26]);
- r[27] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[26]); t = (sp_int_digit)(a[25]);
- r[26] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[25]); t = (sp_int_digit)(a[24]);
- r[25] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[24]); t = (sp_int_digit)(a[23]);
- r[24] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[23]); t = (sp_int_digit)(a[22]);
- r[23] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[22]); t = (sp_int_digit)(a[21]);
- r[22] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[21]); t = (sp_int_digit)(a[20]);
- r[21] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[20]); t = (sp_int_digit)(a[19]);
- r[20] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[19]); t = (sp_int_digit)(a[18]);
- r[19] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[18]); t = (sp_int_digit)(a[17]);
- r[18] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[17]); t = (sp_int_digit)(a[16]);
- r[17] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[16]); t = (sp_int_digit)(a[15]);
- r[16] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[15]); t = (sp_int_digit)(a[14]);
- r[15] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[14]); t = (sp_int_digit)(a[13]);
- r[14] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[13]); t = (sp_int_digit)(a[12]);
- r[13] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[12]); t = (sp_int_digit)(a[11]);
- r[12] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[11]); t = (sp_int_digit)(a[10]);
- r[11] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[10]); t = (sp_int_digit)(a[9]);
- r[10] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[9]); t = (sp_int_digit)(a[8]);
- r[9] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[8]); t = (sp_int_digit)(a[7]);
- r[8] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[7]); t = (sp_int_digit)(a[6]);
- r[7] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[6]); t = (sp_int_digit)(a[5]);
- r[6] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[5]); t = (sp_int_digit)(a[4]);
- r[5] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[4]); t = (sp_int_digit)(a[3]);
- r[4] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[3]); t = (sp_int_digit)(a[2]);
- r[3] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[2]); t = (sp_int_digit)(a[1]);
- r[2] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[1]); t = (sp_int_digit)(a[0]);
- r[1] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- #endif /* WOLFSSL_SP_SMALL */
- r[0] = (a[0] << n) & 0x1fffffff;
- }
- /* Modular exponentiate 2 to the e mod m. (r = 2^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even.
- */
- static int sp_2048_mod_exp_2_72(sp_digit* r, const sp_digit* e, int bits, const sp_digit* m)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[217];
- #endif
- sp_digit* norm = NULL;
- sp_digit* tmp = NULL;
- sp_digit mp = 1;
- sp_digit n;
- sp_digit o;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 217, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- tmp = td + 144;
- XMEMSET(td, 0, sizeof(sp_digit) * 217);
- sp_2048_mont_setup(m, &mp);
- sp_2048_mont_norm_72(norm, m);
- bits = ((bits + 3) / 4) * 4;
- i = ((bits + 28) / 29) - 1;
- c = bits % 29;
- if (c == 0) {
- c = 29;
- }
- if (i < 72) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 4) {
- n |= e[i--] << (3 - c);
- c += 29;
- }
- y = (int)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- sp_2048_lshift_72(r, norm, (byte)y);
- while ((i >= 0) || (c >= 4)) {
- if (c >= 4) {
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- }
- else if (c == 0) {
- n = e[i--] << 3;
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c = 25;
- }
- else {
- y = (byte)((n >> 28) & 0xf);
- n = e[i--] << 3;
- c = 4 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 29 - c;
- }
- sp_2048_mont_sqr_72(r, r, m, mp);
- sp_2048_mont_sqr_72(r, r, m, mp);
- sp_2048_mont_sqr_72(r, r, m, mp);
- sp_2048_mont_sqr_72(r, r, m, mp);
- sp_2048_lshift_72(r, r, (byte)y);
- sp_2048_mul_d_72(tmp, norm, (r[71] << 11) + (r[70] >> 18));
- r[71] = 0;
- r[70] &= 0x3ffffL;
- (void)sp_2048_add_72(r, r, tmp);
- sp_2048_norm_72(r);
- o = sp_2048_cmp_72(r, m);
- sp_2048_cond_sub_72(r, r, m, ~(o >> 31));
- }
- sp_2048_mont_reduce_72(r, m, mp);
- n = sp_2048_cmp_72(r, m);
- sp_2048_cond_sub_72(r, r, m, ~(n >> 31));
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- #endif /* HAVE_FFDHE_2048 */
- /* Perform the modular exponentiation for Diffie-Hellman.
- *
- * base Base.
- * exp Array of bytes that is the exponent.
- * expLen Length of data, in bytes, in exponent.
- * mod Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 256 bytes long.
- * outLen Length, in bytes, of exponentiation result.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_DhExp_2048(const mp_int* base, const byte* exp, word32 expLen,
- const mp_int* mod, byte* out, word32* outLen)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[72 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- word32 i;
- int err = MP_OKAY;
- if (mp_count_bits(base) > 2048) {
- err = MP_READ_E;
- }
- else if (expLen > 256U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 2048) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 72 * 4, NULL,
- DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 72 * 2;
- m = e + 72;
- r = b;
- sp_2048_from_mp(b, 72, base);
- sp_2048_from_bin(e, 72, exp, expLen);
- sp_2048_from_mp(m, 72, mod);
- #ifdef HAVE_FFDHE_2048
- if (base->used == 1 && base->dp[0] == 2U &&
- (m[70] >> 2) == 0xffffL) {
- err = sp_2048_mod_exp_2_72(r, e, expLen * 8U, m);
- }
- else {
- #endif
- err = sp_2048_mod_exp_72(r, b, e, expLen * 8U, m, 0);
- #ifdef HAVE_FFDHE_2048
- }
- #endif
- }
- if (err == MP_OKAY) {
- sp_2048_to_bin_72(r, out);
- *outLen = 256;
- for (i=0; i<256U && out[i] == 0U; i++) {
- /* Search for first non-zero. */
- }
- *outLen -= i;
- XMEMMOVE(out, out + i, *outLen);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 72U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_HAVE_SP_DH */
- /* Perform the modular exponentiation for Diffie-Hellman.
- *
- * base Base. MP integer.
- * exp Exponent. MP integer.
- * mod Modulus. MP integer.
- * res Result. MP integer.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_ModExp_1024(const mp_int* base, const mp_int* exp, const mp_int* mod,
- mp_int* res)
- {
- #ifdef WOLFSSL_SP_SMALL
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[36 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 1024) {
- err = MP_READ_E;
- }
- else if (expBits > 1024) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 1024) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 36 * 4, NULL,
- DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 36 * 2;
- m = e + 36;
- r = b;
- sp_2048_from_mp(b, 36, base);
- sp_2048_from_mp(e, 36, exp);
- sp_2048_from_mp(m, 36, mod);
- err = sp_2048_mod_exp_36(r, b, e, mp_count_bits(exp), m, 0);
- }
- if (err == MP_OKAY) {
- XMEMSET(r + 36, 0, sizeof(*r) * 36U);
- err = sp_2048_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 72U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[36 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 1024) {
- err = MP_READ_E;
- }
- else if (expBits > 1024) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 1024) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 36 * 4, NULL, DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 36 * 2;
- m = e + 36;
- r = b;
- sp_2048_from_mp(b, 36, base);
- sp_2048_from_mp(e, 36, exp);
- sp_2048_from_mp(m, 36, mod);
- err = sp_2048_mod_exp_36(r, b, e, expBits, m, 0);
- }
- if (err == MP_OKAY) {
- XMEMSET(r + 36, 0, sizeof(*r) * 36U);
- err = sp_2048_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 72U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #endif
- }
- #endif /* WOLFSSL_HAVE_SP_DH | (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) */
- #endif /* !WOLFSSL_SP_NO_2048 */
- #ifndef WOLFSSL_SP_NO_3072
- #ifdef WOLFSSL_SP_SMALL
- /* Read big endian unsigned byte array into r.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a Byte array.
- * n Number of bytes in array to read.
- */
- static void sp_3072_from_bin(sp_digit* r, int size, const byte* a, int n)
- {
- int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = n-1; i >= 0; i--) {
- r[j] |= (((sp_digit)a[i]) << s);
- if (s >= 21U) {
- r[j] &= 0x1fffffff;
- s = 29U - s;
- if (j + 1 >= size) {
- break;
- }
- r[++j] = (sp_digit)a[i] >> s;
- s = 8U - s;
- }
- else {
- s += 8U;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- }
- /* Convert an mp_int to an array of sp_digit.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a A multi-precision integer.
- */
- static void sp_3072_from_mp(sp_digit* r, int size, const mp_int* a)
- {
- #if DIGIT_BIT == 29
- int i;
- sp_digit j = (sp_digit)0 - (sp_digit)a->used;
- int o = 0;
- for (i = 0; i < size; i++) {
- sp_digit mask = (sp_digit)0 - (j >> 28);
- r[i] = a->dp[o] & mask;
- j++;
- o += (int)(j >> 28);
- }
- #elif DIGIT_BIT > 29
- unsigned int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i] << s);
- r[j] &= 0x1fffffff;
- s = 29U - s;
- if (j + 1 >= size) {
- break;
- }
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- while ((s + 29U) <= (word32)DIGIT_BIT) {
- s += 29U;
- r[j] &= 0x1fffffff;
- if (j + 1 >= size) {
- break;
- }
- if (s < (word32)DIGIT_BIT) {
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- }
- else {
- r[++j] = (sp_digit)0;
- }
- }
- s = (word32)DIGIT_BIT - s;
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #else
- unsigned int i;
- int j = 0;
- int s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i]) << s;
- if (s + DIGIT_BIT >= 29) {
- r[j] &= 0x1fffffff;
- if (j + 1 >= size) {
- break;
- }
- s = 29 - s;
- if (s == DIGIT_BIT) {
- r[++j] = 0;
- s = 0;
- }
- else {
- r[++j] = a->dp[i] >> s;
- s = DIGIT_BIT - s;
- }
- }
- else {
- s += DIGIT_BIT;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #endif
- }
- /* Write r as big endian to byte array.
- * Fixed length number of bytes written: 384
- *
- * r A single precision integer.
- * a Byte array.
- */
- static void sp_3072_to_bin_106(sp_digit* r, byte* a)
- {
- int i;
- int j;
- int s = 0;
- int b;
- for (i=0; i<105; i++) {
- r[i+1] += r[i] >> 29;
- r[i] &= 0x1fffffff;
- }
- j = 3079 / 8 - 1;
- a[j] = 0;
- for (i=0; i<106 && j>=0; i++) {
- b = 0;
- /* lint allow cast of mismatch sp_digit and int */
- a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
- b += 8 - s;
- if (j < 0) {
- break;
- }
- while (b < 29) {
- a[j--] = (byte)(r[i] >> b);
- b += 8;
- if (j < 0) {
- break;
- }
- }
- s = 8 - (b - 29);
- if (j >= 0) {
- a[j] = 0;
- }
- if (s != 0) {
- j++;
- }
- }
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
- /* Normalize the values in each word to 29 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_3072_norm_53(sp_digit* a)
- {
- int i;
- for (i = 0; i < 52; i++) {
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- }
- #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
- /* Normalize the values in each word to 29 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_3072_norm_106(sp_digit* a)
- {
- int i;
- for (i = 0; i < 105; i++) {
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_3072_mul_106(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 lo;
- c = ((sp_uint64)a[105]) * b[105];
- r[211] = (sp_digit)(c >> 29);
- c &= 0x1fffffff;
- for (k = 209; k >= 0; k--) {
- if (k >= 106) {
- i = k - 105;
- imax = 105;
- }
- else {
- i = 0;
- imax = k;
- }
- if (imax - i > 15) {
- int imaxlo;
- lo = 0;
- for (imaxlo = i; imaxlo <= imax; imaxlo += 15) {
- for (; i <= imax && i < imaxlo + 15; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 29;
- lo &= 0x1fffffff;
- }
- r[k + 2] += (sp_digit)(c >> 29);
- r[k + 1] = (sp_digit)(c & 0x1fffffff);
- c = lo & 0x1fffffff;
- }
- else {
- lo = 0;
- for (; i <= imax; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 29;
- r[k + 2] += (sp_digit)(c >> 29);
- r[k + 1] = (sp_digit)(c & 0x1fffffff);
- c = lo & 0x1fffffff;
- }
- }
- r[0] = (sp_digit)c;
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_3072_sqr_106(sp_digit* r, const sp_digit* a)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 t;
- c = ((sp_uint64)a[105]) * a[105];
- r[211] = (sp_digit)(c >> 29);
- c = (c & 0x1fffffff) << 29;
- for (k = 209; k >= 0; k--) {
- i = (k + 1) / 2;
- if ((k & 1) == 0) {
- c += ((sp_uint64)a[i]) * a[i];
- i++;
- }
- if (k < 105) {
- imax = k;
- }
- else {
- imax = 105;
- }
- if (imax - i >= 14) {
- int imaxlo;
- sp_uint64 hi;
- hi = c >> 29;
- c &= 0x1fffffff;
- for (imaxlo = i; imaxlo <= imax; imaxlo += 14) {
- t = 0;
- for (; i <= imax && i < imaxlo + 14; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- hi += c >> 29;
- c &= 0x1fffffff;
- }
- r[k + 2] += (sp_digit)(hi >> 29);
- r[k + 1] = (sp_digit)(hi & 0x1fffffff);
- c <<= 29;
- }
- else
- {
- t = 0;
- for (; i <= imax; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- r[k + 2] += (sp_digit) (c >> 58);
- r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
- c = (c & 0x1fffffff) << 29;
- }
- }
- r[0] = (sp_digit)(c >> 29);
- }
- /* Calculate the bottom digit of -1/a mod 2^n.
- *
- * a A single precision number.
- * rho Bottom word of inverse.
- */
- static void sp_3072_mont_setup(const sp_digit* a, sp_digit* rho)
- {
- sp_digit x;
- sp_digit b;
- b = a[0];
- x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
- x *= 2 - b * x; /* here x*a==1 mod 2**8 */
- x *= 2 - b * x; /* here x*a==1 mod 2**16 */
- x *= 2 - b * x; /* here x*a==1 mod 2**32 */
- x &= 0x1fffffff;
- /* rho = -1/m mod b */
- *rho = ((sp_digit)1 << 29) - x;
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_3072_mul_d_106(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 106; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- }
- r[106] = (sp_digit)t;
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_3072_sub_53(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 53; i++) {
- r[i] = a[i] - b[i];
- }
- return 0;
- }
- /* r = 2^n mod m where n is the number of bits to reduce by.
- * Given m must be 3072 bits, just need to subtract.
- *
- * r A single precision number.
- * m A single precision number.
- */
- static void sp_3072_mont_norm_53(sp_digit* r, const sp_digit* m)
- {
- /* Set r = 2^n - 1. */
- int i;
- for (i=0; i<52; i++) {
- r[i] = 0x1fffffff;
- }
- r[52] = 0xfffffffL;
- /* r = (2^n - 1) mod n */
- (void)sp_3072_sub_53(r, r, m);
- /* Add one so r = 2^n mod m */
- r[0] += 1;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_3072_cmp_53(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- int i;
- for (i=52; i>=0; i--) {
- r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
- }
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_3072_cond_sub_53(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 53; i++) {
- r[i] = a[i] - (b[i] & m);
- }
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_3072_mul_add_53(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifndef WOLFSSL_SP_LARGE_CODE
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 53; i++) {
- t += r[i];
- t += tb * a[i];
- r[i] = ((sp_digit)t) & 0x1fffffff;
- t >>= 29;
- }
- r[53] += (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t[4];
- int i;
- t[0] = 0;
- for (i = 0; i < 52; i += 4) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- r[i+0] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[i+1] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[i+2] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[i+3] = t[3] & 0x1fffffff;
- t[0] = t[3] >> 29;
- }
- t[0] += (tb * a[52]) + r[52];
- r[52] = t[0] & 0x1fffffff;
- r[53] += (sp_digit)(t[0] >> 29);
- #endif /* !WOLFSSL_SP_LARGE_CODE */
- }
- /* Shift the result in the high 1536 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_3072_mont_shift_53(sp_digit* r, const sp_digit* a)
- {
- int i;
- sp_int64 n = a[52] >> 28;
- n += ((sp_int64)a[53]) << 1;
- for (i = 0; i < 52; i++) {
- r[i] = n & 0x1fffffff;
- n >>= 29;
- n += ((sp_int64)a[54 + i]) << 1;
- }
- r[52] = (sp_digit)n;
- XMEMSET(&r[53], 0, sizeof(*r) * 53U);
- }
- /* Reduce the number back to 3072 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_3072_mont_reduce_53(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_3072_norm_53(a + 53);
- for (i=0; i<52; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
- sp_3072_mul_add_53(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffffL;
- sp_3072_mul_add_53(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- sp_3072_mont_shift_53(a, a);
- over = a[52] - m[52];
- sp_3072_cond_sub_53(a, a, m, ~((over - 1) >> 31));
- sp_3072_norm_53(a);
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_3072_mul_53(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 lo;
- c = ((sp_uint64)a[52]) * b[52];
- r[105] = (sp_digit)(c >> 29);
- c &= 0x1fffffff;
- for (k = 103; k >= 0; k--) {
- if (k >= 53) {
- i = k - 52;
- imax = 52;
- }
- else {
- i = 0;
- imax = k;
- }
- if (imax - i > 15) {
- int imaxlo;
- lo = 0;
- for (imaxlo = i; imaxlo <= imax; imaxlo += 15) {
- for (; i <= imax && i < imaxlo + 15; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 29;
- lo &= 0x1fffffff;
- }
- r[k + 2] += (sp_digit)(c >> 29);
- r[k + 1] = (sp_digit)(c & 0x1fffffff);
- c = lo & 0x1fffffff;
- }
- else {
- lo = 0;
- for (; i <= imax; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 29;
- r[k + 2] += (sp_digit)(c >> 29);
- r[k + 1] = (sp_digit)(c & 0x1fffffff);
- c = lo & 0x1fffffff;
- }
- }
- r[0] = (sp_digit)c;
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_3072_mont_mul_53(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_3072_mul_53(r, a, b);
- sp_3072_mont_reduce_53(r, m, mp);
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_3072_sqr_53(sp_digit* r, const sp_digit* a)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 t;
- c = ((sp_uint64)a[52]) * a[52];
- r[105] = (sp_digit)(c >> 29);
- c = (c & 0x1fffffff) << 29;
- for (k = 103; k >= 0; k--) {
- i = (k + 1) / 2;
- if ((k & 1) == 0) {
- c += ((sp_uint64)a[i]) * a[i];
- i++;
- }
- if (k < 52) {
- imax = k;
- }
- else {
- imax = 52;
- }
- if (imax - i >= 14) {
- int imaxlo;
- sp_uint64 hi;
- hi = c >> 29;
- c &= 0x1fffffff;
- for (imaxlo = i; imaxlo <= imax; imaxlo += 14) {
- t = 0;
- for (; i <= imax && i < imaxlo + 14; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- hi += c >> 29;
- c &= 0x1fffffff;
- }
- r[k + 2] += (sp_digit)(hi >> 29);
- r[k + 1] = (sp_digit)(hi & 0x1fffffff);
- c <<= 29;
- }
- else
- {
- t = 0;
- for (; i <= imax; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- r[k + 2] += (sp_digit) (c >> 58);
- r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
- c = (c & 0x1fffffff) << 29;
- }
- }
- r[0] = (sp_digit)(c >> 29);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_3072_mont_sqr_53(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_3072_sqr_53(r, a);
- sp_3072_mont_reduce_53(r, m, mp);
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_3072_mul_d_53(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 53; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- }
- r[53] = (sp_digit)t;
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_3072_cond_add_53(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 53; i++) {
- r[i] = a[i] + (b[i] & m);
- }
- }
- #endif /* WOLFSSL_SP_SMALL */
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_3072_add_53(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 53; i++) {
- r[i] = a[i] + b[i];
- }
- return 0;
- }
- SP_NOINLINE static void sp_3072_rshift_53(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- for (i=0; i<52; i++) {
- r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
- }
- r[52] = a[52] >> n;
- }
- static WC_INLINE sp_digit sp_3072_div_word_53(sp_digit d1, sp_digit d0,
- sp_digit div)
- {
- #ifdef SP_USE_DIVTI3
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- return d / div;
- #elif defined(__x86_64__) || defined(__i386__)
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_uint32 lo = (sp_uint32)d;
- sp_digit hi = (sp_digit)(d >> 32);
- __asm__ __volatile__ (
- "idiv %2"
- : "+a" (lo)
- : "d" (hi), "r" (div)
- : "cc"
- );
- return (sp_digit)lo;
- #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_digit dv = (div >> 1) + 1;
- sp_digit t1 = (sp_digit)(d >> 29);
- sp_digit t0 = (sp_digit)(d & 0x1fffffff);
- sp_digit t2;
- sp_digit sign;
- sp_digit r;
- int i;
- sp_int64 m;
- r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- t1 -= dv & (0 - r);
- for (i = 27; i >= 1; i--) {
- t1 += t1 + (((sp_uint32)t0 >> 28) & 1);
- t0 <<= 1;
- t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- r += r + t2;
- t1 -= dv & (0 - t2);
- t1 += t2;
- }
- r += r + 1;
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 29);
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 58) - (sp_digit)(d >> 58);
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- return r;
- #else
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_digit r = 0;
- sp_digit t;
- sp_digit dv = (div >> 14) + 1;
- t = (sp_digit)(d >> 28);
- t = (t / dv) << 14;
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)(d >> 13);
- t = t / (dv << 1);
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)d;
- t = t / div;
- r += t;
- d -= (sp_int64)t * div;
- return r;
- #endif
- }
- static WC_INLINE sp_digit sp_3072_word_div_word_53(sp_digit d, sp_digit div)
- {
- #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
- defined(SP_DIV_WORD_USE_DIV)
- return d / div;
- #else
- return (sp_digit)((sp_uint32)(div - d) >> 31);
- #endif
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Full implementation.
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_3072_div_53(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- #ifndef WOLFSSL_SP_DIV_32
- #endif
- sp_digit dv;
- sp_digit r1;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 53 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 53 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 106 + 1;
- sd = t2 + 53 + 1;
- sp_3072_mul_d_53(sd, d, (sp_digit)1 << 1);
- sp_3072_mul_d_106(t1, a, (sp_digit)1 << 1);
- dv = sd[52];
- t1[53 + 53] += t1[53 + 53 - 1] >> 29;
- t1[53 + 53 - 1] &= 0x1fffffff;
- for (i=53; i>=0; i--) {
- r1 = sp_3072_div_word_53(t1[53 + i], t1[53 + i - 1], dv);
- sp_3072_mul_d_53(t2, sd, r1);
- (void)sp_3072_sub_53(&t1[i], &t1[i], t2);
- sp_3072_norm_53(&t1[i]);
- t1[53 + i] -= t2[53];
- t1[53 + i] += t1[53 + i - 1] >> 29;
- t1[53 + i - 1] &= 0x1fffffff;
- r1 = sp_3072_div_word_53(-t1[53 + i], -t1[53 + i - 1], dv);
- r1 -= t1[53 + i];
- sp_3072_mul_d_53(t2, sd, r1);
- (void)sp_3072_add_53(&t1[i], &t1[i], t2);
- t1[53 + i] += t1[53 + i - 1] >> 29;
- t1[53 + i - 1] &= 0x1fffffff;
- }
- t1[53 - 1] += t1[53 - 2] >> 29;
- t1[53 - 2] &= 0x1fffffff;
- r1 = sp_3072_word_div_word_53(t1[53 - 1], dv);
- sp_3072_mul_d_53(t2, sd, r1);
- sp_3072_sub_53(t1, t1, t2);
- XMEMCPY(r, t1, sizeof(*r) * 106U);
- for (i=0; i<52; i++) {
- r[i+1] += r[i] >> 29;
- r[i] &= 0x1fffffff;
- }
- sp_3072_cond_add_53(r, r, sd, r[52] >> 31);
- sp_3072_norm_53(r);
- sp_3072_rshift_53(r, r, 1);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_3072_mod_53(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_3072_div_53(a, m, NULL, r);
- }
- /* Modular exponentiate a to the e mod m. (r = a^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * a A single precision number being exponentiated.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even or exponent is 0.
- */
- static int sp_3072_mod_exp_53(sp_digit* r, const sp_digit* a, const sp_digit* e,
- int bits, const sp_digit* m, int reduceA)
- {
- #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 106];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 53 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 53 * 2);
- XMEMSET(t[i], 0, sizeof(sp_digit) * 53U * 2U);
- }
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_53(norm, m);
- if (reduceA != 0) {
- err = sp_3072_mod_53(t[1], a, m);
- }
- else {
- XMEMCPY(t[1], a, sizeof(sp_digit) * 53U);
- }
- }
- if (err == MP_OKAY) {
- sp_3072_mul_53(t[1], t[1], norm);
- err = sp_3072_mod_53(t[1], t[1], m);
- }
- if (err == MP_OKAY) {
- i = bits / 29;
- c = bits % 29;
- n = e[i--] << (29 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 29;
- }
- y = (int)((n >> 28) & 1);
- n <<= 1;
- sp_3072_mont_mul_53(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 53 * 2);
- sp_3072_mont_sqr_53(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 53 * 2);
- }
- sp_3072_mont_reduce_53(t[0], m, mp);
- n = sp_3072_cmp_53(t[0], m);
- sp_3072_cond_sub_53(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 53 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #elif !defined(WC_NO_CACHE_RESISTANT)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 106];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 53 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 53 * 2);
- }
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_53(norm, m);
- if (reduceA != 0) {
- err = sp_3072_mod_53(t[1], a, m);
- if (err == MP_OKAY) {
- sp_3072_mul_53(t[1], t[1], norm);
- err = sp_3072_mod_53(t[1], t[1], m);
- }
- }
- else {
- sp_3072_mul_53(t[1], a, norm);
- err = sp_3072_mod_53(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- i = bits / 29;
- c = bits % 29;
- n = e[i--] << (29 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 29;
- }
- y = (int)((n >> 28) & 1);
- n <<= 1;
- sp_3072_mont_mul_53(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 53 * 2);
- sp_3072_mont_sqr_53(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 53 * 2);
- }
- sp_3072_mont_reduce_53(t[0], m, mp);
- n = sp_3072_cmp_53(t[0], m);
- sp_3072_cond_sub_53(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 53 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[(32 * 106) + 106];
- #endif
- sp_digit* t[32];
- sp_digit* rt = NULL;
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((32 * 106) + 106), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<32; i++)
- t[i] = td + i * 106;
- rt = td + 3392;
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_53(norm, m);
- if (reduceA != 0) {
- err = sp_3072_mod_53(t[1], a, m);
- if (err == MP_OKAY) {
- sp_3072_mul_53(t[1], t[1], norm);
- err = sp_3072_mod_53(t[1], t[1], m);
- }
- }
- else {
- sp_3072_mul_53(t[1], a, norm);
- err = sp_3072_mod_53(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- sp_3072_mont_sqr_53(t[ 2], t[ 1], m, mp);
- sp_3072_mont_mul_53(t[ 3], t[ 2], t[ 1], m, mp);
- sp_3072_mont_sqr_53(t[ 4], t[ 2], m, mp);
- sp_3072_mont_mul_53(t[ 5], t[ 3], t[ 2], m, mp);
- sp_3072_mont_sqr_53(t[ 6], t[ 3], m, mp);
- sp_3072_mont_mul_53(t[ 7], t[ 4], t[ 3], m, mp);
- sp_3072_mont_sqr_53(t[ 8], t[ 4], m, mp);
- sp_3072_mont_mul_53(t[ 9], t[ 5], t[ 4], m, mp);
- sp_3072_mont_sqr_53(t[10], t[ 5], m, mp);
- sp_3072_mont_mul_53(t[11], t[ 6], t[ 5], m, mp);
- sp_3072_mont_sqr_53(t[12], t[ 6], m, mp);
- sp_3072_mont_mul_53(t[13], t[ 7], t[ 6], m, mp);
- sp_3072_mont_sqr_53(t[14], t[ 7], m, mp);
- sp_3072_mont_mul_53(t[15], t[ 8], t[ 7], m, mp);
- sp_3072_mont_sqr_53(t[16], t[ 8], m, mp);
- sp_3072_mont_mul_53(t[17], t[ 9], t[ 8], m, mp);
- sp_3072_mont_sqr_53(t[18], t[ 9], m, mp);
- sp_3072_mont_mul_53(t[19], t[10], t[ 9], m, mp);
- sp_3072_mont_sqr_53(t[20], t[10], m, mp);
- sp_3072_mont_mul_53(t[21], t[11], t[10], m, mp);
- sp_3072_mont_sqr_53(t[22], t[11], m, mp);
- sp_3072_mont_mul_53(t[23], t[12], t[11], m, mp);
- sp_3072_mont_sqr_53(t[24], t[12], m, mp);
- sp_3072_mont_mul_53(t[25], t[13], t[12], m, mp);
- sp_3072_mont_sqr_53(t[26], t[13], m, mp);
- sp_3072_mont_mul_53(t[27], t[14], t[13], m, mp);
- sp_3072_mont_sqr_53(t[28], t[14], m, mp);
- sp_3072_mont_mul_53(t[29], t[15], t[14], m, mp);
- sp_3072_mont_sqr_53(t[30], t[15], m, mp);
- sp_3072_mont_mul_53(t[31], t[16], t[15], m, mp);
- bits = ((bits + 4) / 5) * 5;
- i = ((bits + 28) / 29) - 1;
- c = bits % 29;
- if (c == 0) {
- c = 29;
- }
- if (i < 53) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 5) {
- n |= e[i--] << (3 - c);
- c += 29;
- }
- y = (int)((n >> 27) & 0x1f);
- n <<= 5;
- c -= 5;
- XMEMCPY(rt, t[y], sizeof(sp_digit) * 106);
- while ((i >= 0) || (c >= 5)) {
- if (c >= 5) {
- y = (byte)((n >> 27) & 0x1f);
- n <<= 5;
- c -= 5;
- }
- else if (c == 0) {
- n = e[i--] << 3;
- y = (byte)((n >> 27) & 0x1f);
- n <<= 5;
- c = 24;
- }
- else {
- y = (byte)((n >> 27) & 0x1f);
- n = e[i--] << 3;
- c = 5 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 29 - c;
- }
- sp_3072_mont_sqr_53(rt, rt, m, mp);
- sp_3072_mont_sqr_53(rt, rt, m, mp);
- sp_3072_mont_sqr_53(rt, rt, m, mp);
- sp_3072_mont_sqr_53(rt, rt, m, mp);
- sp_3072_mont_sqr_53(rt, rt, m, mp);
- sp_3072_mont_mul_53(rt, rt, t[y], m, mp);
- }
- sp_3072_mont_reduce_53(rt, m, mp);
- n = sp_3072_cmp_53(rt, m);
- sp_3072_cond_sub_53(rt, rt, m, ~(n >> 31));
- XMEMCPY(r, rt, sizeof(sp_digit) * 106);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #endif
- }
- #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) | WOLFSSL_HAVE_SP_DH */
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_3072_sub_106(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 106; i++) {
- r[i] = a[i] - b[i];
- }
- return 0;
- }
- /* r = 2^n mod m where n is the number of bits to reduce by.
- * Given m must be 3072 bits, just need to subtract.
- *
- * r A single precision number.
- * m A single precision number.
- */
- static void sp_3072_mont_norm_106(sp_digit* r, const sp_digit* m)
- {
- /* Set r = 2^n - 1. */
- int i;
- for (i=0; i<105; i++) {
- r[i] = 0x1fffffff;
- }
- r[105] = 0x7ffffffL;
- /* r = (2^n - 1) mod n */
- (void)sp_3072_sub_106(r, r, m);
- /* Add one so r = 2^n mod m */
- r[0] += 1;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_3072_cmp_106(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- int i;
- for (i=105; i>=0; i--) {
- r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
- }
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_3072_cond_sub_106(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 106; i++) {
- r[i] = a[i] - (b[i] & m);
- }
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_3072_mul_add_106(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifndef WOLFSSL_SP_LARGE_CODE
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 106; i++) {
- t += r[i];
- t += tb * a[i];
- r[i] = ((sp_digit)t) & 0x1fffffff;
- t >>= 29;
- }
- r[106] += (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t[4];
- int i;
- t[0] = 0;
- for (i = 0; i < 104; i += 4) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- r[i+0] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[i+1] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[i+2] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[i+3] = t[3] & 0x1fffffff;
- t[0] = t[3] >> 29;
- }
- t[0] += (tb * a[104]) + r[104];
- t[1] = (tb * a[105]) + r[105];
- r[104] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[105] = t[1] & 0x1fffffff;
- r[106] += (sp_digit)(t[1] >> 29);
- #endif /* !WOLFSSL_SP_LARGE_CODE */
- }
- /* Shift the result in the high 3072 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_3072_mont_shift_106(sp_digit* r, const sp_digit* a)
- {
- int i;
- sp_int64 n = a[105] >> 27;
- n += ((sp_int64)a[106]) << 2;
- for (i = 0; i < 105; i++) {
- r[i] = n & 0x1fffffff;
- n >>= 29;
- n += ((sp_int64)a[107 + i]) << 2;
- }
- r[105] = (sp_digit)n;
- XMEMSET(&r[106], 0, sizeof(*r) * 106U);
- }
- /* Reduce the number back to 3072 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_3072_mont_reduce_106(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_3072_norm_106(a + 106);
- #ifdef WOLFSSL_SP_DH
- if (mp != 1) {
- for (i=0; i<105; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
- sp_3072_mul_add_106(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x7ffffffL;
- sp_3072_mul_add_106(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- else {
- for (i=0; i<105; i++) {
- mu = a[i] & 0x1fffffff;
- sp_3072_mul_add_106(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- }
- mu = a[i] & 0x7ffffffL;
- sp_3072_mul_add_106(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- #else
- for (i=0; i<105; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
- sp_3072_mul_add_106(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x7ffffffL;
- sp_3072_mul_add_106(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- #endif
- sp_3072_mont_shift_106(a, a);
- over = a[105] - m[105];
- sp_3072_cond_sub_106(a, a, m, ~((over - 1) >> 31));
- sp_3072_norm_106(a);
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_3072_mont_mul_106(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_3072_mul_106(r, a, b);
- sp_3072_mont_reduce_106(r, m, mp);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_3072_mont_sqr_106(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_3072_sqr_106(r, a);
- sp_3072_mont_reduce_106(r, m, mp);
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_3072_mul_d_212(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 212; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- }
- r[212] = (sp_digit)t;
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_3072_cond_add_106(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 106; i++) {
- r[i] = a[i] + (b[i] & m);
- }
- }
- #endif /* WOLFSSL_SP_SMALL */
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_3072_add_106(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 106; i++) {
- r[i] = a[i] + b[i];
- }
- return 0;
- }
- SP_NOINLINE static void sp_3072_rshift_106(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- for (i=0; i<105; i++) {
- r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
- }
- r[105] = a[105] >> n;
- }
- static WC_INLINE sp_digit sp_3072_div_word_106(sp_digit d1, sp_digit d0,
- sp_digit div)
- {
- #ifdef SP_USE_DIVTI3
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- return d / div;
- #elif defined(__x86_64__) || defined(__i386__)
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_uint32 lo = (sp_uint32)d;
- sp_digit hi = (sp_digit)(d >> 32);
- __asm__ __volatile__ (
- "idiv %2"
- : "+a" (lo)
- : "d" (hi), "r" (div)
- : "cc"
- );
- return (sp_digit)lo;
- #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_digit dv = (div >> 1) + 1;
- sp_digit t1 = (sp_digit)(d >> 29);
- sp_digit t0 = (sp_digit)(d & 0x1fffffff);
- sp_digit t2;
- sp_digit sign;
- sp_digit r;
- int i;
- sp_int64 m;
- r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- t1 -= dv & (0 - r);
- for (i = 27; i >= 1; i--) {
- t1 += t1 + (((sp_uint32)t0 >> 28) & 1);
- t0 <<= 1;
- t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- r += r + t2;
- t1 -= dv & (0 - t2);
- t1 += t2;
- }
- r += r + 1;
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 29);
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 58) - (sp_digit)(d >> 58);
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- return r;
- #else
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_digit r = 0;
- sp_digit t;
- sp_digit dv = (div >> 14) + 1;
- t = (sp_digit)(d >> 28);
- t = (t / dv) << 14;
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)(d >> 13);
- t = t / (dv << 1);
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)d;
- t = t / div;
- r += t;
- d -= (sp_int64)t * div;
- return r;
- #endif
- }
- static WC_INLINE sp_digit sp_3072_word_div_word_106(sp_digit d, sp_digit div)
- {
- #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
- defined(SP_DIV_WORD_USE_DIV)
- return d / div;
- #else
- return (sp_digit)((sp_uint32)(div - d) >> 31);
- #endif
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Full implementation.
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_3072_div_106(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- #ifndef WOLFSSL_SP_DIV_32
- #endif
- sp_digit dv;
- sp_digit r1;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 106 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 106 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 212 + 1;
- sd = t2 + 106 + 1;
- sp_3072_mul_d_106(sd, d, (sp_digit)1 << 2);
- sp_3072_mul_d_212(t1, a, (sp_digit)1 << 2);
- dv = sd[105];
- t1[106 + 106] += t1[106 + 106 - 1] >> 29;
- t1[106 + 106 - 1] &= 0x1fffffff;
- for (i=106; i>=0; i--) {
- r1 = sp_3072_div_word_106(t1[106 + i], t1[106 + i - 1], dv);
- sp_3072_mul_d_106(t2, sd, r1);
- (void)sp_3072_sub_106(&t1[i], &t1[i], t2);
- sp_3072_norm_106(&t1[i]);
- t1[106 + i] -= t2[106];
- t1[106 + i] += t1[106 + i - 1] >> 29;
- t1[106 + i - 1] &= 0x1fffffff;
- r1 = sp_3072_div_word_106(-t1[106 + i], -t1[106 + i - 1], dv);
- r1 -= t1[106 + i];
- sp_3072_mul_d_106(t2, sd, r1);
- (void)sp_3072_add_106(&t1[i], &t1[i], t2);
- t1[106 + i] += t1[106 + i - 1] >> 29;
- t1[106 + i - 1] &= 0x1fffffff;
- }
- t1[106 - 1] += t1[106 - 2] >> 29;
- t1[106 - 2] &= 0x1fffffff;
- r1 = sp_3072_word_div_word_106(t1[106 - 1], dv);
- sp_3072_mul_d_106(t2, sd, r1);
- sp_3072_sub_106(t1, t1, t2);
- XMEMCPY(r, t1, sizeof(*r) * 212U);
- for (i=0; i<105; i++) {
- r[i+1] += r[i] >> 29;
- r[i] &= 0x1fffffff;
- }
- sp_3072_cond_add_106(r, r, sd, r[105] >> 31);
- sp_3072_norm_106(r);
- sp_3072_rshift_106(r, r, 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_3072_mod_106(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_3072_div_106(a, m, NULL, r);
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
- /* Modular exponentiate a to the e mod m. (r = a^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * a A single precision number being exponentiated.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even or exponent is 0.
- */
- static int sp_3072_mod_exp_106(sp_digit* r, const sp_digit* a, const sp_digit* e,
- int bits, const sp_digit* m, int reduceA)
- {
- #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 212];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 106 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 106 * 2);
- XMEMSET(t[i], 0, sizeof(sp_digit) * 106U * 2U);
- }
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_106(norm, m);
- if (reduceA != 0) {
- err = sp_3072_mod_106(t[1], a, m);
- }
- else {
- XMEMCPY(t[1], a, sizeof(sp_digit) * 106U);
- }
- }
- if (err == MP_OKAY) {
- sp_3072_mul_106(t[1], t[1], norm);
- err = sp_3072_mod_106(t[1], t[1], m);
- }
- if (err == MP_OKAY) {
- i = bits / 29;
- c = bits % 29;
- n = e[i--] << (29 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 29;
- }
- y = (int)((n >> 28) & 1);
- n <<= 1;
- sp_3072_mont_mul_106(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 106 * 2);
- sp_3072_mont_sqr_106(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 106 * 2);
- }
- sp_3072_mont_reduce_106(t[0], m, mp);
- n = sp_3072_cmp_106(t[0], m);
- sp_3072_cond_sub_106(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 106 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #elif !defined(WC_NO_CACHE_RESISTANT)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 212];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 106 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 106 * 2);
- }
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_106(norm, m);
- if (reduceA != 0) {
- err = sp_3072_mod_106(t[1], a, m);
- if (err == MP_OKAY) {
- sp_3072_mul_106(t[1], t[1], norm);
- err = sp_3072_mod_106(t[1], t[1], m);
- }
- }
- else {
- sp_3072_mul_106(t[1], a, norm);
- err = sp_3072_mod_106(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- i = bits / 29;
- c = bits % 29;
- n = e[i--] << (29 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 29;
- }
- y = (int)((n >> 28) & 1);
- n <<= 1;
- sp_3072_mont_mul_106(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 106 * 2);
- sp_3072_mont_sqr_106(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 106 * 2);
- }
- sp_3072_mont_reduce_106(t[0], m, mp);
- n = sp_3072_cmp_106(t[0], m);
- sp_3072_cond_sub_106(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 106 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[(16 * 212) + 212];
- #endif
- sp_digit* t[16];
- sp_digit* rt = NULL;
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((16 * 212) + 212), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<16; i++)
- t[i] = td + i * 212;
- rt = td + 3392;
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_106(norm, m);
- if (reduceA != 0) {
- err = sp_3072_mod_106(t[1], a, m);
- if (err == MP_OKAY) {
- sp_3072_mul_106(t[1], t[1], norm);
- err = sp_3072_mod_106(t[1], t[1], m);
- }
- }
- else {
- sp_3072_mul_106(t[1], a, norm);
- err = sp_3072_mod_106(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- sp_3072_mont_sqr_106(t[ 2], t[ 1], m, mp);
- sp_3072_mont_mul_106(t[ 3], t[ 2], t[ 1], m, mp);
- sp_3072_mont_sqr_106(t[ 4], t[ 2], m, mp);
- sp_3072_mont_mul_106(t[ 5], t[ 3], t[ 2], m, mp);
- sp_3072_mont_sqr_106(t[ 6], t[ 3], m, mp);
- sp_3072_mont_mul_106(t[ 7], t[ 4], t[ 3], m, mp);
- sp_3072_mont_sqr_106(t[ 8], t[ 4], m, mp);
- sp_3072_mont_mul_106(t[ 9], t[ 5], t[ 4], m, mp);
- sp_3072_mont_sqr_106(t[10], t[ 5], m, mp);
- sp_3072_mont_mul_106(t[11], t[ 6], t[ 5], m, mp);
- sp_3072_mont_sqr_106(t[12], t[ 6], m, mp);
- sp_3072_mont_mul_106(t[13], t[ 7], t[ 6], m, mp);
- sp_3072_mont_sqr_106(t[14], t[ 7], m, mp);
- sp_3072_mont_mul_106(t[15], t[ 8], t[ 7], m, mp);
- bits = ((bits + 3) / 4) * 4;
- i = ((bits + 28) / 29) - 1;
- c = bits % 29;
- if (c == 0) {
- c = 29;
- }
- if (i < 106) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 4) {
- n |= e[i--] << (3 - c);
- c += 29;
- }
- y = (int)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- XMEMCPY(rt, t[y], sizeof(sp_digit) * 212);
- while ((i >= 0) || (c >= 4)) {
- if (c >= 4) {
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- }
- else if (c == 0) {
- n = e[i--] << 3;
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c = 25;
- }
- else {
- y = (byte)((n >> 28) & 0xf);
- n = e[i--] << 3;
- c = 4 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 29 - c;
- }
- sp_3072_mont_sqr_106(rt, rt, m, mp);
- sp_3072_mont_sqr_106(rt, rt, m, mp);
- sp_3072_mont_sqr_106(rt, rt, m, mp);
- sp_3072_mont_sqr_106(rt, rt, m, mp);
- sp_3072_mont_mul_106(rt, rt, t[y], m, mp);
- }
- sp_3072_mont_reduce_106(rt, m, mp);
- n = sp_3072_cmp_106(rt, m);
- sp_3072_cond_sub_106(rt, rt, m, ~(n >> 31));
- XMEMCPY(r, rt, sizeof(sp_digit) * 212);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #endif
- }
- #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
- #ifdef WOLFSSL_HAVE_SP_RSA
- /* RSA public key operation.
- *
- * in Array of bytes representing the number to exponentiate, base.
- * inLen Number of bytes in base.
- * em Public exponent.
- * mm Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 384 bytes long.
- * outLen Number of bytes in result.
- * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
- * an array is too long and MEMORY_E when dynamic memory allocation fails.
- */
- int sp_RsaPublic_3072(const byte* in, word32 inLen, const mp_int* em,
- const mp_int* mm, byte* out, word32* outLen)
- {
- #ifdef WOLFSSL_SP_SMALL
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[106 * 5];
- #endif
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- sp_digit* norm = NULL;
- sp_uint64 e[1] = {0};
- sp_digit mp = 0;
- int i;
- int err = MP_OKAY;
- if (*outLen < 384U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(em) > 64) {
- err = MP_READ_E;
- }
- else if (inLen > 384U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 5, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- r = a + 106 * 2;
- m = r + 106 * 2;
- norm = r;
- sp_3072_from_bin(a, 106, in, inLen);
- #if DIGIT_BIT >= 64
- e[0] = (sp_uint64)em->dp[0];
- #else
- e[0] = (sp_uint64)em->dp[0];
- if (em->used > 1) {
- e[0] |= ((sp_uint64)em->dp[1]) << DIGIT_BIT;
- }
- #endif
- if (e[0] == 0) {
- err = MP_EXPTMOD_E;
- }
- }
- if (err == MP_OKAY) {
- sp_3072_from_mp(m, 106, mm);
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_106(norm, m);
- }
- if (err == MP_OKAY) {
- sp_3072_mul_106(a, a, norm);
- err = sp_3072_mod_106(a, a, m);
- }
- if (err == MP_OKAY) {
- for (i=63; i>=0; i--) {
- if ((e[0] >> i) != 0) {
- break;
- }
- }
- XMEMCPY(r, a, sizeof(sp_digit) * 106 * 2);
- for (i--; i>=0; i--) {
- sp_3072_mont_sqr_106(r, r, m, mp);
- if (((e[0] >> i) & 1) == 1) {
- sp_3072_mont_mul_106(r, r, a, m, mp);
- }
- }
- sp_3072_mont_reduce_106(r, m, mp);
- mp = sp_3072_cmp_106(r, m);
- sp_3072_cond_sub_106(r, r, m, ~(mp >> 31));
- sp_3072_to_bin_106(r, out);
- *outLen = 384;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[106 * 5];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- sp_uint64 e[1] = {0};
- int err = MP_OKAY;
- if (*outLen < 384U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(em) > 64) {
- err = MP_READ_E;
- }
- else if (inLen > 384U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 5, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d;
- r = a + 106 * 2;
- m = r + 106 * 2;
- sp_3072_from_bin(a, 106, in, inLen);
- #if DIGIT_BIT >= 64
- e[0] = (sp_uint64)em->dp[0];
- #else
- e[0] = (sp_uint64)em->dp[0];
- if (em->used > 1) {
- e[0] |= ((sp_uint64)em->dp[1]) << DIGIT_BIT;
- }
- #endif
- if (e[0] == 0) {
- err = MP_EXPTMOD_E;
- }
- }
- if (err == MP_OKAY) {
- sp_3072_from_mp(m, 106, mm);
- if (e[0] == 0x3) {
- sp_3072_sqr_106(r, a);
- err = sp_3072_mod_106(r, r, m);
- if (err == MP_OKAY) {
- sp_3072_mul_106(r, a, r);
- err = sp_3072_mod_106(r, r, m);
- }
- }
- else {
- sp_digit* norm = r;
- int i;
- sp_digit mp;
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_106(norm, m);
- sp_3072_mul_106(a, a, norm);
- err = sp_3072_mod_106(a, a, m);
- if (err == MP_OKAY) {
- for (i=63; i>=0; i--) {
- if ((e[0] >> i) != 0) {
- break;
- }
- }
- XMEMCPY(r, a, sizeof(sp_digit) * 212U);
- for (i--; i>=0; i--) {
- sp_3072_mont_sqr_106(r, r, m, mp);
- if (((e[0] >> i) & 1) == 1) {
- sp_3072_mont_mul_106(r, r, a, m, mp);
- }
- }
- sp_3072_mont_reduce_106(r, m, mp);
- mp = sp_3072_cmp_106(r, m);
- sp_3072_cond_sub_106(r, r, m, ~(mp >> 31));
- }
- }
- }
- if (err == MP_OKAY) {
- sp_3072_to_bin_106(r, out);
- *outLen = 384;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- }
- #ifndef WOLFSSL_RSA_PUBLIC_ONLY
- #if !defined(SP_RSA_PRIVATE_EXP_D) && !defined(RSA_LOW_MEM)
- #endif /* !SP_RSA_PRIVATE_EXP_D & !RSA_LOW_MEM */
- /* RSA private key operation.
- *
- * in Array of bytes representing the number to exponentiate, base.
- * inLen Number of bytes in base.
- * dm Private exponent.
- * pm First prime.
- * qm Second prime.
- * dpm First prime's CRT exponent.
- * dqm Second prime's CRT exponent.
- * qim Inverse of second prime mod p.
- * mm Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 384 bytes long.
- * outLen Number of bytes in result.
- * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
- * an array is too long and MEMORY_E when dynamic memory allocation fails.
- */
- int sp_RsaPrivate_3072(const byte* in, word32 inLen, const mp_int* dm,
- const mp_int* pm, const mp_int* qm, const mp_int* dpm, const mp_int* dqm,
- const mp_int* qim, const mp_int* mm, byte* out, word32* outLen)
- {
- #if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM)
- #if defined(WOLFSSL_SP_SMALL)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[106 * 4];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)pm;
- (void)qm;
- (void)dpm;
- (void)dqm;
- (void)qim;
- if (*outLen < 384U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(dm) > 3072) {
- err = MP_READ_E;
- }
- else if (inLen > 384) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 4, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d + 106;
- m = a + 212;
- r = a;
- sp_3072_from_bin(a, 106, in, inLen);
- sp_3072_from_mp(d, 106, dm);
- sp_3072_from_mp(m, 106, mm);
- err = sp_3072_mod_exp_106(r, a, d, 3072, m, 0);
- }
- if (err == MP_OKAY) {
- sp_3072_to_bin_106(r, out);
- *outLen = 384;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- #endif
- {
- /* only "a" and "r" are sensitive and need zeroized (same pointer) */
- if (a != NULL)
- ForceZero(a, sizeof(sp_digit) * 106);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[106 * 4];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)pm;
- (void)qm;
- (void)dpm;
- (void)dqm;
- (void)qim;
- if (*outLen < 384U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(dm) > 3072) {
- err = MP_READ_E;
- }
- else if (inLen > 384U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 4, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d + 106;
- m = a + 212;
- r = a;
- sp_3072_from_bin(a, 106, in, inLen);
- sp_3072_from_mp(d, 106, dm);
- sp_3072_from_mp(m, 106, mm);
- err = sp_3072_mod_exp_106(r, a, d, 3072, m, 0);
- }
- if (err == MP_OKAY) {
- sp_3072_to_bin_106(r, out);
- *outLen = 384;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- #endif
- {
- /* only "a" and "r" are sensitive and need zeroized (same pointer) */
- if (a != NULL)
- ForceZero(a, sizeof(sp_digit) * 106);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- #else
- #if defined(WOLFSSL_SP_SMALL)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[53 * 8];
- #endif
- sp_digit* p = NULL;
- sp_digit* dp = NULL;
- sp_digit* dq = NULL;
- sp_digit* qi = NULL;
- sp_digit* tmpa = NULL;
- sp_digit* tmpb = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)dm;
- (void)mm;
- if (*outLen < 384U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (inLen > 384) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(pm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(qm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 53 * 8, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = a + 106;
- qi = dq = dp = p + 53;
- tmpa = qi + 53;
- tmpb = tmpa + 106;
- r = a;
- sp_3072_from_bin(a, 106, in, inLen);
- sp_3072_from_mp(p, 53, pm);
- sp_3072_from_mp(dp, 53, dpm);
- err = sp_3072_mod_exp_53(tmpa, a, dp, 1536, p, 1);
- }
- if (err == MP_OKAY) {
- sp_3072_from_mp(p, 53, qm);
- sp_3072_from_mp(dq, 53, dqm);
- err = sp_3072_mod_exp_53(tmpb, a, dq, 1536, p, 1);
- }
- if (err == MP_OKAY) {
- sp_3072_from_mp(p, 53, pm);
- (void)sp_3072_sub_53(tmpa, tmpa, tmpb);
- sp_3072_norm_53(tmpa);
- sp_3072_cond_add_53(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[52] >> 31));
- sp_3072_cond_add_53(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[52] >> 31));
- sp_3072_norm_53(tmpa);
- sp_3072_from_mp(qi, 53, qim);
- sp_3072_mul_53(tmpa, tmpa, qi);
- err = sp_3072_mod_53(tmpa, tmpa, p);
- }
- if (err == MP_OKAY) {
- sp_3072_from_mp(p, 53, qm);
- sp_3072_mul_53(tmpa, p, tmpa);
- (void)sp_3072_add_106(r, tmpb, tmpa);
- sp_3072_norm_106(r);
- sp_3072_to_bin_106(r, out);
- *outLen = 384;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- #endif
- {
- ForceZero(a, sizeof(sp_digit) * 53 * 8);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[53 * 13];
- #endif
- sp_digit* p = NULL;
- sp_digit* q = NULL;
- sp_digit* dp = NULL;
- sp_digit* dq = NULL;
- sp_digit* qi = NULL;
- sp_digit* tmpa = NULL;
- sp_digit* tmpb = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)dm;
- (void)mm;
- if (*outLen < 384U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (inLen > 384U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(pm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(qm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 53 * 13, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = a + 106 * 2;
- q = p + 53;
- dp = q + 53;
- dq = dp + 53;
- qi = dq + 53;
- tmpa = qi + 53;
- tmpb = tmpa + 106;
- r = a;
- sp_3072_from_bin(a, 106, in, inLen);
- sp_3072_from_mp(p, 53, pm);
- sp_3072_from_mp(q, 53, qm);
- sp_3072_from_mp(dp, 53, dpm);
- sp_3072_from_mp(dq, 53, dqm);
- sp_3072_from_mp(qi, 53, qim);
- err = sp_3072_mod_exp_53(tmpa, a, dp, 1536, p, 1);
- }
- if (err == MP_OKAY) {
- err = sp_3072_mod_exp_53(tmpb, a, dq, 1536, q, 1);
- }
- if (err == MP_OKAY) {
- (void)sp_3072_sub_53(tmpa, tmpa, tmpb);
- sp_3072_norm_53(tmpa);
- sp_3072_cond_add_53(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[52] >> 31));
- sp_3072_cond_add_53(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[52] >> 31));
- sp_3072_norm_53(tmpa);
- sp_3072_mul_53(tmpa, tmpa, qi);
- err = sp_3072_mod_53(tmpa, tmpa, p);
- }
- if (err == MP_OKAY) {
- sp_3072_mul_53(tmpa, tmpa, q);
- (void)sp_3072_add_106(r, tmpb, tmpa);
- sp_3072_norm_106(r);
- sp_3072_to_bin_106(r, out);
- *outLen = 384;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- #endif
- {
- ForceZero(a, sizeof(sp_digit) * 53 * 13);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- #endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */
- }
- #endif /* !WOLFSSL_RSA_PUBLIC_ONLY */
- #endif /* WOLFSSL_HAVE_SP_RSA */
- #if defined(WOLFSSL_HAVE_SP_DH) || (defined(WOLFSSL_HAVE_SP_RSA) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY))
- /* Convert an array of sp_digit to an mp_int.
- *
- * a A single precision integer.
- * r A multi-precision integer.
- */
- static int sp_3072_to_mp(const sp_digit* a, mp_int* r)
- {
- int err;
- err = mp_grow(r, (3072 + DIGIT_BIT - 1) / DIGIT_BIT);
- if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
- #if DIGIT_BIT == 29
- XMEMCPY(r->dp, a, sizeof(sp_digit) * 106);
- r->used = 106;
- mp_clamp(r);
- #elif DIGIT_BIT < 29
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 106; i++) {
- r->dp[j] |= (mp_digit)(a[i] << s);
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- s = DIGIT_BIT - s;
- r->dp[++j] = (mp_digit)(a[i] >> s);
- while (s + DIGIT_BIT <= 29) {
- s += DIGIT_BIT;
- r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- if (s == SP_WORD_SIZE) {
- r->dp[j] = 0;
- }
- else {
- r->dp[j] = (mp_digit)(a[i] >> s);
- }
- }
- s = 29 - s;
- }
- r->used = (3072 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #else
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 106; i++) {
- r->dp[j] |= ((mp_digit)a[i]) << s;
- if (s + 29 >= DIGIT_BIT) {
- #if DIGIT_BIT != 32 && DIGIT_BIT != 64
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- #endif
- s = DIGIT_BIT - s;
- r->dp[++j] = a[i] >> s;
- s = 29 - s;
- }
- else {
- s += 29;
- }
- }
- r->used = (3072 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #endif
- }
- return err;
- }
- /* Perform the modular exponentiation for Diffie-Hellman.
- *
- * base Base. MP integer.
- * exp Exponent. MP integer.
- * mod Modulus. MP integer.
- * res Result. MP integer.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_ModExp_3072(const mp_int* base, const mp_int* exp, const mp_int* mod,
- mp_int* res)
- {
- #ifdef WOLFSSL_SP_SMALL
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[106 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 3072) {
- err = MP_READ_E;
- }
- else if (expBits > 3072) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 4, NULL,
- DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 106 * 2;
- m = e + 106;
- r = b;
- sp_3072_from_mp(b, 106, base);
- sp_3072_from_mp(e, 106, exp);
- sp_3072_from_mp(m, 106, mod);
- err = sp_3072_mod_exp_106(r, b, e, mp_count_bits(exp), m, 0);
- }
- if (err == MP_OKAY) {
- err = sp_3072_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 106U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[106 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 3072) {
- err = MP_READ_E;
- }
- else if (expBits > 3072) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 4, NULL, DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 106 * 2;
- m = e + 106;
- r = b;
- sp_3072_from_mp(b, 106, base);
- sp_3072_from_mp(e, 106, exp);
- sp_3072_from_mp(m, 106, mod);
- err = sp_3072_mod_exp_106(r, b, e, expBits, m, 0);
- }
- if (err == MP_OKAY) {
- err = sp_3072_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 106U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #endif
- }
- #ifdef WOLFSSL_HAVE_SP_DH
- #ifdef HAVE_FFDHE_3072
- SP_NOINLINE static void sp_3072_lshift_106(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- r[106] = a[105] >> (29 - n);
- for (i=105; i>0; i--) {
- r[i] = ((a[i] << n) | (a[i-1] >> (29 - n))) & 0x1fffffff;
- }
- r[0] = (a[0] << n) & 0x1fffffff;
- }
- /* Modular exponentiate 2 to the e mod m. (r = 2^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even.
- */
- static int sp_3072_mod_exp_2_106(sp_digit* r, const sp_digit* e, int bits, const sp_digit* m)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[319];
- #endif
- sp_digit* norm = NULL;
- sp_digit* tmp = NULL;
- sp_digit mp = 1;
- sp_digit n;
- sp_digit o;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 319, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- tmp = td + 212;
- XMEMSET(td, 0, sizeof(sp_digit) * 319);
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_106(norm, m);
- bits = ((bits + 3) / 4) * 4;
- i = ((bits + 28) / 29) - 1;
- c = bits % 29;
- if (c == 0) {
- c = 29;
- }
- if (i < 106) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 4) {
- n |= e[i--] << (3 - c);
- c += 29;
- }
- y = (int)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- sp_3072_lshift_106(r, norm, (byte)y);
- while ((i >= 0) || (c >= 4)) {
- if (c >= 4) {
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- }
- else if (c == 0) {
- n = e[i--] << 3;
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c = 25;
- }
- else {
- y = (byte)((n >> 28) & 0xf);
- n = e[i--] << 3;
- c = 4 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 29 - c;
- }
- sp_3072_mont_sqr_106(r, r, m, mp);
- sp_3072_mont_sqr_106(r, r, m, mp);
- sp_3072_mont_sqr_106(r, r, m, mp);
- sp_3072_mont_sqr_106(r, r, m, mp);
- sp_3072_lshift_106(r, r, (byte)y);
- sp_3072_mul_d_106(tmp, norm, (r[106] << 2) + (r[105] >> 27));
- r[106] = 0;
- r[105] &= 0x7ffffffL;
- (void)sp_3072_add_106(r, r, tmp);
- sp_3072_norm_106(r);
- o = sp_3072_cmp_106(r, m);
- sp_3072_cond_sub_106(r, r, m, ~(o >> 31));
- }
- sp_3072_mont_reduce_106(r, m, mp);
- n = sp_3072_cmp_106(r, m);
- sp_3072_cond_sub_106(r, r, m, ~(n >> 31));
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- #endif /* HAVE_FFDHE_3072 */
- /* Perform the modular exponentiation for Diffie-Hellman.
- *
- * base Base.
- * exp Array of bytes that is the exponent.
- * expLen Length of data, in bytes, in exponent.
- * mod Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 384 bytes long.
- * outLen Length, in bytes, of exponentiation result.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_DhExp_3072(const mp_int* base, const byte* exp, word32 expLen,
- const mp_int* mod, byte* out, word32* outLen)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[106 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- word32 i;
- int err = MP_OKAY;
- if (mp_count_bits(base) > 3072) {
- err = MP_READ_E;
- }
- else if (expLen > 384U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 106 * 4, NULL,
- DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 106 * 2;
- m = e + 106;
- r = b;
- sp_3072_from_mp(b, 106, base);
- sp_3072_from_bin(e, 106, exp, expLen);
- sp_3072_from_mp(m, 106, mod);
- #ifdef HAVE_FFDHE_3072
- if (base->used == 1 && base->dp[0] == 2U &&
- (m[105] >> 11) == 0xffffL) {
- err = sp_3072_mod_exp_2_106(r, e, expLen * 8U, m);
- }
- else {
- #endif
- err = sp_3072_mod_exp_106(r, b, e, expLen * 8U, m, 0);
- #ifdef HAVE_FFDHE_3072
- }
- #endif
- }
- if (err == MP_OKAY) {
- sp_3072_to_bin_106(r, out);
- *outLen = 384;
- for (i=0; i<384U && out[i] == 0U; i++) {
- /* Search for first non-zero. */
- }
- *outLen -= i;
- XMEMMOVE(out, out + i, *outLen);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 106U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_HAVE_SP_DH */
- /* Perform the modular exponentiation for Diffie-Hellman.
- *
- * base Base. MP integer.
- * exp Exponent. MP integer.
- * mod Modulus. MP integer.
- * res Result. MP integer.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_ModExp_1536(const mp_int* base, const mp_int* exp, const mp_int* mod,
- mp_int* res)
- {
- #ifdef WOLFSSL_SP_SMALL
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[53 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 1536) {
- err = MP_READ_E;
- }
- else if (expBits > 1536) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 1536) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 53 * 4, NULL,
- DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 53 * 2;
- m = e + 53;
- r = b;
- sp_3072_from_mp(b, 53, base);
- sp_3072_from_mp(e, 53, exp);
- sp_3072_from_mp(m, 53, mod);
- err = sp_3072_mod_exp_53(r, b, e, mp_count_bits(exp), m, 0);
- }
- if (err == MP_OKAY) {
- XMEMSET(r + 53, 0, sizeof(*r) * 53U);
- err = sp_3072_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 106U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[53 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 1536) {
- err = MP_READ_E;
- }
- else if (expBits > 1536) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 1536) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 53 * 4, NULL, DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 53 * 2;
- m = e + 53;
- r = b;
- sp_3072_from_mp(b, 53, base);
- sp_3072_from_mp(e, 53, exp);
- sp_3072_from_mp(m, 53, mod);
- err = sp_3072_mod_exp_53(r, b, e, expBits, m, 0);
- }
- if (err == MP_OKAY) {
- XMEMSET(r + 53, 0, sizeof(*r) * 53U);
- err = sp_3072_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 106U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #endif
- }
- #endif /* WOLFSSL_HAVE_SP_DH | (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) */
- #else
- /* Read big endian unsigned byte array into r.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a Byte array.
- * n Number of bytes in array to read.
- */
- static void sp_3072_from_bin(sp_digit* r, int size, const byte* a, int n)
- {
- int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = n-1; i >= 0; i--) {
- r[j] |= (((sp_digit)a[i]) << s);
- if (s >= 20U) {
- r[j] &= 0xfffffff;
- s = 28U - s;
- if (j + 1 >= size) {
- break;
- }
- r[++j] = (sp_digit)a[i] >> s;
- s = 8U - s;
- }
- else {
- s += 8U;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- }
- /* Convert an mp_int to an array of sp_digit.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a A multi-precision integer.
- */
- static void sp_3072_from_mp(sp_digit* r, int size, const mp_int* a)
- {
- #if DIGIT_BIT == 28
- int i;
- sp_digit j = (sp_digit)0 - (sp_digit)a->used;
- int o = 0;
- for (i = 0; i < size; i++) {
- sp_digit mask = (sp_digit)0 - (j >> 27);
- r[i] = a->dp[o] & mask;
- j++;
- o += (int)(j >> 27);
- }
- #elif DIGIT_BIT > 28
- unsigned int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i] << s);
- r[j] &= 0xfffffff;
- s = 28U - s;
- if (j + 1 >= size) {
- break;
- }
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- while ((s + 28U) <= (word32)DIGIT_BIT) {
- s += 28U;
- r[j] &= 0xfffffff;
- if (j + 1 >= size) {
- break;
- }
- if (s < (word32)DIGIT_BIT) {
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- }
- else {
- r[++j] = (sp_digit)0;
- }
- }
- s = (word32)DIGIT_BIT - s;
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #else
- unsigned int i;
- int j = 0;
- int s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i]) << s;
- if (s + DIGIT_BIT >= 28) {
- r[j] &= 0xfffffff;
- if (j + 1 >= size) {
- break;
- }
- s = 28 - s;
- if (s == DIGIT_BIT) {
- r[++j] = 0;
- s = 0;
- }
- else {
- r[++j] = a->dp[i] >> s;
- s = DIGIT_BIT - s;
- }
- }
- else {
- s += DIGIT_BIT;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #endif
- }
- /* Write r as big endian to byte array.
- * Fixed length number of bytes written: 384
- *
- * r A single precision integer.
- * a Byte array.
- */
- static void sp_3072_to_bin_112(sp_digit* r, byte* a)
- {
- int i;
- int j;
- int s = 0;
- int b;
- for (i=0; i<111; i++) {
- r[i+1] += r[i] >> 28;
- r[i] &= 0xfffffff;
- }
- j = 3079 / 8 - 1;
- a[j] = 0;
- for (i=0; i<110 && j>=0; i++) {
- b = 0;
- /* lint allow cast of mismatch sp_digit and int */
- a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
- b += 8 - s;
- if (j < 0) {
- break;
- }
- while (b < 28) {
- a[j--] = (byte)(r[i] >> b);
- b += 8;
- if (j < 0) {
- break;
- }
- }
- s = 8 - (b - 28);
- if (j >= 0) {
- a[j] = 0;
- }
- if (s != 0) {
- j++;
- }
- }
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
- /* Normalize the values in each word to 28 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_3072_norm_56(sp_digit* a)
- {
- int i;
- for (i = 0; i < 48; i += 8) {
- a[i+1] += a[i+0] >> 28; a[i+0] &= 0xfffffff;
- a[i+2] += a[i+1] >> 28; a[i+1] &= 0xfffffff;
- a[i+3] += a[i+2] >> 28; a[i+2] &= 0xfffffff;
- a[i+4] += a[i+3] >> 28; a[i+3] &= 0xfffffff;
- a[i+5] += a[i+4] >> 28; a[i+4] &= 0xfffffff;
- a[i+6] += a[i+5] >> 28; a[i+5] &= 0xfffffff;
- a[i+7] += a[i+6] >> 28; a[i+6] &= 0xfffffff;
- a[i+8] += a[i+7] >> 28; a[i+7] &= 0xfffffff;
- }
- a[49] += a[48] >> 28; a[48] &= 0xfffffff;
- a[50] += a[49] >> 28; a[49] &= 0xfffffff;
- a[51] += a[50] >> 28; a[50] &= 0xfffffff;
- a[52] += a[51] >> 28; a[51] &= 0xfffffff;
- a[53] += a[52] >> 28; a[52] &= 0xfffffff;
- a[54] += a[53] >> 28; a[53] &= 0xfffffff;
- a[55] += a[54] >> 28; a[54] &= 0xfffffff;
- }
- #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
- /* Normalize the values in each word to 28 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_3072_norm_55(sp_digit* a)
- {
- int i;
- for (i = 0; i < 48; i += 8) {
- a[i+1] += a[i+0] >> 28; a[i+0] &= 0xfffffff;
- a[i+2] += a[i+1] >> 28; a[i+1] &= 0xfffffff;
- a[i+3] += a[i+2] >> 28; a[i+2] &= 0xfffffff;
- a[i+4] += a[i+3] >> 28; a[i+3] &= 0xfffffff;
- a[i+5] += a[i+4] >> 28; a[i+4] &= 0xfffffff;
- a[i+6] += a[i+5] >> 28; a[i+5] &= 0xfffffff;
- a[i+7] += a[i+6] >> 28; a[i+6] &= 0xfffffff;
- a[i+8] += a[i+7] >> 28; a[i+7] &= 0xfffffff;
- }
- a[49] += a[48] >> 28; a[48] &= 0xfffffff;
- a[50] += a[49] >> 28; a[49] &= 0xfffffff;
- a[51] += a[50] >> 28; a[50] &= 0xfffffff;
- a[52] += a[51] >> 28; a[51] &= 0xfffffff;
- a[53] += a[52] >> 28; a[52] &= 0xfffffff;
- a[54] += a[53] >> 28; a[53] &= 0xfffffff;
- }
- /* Normalize the values in each word to 28 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_3072_norm_112(sp_digit* a)
- {
- int i;
- for (i = 0; i < 104; i += 8) {
- a[i+1] += a[i+0] >> 28; a[i+0] &= 0xfffffff;
- a[i+2] += a[i+1] >> 28; a[i+1] &= 0xfffffff;
- a[i+3] += a[i+2] >> 28; a[i+2] &= 0xfffffff;
- a[i+4] += a[i+3] >> 28; a[i+3] &= 0xfffffff;
- a[i+5] += a[i+4] >> 28; a[i+4] &= 0xfffffff;
- a[i+6] += a[i+5] >> 28; a[i+5] &= 0xfffffff;
- a[i+7] += a[i+6] >> 28; a[i+6] &= 0xfffffff;
- a[i+8] += a[i+7] >> 28; a[i+7] &= 0xfffffff;
- }
- a[105] += a[104] >> 28; a[104] &= 0xfffffff;
- a[106] += a[105] >> 28; a[105] &= 0xfffffff;
- a[107] += a[106] >> 28; a[106] &= 0xfffffff;
- a[108] += a[107] >> 28; a[107] &= 0xfffffff;
- a[109] += a[108] >> 28; a[108] &= 0xfffffff;
- a[110] += a[109] >> 28; a[109] &= 0xfffffff;
- a[111] += a[110] >> 28; a[110] &= 0xfffffff;
- }
- /* Normalize the values in each word to 28 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_3072_norm_110(sp_digit* a)
- {
- int i;
- for (i = 0; i < 104; i += 8) {
- a[i+1] += a[i+0] >> 28; a[i+0] &= 0xfffffff;
- a[i+2] += a[i+1] >> 28; a[i+1] &= 0xfffffff;
- a[i+3] += a[i+2] >> 28; a[i+2] &= 0xfffffff;
- a[i+4] += a[i+3] >> 28; a[i+3] &= 0xfffffff;
- a[i+5] += a[i+4] >> 28; a[i+4] &= 0xfffffff;
- a[i+6] += a[i+5] >> 28; a[i+5] &= 0xfffffff;
- a[i+7] += a[i+6] >> 28; a[i+6] &= 0xfffffff;
- a[i+8] += a[i+7] >> 28; a[i+7] &= 0xfffffff;
- }
- a[105] += a[104] >> 28; a[104] &= 0xfffffff;
- a[106] += a[105] >> 28; a[105] &= 0xfffffff;
- a[107] += a[106] >> 28; a[106] &= 0xfffffff;
- a[108] += a[107] >> 28; a[107] &= 0xfffffff;
- a[109] += a[108] >> 28; a[108] &= 0xfffffff;
- }
- #ifndef WOLFSSL_SP_SMALL
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_3072_mul_14(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_uint64 t0;
- sp_uint64 t1;
- sp_digit t[14];
- t0 = ((sp_uint64)a[ 0]) * b[ 0];
- t1 = ((sp_uint64)a[ 0]) * b[ 1]
- + ((sp_uint64)a[ 1]) * b[ 0];
- t[ 0] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[ 0]) * b[ 2]
- + ((sp_uint64)a[ 1]) * b[ 1]
- + ((sp_uint64)a[ 2]) * b[ 0];
- t[ 1] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = ((sp_uint64)a[ 0]) * b[ 3]
- + ((sp_uint64)a[ 1]) * b[ 2]
- + ((sp_uint64)a[ 2]) * b[ 1]
- + ((sp_uint64)a[ 3]) * b[ 0];
- t[ 2] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[ 0]) * b[ 4]
- + ((sp_uint64)a[ 1]) * b[ 3]
- + ((sp_uint64)a[ 2]) * b[ 2]
- + ((sp_uint64)a[ 3]) * b[ 1]
- + ((sp_uint64)a[ 4]) * b[ 0];
- t[ 3] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = ((sp_uint64)a[ 0]) * b[ 5]
- + ((sp_uint64)a[ 1]) * b[ 4]
- + ((sp_uint64)a[ 2]) * b[ 3]
- + ((sp_uint64)a[ 3]) * b[ 2]
- + ((sp_uint64)a[ 4]) * b[ 1]
- + ((sp_uint64)a[ 5]) * b[ 0];
- t[ 4] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[ 0]) * b[ 6]
- + ((sp_uint64)a[ 1]) * b[ 5]
- + ((sp_uint64)a[ 2]) * b[ 4]
- + ((sp_uint64)a[ 3]) * b[ 3]
- + ((sp_uint64)a[ 4]) * b[ 2]
- + ((sp_uint64)a[ 5]) * b[ 1]
- + ((sp_uint64)a[ 6]) * b[ 0];
- t[ 5] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = ((sp_uint64)a[ 0]) * b[ 7]
- + ((sp_uint64)a[ 1]) * b[ 6]
- + ((sp_uint64)a[ 2]) * b[ 5]
- + ((sp_uint64)a[ 3]) * b[ 4]
- + ((sp_uint64)a[ 4]) * b[ 3]
- + ((sp_uint64)a[ 5]) * b[ 2]
- + ((sp_uint64)a[ 6]) * b[ 1]
- + ((sp_uint64)a[ 7]) * b[ 0];
- t[ 6] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[ 0]) * b[ 8]
- + ((sp_uint64)a[ 1]) * b[ 7]
- + ((sp_uint64)a[ 2]) * b[ 6]
- + ((sp_uint64)a[ 3]) * b[ 5]
- + ((sp_uint64)a[ 4]) * b[ 4]
- + ((sp_uint64)a[ 5]) * b[ 3]
- + ((sp_uint64)a[ 6]) * b[ 2]
- + ((sp_uint64)a[ 7]) * b[ 1]
- + ((sp_uint64)a[ 8]) * b[ 0];
- t[ 7] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = ((sp_uint64)a[ 0]) * b[ 9]
- + ((sp_uint64)a[ 1]) * b[ 8]
- + ((sp_uint64)a[ 2]) * b[ 7]
- + ((sp_uint64)a[ 3]) * b[ 6]
- + ((sp_uint64)a[ 4]) * b[ 5]
- + ((sp_uint64)a[ 5]) * b[ 4]
- + ((sp_uint64)a[ 6]) * b[ 3]
- + ((sp_uint64)a[ 7]) * b[ 2]
- + ((sp_uint64)a[ 8]) * b[ 1]
- + ((sp_uint64)a[ 9]) * b[ 0];
- t[ 8] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[ 0]) * b[10]
- + ((sp_uint64)a[ 1]) * b[ 9]
- + ((sp_uint64)a[ 2]) * b[ 8]
- + ((sp_uint64)a[ 3]) * b[ 7]
- + ((sp_uint64)a[ 4]) * b[ 6]
- + ((sp_uint64)a[ 5]) * b[ 5]
- + ((sp_uint64)a[ 6]) * b[ 4]
- + ((sp_uint64)a[ 7]) * b[ 3]
- + ((sp_uint64)a[ 8]) * b[ 2]
- + ((sp_uint64)a[ 9]) * b[ 1]
- + ((sp_uint64)a[10]) * b[ 0];
- t[ 9] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = ((sp_uint64)a[ 0]) * b[11]
- + ((sp_uint64)a[ 1]) * b[10]
- + ((sp_uint64)a[ 2]) * b[ 9]
- + ((sp_uint64)a[ 3]) * b[ 8]
- + ((sp_uint64)a[ 4]) * b[ 7]
- + ((sp_uint64)a[ 5]) * b[ 6]
- + ((sp_uint64)a[ 6]) * b[ 5]
- + ((sp_uint64)a[ 7]) * b[ 4]
- + ((sp_uint64)a[ 8]) * b[ 3]
- + ((sp_uint64)a[ 9]) * b[ 2]
- + ((sp_uint64)a[10]) * b[ 1]
- + ((sp_uint64)a[11]) * b[ 0];
- t[10] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[ 0]) * b[12]
- + ((sp_uint64)a[ 1]) * b[11]
- + ((sp_uint64)a[ 2]) * b[10]
- + ((sp_uint64)a[ 3]) * b[ 9]
- + ((sp_uint64)a[ 4]) * b[ 8]
- + ((sp_uint64)a[ 5]) * b[ 7]
- + ((sp_uint64)a[ 6]) * b[ 6]
- + ((sp_uint64)a[ 7]) * b[ 5]
- + ((sp_uint64)a[ 8]) * b[ 4]
- + ((sp_uint64)a[ 9]) * b[ 3]
- + ((sp_uint64)a[10]) * b[ 2]
- + ((sp_uint64)a[11]) * b[ 1]
- + ((sp_uint64)a[12]) * b[ 0];
- t[11] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = ((sp_uint64)a[ 0]) * b[13]
- + ((sp_uint64)a[ 1]) * b[12]
- + ((sp_uint64)a[ 2]) * b[11]
- + ((sp_uint64)a[ 3]) * b[10]
- + ((sp_uint64)a[ 4]) * b[ 9]
- + ((sp_uint64)a[ 5]) * b[ 8]
- + ((sp_uint64)a[ 6]) * b[ 7]
- + ((sp_uint64)a[ 7]) * b[ 6]
- + ((sp_uint64)a[ 8]) * b[ 5]
- + ((sp_uint64)a[ 9]) * b[ 4]
- + ((sp_uint64)a[10]) * b[ 3]
- + ((sp_uint64)a[11]) * b[ 2]
- + ((sp_uint64)a[12]) * b[ 1]
- + ((sp_uint64)a[13]) * b[ 0];
- t[12] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[ 1]) * b[13]
- + ((sp_uint64)a[ 2]) * b[12]
- + ((sp_uint64)a[ 3]) * b[11]
- + ((sp_uint64)a[ 4]) * b[10]
- + ((sp_uint64)a[ 5]) * b[ 9]
- + ((sp_uint64)a[ 6]) * b[ 8]
- + ((sp_uint64)a[ 7]) * b[ 7]
- + ((sp_uint64)a[ 8]) * b[ 6]
- + ((sp_uint64)a[ 9]) * b[ 5]
- + ((sp_uint64)a[10]) * b[ 4]
- + ((sp_uint64)a[11]) * b[ 3]
- + ((sp_uint64)a[12]) * b[ 2]
- + ((sp_uint64)a[13]) * b[ 1];
- t[13] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = ((sp_uint64)a[ 2]) * b[13]
- + ((sp_uint64)a[ 3]) * b[12]
- + ((sp_uint64)a[ 4]) * b[11]
- + ((sp_uint64)a[ 5]) * b[10]
- + ((sp_uint64)a[ 6]) * b[ 9]
- + ((sp_uint64)a[ 7]) * b[ 8]
- + ((sp_uint64)a[ 8]) * b[ 7]
- + ((sp_uint64)a[ 9]) * b[ 6]
- + ((sp_uint64)a[10]) * b[ 5]
- + ((sp_uint64)a[11]) * b[ 4]
- + ((sp_uint64)a[12]) * b[ 3]
- + ((sp_uint64)a[13]) * b[ 2];
- r[14] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[ 3]) * b[13]
- + ((sp_uint64)a[ 4]) * b[12]
- + ((sp_uint64)a[ 5]) * b[11]
- + ((sp_uint64)a[ 6]) * b[10]
- + ((sp_uint64)a[ 7]) * b[ 9]
- + ((sp_uint64)a[ 8]) * b[ 8]
- + ((sp_uint64)a[ 9]) * b[ 7]
- + ((sp_uint64)a[10]) * b[ 6]
- + ((sp_uint64)a[11]) * b[ 5]
- + ((sp_uint64)a[12]) * b[ 4]
- + ((sp_uint64)a[13]) * b[ 3];
- r[15] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = ((sp_uint64)a[ 4]) * b[13]
- + ((sp_uint64)a[ 5]) * b[12]
- + ((sp_uint64)a[ 6]) * b[11]
- + ((sp_uint64)a[ 7]) * b[10]
- + ((sp_uint64)a[ 8]) * b[ 9]
- + ((sp_uint64)a[ 9]) * b[ 8]
- + ((sp_uint64)a[10]) * b[ 7]
- + ((sp_uint64)a[11]) * b[ 6]
- + ((sp_uint64)a[12]) * b[ 5]
- + ((sp_uint64)a[13]) * b[ 4];
- r[16] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[ 5]) * b[13]
- + ((sp_uint64)a[ 6]) * b[12]
- + ((sp_uint64)a[ 7]) * b[11]
- + ((sp_uint64)a[ 8]) * b[10]
- + ((sp_uint64)a[ 9]) * b[ 9]
- + ((sp_uint64)a[10]) * b[ 8]
- + ((sp_uint64)a[11]) * b[ 7]
- + ((sp_uint64)a[12]) * b[ 6]
- + ((sp_uint64)a[13]) * b[ 5];
- r[17] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = ((sp_uint64)a[ 6]) * b[13]
- + ((sp_uint64)a[ 7]) * b[12]
- + ((sp_uint64)a[ 8]) * b[11]
- + ((sp_uint64)a[ 9]) * b[10]
- + ((sp_uint64)a[10]) * b[ 9]
- + ((sp_uint64)a[11]) * b[ 8]
- + ((sp_uint64)a[12]) * b[ 7]
- + ((sp_uint64)a[13]) * b[ 6];
- r[18] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[ 7]) * b[13]
- + ((sp_uint64)a[ 8]) * b[12]
- + ((sp_uint64)a[ 9]) * b[11]
- + ((sp_uint64)a[10]) * b[10]
- + ((sp_uint64)a[11]) * b[ 9]
- + ((sp_uint64)a[12]) * b[ 8]
- + ((sp_uint64)a[13]) * b[ 7];
- r[19] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = ((sp_uint64)a[ 8]) * b[13]
- + ((sp_uint64)a[ 9]) * b[12]
- + ((sp_uint64)a[10]) * b[11]
- + ((sp_uint64)a[11]) * b[10]
- + ((sp_uint64)a[12]) * b[ 9]
- + ((sp_uint64)a[13]) * b[ 8];
- r[20] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[ 9]) * b[13]
- + ((sp_uint64)a[10]) * b[12]
- + ((sp_uint64)a[11]) * b[11]
- + ((sp_uint64)a[12]) * b[10]
- + ((sp_uint64)a[13]) * b[ 9];
- r[21] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = ((sp_uint64)a[10]) * b[13]
- + ((sp_uint64)a[11]) * b[12]
- + ((sp_uint64)a[12]) * b[11]
- + ((sp_uint64)a[13]) * b[10];
- r[22] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[11]) * b[13]
- + ((sp_uint64)a[12]) * b[12]
- + ((sp_uint64)a[13]) * b[11];
- r[23] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = ((sp_uint64)a[12]) * b[13]
- + ((sp_uint64)a[13]) * b[12];
- r[24] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[13]) * b[13];
- r[25] = t1 & 0xfffffff; t0 += t1 >> 28;
- r[26] = t0 & 0xfffffff;
- r[27] = (sp_digit)(t0 >> 28);
- XMEMCPY(r, t, sizeof(t));
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_3072_add_14(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- r[ 0] = a[ 0] + b[ 0];
- r[ 1] = a[ 1] + b[ 1];
- r[ 2] = a[ 2] + b[ 2];
- r[ 3] = a[ 3] + b[ 3];
- r[ 4] = a[ 4] + b[ 4];
- r[ 5] = a[ 5] + b[ 5];
- r[ 6] = a[ 6] + b[ 6];
- r[ 7] = a[ 7] + b[ 7];
- r[ 8] = a[ 8] + b[ 8];
- r[ 9] = a[ 9] + b[ 9];
- r[10] = a[10] + b[10];
- r[11] = a[11] + b[11];
- r[12] = a[12] + b[12];
- r[13] = a[13] + b[13];
- return 0;
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_3072_add_28(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 24; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- r[24] = a[24] + b[24];
- r[25] = a[25] + b[25];
- r[26] = a[26] + b[26];
- r[27] = a[27] + b[27];
- return 0;
- }
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_3072_sub_28(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 24; i += 8) {
- r[i + 0] = a[i + 0] - b[i + 0];
- r[i + 1] = a[i + 1] - b[i + 1];
- r[i + 2] = a[i + 2] - b[i + 2];
- r[i + 3] = a[i + 3] - b[i + 3];
- r[i + 4] = a[i + 4] - b[i + 4];
- r[i + 5] = a[i + 5] - b[i + 5];
- r[i + 6] = a[i + 6] - b[i + 6];
- r[i + 7] = a[i + 7] - b[i + 7];
- }
- r[24] = a[24] - b[24];
- r[25] = a[25] - b[25];
- r[26] = a[26] - b[26];
- r[27] = a[27] - b[27];
- return 0;
- }
- /* Normalize the values in each word to 28 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_3072_norm_14(sp_digit* a)
- {
- a[1] += a[0] >> 28; a[0] &= 0xfffffff;
- a[2] += a[1] >> 28; a[1] &= 0xfffffff;
- a[3] += a[2] >> 28; a[2] &= 0xfffffff;
- a[4] += a[3] >> 28; a[3] &= 0xfffffff;
- a[5] += a[4] >> 28; a[4] &= 0xfffffff;
- a[6] += a[5] >> 28; a[5] &= 0xfffffff;
- a[7] += a[6] >> 28; a[6] &= 0xfffffff;
- a[8] += a[7] >> 28; a[7] &= 0xfffffff;
- a[9] += a[8] >> 28; a[8] &= 0xfffffff;
- a[10] += a[9] >> 28; a[9] &= 0xfffffff;
- a[11] += a[10] >> 28; a[10] &= 0xfffffff;
- a[12] += a[11] >> 28; a[11] &= 0xfffffff;
- a[13] += a[12] >> 28; a[12] &= 0xfffffff;
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_3072_mul_28(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_digit* z0 = r;
- sp_digit z1[28];
- sp_digit* a1 = z1;
- sp_digit b1[14];
- sp_digit* z2 = r + 28;
- (void)sp_3072_add_14(a1, a, &a[14]);
- sp_3072_norm_14(a1);
- (void)sp_3072_add_14(b1, b, &b[14]);
- sp_3072_norm_14(b1);
- sp_3072_mul_14(z2, &a[14], &b[14]);
- sp_3072_mul_14(z0, a, b);
- sp_3072_mul_14(z1, a1, b1);
- (void)sp_3072_sub_28(z1, z1, z2);
- (void)sp_3072_sub_28(z1, z1, z0);
- (void)sp_3072_add_28(r + 14, r + 14, z1);
- sp_3072_norm_56(r);
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_3072_add_56(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 56; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- return 0;
- }
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_3072_sub_56(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 56; i += 8) {
- r[i + 0] = a[i + 0] - b[i + 0];
- r[i + 1] = a[i + 1] - b[i + 1];
- r[i + 2] = a[i + 2] - b[i + 2];
- r[i + 3] = a[i + 3] - b[i + 3];
- r[i + 4] = a[i + 4] - b[i + 4];
- r[i + 5] = a[i + 5] - b[i + 5];
- r[i + 6] = a[i + 6] - b[i + 6];
- r[i + 7] = a[i + 7] - b[i + 7];
- }
- return 0;
- }
- /* Normalize the values in each word to 28 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_3072_norm_28(sp_digit* a)
- {
- int i;
- for (i = 0; i < 24; i += 8) {
- a[i+1] += a[i+0] >> 28; a[i+0] &= 0xfffffff;
- a[i+2] += a[i+1] >> 28; a[i+1] &= 0xfffffff;
- a[i+3] += a[i+2] >> 28; a[i+2] &= 0xfffffff;
- a[i+4] += a[i+3] >> 28; a[i+3] &= 0xfffffff;
- a[i+5] += a[i+4] >> 28; a[i+4] &= 0xfffffff;
- a[i+6] += a[i+5] >> 28; a[i+5] &= 0xfffffff;
- a[i+7] += a[i+6] >> 28; a[i+6] &= 0xfffffff;
- a[i+8] += a[i+7] >> 28; a[i+7] &= 0xfffffff;
- }
- a[25] += a[24] >> 28; a[24] &= 0xfffffff;
- a[26] += a[25] >> 28; a[25] &= 0xfffffff;
- a[27] += a[26] >> 28; a[26] &= 0xfffffff;
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_3072_mul_56(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_digit* z0 = r;
- sp_digit z1[56];
- sp_digit* a1 = z1;
- sp_digit b1[28];
- sp_digit* z2 = r + 56;
- (void)sp_3072_add_28(a1, a, &a[28]);
- sp_3072_norm_28(a1);
- (void)sp_3072_add_28(b1, b, &b[28]);
- sp_3072_norm_28(b1);
- sp_3072_mul_28(z2, &a[28], &b[28]);
- sp_3072_mul_28(z0, a, b);
- sp_3072_mul_28(z1, a1, b1);
- (void)sp_3072_sub_56(z1, z1, z2);
- (void)sp_3072_sub_56(z1, z1, z0);
- (void)sp_3072_add_56(r + 28, r + 28, z1);
- sp_3072_norm_112(r);
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_3072_add_112(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 112; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- return 0;
- }
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_3072_sub_112(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 112; i += 8) {
- r[i + 0] = a[i + 0] - b[i + 0];
- r[i + 1] = a[i + 1] - b[i + 1];
- r[i + 2] = a[i + 2] - b[i + 2];
- r[i + 3] = a[i + 3] - b[i + 3];
- r[i + 4] = a[i + 4] - b[i + 4];
- r[i + 5] = a[i + 5] - b[i + 5];
- r[i + 6] = a[i + 6] - b[i + 6];
- r[i + 7] = a[i + 7] - b[i + 7];
- }
- return 0;
- }
- /* Normalize the values in each word to 28 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_3072_norm_224(sp_digit* a)
- {
- int i;
- for (i = 0; i < 216; i += 8) {
- a[i+1] += a[i+0] >> 28; a[i+0] &= 0xfffffff;
- a[i+2] += a[i+1] >> 28; a[i+1] &= 0xfffffff;
- a[i+3] += a[i+2] >> 28; a[i+2] &= 0xfffffff;
- a[i+4] += a[i+3] >> 28; a[i+3] &= 0xfffffff;
- a[i+5] += a[i+4] >> 28; a[i+4] &= 0xfffffff;
- a[i+6] += a[i+5] >> 28; a[i+5] &= 0xfffffff;
- a[i+7] += a[i+6] >> 28; a[i+6] &= 0xfffffff;
- a[i+8] += a[i+7] >> 28; a[i+7] &= 0xfffffff;
- }
- a[217] += a[216] >> 28; a[216] &= 0xfffffff;
- a[218] += a[217] >> 28; a[217] &= 0xfffffff;
- a[219] += a[218] >> 28; a[218] &= 0xfffffff;
- a[220] += a[219] >> 28; a[219] &= 0xfffffff;
- a[221] += a[220] >> 28; a[220] &= 0xfffffff;
- a[222] += a[221] >> 28; a[221] &= 0xfffffff;
- a[223] += a[222] >> 28; a[222] &= 0xfffffff;
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_3072_mul_112(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_digit* z0 = r;
- sp_digit z1[112];
- sp_digit* a1 = z1;
- sp_digit b1[56];
- sp_digit* z2 = r + 112;
- (void)sp_3072_add_56(a1, a, &a[56]);
- sp_3072_norm_56(a1);
- (void)sp_3072_add_56(b1, b, &b[56]);
- sp_3072_norm_56(b1);
- sp_3072_mul_56(z2, &a[56], &b[56]);
- sp_3072_mul_56(z0, a, b);
- sp_3072_mul_56(z1, a1, b1);
- (void)sp_3072_sub_112(z1, z1, z2);
- (void)sp_3072_sub_112(z1, z1, z0);
- (void)sp_3072_add_112(r + 56, r + 56, z1);
- sp_3072_norm_224(r);
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_3072_sqr_14(sp_digit* r, const sp_digit* a)
- {
- sp_uint64 t0;
- sp_uint64 t1;
- sp_digit t[14];
- t0 = ((sp_uint64)a[ 0]) * a[ 0];
- t1 = (((sp_uint64)a[ 0]) * a[ 1]) * 2;
- t[ 0] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = (((sp_uint64)a[ 0]) * a[ 2]) * 2
- + ((sp_uint64)a[ 1]) * a[ 1];
- t[ 1] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = (((sp_uint64)a[ 0]) * a[ 3]
- + ((sp_uint64)a[ 1]) * a[ 2]) * 2;
- t[ 2] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = (((sp_uint64)a[ 0]) * a[ 4]
- + ((sp_uint64)a[ 1]) * a[ 3]) * 2
- + ((sp_uint64)a[ 2]) * a[ 2];
- t[ 3] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = (((sp_uint64)a[ 0]) * a[ 5]
- + ((sp_uint64)a[ 1]) * a[ 4]
- + ((sp_uint64)a[ 2]) * a[ 3]) * 2;
- t[ 4] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = (((sp_uint64)a[ 0]) * a[ 6]
- + ((sp_uint64)a[ 1]) * a[ 5]
- + ((sp_uint64)a[ 2]) * a[ 4]) * 2
- + ((sp_uint64)a[ 3]) * a[ 3];
- t[ 5] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = (((sp_uint64)a[ 0]) * a[ 7]
- + ((sp_uint64)a[ 1]) * a[ 6]
- + ((sp_uint64)a[ 2]) * a[ 5]
- + ((sp_uint64)a[ 3]) * a[ 4]) * 2;
- t[ 6] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = (((sp_uint64)a[ 0]) * a[ 8]
- + ((sp_uint64)a[ 1]) * a[ 7]
- + ((sp_uint64)a[ 2]) * a[ 6]
- + ((sp_uint64)a[ 3]) * a[ 5]) * 2
- + ((sp_uint64)a[ 4]) * a[ 4];
- t[ 7] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = (((sp_uint64)a[ 0]) * a[ 9]
- + ((sp_uint64)a[ 1]) * a[ 8]
- + ((sp_uint64)a[ 2]) * a[ 7]
- + ((sp_uint64)a[ 3]) * a[ 6]
- + ((sp_uint64)a[ 4]) * a[ 5]) * 2;
- t[ 8] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = (((sp_uint64)a[ 0]) * a[10]
- + ((sp_uint64)a[ 1]) * a[ 9]
- + ((sp_uint64)a[ 2]) * a[ 8]
- + ((sp_uint64)a[ 3]) * a[ 7]
- + ((sp_uint64)a[ 4]) * a[ 6]) * 2
- + ((sp_uint64)a[ 5]) * a[ 5];
- t[ 9] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = (((sp_uint64)a[ 0]) * a[11]
- + ((sp_uint64)a[ 1]) * a[10]
- + ((sp_uint64)a[ 2]) * a[ 9]
- + ((sp_uint64)a[ 3]) * a[ 8]
- + ((sp_uint64)a[ 4]) * a[ 7]
- + ((sp_uint64)a[ 5]) * a[ 6]) * 2;
- t[10] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = (((sp_uint64)a[ 0]) * a[12]
- + ((sp_uint64)a[ 1]) * a[11]
- + ((sp_uint64)a[ 2]) * a[10]
- + ((sp_uint64)a[ 3]) * a[ 9]
- + ((sp_uint64)a[ 4]) * a[ 8]
- + ((sp_uint64)a[ 5]) * a[ 7]) * 2
- + ((sp_uint64)a[ 6]) * a[ 6];
- t[11] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = (((sp_uint64)a[ 0]) * a[13]
- + ((sp_uint64)a[ 1]) * a[12]
- + ((sp_uint64)a[ 2]) * a[11]
- + ((sp_uint64)a[ 3]) * a[10]
- + ((sp_uint64)a[ 4]) * a[ 9]
- + ((sp_uint64)a[ 5]) * a[ 8]
- + ((sp_uint64)a[ 6]) * a[ 7]) * 2;
- t[12] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = (((sp_uint64)a[ 1]) * a[13]
- + ((sp_uint64)a[ 2]) * a[12]
- + ((sp_uint64)a[ 3]) * a[11]
- + ((sp_uint64)a[ 4]) * a[10]
- + ((sp_uint64)a[ 5]) * a[ 9]
- + ((sp_uint64)a[ 6]) * a[ 8]) * 2
- + ((sp_uint64)a[ 7]) * a[ 7];
- t[13] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = (((sp_uint64)a[ 2]) * a[13]
- + ((sp_uint64)a[ 3]) * a[12]
- + ((sp_uint64)a[ 4]) * a[11]
- + ((sp_uint64)a[ 5]) * a[10]
- + ((sp_uint64)a[ 6]) * a[ 9]
- + ((sp_uint64)a[ 7]) * a[ 8]) * 2;
- r[14] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = (((sp_uint64)a[ 3]) * a[13]
- + ((sp_uint64)a[ 4]) * a[12]
- + ((sp_uint64)a[ 5]) * a[11]
- + ((sp_uint64)a[ 6]) * a[10]
- + ((sp_uint64)a[ 7]) * a[ 9]) * 2
- + ((sp_uint64)a[ 8]) * a[ 8];
- r[15] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = (((sp_uint64)a[ 4]) * a[13]
- + ((sp_uint64)a[ 5]) * a[12]
- + ((sp_uint64)a[ 6]) * a[11]
- + ((sp_uint64)a[ 7]) * a[10]
- + ((sp_uint64)a[ 8]) * a[ 9]) * 2;
- r[16] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = (((sp_uint64)a[ 5]) * a[13]
- + ((sp_uint64)a[ 6]) * a[12]
- + ((sp_uint64)a[ 7]) * a[11]
- + ((sp_uint64)a[ 8]) * a[10]) * 2
- + ((sp_uint64)a[ 9]) * a[ 9];
- r[17] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = (((sp_uint64)a[ 6]) * a[13]
- + ((sp_uint64)a[ 7]) * a[12]
- + ((sp_uint64)a[ 8]) * a[11]
- + ((sp_uint64)a[ 9]) * a[10]) * 2;
- r[18] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = (((sp_uint64)a[ 7]) * a[13]
- + ((sp_uint64)a[ 8]) * a[12]
- + ((sp_uint64)a[ 9]) * a[11]) * 2
- + ((sp_uint64)a[10]) * a[10];
- r[19] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = (((sp_uint64)a[ 8]) * a[13]
- + ((sp_uint64)a[ 9]) * a[12]
- + ((sp_uint64)a[10]) * a[11]) * 2;
- r[20] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = (((sp_uint64)a[ 9]) * a[13]
- + ((sp_uint64)a[10]) * a[12]) * 2
- + ((sp_uint64)a[11]) * a[11];
- r[21] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = (((sp_uint64)a[10]) * a[13]
- + ((sp_uint64)a[11]) * a[12]) * 2;
- r[22] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = (((sp_uint64)a[11]) * a[13]) * 2
- + ((sp_uint64)a[12]) * a[12];
- r[23] = t1 & 0xfffffff; t0 += t1 >> 28;
- t1 = (((sp_uint64)a[12]) * a[13]) * 2;
- r[24] = t0 & 0xfffffff; t1 += t0 >> 28;
- t0 = ((sp_uint64)a[13]) * a[13];
- r[25] = t1 & 0xfffffff; t0 += t1 >> 28;
- r[26] = t0 & 0xfffffff;
- r[27] = (sp_digit)(t0 >> 28);
- XMEMCPY(r, t, sizeof(t));
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_3072_sqr_28(sp_digit* r, const sp_digit* a)
- {
- sp_digit* z0 = r;
- sp_digit z1[28];
- sp_digit* a1 = z1;
- sp_digit* z2 = r + 28;
- (void)sp_3072_add_14(a1, a, &a[14]);
- sp_3072_norm_14(a1);
- sp_3072_sqr_14(z2, &a[14]);
- sp_3072_sqr_14(z0, a);
- sp_3072_sqr_14(z1, a1);
- (void)sp_3072_sub_28(z1, z1, z2);
- (void)sp_3072_sub_28(z1, z1, z0);
- (void)sp_3072_add_28(r + 14, r + 14, z1);
- sp_3072_norm_56(r);
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_3072_sqr_56(sp_digit* r, const sp_digit* a)
- {
- sp_digit* z0 = r;
- sp_digit z1[56];
- sp_digit* a1 = z1;
- sp_digit* z2 = r + 56;
- (void)sp_3072_add_28(a1, a, &a[28]);
- sp_3072_norm_28(a1);
- sp_3072_sqr_28(z2, &a[28]);
- sp_3072_sqr_28(z0, a);
- sp_3072_sqr_28(z1, a1);
- (void)sp_3072_sub_56(z1, z1, z2);
- (void)sp_3072_sub_56(z1, z1, z0);
- (void)sp_3072_add_56(r + 28, r + 28, z1);
- sp_3072_norm_112(r);
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_3072_sqr_112(sp_digit* r, const sp_digit* a)
- {
- sp_digit* z0 = r;
- sp_digit z1[112];
- sp_digit* a1 = z1;
- sp_digit* z2 = r + 112;
- (void)sp_3072_add_56(a1, a, &a[56]);
- sp_3072_norm_56(a1);
- sp_3072_sqr_56(z2, &a[56]);
- sp_3072_sqr_56(z0, a);
- sp_3072_sqr_56(z1, a1);
- (void)sp_3072_sub_112(z1, z1, z2);
- (void)sp_3072_sub_112(z1, z1, z0);
- (void)sp_3072_add_112(r + 56, r + 56, z1);
- sp_3072_norm_224(r);
- }
- #endif /* !WOLFSSL_SP_SMALL */
- /* Calculate the bottom digit of -1/a mod 2^n.
- *
- * a A single precision number.
- * rho Bottom word of inverse.
- */
- static void sp_3072_mont_setup(const sp_digit* a, sp_digit* rho)
- {
- sp_digit x;
- sp_digit b;
- b = a[0];
- x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
- x *= 2 - b * x; /* here x*a==1 mod 2**8 */
- x *= 2 - b * x; /* here x*a==1 mod 2**16 */
- x *= 2 - b * x; /* here x*a==1 mod 2**32 */
- x &= 0xfffffff;
- /* rho = -1/m mod b */
- *rho = ((sp_digit)1 << 28) - x;
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_3072_mul_d_112(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- sp_int64 tb = b;
- sp_int64 t = 0;
- sp_digit t2;
- sp_int64 p[4];
- int i;
- for (i = 0; i < 112; i += 4) {
- p[0] = tb * a[i + 0];
- p[1] = tb * a[i + 1];
- p[2] = tb * a[i + 2];
- p[3] = tb * a[i + 3];
- t += p[0];
- t2 = (sp_digit)(t & 0xfffffff);
- t >>= 28;
- r[i + 0] = (sp_digit)t2;
- t += p[1];
- t2 = (sp_digit)(t & 0xfffffff);
- t >>= 28;
- r[i + 1] = (sp_digit)t2;
- t += p[2];
- t2 = (sp_digit)(t & 0xfffffff);
- t >>= 28;
- r[i + 2] = (sp_digit)t2;
- t += p[3];
- t2 = (sp_digit)(t & 0xfffffff);
- t >>= 28;
- r[i + 3] = (sp_digit)t2;
- }
- r[112] = (sp_digit)(t & 0xfffffff);
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
- /* r = 2^n mod m where n is the number of bits to reduce by.
- * Given m must be 3072 bits, just need to subtract.
- *
- * r A single precision number.
- * m A single precision number.
- */
- static void sp_3072_mont_norm_56(sp_digit* r, const sp_digit* m)
- {
- /* Set r = 2^n - 1. */
- int i;
- for (i = 0; i < 48; i += 8) {
- r[i + 0] = 0xfffffff;
- r[i + 1] = 0xfffffff;
- r[i + 2] = 0xfffffff;
- r[i + 3] = 0xfffffff;
- r[i + 4] = 0xfffffff;
- r[i + 5] = 0xfffffff;
- r[i + 6] = 0xfffffff;
- r[i + 7] = 0xfffffff;
- }
- r[48] = 0xfffffff;
- r[49] = 0xfffffff;
- r[50] = 0xfffffff;
- r[51] = 0xfffffff;
- r[52] = 0xfffffff;
- r[53] = 0xfffffff;
- r[54] = 0xffffffL;
- r[55] = 0;
- /* r = (2^n - 1) mod n */
- (void)sp_3072_sub_56(r, r, m);
- /* Add one so r = 2^n mod m */
- r[0] += 1;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_3072_cmp_56(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- int i;
- for (i = 48; i >= 0; i -= 8) {
- r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 27);
- }
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_3072_cond_sub_56(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 56; i += 8) {
- r[i + 0] = a[i + 0] - (b[i + 0] & m);
- r[i + 1] = a[i + 1] - (b[i + 1] & m);
- r[i + 2] = a[i + 2] - (b[i + 2] & m);
- r[i + 3] = a[i + 3] - (b[i + 3] & m);
- r[i + 4] = a[i + 4] - (b[i + 4] & m);
- r[i + 5] = a[i + 5] - (b[i + 5] & m);
- r[i + 6] = a[i + 6] - (b[i + 6] & m);
- r[i + 7] = a[i + 7] - (b[i + 7] & m);
- }
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_3072_mul_add_56(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifndef WOLFSSL_SP_LARGE_CODE
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 56; i++) {
- t += r[i];
- t += tb * a[i];
- r[i] = ((sp_digit)t) & 0xfffffff;
- t >>= 28;
- }
- r[56] += (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t[8];
- int i;
- t[0] = 0;
- for (i = 0; i < 48; i += 8) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- t[4] = (tb * a[i+4]) + r[i+4];
- t[5] = (tb * a[i+5]) + r[i+5];
- t[6] = (tb * a[i+6]) + r[i+6];
- t[7] = (tb * a[i+7]) + r[i+7];
- r[i+0] = t[0] & 0xfffffff;
- t[1] += t[0] >> 28;
- r[i+1] = t[1] & 0xfffffff;
- t[2] += t[1] >> 28;
- r[i+2] = t[2] & 0xfffffff;
- t[3] += t[2] >> 28;
- r[i+3] = t[3] & 0xfffffff;
- t[4] += t[3] >> 28;
- r[i+4] = t[4] & 0xfffffff;
- t[5] += t[4] >> 28;
- r[i+5] = t[5] & 0xfffffff;
- t[6] += t[5] >> 28;
- r[i+6] = t[6] & 0xfffffff;
- t[7] += t[6] >> 28;
- r[i+7] = t[7] & 0xfffffff;
- t[0] = t[7] >> 28;
- }
- t[0] += (tb * a[48]) + r[48];
- t[1] = (tb * a[49]) + r[49];
- t[2] = (tb * a[50]) + r[50];
- t[3] = (tb * a[51]) + r[51];
- t[4] = (tb * a[52]) + r[52];
- t[5] = (tb * a[53]) + r[53];
- t[6] = (tb * a[54]) + r[54];
- t[7] = (tb * a[55]) + r[55];
- r[48] = t[0] & 0xfffffff;
- t[1] += t[0] >> 28;
- r[49] = t[1] & 0xfffffff;
- t[2] += t[1] >> 28;
- r[50] = t[2] & 0xfffffff;
- t[3] += t[2] >> 28;
- r[51] = t[3] & 0xfffffff;
- t[4] += t[3] >> 28;
- r[52] = t[4] & 0xfffffff;
- t[5] += t[4] >> 28;
- r[53] = t[5] & 0xfffffff;
- t[6] += t[5] >> 28;
- r[54] = t[6] & 0xfffffff;
- t[7] += t[6] >> 28;
- r[55] = t[7] & 0xfffffff;
- r[56] += (sp_digit)(t[7] >> 28);
- #endif /* !WOLFSSL_SP_LARGE_CODE */
- }
- /* Shift the result in the high 1536 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_3072_mont_shift_56(sp_digit* r, const sp_digit* a)
- {
- int i;
- sp_int64 n = a[54] >> 24;
- n += ((sp_int64)a[55]) << 4;
- for (i = 0; i < 48; i += 8) {
- r[i + 0] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 56]) << 4;
- r[i + 1] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 57]) << 4;
- r[i + 2] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 58]) << 4;
- r[i + 3] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 59]) << 4;
- r[i + 4] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 60]) << 4;
- r[i + 5] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 61]) << 4;
- r[i + 6] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 62]) << 4;
- r[i + 7] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 63]) << 4;
- }
- r[48] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[104]) << 4;
- r[49] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[105]) << 4;
- r[50] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[106]) << 4;
- r[51] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[107]) << 4;
- r[52] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[108]) << 4;
- r[53] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[109]) << 4;
- r[54] = (sp_digit)n;
- XMEMSET(&r[55], 0, sizeof(*r) * 55U);
- }
- /* Reduce the number back to 3072 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_3072_mont_reduce_56(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_3072_norm_56(a + 55);
- for (i=0; i<54; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffff;
- sp_3072_mul_add_56(a+i, m, mu);
- a[i+1] += a[i] >> 28;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xffffffL;
- sp_3072_mul_add_56(a+i, m, mu);
- a[i+1] += a[i] >> 28;
- a[i] &= 0xfffffff;
- sp_3072_mont_shift_56(a, a);
- over = a[54] - m[54];
- sp_3072_cond_sub_56(a, a, m, ~((over - 1) >> 31));
- sp_3072_norm_56(a);
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_3072_mont_mul_56(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_3072_mul_56(r, a, b);
- sp_3072_mont_reduce_56(r, m, mp);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_3072_mont_sqr_56(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_3072_sqr_56(r, a);
- sp_3072_mont_reduce_56(r, m, mp);
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_3072_mul_d_56(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- sp_int64 tb = b;
- sp_int64 t = 0;
- sp_digit t2;
- sp_int64 p[4];
- int i;
- for (i = 0; i < 56; i += 4) {
- p[0] = tb * a[i + 0];
- p[1] = tb * a[i + 1];
- p[2] = tb * a[i + 2];
- p[3] = tb * a[i + 3];
- t += p[0];
- t2 = (sp_digit)(t & 0xfffffff);
- t >>= 28;
- r[i + 0] = (sp_digit)t2;
- t += p[1];
- t2 = (sp_digit)(t & 0xfffffff);
- t >>= 28;
- r[i + 1] = (sp_digit)t2;
- t += p[2];
- t2 = (sp_digit)(t & 0xfffffff);
- t >>= 28;
- r[i + 2] = (sp_digit)t2;
- t += p[3];
- t2 = (sp_digit)(t & 0xfffffff);
- t >>= 28;
- r[i + 3] = (sp_digit)t2;
- }
- r[56] = (sp_digit)(t & 0xfffffff);
- }
- #ifndef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_3072_cond_add_56(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 56; i += 8) {
- r[i + 0] = a[i + 0] + (b[i + 0] & m);
- r[i + 1] = a[i + 1] + (b[i + 1] & m);
- r[i + 2] = a[i + 2] + (b[i + 2] & m);
- r[i + 3] = a[i + 3] + (b[i + 3] & m);
- r[i + 4] = a[i + 4] + (b[i + 4] & m);
- r[i + 5] = a[i + 5] + (b[i + 5] & m);
- r[i + 6] = a[i + 6] + (b[i + 6] & m);
- r[i + 7] = a[i + 7] + (b[i + 7] & m);
- }
- }
- #endif /* !WOLFSSL_SP_SMALL */
- SP_NOINLINE static void sp_3072_rshift_56(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- for (i=0; i<48; i += 8) {
- r[i+0] = (a[i+0] >> n) | ((a[i+1] << (28 - n)) & 0xfffffff);
- r[i+1] = (a[i+1] >> n) | ((a[i+2] << (28 - n)) & 0xfffffff);
- r[i+2] = (a[i+2] >> n) | ((a[i+3] << (28 - n)) & 0xfffffff);
- r[i+3] = (a[i+3] >> n) | ((a[i+4] << (28 - n)) & 0xfffffff);
- r[i+4] = (a[i+4] >> n) | ((a[i+5] << (28 - n)) & 0xfffffff);
- r[i+5] = (a[i+5] >> n) | ((a[i+6] << (28 - n)) & 0xfffffff);
- r[i+6] = (a[i+6] >> n) | ((a[i+7] << (28 - n)) & 0xfffffff);
- r[i+7] = (a[i+7] >> n) | ((a[i+8] << (28 - n)) & 0xfffffff);
- }
- r[48] = (a[48] >> n) | ((a[49] << (28 - n)) & 0xfffffff);
- r[49] = (a[49] >> n) | ((a[50] << (28 - n)) & 0xfffffff);
- r[50] = (a[50] >> n) | ((a[51] << (28 - n)) & 0xfffffff);
- r[51] = (a[51] >> n) | ((a[52] << (28 - n)) & 0xfffffff);
- r[52] = (a[52] >> n) | ((a[53] << (28 - n)) & 0xfffffff);
- r[53] = (a[53] >> n) | ((a[54] << (28 - n)) & 0xfffffff);
- r[54] = (a[54] >> n) | ((a[55] << (28 - n)) & 0xfffffff);
- r[55] = a[55] >> n;
- }
- static WC_INLINE sp_digit sp_3072_div_word_56(sp_digit d1, sp_digit d0,
- sp_digit div)
- {
- #ifdef SP_USE_DIVTI3
- sp_int64 d = ((sp_int64)d1 << 28) + d0;
- return d / div;
- #elif defined(__x86_64__) || defined(__i386__)
- sp_int64 d = ((sp_int64)d1 << 28) + d0;
- sp_uint32 lo = (sp_uint32)d;
- sp_digit hi = (sp_digit)(d >> 32);
- __asm__ __volatile__ (
- "idiv %2"
- : "+a" (lo)
- : "d" (hi), "r" (div)
- : "cc"
- );
- return (sp_digit)lo;
- #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
- sp_int64 d = ((sp_int64)d1 << 28) + d0;
- sp_digit dv = (div >> 1) + 1;
- sp_digit t1 = (sp_digit)(d >> 28);
- sp_digit t0 = (sp_digit)(d & 0xfffffff);
- sp_digit t2;
- sp_digit sign;
- sp_digit r;
- int i;
- sp_int64 m;
- r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- t1 -= dv & (0 - r);
- for (i = 26; i >= 1; i--) {
- t1 += t1 + (((sp_uint32)t0 >> 27) & 1);
- t0 <<= 1;
- t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- r += r + t2;
- t1 -= dv & (0 - t2);
- t1 += t2;
- }
- r += r + 1;
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 28);
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 56) - (sp_digit)(d >> 56);
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- return r;
- #else
- sp_int64 d = ((sp_int64)d1 << 28) + d0;
- sp_digit r = 0;
- sp_digit t;
- sp_digit dv = (div >> 13) + 1;
- t = (sp_digit)(d >> 26);
- t = (t / dv) << 13;
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)(d >> 11);
- t = t / (dv << 2);
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)d;
- t = t / div;
- r += t;
- d -= (sp_int64)t * div;
- return r;
- #endif
- }
- static WC_INLINE sp_digit sp_3072_word_div_word_56(sp_digit d, sp_digit div)
- {
- #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
- defined(SP_DIV_WORD_USE_DIV)
- return d / div;
- #else
- return (sp_digit)((sp_uint32)(div - d) >> 31);
- #endif
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Full implementation.
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_3072_div_56(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- #ifndef WOLFSSL_SP_DIV_32
- #endif
- sp_digit dv;
- sp_digit r1;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 56 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 56 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 112 + 1;
- sd = t2 + 56 + 1;
- sp_3072_mul_d_56(sd, d, (sp_digit)1 << 4);
- sp_3072_mul_d_112(t1, a, (sp_digit)1 << 4);
- dv = sd[54];
- t1[55 + 55] += t1[55 + 55 - 1] >> 28;
- t1[55 + 55 - 1] &= 0xfffffff;
- for (i=55; i>=0; i--) {
- r1 = sp_3072_div_word_56(t1[55 + i], t1[55 + i - 1], dv);
- sp_3072_mul_d_56(t2, sd, r1);
- (void)sp_3072_sub_56(&t1[i], &t1[i], t2);
- sp_3072_norm_55(&t1[i]);
- t1[55 + i] += t1[55 + i - 1] >> 28;
- t1[55 + i - 1] &= 0xfffffff;
- r1 = sp_3072_div_word_56(-t1[55 + i], -t1[55 + i - 1], dv);
- r1 -= t1[55 + i];
- sp_3072_mul_d_56(t2, sd, r1);
- (void)sp_3072_add_56(&t1[i], &t1[i], t2);
- t1[55 + i] += t1[55 + i - 1] >> 28;
- t1[55 + i - 1] &= 0xfffffff;
- }
- t1[55 - 1] += t1[55 - 2] >> 28;
- t1[55 - 2] &= 0xfffffff;
- r1 = sp_3072_word_div_word_56(t1[55 - 1], dv);
- sp_3072_mul_d_56(t2, sd, r1);
- sp_3072_sub_56(t1, t1, t2);
- XMEMCPY(r, t1, sizeof(*r) * 112U);
- for (i=0; i<54; i++) {
- r[i+1] += r[i] >> 28;
- r[i] &= 0xfffffff;
- }
- sp_3072_cond_add_56(r, r, sd, r[54] >> 31);
- sp_3072_norm_55(r);
- sp_3072_rshift_56(r, r, 4);
- r[55] = 0;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_3072_mod_56(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_3072_div_56(a, m, NULL, r);
- }
- /* Modular exponentiate a to the e mod m. (r = a^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * a A single precision number being exponentiated.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even or exponent is 0.
- */
- static int sp_3072_mod_exp_56(sp_digit* r, const sp_digit* a, const sp_digit* e,
- int bits, const sp_digit* m, int reduceA)
- {
- #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 112];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 56 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 56 * 2);
- XMEMSET(t[i], 0, sizeof(sp_digit) * 56U * 2U);
- }
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_56(norm, m);
- if (reduceA != 0) {
- err = sp_3072_mod_56(t[1], a, m);
- }
- else {
- XMEMCPY(t[1], a, sizeof(sp_digit) * 56U);
- }
- }
- if (err == MP_OKAY) {
- sp_3072_mul_56(t[1], t[1], norm);
- err = sp_3072_mod_56(t[1], t[1], m);
- }
- if (err == MP_OKAY) {
- i = bits / 28;
- c = bits % 28;
- n = e[i--] << (28 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 28;
- }
- y = (int)((n >> 27) & 1);
- n <<= 1;
- sp_3072_mont_mul_56(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 56 * 2);
- sp_3072_mont_sqr_56(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 56 * 2);
- }
- sp_3072_mont_reduce_56(t[0], m, mp);
- n = sp_3072_cmp_56(t[0], m);
- sp_3072_cond_sub_56(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 56 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #elif !defined(WC_NO_CACHE_RESISTANT)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 112];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 56 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 56 * 2);
- }
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_56(norm, m);
- if (reduceA != 0) {
- err = sp_3072_mod_56(t[1], a, m);
- if (err == MP_OKAY) {
- sp_3072_mul_56(t[1], t[1], norm);
- err = sp_3072_mod_56(t[1], t[1], m);
- }
- }
- else {
- sp_3072_mul_56(t[1], a, norm);
- err = sp_3072_mod_56(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- i = bits / 28;
- c = bits % 28;
- n = e[i--] << (28 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 28;
- }
- y = (int)((n >> 27) & 1);
- n <<= 1;
- sp_3072_mont_mul_56(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 56 * 2);
- sp_3072_mont_sqr_56(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 56 * 2);
- }
- sp_3072_mont_reduce_56(t[0], m, mp);
- n = sp_3072_cmp_56(t[0], m);
- sp_3072_cond_sub_56(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 56 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[(32 * 112) + 112];
- #endif
- sp_digit* t[32];
- sp_digit* rt = NULL;
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((32 * 112) + 112), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<32; i++)
- t[i] = td + i * 112;
- rt = td + 3584;
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_56(norm, m);
- if (reduceA != 0) {
- err = sp_3072_mod_56(t[1], a, m);
- if (err == MP_OKAY) {
- sp_3072_mul_56(t[1], t[1], norm);
- err = sp_3072_mod_56(t[1], t[1], m);
- }
- }
- else {
- sp_3072_mul_56(t[1], a, norm);
- err = sp_3072_mod_56(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- sp_3072_mont_sqr_56(t[ 2], t[ 1], m, mp);
- sp_3072_mont_mul_56(t[ 3], t[ 2], t[ 1], m, mp);
- sp_3072_mont_sqr_56(t[ 4], t[ 2], m, mp);
- sp_3072_mont_mul_56(t[ 5], t[ 3], t[ 2], m, mp);
- sp_3072_mont_sqr_56(t[ 6], t[ 3], m, mp);
- sp_3072_mont_mul_56(t[ 7], t[ 4], t[ 3], m, mp);
- sp_3072_mont_sqr_56(t[ 8], t[ 4], m, mp);
- sp_3072_mont_mul_56(t[ 9], t[ 5], t[ 4], m, mp);
- sp_3072_mont_sqr_56(t[10], t[ 5], m, mp);
- sp_3072_mont_mul_56(t[11], t[ 6], t[ 5], m, mp);
- sp_3072_mont_sqr_56(t[12], t[ 6], m, mp);
- sp_3072_mont_mul_56(t[13], t[ 7], t[ 6], m, mp);
- sp_3072_mont_sqr_56(t[14], t[ 7], m, mp);
- sp_3072_mont_mul_56(t[15], t[ 8], t[ 7], m, mp);
- sp_3072_mont_sqr_56(t[16], t[ 8], m, mp);
- sp_3072_mont_mul_56(t[17], t[ 9], t[ 8], m, mp);
- sp_3072_mont_sqr_56(t[18], t[ 9], m, mp);
- sp_3072_mont_mul_56(t[19], t[10], t[ 9], m, mp);
- sp_3072_mont_sqr_56(t[20], t[10], m, mp);
- sp_3072_mont_mul_56(t[21], t[11], t[10], m, mp);
- sp_3072_mont_sqr_56(t[22], t[11], m, mp);
- sp_3072_mont_mul_56(t[23], t[12], t[11], m, mp);
- sp_3072_mont_sqr_56(t[24], t[12], m, mp);
- sp_3072_mont_mul_56(t[25], t[13], t[12], m, mp);
- sp_3072_mont_sqr_56(t[26], t[13], m, mp);
- sp_3072_mont_mul_56(t[27], t[14], t[13], m, mp);
- sp_3072_mont_sqr_56(t[28], t[14], m, mp);
- sp_3072_mont_mul_56(t[29], t[15], t[14], m, mp);
- sp_3072_mont_sqr_56(t[30], t[15], m, mp);
- sp_3072_mont_mul_56(t[31], t[16], t[15], m, mp);
- bits = ((bits + 4) / 5) * 5;
- i = ((bits + 27) / 28) - 1;
- c = bits % 28;
- if (c == 0) {
- c = 28;
- }
- if (i < 56) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 5) {
- n |= e[i--] << (4 - c);
- c += 28;
- }
- y = (int)((n >> 27) & 0x1f);
- n <<= 5;
- c -= 5;
- XMEMCPY(rt, t[y], sizeof(sp_digit) * 112);
- while ((i >= 0) || (c >= 5)) {
- if (c >= 5) {
- y = (byte)((n >> 27) & 0x1f);
- n <<= 5;
- c -= 5;
- }
- else if (c == 0) {
- n = e[i--] << 4;
- y = (byte)((n >> 27) & 0x1f);
- n <<= 5;
- c = 23;
- }
- else {
- y = (byte)((n >> 27) & 0x1f);
- n = e[i--] << 4;
- c = 5 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 28 - c;
- }
- sp_3072_mont_sqr_56(rt, rt, m, mp);
- sp_3072_mont_sqr_56(rt, rt, m, mp);
- sp_3072_mont_sqr_56(rt, rt, m, mp);
- sp_3072_mont_sqr_56(rt, rt, m, mp);
- sp_3072_mont_sqr_56(rt, rt, m, mp);
- sp_3072_mont_mul_56(rt, rt, t[y], m, mp);
- }
- sp_3072_mont_reduce_56(rt, m, mp);
- n = sp_3072_cmp_56(rt, m);
- sp_3072_cond_sub_56(rt, rt, m, ~(n >> 31));
- XMEMCPY(r, rt, sizeof(sp_digit) * 112);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #endif
- }
- #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) | WOLFSSL_HAVE_SP_DH */
- /* r = 2^n mod m where n is the number of bits to reduce by.
- * Given m must be 3072 bits, just need to subtract.
- *
- * r A single precision number.
- * m A single precision number.
- */
- static void sp_3072_mont_norm_112(sp_digit* r, const sp_digit* m)
- {
- /* Set r = 2^n - 1. */
- int i;
- for (i = 0; i < 104; i += 8) {
- r[i + 0] = 0xfffffff;
- r[i + 1] = 0xfffffff;
- r[i + 2] = 0xfffffff;
- r[i + 3] = 0xfffffff;
- r[i + 4] = 0xfffffff;
- r[i + 5] = 0xfffffff;
- r[i + 6] = 0xfffffff;
- r[i + 7] = 0xfffffff;
- }
- r[104] = 0xfffffff;
- r[105] = 0xfffffff;
- r[106] = 0xfffffff;
- r[107] = 0xfffffff;
- r[108] = 0xfffffff;
- r[109] = 0xfffffL;
- r[110] = 0;
- r[111] = 0;
- /* r = (2^n - 1) mod n */
- (void)sp_3072_sub_112(r, r, m);
- /* Add one so r = 2^n mod m */
- r[0] += 1;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_3072_cmp_112(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- int i;
- for (i = 104; i >= 0; i -= 8) {
- r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 27);
- r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 27);
- }
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_3072_cond_sub_112(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 112; i += 8) {
- r[i + 0] = a[i + 0] - (b[i + 0] & m);
- r[i + 1] = a[i + 1] - (b[i + 1] & m);
- r[i + 2] = a[i + 2] - (b[i + 2] & m);
- r[i + 3] = a[i + 3] - (b[i + 3] & m);
- r[i + 4] = a[i + 4] - (b[i + 4] & m);
- r[i + 5] = a[i + 5] - (b[i + 5] & m);
- r[i + 6] = a[i + 6] - (b[i + 6] & m);
- r[i + 7] = a[i + 7] - (b[i + 7] & m);
- }
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_3072_mul_add_112(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifndef WOLFSSL_SP_LARGE_CODE
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 112; i++) {
- t += r[i];
- t += tb * a[i];
- r[i] = ((sp_digit)t) & 0xfffffff;
- t >>= 28;
- }
- r[112] += (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t[8];
- int i;
- t[0] = 0;
- for (i = 0; i < 104; i += 8) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- t[4] = (tb * a[i+4]) + r[i+4];
- t[5] = (tb * a[i+5]) + r[i+5];
- t[6] = (tb * a[i+6]) + r[i+6];
- t[7] = (tb * a[i+7]) + r[i+7];
- r[i+0] = t[0] & 0xfffffff;
- t[1] += t[0] >> 28;
- r[i+1] = t[1] & 0xfffffff;
- t[2] += t[1] >> 28;
- r[i+2] = t[2] & 0xfffffff;
- t[3] += t[2] >> 28;
- r[i+3] = t[3] & 0xfffffff;
- t[4] += t[3] >> 28;
- r[i+4] = t[4] & 0xfffffff;
- t[5] += t[4] >> 28;
- r[i+5] = t[5] & 0xfffffff;
- t[6] += t[5] >> 28;
- r[i+6] = t[6] & 0xfffffff;
- t[7] += t[6] >> 28;
- r[i+7] = t[7] & 0xfffffff;
- t[0] = t[7] >> 28;
- }
- t[0] += (tb * a[104]) + r[104];
- t[1] = (tb * a[105]) + r[105];
- t[2] = (tb * a[106]) + r[106];
- t[3] = (tb * a[107]) + r[107];
- t[4] = (tb * a[108]) + r[108];
- t[5] = (tb * a[109]) + r[109];
- t[6] = (tb * a[110]) + r[110];
- t[7] = (tb * a[111]) + r[111];
- r[104] = t[0] & 0xfffffff;
- t[1] += t[0] >> 28;
- r[105] = t[1] & 0xfffffff;
- t[2] += t[1] >> 28;
- r[106] = t[2] & 0xfffffff;
- t[3] += t[2] >> 28;
- r[107] = t[3] & 0xfffffff;
- t[4] += t[3] >> 28;
- r[108] = t[4] & 0xfffffff;
- t[5] += t[4] >> 28;
- r[109] = t[5] & 0xfffffff;
- t[6] += t[5] >> 28;
- r[110] = t[6] & 0xfffffff;
- t[7] += t[6] >> 28;
- r[111] = t[7] & 0xfffffff;
- r[112] += (sp_digit)(t[7] >> 28);
- #endif /* !WOLFSSL_SP_LARGE_CODE */
- }
- /* Shift the result in the high 3072 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_3072_mont_shift_112(sp_digit* r, const sp_digit* a)
- {
- int i;
- sp_int64 n = a[109] >> 20;
- n += ((sp_int64)a[110]) << 8;
- for (i = 0; i < 104; i += 8) {
- r[i + 0] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 111]) << 8;
- r[i + 1] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 112]) << 8;
- r[i + 2] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 113]) << 8;
- r[i + 3] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 114]) << 8;
- r[i + 4] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 115]) << 8;
- r[i + 5] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 116]) << 8;
- r[i + 6] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 117]) << 8;
- r[i + 7] = n & 0xfffffff;
- n >>= 28; n += ((sp_int64)a[i + 118]) << 8;
- }
- r[104] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[215]) << 8;
- r[105] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[216]) << 8;
- r[106] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[217]) << 8;
- r[107] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[218]) << 8;
- r[108] = n & 0xfffffff; n >>= 28; n += ((sp_int64)a[219]) << 8;
- r[109] = (sp_digit)n;
- XMEMSET(&r[110], 0, sizeof(*r) * 110U);
- }
- /* Reduce the number back to 3072 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_3072_mont_reduce_112(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_3072_norm_112(a + 110);
- #ifdef WOLFSSL_SP_DH
- if (mp != 1) {
- for (i=0; i<109; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffff;
- sp_3072_mul_add_112(a+i, m, mu);
- a[i+1] += a[i] >> 28;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffL;
- sp_3072_mul_add_112(a+i, m, mu);
- a[i+1] += a[i] >> 28;
- a[i] &= 0xfffffff;
- }
- else {
- for (i=0; i<109; i++) {
- mu = a[i] & 0xfffffff;
- sp_3072_mul_add_112(a+i, m, mu);
- a[i+1] += a[i] >> 28;
- }
- mu = a[i] & 0xfffffL;
- sp_3072_mul_add_112(a+i, m, mu);
- a[i+1] += a[i] >> 28;
- a[i] &= 0xfffffff;
- }
- #else
- for (i=0; i<109; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffff;
- sp_3072_mul_add_112(a+i, m, mu);
- a[i+1] += a[i] >> 28;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffL;
- sp_3072_mul_add_112(a+i, m, mu);
- a[i+1] += a[i] >> 28;
- a[i] &= 0xfffffff;
- #endif
- sp_3072_mont_shift_112(a, a);
- over = a[109] - m[109];
- sp_3072_cond_sub_112(a, a, m, ~((over - 1) >> 31));
- sp_3072_norm_112(a);
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_3072_mont_mul_112(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_3072_mul_112(r, a, b);
- sp_3072_mont_reduce_112(r, m, mp);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_3072_mont_sqr_112(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_3072_sqr_112(r, a);
- sp_3072_mont_reduce_112(r, m, mp);
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_3072_mul_d_224(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- sp_int64 tb = b;
- sp_int64 t = 0;
- sp_digit t2;
- sp_int64 p[4];
- int i;
- for (i = 0; i < 224; i += 4) {
- p[0] = tb * a[i + 0];
- p[1] = tb * a[i + 1];
- p[2] = tb * a[i + 2];
- p[3] = tb * a[i + 3];
- t += p[0];
- t2 = (sp_digit)(t & 0xfffffff);
- t >>= 28;
- r[i + 0] = (sp_digit)t2;
- t += p[1];
- t2 = (sp_digit)(t & 0xfffffff);
- t >>= 28;
- r[i + 1] = (sp_digit)t2;
- t += p[2];
- t2 = (sp_digit)(t & 0xfffffff);
- t >>= 28;
- r[i + 2] = (sp_digit)t2;
- t += p[3];
- t2 = (sp_digit)(t & 0xfffffff);
- t >>= 28;
- r[i + 3] = (sp_digit)t2;
- }
- r[224] = (sp_digit)(t & 0xfffffff);
- }
- #ifndef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_3072_cond_add_112(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 112; i += 8) {
- r[i + 0] = a[i + 0] + (b[i + 0] & m);
- r[i + 1] = a[i + 1] + (b[i + 1] & m);
- r[i + 2] = a[i + 2] + (b[i + 2] & m);
- r[i + 3] = a[i + 3] + (b[i + 3] & m);
- r[i + 4] = a[i + 4] + (b[i + 4] & m);
- r[i + 5] = a[i + 5] + (b[i + 5] & m);
- r[i + 6] = a[i + 6] + (b[i + 6] & m);
- r[i + 7] = a[i + 7] + (b[i + 7] & m);
- }
- }
- #endif /* !WOLFSSL_SP_SMALL */
- SP_NOINLINE static void sp_3072_rshift_112(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- for (i=0; i<104; i += 8) {
- r[i+0] = (a[i+0] >> n) | ((a[i+1] << (28 - n)) & 0xfffffff);
- r[i+1] = (a[i+1] >> n) | ((a[i+2] << (28 - n)) & 0xfffffff);
- r[i+2] = (a[i+2] >> n) | ((a[i+3] << (28 - n)) & 0xfffffff);
- r[i+3] = (a[i+3] >> n) | ((a[i+4] << (28 - n)) & 0xfffffff);
- r[i+4] = (a[i+4] >> n) | ((a[i+5] << (28 - n)) & 0xfffffff);
- r[i+5] = (a[i+5] >> n) | ((a[i+6] << (28 - n)) & 0xfffffff);
- r[i+6] = (a[i+6] >> n) | ((a[i+7] << (28 - n)) & 0xfffffff);
- r[i+7] = (a[i+7] >> n) | ((a[i+8] << (28 - n)) & 0xfffffff);
- }
- r[104] = (a[104] >> n) | ((a[105] << (28 - n)) & 0xfffffff);
- r[105] = (a[105] >> n) | ((a[106] << (28 - n)) & 0xfffffff);
- r[106] = (a[106] >> n) | ((a[107] << (28 - n)) & 0xfffffff);
- r[107] = (a[107] >> n) | ((a[108] << (28 - n)) & 0xfffffff);
- r[108] = (a[108] >> n) | ((a[109] << (28 - n)) & 0xfffffff);
- r[109] = (a[109] >> n) | ((a[110] << (28 - n)) & 0xfffffff);
- r[110] = (a[110] >> n) | ((a[111] << (28 - n)) & 0xfffffff);
- r[111] = a[111] >> n;
- }
- static WC_INLINE sp_digit sp_3072_div_word_112(sp_digit d1, sp_digit d0,
- sp_digit div)
- {
- #ifdef SP_USE_DIVTI3
- sp_int64 d = ((sp_int64)d1 << 28) + d0;
- return d / div;
- #elif defined(__x86_64__) || defined(__i386__)
- sp_int64 d = ((sp_int64)d1 << 28) + d0;
- sp_uint32 lo = (sp_uint32)d;
- sp_digit hi = (sp_digit)(d >> 32);
- __asm__ __volatile__ (
- "idiv %2"
- : "+a" (lo)
- : "d" (hi), "r" (div)
- : "cc"
- );
- return (sp_digit)lo;
- #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
- sp_int64 d = ((sp_int64)d1 << 28) + d0;
- sp_digit dv = (div >> 1) + 1;
- sp_digit t1 = (sp_digit)(d >> 28);
- sp_digit t0 = (sp_digit)(d & 0xfffffff);
- sp_digit t2;
- sp_digit sign;
- sp_digit r;
- int i;
- sp_int64 m;
- r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- t1 -= dv & (0 - r);
- for (i = 26; i >= 1; i--) {
- t1 += t1 + (((sp_uint32)t0 >> 27) & 1);
- t0 <<= 1;
- t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- r += r + t2;
- t1 -= dv & (0 - t2);
- t1 += t2;
- }
- r += r + 1;
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 28);
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 56) - (sp_digit)(d >> 56);
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- return r;
- #else
- sp_int64 d = ((sp_int64)d1 << 28) + d0;
- sp_digit r = 0;
- sp_digit t;
- sp_digit dv = (div >> 13) + 1;
- t = (sp_digit)(d >> 26);
- t = (t / dv) << 13;
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)(d >> 11);
- t = t / (dv << 2);
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)d;
- t = t / div;
- r += t;
- d -= (sp_int64)t * div;
- return r;
- #endif
- }
- static WC_INLINE sp_digit sp_3072_word_div_word_112(sp_digit d, sp_digit div)
- {
- #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
- defined(SP_DIV_WORD_USE_DIV)
- return d / div;
- #else
- return (sp_digit)((sp_uint32)(div - d) >> 31);
- #endif
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Full implementation.
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_3072_div_112(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- #ifndef WOLFSSL_SP_DIV_32
- #endif
- sp_digit dv;
- sp_digit r1;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 112 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 112 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 224 + 1;
- sd = t2 + 112 + 1;
- sp_3072_mul_d_112(sd, d, (sp_digit)1 << 8);
- sp_3072_mul_d_224(t1, a, (sp_digit)1 << 8);
- dv = sd[109];
- t1[110 + 110] += t1[110 + 110 - 1] >> 28;
- t1[110 + 110 - 1] &= 0xfffffff;
- for (i=110; i>=0; i--) {
- r1 = sp_3072_div_word_112(t1[110 + i], t1[110 + i - 1], dv);
- sp_3072_mul_d_112(t2, sd, r1);
- (void)sp_3072_sub_112(&t1[i], &t1[i], t2);
- sp_3072_norm_110(&t1[i]);
- t1[110 + i] += t1[110 + i - 1] >> 28;
- t1[110 + i - 1] &= 0xfffffff;
- r1 = sp_3072_div_word_112(-t1[110 + i], -t1[110 + i - 1], dv);
- r1 -= t1[110 + i];
- sp_3072_mul_d_112(t2, sd, r1);
- (void)sp_3072_add_112(&t1[i], &t1[i], t2);
- t1[110 + i] += t1[110 + i - 1] >> 28;
- t1[110 + i - 1] &= 0xfffffff;
- }
- t1[110 - 1] += t1[110 - 2] >> 28;
- t1[110 - 2] &= 0xfffffff;
- r1 = sp_3072_word_div_word_112(t1[110 - 1], dv);
- sp_3072_mul_d_112(t2, sd, r1);
- sp_3072_sub_112(t1, t1, t2);
- XMEMCPY(r, t1, sizeof(*r) * 224U);
- for (i=0; i<109; i++) {
- r[i+1] += r[i] >> 28;
- r[i] &= 0xfffffff;
- }
- sp_3072_cond_add_112(r, r, sd, r[109] >> 31);
- sp_3072_norm_110(r);
- sp_3072_rshift_112(r, r, 8);
- r[110] = 0;
- r[111] = 0;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_3072_mod_112(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_3072_div_112(a, m, NULL, r);
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || \
- defined(WOLFSSL_HAVE_SP_DH)
- /* Modular exponentiate a to the e mod m. (r = a^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * a A single precision number being exponentiated.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even or exponent is 0.
- */
- static int sp_3072_mod_exp_112(sp_digit* r, const sp_digit* a, const sp_digit* e,
- int bits, const sp_digit* m, int reduceA)
- {
- #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 224];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 112 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 112 * 2);
- XMEMSET(t[i], 0, sizeof(sp_digit) * 112U * 2U);
- }
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_112(norm, m);
- if (reduceA != 0) {
- err = sp_3072_mod_112(t[1], a, m);
- }
- else {
- XMEMCPY(t[1], a, sizeof(sp_digit) * 112U);
- }
- }
- if (err == MP_OKAY) {
- sp_3072_mul_112(t[1], t[1], norm);
- err = sp_3072_mod_112(t[1], t[1], m);
- }
- if (err == MP_OKAY) {
- i = bits / 28;
- c = bits % 28;
- n = e[i--] << (28 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 28;
- }
- y = (int)((n >> 27) & 1);
- n <<= 1;
- sp_3072_mont_mul_112(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 112 * 2);
- sp_3072_mont_sqr_112(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 112 * 2);
- }
- sp_3072_mont_reduce_112(t[0], m, mp);
- n = sp_3072_cmp_112(t[0], m);
- sp_3072_cond_sub_112(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 112 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #elif !defined(WC_NO_CACHE_RESISTANT)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 224];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 112 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 112 * 2);
- }
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_112(norm, m);
- if (reduceA != 0) {
- err = sp_3072_mod_112(t[1], a, m);
- if (err == MP_OKAY) {
- sp_3072_mul_112(t[1], t[1], norm);
- err = sp_3072_mod_112(t[1], t[1], m);
- }
- }
- else {
- sp_3072_mul_112(t[1], a, norm);
- err = sp_3072_mod_112(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- i = bits / 28;
- c = bits % 28;
- n = e[i--] << (28 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 28;
- }
- y = (int)((n >> 27) & 1);
- n <<= 1;
- sp_3072_mont_mul_112(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 112 * 2);
- sp_3072_mont_sqr_112(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 112 * 2);
- }
- sp_3072_mont_reduce_112(t[0], m, mp);
- n = sp_3072_cmp_112(t[0], m);
- sp_3072_cond_sub_112(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 112 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[(16 * 224) + 224];
- #endif
- sp_digit* t[16];
- sp_digit* rt = NULL;
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((16 * 224) + 224), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<16; i++)
- t[i] = td + i * 224;
- rt = td + 3584;
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_112(norm, m);
- if (reduceA != 0) {
- err = sp_3072_mod_112(t[1], a, m);
- if (err == MP_OKAY) {
- sp_3072_mul_112(t[1], t[1], norm);
- err = sp_3072_mod_112(t[1], t[1], m);
- }
- }
- else {
- sp_3072_mul_112(t[1], a, norm);
- err = sp_3072_mod_112(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- sp_3072_mont_sqr_112(t[ 2], t[ 1], m, mp);
- sp_3072_mont_mul_112(t[ 3], t[ 2], t[ 1], m, mp);
- sp_3072_mont_sqr_112(t[ 4], t[ 2], m, mp);
- sp_3072_mont_mul_112(t[ 5], t[ 3], t[ 2], m, mp);
- sp_3072_mont_sqr_112(t[ 6], t[ 3], m, mp);
- sp_3072_mont_mul_112(t[ 7], t[ 4], t[ 3], m, mp);
- sp_3072_mont_sqr_112(t[ 8], t[ 4], m, mp);
- sp_3072_mont_mul_112(t[ 9], t[ 5], t[ 4], m, mp);
- sp_3072_mont_sqr_112(t[10], t[ 5], m, mp);
- sp_3072_mont_mul_112(t[11], t[ 6], t[ 5], m, mp);
- sp_3072_mont_sqr_112(t[12], t[ 6], m, mp);
- sp_3072_mont_mul_112(t[13], t[ 7], t[ 6], m, mp);
- sp_3072_mont_sqr_112(t[14], t[ 7], m, mp);
- sp_3072_mont_mul_112(t[15], t[ 8], t[ 7], m, mp);
- bits = ((bits + 3) / 4) * 4;
- i = ((bits + 27) / 28) - 1;
- c = bits % 28;
- if (c == 0) {
- c = 28;
- }
- if (i < 112) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 4) {
- n |= e[i--] << (4 - c);
- c += 28;
- }
- y = (int)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- XMEMCPY(rt, t[y], sizeof(sp_digit) * 224);
- while ((i >= 0) || (c >= 4)) {
- if (c >= 4) {
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- }
- else if (c == 0) {
- n = e[i--] << 4;
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c = 24;
- }
- else {
- y = (byte)((n >> 28) & 0xf);
- n = e[i--] << 4;
- c = 4 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 28 - c;
- }
- sp_3072_mont_sqr_112(rt, rt, m, mp);
- sp_3072_mont_sqr_112(rt, rt, m, mp);
- sp_3072_mont_sqr_112(rt, rt, m, mp);
- sp_3072_mont_sqr_112(rt, rt, m, mp);
- sp_3072_mont_mul_112(rt, rt, t[y], m, mp);
- }
- sp_3072_mont_reduce_112(rt, m, mp);
- n = sp_3072_cmp_112(rt, m);
- sp_3072_cond_sub_112(rt, rt, m, ~(n >> 31));
- XMEMCPY(r, rt, sizeof(sp_digit) * 224);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #endif
- }
- #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) || */
- /* WOLFSSL_HAVE_SP_DH */
- #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
- #ifdef WOLFSSL_HAVE_SP_RSA
- /* RSA public key operation.
- *
- * in Array of bytes representing the number to exponentiate, base.
- * inLen Number of bytes in base.
- * em Public exponent.
- * mm Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 384 bytes long.
- * outLen Number of bytes in result.
- * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
- * an array is too long and MEMORY_E when dynamic memory allocation fails.
- */
- int sp_RsaPublic_3072(const byte* in, word32 inLen, const mp_int* em,
- const mp_int* mm, byte* out, word32* outLen)
- {
- #ifdef WOLFSSL_SP_SMALL
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[112 * 5];
- #endif
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- sp_digit* norm = NULL;
- sp_uint64 e[1] = {0};
- sp_digit mp = 0;
- int i;
- int err = MP_OKAY;
- if (*outLen < 384U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(em) > 64) {
- err = MP_READ_E;
- }
- else if (inLen > 384U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 5, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- r = a + 112 * 2;
- m = r + 112 * 2;
- norm = r;
- sp_3072_from_bin(a, 112, in, inLen);
- #if DIGIT_BIT >= 64
- e[0] = (sp_uint64)em->dp[0];
- #else
- e[0] = (sp_uint64)em->dp[0];
- if (em->used > 1) {
- e[0] |= ((sp_uint64)em->dp[1]) << DIGIT_BIT;
- }
- #endif
- if (e[0] == 0) {
- err = MP_EXPTMOD_E;
- }
- }
- if (err == MP_OKAY) {
- sp_3072_from_mp(m, 112, mm);
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_112(norm, m);
- }
- if (err == MP_OKAY) {
- sp_3072_mul_112(a, a, norm);
- err = sp_3072_mod_112(a, a, m);
- }
- if (err == MP_OKAY) {
- for (i=63; i>=0; i--) {
- if ((e[0] >> i) != 0) {
- break;
- }
- }
- XMEMCPY(r, a, sizeof(sp_digit) * 112 * 2);
- for (i--; i>=0; i--) {
- sp_3072_mont_sqr_112(r, r, m, mp);
- if (((e[0] >> i) & 1) == 1) {
- sp_3072_mont_mul_112(r, r, a, m, mp);
- }
- }
- sp_3072_mont_reduce_112(r, m, mp);
- mp = sp_3072_cmp_112(r, m);
- sp_3072_cond_sub_112(r, r, m, ~(mp >> 31));
- sp_3072_to_bin_112(r, out);
- *outLen = 384;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[112 * 5];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- sp_uint64 e[1] = {0};
- int err = MP_OKAY;
- if (*outLen < 384U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(em) > 64) {
- err = MP_READ_E;
- }
- else if (inLen > 384U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 5, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d;
- r = a + 112 * 2;
- m = r + 112 * 2;
- sp_3072_from_bin(a, 112, in, inLen);
- #if DIGIT_BIT >= 64
- e[0] = (sp_uint64)em->dp[0];
- #else
- e[0] = (sp_uint64)em->dp[0];
- if (em->used > 1) {
- e[0] |= ((sp_uint64)em->dp[1]) << DIGIT_BIT;
- }
- #endif
- if (e[0] == 0) {
- err = MP_EXPTMOD_E;
- }
- }
- if (err == MP_OKAY) {
- sp_3072_from_mp(m, 112, mm);
- if (e[0] == 0x3) {
- sp_3072_sqr_112(r, a);
- err = sp_3072_mod_112(r, r, m);
- if (err == MP_OKAY) {
- sp_3072_mul_112(r, a, r);
- err = sp_3072_mod_112(r, r, m);
- }
- }
- else {
- sp_digit* norm = r;
- int i;
- sp_digit mp;
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_112(norm, m);
- sp_3072_mul_112(a, a, norm);
- err = sp_3072_mod_112(a, a, m);
- if (err == MP_OKAY) {
- for (i=63; i>=0; i--) {
- if ((e[0] >> i) != 0) {
- break;
- }
- }
- XMEMCPY(r, a, sizeof(sp_digit) * 224U);
- for (i--; i>=0; i--) {
- sp_3072_mont_sqr_112(r, r, m, mp);
- if (((e[0] >> i) & 1) == 1) {
- sp_3072_mont_mul_112(r, r, a, m, mp);
- }
- }
- sp_3072_mont_reduce_112(r, m, mp);
- mp = sp_3072_cmp_112(r, m);
- sp_3072_cond_sub_112(r, r, m, ~(mp >> 31));
- }
- }
- }
- if (err == MP_OKAY) {
- sp_3072_to_bin_112(r, out);
- *outLen = 384;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- }
- #ifndef WOLFSSL_RSA_PUBLIC_ONLY
- #if !defined(SP_RSA_PRIVATE_EXP_D) && !defined(RSA_LOW_MEM)
- #endif /* !SP_RSA_PRIVATE_EXP_D & !RSA_LOW_MEM */
- /* RSA private key operation.
- *
- * in Array of bytes representing the number to exponentiate, base.
- * inLen Number of bytes in base.
- * dm Private exponent.
- * pm First prime.
- * qm Second prime.
- * dpm First prime's CRT exponent.
- * dqm Second prime's CRT exponent.
- * qim Inverse of second prime mod p.
- * mm Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 384 bytes long.
- * outLen Number of bytes in result.
- * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
- * an array is too long and MEMORY_E when dynamic memory allocation fails.
- */
- int sp_RsaPrivate_3072(const byte* in, word32 inLen, const mp_int* dm,
- const mp_int* pm, const mp_int* qm, const mp_int* dpm, const mp_int* dqm,
- const mp_int* qim, const mp_int* mm, byte* out, word32* outLen)
- {
- #if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM)
- #if defined(WOLFSSL_SP_SMALL)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[112 * 4];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)pm;
- (void)qm;
- (void)dpm;
- (void)dqm;
- (void)qim;
- if (*outLen < 384U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(dm) > 3072) {
- err = MP_READ_E;
- }
- else if (inLen > 384) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 4, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d + 112;
- m = a + 224;
- r = a;
- sp_3072_from_bin(a, 112, in, inLen);
- sp_3072_from_mp(d, 112, dm);
- sp_3072_from_mp(m, 112, mm);
- err = sp_3072_mod_exp_112(r, a, d, 3072, m, 0);
- }
- if (err == MP_OKAY) {
- sp_3072_to_bin_112(r, out);
- *outLen = 384;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- #endif
- {
- /* only "a" and "r" are sensitive and need zeroized (same pointer) */
- if (a != NULL)
- ForceZero(a, sizeof(sp_digit) * 112);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[112 * 4];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)pm;
- (void)qm;
- (void)dpm;
- (void)dqm;
- (void)qim;
- if (*outLen < 384U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(dm) > 3072) {
- err = MP_READ_E;
- }
- else if (inLen > 384U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 4, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d + 112;
- m = a + 224;
- r = a;
- sp_3072_from_bin(a, 112, in, inLen);
- sp_3072_from_mp(d, 112, dm);
- sp_3072_from_mp(m, 112, mm);
- err = sp_3072_mod_exp_112(r, a, d, 3072, m, 0);
- }
- if (err == MP_OKAY) {
- sp_3072_to_bin_112(r, out);
- *outLen = 384;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- #endif
- {
- /* only "a" and "r" are sensitive and need zeroized (same pointer) */
- if (a != NULL)
- ForceZero(a, sizeof(sp_digit) * 112);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- #else
- #if defined(WOLFSSL_SP_SMALL)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[56 * 8];
- #endif
- sp_digit* p = NULL;
- sp_digit* dp = NULL;
- sp_digit* dq = NULL;
- sp_digit* qi = NULL;
- sp_digit* tmpa = NULL;
- sp_digit* tmpb = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)dm;
- (void)mm;
- if (*outLen < 384U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (inLen > 384) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(pm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(qm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 56 * 8, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = a + 112;
- qi = dq = dp = p + 56;
- tmpa = qi + 56;
- tmpb = tmpa + 112;
- r = a;
- sp_3072_from_bin(a, 112, in, inLen);
- sp_3072_from_mp(p, 56, pm);
- sp_3072_from_mp(dp, 56, dpm);
- err = sp_3072_mod_exp_56(tmpa, a, dp, 1536, p, 1);
- }
- if (err == MP_OKAY) {
- sp_3072_from_mp(p, 56, qm);
- sp_3072_from_mp(dq, 56, dqm);
- err = sp_3072_mod_exp_56(tmpb, a, dq, 1536, p, 1);
- }
- if (err == MP_OKAY) {
- sp_3072_from_mp(p, 56, pm);
- (void)sp_3072_sub_56(tmpa, tmpa, tmpb);
- sp_3072_norm_55(tmpa);
- sp_3072_cond_add_56(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[54] >> 31));
- sp_3072_cond_add_56(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[54] >> 31));
- sp_3072_norm_56(tmpa);
- sp_3072_from_mp(qi, 56, qim);
- sp_3072_mul_56(tmpa, tmpa, qi);
- err = sp_3072_mod_56(tmpa, tmpa, p);
- }
- if (err == MP_OKAY) {
- sp_3072_from_mp(p, 56, qm);
- sp_3072_mul_56(tmpa, p, tmpa);
- (void)sp_3072_add_112(r, tmpb, tmpa);
- sp_3072_norm_112(r);
- sp_3072_to_bin_112(r, out);
- *outLen = 384;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- #endif
- {
- ForceZero(a, sizeof(sp_digit) * 56 * 8);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[56 * 13];
- #endif
- sp_digit* p = NULL;
- sp_digit* q = NULL;
- sp_digit* dp = NULL;
- sp_digit* dq = NULL;
- sp_digit* qi = NULL;
- sp_digit* tmpa = NULL;
- sp_digit* tmpb = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)dm;
- (void)mm;
- if (*outLen < 384U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (inLen > 384U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(pm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(qm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 56 * 13, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = a + 112 * 2;
- q = p + 56;
- dp = q + 56;
- dq = dp + 56;
- qi = dq + 56;
- tmpa = qi + 56;
- tmpb = tmpa + 112;
- r = a;
- sp_3072_from_bin(a, 112, in, inLen);
- sp_3072_from_mp(p, 56, pm);
- sp_3072_from_mp(q, 56, qm);
- sp_3072_from_mp(dp, 56, dpm);
- sp_3072_from_mp(dq, 56, dqm);
- sp_3072_from_mp(qi, 56, qim);
- err = sp_3072_mod_exp_56(tmpa, a, dp, 1536, p, 1);
- }
- if (err == MP_OKAY) {
- err = sp_3072_mod_exp_56(tmpb, a, dq, 1536, q, 1);
- }
- if (err == MP_OKAY) {
- (void)sp_3072_sub_56(tmpa, tmpa, tmpb);
- sp_3072_norm_55(tmpa);
- sp_3072_cond_add_56(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[54] >> 31));
- sp_3072_cond_add_56(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[54] >> 31));
- sp_3072_norm_56(tmpa);
- sp_3072_mul_56(tmpa, tmpa, qi);
- err = sp_3072_mod_56(tmpa, tmpa, p);
- }
- if (err == MP_OKAY) {
- sp_3072_mul_56(tmpa, tmpa, q);
- (void)sp_3072_add_112(r, tmpb, tmpa);
- sp_3072_norm_112(r);
- sp_3072_to_bin_112(r, out);
- *outLen = 384;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- #endif
- {
- ForceZero(a, sizeof(sp_digit) * 56 * 13);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- #endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */
- }
- #endif /* !WOLFSSL_RSA_PUBLIC_ONLY */
- #endif /* WOLFSSL_HAVE_SP_RSA */
- #if defined(WOLFSSL_HAVE_SP_DH) || (defined(WOLFSSL_HAVE_SP_RSA) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY))
- /* Convert an array of sp_digit to an mp_int.
- *
- * a A single precision integer.
- * r A multi-precision integer.
- */
- static int sp_3072_to_mp(const sp_digit* a, mp_int* r)
- {
- int err;
- err = mp_grow(r, (3072 + DIGIT_BIT - 1) / DIGIT_BIT);
- if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
- #if DIGIT_BIT == 28
- XMEMCPY(r->dp, a, sizeof(sp_digit) * 110);
- r->used = 110;
- mp_clamp(r);
- #elif DIGIT_BIT < 28
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 110; i++) {
- r->dp[j] |= (mp_digit)(a[i] << s);
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- s = DIGIT_BIT - s;
- r->dp[++j] = (mp_digit)(a[i] >> s);
- while (s + DIGIT_BIT <= 28) {
- s += DIGIT_BIT;
- r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- if (s == SP_WORD_SIZE) {
- r->dp[j] = 0;
- }
- else {
- r->dp[j] = (mp_digit)(a[i] >> s);
- }
- }
- s = 28 - s;
- }
- r->used = (3072 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #else
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 110; i++) {
- r->dp[j] |= ((mp_digit)a[i]) << s;
- if (s + 28 >= DIGIT_BIT) {
- #if DIGIT_BIT != 32 && DIGIT_BIT != 64
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- #endif
- s = DIGIT_BIT - s;
- r->dp[++j] = a[i] >> s;
- s = 28 - s;
- }
- else {
- s += 28;
- }
- }
- r->used = (3072 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #endif
- }
- return err;
- }
- /* Perform the modular exponentiation for Diffie-Hellman.
- *
- * base Base. MP integer.
- * exp Exponent. MP integer.
- * mod Modulus. MP integer.
- * res Result. MP integer.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_ModExp_3072(const mp_int* base, const mp_int* exp, const mp_int* mod,
- mp_int* res)
- {
- #ifdef WOLFSSL_SP_SMALL
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[112 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 3072) {
- err = MP_READ_E;
- }
- else if (expBits > 3072) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 4, NULL,
- DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 112 * 2;
- m = e + 112;
- r = b;
- sp_3072_from_mp(b, 112, base);
- sp_3072_from_mp(e, 112, exp);
- sp_3072_from_mp(m, 112, mod);
- err = sp_3072_mod_exp_112(r, b, e, mp_count_bits(exp), m, 0);
- }
- if (err == MP_OKAY) {
- err = sp_3072_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 112U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[112 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 3072) {
- err = MP_READ_E;
- }
- else if (expBits > 3072) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 4, NULL, DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 112 * 2;
- m = e + 112;
- r = b;
- sp_3072_from_mp(b, 112, base);
- sp_3072_from_mp(e, 112, exp);
- sp_3072_from_mp(m, 112, mod);
- err = sp_3072_mod_exp_112(r, b, e, expBits, m, 0);
- }
- if (err == MP_OKAY) {
- err = sp_3072_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 112U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #endif
- }
- #ifdef WOLFSSL_HAVE_SP_DH
- #ifdef HAVE_FFDHE_3072
- SP_NOINLINE static void sp_3072_lshift_112(sp_digit* r, const sp_digit* a,
- byte n)
- {
- sp_int_digit s;
- sp_int_digit t;
- s = (sp_int_digit)a[111];
- r[112] = s >> (28U - n);
- s = (sp_int_digit)(a[111]); t = (sp_int_digit)(a[110]);
- r[111] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[110]); t = (sp_int_digit)(a[109]);
- r[110] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[109]); t = (sp_int_digit)(a[108]);
- r[109] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[108]); t = (sp_int_digit)(a[107]);
- r[108] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[107]); t = (sp_int_digit)(a[106]);
- r[107] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[106]); t = (sp_int_digit)(a[105]);
- r[106] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[105]); t = (sp_int_digit)(a[104]);
- r[105] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[104]); t = (sp_int_digit)(a[103]);
- r[104] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[103]); t = (sp_int_digit)(a[102]);
- r[103] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[102]); t = (sp_int_digit)(a[101]);
- r[102] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[101]); t = (sp_int_digit)(a[100]);
- r[101] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[100]); t = (sp_int_digit)(a[99]);
- r[100] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[99]); t = (sp_int_digit)(a[98]);
- r[99] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[98]); t = (sp_int_digit)(a[97]);
- r[98] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[97]); t = (sp_int_digit)(a[96]);
- r[97] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[96]); t = (sp_int_digit)(a[95]);
- r[96] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[95]); t = (sp_int_digit)(a[94]);
- r[95] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[94]); t = (sp_int_digit)(a[93]);
- r[94] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[93]); t = (sp_int_digit)(a[92]);
- r[93] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[92]); t = (sp_int_digit)(a[91]);
- r[92] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[91]); t = (sp_int_digit)(a[90]);
- r[91] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[90]); t = (sp_int_digit)(a[89]);
- r[90] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[89]); t = (sp_int_digit)(a[88]);
- r[89] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[88]); t = (sp_int_digit)(a[87]);
- r[88] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[87]); t = (sp_int_digit)(a[86]);
- r[87] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[86]); t = (sp_int_digit)(a[85]);
- r[86] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[85]); t = (sp_int_digit)(a[84]);
- r[85] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[84]); t = (sp_int_digit)(a[83]);
- r[84] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[83]); t = (sp_int_digit)(a[82]);
- r[83] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[82]); t = (sp_int_digit)(a[81]);
- r[82] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[81]); t = (sp_int_digit)(a[80]);
- r[81] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[80]); t = (sp_int_digit)(a[79]);
- r[80] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[79]); t = (sp_int_digit)(a[78]);
- r[79] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[78]); t = (sp_int_digit)(a[77]);
- r[78] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[77]); t = (sp_int_digit)(a[76]);
- r[77] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[76]); t = (sp_int_digit)(a[75]);
- r[76] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[75]); t = (sp_int_digit)(a[74]);
- r[75] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[74]); t = (sp_int_digit)(a[73]);
- r[74] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[73]); t = (sp_int_digit)(a[72]);
- r[73] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[72]); t = (sp_int_digit)(a[71]);
- r[72] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[71]); t = (sp_int_digit)(a[70]);
- r[71] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[70]); t = (sp_int_digit)(a[69]);
- r[70] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[69]); t = (sp_int_digit)(a[68]);
- r[69] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[68]); t = (sp_int_digit)(a[67]);
- r[68] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[67]); t = (sp_int_digit)(a[66]);
- r[67] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[66]); t = (sp_int_digit)(a[65]);
- r[66] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[65]); t = (sp_int_digit)(a[64]);
- r[65] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[64]); t = (sp_int_digit)(a[63]);
- r[64] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[63]); t = (sp_int_digit)(a[62]);
- r[63] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[62]); t = (sp_int_digit)(a[61]);
- r[62] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[61]); t = (sp_int_digit)(a[60]);
- r[61] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[60]); t = (sp_int_digit)(a[59]);
- r[60] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[59]); t = (sp_int_digit)(a[58]);
- r[59] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[58]); t = (sp_int_digit)(a[57]);
- r[58] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[57]); t = (sp_int_digit)(a[56]);
- r[57] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[56]); t = (sp_int_digit)(a[55]);
- r[56] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[55]); t = (sp_int_digit)(a[54]);
- r[55] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[54]); t = (sp_int_digit)(a[53]);
- r[54] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[53]); t = (sp_int_digit)(a[52]);
- r[53] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[52]); t = (sp_int_digit)(a[51]);
- r[52] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[51]); t = (sp_int_digit)(a[50]);
- r[51] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[50]); t = (sp_int_digit)(a[49]);
- r[50] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[49]); t = (sp_int_digit)(a[48]);
- r[49] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[48]); t = (sp_int_digit)(a[47]);
- r[48] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[47]); t = (sp_int_digit)(a[46]);
- r[47] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[46]); t = (sp_int_digit)(a[45]);
- r[46] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[45]); t = (sp_int_digit)(a[44]);
- r[45] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[44]); t = (sp_int_digit)(a[43]);
- r[44] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[43]); t = (sp_int_digit)(a[42]);
- r[43] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[42]); t = (sp_int_digit)(a[41]);
- r[42] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[41]); t = (sp_int_digit)(a[40]);
- r[41] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[40]); t = (sp_int_digit)(a[39]);
- r[40] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[39]); t = (sp_int_digit)(a[38]);
- r[39] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[38]); t = (sp_int_digit)(a[37]);
- r[38] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[37]); t = (sp_int_digit)(a[36]);
- r[37] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[36]); t = (sp_int_digit)(a[35]);
- r[36] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[35]); t = (sp_int_digit)(a[34]);
- r[35] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[34]); t = (sp_int_digit)(a[33]);
- r[34] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[33]); t = (sp_int_digit)(a[32]);
- r[33] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[32]); t = (sp_int_digit)(a[31]);
- r[32] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[31]); t = (sp_int_digit)(a[30]);
- r[31] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[30]); t = (sp_int_digit)(a[29]);
- r[30] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[29]); t = (sp_int_digit)(a[28]);
- r[29] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[28]); t = (sp_int_digit)(a[27]);
- r[28] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[27]); t = (sp_int_digit)(a[26]);
- r[27] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[26]); t = (sp_int_digit)(a[25]);
- r[26] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[25]); t = (sp_int_digit)(a[24]);
- r[25] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[24]); t = (sp_int_digit)(a[23]);
- r[24] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[23]); t = (sp_int_digit)(a[22]);
- r[23] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[22]); t = (sp_int_digit)(a[21]);
- r[22] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[21]); t = (sp_int_digit)(a[20]);
- r[21] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[20]); t = (sp_int_digit)(a[19]);
- r[20] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[19]); t = (sp_int_digit)(a[18]);
- r[19] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[18]); t = (sp_int_digit)(a[17]);
- r[18] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[17]); t = (sp_int_digit)(a[16]);
- r[17] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[16]); t = (sp_int_digit)(a[15]);
- r[16] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[15]); t = (sp_int_digit)(a[14]);
- r[15] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[14]); t = (sp_int_digit)(a[13]);
- r[14] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[13]); t = (sp_int_digit)(a[12]);
- r[13] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[12]); t = (sp_int_digit)(a[11]);
- r[12] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[11]); t = (sp_int_digit)(a[10]);
- r[11] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[10]); t = (sp_int_digit)(a[9]);
- r[10] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[9]); t = (sp_int_digit)(a[8]);
- r[9] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[8]); t = (sp_int_digit)(a[7]);
- r[8] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[7]); t = (sp_int_digit)(a[6]);
- r[7] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[6]); t = (sp_int_digit)(a[5]);
- r[6] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[5]); t = (sp_int_digit)(a[4]);
- r[5] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[4]); t = (sp_int_digit)(a[3]);
- r[4] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[3]); t = (sp_int_digit)(a[2]);
- r[3] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[2]); t = (sp_int_digit)(a[1]);
- r[2] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- s = (sp_int_digit)(a[1]); t = (sp_int_digit)(a[0]);
- r[1] = ((s << n) | (t >> (28U - n))) & 0xfffffff;
- r[0] = (a[0] << n) & 0xfffffff;
- }
- /* Modular exponentiate 2 to the e mod m. (r = 2^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even.
- */
- static int sp_3072_mod_exp_2_112(sp_digit* r, const sp_digit* e, int bits, const sp_digit* m)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[337];
- #endif
- sp_digit* norm = NULL;
- sp_digit* tmp = NULL;
- sp_digit mp = 1;
- sp_digit n;
- sp_digit o;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 337, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- tmp = td + 224;
- XMEMSET(td, 0, sizeof(sp_digit) * 337);
- sp_3072_mont_setup(m, &mp);
- sp_3072_mont_norm_112(norm, m);
- bits = ((bits + 3) / 4) * 4;
- i = ((bits + 27) / 28) - 1;
- c = bits % 28;
- if (c == 0) {
- c = 28;
- }
- if (i < 112) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 4) {
- n |= e[i--] << (4 - c);
- c += 28;
- }
- y = (int)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- sp_3072_lshift_112(r, norm, (byte)y);
- while ((i >= 0) || (c >= 4)) {
- if (c >= 4) {
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- }
- else if (c == 0) {
- n = e[i--] << 4;
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c = 24;
- }
- else {
- y = (byte)((n >> 28) & 0xf);
- n = e[i--] << 4;
- c = 4 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 28 - c;
- }
- sp_3072_mont_sqr_112(r, r, m, mp);
- sp_3072_mont_sqr_112(r, r, m, mp);
- sp_3072_mont_sqr_112(r, r, m, mp);
- sp_3072_mont_sqr_112(r, r, m, mp);
- sp_3072_lshift_112(r, r, (byte)y);
- sp_3072_mul_d_112(tmp, norm, (r[110] << 8) + (r[109] >> 20));
- r[110] = 0;
- r[109] &= 0xfffffL;
- (void)sp_3072_add_112(r, r, tmp);
- sp_3072_norm_112(r);
- o = sp_3072_cmp_112(r, m);
- sp_3072_cond_sub_112(r, r, m, ~(o >> 31));
- }
- sp_3072_mont_reduce_112(r, m, mp);
- n = sp_3072_cmp_112(r, m);
- sp_3072_cond_sub_112(r, r, m, ~(n >> 31));
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- #endif /* HAVE_FFDHE_3072 */
- /* Perform the modular exponentiation for Diffie-Hellman.
- *
- * base Base.
- * exp Array of bytes that is the exponent.
- * expLen Length of data, in bytes, in exponent.
- * mod Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 384 bytes long.
- * outLen Length, in bytes, of exponentiation result.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_DhExp_3072(const mp_int* base, const byte* exp, word32 expLen,
- const mp_int* mod, byte* out, word32* outLen)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[112 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- word32 i;
- int err = MP_OKAY;
- if (mp_count_bits(base) > 3072) {
- err = MP_READ_E;
- }
- else if (expLen > 384U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 3072) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 112 * 4, NULL,
- DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 112 * 2;
- m = e + 112;
- r = b;
- sp_3072_from_mp(b, 112, base);
- sp_3072_from_bin(e, 112, exp, expLen);
- sp_3072_from_mp(m, 112, mod);
- #ifdef HAVE_FFDHE_3072
- if (base->used == 1 && base->dp[0] == 2U &&
- (m[109] >> 4) == 0xffffL) {
- err = sp_3072_mod_exp_2_112(r, e, expLen * 8U, m);
- }
- else {
- #endif
- err = sp_3072_mod_exp_112(r, b, e, expLen * 8U, m, 0);
- #ifdef HAVE_FFDHE_3072
- }
- #endif
- }
- if (err == MP_OKAY) {
- sp_3072_to_bin_112(r, out);
- *outLen = 384;
- for (i=0; i<384U && out[i] == 0U; i++) {
- /* Search for first non-zero. */
- }
- *outLen -= i;
- XMEMMOVE(out, out + i, *outLen);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 112U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_HAVE_SP_DH */
- /* Perform the modular exponentiation for Diffie-Hellman.
- *
- * base Base. MP integer.
- * exp Exponent. MP integer.
- * mod Modulus. MP integer.
- * res Result. MP integer.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_ModExp_1536(const mp_int* base, const mp_int* exp, const mp_int* mod,
- mp_int* res)
- {
- #ifdef WOLFSSL_SP_SMALL
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[56 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 1536) {
- err = MP_READ_E;
- }
- else if (expBits > 1536) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 1536) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 56 * 4, NULL,
- DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 56 * 2;
- m = e + 56;
- r = b;
- sp_3072_from_mp(b, 56, base);
- sp_3072_from_mp(e, 56, exp);
- sp_3072_from_mp(m, 56, mod);
- err = sp_3072_mod_exp_56(r, b, e, mp_count_bits(exp), m, 0);
- }
- if (err == MP_OKAY) {
- XMEMSET(r + 56, 0, sizeof(*r) * 56U);
- err = sp_3072_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 112U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[56 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 1536) {
- err = MP_READ_E;
- }
- else if (expBits > 1536) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 1536) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 56 * 4, NULL, DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 56 * 2;
- m = e + 56;
- r = b;
- sp_3072_from_mp(b, 56, base);
- sp_3072_from_mp(e, 56, exp);
- sp_3072_from_mp(m, 56, mod);
- err = sp_3072_mod_exp_56(r, b, e, expBits, m, 0);
- }
- if (err == MP_OKAY) {
- XMEMSET(r + 56, 0, sizeof(*r) * 56U);
- err = sp_3072_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 112U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #endif
- }
- #endif /* WOLFSSL_HAVE_SP_DH | (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) */
- #endif /* WOLFSSL_SP_SMALL */
- #endif /* !WOLFSSL_SP_NO_3072 */
- #ifdef WOLFSSL_SP_4096
- #ifdef WOLFSSL_SP_SMALL
- /* Read big endian unsigned byte array into r.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a Byte array.
- * n Number of bytes in array to read.
- */
- static void sp_4096_from_bin(sp_digit* r, int size, const byte* a, int n)
- {
- int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = n-1; i >= 0; i--) {
- r[j] |= (((sp_digit)a[i]) << s);
- if (s >= 21U) {
- r[j] &= 0x1fffffff;
- s = 29U - s;
- if (j + 1 >= size) {
- break;
- }
- r[++j] = (sp_digit)a[i] >> s;
- s = 8U - s;
- }
- else {
- s += 8U;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- }
- /* Convert an mp_int to an array of sp_digit.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a A multi-precision integer.
- */
- static void sp_4096_from_mp(sp_digit* r, int size, const mp_int* a)
- {
- #if DIGIT_BIT == 29
- int i;
- sp_digit j = (sp_digit)0 - (sp_digit)a->used;
- int o = 0;
- for (i = 0; i < size; i++) {
- sp_digit mask = (sp_digit)0 - (j >> 28);
- r[i] = a->dp[o] & mask;
- j++;
- o += (int)(j >> 28);
- }
- #elif DIGIT_BIT > 29
- unsigned int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i] << s);
- r[j] &= 0x1fffffff;
- s = 29U - s;
- if (j + 1 >= size) {
- break;
- }
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- while ((s + 29U) <= (word32)DIGIT_BIT) {
- s += 29U;
- r[j] &= 0x1fffffff;
- if (j + 1 >= size) {
- break;
- }
- if (s < (word32)DIGIT_BIT) {
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- }
- else {
- r[++j] = (sp_digit)0;
- }
- }
- s = (word32)DIGIT_BIT - s;
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #else
- unsigned int i;
- int j = 0;
- int s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i]) << s;
- if (s + DIGIT_BIT >= 29) {
- r[j] &= 0x1fffffff;
- if (j + 1 >= size) {
- break;
- }
- s = 29 - s;
- if (s == DIGIT_BIT) {
- r[++j] = 0;
- s = 0;
- }
- else {
- r[++j] = a->dp[i] >> s;
- s = DIGIT_BIT - s;
- }
- }
- else {
- s += DIGIT_BIT;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #endif
- }
- /* Write r as big endian to byte array.
- * Fixed length number of bytes written: 512
- *
- * r A single precision integer.
- * a Byte array.
- */
- static void sp_4096_to_bin_142(sp_digit* r, byte* a)
- {
- int i;
- int j;
- int s = 0;
- int b;
- for (i=0; i<141; i++) {
- r[i+1] += r[i] >> 29;
- r[i] &= 0x1fffffff;
- }
- j = 4103 / 8 - 1;
- a[j] = 0;
- for (i=0; i<142 && j>=0; i++) {
- b = 0;
- /* lint allow cast of mismatch sp_digit and int */
- a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
- b += 8 - s;
- if (j < 0) {
- break;
- }
- while (b < 29) {
- a[j--] = (byte)(r[i] >> b);
- b += 8;
- if (j < 0) {
- break;
- }
- }
- s = 8 - (b - 29);
- if (j >= 0) {
- a[j] = 0;
- }
- if (s != 0) {
- j++;
- }
- }
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
- #if defined(WOLFSSL_HAVE_SP_RSA) && !defined(SP_RSA_PRIVATE_EXP_D)
- /* Normalize the values in each word to 29 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_4096_norm_71(sp_digit* a)
- {
- int i;
- for (i = 0; i < 70; i++) {
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- }
- #endif /* WOLFSSL_HAVE_SP_RSA & !SP_RSA_PRIVATE_EXP_D */
- #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
- /* Normalize the values in each word to 29 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_4096_norm_142(sp_digit* a)
- {
- int i;
- for (i = 0; i < 141; i++) {
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_4096_mul_142(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 lo;
- c = ((sp_uint64)a[141]) * b[141];
- r[283] = (sp_digit)(c >> 29);
- c &= 0x1fffffff;
- for (k = 281; k >= 0; k--) {
- if (k >= 142) {
- i = k - 141;
- imax = 141;
- }
- else {
- i = 0;
- imax = k;
- }
- if (imax - i > 15) {
- int imaxlo;
- lo = 0;
- for (imaxlo = i; imaxlo <= imax; imaxlo += 15) {
- for (; i <= imax && i < imaxlo + 15; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 29;
- lo &= 0x1fffffff;
- }
- r[k + 2] += (sp_digit)(c >> 29);
- r[k + 1] = (sp_digit)(c & 0x1fffffff);
- c = lo & 0x1fffffff;
- }
- else {
- lo = 0;
- for (; i <= imax; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 29;
- r[k + 2] += (sp_digit)(c >> 29);
- r[k + 1] = (sp_digit)(c & 0x1fffffff);
- c = lo & 0x1fffffff;
- }
- }
- r[0] = (sp_digit)c;
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_4096_sqr_142(sp_digit* r, const sp_digit* a)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 t;
- c = ((sp_uint64)a[141]) * a[141];
- r[283] = (sp_digit)(c >> 29);
- c = (c & 0x1fffffff) << 29;
- for (k = 281; k >= 0; k--) {
- i = (k + 1) / 2;
- if ((k & 1) == 0) {
- c += ((sp_uint64)a[i]) * a[i];
- i++;
- }
- if (k < 141) {
- imax = k;
- }
- else {
- imax = 141;
- }
- if (imax - i >= 14) {
- int imaxlo;
- sp_uint64 hi;
- hi = c >> 29;
- c &= 0x1fffffff;
- for (imaxlo = i; imaxlo <= imax; imaxlo += 14) {
- t = 0;
- for (; i <= imax && i < imaxlo + 14; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- hi += c >> 29;
- c &= 0x1fffffff;
- }
- r[k + 2] += (sp_digit)(hi >> 29);
- r[k + 1] = (sp_digit)(hi & 0x1fffffff);
- c <<= 29;
- }
- else
- {
- t = 0;
- for (; i <= imax; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- r[k + 2] += (sp_digit) (c >> 58);
- r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
- c = (c & 0x1fffffff) << 29;
- }
- }
- r[0] = (sp_digit)(c >> 29);
- }
- /* Calculate the bottom digit of -1/a mod 2^n.
- *
- * a A single precision number.
- * rho Bottom word of inverse.
- */
- static void sp_4096_mont_setup(const sp_digit* a, sp_digit* rho)
- {
- sp_digit x;
- sp_digit b;
- b = a[0];
- x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
- x *= 2 - b * x; /* here x*a==1 mod 2**8 */
- x *= 2 - b * x; /* here x*a==1 mod 2**16 */
- x *= 2 - b * x; /* here x*a==1 mod 2**32 */
- x &= 0x1fffffff;
- /* rho = -1/m mod b */
- *rho = ((sp_digit)1 << 29) - x;
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_4096_mul_d_142(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 142; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- }
- r[142] = (sp_digit)t;
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)
- #if defined(WOLFSSL_HAVE_SP_RSA) && !defined(SP_RSA_PRIVATE_EXP_D)
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_sub_71(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 71; i++) {
- r[i] = a[i] - b[i];
- }
- return 0;
- }
- /* r = 2^n mod m where n is the number of bits to reduce by.
- * Given m must be 4096 bits, just need to subtract.
- *
- * r A single precision number.
- * m A single precision number.
- */
- static void sp_4096_mont_norm_71(sp_digit* r, const sp_digit* m)
- {
- /* Set r = 2^n - 1. */
- int i;
- for (i=0; i<70; i++) {
- r[i] = 0x1fffffff;
- }
- r[70] = 0x3ffffL;
- /* r = (2^n - 1) mod n */
- (void)sp_4096_sub_71(r, r, m);
- /* Add one so r = 2^n mod m */
- r[0] += 1;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_4096_cmp_71(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- int i;
- for (i=70; i>=0; i--) {
- r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
- }
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_4096_cond_sub_71(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 71; i++) {
- r[i] = a[i] - (b[i] & m);
- }
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_4096_mul_add_71(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifndef WOLFSSL_SP_LARGE_CODE
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 71; i++) {
- t += r[i];
- t += tb * a[i];
- r[i] = ((sp_digit)t) & 0x1fffffff;
- t >>= 29;
- }
- r[71] += (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t[4];
- int i;
- t[0] = 0;
- for (i = 0; i < 68; i += 4) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- r[i+0] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[i+1] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[i+2] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[i+3] = t[3] & 0x1fffffff;
- t[0] = t[3] >> 29;
- }
- t[0] += (tb * a[68]) + r[68];
- t[1] = (tb * a[69]) + r[69];
- t[2] = (tb * a[70]) + r[70];
- r[68] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[69] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[70] = t[2] & 0x1fffffff;
- r[71] += (sp_digit)(t[2] >> 29);
- #endif /* !WOLFSSL_SP_LARGE_CODE */
- }
- /* Shift the result in the high 2048 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_4096_mont_shift_71(sp_digit* r, const sp_digit* a)
- {
- int i;
- sp_int64 n = a[70] >> 18;
- n += ((sp_int64)a[71]) << 11;
- for (i = 0; i < 70; i++) {
- r[i] = n & 0x1fffffff;
- n >>= 29;
- n += ((sp_int64)a[72 + i]) << 11;
- }
- r[70] = (sp_digit)n;
- XMEMSET(&r[71], 0, sizeof(*r) * 71U);
- }
- /* Reduce the number back to 4096 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_4096_mont_reduce_71(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_4096_norm_71(a + 71);
- for (i=0; i<70; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
- sp_4096_mul_add_71(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffL;
- sp_4096_mul_add_71(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- sp_4096_mont_shift_71(a, a);
- over = a[70] - m[70];
- sp_4096_cond_sub_71(a, a, m, ~((over - 1) >> 31));
- sp_4096_norm_71(a);
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_4096_mul_71(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 lo;
- c = ((sp_uint64)a[70]) * b[70];
- r[141] = (sp_digit)(c >> 29);
- c &= 0x1fffffff;
- for (k = 139; k >= 0; k--) {
- if (k >= 71) {
- i = k - 70;
- imax = 70;
- }
- else {
- i = 0;
- imax = k;
- }
- if (imax - i > 15) {
- int imaxlo;
- lo = 0;
- for (imaxlo = i; imaxlo <= imax; imaxlo += 15) {
- for (; i <= imax && i < imaxlo + 15; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 29;
- lo &= 0x1fffffff;
- }
- r[k + 2] += (sp_digit)(c >> 29);
- r[k + 1] = (sp_digit)(c & 0x1fffffff);
- c = lo & 0x1fffffff;
- }
- else {
- lo = 0;
- for (; i <= imax; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 29;
- r[k + 2] += (sp_digit)(c >> 29);
- r[k + 1] = (sp_digit)(c & 0x1fffffff);
- c = lo & 0x1fffffff;
- }
- }
- r[0] = (sp_digit)c;
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_4096_mont_mul_71(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_4096_mul_71(r, a, b);
- sp_4096_mont_reduce_71(r, m, mp);
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_4096_sqr_71(sp_digit* r, const sp_digit* a)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 t;
- c = ((sp_uint64)a[70]) * a[70];
- r[141] = (sp_digit)(c >> 29);
- c = (c & 0x1fffffff) << 29;
- for (k = 139; k >= 0; k--) {
- i = (k + 1) / 2;
- if ((k & 1) == 0) {
- c += ((sp_uint64)a[i]) * a[i];
- i++;
- }
- if (k < 70) {
- imax = k;
- }
- else {
- imax = 70;
- }
- if (imax - i >= 14) {
- int imaxlo;
- sp_uint64 hi;
- hi = c >> 29;
- c &= 0x1fffffff;
- for (imaxlo = i; imaxlo <= imax; imaxlo += 14) {
- t = 0;
- for (; i <= imax && i < imaxlo + 14; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- hi += c >> 29;
- c &= 0x1fffffff;
- }
- r[k + 2] += (sp_digit)(hi >> 29);
- r[k + 1] = (sp_digit)(hi & 0x1fffffff);
- c <<= 29;
- }
- else
- {
- t = 0;
- for (; i <= imax; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- r[k + 2] += (sp_digit) (c >> 58);
- r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
- c = (c & 0x1fffffff) << 29;
- }
- }
- r[0] = (sp_digit)(c >> 29);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_4096_mont_sqr_71(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_4096_sqr_71(r, a);
- sp_4096_mont_reduce_71(r, m, mp);
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_4096_mul_d_71(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 71; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- }
- r[71] = (sp_digit)t;
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_4096_cond_add_71(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 71; i++) {
- r[i] = a[i] + (b[i] & m);
- }
- }
- #endif /* WOLFSSL_SP_SMALL */
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_add_71(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 71; i++) {
- r[i] = a[i] + b[i];
- }
- return 0;
- }
- SP_NOINLINE static void sp_4096_rshift_71(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- for (i=0; i<70; i++) {
- r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
- }
- r[70] = a[70] >> n;
- }
- static WC_INLINE sp_digit sp_4096_div_word_71(sp_digit d1, sp_digit d0,
- sp_digit div)
- {
- #ifdef SP_USE_DIVTI3
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- return d / div;
- #elif defined(__x86_64__) || defined(__i386__)
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_uint32 lo = (sp_uint32)d;
- sp_digit hi = (sp_digit)(d >> 32);
- __asm__ __volatile__ (
- "idiv %2"
- : "+a" (lo)
- : "d" (hi), "r" (div)
- : "cc"
- );
- return (sp_digit)lo;
- #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_digit dv = (div >> 1) + 1;
- sp_digit t1 = (sp_digit)(d >> 29);
- sp_digit t0 = (sp_digit)(d & 0x1fffffff);
- sp_digit t2;
- sp_digit sign;
- sp_digit r;
- int i;
- sp_int64 m;
- r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- t1 -= dv & (0 - r);
- for (i = 27; i >= 1; i--) {
- t1 += t1 + (((sp_uint32)t0 >> 28) & 1);
- t0 <<= 1;
- t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- r += r + t2;
- t1 -= dv & (0 - t2);
- t1 += t2;
- }
- r += r + 1;
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 29);
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 58) - (sp_digit)(d >> 58);
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- return r;
- #else
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_digit r = 0;
- sp_digit t;
- sp_digit dv = (div >> 14) + 1;
- t = (sp_digit)(d >> 28);
- t = (t / dv) << 14;
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)(d >> 13);
- t = t / (dv << 1);
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)d;
- t = t / div;
- r += t;
- d -= (sp_int64)t * div;
- return r;
- #endif
- }
- static WC_INLINE sp_digit sp_4096_word_div_word_71(sp_digit d, sp_digit div)
- {
- #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
- defined(SP_DIV_WORD_USE_DIV)
- return d / div;
- #else
- return (sp_digit)((sp_uint32)(div - d) >> 31);
- #endif
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Full implementation.
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_4096_div_71(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- #ifndef WOLFSSL_SP_DIV_32
- #endif
- sp_digit dv;
- sp_digit r1;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 71 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 71 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 142 + 1;
- sd = t2 + 71 + 1;
- sp_4096_mul_d_71(sd, d, (sp_digit)1 << 11);
- sp_4096_mul_d_142(t1, a, (sp_digit)1 << 11);
- dv = sd[70];
- t1[71 + 71] += t1[71 + 71 - 1] >> 29;
- t1[71 + 71 - 1] &= 0x1fffffff;
- for (i=71; i>=0; i--) {
- r1 = sp_4096_div_word_71(t1[71 + i], t1[71 + i - 1], dv);
- sp_4096_mul_d_71(t2, sd, r1);
- (void)sp_4096_sub_71(&t1[i], &t1[i], t2);
- sp_4096_norm_71(&t1[i]);
- t1[71 + i] -= t2[71];
- t1[71 + i] += t1[71 + i - 1] >> 29;
- t1[71 + i - 1] &= 0x1fffffff;
- r1 = sp_4096_div_word_71(-t1[71 + i], -t1[71 + i - 1], dv);
- r1 -= t1[71 + i];
- sp_4096_mul_d_71(t2, sd, r1);
- (void)sp_4096_add_71(&t1[i], &t1[i], t2);
- t1[71 + i] += t1[71 + i - 1] >> 29;
- t1[71 + i - 1] &= 0x1fffffff;
- }
- t1[71 - 1] += t1[71 - 2] >> 29;
- t1[71 - 2] &= 0x1fffffff;
- r1 = sp_4096_word_div_word_71(t1[71 - 1], dv);
- sp_4096_mul_d_71(t2, sd, r1);
- sp_4096_sub_71(t1, t1, t2);
- XMEMCPY(r, t1, sizeof(*r) * 142U);
- for (i=0; i<70; i++) {
- r[i+1] += r[i] >> 29;
- r[i] &= 0x1fffffff;
- }
- sp_4096_cond_add_71(r, r, sd, r[70] >> 31);
- sp_4096_norm_71(r);
- sp_4096_rshift_71(r, r, 11);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_4096_mod_71(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_4096_div_71(a, m, NULL, r);
- }
- /* Modular exponentiate a to the e mod m. (r = a^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * a A single precision number being exponentiated.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even or exponent is 0.
- */
- static int sp_4096_mod_exp_71(sp_digit* r, const sp_digit* a, const sp_digit* e,
- int bits, const sp_digit* m, int reduceA)
- {
- #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 142];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 71 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 71 * 2);
- XMEMSET(t[i], 0, sizeof(sp_digit) * 71U * 2U);
- }
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_71(norm, m);
- if (reduceA != 0) {
- err = sp_4096_mod_71(t[1], a, m);
- }
- else {
- XMEMCPY(t[1], a, sizeof(sp_digit) * 71U);
- }
- }
- if (err == MP_OKAY) {
- sp_4096_mul_71(t[1], t[1], norm);
- err = sp_4096_mod_71(t[1], t[1], m);
- }
- if (err == MP_OKAY) {
- i = bits / 29;
- c = bits % 29;
- n = e[i--] << (29 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 29;
- }
- y = (int)((n >> 28) & 1);
- n <<= 1;
- sp_4096_mont_mul_71(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 71 * 2);
- sp_4096_mont_sqr_71(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 71 * 2);
- }
- sp_4096_mont_reduce_71(t[0], m, mp);
- n = sp_4096_cmp_71(t[0], m);
- sp_4096_cond_sub_71(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 71 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #elif !defined(WC_NO_CACHE_RESISTANT)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 142];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 71 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 71 * 2);
- }
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_71(norm, m);
- if (reduceA != 0) {
- err = sp_4096_mod_71(t[1], a, m);
- if (err == MP_OKAY) {
- sp_4096_mul_71(t[1], t[1], norm);
- err = sp_4096_mod_71(t[1], t[1], m);
- }
- }
- else {
- sp_4096_mul_71(t[1], a, norm);
- err = sp_4096_mod_71(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- i = bits / 29;
- c = bits % 29;
- n = e[i--] << (29 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 29;
- }
- y = (int)((n >> 28) & 1);
- n <<= 1;
- sp_4096_mont_mul_71(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 71 * 2);
- sp_4096_mont_sqr_71(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 71 * 2);
- }
- sp_4096_mont_reduce_71(t[0], m, mp);
- n = sp_4096_cmp_71(t[0], m);
- sp_4096_cond_sub_71(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 71 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[(32 * 142) + 142];
- #endif
- sp_digit* t[32];
- sp_digit* rt = NULL;
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((32 * 142) + 142), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<32; i++)
- t[i] = td + i * 142;
- rt = td + 4544;
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_71(norm, m);
- if (reduceA != 0) {
- err = sp_4096_mod_71(t[1], a, m);
- if (err == MP_OKAY) {
- sp_4096_mul_71(t[1], t[1], norm);
- err = sp_4096_mod_71(t[1], t[1], m);
- }
- }
- else {
- sp_4096_mul_71(t[1], a, norm);
- err = sp_4096_mod_71(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- sp_4096_mont_sqr_71(t[ 2], t[ 1], m, mp);
- sp_4096_mont_mul_71(t[ 3], t[ 2], t[ 1], m, mp);
- sp_4096_mont_sqr_71(t[ 4], t[ 2], m, mp);
- sp_4096_mont_mul_71(t[ 5], t[ 3], t[ 2], m, mp);
- sp_4096_mont_sqr_71(t[ 6], t[ 3], m, mp);
- sp_4096_mont_mul_71(t[ 7], t[ 4], t[ 3], m, mp);
- sp_4096_mont_sqr_71(t[ 8], t[ 4], m, mp);
- sp_4096_mont_mul_71(t[ 9], t[ 5], t[ 4], m, mp);
- sp_4096_mont_sqr_71(t[10], t[ 5], m, mp);
- sp_4096_mont_mul_71(t[11], t[ 6], t[ 5], m, mp);
- sp_4096_mont_sqr_71(t[12], t[ 6], m, mp);
- sp_4096_mont_mul_71(t[13], t[ 7], t[ 6], m, mp);
- sp_4096_mont_sqr_71(t[14], t[ 7], m, mp);
- sp_4096_mont_mul_71(t[15], t[ 8], t[ 7], m, mp);
- sp_4096_mont_sqr_71(t[16], t[ 8], m, mp);
- sp_4096_mont_mul_71(t[17], t[ 9], t[ 8], m, mp);
- sp_4096_mont_sqr_71(t[18], t[ 9], m, mp);
- sp_4096_mont_mul_71(t[19], t[10], t[ 9], m, mp);
- sp_4096_mont_sqr_71(t[20], t[10], m, mp);
- sp_4096_mont_mul_71(t[21], t[11], t[10], m, mp);
- sp_4096_mont_sqr_71(t[22], t[11], m, mp);
- sp_4096_mont_mul_71(t[23], t[12], t[11], m, mp);
- sp_4096_mont_sqr_71(t[24], t[12], m, mp);
- sp_4096_mont_mul_71(t[25], t[13], t[12], m, mp);
- sp_4096_mont_sqr_71(t[26], t[13], m, mp);
- sp_4096_mont_mul_71(t[27], t[14], t[13], m, mp);
- sp_4096_mont_sqr_71(t[28], t[14], m, mp);
- sp_4096_mont_mul_71(t[29], t[15], t[14], m, mp);
- sp_4096_mont_sqr_71(t[30], t[15], m, mp);
- sp_4096_mont_mul_71(t[31], t[16], t[15], m, mp);
- bits = ((bits + 4) / 5) * 5;
- i = ((bits + 28) / 29) - 1;
- c = bits % 29;
- if (c == 0) {
- c = 29;
- }
- if (i < 71) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 5) {
- n |= e[i--] << (3 - c);
- c += 29;
- }
- y = (int)((n >> 27) & 0x1f);
- n <<= 5;
- c -= 5;
- XMEMCPY(rt, t[y], sizeof(sp_digit) * 142);
- while ((i >= 0) || (c >= 5)) {
- if (c >= 5) {
- y = (byte)((n >> 27) & 0x1f);
- n <<= 5;
- c -= 5;
- }
- else if (c == 0) {
- n = e[i--] << 3;
- y = (byte)((n >> 27) & 0x1f);
- n <<= 5;
- c = 24;
- }
- else {
- y = (byte)((n >> 27) & 0x1f);
- n = e[i--] << 3;
- c = 5 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 29 - c;
- }
- sp_4096_mont_sqr_71(rt, rt, m, mp);
- sp_4096_mont_sqr_71(rt, rt, m, mp);
- sp_4096_mont_sqr_71(rt, rt, m, mp);
- sp_4096_mont_sqr_71(rt, rt, m, mp);
- sp_4096_mont_sqr_71(rt, rt, m, mp);
- sp_4096_mont_mul_71(rt, rt, t[y], m, mp);
- }
- sp_4096_mont_reduce_71(rt, m, mp);
- n = sp_4096_cmp_71(rt, m);
- sp_4096_cond_sub_71(rt, rt, m, ~(n >> 31));
- XMEMCPY(r, rt, sizeof(sp_digit) * 142);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #endif
- }
- #endif /* WOLFSSL_HAVE_SP_RSA & !SP_RSA_PRIVATE_EXP_D */
- #endif /* (WOLFSSL_HAVE_SP_RSA | WOLFSSL_HAVE_SP_DH) & !WOLFSSL_RSA_PUBLIC_ONLY */
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_sub_142(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 142; i++) {
- r[i] = a[i] - b[i];
- }
- return 0;
- }
- /* r = 2^n mod m where n is the number of bits to reduce by.
- * Given m must be 4096 bits, just need to subtract.
- *
- * r A single precision number.
- * m A single precision number.
- */
- static void sp_4096_mont_norm_142(sp_digit* r, const sp_digit* m)
- {
- /* Set r = 2^n - 1. */
- int i;
- for (i=0; i<141; i++) {
- r[i] = 0x1fffffff;
- }
- r[141] = 0x7fL;
- /* r = (2^n - 1) mod n */
- (void)sp_4096_sub_142(r, r, m);
- /* Add one so r = 2^n mod m */
- r[0] += 1;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_4096_cmp_142(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- int i;
- for (i=141; i>=0; i--) {
- r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
- }
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_4096_cond_sub_142(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 142; i++) {
- r[i] = a[i] - (b[i] & m);
- }
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_4096_mul_add_142(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifndef WOLFSSL_SP_LARGE_CODE
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 142; i++) {
- t += r[i];
- t += tb * a[i];
- r[i] = ((sp_digit)t) & 0x1fffffff;
- t >>= 29;
- }
- r[142] += (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t[4];
- int i;
- t[0] = 0;
- for (i = 0; i < 140; i += 4) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- r[i+0] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[i+1] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[i+2] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[i+3] = t[3] & 0x1fffffff;
- t[0] = t[3] >> 29;
- }
- t[0] += (tb * a[140]) + r[140];
- t[1] = (tb * a[141]) + r[141];
- r[140] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[141] = t[1] & 0x1fffffff;
- r[142] += (sp_digit)(t[1] >> 29);
- #endif /* !WOLFSSL_SP_LARGE_CODE */
- }
- /* Shift the result in the high 4096 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_4096_mont_shift_142(sp_digit* r, const sp_digit* a)
- {
- int i;
- sp_int64 n = a[141] >> 7;
- n += ((sp_int64)a[142]) << 22;
- for (i = 0; i < 141; i++) {
- r[i] = n & 0x1fffffff;
- n >>= 29;
- n += ((sp_int64)a[143 + i]) << 22;
- }
- r[141] = (sp_digit)n;
- XMEMSET(&r[142], 0, sizeof(*r) * 142U);
- }
- /* Reduce the number back to 4096 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_4096_mont_reduce_142(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_4096_norm_142(a + 142);
- #ifdef WOLFSSL_SP_DH
- if (mp != 1) {
- for (i=0; i<141; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
- sp_4096_mul_add_142(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x7fL;
- sp_4096_mul_add_142(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- else {
- for (i=0; i<141; i++) {
- mu = a[i] & 0x1fffffff;
- sp_4096_mul_add_142(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- }
- mu = a[i] & 0x7fL;
- sp_4096_mul_add_142(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- #else
- for (i=0; i<141; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
- sp_4096_mul_add_142(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x7fL;
- sp_4096_mul_add_142(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- #endif
- sp_4096_mont_shift_142(a, a);
- over = a[141] - m[141];
- sp_4096_cond_sub_142(a, a, m, ~((over - 1) >> 31));
- sp_4096_norm_142(a);
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_4096_mont_mul_142(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_4096_mul_142(r, a, b);
- sp_4096_mont_reduce_142(r, m, mp);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_4096_mont_sqr_142(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_4096_sqr_142(r, a);
- sp_4096_mont_reduce_142(r, m, mp);
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_4096_mul_d_284(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 284; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- }
- r[284] = (sp_digit)t;
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_4096_cond_add_142(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 142; i++) {
- r[i] = a[i] + (b[i] & m);
- }
- }
- #endif /* WOLFSSL_SP_SMALL */
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_add_142(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 142; i++) {
- r[i] = a[i] + b[i];
- }
- return 0;
- }
- SP_NOINLINE static void sp_4096_rshift_142(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- for (i=0; i<141; i++) {
- r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
- }
- r[141] = a[141] >> n;
- }
- static WC_INLINE sp_digit sp_4096_div_word_142(sp_digit d1, sp_digit d0,
- sp_digit div)
- {
- #ifdef SP_USE_DIVTI3
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- return d / div;
- #elif defined(__x86_64__) || defined(__i386__)
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_uint32 lo = (sp_uint32)d;
- sp_digit hi = (sp_digit)(d >> 32);
- __asm__ __volatile__ (
- "idiv %2"
- : "+a" (lo)
- : "d" (hi), "r" (div)
- : "cc"
- );
- return (sp_digit)lo;
- #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_digit dv = (div >> 1) + 1;
- sp_digit t1 = (sp_digit)(d >> 29);
- sp_digit t0 = (sp_digit)(d & 0x1fffffff);
- sp_digit t2;
- sp_digit sign;
- sp_digit r;
- int i;
- sp_int64 m;
- r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- t1 -= dv & (0 - r);
- for (i = 27; i >= 1; i--) {
- t1 += t1 + (((sp_uint32)t0 >> 28) & 1);
- t0 <<= 1;
- t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- r += r + t2;
- t1 -= dv & (0 - t2);
- t1 += t2;
- }
- r += r + 1;
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 29);
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 58) - (sp_digit)(d >> 58);
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- return r;
- #else
- sp_int64 d = ((sp_int64)d1 << 29) + d0;
- sp_digit r = 0;
- sp_digit t;
- sp_digit dv = (div >> 14) + 1;
- t = (sp_digit)(d >> 28);
- t = (t / dv) << 14;
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)(d >> 13);
- t = t / (dv << 1);
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)d;
- t = t / div;
- r += t;
- d -= (sp_int64)t * div;
- return r;
- #endif
- }
- static WC_INLINE sp_digit sp_4096_word_div_word_142(sp_digit d, sp_digit div)
- {
- #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
- defined(SP_DIV_WORD_USE_DIV)
- return d / div;
- #else
- return (sp_digit)((sp_uint32)(div - d) >> 31);
- #endif
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Full implementation.
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_4096_div_142(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- #ifndef WOLFSSL_SP_DIV_32
- #endif
- sp_digit dv;
- sp_digit r1;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 142 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 142 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 284 + 1;
- sd = t2 + 142 + 1;
- sp_4096_mul_d_142(sd, d, (sp_digit)1 << 22);
- sp_4096_mul_d_284(t1, a, (sp_digit)1 << 22);
- dv = sd[141];
- t1[142 + 142] += t1[142 + 142 - 1] >> 29;
- t1[142 + 142 - 1] &= 0x1fffffff;
- for (i=142; i>=0; i--) {
- r1 = sp_4096_div_word_142(t1[142 + i], t1[142 + i - 1], dv);
- sp_4096_mul_d_142(t2, sd, r1);
- (void)sp_4096_sub_142(&t1[i], &t1[i], t2);
- sp_4096_norm_142(&t1[i]);
- t1[142 + i] -= t2[142];
- t1[142 + i] += t1[142 + i - 1] >> 29;
- t1[142 + i - 1] &= 0x1fffffff;
- r1 = sp_4096_div_word_142(-t1[142 + i], -t1[142 + i - 1], dv);
- r1 -= t1[142 + i];
- sp_4096_mul_d_142(t2, sd, r1);
- (void)sp_4096_add_142(&t1[i], &t1[i], t2);
- t1[142 + i] += t1[142 + i - 1] >> 29;
- t1[142 + i - 1] &= 0x1fffffff;
- }
- t1[142 - 1] += t1[142 - 2] >> 29;
- t1[142 - 2] &= 0x1fffffff;
- r1 = sp_4096_word_div_word_142(t1[142 - 1], dv);
- sp_4096_mul_d_142(t2, sd, r1);
- sp_4096_sub_142(t1, t1, t2);
- XMEMCPY(r, t1, sizeof(*r) * 284U);
- for (i=0; i<141; i++) {
- r[i+1] += r[i] >> 29;
- r[i] &= 0x1fffffff;
- }
- sp_4096_cond_add_142(r, r, sd, r[141] >> 31);
- sp_4096_norm_142(r);
- sp_4096_rshift_142(r, r, 22);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_4096_mod_142(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_4096_div_142(a, m, NULL, r);
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
- /* Modular exponentiate a to the e mod m. (r = a^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * a A single precision number being exponentiated.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even or exponent is 0.
- */
- static int sp_4096_mod_exp_142(sp_digit* r, const sp_digit* a, const sp_digit* e,
- int bits, const sp_digit* m, int reduceA)
- {
- #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 284];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 142 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 142 * 2);
- XMEMSET(t[i], 0, sizeof(sp_digit) * 142U * 2U);
- }
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_142(norm, m);
- if (reduceA != 0) {
- err = sp_4096_mod_142(t[1], a, m);
- }
- else {
- XMEMCPY(t[1], a, sizeof(sp_digit) * 142U);
- }
- }
- if (err == MP_OKAY) {
- sp_4096_mul_142(t[1], t[1], norm);
- err = sp_4096_mod_142(t[1], t[1], m);
- }
- if (err == MP_OKAY) {
- i = bits / 29;
- c = bits % 29;
- n = e[i--] << (29 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 29;
- }
- y = (int)((n >> 28) & 1);
- n <<= 1;
- sp_4096_mont_mul_142(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 142 * 2);
- sp_4096_mont_sqr_142(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 142 * 2);
- }
- sp_4096_mont_reduce_142(t[0], m, mp);
- n = sp_4096_cmp_142(t[0], m);
- sp_4096_cond_sub_142(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 142 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #elif !defined(WC_NO_CACHE_RESISTANT)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 284];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 142 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 142 * 2);
- }
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_142(norm, m);
- if (reduceA != 0) {
- err = sp_4096_mod_142(t[1], a, m);
- if (err == MP_OKAY) {
- sp_4096_mul_142(t[1], t[1], norm);
- err = sp_4096_mod_142(t[1], t[1], m);
- }
- }
- else {
- sp_4096_mul_142(t[1], a, norm);
- err = sp_4096_mod_142(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- i = bits / 29;
- c = bits % 29;
- n = e[i--] << (29 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 29;
- }
- y = (int)((n >> 28) & 1);
- n <<= 1;
- sp_4096_mont_mul_142(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 142 * 2);
- sp_4096_mont_sqr_142(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 142 * 2);
- }
- sp_4096_mont_reduce_142(t[0], m, mp);
- n = sp_4096_cmp_142(t[0], m);
- sp_4096_cond_sub_142(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 142 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[(16 * 284) + 284];
- #endif
- sp_digit* t[16];
- sp_digit* rt = NULL;
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((16 * 284) + 284), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<16; i++)
- t[i] = td + i * 284;
- rt = td + 4544;
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_142(norm, m);
- if (reduceA != 0) {
- err = sp_4096_mod_142(t[1], a, m);
- if (err == MP_OKAY) {
- sp_4096_mul_142(t[1], t[1], norm);
- err = sp_4096_mod_142(t[1], t[1], m);
- }
- }
- else {
- sp_4096_mul_142(t[1], a, norm);
- err = sp_4096_mod_142(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- sp_4096_mont_sqr_142(t[ 2], t[ 1], m, mp);
- sp_4096_mont_mul_142(t[ 3], t[ 2], t[ 1], m, mp);
- sp_4096_mont_sqr_142(t[ 4], t[ 2], m, mp);
- sp_4096_mont_mul_142(t[ 5], t[ 3], t[ 2], m, mp);
- sp_4096_mont_sqr_142(t[ 6], t[ 3], m, mp);
- sp_4096_mont_mul_142(t[ 7], t[ 4], t[ 3], m, mp);
- sp_4096_mont_sqr_142(t[ 8], t[ 4], m, mp);
- sp_4096_mont_mul_142(t[ 9], t[ 5], t[ 4], m, mp);
- sp_4096_mont_sqr_142(t[10], t[ 5], m, mp);
- sp_4096_mont_mul_142(t[11], t[ 6], t[ 5], m, mp);
- sp_4096_mont_sqr_142(t[12], t[ 6], m, mp);
- sp_4096_mont_mul_142(t[13], t[ 7], t[ 6], m, mp);
- sp_4096_mont_sqr_142(t[14], t[ 7], m, mp);
- sp_4096_mont_mul_142(t[15], t[ 8], t[ 7], m, mp);
- bits = ((bits + 3) / 4) * 4;
- i = ((bits + 28) / 29) - 1;
- c = bits % 29;
- if (c == 0) {
- c = 29;
- }
- if (i < 142) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 4) {
- n |= e[i--] << (3 - c);
- c += 29;
- }
- y = (int)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- XMEMCPY(rt, t[y], sizeof(sp_digit) * 284);
- while ((i >= 0) || (c >= 4)) {
- if (c >= 4) {
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- }
- else if (c == 0) {
- n = e[i--] << 3;
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c = 25;
- }
- else {
- y = (byte)((n >> 28) & 0xf);
- n = e[i--] << 3;
- c = 4 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 29 - c;
- }
- sp_4096_mont_sqr_142(rt, rt, m, mp);
- sp_4096_mont_sqr_142(rt, rt, m, mp);
- sp_4096_mont_sqr_142(rt, rt, m, mp);
- sp_4096_mont_sqr_142(rt, rt, m, mp);
- sp_4096_mont_mul_142(rt, rt, t[y], m, mp);
- }
- sp_4096_mont_reduce_142(rt, m, mp);
- n = sp_4096_cmp_142(rt, m);
- sp_4096_cond_sub_142(rt, rt, m, ~(n >> 31));
- XMEMCPY(r, rt, sizeof(sp_digit) * 284);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #endif
- }
- #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
- #ifdef WOLFSSL_HAVE_SP_RSA
- /* RSA public key operation.
- *
- * in Array of bytes representing the number to exponentiate, base.
- * inLen Number of bytes in base.
- * em Public exponent.
- * mm Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 512 bytes long.
- * outLen Number of bytes in result.
- * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
- * an array is too long and MEMORY_E when dynamic memory allocation fails.
- */
- int sp_RsaPublic_4096(const byte* in, word32 inLen, const mp_int* em,
- const mp_int* mm, byte* out, word32* outLen)
- {
- #ifdef WOLFSSL_SP_SMALL
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[142 * 5];
- #endif
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- sp_digit* norm = NULL;
- sp_uint64 e[1] = {0};
- sp_digit mp = 0;
- int i;
- int err = MP_OKAY;
- if (*outLen < 512U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(em) > 64) {
- err = MP_READ_E;
- }
- else if (inLen > 512U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 5, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- r = a + 142 * 2;
- m = r + 142 * 2;
- norm = r;
- sp_4096_from_bin(a, 142, in, inLen);
- #if DIGIT_BIT >= 64
- e[0] = (sp_uint64)em->dp[0];
- #else
- e[0] = (sp_uint64)em->dp[0];
- if (em->used > 1) {
- e[0] |= ((sp_uint64)em->dp[1]) << DIGIT_BIT;
- }
- #endif
- if (e[0] == 0) {
- err = MP_EXPTMOD_E;
- }
- }
- if (err == MP_OKAY) {
- sp_4096_from_mp(m, 142, mm);
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_142(norm, m);
- }
- if (err == MP_OKAY) {
- sp_4096_mul_142(a, a, norm);
- err = sp_4096_mod_142(a, a, m);
- }
- if (err == MP_OKAY) {
- for (i=63; i>=0; i--) {
- if ((e[0] >> i) != 0) {
- break;
- }
- }
- XMEMCPY(r, a, sizeof(sp_digit) * 142 * 2);
- for (i--; i>=0; i--) {
- sp_4096_mont_sqr_142(r, r, m, mp);
- if (((e[0] >> i) & 1) == 1) {
- sp_4096_mont_mul_142(r, r, a, m, mp);
- }
- }
- sp_4096_mont_reduce_142(r, m, mp);
- mp = sp_4096_cmp_142(r, m);
- sp_4096_cond_sub_142(r, r, m, ~(mp >> 31));
- sp_4096_to_bin_142(r, out);
- *outLen = 512;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[142 * 5];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- sp_uint64 e[1] = {0};
- int err = MP_OKAY;
- if (*outLen < 512U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(em) > 64) {
- err = MP_READ_E;
- }
- else if (inLen > 512U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 5, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d;
- r = a + 142 * 2;
- m = r + 142 * 2;
- sp_4096_from_bin(a, 142, in, inLen);
- #if DIGIT_BIT >= 64
- e[0] = (sp_uint64)em->dp[0];
- #else
- e[0] = (sp_uint64)em->dp[0];
- if (em->used > 1) {
- e[0] |= ((sp_uint64)em->dp[1]) << DIGIT_BIT;
- }
- #endif
- if (e[0] == 0) {
- err = MP_EXPTMOD_E;
- }
- }
- if (err == MP_OKAY) {
- sp_4096_from_mp(m, 142, mm);
- if (e[0] == 0x3) {
- sp_4096_sqr_142(r, a);
- err = sp_4096_mod_142(r, r, m);
- if (err == MP_OKAY) {
- sp_4096_mul_142(r, a, r);
- err = sp_4096_mod_142(r, r, m);
- }
- }
- else {
- sp_digit* norm = r;
- int i;
- sp_digit mp;
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_142(norm, m);
- sp_4096_mul_142(a, a, norm);
- err = sp_4096_mod_142(a, a, m);
- if (err == MP_OKAY) {
- for (i=63; i>=0; i--) {
- if ((e[0] >> i) != 0) {
- break;
- }
- }
- XMEMCPY(r, a, sizeof(sp_digit) * 284U);
- for (i--; i>=0; i--) {
- sp_4096_mont_sqr_142(r, r, m, mp);
- if (((e[0] >> i) & 1) == 1) {
- sp_4096_mont_mul_142(r, r, a, m, mp);
- }
- }
- sp_4096_mont_reduce_142(r, m, mp);
- mp = sp_4096_cmp_142(r, m);
- sp_4096_cond_sub_142(r, r, m, ~(mp >> 31));
- }
- }
- }
- if (err == MP_OKAY) {
- sp_4096_to_bin_142(r, out);
- *outLen = 512;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- }
- #ifndef WOLFSSL_RSA_PUBLIC_ONLY
- #if !defined(SP_RSA_PRIVATE_EXP_D) && !defined(RSA_LOW_MEM)
- #endif /* !SP_RSA_PRIVATE_EXP_D & !RSA_LOW_MEM */
- /* RSA private key operation.
- *
- * in Array of bytes representing the number to exponentiate, base.
- * inLen Number of bytes in base.
- * dm Private exponent.
- * pm First prime.
- * qm Second prime.
- * dpm First prime's CRT exponent.
- * dqm Second prime's CRT exponent.
- * qim Inverse of second prime mod p.
- * mm Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 512 bytes long.
- * outLen Number of bytes in result.
- * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
- * an array is too long and MEMORY_E when dynamic memory allocation fails.
- */
- int sp_RsaPrivate_4096(const byte* in, word32 inLen, const mp_int* dm,
- const mp_int* pm, const mp_int* qm, const mp_int* dpm, const mp_int* dqm,
- const mp_int* qim, const mp_int* mm, byte* out, word32* outLen)
- {
- #if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM)
- #if defined(WOLFSSL_SP_SMALL)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[142 * 4];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)pm;
- (void)qm;
- (void)dpm;
- (void)dqm;
- (void)qim;
- if (*outLen < 512U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(dm) > 4096) {
- err = MP_READ_E;
- }
- else if (inLen > 512) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 4, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d + 142;
- m = a + 284;
- r = a;
- sp_4096_from_bin(a, 142, in, inLen);
- sp_4096_from_mp(d, 142, dm);
- sp_4096_from_mp(m, 142, mm);
- err = sp_4096_mod_exp_142(r, a, d, 4096, m, 0);
- }
- if (err == MP_OKAY) {
- sp_4096_to_bin_142(r, out);
- *outLen = 512;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- #endif
- {
- /* only "a" and "r" are sensitive and need zeroized (same pointer) */
- if (a != NULL)
- ForceZero(a, sizeof(sp_digit) * 142);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[142 * 4];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)pm;
- (void)qm;
- (void)dpm;
- (void)dqm;
- (void)qim;
- if (*outLen < 512U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(dm) > 4096) {
- err = MP_READ_E;
- }
- else if (inLen > 512U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 4, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d + 142;
- m = a + 284;
- r = a;
- sp_4096_from_bin(a, 142, in, inLen);
- sp_4096_from_mp(d, 142, dm);
- sp_4096_from_mp(m, 142, mm);
- err = sp_4096_mod_exp_142(r, a, d, 4096, m, 0);
- }
- if (err == MP_OKAY) {
- sp_4096_to_bin_142(r, out);
- *outLen = 512;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- #endif
- {
- /* only "a" and "r" are sensitive and need zeroized (same pointer) */
- if (a != NULL)
- ForceZero(a, sizeof(sp_digit) * 142);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- #else
- #if defined(WOLFSSL_SP_SMALL)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[71 * 8];
- #endif
- sp_digit* p = NULL;
- sp_digit* dp = NULL;
- sp_digit* dq = NULL;
- sp_digit* qi = NULL;
- sp_digit* tmpa = NULL;
- sp_digit* tmpb = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)dm;
- (void)mm;
- if (*outLen < 512U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (inLen > 512) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(pm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(qm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 71 * 8, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = a + 142;
- qi = dq = dp = p + 71;
- tmpa = qi + 71;
- tmpb = tmpa + 142;
- r = a;
- sp_4096_from_bin(a, 142, in, inLen);
- sp_4096_from_mp(p, 71, pm);
- sp_4096_from_mp(dp, 71, dpm);
- err = sp_4096_mod_exp_71(tmpa, a, dp, 2048, p, 1);
- }
- if (err == MP_OKAY) {
- sp_4096_from_mp(p, 71, qm);
- sp_4096_from_mp(dq, 71, dqm);
- err = sp_4096_mod_exp_71(tmpb, a, dq, 2048, p, 1);
- }
- if (err == MP_OKAY) {
- sp_4096_from_mp(p, 71, pm);
- (void)sp_4096_sub_71(tmpa, tmpa, tmpb);
- sp_4096_norm_71(tmpa);
- sp_4096_cond_add_71(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[70] >> 31));
- sp_4096_cond_add_71(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[70] >> 31));
- sp_4096_norm_71(tmpa);
- sp_4096_from_mp(qi, 71, qim);
- sp_4096_mul_71(tmpa, tmpa, qi);
- err = sp_4096_mod_71(tmpa, tmpa, p);
- }
- if (err == MP_OKAY) {
- sp_4096_from_mp(p, 71, qm);
- sp_4096_mul_71(tmpa, p, tmpa);
- (void)sp_4096_add_142(r, tmpb, tmpa);
- sp_4096_norm_142(r);
- sp_4096_to_bin_142(r, out);
- *outLen = 512;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- #endif
- {
- ForceZero(a, sizeof(sp_digit) * 71 * 8);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[71 * 13];
- #endif
- sp_digit* p = NULL;
- sp_digit* q = NULL;
- sp_digit* dp = NULL;
- sp_digit* dq = NULL;
- sp_digit* qi = NULL;
- sp_digit* tmpa = NULL;
- sp_digit* tmpb = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)dm;
- (void)mm;
- if (*outLen < 512U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (inLen > 512U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(pm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(qm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 71 * 13, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = a + 142 * 2;
- q = p + 71;
- dp = q + 71;
- dq = dp + 71;
- qi = dq + 71;
- tmpa = qi + 71;
- tmpb = tmpa + 142;
- r = a;
- sp_4096_from_bin(a, 142, in, inLen);
- sp_4096_from_mp(p, 71, pm);
- sp_4096_from_mp(q, 71, qm);
- sp_4096_from_mp(dp, 71, dpm);
- sp_4096_from_mp(dq, 71, dqm);
- sp_4096_from_mp(qi, 71, qim);
- err = sp_4096_mod_exp_71(tmpa, a, dp, 2048, p, 1);
- }
- if (err == MP_OKAY) {
- err = sp_4096_mod_exp_71(tmpb, a, dq, 2048, q, 1);
- }
- if (err == MP_OKAY) {
- (void)sp_4096_sub_71(tmpa, tmpa, tmpb);
- sp_4096_norm_71(tmpa);
- sp_4096_cond_add_71(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[70] >> 31));
- sp_4096_cond_add_71(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[70] >> 31));
- sp_4096_norm_71(tmpa);
- sp_4096_mul_71(tmpa, tmpa, qi);
- err = sp_4096_mod_71(tmpa, tmpa, p);
- }
- if (err == MP_OKAY) {
- sp_4096_mul_71(tmpa, tmpa, q);
- (void)sp_4096_add_142(r, tmpb, tmpa);
- sp_4096_norm_142(r);
- sp_4096_to_bin_142(r, out);
- *outLen = 512;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- #endif
- {
- ForceZero(a, sizeof(sp_digit) * 71 * 13);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- #endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */
- }
- #endif /* !WOLFSSL_RSA_PUBLIC_ONLY */
- #endif /* WOLFSSL_HAVE_SP_RSA */
- #if defined(WOLFSSL_HAVE_SP_DH) || (defined(WOLFSSL_HAVE_SP_RSA) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY))
- /* Convert an array of sp_digit to an mp_int.
- *
- * a A single precision integer.
- * r A multi-precision integer.
- */
- static int sp_4096_to_mp(const sp_digit* a, mp_int* r)
- {
- int err;
- err = mp_grow(r, (4096 + DIGIT_BIT - 1) / DIGIT_BIT);
- if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
- #if DIGIT_BIT == 29
- XMEMCPY(r->dp, a, sizeof(sp_digit) * 142);
- r->used = 142;
- mp_clamp(r);
- #elif DIGIT_BIT < 29
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 142; i++) {
- r->dp[j] |= (mp_digit)(a[i] << s);
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- s = DIGIT_BIT - s;
- r->dp[++j] = (mp_digit)(a[i] >> s);
- while (s + DIGIT_BIT <= 29) {
- s += DIGIT_BIT;
- r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- if (s == SP_WORD_SIZE) {
- r->dp[j] = 0;
- }
- else {
- r->dp[j] = (mp_digit)(a[i] >> s);
- }
- }
- s = 29 - s;
- }
- r->used = (4096 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #else
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 142; i++) {
- r->dp[j] |= ((mp_digit)a[i]) << s;
- if (s + 29 >= DIGIT_BIT) {
- #if DIGIT_BIT != 32 && DIGIT_BIT != 64
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- #endif
- s = DIGIT_BIT - s;
- r->dp[++j] = a[i] >> s;
- s = 29 - s;
- }
- else {
- s += 29;
- }
- }
- r->used = (4096 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #endif
- }
- return err;
- }
- /* Perform the modular exponentiation for Diffie-Hellman.
- *
- * base Base. MP integer.
- * exp Exponent. MP integer.
- * mod Modulus. MP integer.
- * res Result. MP integer.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_ModExp_4096(const mp_int* base, const mp_int* exp, const mp_int* mod,
- mp_int* res)
- {
- #ifdef WOLFSSL_SP_SMALL
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[142 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 4096) {
- err = MP_READ_E;
- }
- else if (expBits > 4096) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 4, NULL,
- DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 142 * 2;
- m = e + 142;
- r = b;
- sp_4096_from_mp(b, 142, base);
- sp_4096_from_mp(e, 142, exp);
- sp_4096_from_mp(m, 142, mod);
- err = sp_4096_mod_exp_142(r, b, e, mp_count_bits(exp), m, 0);
- }
- if (err == MP_OKAY) {
- err = sp_4096_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 142U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[142 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 4096) {
- err = MP_READ_E;
- }
- else if (expBits > 4096) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 4, NULL, DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 142 * 2;
- m = e + 142;
- r = b;
- sp_4096_from_mp(b, 142, base);
- sp_4096_from_mp(e, 142, exp);
- sp_4096_from_mp(m, 142, mod);
- err = sp_4096_mod_exp_142(r, b, e, expBits, m, 0);
- }
- if (err == MP_OKAY) {
- err = sp_4096_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 142U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #endif
- }
- #ifdef WOLFSSL_HAVE_SP_DH
- #ifdef HAVE_FFDHE_4096
- SP_NOINLINE static void sp_4096_lshift_142(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- r[142] = a[141] >> (29 - n);
- for (i=141; i>0; i--) {
- r[i] = ((a[i] << n) | (a[i-1] >> (29 - n))) & 0x1fffffff;
- }
- r[0] = (a[0] << n) & 0x1fffffff;
- }
- /* Modular exponentiate 2 to the e mod m. (r = 2^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even.
- */
- static int sp_4096_mod_exp_2_142(sp_digit* r, const sp_digit* e, int bits, const sp_digit* m)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[427];
- #endif
- sp_digit* norm = NULL;
- sp_digit* tmp = NULL;
- sp_digit mp = 1;
- sp_digit n;
- sp_digit o;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 427, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- tmp = td + 284;
- XMEMSET(td, 0, sizeof(sp_digit) * 427);
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_142(norm, m);
- bits = ((bits + 3) / 4) * 4;
- i = ((bits + 28) / 29) - 1;
- c = bits % 29;
- if (c == 0) {
- c = 29;
- }
- if (i < 142) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 4) {
- n |= e[i--] << (3 - c);
- c += 29;
- }
- y = (int)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- sp_4096_lshift_142(r, norm, (byte)y);
- while ((i >= 0) || (c >= 4)) {
- if (c >= 4) {
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- }
- else if (c == 0) {
- n = e[i--] << 3;
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c = 25;
- }
- else {
- y = (byte)((n >> 28) & 0xf);
- n = e[i--] << 3;
- c = 4 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 29 - c;
- }
- sp_4096_mont_sqr_142(r, r, m, mp);
- sp_4096_mont_sqr_142(r, r, m, mp);
- sp_4096_mont_sqr_142(r, r, m, mp);
- sp_4096_mont_sqr_142(r, r, m, mp);
- sp_4096_lshift_142(r, r, (byte)y);
- sp_4096_mul_d_142(tmp, norm, (r[142] << 22) + (r[141] >> 7));
- r[142] = 0;
- r[141] &= 0x7fL;
- (void)sp_4096_add_142(r, r, tmp);
- sp_4096_norm_142(r);
- o = sp_4096_cmp_142(r, m);
- sp_4096_cond_sub_142(r, r, m, ~(o >> 31));
- }
- sp_4096_mont_reduce_142(r, m, mp);
- n = sp_4096_cmp_142(r, m);
- sp_4096_cond_sub_142(r, r, m, ~(n >> 31));
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- #endif /* HAVE_FFDHE_4096 */
- /* Perform the modular exponentiation for Diffie-Hellman.
- *
- * base Base.
- * exp Array of bytes that is the exponent.
- * expLen Length of data, in bytes, in exponent.
- * mod Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 512 bytes long.
- * outLen Length, in bytes, of exponentiation result.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_DhExp_4096(const mp_int* base, const byte* exp, word32 expLen,
- const mp_int* mod, byte* out, word32* outLen)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[142 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- word32 i;
- int err = MP_OKAY;
- if (mp_count_bits(base) > 4096) {
- err = MP_READ_E;
- }
- else if (expLen > 512U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 142 * 4, NULL,
- DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 142 * 2;
- m = e + 142;
- r = b;
- sp_4096_from_mp(b, 142, base);
- sp_4096_from_bin(e, 142, exp, expLen);
- sp_4096_from_mp(m, 142, mod);
- #ifdef HAVE_FFDHE_4096
- if (base->used == 1 && base->dp[0] == 2U &&
- ((m[141] << 9) | (m[140] >> 20)) == 0xffffL) {
- err = sp_4096_mod_exp_2_142(r, e, expLen * 8U, m);
- }
- else {
- #endif
- err = sp_4096_mod_exp_142(r, b, e, expLen * 8U, m, 0);
- #ifdef HAVE_FFDHE_4096
- }
- #endif
- }
- if (err == MP_OKAY) {
- sp_4096_to_bin_142(r, out);
- *outLen = 512;
- for (i=0; i<512U && out[i] == 0U; i++) {
- /* Search for first non-zero. */
- }
- *outLen -= i;
- XMEMMOVE(out, out + i, *outLen);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 142U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_HAVE_SP_DH */
- #endif /* WOLFSSL_HAVE_SP_DH | (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) */
- #else
- /* Read big endian unsigned byte array into r.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a Byte array.
- * n Number of bytes in array to read.
- */
- static void sp_4096_from_bin(sp_digit* r, int size, const byte* a, int n)
- {
- int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = n-1; i >= 0; i--) {
- r[j] |= (((sp_digit)a[i]) << s);
- if (s >= 18U) {
- r[j] &= 0x3ffffff;
- s = 26U - s;
- if (j + 1 >= size) {
- break;
- }
- r[++j] = (sp_digit)a[i] >> s;
- s = 8U - s;
- }
- else {
- s += 8U;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- }
- /* Convert an mp_int to an array of sp_digit.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a A multi-precision integer.
- */
- static void sp_4096_from_mp(sp_digit* r, int size, const mp_int* a)
- {
- #if DIGIT_BIT == 26
- int i;
- sp_digit j = (sp_digit)0 - (sp_digit)a->used;
- int o = 0;
- for (i = 0; i < size; i++) {
- sp_digit mask = (sp_digit)0 - (j >> 25);
- r[i] = a->dp[o] & mask;
- j++;
- o += (int)(j >> 25);
- }
- #elif DIGIT_BIT > 26
- unsigned int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i] << s);
- r[j] &= 0x3ffffff;
- s = 26U - s;
- if (j + 1 >= size) {
- break;
- }
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- while ((s + 26U) <= (word32)DIGIT_BIT) {
- s += 26U;
- r[j] &= 0x3ffffff;
- if (j + 1 >= size) {
- break;
- }
- if (s < (word32)DIGIT_BIT) {
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- }
- else {
- r[++j] = (sp_digit)0;
- }
- }
- s = (word32)DIGIT_BIT - s;
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #else
- unsigned int i;
- int j = 0;
- int s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i]) << s;
- if (s + DIGIT_BIT >= 26) {
- r[j] &= 0x3ffffff;
- if (j + 1 >= size) {
- break;
- }
- s = 26 - s;
- if (s == DIGIT_BIT) {
- r[++j] = 0;
- s = 0;
- }
- else {
- r[++j] = a->dp[i] >> s;
- s = DIGIT_BIT - s;
- }
- }
- else {
- s += DIGIT_BIT;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #endif
- }
- /* Write r as big endian to byte array.
- * Fixed length number of bytes written: 512
- *
- * r A single precision integer.
- * a Byte array.
- */
- static void sp_4096_to_bin_162(sp_digit* r, byte* a)
- {
- int i;
- int j;
- int s = 0;
- int b;
- for (i=0; i<161; i++) {
- r[i+1] += r[i] >> 26;
- r[i] &= 0x3ffffff;
- }
- j = 4103 / 8 - 1;
- a[j] = 0;
- for (i=0; i<158 && j>=0; i++) {
- b = 0;
- /* lint allow cast of mismatch sp_digit and int */
- a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
- b += 8 - s;
- if (j < 0) {
- break;
- }
- while (b < 26) {
- a[j--] = (byte)(r[i] >> b);
- b += 8;
- if (j < 0) {
- break;
- }
- }
- s = 8 - (b - 26);
- if (j >= 0) {
- a[j] = 0;
- }
- if (s != 0) {
- j++;
- }
- }
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
- #if defined(WOLFSSL_HAVE_SP_RSA) && !defined(SP_RSA_PRIVATE_EXP_D)
- /* Normalize the values in each word to 26 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_4096_norm_81(sp_digit* a)
- {
- int i;
- for (i = 0; i < 80; i += 8) {
- a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
- a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
- a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
- a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
- a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
- a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
- a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
- a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
- }
- }
- #endif /* WOLFSSL_HAVE_SP_RSA & !SP_RSA_PRIVATE_EXP_D */
- #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
- /* Normalize the values in each word to 26 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_4096_norm_79(sp_digit* a)
- {
- int i;
- for (i = 0; i < 72; i += 8) {
- a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
- a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
- a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
- a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
- a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
- a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
- a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
- a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
- }
- a[73] += a[72] >> 26; a[72] &= 0x3ffffff;
- a[74] += a[73] >> 26; a[73] &= 0x3ffffff;
- a[75] += a[74] >> 26; a[74] &= 0x3ffffff;
- a[76] += a[75] >> 26; a[75] &= 0x3ffffff;
- a[77] += a[76] >> 26; a[76] &= 0x3ffffff;
- a[78] += a[77] >> 26; a[77] &= 0x3ffffff;
- }
- /* Normalize the values in each word to 26 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_4096_norm_162(sp_digit* a)
- {
- int i;
- for (i = 0; i < 160; i += 8) {
- a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
- a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
- a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
- a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
- a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
- a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
- a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
- a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
- }
- a[161] += a[160] >> 26; a[160] &= 0x3ffffff;
- }
- /* Normalize the values in each word to 26 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_4096_norm_158(sp_digit* a)
- {
- int i;
- for (i = 0; i < 152; i += 8) {
- a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
- a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
- a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
- a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
- a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
- a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
- a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
- a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
- }
- a[153] += a[152] >> 26; a[152] &= 0x3ffffff;
- a[154] += a[153] >> 26; a[153] &= 0x3ffffff;
- a[155] += a[154] >> 26; a[154] &= 0x3ffffff;
- a[156] += a[155] >> 26; a[155] &= 0x3ffffff;
- a[157] += a[156] >> 26; a[156] &= 0x3ffffff;
- }
- #ifndef WOLFSSL_SP_SMALL
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_4096_mul_9(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_uint64 t0;
- sp_uint64 t1;
- sp_digit t[9];
- t0 = ((sp_uint64)a[ 0]) * b[ 0];
- t1 = ((sp_uint64)a[ 0]) * b[ 1]
- + ((sp_uint64)a[ 1]) * b[ 0];
- t[ 0] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_uint64)a[ 0]) * b[ 2]
- + ((sp_uint64)a[ 1]) * b[ 1]
- + ((sp_uint64)a[ 2]) * b[ 0];
- t[ 1] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_uint64)a[ 0]) * b[ 3]
- + ((sp_uint64)a[ 1]) * b[ 2]
- + ((sp_uint64)a[ 2]) * b[ 1]
- + ((sp_uint64)a[ 3]) * b[ 0];
- t[ 2] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_uint64)a[ 0]) * b[ 4]
- + ((sp_uint64)a[ 1]) * b[ 3]
- + ((sp_uint64)a[ 2]) * b[ 2]
- + ((sp_uint64)a[ 3]) * b[ 1]
- + ((sp_uint64)a[ 4]) * b[ 0];
- t[ 3] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_uint64)a[ 0]) * b[ 5]
- + ((sp_uint64)a[ 1]) * b[ 4]
- + ((sp_uint64)a[ 2]) * b[ 3]
- + ((sp_uint64)a[ 3]) * b[ 2]
- + ((sp_uint64)a[ 4]) * b[ 1]
- + ((sp_uint64)a[ 5]) * b[ 0];
- t[ 4] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_uint64)a[ 0]) * b[ 6]
- + ((sp_uint64)a[ 1]) * b[ 5]
- + ((sp_uint64)a[ 2]) * b[ 4]
- + ((sp_uint64)a[ 3]) * b[ 3]
- + ((sp_uint64)a[ 4]) * b[ 2]
- + ((sp_uint64)a[ 5]) * b[ 1]
- + ((sp_uint64)a[ 6]) * b[ 0];
- t[ 5] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_uint64)a[ 0]) * b[ 7]
- + ((sp_uint64)a[ 1]) * b[ 6]
- + ((sp_uint64)a[ 2]) * b[ 5]
- + ((sp_uint64)a[ 3]) * b[ 4]
- + ((sp_uint64)a[ 4]) * b[ 3]
- + ((sp_uint64)a[ 5]) * b[ 2]
- + ((sp_uint64)a[ 6]) * b[ 1]
- + ((sp_uint64)a[ 7]) * b[ 0];
- t[ 6] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_uint64)a[ 0]) * b[ 8]
- + ((sp_uint64)a[ 1]) * b[ 7]
- + ((sp_uint64)a[ 2]) * b[ 6]
- + ((sp_uint64)a[ 3]) * b[ 5]
- + ((sp_uint64)a[ 4]) * b[ 4]
- + ((sp_uint64)a[ 5]) * b[ 3]
- + ((sp_uint64)a[ 6]) * b[ 2]
- + ((sp_uint64)a[ 7]) * b[ 1]
- + ((sp_uint64)a[ 8]) * b[ 0];
- t[ 7] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_uint64)a[ 1]) * b[ 8]
- + ((sp_uint64)a[ 2]) * b[ 7]
- + ((sp_uint64)a[ 3]) * b[ 6]
- + ((sp_uint64)a[ 4]) * b[ 5]
- + ((sp_uint64)a[ 5]) * b[ 4]
- + ((sp_uint64)a[ 6]) * b[ 3]
- + ((sp_uint64)a[ 7]) * b[ 2]
- + ((sp_uint64)a[ 8]) * b[ 1];
- t[ 8] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_uint64)a[ 2]) * b[ 8]
- + ((sp_uint64)a[ 3]) * b[ 7]
- + ((sp_uint64)a[ 4]) * b[ 6]
- + ((sp_uint64)a[ 5]) * b[ 5]
- + ((sp_uint64)a[ 6]) * b[ 4]
- + ((sp_uint64)a[ 7]) * b[ 3]
- + ((sp_uint64)a[ 8]) * b[ 2];
- r[ 9] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_uint64)a[ 3]) * b[ 8]
- + ((sp_uint64)a[ 4]) * b[ 7]
- + ((sp_uint64)a[ 5]) * b[ 6]
- + ((sp_uint64)a[ 6]) * b[ 5]
- + ((sp_uint64)a[ 7]) * b[ 4]
- + ((sp_uint64)a[ 8]) * b[ 3];
- r[10] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_uint64)a[ 4]) * b[ 8]
- + ((sp_uint64)a[ 5]) * b[ 7]
- + ((sp_uint64)a[ 6]) * b[ 6]
- + ((sp_uint64)a[ 7]) * b[ 5]
- + ((sp_uint64)a[ 8]) * b[ 4];
- r[11] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_uint64)a[ 5]) * b[ 8]
- + ((sp_uint64)a[ 6]) * b[ 7]
- + ((sp_uint64)a[ 7]) * b[ 6]
- + ((sp_uint64)a[ 8]) * b[ 5];
- r[12] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_uint64)a[ 6]) * b[ 8]
- + ((sp_uint64)a[ 7]) * b[ 7]
- + ((sp_uint64)a[ 8]) * b[ 6];
- r[13] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_uint64)a[ 7]) * b[ 8]
- + ((sp_uint64)a[ 8]) * b[ 7];
- r[14] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_uint64)a[ 8]) * b[ 8];
- r[15] = t1 & 0x3ffffff; t0 += t1 >> 26;
- r[16] = t0 & 0x3ffffff;
- r[17] = (sp_digit)(t0 >> 26);
- XMEMCPY(r, t, sizeof(t));
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_add_9(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- r[ 0] = a[ 0] + b[ 0];
- r[ 1] = a[ 1] + b[ 1];
- r[ 2] = a[ 2] + b[ 2];
- r[ 3] = a[ 3] + b[ 3];
- r[ 4] = a[ 4] + b[ 4];
- r[ 5] = a[ 5] + b[ 5];
- r[ 6] = a[ 6] + b[ 6];
- r[ 7] = a[ 7] + b[ 7];
- r[ 8] = a[ 8] + b[ 8];
- return 0;
- }
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_sub_18(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 16; i += 8) {
- r[i + 0] = a[i + 0] - b[i + 0];
- r[i + 1] = a[i + 1] - b[i + 1];
- r[i + 2] = a[i + 2] - b[i + 2];
- r[i + 3] = a[i + 3] - b[i + 3];
- r[i + 4] = a[i + 4] - b[i + 4];
- r[i + 5] = a[i + 5] - b[i + 5];
- r[i + 6] = a[i + 6] - b[i + 6];
- r[i + 7] = a[i + 7] - b[i + 7];
- }
- r[16] = a[16] - b[16];
- r[17] = a[17] - b[17];
- return 0;
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_add_18(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 16; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- r[16] = a[16] + b[16];
- r[17] = a[17] + b[17];
- return 0;
- }
- /* Normalize the values in each word to 26 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_4096_norm_9(sp_digit* a)
- {
- a[1] += a[0] >> 26; a[0] &= 0x3ffffff;
- a[2] += a[1] >> 26; a[1] &= 0x3ffffff;
- a[3] += a[2] >> 26; a[2] &= 0x3ffffff;
- a[4] += a[3] >> 26; a[3] &= 0x3ffffff;
- a[5] += a[4] >> 26; a[4] &= 0x3ffffff;
- a[6] += a[5] >> 26; a[5] &= 0x3ffffff;
- a[7] += a[6] >> 26; a[6] &= 0x3ffffff;
- a[8] += a[7] >> 26; a[7] &= 0x3ffffff;
- }
- /* Normalize the values in each word to 26 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_4096_norm_18(sp_digit* a)
- {
- int i;
- for (i = 0; i < 16; i += 8) {
- a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
- a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
- a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
- a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
- a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
- a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
- a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
- a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
- }
- a[17] += a[16] >> 26; a[16] &= 0x3ffffff;
- }
- /* Normalize the values in each word to 26 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_4096_norm_54(sp_digit* a)
- {
- int i;
- for (i = 0; i < 48; i += 8) {
- a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
- a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
- a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
- a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
- a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
- a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
- a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
- a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
- }
- a[49] += a[48] >> 26; a[48] &= 0x3ffffff;
- a[50] += a[49] >> 26; a[49] &= 0x3ffffff;
- a[51] += a[50] >> 26; a[50] &= 0x3ffffff;
- a[52] += a[51] >> 26; a[51] &= 0x3ffffff;
- a[53] += a[52] >> 26; a[52] &= 0x3ffffff;
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_4096_mul_27(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_digit p0[18];
- sp_digit p1[18];
- sp_digit p2[18];
- sp_digit p3[18];
- sp_digit p4[18];
- sp_digit p5[18];
- sp_digit t0[18];
- sp_digit t1[18];
- sp_digit t2[18];
- sp_digit a0[9];
- sp_digit a1[9];
- sp_digit a2[9];
- sp_digit b0[9];
- sp_digit b1[9];
- sp_digit b2[9];
- (void)sp_4096_add_9(a0, a, &a[9]);
- sp_4096_norm_9(a0);
- (void)sp_4096_add_9(b0, b, &b[9]);
- sp_4096_norm_9(b0);
- (void)sp_4096_add_9(a1, &a[9], &a[18]);
- sp_4096_norm_9(a1);
- (void)sp_4096_add_9(b1, &b[9], &b[18]);
- sp_4096_norm_9(b1);
- (void)sp_4096_add_9(a2, a0, &a[18]);
- sp_4096_norm_9(a1);
- (void)sp_4096_add_9(b2, b0, &b[18]);
- sp_4096_norm_9(b2);
- sp_4096_mul_9(p0, a, b);
- sp_4096_mul_9(p2, &a[9], &b[9]);
- sp_4096_mul_9(p4, &a[18], &b[18]);
- sp_4096_mul_9(p1, a0, b0);
- sp_4096_mul_9(p3, a1, b1);
- sp_4096_mul_9(p5, a2, b2);
- XMEMSET(r, 0, sizeof(*r)*2U*27U);
- (void)sp_4096_sub_18(t0, p3, p2);
- (void)sp_4096_sub_18(t1, p1, p2);
- (void)sp_4096_sub_18(t2, p5, t0);
- (void)sp_4096_sub_18(t2, t2, t1);
- sp_4096_norm_18(t2);
- (void)sp_4096_sub_18(t0, t0, p4);
- sp_4096_norm_18(t0);
- (void)sp_4096_sub_18(t1, t1, p0);
- sp_4096_norm_18(t1);
- (void)sp_4096_add_18(r, r, p0);
- (void)sp_4096_add_18(&r[9], &r[9], t1);
- (void)sp_4096_add_18(&r[18], &r[18], t2);
- (void)sp_4096_add_18(&r[27], &r[27], t0);
- (void)sp_4096_add_18(&r[36], &r[36], p4);
- sp_4096_norm_54(r);
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_add_27(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 24; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- r[24] = a[24] + b[24];
- r[25] = a[25] + b[25];
- r[26] = a[26] + b[26];
- return 0;
- }
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_sub_54(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 48; i += 8) {
- r[i + 0] = a[i + 0] - b[i + 0];
- r[i + 1] = a[i + 1] - b[i + 1];
- r[i + 2] = a[i + 2] - b[i + 2];
- r[i + 3] = a[i + 3] - b[i + 3];
- r[i + 4] = a[i + 4] - b[i + 4];
- r[i + 5] = a[i + 5] - b[i + 5];
- r[i + 6] = a[i + 6] - b[i + 6];
- r[i + 7] = a[i + 7] - b[i + 7];
- }
- r[48] = a[48] - b[48];
- r[49] = a[49] - b[49];
- r[50] = a[50] - b[50];
- r[51] = a[51] - b[51];
- r[52] = a[52] - b[52];
- r[53] = a[53] - b[53];
- return 0;
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_add_54(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 48; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- r[48] = a[48] + b[48];
- r[49] = a[49] + b[49];
- r[50] = a[50] + b[50];
- r[51] = a[51] + b[51];
- r[52] = a[52] + b[52];
- r[53] = a[53] + b[53];
- return 0;
- }
- /* Normalize the values in each word to 26 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_4096_norm_27(sp_digit* a)
- {
- int i;
- for (i = 0; i < 24; i += 8) {
- a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
- a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
- a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
- a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
- a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
- a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
- a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
- a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
- }
- a[25] += a[24] >> 26; a[24] &= 0x3ffffff;
- a[26] += a[25] >> 26; a[25] &= 0x3ffffff;
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_4096_mul_81(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_digit p0[54];
- sp_digit p1[54];
- sp_digit p2[54];
- sp_digit p3[54];
- sp_digit p4[54];
- sp_digit p5[54];
- sp_digit t0[54];
- sp_digit t1[54];
- sp_digit t2[54];
- sp_digit a0[27];
- sp_digit a1[27];
- sp_digit a2[27];
- sp_digit b0[27];
- sp_digit b1[27];
- sp_digit b2[27];
- (void)sp_4096_add_27(a0, a, &a[27]);
- sp_4096_norm_27(a0);
- (void)sp_4096_add_27(b0, b, &b[27]);
- sp_4096_norm_27(b0);
- (void)sp_4096_add_27(a1, &a[27], &a[54]);
- sp_4096_norm_27(a1);
- (void)sp_4096_add_27(b1, &b[27], &b[54]);
- sp_4096_norm_27(b1);
- (void)sp_4096_add_27(a2, a0, &a[54]);
- sp_4096_norm_27(a1);
- (void)sp_4096_add_27(b2, b0, &b[54]);
- sp_4096_norm_27(b2);
- sp_4096_mul_27(p0, a, b);
- sp_4096_mul_27(p2, &a[27], &b[27]);
- sp_4096_mul_27(p4, &a[54], &b[54]);
- sp_4096_mul_27(p1, a0, b0);
- sp_4096_mul_27(p3, a1, b1);
- sp_4096_mul_27(p5, a2, b2);
- XMEMSET(r, 0, sizeof(*r)*2U*81U);
- (void)sp_4096_sub_54(t0, p3, p2);
- (void)sp_4096_sub_54(t1, p1, p2);
- (void)sp_4096_sub_54(t2, p5, t0);
- (void)sp_4096_sub_54(t2, t2, t1);
- sp_4096_norm_54(t2);
- (void)sp_4096_sub_54(t0, t0, p4);
- sp_4096_norm_54(t0);
- (void)sp_4096_sub_54(t1, t1, p0);
- sp_4096_norm_54(t1);
- (void)sp_4096_add_54(r, r, p0);
- (void)sp_4096_add_54(&r[27], &r[27], t1);
- (void)sp_4096_add_54(&r[54], &r[54], t2);
- (void)sp_4096_add_54(&r[81], &r[81], t0);
- (void)sp_4096_add_54(&r[108], &r[108], p4);
- sp_4096_norm_162(r);
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_add_81(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 80; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- r[80] = a[80] + b[80];
- return 0;
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_add_162(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 160; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- r[160] = a[160] + b[160];
- r[161] = a[161] + b[161];
- return 0;
- }
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_sub_162(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 160; i += 8) {
- r[i + 0] = a[i + 0] - b[i + 0];
- r[i + 1] = a[i + 1] - b[i + 1];
- r[i + 2] = a[i + 2] - b[i + 2];
- r[i + 3] = a[i + 3] - b[i + 3];
- r[i + 4] = a[i + 4] - b[i + 4];
- r[i + 5] = a[i + 5] - b[i + 5];
- r[i + 6] = a[i + 6] - b[i + 6];
- r[i + 7] = a[i + 7] - b[i + 7];
- }
- r[160] = a[160] - b[160];
- r[161] = a[161] - b[161];
- return 0;
- }
- /* Normalize the values in each word to 26 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_4096_norm_324(sp_digit* a)
- {
- int i;
- for (i = 0; i < 320; i += 8) {
- a[i+1] += a[i+0] >> 26; a[i+0] &= 0x3ffffff;
- a[i+2] += a[i+1] >> 26; a[i+1] &= 0x3ffffff;
- a[i+3] += a[i+2] >> 26; a[i+2] &= 0x3ffffff;
- a[i+4] += a[i+3] >> 26; a[i+3] &= 0x3ffffff;
- a[i+5] += a[i+4] >> 26; a[i+4] &= 0x3ffffff;
- a[i+6] += a[i+5] >> 26; a[i+5] &= 0x3ffffff;
- a[i+7] += a[i+6] >> 26; a[i+6] &= 0x3ffffff;
- a[i+8] += a[i+7] >> 26; a[i+7] &= 0x3ffffff;
- }
- a[321] += a[320] >> 26; a[320] &= 0x3ffffff;
- a[322] += a[321] >> 26; a[321] &= 0x3ffffff;
- a[323] += a[322] >> 26; a[322] &= 0x3ffffff;
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_4096_mul_162(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_digit* z0 = r;
- sp_digit z1[162];
- sp_digit* a1 = z1;
- sp_digit b1[81];
- sp_digit* z2 = r + 162;
- (void)sp_4096_add_81(a1, a, &a[81]);
- sp_4096_norm_81(a1);
- (void)sp_4096_add_81(b1, b, &b[81]);
- sp_4096_norm_81(b1);
- sp_4096_mul_81(z2, &a[81], &b[81]);
- sp_4096_mul_81(z0, a, b);
- sp_4096_mul_81(z1, a1, b1);
- (void)sp_4096_sub_162(z1, z1, z2);
- (void)sp_4096_sub_162(z1, z1, z0);
- (void)sp_4096_add_162(r + 81, r + 81, z1);
- sp_4096_norm_324(r);
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_4096_sqr_9(sp_digit* r, const sp_digit* a)
- {
- sp_uint64 t0;
- sp_uint64 t1;
- sp_digit t[9];
- t0 = ((sp_uint64)a[ 0]) * a[ 0];
- t1 = (((sp_uint64)a[ 0]) * a[ 1]) * 2;
- t[ 0] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_uint64)a[ 0]) * a[ 2]) * 2
- + ((sp_uint64)a[ 1]) * a[ 1];
- t[ 1] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_uint64)a[ 0]) * a[ 3]
- + ((sp_uint64)a[ 1]) * a[ 2]) * 2;
- t[ 2] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_uint64)a[ 0]) * a[ 4]
- + ((sp_uint64)a[ 1]) * a[ 3]) * 2
- + ((sp_uint64)a[ 2]) * a[ 2];
- t[ 3] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_uint64)a[ 0]) * a[ 5]
- + ((sp_uint64)a[ 1]) * a[ 4]
- + ((sp_uint64)a[ 2]) * a[ 3]) * 2;
- t[ 4] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_uint64)a[ 0]) * a[ 6]
- + ((sp_uint64)a[ 1]) * a[ 5]
- + ((sp_uint64)a[ 2]) * a[ 4]) * 2
- + ((sp_uint64)a[ 3]) * a[ 3];
- t[ 5] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_uint64)a[ 0]) * a[ 7]
- + ((sp_uint64)a[ 1]) * a[ 6]
- + ((sp_uint64)a[ 2]) * a[ 5]
- + ((sp_uint64)a[ 3]) * a[ 4]) * 2;
- t[ 6] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_uint64)a[ 0]) * a[ 8]
- + ((sp_uint64)a[ 1]) * a[ 7]
- + ((sp_uint64)a[ 2]) * a[ 6]
- + ((sp_uint64)a[ 3]) * a[ 5]) * 2
- + ((sp_uint64)a[ 4]) * a[ 4];
- t[ 7] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_uint64)a[ 1]) * a[ 8]
- + ((sp_uint64)a[ 2]) * a[ 7]
- + ((sp_uint64)a[ 3]) * a[ 6]
- + ((sp_uint64)a[ 4]) * a[ 5]) * 2;
- t[ 8] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_uint64)a[ 2]) * a[ 8]
- + ((sp_uint64)a[ 3]) * a[ 7]
- + ((sp_uint64)a[ 4]) * a[ 6]) * 2
- + ((sp_uint64)a[ 5]) * a[ 5];
- r[ 9] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_uint64)a[ 3]) * a[ 8]
- + ((sp_uint64)a[ 4]) * a[ 7]
- + ((sp_uint64)a[ 5]) * a[ 6]) * 2;
- r[10] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_uint64)a[ 4]) * a[ 8]
- + ((sp_uint64)a[ 5]) * a[ 7]) * 2
- + ((sp_uint64)a[ 6]) * a[ 6];
- r[11] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_uint64)a[ 5]) * a[ 8]
- + ((sp_uint64)a[ 6]) * a[ 7]) * 2;
- r[12] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_uint64)a[ 6]) * a[ 8]) * 2
- + ((sp_uint64)a[ 7]) * a[ 7];
- r[13] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_uint64)a[ 7]) * a[ 8]) * 2;
- r[14] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_uint64)a[ 8]) * a[ 8];
- r[15] = t1 & 0x3ffffff; t0 += t1 >> 26;
- r[16] = t0 & 0x3ffffff;
- r[17] = (sp_digit)(t0 >> 26);
- XMEMCPY(r, t, sizeof(t));
- }
- /* Square a into r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_4096_sqr_27(sp_digit* r, const sp_digit* a)
- {
- sp_digit p0[18];
- sp_digit p1[18];
- sp_digit p2[18];
- sp_digit p3[18];
- sp_digit p4[18];
- sp_digit p5[18];
- sp_digit t0[18];
- sp_digit t1[18];
- sp_digit t2[18];
- sp_digit a0[9];
- sp_digit a1[9];
- sp_digit a2[9];
- (void)sp_4096_add_9(a0, a, &a[9]);
- sp_4096_norm_9(a0);
- (void)sp_4096_add_9(a1, &a[9], &a[18]);
- sp_4096_norm_9(a1);
- (void)sp_4096_add_9(a2, a0, &a[18]);
- sp_4096_norm_9(a2);
- sp_4096_sqr_9(p0, a);
- sp_4096_sqr_9(p2, &a[9]);
- sp_4096_sqr_9(p4, &a[18]);
- sp_4096_sqr_9(p1, a0);
- sp_4096_sqr_9(p3, a1);
- sp_4096_sqr_9(p5, a2);
- XMEMSET(r, 0, sizeof(*r)*2U*27U);
- (void)sp_4096_sub_18(t0, p3, p2);
- (void)sp_4096_sub_18(t1, p1, p2);
- (void)sp_4096_sub_18(t2, p5, t0);
- (void)sp_4096_sub_18(t2, t2, t1);
- sp_4096_norm_18(t2);
- (void)sp_4096_sub_18(t0, t0, p4);
- sp_4096_norm_18(t0);
- (void)sp_4096_sub_18(t1, t1, p0);
- sp_4096_norm_18(t1);
- (void)sp_4096_add_18(r, r, p0);
- (void)sp_4096_add_18(&r[9], &r[9], t1);
- (void)sp_4096_add_18(&r[18], &r[18], t2);
- (void)sp_4096_add_18(&r[27], &r[27], t0);
- (void)sp_4096_add_18(&r[36], &r[36], p4);
- sp_4096_norm_54(r);
- }
- /* Square a into r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_4096_sqr_81(sp_digit* r, const sp_digit* a)
- {
- sp_digit p0[54];
- sp_digit p1[54];
- sp_digit p2[54];
- sp_digit p3[54];
- sp_digit p4[54];
- sp_digit p5[54];
- sp_digit t0[54];
- sp_digit t1[54];
- sp_digit t2[54];
- sp_digit a0[27];
- sp_digit a1[27];
- sp_digit a2[27];
- (void)sp_4096_add_27(a0, a, &a[27]);
- sp_4096_norm_27(a0);
- (void)sp_4096_add_27(a1, &a[27], &a[54]);
- sp_4096_norm_27(a1);
- (void)sp_4096_add_27(a2, a0, &a[54]);
- sp_4096_norm_27(a2);
- sp_4096_sqr_27(p0, a);
- sp_4096_sqr_27(p2, &a[27]);
- sp_4096_sqr_27(p4, &a[54]);
- sp_4096_sqr_27(p1, a0);
- sp_4096_sqr_27(p3, a1);
- sp_4096_sqr_27(p5, a2);
- XMEMSET(r, 0, sizeof(*r)*2U*81U);
- (void)sp_4096_sub_54(t0, p3, p2);
- (void)sp_4096_sub_54(t1, p1, p2);
- (void)sp_4096_sub_54(t2, p5, t0);
- (void)sp_4096_sub_54(t2, t2, t1);
- sp_4096_norm_54(t2);
- (void)sp_4096_sub_54(t0, t0, p4);
- sp_4096_norm_54(t0);
- (void)sp_4096_sub_54(t1, t1, p0);
- sp_4096_norm_54(t1);
- (void)sp_4096_add_54(r, r, p0);
- (void)sp_4096_add_54(&r[27], &r[27], t1);
- (void)sp_4096_add_54(&r[54], &r[54], t2);
- (void)sp_4096_add_54(&r[81], &r[81], t0);
- (void)sp_4096_add_54(&r[108], &r[108], p4);
- sp_4096_norm_162(r);
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_4096_sqr_162(sp_digit* r, const sp_digit* a)
- {
- sp_digit* z0 = r;
- sp_digit z1[162];
- sp_digit* a1 = z1;
- sp_digit* z2 = r + 162;
- (void)sp_4096_add_81(a1, a, &a[81]);
- sp_4096_norm_81(a1);
- sp_4096_sqr_81(z2, &a[81]);
- sp_4096_sqr_81(z0, a);
- sp_4096_sqr_81(z1, a1);
- (void)sp_4096_sub_162(z1, z1, z2);
- (void)sp_4096_sub_162(z1, z1, z0);
- (void)sp_4096_add_162(r + 81, r + 81, z1);
- sp_4096_norm_324(r);
- }
- #endif /* !WOLFSSL_SP_SMALL */
- /* Calculate the bottom digit of -1/a mod 2^n.
- *
- * a A single precision number.
- * rho Bottom word of inverse.
- */
- static void sp_4096_mont_setup(const sp_digit* a, sp_digit* rho)
- {
- sp_digit x;
- sp_digit b;
- b = a[0];
- x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
- x *= 2 - b * x; /* here x*a==1 mod 2**8 */
- x *= 2 - b * x; /* here x*a==1 mod 2**16 */
- x *= 2 - b * x; /* here x*a==1 mod 2**32 */
- x &= 0x3ffffff;
- /* rho = -1/m mod b */
- *rho = ((sp_digit)1 << 26) - x;
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_4096_mul_d_162(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- sp_int64 tb = b;
- sp_int64 t = 0;
- sp_digit t2;
- sp_int64 p[4];
- int i;
- for (i = 0; i < 160; i += 4) {
- p[0] = tb * a[i + 0];
- p[1] = tb * a[i + 1];
- p[2] = tb * a[i + 2];
- p[3] = tb * a[i + 3];
- t += p[0];
- t2 = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[i + 0] = (sp_digit)t2;
- t += p[1];
- t2 = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[i + 1] = (sp_digit)t2;
- t += p[2];
- t2 = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[i + 2] = (sp_digit)t2;
- t += p[3];
- t2 = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[i + 3] = (sp_digit)t2;
- }
- t += tb * a[160];
- r[160] = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- t += tb * a[161];
- r[161] = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[162] = (sp_digit)(t & 0x3ffffff);
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH)) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)
- #if defined(WOLFSSL_HAVE_SP_RSA) && !defined(SP_RSA_PRIVATE_EXP_D)
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_4096_sub_81(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 80; i += 8) {
- r[i + 0] = a[i + 0] - b[i + 0];
- r[i + 1] = a[i + 1] - b[i + 1];
- r[i + 2] = a[i + 2] - b[i + 2];
- r[i + 3] = a[i + 3] - b[i + 3];
- r[i + 4] = a[i + 4] - b[i + 4];
- r[i + 5] = a[i + 5] - b[i + 5];
- r[i + 6] = a[i + 6] - b[i + 6];
- r[i + 7] = a[i + 7] - b[i + 7];
- }
- r[80] = a[80] - b[80];
- return 0;
- }
- /* r = 2^n mod m where n is the number of bits to reduce by.
- * Given m must be 4096 bits, just need to subtract.
- *
- * r A single precision number.
- * m A single precision number.
- */
- static void sp_4096_mont_norm_81(sp_digit* r, const sp_digit* m)
- {
- /* Set r = 2^n - 1. */
- int i;
- for (i = 0; i < 72; i += 8) {
- r[i + 0] = 0x3ffffff;
- r[i + 1] = 0x3ffffff;
- r[i + 2] = 0x3ffffff;
- r[i + 3] = 0x3ffffff;
- r[i + 4] = 0x3ffffff;
- r[i + 5] = 0x3ffffff;
- r[i + 6] = 0x3ffffff;
- r[i + 7] = 0x3ffffff;
- }
- r[72] = 0x3ffffff;
- r[73] = 0x3ffffff;
- r[74] = 0x3ffffff;
- r[75] = 0x3ffffff;
- r[76] = 0x3ffffff;
- r[77] = 0x3ffffff;
- r[78] = 0xfffffL;
- r[79] = 0;
- r[80] = 0;
- /* r = (2^n - 1) mod n */
- (void)sp_4096_sub_81(r, r, m);
- /* Add one so r = 2^n mod m */
- r[0] += 1;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_4096_cmp_81(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- int i;
- r |= (a[80] - b[80]) & (0 - (sp_digit)1);
- for (i = 72; i >= 0; i -= 8) {
- r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 25);
- }
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_4096_cond_sub_81(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 80; i += 8) {
- r[i + 0] = a[i + 0] - (b[i + 0] & m);
- r[i + 1] = a[i + 1] - (b[i + 1] & m);
- r[i + 2] = a[i + 2] - (b[i + 2] & m);
- r[i + 3] = a[i + 3] - (b[i + 3] & m);
- r[i + 4] = a[i + 4] - (b[i + 4] & m);
- r[i + 5] = a[i + 5] - (b[i + 5] & m);
- r[i + 6] = a[i + 6] - (b[i + 6] & m);
- r[i + 7] = a[i + 7] - (b[i + 7] & m);
- }
- r[80] = a[80] - (b[80] & m);
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_4096_mul_add_81(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifndef WOLFSSL_SP_LARGE_CODE
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 81; i++) {
- t += r[i];
- t += tb * a[i];
- r[i] = ((sp_digit)t) & 0x3ffffff;
- t >>= 26;
- }
- r[81] += (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t[8];
- int i;
- t[0] = 0;
- for (i = 0; i < 80; i += 8) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- t[4] = (tb * a[i+4]) + r[i+4];
- t[5] = (tb * a[i+5]) + r[i+5];
- t[6] = (tb * a[i+6]) + r[i+6];
- t[7] = (tb * a[i+7]) + r[i+7];
- r[i+0] = t[0] & 0x3ffffff;
- t[1] += t[0] >> 26;
- r[i+1] = t[1] & 0x3ffffff;
- t[2] += t[1] >> 26;
- r[i+2] = t[2] & 0x3ffffff;
- t[3] += t[2] >> 26;
- r[i+3] = t[3] & 0x3ffffff;
- t[4] += t[3] >> 26;
- r[i+4] = t[4] & 0x3ffffff;
- t[5] += t[4] >> 26;
- r[i+5] = t[5] & 0x3ffffff;
- t[6] += t[5] >> 26;
- r[i+6] = t[6] & 0x3ffffff;
- t[7] += t[6] >> 26;
- r[i+7] = t[7] & 0x3ffffff;
- t[0] = t[7] >> 26;
- }
- t[0] += (tb * a[80]) + r[80];
- r[80] = t[0] & 0x3ffffff;
- r[81] += (sp_digit)(t[0] >> 26);
- #endif /* !WOLFSSL_SP_LARGE_CODE */
- }
- /* Shift the result in the high 2048 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_4096_mont_shift_81(sp_digit* r, const sp_digit* a)
- {
- int i;
- sp_int64 n = a[78] >> 20;
- n += ((sp_int64)a[79]) << 6;
- for (i = 0; i < 72; i += 8) {
- r[i + 0] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 80]) << 6;
- r[i + 1] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 81]) << 6;
- r[i + 2] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 82]) << 6;
- r[i + 3] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 83]) << 6;
- r[i + 4] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 84]) << 6;
- r[i + 5] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 85]) << 6;
- r[i + 6] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 86]) << 6;
- r[i + 7] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 87]) << 6;
- }
- r[72] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[152]) << 6;
- r[73] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[153]) << 6;
- r[74] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[154]) << 6;
- r[75] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[155]) << 6;
- r[76] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[156]) << 6;
- r[77] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[157]) << 6;
- r[78] = (sp_digit)n;
- XMEMSET(&r[79], 0, sizeof(*r) * 79U);
- }
- /* Reduce the number back to 4096 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_4096_mont_reduce_81(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_4096_norm_81(a + 79);
- for (i=0; i<78; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffff;
- sp_4096_mul_add_81(a+i, m, mu);
- a[i+1] += a[i] >> 26;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffL;
- sp_4096_mul_add_81(a+i, m, mu);
- a[i+1] += a[i] >> 26;
- a[i] &= 0x3ffffff;
- sp_4096_mont_shift_81(a, a);
- over = a[78] - m[78];
- sp_4096_cond_sub_81(a, a, m, ~((over - 1) >> 31));
- sp_4096_norm_81(a);
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_4096_mont_mul_81(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_4096_mul_81(r, a, b);
- sp_4096_mont_reduce_81(r, m, mp);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_4096_mont_sqr_81(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_4096_sqr_81(r, a);
- sp_4096_mont_reduce_81(r, m, mp);
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_4096_mul_d_81(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- sp_int64 tb = b;
- sp_int64 t = 0;
- sp_digit t2;
- sp_int64 p[4];
- int i;
- for (i = 0; i < 80; i += 4) {
- p[0] = tb * a[i + 0];
- p[1] = tb * a[i + 1];
- p[2] = tb * a[i + 2];
- p[3] = tb * a[i + 3];
- t += p[0];
- t2 = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[i + 0] = (sp_digit)t2;
- t += p[1];
- t2 = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[i + 1] = (sp_digit)t2;
- t += p[2];
- t2 = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[i + 2] = (sp_digit)t2;
- t += p[3];
- t2 = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[i + 3] = (sp_digit)t2;
- }
- t += tb * a[80];
- r[80] = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[81] = (sp_digit)(t & 0x3ffffff);
- }
- #ifndef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_4096_cond_add_81(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 80; i += 8) {
- r[i + 0] = a[i + 0] + (b[i + 0] & m);
- r[i + 1] = a[i + 1] + (b[i + 1] & m);
- r[i + 2] = a[i + 2] + (b[i + 2] & m);
- r[i + 3] = a[i + 3] + (b[i + 3] & m);
- r[i + 4] = a[i + 4] + (b[i + 4] & m);
- r[i + 5] = a[i + 5] + (b[i + 5] & m);
- r[i + 6] = a[i + 6] + (b[i + 6] & m);
- r[i + 7] = a[i + 7] + (b[i + 7] & m);
- }
- r[80] = a[80] + (b[80] & m);
- }
- #endif /* !WOLFSSL_SP_SMALL */
- SP_NOINLINE static void sp_4096_rshift_81(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- for (i=0; i<80; i += 8) {
- r[i+0] = (a[i+0] >> n) | ((a[i+1] << (26 - n)) & 0x3ffffff);
- r[i+1] = (a[i+1] >> n) | ((a[i+2] << (26 - n)) & 0x3ffffff);
- r[i+2] = (a[i+2] >> n) | ((a[i+3] << (26 - n)) & 0x3ffffff);
- r[i+3] = (a[i+3] >> n) | ((a[i+4] << (26 - n)) & 0x3ffffff);
- r[i+4] = (a[i+4] >> n) | ((a[i+5] << (26 - n)) & 0x3ffffff);
- r[i+5] = (a[i+5] >> n) | ((a[i+6] << (26 - n)) & 0x3ffffff);
- r[i+6] = (a[i+6] >> n) | ((a[i+7] << (26 - n)) & 0x3ffffff);
- r[i+7] = (a[i+7] >> n) | ((a[i+8] << (26 - n)) & 0x3ffffff);
- }
- r[80] = a[80] >> n;
- }
- static WC_INLINE sp_digit sp_4096_div_word_81(sp_digit d1, sp_digit d0,
- sp_digit div)
- {
- #ifdef SP_USE_DIVTI3
- sp_int64 d = ((sp_int64)d1 << 26) + d0;
- return d / div;
- #elif defined(__x86_64__) || defined(__i386__)
- sp_int64 d = ((sp_int64)d1 << 26) + d0;
- sp_uint32 lo = (sp_uint32)d;
- sp_digit hi = (sp_digit)(d >> 32);
- __asm__ __volatile__ (
- "idiv %2"
- : "+a" (lo)
- : "d" (hi), "r" (div)
- : "cc"
- );
- return (sp_digit)lo;
- #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
- sp_int64 d = ((sp_int64)d1 << 26) + d0;
- sp_digit dv = (div >> 1) + 1;
- sp_digit t1 = (sp_digit)(d >> 26);
- sp_digit t0 = (sp_digit)(d & 0x3ffffff);
- sp_digit t2;
- sp_digit sign;
- sp_digit r;
- int i;
- sp_int64 m;
- r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- t1 -= dv & (0 - r);
- for (i = 24; i >= 1; i--) {
- t1 += t1 + (((sp_uint32)t0 >> 25) & 1);
- t0 <<= 1;
- t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- r += r + t2;
- t1 -= dv & (0 - t2);
- t1 += t2;
- }
- r += r + 1;
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 26);
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 52) - (sp_digit)(d >> 52);
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- return r;
- #else
- sp_int64 d = ((sp_int64)d1 << 26) + d0;
- sp_digit r = 0;
- sp_digit t;
- sp_digit dv = (div >> 11) + 1;
- t = (sp_digit)(d >> 22);
- t = (t / dv) << 11;
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)(d >> 7);
- t = t / (dv << 4);
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)d;
- t = t / div;
- r += t;
- d -= (sp_int64)t * div;
- return r;
- #endif
- }
- static WC_INLINE sp_digit sp_4096_word_div_word_81(sp_digit d, sp_digit div)
- {
- #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
- defined(SP_DIV_WORD_USE_DIV)
- return d / div;
- #else
- return (sp_digit)((sp_uint32)(div - d) >> 31);
- #endif
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Full implementation.
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_4096_div_81(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- #ifndef WOLFSSL_SP_DIV_32
- #endif
- sp_digit dv;
- sp_digit r1;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 81 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 81 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 162 + 1;
- sd = t2 + 81 + 1;
- sp_4096_mul_d_81(sd, d, (sp_digit)1 << 6);
- sp_4096_mul_d_162(t1, a, (sp_digit)1 << 6);
- dv = sd[78];
- t1[79 + 79] += t1[79 + 79 - 1] >> 26;
- t1[79 + 79 - 1] &= 0x3ffffff;
- for (i=79; i>=0; i--) {
- r1 = sp_4096_div_word_81(t1[79 + i], t1[79 + i - 1], dv);
- sp_4096_mul_d_81(t2, sd, r1);
- (void)sp_4096_sub_81(&t1[i], &t1[i], t2);
- sp_4096_norm_79(&t1[i]);
- t1[79 + i] += t1[79 + i - 1] >> 26;
- t1[79 + i - 1] &= 0x3ffffff;
- r1 = sp_4096_div_word_81(-t1[79 + i], -t1[79 + i - 1], dv);
- r1 -= t1[79 + i];
- sp_4096_mul_d_81(t2, sd, r1);
- (void)sp_4096_add_81(&t1[i], &t1[i], t2);
- t1[79 + i] += t1[79 + i - 1] >> 26;
- t1[79 + i - 1] &= 0x3ffffff;
- }
- t1[79 - 1] += t1[79 - 2] >> 26;
- t1[79 - 2] &= 0x3ffffff;
- r1 = sp_4096_word_div_word_81(t1[79 - 1], dv);
- sp_4096_mul_d_81(t2, sd, r1);
- sp_4096_sub_81(t1, t1, t2);
- XMEMCPY(r, t1, sizeof(*r) * 162U);
- for (i=0; i<78; i++) {
- r[i+1] += r[i] >> 26;
- r[i] &= 0x3ffffff;
- }
- sp_4096_cond_add_81(r, r, sd, r[78] >> 31);
- sp_4096_norm_79(r);
- sp_4096_rshift_81(r, r, 6);
- r[79] = 0;
- r[80] = 0;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_4096_mod_81(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_4096_div_81(a, m, NULL, r);
- }
- /* Modular exponentiate a to the e mod m. (r = a^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * a A single precision number being exponentiated.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even or exponent is 0.
- */
- static int sp_4096_mod_exp_81(sp_digit* r, const sp_digit* a, const sp_digit* e,
- int bits, const sp_digit* m, int reduceA)
- {
- #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 162];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 81 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 81 * 2);
- XMEMSET(t[i], 0, sizeof(sp_digit) * 81U * 2U);
- }
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_81(norm, m);
- if (reduceA != 0) {
- err = sp_4096_mod_81(t[1], a, m);
- }
- else {
- XMEMCPY(t[1], a, sizeof(sp_digit) * 81U);
- }
- }
- if (err == MP_OKAY) {
- sp_4096_mul_81(t[1], t[1], norm);
- err = sp_4096_mod_81(t[1], t[1], m);
- }
- if (err == MP_OKAY) {
- i = bits / 26;
- c = bits % 26;
- n = e[i--] << (26 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 26;
- }
- y = (int)((n >> 25) & 1);
- n <<= 1;
- sp_4096_mont_mul_81(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 81 * 2);
- sp_4096_mont_sqr_81(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 81 * 2);
- }
- sp_4096_mont_reduce_81(t[0], m, mp);
- n = sp_4096_cmp_81(t[0], m);
- sp_4096_cond_sub_81(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 81 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #elif !defined(WC_NO_CACHE_RESISTANT)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 162];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 81 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 81 * 2);
- }
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_81(norm, m);
- if (reduceA != 0) {
- err = sp_4096_mod_81(t[1], a, m);
- if (err == MP_OKAY) {
- sp_4096_mul_81(t[1], t[1], norm);
- err = sp_4096_mod_81(t[1], t[1], m);
- }
- }
- else {
- sp_4096_mul_81(t[1], a, norm);
- err = sp_4096_mod_81(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- i = bits / 26;
- c = bits % 26;
- n = e[i--] << (26 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 26;
- }
- y = (int)((n >> 25) & 1);
- n <<= 1;
- sp_4096_mont_mul_81(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 81 * 2);
- sp_4096_mont_sqr_81(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 81 * 2);
- }
- sp_4096_mont_reduce_81(t[0], m, mp);
- n = sp_4096_cmp_81(t[0], m);
- sp_4096_cond_sub_81(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 81 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[(32 * 162) + 162];
- #endif
- sp_digit* t[32];
- sp_digit* rt = NULL;
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((32 * 162) + 162), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<32; i++)
- t[i] = td + i * 162;
- rt = td + 5184;
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_81(norm, m);
- if (reduceA != 0) {
- err = sp_4096_mod_81(t[1], a, m);
- if (err == MP_OKAY) {
- sp_4096_mul_81(t[1], t[1], norm);
- err = sp_4096_mod_81(t[1], t[1], m);
- }
- }
- else {
- sp_4096_mul_81(t[1], a, norm);
- err = sp_4096_mod_81(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- sp_4096_mont_sqr_81(t[ 2], t[ 1], m, mp);
- sp_4096_mont_mul_81(t[ 3], t[ 2], t[ 1], m, mp);
- sp_4096_mont_sqr_81(t[ 4], t[ 2], m, mp);
- sp_4096_mont_mul_81(t[ 5], t[ 3], t[ 2], m, mp);
- sp_4096_mont_sqr_81(t[ 6], t[ 3], m, mp);
- sp_4096_mont_mul_81(t[ 7], t[ 4], t[ 3], m, mp);
- sp_4096_mont_sqr_81(t[ 8], t[ 4], m, mp);
- sp_4096_mont_mul_81(t[ 9], t[ 5], t[ 4], m, mp);
- sp_4096_mont_sqr_81(t[10], t[ 5], m, mp);
- sp_4096_mont_mul_81(t[11], t[ 6], t[ 5], m, mp);
- sp_4096_mont_sqr_81(t[12], t[ 6], m, mp);
- sp_4096_mont_mul_81(t[13], t[ 7], t[ 6], m, mp);
- sp_4096_mont_sqr_81(t[14], t[ 7], m, mp);
- sp_4096_mont_mul_81(t[15], t[ 8], t[ 7], m, mp);
- sp_4096_mont_sqr_81(t[16], t[ 8], m, mp);
- sp_4096_mont_mul_81(t[17], t[ 9], t[ 8], m, mp);
- sp_4096_mont_sqr_81(t[18], t[ 9], m, mp);
- sp_4096_mont_mul_81(t[19], t[10], t[ 9], m, mp);
- sp_4096_mont_sqr_81(t[20], t[10], m, mp);
- sp_4096_mont_mul_81(t[21], t[11], t[10], m, mp);
- sp_4096_mont_sqr_81(t[22], t[11], m, mp);
- sp_4096_mont_mul_81(t[23], t[12], t[11], m, mp);
- sp_4096_mont_sqr_81(t[24], t[12], m, mp);
- sp_4096_mont_mul_81(t[25], t[13], t[12], m, mp);
- sp_4096_mont_sqr_81(t[26], t[13], m, mp);
- sp_4096_mont_mul_81(t[27], t[14], t[13], m, mp);
- sp_4096_mont_sqr_81(t[28], t[14], m, mp);
- sp_4096_mont_mul_81(t[29], t[15], t[14], m, mp);
- sp_4096_mont_sqr_81(t[30], t[15], m, mp);
- sp_4096_mont_mul_81(t[31], t[16], t[15], m, mp);
- bits = ((bits + 4) / 5) * 5;
- i = ((bits + 25) / 26) - 1;
- c = bits % 26;
- if (c == 0) {
- c = 26;
- }
- if (i < 81) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 5) {
- n |= e[i--] << (6 - c);
- c += 26;
- }
- y = (int)((n >> 27) & 0x1f);
- n <<= 5;
- c -= 5;
- XMEMCPY(rt, t[y], sizeof(sp_digit) * 162);
- while ((i >= 0) || (c >= 5)) {
- if (c >= 5) {
- y = (byte)((n >> 27) & 0x1f);
- n <<= 5;
- c -= 5;
- }
- else if (c == 0) {
- n = e[i--] << 6;
- y = (byte)((n >> 27) & 0x1f);
- n <<= 5;
- c = 21;
- }
- else {
- y = (byte)((n >> 27) & 0x1f);
- n = e[i--] << 6;
- c = 5 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 26 - c;
- }
- sp_4096_mont_sqr_81(rt, rt, m, mp);
- sp_4096_mont_sqr_81(rt, rt, m, mp);
- sp_4096_mont_sqr_81(rt, rt, m, mp);
- sp_4096_mont_sqr_81(rt, rt, m, mp);
- sp_4096_mont_sqr_81(rt, rt, m, mp);
- sp_4096_mont_mul_81(rt, rt, t[y], m, mp);
- }
- sp_4096_mont_reduce_81(rt, m, mp);
- n = sp_4096_cmp_81(rt, m);
- sp_4096_cond_sub_81(rt, rt, m, ~(n >> 31));
- XMEMCPY(r, rt, sizeof(sp_digit) * 162);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #endif
- }
- #endif /* WOLFSSL_HAVE_SP_RSA & !SP_RSA_PRIVATE_EXP_D */
- #endif /* (WOLFSSL_HAVE_SP_RSA | WOLFSSL_HAVE_SP_DH) & !WOLFSSL_RSA_PUBLIC_ONLY */
- /* r = 2^n mod m where n is the number of bits to reduce by.
- * Given m must be 4096 bits, just need to subtract.
- *
- * r A single precision number.
- * m A single precision number.
- */
- static void sp_4096_mont_norm_162(sp_digit* r, const sp_digit* m)
- {
- /* Set r = 2^n - 1. */
- int i;
- for (i = 0; i < 152; i += 8) {
- r[i + 0] = 0x3ffffff;
- r[i + 1] = 0x3ffffff;
- r[i + 2] = 0x3ffffff;
- r[i + 3] = 0x3ffffff;
- r[i + 4] = 0x3ffffff;
- r[i + 5] = 0x3ffffff;
- r[i + 6] = 0x3ffffff;
- r[i + 7] = 0x3ffffff;
- }
- r[152] = 0x3ffffff;
- r[153] = 0x3ffffff;
- r[154] = 0x3ffffff;
- r[155] = 0x3ffffff;
- r[156] = 0x3ffffff;
- r[157] = 0x3fffL;
- r[158] = 0;
- r[159] = 0;
- r[160] = 0;
- r[161] = 0;
- /* r = (2^n - 1) mod n */
- (void)sp_4096_sub_162(r, r, m);
- /* Add one so r = 2^n mod m */
- r[0] += 1;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_4096_cmp_162(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- int i;
- r |= (a[161] - b[161]) & (0 - (sp_digit)1);
- r |= (a[160] - b[160]) & ~(((sp_digit)0 - r) >> 25);
- for (i = 152; i >= 0; i -= 8) {
- r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 25);
- }
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_4096_cond_sub_162(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 160; i += 8) {
- r[i + 0] = a[i + 0] - (b[i + 0] & m);
- r[i + 1] = a[i + 1] - (b[i + 1] & m);
- r[i + 2] = a[i + 2] - (b[i + 2] & m);
- r[i + 3] = a[i + 3] - (b[i + 3] & m);
- r[i + 4] = a[i + 4] - (b[i + 4] & m);
- r[i + 5] = a[i + 5] - (b[i + 5] & m);
- r[i + 6] = a[i + 6] - (b[i + 6] & m);
- r[i + 7] = a[i + 7] - (b[i + 7] & m);
- }
- r[160] = a[160] - (b[160] & m);
- r[161] = a[161] - (b[161] & m);
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_4096_mul_add_162(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifndef WOLFSSL_SP_LARGE_CODE
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 162; i++) {
- t += r[i];
- t += tb * a[i];
- r[i] = ((sp_digit)t) & 0x3ffffff;
- t >>= 26;
- }
- r[162] += (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t[8];
- int i;
- t[0] = 0;
- for (i = 0; i < 160; i += 8) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- t[4] = (tb * a[i+4]) + r[i+4];
- t[5] = (tb * a[i+5]) + r[i+5];
- t[6] = (tb * a[i+6]) + r[i+6];
- t[7] = (tb * a[i+7]) + r[i+7];
- r[i+0] = t[0] & 0x3ffffff;
- t[1] += t[0] >> 26;
- r[i+1] = t[1] & 0x3ffffff;
- t[2] += t[1] >> 26;
- r[i+2] = t[2] & 0x3ffffff;
- t[3] += t[2] >> 26;
- r[i+3] = t[3] & 0x3ffffff;
- t[4] += t[3] >> 26;
- r[i+4] = t[4] & 0x3ffffff;
- t[5] += t[4] >> 26;
- r[i+5] = t[5] & 0x3ffffff;
- t[6] += t[5] >> 26;
- r[i+6] = t[6] & 0x3ffffff;
- t[7] += t[6] >> 26;
- r[i+7] = t[7] & 0x3ffffff;
- t[0] = t[7] >> 26;
- }
- t[0] += (tb * a[160]) + r[160];
- t[1] = (tb * a[161]) + r[161];
- r[160] = t[0] & 0x3ffffff;
- t[1] += t[0] >> 26;
- r[161] = t[1] & 0x3ffffff;
- r[162] += (sp_digit)(t[1] >> 26);
- #endif /* !WOLFSSL_SP_LARGE_CODE */
- }
- /* Shift the result in the high 4096 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_4096_mont_shift_162(sp_digit* r, const sp_digit* a)
- {
- int i;
- sp_int64 n = a[157] >> 14;
- n += ((sp_int64)a[158]) << 12;
- for (i = 0; i < 152; i += 8) {
- r[i + 0] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 159]) << 12;
- r[i + 1] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 160]) << 12;
- r[i + 2] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 161]) << 12;
- r[i + 3] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 162]) << 12;
- r[i + 4] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 163]) << 12;
- r[i + 5] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 164]) << 12;
- r[i + 6] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 165]) << 12;
- r[i + 7] = n & 0x3ffffff;
- n >>= 26; n += ((sp_int64)a[i + 166]) << 12;
- }
- r[152] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[311]) << 12;
- r[153] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[312]) << 12;
- r[154] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[313]) << 12;
- r[155] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[314]) << 12;
- r[156] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[315]) << 12;
- r[157] = (sp_digit)n;
- XMEMSET(&r[158], 0, sizeof(*r) * 158U);
- }
- /* Reduce the number back to 4096 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_4096_mont_reduce_162(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_4096_norm_162(a + 158);
- #ifdef WOLFSSL_SP_DH
- if (mp != 1) {
- for (i=0; i<157; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffff;
- sp_4096_mul_add_162(a+i, m, mu);
- a[i+1] += a[i] >> 26;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3fffL;
- sp_4096_mul_add_162(a+i, m, mu);
- a[i+1] += a[i] >> 26;
- a[i] &= 0x3ffffff;
- }
- else {
- for (i=0; i<157; i++) {
- mu = a[i] & 0x3ffffff;
- sp_4096_mul_add_162(a+i, m, mu);
- a[i+1] += a[i] >> 26;
- }
- mu = a[i] & 0x3fffL;
- sp_4096_mul_add_162(a+i, m, mu);
- a[i+1] += a[i] >> 26;
- a[i] &= 0x3ffffff;
- }
- #else
- for (i=0; i<157; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffff;
- sp_4096_mul_add_162(a+i, m, mu);
- a[i+1] += a[i] >> 26;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3fffL;
- sp_4096_mul_add_162(a+i, m, mu);
- a[i+1] += a[i] >> 26;
- a[i] &= 0x3ffffff;
- #endif
- sp_4096_mont_shift_162(a, a);
- over = a[157] - m[157];
- sp_4096_cond_sub_162(a, a, m, ~((over - 1) >> 31));
- sp_4096_norm_162(a);
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_4096_mont_mul_162(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_4096_mul_162(r, a, b);
- sp_4096_mont_reduce_162(r, m, mp);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_4096_mont_sqr_162(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_4096_sqr_162(r, a);
- sp_4096_mont_reduce_162(r, m, mp);
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_4096_mul_d_324(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- sp_int64 tb = b;
- sp_int64 t = 0;
- sp_digit t2;
- sp_int64 p[4];
- int i;
- for (i = 0; i < 324; i += 4) {
- p[0] = tb * a[i + 0];
- p[1] = tb * a[i + 1];
- p[2] = tb * a[i + 2];
- p[3] = tb * a[i + 3];
- t += p[0];
- t2 = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[i + 0] = (sp_digit)t2;
- t += p[1];
- t2 = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[i + 1] = (sp_digit)t2;
- t += p[2];
- t2 = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[i + 2] = (sp_digit)t2;
- t += p[3];
- t2 = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- r[i + 3] = (sp_digit)t2;
- }
- r[324] = (sp_digit)(t & 0x3ffffff);
- }
- #ifndef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_4096_cond_add_162(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 160; i += 8) {
- r[i + 0] = a[i + 0] + (b[i + 0] & m);
- r[i + 1] = a[i + 1] + (b[i + 1] & m);
- r[i + 2] = a[i + 2] + (b[i + 2] & m);
- r[i + 3] = a[i + 3] + (b[i + 3] & m);
- r[i + 4] = a[i + 4] + (b[i + 4] & m);
- r[i + 5] = a[i + 5] + (b[i + 5] & m);
- r[i + 6] = a[i + 6] + (b[i + 6] & m);
- r[i + 7] = a[i + 7] + (b[i + 7] & m);
- }
- r[160] = a[160] + (b[160] & m);
- r[161] = a[161] + (b[161] & m);
- }
- #endif /* !WOLFSSL_SP_SMALL */
- SP_NOINLINE static void sp_4096_rshift_162(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- for (i=0; i<160; i += 8) {
- r[i+0] = (a[i+0] >> n) | ((a[i+1] << (26 - n)) & 0x3ffffff);
- r[i+1] = (a[i+1] >> n) | ((a[i+2] << (26 - n)) & 0x3ffffff);
- r[i+2] = (a[i+2] >> n) | ((a[i+3] << (26 - n)) & 0x3ffffff);
- r[i+3] = (a[i+3] >> n) | ((a[i+4] << (26 - n)) & 0x3ffffff);
- r[i+4] = (a[i+4] >> n) | ((a[i+5] << (26 - n)) & 0x3ffffff);
- r[i+5] = (a[i+5] >> n) | ((a[i+6] << (26 - n)) & 0x3ffffff);
- r[i+6] = (a[i+6] >> n) | ((a[i+7] << (26 - n)) & 0x3ffffff);
- r[i+7] = (a[i+7] >> n) | ((a[i+8] << (26 - n)) & 0x3ffffff);
- }
- r[160] = (a[160] >> n) | ((a[161] << (26 - n)) & 0x3ffffff);
- r[161] = a[161] >> n;
- }
- static WC_INLINE sp_digit sp_4096_div_word_162(sp_digit d1, sp_digit d0,
- sp_digit div)
- {
- #ifdef SP_USE_DIVTI3
- sp_int64 d = ((sp_int64)d1 << 26) + d0;
- return d / div;
- #elif defined(__x86_64__) || defined(__i386__)
- sp_int64 d = ((sp_int64)d1 << 26) + d0;
- sp_uint32 lo = (sp_uint32)d;
- sp_digit hi = (sp_digit)(d >> 32);
- __asm__ __volatile__ (
- "idiv %2"
- : "+a" (lo)
- : "d" (hi), "r" (div)
- : "cc"
- );
- return (sp_digit)lo;
- #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
- sp_int64 d = ((sp_int64)d1 << 26) + d0;
- sp_digit dv = (div >> 1) + 1;
- sp_digit t1 = (sp_digit)(d >> 26);
- sp_digit t0 = (sp_digit)(d & 0x3ffffff);
- sp_digit t2;
- sp_digit sign;
- sp_digit r;
- int i;
- sp_int64 m;
- r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- t1 -= dv & (0 - r);
- for (i = 24; i >= 1; i--) {
- t1 += t1 + (((sp_uint32)t0 >> 25) & 1);
- t0 <<= 1;
- t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- r += r + t2;
- t1 -= dv & (0 - t2);
- t1 += t2;
- }
- r += r + 1;
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 26);
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 52) - (sp_digit)(d >> 52);
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- return r;
- #else
- sp_int64 d = ((sp_int64)d1 << 26) + d0;
- sp_digit r = 0;
- sp_digit t;
- sp_digit dv = (div >> 11) + 1;
- t = (sp_digit)(d >> 22);
- t = (t / dv) << 11;
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)(d >> 7);
- t = t / (dv << 4);
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)d;
- t = t / div;
- r += t;
- d -= (sp_int64)t * div;
- return r;
- #endif
- }
- static WC_INLINE sp_digit sp_4096_word_div_word_162(sp_digit d, sp_digit div)
- {
- #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
- defined(SP_DIV_WORD_USE_DIV)
- return d / div;
- #else
- return (sp_digit)((sp_uint32)(div - d) >> 31);
- #endif
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Full implementation.
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_4096_div_162(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- #ifndef WOLFSSL_SP_DIV_32
- #endif
- sp_digit dv;
- sp_digit r1;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 162 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 162 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 324 + 1;
- sd = t2 + 162 + 1;
- sp_4096_mul_d_162(sd, d, (sp_digit)1 << 12);
- sp_4096_mul_d_324(t1, a, (sp_digit)1 << 12);
- dv = sd[157];
- t1[158 + 158] += t1[158 + 158 - 1] >> 26;
- t1[158 + 158 - 1] &= 0x3ffffff;
- for (i=158; i>=0; i--) {
- r1 = sp_4096_div_word_162(t1[158 + i], t1[158 + i - 1], dv);
- sp_4096_mul_d_162(t2, sd, r1);
- (void)sp_4096_sub_162(&t1[i], &t1[i], t2);
- sp_4096_norm_158(&t1[i]);
- t1[158 + i] += t1[158 + i - 1] >> 26;
- t1[158 + i - 1] &= 0x3ffffff;
- r1 = sp_4096_div_word_162(-t1[158 + i], -t1[158 + i - 1], dv);
- r1 -= t1[158 + i];
- sp_4096_mul_d_162(t2, sd, r1);
- (void)sp_4096_add_162(&t1[i], &t1[i], t2);
- t1[158 + i] += t1[158 + i - 1] >> 26;
- t1[158 + i - 1] &= 0x3ffffff;
- }
- t1[158 - 1] += t1[158 - 2] >> 26;
- t1[158 - 2] &= 0x3ffffff;
- r1 = sp_4096_word_div_word_162(t1[158 - 1], dv);
- sp_4096_mul_d_162(t2, sd, r1);
- sp_4096_sub_162(t1, t1, t2);
- XMEMCPY(r, t1, sizeof(*r) * 324U);
- for (i=0; i<157; i++) {
- r[i+1] += r[i] >> 26;
- r[i] &= 0x3ffffff;
- }
- sp_4096_cond_add_162(r, r, sd, r[157] >> 31);
- sp_4096_norm_158(r);
- sp_4096_rshift_162(r, r, 12);
- r[158] = 0;
- r[159] = 0;
- r[160] = 0;
- r[161] = 0;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_4096_mod_162(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_4096_div_162(a, m, NULL, r);
- }
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || defined(WOLFSSL_HAVE_SP_DH)
- #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || \
- defined(WOLFSSL_HAVE_SP_DH)
- /* Modular exponentiate a to the e mod m. (r = a^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * a A single precision number being exponentiated.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even or exponent is 0.
- */
- static int sp_4096_mod_exp_162(sp_digit* r, const sp_digit* a, const sp_digit* e,
- int bits, const sp_digit* m, int reduceA)
- {
- #if defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_FAST_MODEXP)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 324];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 162 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 162 * 2);
- XMEMSET(t[i], 0, sizeof(sp_digit) * 162U * 2U);
- }
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_162(norm, m);
- if (reduceA != 0) {
- err = sp_4096_mod_162(t[1], a, m);
- }
- else {
- XMEMCPY(t[1], a, sizeof(sp_digit) * 162U);
- }
- }
- if (err == MP_OKAY) {
- sp_4096_mul_162(t[1], t[1], norm);
- err = sp_4096_mod_162(t[1], t[1], m);
- }
- if (err == MP_OKAY) {
- i = bits / 26;
- c = bits % 26;
- n = e[i--] << (26 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 26;
- }
- y = (int)((n >> 25) & 1);
- n <<= 1;
- sp_4096_mont_mul_162(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 162 * 2);
- sp_4096_mont_sqr_162(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 162 * 2);
- }
- sp_4096_mont_reduce_162(t[0], m, mp);
- n = sp_4096_cmp_162(t[0], m);
- sp_4096_cond_sub_162(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 162 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #elif !defined(WC_NO_CACHE_RESISTANT)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[3 * 324];
- #endif
- sp_digit* t[3] = {0, 0, 0};
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 3 * 162 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<3; i++) {
- t[i] = td + (i * 162 * 2);
- }
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_162(norm, m);
- if (reduceA != 0) {
- err = sp_4096_mod_162(t[1], a, m);
- if (err == MP_OKAY) {
- sp_4096_mul_162(t[1], t[1], norm);
- err = sp_4096_mod_162(t[1], t[1], m);
- }
- }
- else {
- sp_4096_mul_162(t[1], a, norm);
- err = sp_4096_mod_162(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- i = bits / 26;
- c = bits % 26;
- n = e[i--] << (26 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1) {
- break;
- }
- n = e[i--];
- c = 26;
- }
- y = (int)((n >> 25) & 1);
- n <<= 1;
- sp_4096_mont_mul_162(t[y^1], t[0], t[1], m, mp);
- XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])),
- sizeof(*t[2]) * 162 * 2);
- sp_4096_mont_sqr_162(t[2], t[2], m, mp);
- XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) +
- ((size_t)t[1] & addr_mask[y])), t[2],
- sizeof(*t[2]) * 162 * 2);
- }
- sp_4096_mont_reduce_162(t[0], m, mp);
- n = sp_4096_cmp_162(t[0], m);
- sp_4096_cond_sub_162(t[0], t[0], m, ~(n >> 31));
- XMEMCPY(r, t[0], sizeof(*r) * 162 * 2);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[(16 * 324) + 324];
- #endif
- sp_digit* t[16];
- sp_digit* rt = NULL;
- sp_digit* norm = NULL;
- sp_digit mp = 1;
- sp_digit n;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * ((16 * 324) + 324), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- for (i=0; i<16; i++)
- t[i] = td + i * 324;
- rt = td + 5184;
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_162(norm, m);
- if (reduceA != 0) {
- err = sp_4096_mod_162(t[1], a, m);
- if (err == MP_OKAY) {
- sp_4096_mul_162(t[1], t[1], norm);
- err = sp_4096_mod_162(t[1], t[1], m);
- }
- }
- else {
- sp_4096_mul_162(t[1], a, norm);
- err = sp_4096_mod_162(t[1], t[1], m);
- }
- }
- if (err == MP_OKAY) {
- sp_4096_mont_sqr_162(t[ 2], t[ 1], m, mp);
- sp_4096_mont_mul_162(t[ 3], t[ 2], t[ 1], m, mp);
- sp_4096_mont_sqr_162(t[ 4], t[ 2], m, mp);
- sp_4096_mont_mul_162(t[ 5], t[ 3], t[ 2], m, mp);
- sp_4096_mont_sqr_162(t[ 6], t[ 3], m, mp);
- sp_4096_mont_mul_162(t[ 7], t[ 4], t[ 3], m, mp);
- sp_4096_mont_sqr_162(t[ 8], t[ 4], m, mp);
- sp_4096_mont_mul_162(t[ 9], t[ 5], t[ 4], m, mp);
- sp_4096_mont_sqr_162(t[10], t[ 5], m, mp);
- sp_4096_mont_mul_162(t[11], t[ 6], t[ 5], m, mp);
- sp_4096_mont_sqr_162(t[12], t[ 6], m, mp);
- sp_4096_mont_mul_162(t[13], t[ 7], t[ 6], m, mp);
- sp_4096_mont_sqr_162(t[14], t[ 7], m, mp);
- sp_4096_mont_mul_162(t[15], t[ 8], t[ 7], m, mp);
- bits = ((bits + 3) / 4) * 4;
- i = ((bits + 25) / 26) - 1;
- c = bits % 26;
- if (c == 0) {
- c = 26;
- }
- if (i < 162) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 4) {
- n |= e[i--] << (6 - c);
- c += 26;
- }
- y = (int)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- XMEMCPY(rt, t[y], sizeof(sp_digit) * 324);
- while ((i >= 0) || (c >= 4)) {
- if (c >= 4) {
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- }
- else if (c == 0) {
- n = e[i--] << 6;
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c = 22;
- }
- else {
- y = (byte)((n >> 28) & 0xf);
- n = e[i--] << 6;
- c = 4 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 26 - c;
- }
- sp_4096_mont_sqr_162(rt, rt, m, mp);
- sp_4096_mont_sqr_162(rt, rt, m, mp);
- sp_4096_mont_sqr_162(rt, rt, m, mp);
- sp_4096_mont_sqr_162(rt, rt, m, mp);
- sp_4096_mont_mul_162(rt, rt, t[y], m, mp);
- }
- sp_4096_mont_reduce_162(rt, m, mp);
- n = sp_4096_cmp_162(rt, m);
- sp_4096_cond_sub_162(rt, rt, m, ~(n >> 31));
- XMEMCPY(r, rt, sizeof(sp_digit) * 324);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- #endif
- }
- #endif /* (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) || */
- /* WOLFSSL_HAVE_SP_DH */
- #endif /* (WOLFSSL_HAVE_SP_RSA && !WOLFSSL_RSA_PUBLIC_ONLY) || WOLFSSL_HAVE_SP_DH */
- #ifdef WOLFSSL_HAVE_SP_RSA
- /* RSA public key operation.
- *
- * in Array of bytes representing the number to exponentiate, base.
- * inLen Number of bytes in base.
- * em Public exponent.
- * mm Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 512 bytes long.
- * outLen Number of bytes in result.
- * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
- * an array is too long and MEMORY_E when dynamic memory allocation fails.
- */
- int sp_RsaPublic_4096(const byte* in, word32 inLen, const mp_int* em,
- const mp_int* mm, byte* out, word32* outLen)
- {
- #ifdef WOLFSSL_SP_SMALL
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[162 * 5];
- #endif
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- sp_digit* norm = NULL;
- sp_uint64 e[1] = {0};
- sp_digit mp = 0;
- int i;
- int err = MP_OKAY;
- if (*outLen < 512U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(em) > 64) {
- err = MP_READ_E;
- }
- else if (inLen > 512U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 5, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- r = a + 162 * 2;
- m = r + 162 * 2;
- norm = r;
- sp_4096_from_bin(a, 162, in, inLen);
- #if DIGIT_BIT >= 64
- e[0] = (sp_uint64)em->dp[0];
- #else
- e[0] = (sp_uint64)em->dp[0];
- if (em->used > 1) {
- e[0] |= ((sp_uint64)em->dp[1]) << DIGIT_BIT;
- }
- #endif
- if (e[0] == 0) {
- err = MP_EXPTMOD_E;
- }
- }
- if (err == MP_OKAY) {
- sp_4096_from_mp(m, 162, mm);
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_162(norm, m);
- }
- if (err == MP_OKAY) {
- sp_4096_mul_162(a, a, norm);
- err = sp_4096_mod_162(a, a, m);
- }
- if (err == MP_OKAY) {
- for (i=63; i>=0; i--) {
- if ((e[0] >> i) != 0) {
- break;
- }
- }
- XMEMCPY(r, a, sizeof(sp_digit) * 162 * 2);
- for (i--; i>=0; i--) {
- sp_4096_mont_sqr_162(r, r, m, mp);
- if (((e[0] >> i) & 1) == 1) {
- sp_4096_mont_mul_162(r, r, a, m, mp);
- }
- }
- sp_4096_mont_reduce_162(r, m, mp);
- mp = sp_4096_cmp_162(r, m);
- sp_4096_cond_sub_162(r, r, m, ~(mp >> 31));
- sp_4096_to_bin_162(r, out);
- *outLen = 512;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[162 * 5];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- sp_uint64 e[1] = {0};
- int err = MP_OKAY;
- if (*outLen < 512U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(em) > 64) {
- err = MP_READ_E;
- }
- else if (inLen > 512U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 5, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d;
- r = a + 162 * 2;
- m = r + 162 * 2;
- sp_4096_from_bin(a, 162, in, inLen);
- #if DIGIT_BIT >= 64
- e[0] = (sp_uint64)em->dp[0];
- #else
- e[0] = (sp_uint64)em->dp[0];
- if (em->used > 1) {
- e[0] |= ((sp_uint64)em->dp[1]) << DIGIT_BIT;
- }
- #endif
- if (e[0] == 0) {
- err = MP_EXPTMOD_E;
- }
- }
- if (err == MP_OKAY) {
- sp_4096_from_mp(m, 162, mm);
- if (e[0] == 0x3) {
- sp_4096_sqr_162(r, a);
- err = sp_4096_mod_162(r, r, m);
- if (err == MP_OKAY) {
- sp_4096_mul_162(r, a, r);
- err = sp_4096_mod_162(r, r, m);
- }
- }
- else {
- sp_digit* norm = r;
- int i;
- sp_digit mp;
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_162(norm, m);
- sp_4096_mul_162(a, a, norm);
- err = sp_4096_mod_162(a, a, m);
- if (err == MP_OKAY) {
- for (i=63; i>=0; i--) {
- if ((e[0] >> i) != 0) {
- break;
- }
- }
- XMEMCPY(r, a, sizeof(sp_digit) * 324U);
- for (i--; i>=0; i--) {
- sp_4096_mont_sqr_162(r, r, m, mp);
- if (((e[0] >> i) & 1) == 1) {
- sp_4096_mont_mul_162(r, r, a, m, mp);
- }
- }
- sp_4096_mont_reduce_162(r, m, mp);
- mp = sp_4096_cmp_162(r, m);
- sp_4096_cond_sub_162(r, r, m, ~(mp >> 31));
- }
- }
- }
- if (err == MP_OKAY) {
- sp_4096_to_bin_162(r, out);
- *outLen = 512;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- }
- #ifndef WOLFSSL_RSA_PUBLIC_ONLY
- #if !defined(SP_RSA_PRIVATE_EXP_D) && !defined(RSA_LOW_MEM)
- #endif /* !SP_RSA_PRIVATE_EXP_D & !RSA_LOW_MEM */
- /* RSA private key operation.
- *
- * in Array of bytes representing the number to exponentiate, base.
- * inLen Number of bytes in base.
- * dm Private exponent.
- * pm First prime.
- * qm Second prime.
- * dpm First prime's CRT exponent.
- * dqm Second prime's CRT exponent.
- * qim Inverse of second prime mod p.
- * mm Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 512 bytes long.
- * outLen Number of bytes in result.
- * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when
- * an array is too long and MEMORY_E when dynamic memory allocation fails.
- */
- int sp_RsaPrivate_4096(const byte* in, word32 inLen, const mp_int* dm,
- const mp_int* pm, const mp_int* qm, const mp_int* dpm, const mp_int* dqm,
- const mp_int* qim, const mp_int* mm, byte* out, word32* outLen)
- {
- #if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM)
- #if defined(WOLFSSL_SP_SMALL)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[162 * 4];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)pm;
- (void)qm;
- (void)dpm;
- (void)dqm;
- (void)qim;
- if (*outLen < 512U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(dm) > 4096) {
- err = MP_READ_E;
- }
- else if (inLen > 512) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 4, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d + 162;
- m = a + 324;
- r = a;
- sp_4096_from_bin(a, 162, in, inLen);
- sp_4096_from_mp(d, 162, dm);
- sp_4096_from_mp(m, 162, mm);
- err = sp_4096_mod_exp_162(r, a, d, 4096, m, 0);
- }
- if (err == MP_OKAY) {
- sp_4096_to_bin_162(r, out);
- *outLen = 512;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- #endif
- {
- /* only "a" and "r" are sensitive and need zeroized (same pointer) */
- if (a != NULL)
- ForceZero(a, sizeof(sp_digit) * 162);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* d = NULL;
- #else
- sp_digit d[162 * 4];
- #endif
- sp_digit* a = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)pm;
- (void)qm;
- (void)dpm;
- (void)dqm;
- (void)qim;
- if (*outLen < 512U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (mp_count_bits(dm) > 4096) {
- err = MP_READ_E;
- }
- else if (inLen > 512U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 4, NULL,
- DYNAMIC_TYPE_RSA);
- if (d == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- a = d + 162;
- m = a + 324;
- r = a;
- sp_4096_from_bin(a, 162, in, inLen);
- sp_4096_from_mp(d, 162, dm);
- sp_4096_from_mp(m, 162, mm);
- err = sp_4096_mod_exp_162(r, a, d, 4096, m, 0);
- }
- if (err == MP_OKAY) {
- sp_4096_to_bin_162(r, out);
- *outLen = 512;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (d != NULL)
- #endif
- {
- /* only "a" and "r" are sensitive and need zeroized (same pointer) */
- if (a != NULL)
- ForceZero(a, sizeof(sp_digit) * 162);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(d, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- #else
- #if defined(WOLFSSL_SP_SMALL)
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[81 * 8];
- #endif
- sp_digit* p = NULL;
- sp_digit* dp = NULL;
- sp_digit* dq = NULL;
- sp_digit* qi = NULL;
- sp_digit* tmpa = NULL;
- sp_digit* tmpb = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)dm;
- (void)mm;
- if (*outLen < 512U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (inLen > 512) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(pm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(qm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 81 * 8, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = a + 162;
- qi = dq = dp = p + 81;
- tmpa = qi + 81;
- tmpb = tmpa + 162;
- r = a;
- sp_4096_from_bin(a, 162, in, inLen);
- sp_4096_from_mp(p, 81, pm);
- sp_4096_from_mp(dp, 81, dpm);
- err = sp_4096_mod_exp_81(tmpa, a, dp, 2048, p, 1);
- }
- if (err == MP_OKAY) {
- sp_4096_from_mp(p, 81, qm);
- sp_4096_from_mp(dq, 81, dqm);
- err = sp_4096_mod_exp_81(tmpb, a, dq, 2048, p, 1);
- }
- if (err == MP_OKAY) {
- sp_4096_from_mp(p, 81, pm);
- (void)sp_4096_sub_81(tmpa, tmpa, tmpb);
- sp_4096_norm_79(tmpa);
- sp_4096_cond_add_81(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[78] >> 31));
- sp_4096_cond_add_81(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[78] >> 31));
- sp_4096_norm_81(tmpa);
- sp_4096_from_mp(qi, 81, qim);
- sp_4096_mul_81(tmpa, tmpa, qi);
- err = sp_4096_mod_81(tmpa, tmpa, p);
- }
- if (err == MP_OKAY) {
- sp_4096_from_mp(p, 81, qm);
- sp_4096_mul_81(tmpa, p, tmpa);
- (void)sp_4096_add_162(r, tmpb, tmpa);
- sp_4096_norm_162(r);
- sp_4096_to_bin_162(r, out);
- *outLen = 512;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- #endif
- {
- ForceZero(a, sizeof(sp_digit) * 81 * 8);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* a = NULL;
- #else
- sp_digit a[81 * 13];
- #endif
- sp_digit* p = NULL;
- sp_digit* q = NULL;
- sp_digit* dp = NULL;
- sp_digit* dq = NULL;
- sp_digit* qi = NULL;
- sp_digit* tmpa = NULL;
- sp_digit* tmpb = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- (void)dm;
- (void)mm;
- if (*outLen < 512U) {
- err = MP_TO_E;
- }
- if (err == MP_OKAY) {
- if (inLen > 512U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mm) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(pm)) {
- err = MP_VAL;
- }
- else if (mp_iseven(qm)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- a = (sp_digit*)XMALLOC(sizeof(sp_digit) * 81 * 13, NULL,
- DYNAMIC_TYPE_RSA);
- if (a == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = a + 162 * 2;
- q = p + 81;
- dp = q + 81;
- dq = dp + 81;
- qi = dq + 81;
- tmpa = qi + 81;
- tmpb = tmpa + 162;
- r = a;
- sp_4096_from_bin(a, 162, in, inLen);
- sp_4096_from_mp(p, 81, pm);
- sp_4096_from_mp(q, 81, qm);
- sp_4096_from_mp(dp, 81, dpm);
- sp_4096_from_mp(dq, 81, dqm);
- sp_4096_from_mp(qi, 81, qim);
- err = sp_4096_mod_exp_81(tmpa, a, dp, 2048, p, 1);
- }
- if (err == MP_OKAY) {
- err = sp_4096_mod_exp_81(tmpb, a, dq, 2048, q, 1);
- }
- if (err == MP_OKAY) {
- (void)sp_4096_sub_81(tmpa, tmpa, tmpb);
- sp_4096_norm_79(tmpa);
- sp_4096_cond_add_81(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[78] >> 31));
- sp_4096_cond_add_81(tmpa, tmpa, p, 0 - ((sp_int_digit)tmpa[78] >> 31));
- sp_4096_norm_81(tmpa);
- sp_4096_mul_81(tmpa, tmpa, qi);
- err = sp_4096_mod_81(tmpa, tmpa, p);
- }
- if (err == MP_OKAY) {
- sp_4096_mul_81(tmpa, tmpa, q);
- (void)sp_4096_add_162(r, tmpb, tmpa);
- sp_4096_norm_162(r);
- sp_4096_to_bin_162(r, out);
- *outLen = 512;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (a != NULL)
- #endif
- {
- ForceZero(a, sizeof(sp_digit) * 81 * 13);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(a, NULL, DYNAMIC_TYPE_RSA);
- #endif
- }
- return err;
- #endif /* WOLFSSL_SP_SMALL */
- #endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */
- }
- #endif /* !WOLFSSL_RSA_PUBLIC_ONLY */
- #endif /* WOLFSSL_HAVE_SP_RSA */
- #if defined(WOLFSSL_HAVE_SP_DH) || (defined(WOLFSSL_HAVE_SP_RSA) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY))
- /* Convert an array of sp_digit to an mp_int.
- *
- * a A single precision integer.
- * r A multi-precision integer.
- */
- static int sp_4096_to_mp(const sp_digit* a, mp_int* r)
- {
- int err;
- err = mp_grow(r, (4096 + DIGIT_BIT - 1) / DIGIT_BIT);
- if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
- #if DIGIT_BIT == 26
- XMEMCPY(r->dp, a, sizeof(sp_digit) * 158);
- r->used = 158;
- mp_clamp(r);
- #elif DIGIT_BIT < 26
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 158; i++) {
- r->dp[j] |= (mp_digit)(a[i] << s);
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- s = DIGIT_BIT - s;
- r->dp[++j] = (mp_digit)(a[i] >> s);
- while (s + DIGIT_BIT <= 26) {
- s += DIGIT_BIT;
- r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- if (s == SP_WORD_SIZE) {
- r->dp[j] = 0;
- }
- else {
- r->dp[j] = (mp_digit)(a[i] >> s);
- }
- }
- s = 26 - s;
- }
- r->used = (4096 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #else
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 158; i++) {
- r->dp[j] |= ((mp_digit)a[i]) << s;
- if (s + 26 >= DIGIT_BIT) {
- #if DIGIT_BIT != 32 && DIGIT_BIT != 64
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- #endif
- s = DIGIT_BIT - s;
- r->dp[++j] = a[i] >> s;
- s = 26 - s;
- }
- else {
- s += 26;
- }
- }
- r->used = (4096 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #endif
- }
- return err;
- }
- /* Perform the modular exponentiation for Diffie-Hellman.
- *
- * base Base. MP integer.
- * exp Exponent. MP integer.
- * mod Modulus. MP integer.
- * res Result. MP integer.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_ModExp_4096(const mp_int* base, const mp_int* exp, const mp_int* mod,
- mp_int* res)
- {
- #ifdef WOLFSSL_SP_SMALL
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[162 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 4096) {
- err = MP_READ_E;
- }
- else if (expBits > 4096) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 4, NULL,
- DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 162 * 2;
- m = e + 162;
- r = b;
- sp_4096_from_mp(b, 162, base);
- sp_4096_from_mp(e, 162, exp);
- sp_4096_from_mp(m, 162, mod);
- err = sp_4096_mod_exp_162(r, b, e, mp_count_bits(exp), m, 0);
- }
- if (err == MP_OKAY) {
- err = sp_4096_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 162U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[162 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- int err = MP_OKAY;
- int expBits = mp_count_bits(exp);
- if (mp_count_bits(base) > 4096) {
- err = MP_READ_E;
- }
- else if (expBits > 4096) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 4, NULL, DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 162 * 2;
- m = e + 162;
- r = b;
- sp_4096_from_mp(b, 162, base);
- sp_4096_from_mp(e, 162, exp);
- sp_4096_from_mp(m, 162, mod);
- err = sp_4096_mod_exp_162(r, b, e, expBits, m, 0);
- }
- if (err == MP_OKAY) {
- err = sp_4096_to_mp(r, res);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 162U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- #endif
- }
- #ifdef WOLFSSL_HAVE_SP_DH
- #ifdef HAVE_FFDHE_4096
- SP_NOINLINE static void sp_4096_lshift_162(sp_digit* r, const sp_digit* a,
- byte n)
- {
- sp_int_digit s;
- sp_int_digit t;
- s = (sp_int_digit)a[161];
- r[162] = s >> (26U - n);
- s = (sp_int_digit)(a[161]); t = (sp_int_digit)(a[160]);
- r[161] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[160]); t = (sp_int_digit)(a[159]);
- r[160] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[159]); t = (sp_int_digit)(a[158]);
- r[159] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[158]); t = (sp_int_digit)(a[157]);
- r[158] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[157]); t = (sp_int_digit)(a[156]);
- r[157] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[156]); t = (sp_int_digit)(a[155]);
- r[156] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[155]); t = (sp_int_digit)(a[154]);
- r[155] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[154]); t = (sp_int_digit)(a[153]);
- r[154] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[153]); t = (sp_int_digit)(a[152]);
- r[153] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[152]); t = (sp_int_digit)(a[151]);
- r[152] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[151]); t = (sp_int_digit)(a[150]);
- r[151] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[150]); t = (sp_int_digit)(a[149]);
- r[150] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[149]); t = (sp_int_digit)(a[148]);
- r[149] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[148]); t = (sp_int_digit)(a[147]);
- r[148] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[147]); t = (sp_int_digit)(a[146]);
- r[147] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[146]); t = (sp_int_digit)(a[145]);
- r[146] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[145]); t = (sp_int_digit)(a[144]);
- r[145] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[144]); t = (sp_int_digit)(a[143]);
- r[144] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[143]); t = (sp_int_digit)(a[142]);
- r[143] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[142]); t = (sp_int_digit)(a[141]);
- r[142] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[141]); t = (sp_int_digit)(a[140]);
- r[141] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[140]); t = (sp_int_digit)(a[139]);
- r[140] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[139]); t = (sp_int_digit)(a[138]);
- r[139] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[138]); t = (sp_int_digit)(a[137]);
- r[138] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[137]); t = (sp_int_digit)(a[136]);
- r[137] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[136]); t = (sp_int_digit)(a[135]);
- r[136] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[135]); t = (sp_int_digit)(a[134]);
- r[135] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[134]); t = (sp_int_digit)(a[133]);
- r[134] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[133]); t = (sp_int_digit)(a[132]);
- r[133] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[132]); t = (sp_int_digit)(a[131]);
- r[132] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[131]); t = (sp_int_digit)(a[130]);
- r[131] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[130]); t = (sp_int_digit)(a[129]);
- r[130] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[129]); t = (sp_int_digit)(a[128]);
- r[129] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[128]); t = (sp_int_digit)(a[127]);
- r[128] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[127]); t = (sp_int_digit)(a[126]);
- r[127] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[126]); t = (sp_int_digit)(a[125]);
- r[126] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[125]); t = (sp_int_digit)(a[124]);
- r[125] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[124]); t = (sp_int_digit)(a[123]);
- r[124] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[123]); t = (sp_int_digit)(a[122]);
- r[123] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[122]); t = (sp_int_digit)(a[121]);
- r[122] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[121]); t = (sp_int_digit)(a[120]);
- r[121] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[120]); t = (sp_int_digit)(a[119]);
- r[120] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[119]); t = (sp_int_digit)(a[118]);
- r[119] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[118]); t = (sp_int_digit)(a[117]);
- r[118] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[117]); t = (sp_int_digit)(a[116]);
- r[117] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[116]); t = (sp_int_digit)(a[115]);
- r[116] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[115]); t = (sp_int_digit)(a[114]);
- r[115] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[114]); t = (sp_int_digit)(a[113]);
- r[114] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[113]); t = (sp_int_digit)(a[112]);
- r[113] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[112]); t = (sp_int_digit)(a[111]);
- r[112] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[111]); t = (sp_int_digit)(a[110]);
- r[111] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[110]); t = (sp_int_digit)(a[109]);
- r[110] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[109]); t = (sp_int_digit)(a[108]);
- r[109] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[108]); t = (sp_int_digit)(a[107]);
- r[108] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[107]); t = (sp_int_digit)(a[106]);
- r[107] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[106]); t = (sp_int_digit)(a[105]);
- r[106] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[105]); t = (sp_int_digit)(a[104]);
- r[105] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[104]); t = (sp_int_digit)(a[103]);
- r[104] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[103]); t = (sp_int_digit)(a[102]);
- r[103] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[102]); t = (sp_int_digit)(a[101]);
- r[102] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[101]); t = (sp_int_digit)(a[100]);
- r[101] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[100]); t = (sp_int_digit)(a[99]);
- r[100] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[99]); t = (sp_int_digit)(a[98]);
- r[99] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[98]); t = (sp_int_digit)(a[97]);
- r[98] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[97]); t = (sp_int_digit)(a[96]);
- r[97] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[96]); t = (sp_int_digit)(a[95]);
- r[96] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[95]); t = (sp_int_digit)(a[94]);
- r[95] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[94]); t = (sp_int_digit)(a[93]);
- r[94] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[93]); t = (sp_int_digit)(a[92]);
- r[93] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[92]); t = (sp_int_digit)(a[91]);
- r[92] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[91]); t = (sp_int_digit)(a[90]);
- r[91] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[90]); t = (sp_int_digit)(a[89]);
- r[90] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[89]); t = (sp_int_digit)(a[88]);
- r[89] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[88]); t = (sp_int_digit)(a[87]);
- r[88] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[87]); t = (sp_int_digit)(a[86]);
- r[87] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[86]); t = (sp_int_digit)(a[85]);
- r[86] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[85]); t = (sp_int_digit)(a[84]);
- r[85] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[84]); t = (sp_int_digit)(a[83]);
- r[84] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[83]); t = (sp_int_digit)(a[82]);
- r[83] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[82]); t = (sp_int_digit)(a[81]);
- r[82] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[81]); t = (sp_int_digit)(a[80]);
- r[81] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[80]); t = (sp_int_digit)(a[79]);
- r[80] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[79]); t = (sp_int_digit)(a[78]);
- r[79] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[78]); t = (sp_int_digit)(a[77]);
- r[78] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[77]); t = (sp_int_digit)(a[76]);
- r[77] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[76]); t = (sp_int_digit)(a[75]);
- r[76] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[75]); t = (sp_int_digit)(a[74]);
- r[75] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[74]); t = (sp_int_digit)(a[73]);
- r[74] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[73]); t = (sp_int_digit)(a[72]);
- r[73] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[72]); t = (sp_int_digit)(a[71]);
- r[72] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[71]); t = (sp_int_digit)(a[70]);
- r[71] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[70]); t = (sp_int_digit)(a[69]);
- r[70] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[69]); t = (sp_int_digit)(a[68]);
- r[69] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[68]); t = (sp_int_digit)(a[67]);
- r[68] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[67]); t = (sp_int_digit)(a[66]);
- r[67] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[66]); t = (sp_int_digit)(a[65]);
- r[66] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[65]); t = (sp_int_digit)(a[64]);
- r[65] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[64]); t = (sp_int_digit)(a[63]);
- r[64] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[63]); t = (sp_int_digit)(a[62]);
- r[63] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[62]); t = (sp_int_digit)(a[61]);
- r[62] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[61]); t = (sp_int_digit)(a[60]);
- r[61] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[60]); t = (sp_int_digit)(a[59]);
- r[60] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[59]); t = (sp_int_digit)(a[58]);
- r[59] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[58]); t = (sp_int_digit)(a[57]);
- r[58] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[57]); t = (sp_int_digit)(a[56]);
- r[57] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[56]); t = (sp_int_digit)(a[55]);
- r[56] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[55]); t = (sp_int_digit)(a[54]);
- r[55] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[54]); t = (sp_int_digit)(a[53]);
- r[54] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[53]); t = (sp_int_digit)(a[52]);
- r[53] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[52]); t = (sp_int_digit)(a[51]);
- r[52] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[51]); t = (sp_int_digit)(a[50]);
- r[51] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[50]); t = (sp_int_digit)(a[49]);
- r[50] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[49]); t = (sp_int_digit)(a[48]);
- r[49] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[48]); t = (sp_int_digit)(a[47]);
- r[48] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[47]); t = (sp_int_digit)(a[46]);
- r[47] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[46]); t = (sp_int_digit)(a[45]);
- r[46] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[45]); t = (sp_int_digit)(a[44]);
- r[45] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[44]); t = (sp_int_digit)(a[43]);
- r[44] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[43]); t = (sp_int_digit)(a[42]);
- r[43] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[42]); t = (sp_int_digit)(a[41]);
- r[42] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[41]); t = (sp_int_digit)(a[40]);
- r[41] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[40]); t = (sp_int_digit)(a[39]);
- r[40] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[39]); t = (sp_int_digit)(a[38]);
- r[39] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[38]); t = (sp_int_digit)(a[37]);
- r[38] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[37]); t = (sp_int_digit)(a[36]);
- r[37] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[36]); t = (sp_int_digit)(a[35]);
- r[36] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[35]); t = (sp_int_digit)(a[34]);
- r[35] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[34]); t = (sp_int_digit)(a[33]);
- r[34] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[33]); t = (sp_int_digit)(a[32]);
- r[33] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[32]); t = (sp_int_digit)(a[31]);
- r[32] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[31]); t = (sp_int_digit)(a[30]);
- r[31] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[30]); t = (sp_int_digit)(a[29]);
- r[30] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[29]); t = (sp_int_digit)(a[28]);
- r[29] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[28]); t = (sp_int_digit)(a[27]);
- r[28] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[27]); t = (sp_int_digit)(a[26]);
- r[27] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[26]); t = (sp_int_digit)(a[25]);
- r[26] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[25]); t = (sp_int_digit)(a[24]);
- r[25] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[24]); t = (sp_int_digit)(a[23]);
- r[24] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[23]); t = (sp_int_digit)(a[22]);
- r[23] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[22]); t = (sp_int_digit)(a[21]);
- r[22] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[21]); t = (sp_int_digit)(a[20]);
- r[21] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[20]); t = (sp_int_digit)(a[19]);
- r[20] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[19]); t = (sp_int_digit)(a[18]);
- r[19] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[18]); t = (sp_int_digit)(a[17]);
- r[18] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[17]); t = (sp_int_digit)(a[16]);
- r[17] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[16]); t = (sp_int_digit)(a[15]);
- r[16] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[15]); t = (sp_int_digit)(a[14]);
- r[15] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[14]); t = (sp_int_digit)(a[13]);
- r[14] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[13]); t = (sp_int_digit)(a[12]);
- r[13] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[12]); t = (sp_int_digit)(a[11]);
- r[12] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[11]); t = (sp_int_digit)(a[10]);
- r[11] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[10]); t = (sp_int_digit)(a[9]);
- r[10] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[9]); t = (sp_int_digit)(a[8]);
- r[9] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[8]); t = (sp_int_digit)(a[7]);
- r[8] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[7]); t = (sp_int_digit)(a[6]);
- r[7] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[6]); t = (sp_int_digit)(a[5]);
- r[6] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[5]); t = (sp_int_digit)(a[4]);
- r[5] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[4]); t = (sp_int_digit)(a[3]);
- r[4] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[3]); t = (sp_int_digit)(a[2]);
- r[3] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[2]); t = (sp_int_digit)(a[1]);
- r[2] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[1]); t = (sp_int_digit)(a[0]);
- r[1] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- r[0] = (a[0] << n) & 0x3ffffff;
- }
- /* Modular exponentiate 2 to the e mod m. (r = 2^e mod m)
- *
- * r A single precision number that is the result of the operation.
- * e A single precision number that is the exponent.
- * bits The number of bits in the exponent.
- * m A single precision number that is the modulus.
- * returns 0 on success.
- * returns MEMORY_E on dynamic memory allocation failure.
- * returns MP_VAL when base is even.
- */
- static int sp_4096_mod_exp_2_162(sp_digit* r, const sp_digit* e, int bits, const sp_digit* m)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* td = NULL;
- #else
- sp_digit td[487];
- #endif
- sp_digit* norm = NULL;
- sp_digit* tmp = NULL;
- sp_digit mp = 1;
- sp_digit n;
- sp_digit o;
- int i;
- int c;
- byte y;
- int err = MP_OKAY;
- if (bits == 0) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 487, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- norm = td;
- tmp = td + 324;
- XMEMSET(td, 0, sizeof(sp_digit) * 487);
- sp_4096_mont_setup(m, &mp);
- sp_4096_mont_norm_162(norm, m);
- bits = ((bits + 3) / 4) * 4;
- i = ((bits + 25) / 26) - 1;
- c = bits % 26;
- if (c == 0) {
- c = 26;
- }
- if (i < 162) {
- n = e[i--] << (32 - c);
- }
- else {
- n = 0;
- i--;
- }
- if (c < 4) {
- n |= e[i--] << (6 - c);
- c += 26;
- }
- y = (int)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- sp_4096_lshift_162(r, norm, (byte)y);
- while ((i >= 0) || (c >= 4)) {
- if (c >= 4) {
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c -= 4;
- }
- else if (c == 0) {
- n = e[i--] << 6;
- y = (byte)((n >> 28) & 0xf);
- n <<= 4;
- c = 22;
- }
- else {
- y = (byte)((n >> 28) & 0xf);
- n = e[i--] << 6;
- c = 4 - c;
- y |= (byte)((n >> (32 - c)) & ((1 << c) - 1));
- n <<= c;
- c = 26 - c;
- }
- sp_4096_mont_sqr_162(r, r, m, mp);
- sp_4096_mont_sqr_162(r, r, m, mp);
- sp_4096_mont_sqr_162(r, r, m, mp);
- sp_4096_mont_sqr_162(r, r, m, mp);
- sp_4096_lshift_162(r, r, (byte)y);
- sp_4096_mul_d_162(tmp, norm, (r[158] << 12) + (r[157] >> 14));
- r[158] = 0;
- r[157] &= 0x3fffL;
- (void)sp_4096_add_162(r, r, tmp);
- sp_4096_norm_162(r);
- o = sp_4096_cmp_162(r, m);
- sp_4096_cond_sub_162(r, r, m, ~(o >> 31));
- }
- sp_4096_mont_reduce_162(r, m, mp);
- n = sp_4096_cmp_162(r, m);
- sp_4096_cond_sub_162(r, r, m, ~(n >> 31));
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (td != NULL)
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- #endif /* HAVE_FFDHE_4096 */
- /* Perform the modular exponentiation for Diffie-Hellman.
- *
- * base Base.
- * exp Array of bytes that is the exponent.
- * expLen Length of data, in bytes, in exponent.
- * mod Modulus.
- * out Buffer to hold big-endian bytes of exponentiation result.
- * Must be at least 512 bytes long.
- * outLen Length, in bytes, of exponentiation result.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_DhExp_4096(const mp_int* base, const byte* exp, word32 expLen,
- const mp_int* mod, byte* out, word32* outLen)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* b = NULL;
- #else
- sp_digit b[162 * 4];
- #endif
- sp_digit* e = NULL;
- sp_digit* m = NULL;
- sp_digit* r = NULL;
- word32 i;
- int err = MP_OKAY;
- if (mp_count_bits(base) > 4096) {
- err = MP_READ_E;
- }
- else if (expLen > 512U) {
- err = MP_READ_E;
- }
- else if (mp_count_bits(mod) != 4096) {
- err = MP_READ_E;
- }
- else if (mp_iseven(mod)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- b = (sp_digit*)XMALLOC(sizeof(sp_digit) * 162 * 4, NULL,
- DYNAMIC_TYPE_DH);
- if (b == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- e = b + 162 * 2;
- m = e + 162;
- r = b;
- sp_4096_from_mp(b, 162, base);
- sp_4096_from_bin(e, 162, exp, expLen);
- sp_4096_from_mp(m, 162, mod);
- #ifdef HAVE_FFDHE_4096
- if (base->used == 1 && base->dp[0] == 2U &&
- ((m[157] << 2) | (m[156] >> 24)) == 0xffffL) {
- err = sp_4096_mod_exp_2_162(r, e, expLen * 8U, m);
- }
- else {
- #endif
- err = sp_4096_mod_exp_162(r, b, e, expLen * 8U, m, 0);
- #ifdef HAVE_FFDHE_4096
- }
- #endif
- }
- if (err == MP_OKAY) {
- sp_4096_to_bin_162(r, out);
- *outLen = 512;
- for (i=0; i<512U && out[i] == 0U; i++) {
- /* Search for first non-zero. */
- }
- *outLen -= i;
- XMEMMOVE(out, out + i, *outLen);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (b != NULL)
- #endif
- {
- /* only "e" is sensitive and needs zeroized */
- if (e != NULL)
- ForceZero(e, sizeof(sp_digit) * 162U);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(b, NULL, DYNAMIC_TYPE_DH);
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_HAVE_SP_DH */
- #endif /* WOLFSSL_HAVE_SP_DH | (WOLFSSL_HAVE_SP_RSA & !WOLFSSL_RSA_PUBLIC_ONLY) */
- #endif /* WOLFSSL_SP_SMALL */
- #endif /* WOLFSSL_SP_4096 */
- #endif /* WOLFSSL_HAVE_SP_RSA | WOLFSSL_HAVE_SP_DH */
- #ifdef WOLFSSL_HAVE_SP_ECC
- #ifndef WOLFSSL_SP_NO_256
- /* Point structure to use. */
- typedef struct sp_point_256 {
- /* X ordinate of point. */
- sp_digit x[2 * 9];
- /* Y ordinate of point. */
- sp_digit y[2 * 9];
- /* Z ordinate of point. */
- sp_digit z[2 * 9];
- /* Indicates point is at infinity. */
- int infinity;
- } sp_point_256;
- /* The modulus (prime) of the curve P256. */
- static const sp_digit p256_mod[9] = {
- 0x1fffffff,0x1fffffff,0x1fffffff,0x000001ff,0x00000000,0x00000000,
- 0x00040000,0x1fe00000,0x00ffffff
- };
- /* The Montgomery normalizer for modulus of the curve P256. */
- static const sp_digit p256_norm_mod[9] = {
- 0x00000001,0x00000000,0x00000000,0x1ffffe00,0x1fffffff,0x1fffffff,
- 0x1ffbffff,0x001fffff,0x00000000
- };
- /* The Montgomery multiplier for modulus of the curve P256. */
- static const sp_digit p256_mp_mod = 0x0000001;
- #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
- defined(HAVE_ECC_VERIFY)
- /* The order of the curve P256. */
- static const sp_digit p256_order[9] = {
- 0x1c632551,0x1dce5617,0x05e7a13c,0x0df55b4e,0x1ffffbce,0x1fffffff,
- 0x0003ffff,0x1fe00000,0x00ffffff
- };
- #endif
- /* The order of the curve P256 minus 2. */
- static const sp_digit p256_order2[9] = {
- 0x1c63254f,0x1dce5617,0x05e7a13c,0x0df55b4e,0x1ffffbce,0x1fffffff,
- 0x0003ffff,0x1fe00000,0x00ffffff
- };
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- /* The Montgomery normalizer for order of the curve P256. */
- static const sp_digit p256_norm_order[9] = {
- 0x039cdaaf,0x0231a9e8,0x1a185ec3,0x120aa4b1,0x00000431,0x00000000,
- 0x1ffc0000,0x001fffff,0x00000000
- };
- #endif
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- /* The Montgomery multiplier for order of the curve P256. */
- static const sp_digit p256_mp_order = 0xe00bc4f;
- #endif
- /* The base point of curve P256. */
- static const sp_point_256 p256_base = {
- /* X ordinate */
- {
- 0x1898c296,0x0509ca2e,0x1acce83d,0x06fb025b,0x040f2770,0x1372b1d2,
- 0x091fe2f3,0x1e5c2588,0x006b17d1,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0
- },
- /* Y ordinate */
- {
- 0x17bf51f5,0x1db20341,0x0c57b3b2,0x1c66aed6,0x19e162bc,0x15a53e07,
- 0x1e6e3b9f,0x1c5fc34f,0x004fe342,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0
- },
- /* Z ordinate */
- {
- 0x00000001,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
- 0x00000000,0x00000000,0x00000000,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0
- },
- /* infinity */
- 0
- };
- #if defined(HAVE_ECC_CHECK_KEY) || defined(HAVE_COMP_KEY)
- static const sp_digit p256_b[9] = {
- 0x07d2604b,0x1e71e1f1,0x14ec3d8e,0x1a0d6198,0x086bc651,0x1eaabb4c,
- 0x0f9ecfae,0x1b154752,0x005ac635
- };
- #endif
- #ifdef WOLFSSL_SP_SMALL
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_256_mul_9(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 lo;
- c = ((sp_uint64)a[8]) * b[8];
- r[17] = (sp_digit)(c >> 29);
- c &= 0x1fffffff;
- for (k = 15; k >= 0; k--) {
- if (k >= 9) {
- i = k - 8;
- imax = 8;
- }
- else {
- i = 0;
- imax = k;
- }
- lo = 0;
- for (; i <= imax; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 29;
- r[k + 2] += (sp_digit)(c >> 29);
- r[k + 1] = (sp_digit)(c & 0x1fffffff);
- c = lo & 0x1fffffff;
- }
- r[0] = (sp_digit)c;
- }
- #else
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_256_mul_9(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_int64 t0;
- sp_int64 t1;
- sp_digit t[9];
- t0 = ((sp_int64)a[ 0]) * b[ 0];
- t1 = ((sp_int64)a[ 0]) * b[ 1]
- + ((sp_int64)a[ 1]) * b[ 0];
- t[ 0] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_int64)a[ 0]) * b[ 2]
- + ((sp_int64)a[ 1]) * b[ 1]
- + ((sp_int64)a[ 2]) * b[ 0];
- t[ 1] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_int64)a[ 0]) * b[ 3]
- + ((sp_int64)a[ 1]) * b[ 2]
- + ((sp_int64)a[ 2]) * b[ 1]
- + ((sp_int64)a[ 3]) * b[ 0];
- t[ 2] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_int64)a[ 0]) * b[ 4]
- + ((sp_int64)a[ 1]) * b[ 3]
- + ((sp_int64)a[ 2]) * b[ 2]
- + ((sp_int64)a[ 3]) * b[ 1]
- + ((sp_int64)a[ 4]) * b[ 0];
- t[ 3] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_int64)a[ 0]) * b[ 5]
- + ((sp_int64)a[ 1]) * b[ 4]
- + ((sp_int64)a[ 2]) * b[ 3]
- + ((sp_int64)a[ 3]) * b[ 2]
- + ((sp_int64)a[ 4]) * b[ 1]
- + ((sp_int64)a[ 5]) * b[ 0];
- t[ 4] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_int64)a[ 0]) * b[ 6]
- + ((sp_int64)a[ 1]) * b[ 5]
- + ((sp_int64)a[ 2]) * b[ 4]
- + ((sp_int64)a[ 3]) * b[ 3]
- + ((sp_int64)a[ 4]) * b[ 2]
- + ((sp_int64)a[ 5]) * b[ 1]
- + ((sp_int64)a[ 6]) * b[ 0];
- t[ 5] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_int64)a[ 0]) * b[ 7]
- + ((sp_int64)a[ 1]) * b[ 6]
- + ((sp_int64)a[ 2]) * b[ 5]
- + ((sp_int64)a[ 3]) * b[ 4]
- + ((sp_int64)a[ 4]) * b[ 3]
- + ((sp_int64)a[ 5]) * b[ 2]
- + ((sp_int64)a[ 6]) * b[ 1]
- + ((sp_int64)a[ 7]) * b[ 0];
- t[ 6] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_int64)a[ 0]) * b[ 8]
- + ((sp_int64)a[ 1]) * b[ 7]
- + ((sp_int64)a[ 2]) * b[ 6]
- + ((sp_int64)a[ 3]) * b[ 5]
- + ((sp_int64)a[ 4]) * b[ 4]
- + ((sp_int64)a[ 5]) * b[ 3]
- + ((sp_int64)a[ 6]) * b[ 2]
- + ((sp_int64)a[ 7]) * b[ 1]
- + ((sp_int64)a[ 8]) * b[ 0];
- t[ 7] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_int64)a[ 1]) * b[ 8]
- + ((sp_int64)a[ 2]) * b[ 7]
- + ((sp_int64)a[ 3]) * b[ 6]
- + ((sp_int64)a[ 4]) * b[ 5]
- + ((sp_int64)a[ 5]) * b[ 4]
- + ((sp_int64)a[ 6]) * b[ 3]
- + ((sp_int64)a[ 7]) * b[ 2]
- + ((sp_int64)a[ 8]) * b[ 1];
- t[ 8] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_int64)a[ 2]) * b[ 8]
- + ((sp_int64)a[ 3]) * b[ 7]
- + ((sp_int64)a[ 4]) * b[ 6]
- + ((sp_int64)a[ 5]) * b[ 5]
- + ((sp_int64)a[ 6]) * b[ 4]
- + ((sp_int64)a[ 7]) * b[ 3]
- + ((sp_int64)a[ 8]) * b[ 2];
- r[ 9] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_int64)a[ 3]) * b[ 8]
- + ((sp_int64)a[ 4]) * b[ 7]
- + ((sp_int64)a[ 5]) * b[ 6]
- + ((sp_int64)a[ 6]) * b[ 5]
- + ((sp_int64)a[ 7]) * b[ 4]
- + ((sp_int64)a[ 8]) * b[ 3];
- r[10] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_int64)a[ 4]) * b[ 8]
- + ((sp_int64)a[ 5]) * b[ 7]
- + ((sp_int64)a[ 6]) * b[ 6]
- + ((sp_int64)a[ 7]) * b[ 5]
- + ((sp_int64)a[ 8]) * b[ 4];
- r[11] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_int64)a[ 5]) * b[ 8]
- + ((sp_int64)a[ 6]) * b[ 7]
- + ((sp_int64)a[ 7]) * b[ 6]
- + ((sp_int64)a[ 8]) * b[ 5];
- r[12] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_int64)a[ 6]) * b[ 8]
- + ((sp_int64)a[ 7]) * b[ 7]
- + ((sp_int64)a[ 8]) * b[ 6];
- r[13] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = ((sp_int64)a[ 7]) * b[ 8]
- + ((sp_int64)a[ 8]) * b[ 7];
- r[14] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_int64)a[ 8]) * b[ 8];
- r[15] = t1 & 0x1fffffff; t0 += t1 >> 29;
- r[16] = t0 & 0x1fffffff;
- r[17] = (sp_digit)(t0 >> 29);
- XMEMCPY(r, t, sizeof(t));
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_256_sqr_9(sp_digit* r, const sp_digit* a)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 t;
- c = ((sp_uint64)a[8]) * a[8];
- r[17] = (sp_digit)(c >> 29);
- c = (c & 0x1fffffff) << 29;
- for (k = 15; k >= 0; k--) {
- i = (k + 1) / 2;
- if ((k & 1) == 0) {
- c += ((sp_uint64)a[i]) * a[i];
- i++;
- }
- if (k < 8) {
- imax = k;
- }
- else {
- imax = 8;
- }
- t = 0;
- for (; i <= imax; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- r[k + 2] += (sp_digit) (c >> 58);
- r[k + 1] = (sp_digit)((c >> 29) & 0x1fffffff);
- c = (c & 0x1fffffff) << 29;
- }
- r[0] = (sp_digit)(c >> 29);
- }
- #else
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_256_sqr_9(sp_digit* r, const sp_digit* a)
- {
- sp_int64 t0;
- sp_int64 t1;
- sp_digit t[9];
- t0 = ((sp_int64)a[ 0]) * a[ 0];
- t1 = (((sp_int64)a[ 0]) * a[ 1]) * 2;
- t[ 0] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_int64)a[ 0]) * a[ 2]) * 2
- + ((sp_int64)a[ 1]) * a[ 1];
- t[ 1] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_int64)a[ 0]) * a[ 3]
- + ((sp_int64)a[ 1]) * a[ 2]) * 2;
- t[ 2] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_int64)a[ 0]) * a[ 4]
- + ((sp_int64)a[ 1]) * a[ 3]) * 2
- + ((sp_int64)a[ 2]) * a[ 2];
- t[ 3] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_int64)a[ 0]) * a[ 5]
- + ((sp_int64)a[ 1]) * a[ 4]
- + ((sp_int64)a[ 2]) * a[ 3]) * 2;
- t[ 4] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_int64)a[ 0]) * a[ 6]
- + ((sp_int64)a[ 1]) * a[ 5]
- + ((sp_int64)a[ 2]) * a[ 4]) * 2
- + ((sp_int64)a[ 3]) * a[ 3];
- t[ 5] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_int64)a[ 0]) * a[ 7]
- + ((sp_int64)a[ 1]) * a[ 6]
- + ((sp_int64)a[ 2]) * a[ 5]
- + ((sp_int64)a[ 3]) * a[ 4]) * 2;
- t[ 6] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_int64)a[ 0]) * a[ 8]
- + ((sp_int64)a[ 1]) * a[ 7]
- + ((sp_int64)a[ 2]) * a[ 6]
- + ((sp_int64)a[ 3]) * a[ 5]) * 2
- + ((sp_int64)a[ 4]) * a[ 4];
- t[ 7] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_int64)a[ 1]) * a[ 8]
- + ((sp_int64)a[ 2]) * a[ 7]
- + ((sp_int64)a[ 3]) * a[ 6]
- + ((sp_int64)a[ 4]) * a[ 5]) * 2;
- t[ 8] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_int64)a[ 2]) * a[ 8]
- + ((sp_int64)a[ 3]) * a[ 7]
- + ((sp_int64)a[ 4]) * a[ 6]) * 2
- + ((sp_int64)a[ 5]) * a[ 5];
- r[ 9] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_int64)a[ 3]) * a[ 8]
- + ((sp_int64)a[ 4]) * a[ 7]
- + ((sp_int64)a[ 5]) * a[ 6]) * 2;
- r[10] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_int64)a[ 4]) * a[ 8]
- + ((sp_int64)a[ 5]) * a[ 7]) * 2
- + ((sp_int64)a[ 6]) * a[ 6];
- r[11] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_int64)a[ 5]) * a[ 8]
- + ((sp_int64)a[ 6]) * a[ 7]) * 2;
- r[12] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = (((sp_int64)a[ 6]) * a[ 8]) * 2
- + ((sp_int64)a[ 7]) * a[ 7];
- r[13] = t1 & 0x1fffffff; t0 += t1 >> 29;
- t1 = (((sp_int64)a[ 7]) * a[ 8]) * 2;
- r[14] = t0 & 0x1fffffff; t1 += t0 >> 29;
- t0 = ((sp_int64)a[ 8]) * a[ 8];
- r[15] = t1 & 0x1fffffff; t0 += t1 >> 29;
- r[16] = t0 & 0x1fffffff;
- r[17] = (sp_digit)(t0 >> 29);
- XMEMCPY(r, t, sizeof(t));
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_256_add_9(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 9; i++) {
- r[i] = a[i] + b[i];
- }
- return 0;
- }
- #else
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_256_add_9(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- r[ 0] = a[ 0] + b[ 0];
- r[ 1] = a[ 1] + b[ 1];
- r[ 2] = a[ 2] + b[ 2];
- r[ 3] = a[ 3] + b[ 3];
- r[ 4] = a[ 4] + b[ 4];
- r[ 5] = a[ 5] + b[ 5];
- r[ 6] = a[ 6] + b[ 6];
- r[ 7] = a[ 7] + b[ 7];
- r[ 8] = a[ 8] + b[ 8];
- return 0;
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_256_sub_9(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 9; i++) {
- r[i] = a[i] - b[i];
- }
- return 0;
- }
- #else
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_256_sub_9(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- r[ 0] = a[ 0] - b[ 0];
- r[ 1] = a[ 1] - b[ 1];
- r[ 2] = a[ 2] - b[ 2];
- r[ 3] = a[ 3] - b[ 3];
- r[ 4] = a[ 4] - b[ 4];
- r[ 5] = a[ 5] - b[ 5];
- r[ 6] = a[ 6] - b[ 6];
- r[ 7] = a[ 7] - b[ 7];
- r[ 8] = a[ 8] - b[ 8];
- return 0;
- }
- #endif /* WOLFSSL_SP_SMALL */
- /* Convert an mp_int to an array of sp_digit.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a A multi-precision integer.
- */
- static void sp_256_from_mp(sp_digit* r, int size, const mp_int* a)
- {
- #if DIGIT_BIT == 29
- int i;
- sp_digit j = (sp_digit)0 - (sp_digit)a->used;
- int o = 0;
- for (i = 0; i < size; i++) {
- sp_digit mask = (sp_digit)0 - (j >> 28);
- r[i] = a->dp[o] & mask;
- j++;
- o += (int)(j >> 28);
- }
- #elif DIGIT_BIT > 29
- unsigned int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i] << s);
- r[j] &= 0x1fffffff;
- s = 29U - s;
- if (j + 1 >= size) {
- break;
- }
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- while ((s + 29U) <= (word32)DIGIT_BIT) {
- s += 29U;
- r[j] &= 0x1fffffff;
- if (j + 1 >= size) {
- break;
- }
- if (s < (word32)DIGIT_BIT) {
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- }
- else {
- r[++j] = (sp_digit)0;
- }
- }
- s = (word32)DIGIT_BIT - s;
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #else
- unsigned int i;
- int j = 0;
- int s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i]) << s;
- if (s + DIGIT_BIT >= 29) {
- r[j] &= 0x1fffffff;
- if (j + 1 >= size) {
- break;
- }
- s = 29 - s;
- if (s == DIGIT_BIT) {
- r[++j] = 0;
- s = 0;
- }
- else {
- r[++j] = a->dp[i] >> s;
- s = DIGIT_BIT - s;
- }
- }
- else {
- s += DIGIT_BIT;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #endif
- }
- /* Convert a point of type ecc_point to type sp_point_256.
- *
- * p Point of type sp_point_256 (result).
- * pm Point of type ecc_point.
- */
- static void sp_256_point_from_ecc_point_9(sp_point_256* p,
- const ecc_point* pm)
- {
- XMEMSET(p->x, 0, sizeof(p->x));
- XMEMSET(p->y, 0, sizeof(p->y));
- XMEMSET(p->z, 0, sizeof(p->z));
- sp_256_from_mp(p->x, 9, pm->x);
- sp_256_from_mp(p->y, 9, pm->y);
- sp_256_from_mp(p->z, 9, pm->z);
- p->infinity = 0;
- }
- /* Convert an array of sp_digit to an mp_int.
- *
- * a A single precision integer.
- * r A multi-precision integer.
- */
- static int sp_256_to_mp(const sp_digit* a, mp_int* r)
- {
- int err;
- err = mp_grow(r, (256 + DIGIT_BIT - 1) / DIGIT_BIT);
- if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
- #if DIGIT_BIT == 29
- XMEMCPY(r->dp, a, sizeof(sp_digit) * 9);
- r->used = 9;
- mp_clamp(r);
- #elif DIGIT_BIT < 29
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 9; i++) {
- r->dp[j] |= (mp_digit)(a[i] << s);
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- s = DIGIT_BIT - s;
- r->dp[++j] = (mp_digit)(a[i] >> s);
- while (s + DIGIT_BIT <= 29) {
- s += DIGIT_BIT;
- r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- if (s == SP_WORD_SIZE) {
- r->dp[j] = 0;
- }
- else {
- r->dp[j] = (mp_digit)(a[i] >> s);
- }
- }
- s = 29 - s;
- }
- r->used = (256 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #else
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 9; i++) {
- r->dp[j] |= ((mp_digit)a[i]) << s;
- if (s + 29 >= DIGIT_BIT) {
- #if DIGIT_BIT != 32 && DIGIT_BIT != 64
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- #endif
- s = DIGIT_BIT - s;
- r->dp[++j] = a[i] >> s;
- s = 29 - s;
- }
- else {
- s += 29;
- }
- }
- r->used = (256 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #endif
- }
- return err;
- }
- /* Convert a point of type sp_point_256 to type ecc_point.
- *
- * p Point of type sp_point_256.
- * pm Point of type ecc_point (result).
- * returns MEMORY_E when allocation of memory in ecc_point fails otherwise
- * MP_OKAY.
- */
- static int sp_256_point_to_ecc_point_9(const sp_point_256* p, ecc_point* pm)
- {
- int err;
- err = sp_256_to_mp(p->x, pm->x);
- if (err == MP_OKAY) {
- err = sp_256_to_mp(p->y, pm->y);
- }
- if (err == MP_OKAY) {
- err = sp_256_to_mp(p->z, pm->z);
- }
- return err;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_256_cmp_9(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i=8; i>=0; i--) {
- r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 28);
- }
- #else
- r |= (a[ 8] - b[ 8]) & (0 - (sp_digit)1);
- r |= (a[ 7] - b[ 7]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[ 6] - b[ 6]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[ 5] - b[ 5]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[ 4] - b[ 4]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[ 3] - b[ 3]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[ 2] - b[ 2]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[ 1] - b[ 1]) & ~(((sp_digit)0 - r) >> 28);
- r |= (a[ 0] - b[ 0]) & ~(((sp_digit)0 - r) >> 28);
- #endif /* WOLFSSL_SP_SMALL */
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_256_cond_sub_9(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 9; i++) {
- r[i] = a[i] - (b[i] & m);
- }
- #else
- r[ 0] = a[ 0] - (b[ 0] & m);
- r[ 1] = a[ 1] - (b[ 1] & m);
- r[ 2] = a[ 2] - (b[ 2] & m);
- r[ 3] = a[ 3] - (b[ 3] & m);
- r[ 4] = a[ 4] - (b[ 4] & m);
- r[ 5] = a[ 5] - (b[ 5] & m);
- r[ 6] = a[ 6] - (b[ 6] & m);
- r[ 7] = a[ 7] - (b[ 7] & m);
- r[ 8] = a[ 8] - (b[ 8] & m);
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_256_mul_add_9(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifndef WOLFSSL_SP_LARGE_CODE
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 9; i++) {
- t += r[i];
- t += tb * a[i];
- r[i] = ((sp_digit)t) & 0x1fffffff;
- t >>= 29;
- }
- r[9] += (sp_digit)t;
- #else
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t[4];
- int i;
- t[0] = 0;
- for (i = 0; i < 8; i += 4) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- r[i+0] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[i+1] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[i+2] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[i+3] = t[3] & 0x1fffffff;
- t[0] = t[3] >> 29;
- }
- t[0] += (tb * a[8]) + r[8];
- r[8] = t[0] & 0x1fffffff;
- r[9] += (sp_digit)(t[0] >> 29);
- #else
- sp_int64 tb = b;
- sp_int64 t[8];
- int i;
- t[0] = 0;
- for (i = 0; i < 8; i += 8) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- t[4] = (tb * a[i+4]) + r[i+4];
- t[5] = (tb * a[i+5]) + r[i+5];
- t[6] = (tb * a[i+6]) + r[i+6];
- t[7] = (tb * a[i+7]) + r[i+7];
- r[i+0] = t[0] & 0x1fffffff;
- t[1] += t[0] >> 29;
- r[i+1] = t[1] & 0x1fffffff;
- t[2] += t[1] >> 29;
- r[i+2] = t[2] & 0x1fffffff;
- t[3] += t[2] >> 29;
- r[i+3] = t[3] & 0x1fffffff;
- t[4] += t[3] >> 29;
- r[i+4] = t[4] & 0x1fffffff;
- t[5] += t[4] >> 29;
- r[i+5] = t[5] & 0x1fffffff;
- t[6] += t[5] >> 29;
- r[i+6] = t[6] & 0x1fffffff;
- t[7] += t[6] >> 29;
- r[i+7] = t[7] & 0x1fffffff;
- t[0] = t[7] >> 29;
- }
- t[0] += (tb * a[8]) + r[8];
- r[8] = t[0] & 0x1fffffff;
- r[9] += (sp_digit)(t[0] >> 29);
- #endif /* WOLFSSL_SP_SMALL */
- #endif /* !WOLFSSL_SP_LARGE_CODE */
- }
- /* Normalize the values in each word to 29 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_256_norm_9(sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 8; i++) {
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- }
- #else
- a[1] += a[0] >> 29; a[0] &= 0x1fffffff;
- a[2] += a[1] >> 29; a[1] &= 0x1fffffff;
- a[3] += a[2] >> 29; a[2] &= 0x1fffffff;
- a[4] += a[3] >> 29; a[3] &= 0x1fffffff;
- a[5] += a[4] >> 29; a[4] &= 0x1fffffff;
- a[6] += a[5] >> 29; a[5] &= 0x1fffffff;
- a[7] += a[6] >> 29; a[6] &= 0x1fffffff;
- a[8] += a[7] >> 29; a[7] &= 0x1fffffff;
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Shift the result in the high 256 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_256_mont_shift_9(sp_digit* r, const sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- sp_int64 n = a[8] >> 24;
- n += ((sp_int64)a[9]) << 5;
- for (i = 0; i < 8; i++) {
- r[i] = n & 0x1fffffff;
- n >>= 29;
- n += ((sp_int64)a[10 + i]) << 5;
- }
- r[8] = (sp_digit)n;
- #else
- sp_int64 n = a[8] >> 24;
- n += ((sp_int64)a[9]) << 5;
- r[ 0] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[10]) << 5;
- r[ 1] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[11]) << 5;
- r[ 2] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[12]) << 5;
- r[ 3] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[13]) << 5;
- r[ 4] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[14]) << 5;
- r[ 5] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[15]) << 5;
- r[ 6] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[16]) << 5;
- r[ 7] = n & 0x1fffffff; n >>= 29; n += ((sp_int64)a[17]) << 5;
- r[8] = (sp_digit)n;
- #endif /* WOLFSSL_SP_SMALL */
- XMEMSET(&r[9], 0, sizeof(*r) * 9U);
- }
- /* Reduce the number back to 256 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_256_mont_reduce_order_9(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_256_norm_9(a + 9);
- for (i=0; i<8; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffff;
- sp_256_mul_add_9(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xffffffL;
- sp_256_mul_add_9(a+i, m, mu);
- a[i+1] += a[i] >> 29;
- a[i] &= 0x1fffffff;
- sp_256_mont_shift_9(a, a);
- over = a[8] >> 24;
- sp_256_cond_sub_9(a, a, m, ~((over - 1) >> 31));
- sp_256_norm_9(a);
- }
- /* Reduce the number back to 256 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_256_mont_reduce_9(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit am;
- (void)m;
- (void)mp;
- for (i = 0; i < 8; i++) {
- am = a[i] & 0x1fffffff;
- a[i + 3] += (am << 9) & 0x1fffffff;
- a[i + 4] += am >> 20;
- a[i + 6] += (am << 18) & 0x1fffffff;
- a[i + 7] += (am >> 11) - ((am << 21) & 0x1fffffff);
- a[i + 8] += -(am >> 8) + ((am << 24) & 0x1fffffff);
- a[i + 9] += am >> 5;
- a[i + 1] += a[i] >> 29;
- }
- am = a[8] & 0xffffff;
- a[8 + 3] += (am << 9) & 0x1fffffff;
- a[8 + 4] += am >> 20;
- a[8 + 6] += (am << 18) & 0x1fffffff;
- a[8 + 7] += (am >> 11) - ((am << 21) & 0x1fffffff);
- a[8 + 8] += -(am >> 8) + ((am << 24) & 0x1fffffff);
- a[8 + 9] += am >> 5;
- a[0] = (a[ 8] >> 24) + ((a[ 9] << 5) & 0x1fffffff);
- a[1] = (a[ 9] >> 24) + ((a[10] << 5) & 0x1fffffff);
- a[2] = (a[10] >> 24) + ((a[11] << 5) & 0x1fffffff);
- a[3] = (a[11] >> 24) + ((a[12] << 5) & 0x1fffffff);
- a[4] = (a[12] >> 24) + ((a[13] << 5) & 0x1fffffff);
- a[5] = (a[13] >> 24) + ((a[14] << 5) & 0x1fffffff);
- a[6] = (a[14] >> 24) + ((a[15] << 5) & 0x1fffffff);
- a[7] = (a[15] >> 24) + ((a[16] << 5) & 0x1fffffff);
- a[8] = (a[16] >> 24) + (a[17] << 5);
- a[1] += a[0] >> 29; a[0] &= 0x1fffffff;
- a[2] += a[1] >> 29; a[1] &= 0x1fffffff;
- a[3] += a[2] >> 29; a[2] &= 0x1fffffff;
- a[4] += a[3] >> 29; a[3] &= 0x1fffffff;
- a[5] += a[4] >> 29; a[4] &= 0x1fffffff;
- a[6] += a[5] >> 29; a[5] &= 0x1fffffff;
- a[7] += a[6] >> 29; a[6] &= 0x1fffffff;
- a[8] += a[7] >> 29; a[7] &= 0x1fffffff;
- /* Get the bit over, if any. */
- am = a[8] >> 24;
- /* Create mask. */
- am = 0 - am;
- a[0] -= 0x1fffffff & am;
- a[1] -= 0x1fffffff & am;
- a[2] -= 0x1fffffff & am;
- a[3] -= 0x000001ff & am;
- /* p256_mod[4] is zero */
- /* p256_mod[5] is zero */
- a[6] -= 0x00040000 & am;
- a[7] -= 0x1fe00000 & am;
- a[8] -= 0x00ffffff & am;
- a[1] += a[0] >> 29; a[0] &= 0x1fffffff;
- a[2] += a[1] >> 29; a[1] &= 0x1fffffff;
- a[3] += a[2] >> 29; a[2] &= 0x1fffffff;
- a[4] += a[3] >> 29; a[3] &= 0x1fffffff;
- a[5] += a[4] >> 29; a[4] &= 0x1fffffff;
- a[6] += a[5] >> 29; a[5] &= 0x1fffffff;
- a[7] += a[6] >> 29; a[6] &= 0x1fffffff;
- a[8] += a[7] >> 29; a[7] &= 0x1fffffff;
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_256_mont_mul_9(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_256_mul_9(r, a, b);
- sp_256_mont_reduce_9(r, m, mp);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_256_mont_sqr_9(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_256_sqr_9(r, a);
- sp_256_mont_reduce_9(r, m, mp);
- }
- #if !defined(WOLFSSL_SP_SMALL) || defined(HAVE_COMP_KEY)
- /* Square the Montgomery form number a number of times. (r = a ^ n mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * n Number of times to square.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_256_mont_sqr_n_9(sp_digit* r,
- const sp_digit* a, int n, const sp_digit* m, sp_digit mp)
- {
- sp_256_mont_sqr_9(r, a, m, mp);
- for (; n > 1; n--) {
- sp_256_mont_sqr_9(r, r, m, mp);
- }
- }
- #endif /* !WOLFSSL_SP_SMALL || HAVE_COMP_KEY */
- #ifdef WOLFSSL_SP_SMALL
- /* Mod-2 for the P256 curve. */
- static const uint32_t p256_mod_minus_2[8] = {
- 0xfffffffdU,0xffffffffU,0xffffffffU,0x00000000U,0x00000000U,0x00000000U,
- 0x00000001U,0xffffffffU
- };
- #endif /* !WOLFSSL_SP_SMALL */
- /* Invert the number, in Montgomery form, modulo the modulus (prime) of the
- * P256 curve. (r = 1 / a mod m)
- *
- * r Inverse result.
- * a Number to invert.
- * td Temporary data.
- */
- static void sp_256_mont_inv_9(sp_digit* r, const sp_digit* a, sp_digit* td)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_digit* t = td;
- int i;
- XMEMCPY(t, a, sizeof(sp_digit) * 9);
- for (i=254; i>=0; i--) {
- sp_256_mont_sqr_9(t, t, p256_mod, p256_mp_mod);
- if (p256_mod_minus_2[i / 32] & ((sp_digit)1 << (i % 32)))
- sp_256_mont_mul_9(t, t, a, p256_mod, p256_mp_mod);
- }
- XMEMCPY(r, t, sizeof(sp_digit) * 9);
- #else
- sp_digit* t1 = td;
- sp_digit* t2 = td + 2 * 9;
- sp_digit* t3 = td + 4 * 9;
- /* 0x2 */
- sp_256_mont_sqr_9(t1, a, p256_mod, p256_mp_mod);
- /* 0x3 */
- sp_256_mont_mul_9(t2, t1, a, p256_mod, p256_mp_mod);
- /* 0xc */
- sp_256_mont_sqr_n_9(t1, t2, 2, p256_mod, p256_mp_mod);
- /* 0xd */
- sp_256_mont_mul_9(t3, t1, a, p256_mod, p256_mp_mod);
- /* 0xf */
- sp_256_mont_mul_9(t2, t2, t1, p256_mod, p256_mp_mod);
- /* 0xf0 */
- sp_256_mont_sqr_n_9(t1, t2, 4, p256_mod, p256_mp_mod);
- /* 0xfd */
- sp_256_mont_mul_9(t3, t3, t1, p256_mod, p256_mp_mod);
- /* 0xff */
- sp_256_mont_mul_9(t2, t2, t1, p256_mod, p256_mp_mod);
- /* 0xff00 */
- sp_256_mont_sqr_n_9(t1, t2, 8, p256_mod, p256_mp_mod);
- /* 0xfffd */
- sp_256_mont_mul_9(t3, t3, t1, p256_mod, p256_mp_mod);
- /* 0xffff */
- sp_256_mont_mul_9(t2, t2, t1, p256_mod, p256_mp_mod);
- /* 0xffff0000 */
- sp_256_mont_sqr_n_9(t1, t2, 16, p256_mod, p256_mp_mod);
- /* 0xfffffffd */
- sp_256_mont_mul_9(t3, t3, t1, p256_mod, p256_mp_mod);
- /* 0xffffffff */
- sp_256_mont_mul_9(t2, t2, t1, p256_mod, p256_mp_mod);
- /* 0xffffffff00000000 */
- sp_256_mont_sqr_n_9(t1, t2, 32, p256_mod, p256_mp_mod);
- /* 0xffffffffffffffff */
- sp_256_mont_mul_9(t2, t2, t1, p256_mod, p256_mp_mod);
- /* 0xffffffff00000001 */
- sp_256_mont_mul_9(r, t1, a, p256_mod, p256_mp_mod);
- /* 0xffffffff000000010000000000000000000000000000000000000000 */
- sp_256_mont_sqr_n_9(r, r, 160, p256_mod, p256_mp_mod);
- /* 0xffffffff00000001000000000000000000000000ffffffffffffffff */
- sp_256_mont_mul_9(r, r, t2, p256_mod, p256_mp_mod);
- /* 0xffffffff00000001000000000000000000000000ffffffffffffffff00000000 */
- sp_256_mont_sqr_n_9(r, r, 32, p256_mod, p256_mp_mod);
- /* 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd */
- sp_256_mont_mul_9(r, r, t3, p256_mod, p256_mp_mod);
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Map the Montgomery form projective coordinate point to an affine point.
- *
- * r Resulting affine coordinate point.
- * p Montgomery form projective coordinate point.
- * t Temporary ordinate data.
- */
- static void sp_256_map_9(sp_point_256* r, const sp_point_256* p,
- sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2*9;
- sp_int32 n;
- sp_256_mont_inv_9(t1, p->z, t + 2*9);
- sp_256_mont_sqr_9(t2, t1, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t1, t2, t1, p256_mod, p256_mp_mod);
- /* x /= z^2 */
- sp_256_mont_mul_9(r->x, p->x, t2, p256_mod, p256_mp_mod);
- XMEMSET(r->x + 9, 0, sizeof(sp_digit) * 9U);
- sp_256_mont_reduce_9(r->x, p256_mod, p256_mp_mod);
- /* Reduce x to less than modulus */
- n = sp_256_cmp_9(r->x, p256_mod);
- sp_256_cond_sub_9(r->x, r->x, p256_mod, ~(n >> 28));
- sp_256_norm_9(r->x);
- /* y /= z^3 */
- sp_256_mont_mul_9(r->y, p->y, t1, p256_mod, p256_mp_mod);
- XMEMSET(r->y + 9, 0, sizeof(sp_digit) * 9U);
- sp_256_mont_reduce_9(r->y, p256_mod, p256_mp_mod);
- /* Reduce y to less than modulus */
- n = sp_256_cmp_9(r->y, p256_mod);
- sp_256_cond_sub_9(r->y, r->y, p256_mod, ~(n >> 28));
- sp_256_norm_9(r->y);
- XMEMSET(r->z, 0, sizeof(r->z) / 2);
- r->z[0] = 1;
- }
- /* Add two Montgomery form numbers (r = a + b % m).
- *
- * r Result of addition.
- * a First number to add in Montgomery form.
- * b Second number to add in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_256_mont_add_9(sp_digit* r, const sp_digit* a, const sp_digit* b,
- const sp_digit* m)
- {
- sp_digit over;
- (void)sp_256_add_9(r, a, b);
- sp_256_norm_9(r);
- over = r[8] >> 24;
- sp_256_cond_sub_9(r, r, m, ~((over - 1) >> 31));
- sp_256_norm_9(r);
- }
- /* Double a Montgomery form number (r = a + a % m).
- *
- * r Result of doubling.
- * a Number to double in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_256_mont_dbl_9(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- sp_digit over;
- (void)sp_256_add_9(r, a, a);
- sp_256_norm_9(r);
- over = r[8] >> 24;
- sp_256_cond_sub_9(r, r, m, ~((over - 1) >> 31));
- sp_256_norm_9(r);
- }
- /* Triple a Montgomery form number (r = a + a + a % m).
- *
- * r Result of Tripling.
- * a Number to triple in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_256_mont_tpl_9(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- sp_digit over;
- (void)sp_256_add_9(r, a, a);
- sp_256_norm_9(r);
- over = r[8] >> 24;
- sp_256_cond_sub_9(r, r, m, ~((over - 1) >> 31));
- sp_256_norm_9(r);
- (void)sp_256_add_9(r, r, a);
- sp_256_norm_9(r);
- over = r[8] >> 24;
- sp_256_cond_sub_9(r, r, m, ~((over - 1) >> 31));
- sp_256_norm_9(r);
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_256_cond_add_9(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 9; i++) {
- r[i] = a[i] + (b[i] & m);
- }
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifndef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_256_cond_add_9(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- r[ 0] = a[ 0] + (b[ 0] & m);
- r[ 1] = a[ 1] + (b[ 1] & m);
- r[ 2] = a[ 2] + (b[ 2] & m);
- r[ 3] = a[ 3] + (b[ 3] & m);
- r[ 4] = a[ 4] + (b[ 4] & m);
- r[ 5] = a[ 5] + (b[ 5] & m);
- r[ 6] = a[ 6] + (b[ 6] & m);
- r[ 7] = a[ 7] + (b[ 7] & m);
- r[ 8] = a[ 8] + (b[ 8] & m);
- }
- #endif /* !WOLFSSL_SP_SMALL */
- /* Subtract two Montgomery form numbers (r = a - b % m).
- *
- * r Result of subtration.
- * a Number to subtract from in Montgomery form.
- * b Number to subtract with in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_256_mont_sub_9(sp_digit* r, const sp_digit* a, const sp_digit* b,
- const sp_digit* m)
- {
- (void)sp_256_sub_9(r, a, b);
- sp_256_norm_9(r);
- sp_256_cond_add_9(r, r, m, r[8] >> 24);
- sp_256_norm_9(r);
- }
- /* Shift number left one bit.
- * Bottom bit is lost.
- *
- * r Result of shift.
- * a Number to shift.
- */
- SP_NOINLINE static void sp_256_rshift1_9(sp_digit* r, const sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i=0; i<8; i++) {
- r[i] = (a[i] >> 1) + ((a[i + 1] << 28) & 0x1fffffff);
- }
- #else
- r[0] = (a[0] >> 1) + ((a[1] << 28) & 0x1fffffff);
- r[1] = (a[1] >> 1) + ((a[2] << 28) & 0x1fffffff);
- r[2] = (a[2] >> 1) + ((a[3] << 28) & 0x1fffffff);
- r[3] = (a[3] >> 1) + ((a[4] << 28) & 0x1fffffff);
- r[4] = (a[4] >> 1) + ((a[5] << 28) & 0x1fffffff);
- r[5] = (a[5] >> 1) + ((a[6] << 28) & 0x1fffffff);
- r[6] = (a[6] >> 1) + ((a[7] << 28) & 0x1fffffff);
- r[7] = (a[7] >> 1) + ((a[8] << 28) & 0x1fffffff);
- #endif
- r[8] = a[8] >> 1;
- }
- /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m)
- *
- * r Result of division by 2.
- * a Number to divide.
- * m Modulus (prime).
- */
- static void sp_256_mont_div2_9(sp_digit* r, const sp_digit* a,
- const sp_digit* m)
- {
- sp_256_cond_add_9(r, a, m, 0 - (a[0] & 1));
- sp_256_norm_9(r);
- sp_256_rshift1_9(r, r);
- }
- /* Double the Montgomery form projective point p.
- *
- * r Result of doubling point.
- * p Point to double.
- * t Temporary ordinate data.
- */
- static void sp_256_proj_point_dbl_9(sp_point_256* r, const sp_point_256* p,
- sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2*9;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- x = r->x;
- y = r->y;
- z = r->z;
- /* Put infinity into result. */
- if (r != p) {
- r->infinity = p->infinity;
- }
- /* T1 = Z * Z */
- sp_256_mont_sqr_9(t1, p->z, p256_mod, p256_mp_mod);
- /* Z = Y * Z */
- sp_256_mont_mul_9(z, p->y, p->z, p256_mod, p256_mp_mod);
- /* Z = 2Z */
- sp_256_mont_dbl_9(z, z, p256_mod);
- /* T2 = X - T1 */
- sp_256_mont_sub_9(t2, p->x, t1, p256_mod);
- /* T1 = X + T1 */
- sp_256_mont_add_9(t1, p->x, t1, p256_mod);
- /* T2 = T1 * T2 */
- sp_256_mont_mul_9(t2, t1, t2, p256_mod, p256_mp_mod);
- /* T1 = 3T2 */
- sp_256_mont_tpl_9(t1, t2, p256_mod);
- /* Y = 2Y */
- sp_256_mont_dbl_9(y, p->y, p256_mod);
- /* Y = Y * Y */
- sp_256_mont_sqr_9(y, y, p256_mod, p256_mp_mod);
- /* T2 = Y * Y */
- sp_256_mont_sqr_9(t2, y, p256_mod, p256_mp_mod);
- /* T2 = T2/2 */
- sp_256_mont_div2_9(t2, t2, p256_mod);
- /* Y = Y * X */
- sp_256_mont_mul_9(y, y, p->x, p256_mod, p256_mp_mod);
- /* X = T1 * T1 */
- sp_256_mont_sqr_9(x, t1, p256_mod, p256_mp_mod);
- /* X = X - Y */
- sp_256_mont_sub_9(x, x, y, p256_mod);
- /* X = X - Y */
- sp_256_mont_sub_9(x, x, y, p256_mod);
- /* Y = Y - X */
- sp_256_mont_sub_9(y, y, x, p256_mod);
- /* Y = Y * T1 */
- sp_256_mont_mul_9(y, y, t1, p256_mod, p256_mp_mod);
- /* Y = Y - T2 */
- sp_256_mont_sub_9(y, y, t2, p256_mod);
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_256_proj_point_dbl_9_ctx {
- int state;
- sp_digit* t1;
- sp_digit* t2;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- } sp_256_proj_point_dbl_9_ctx;
- /* Double the Montgomery form projective point p.
- *
- * r Result of doubling point.
- * p Point to double.
- * t Temporary ordinate data.
- */
- static int sp_256_proj_point_dbl_9_nb(sp_ecc_ctx_t* sp_ctx, sp_point_256* r,
- const sp_point_256* p, sp_digit* t)
- {
- int err = FP_WOULDBLOCK;
- sp_256_proj_point_dbl_9_ctx* ctx = (sp_256_proj_point_dbl_9_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_256_proj_point_dbl_9_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0:
- ctx->t1 = t;
- ctx->t2 = t + 2*9;
- ctx->x = r->x;
- ctx->y = r->y;
- ctx->z = r->z;
- /* Put infinity into result. */
- if (r != p) {
- r->infinity = p->infinity;
- }
- ctx->state = 1;
- break;
- case 1:
- /* T1 = Z * Z */
- sp_256_mont_sqr_9(ctx->t1, p->z, p256_mod, p256_mp_mod);
- ctx->state = 2;
- break;
- case 2:
- /* Z = Y * Z */
- sp_256_mont_mul_9(ctx->z, p->y, p->z, p256_mod, p256_mp_mod);
- ctx->state = 3;
- break;
- case 3:
- /* Z = 2Z */
- sp_256_mont_dbl_9(ctx->z, ctx->z, p256_mod);
- ctx->state = 4;
- break;
- case 4:
- /* T2 = X - T1 */
- sp_256_mont_sub_9(ctx->t2, p->x, ctx->t1, p256_mod);
- ctx->state = 5;
- break;
- case 5:
- /* T1 = X + T1 */
- sp_256_mont_add_9(ctx->t1, p->x, ctx->t1, p256_mod);
- ctx->state = 6;
- break;
- case 6:
- /* T2 = T1 * T2 */
- sp_256_mont_mul_9(ctx->t2, ctx->t1, ctx->t2, p256_mod, p256_mp_mod);
- ctx->state = 7;
- break;
- case 7:
- /* T1 = 3T2 */
- sp_256_mont_tpl_9(ctx->t1, ctx->t2, p256_mod);
- ctx->state = 8;
- break;
- case 8:
- /* Y = 2Y */
- sp_256_mont_dbl_9(ctx->y, p->y, p256_mod);
- ctx->state = 9;
- break;
- case 9:
- /* Y = Y * Y */
- sp_256_mont_sqr_9(ctx->y, ctx->y, p256_mod, p256_mp_mod);
- ctx->state = 10;
- break;
- case 10:
- /* T2 = Y * Y */
- sp_256_mont_sqr_9(ctx->t2, ctx->y, p256_mod, p256_mp_mod);
- ctx->state = 11;
- break;
- case 11:
- /* T2 = T2/2 */
- sp_256_mont_div2_9(ctx->t2, ctx->t2, p256_mod);
- ctx->state = 12;
- break;
- case 12:
- /* Y = Y * X */
- sp_256_mont_mul_9(ctx->y, ctx->y, p->x, p256_mod, p256_mp_mod);
- ctx->state = 13;
- break;
- case 13:
- /* X = T1 * T1 */
- sp_256_mont_sqr_9(ctx->x, ctx->t1, p256_mod, p256_mp_mod);
- ctx->state = 14;
- break;
- case 14:
- /* X = X - Y */
- sp_256_mont_sub_9(ctx->x, ctx->x, ctx->y, p256_mod);
- ctx->state = 15;
- break;
- case 15:
- /* X = X - Y */
- sp_256_mont_sub_9(ctx->x, ctx->x, ctx->y, p256_mod);
- ctx->state = 16;
- break;
- case 16:
- /* Y = Y - X */
- sp_256_mont_sub_9(ctx->y, ctx->y, ctx->x, p256_mod);
- ctx->state = 17;
- break;
- case 17:
- /* Y = Y * T1 */
- sp_256_mont_mul_9(ctx->y, ctx->y, ctx->t1, p256_mod, p256_mp_mod);
- ctx->state = 18;
- break;
- case 18:
- /* Y = Y - T2 */
- sp_256_mont_sub_9(ctx->y, ctx->y, ctx->t2, p256_mod);
- ctx->state = 19;
- /* fall-through */
- case 19:
- err = MP_OKAY;
- break;
- }
- if (err == MP_OKAY && ctx->state != 19) {
- err = FP_WOULDBLOCK;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- /* Compare two numbers to determine if they are equal.
- * Constant time implementation.
- *
- * a First number to compare.
- * b Second number to compare.
- * returns 1 when equal and 0 otherwise.
- */
- static int sp_256_cmp_equal_9(const sp_digit* a, const sp_digit* b)
- {
- return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2]) |
- (a[3] ^ b[3]) | (a[4] ^ b[4]) | (a[5] ^ b[5]) |
- (a[6] ^ b[6]) | (a[7] ^ b[7]) | (a[8] ^ b[8])) == 0;
- }
- /* Returns 1 if the number of zero.
- * Implementation is constant time.
- *
- * a Number to check.
- * returns 1 if the number is zero and 0 otherwise.
- */
- static int sp_256_iszero_9(const sp_digit* a)
- {
- return (a[0] | a[1] | a[2] | a[3] | a[4] | a[5] | a[6] | a[7] |
- a[8]) == 0;
- }
- /* Add two Montgomery form projective points.
- *
- * r Result of addition.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static void sp_256_proj_point_add_9(sp_point_256* r,
- const sp_point_256* p, const sp_point_256* q, sp_digit* t)
- {
- sp_digit* t6 = t;
- sp_digit* t1 = t + 2*9;
- sp_digit* t2 = t + 4*9;
- sp_digit* t3 = t + 6*9;
- sp_digit* t4 = t + 8*9;
- sp_digit* t5 = t + 10*9;
- /* U1 = X1*Z2^2 */
- sp_256_mont_sqr_9(t1, q->z, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t3, t1, q->z, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t1, t1, p->x, p256_mod, p256_mp_mod);
- /* U2 = X2*Z1^2 */
- sp_256_mont_sqr_9(t2, p->z, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t4, t2, p->z, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t2, t2, q->x, p256_mod, p256_mp_mod);
- /* S1 = Y1*Z2^3 */
- sp_256_mont_mul_9(t3, t3, p->y, p256_mod, p256_mp_mod);
- /* S2 = Y2*Z1^3 */
- sp_256_mont_mul_9(t4, t4, q->y, p256_mod, p256_mp_mod);
- /* Check double */
- if ((~p->infinity) & (~q->infinity) &
- sp_256_cmp_equal_9(t2, t1) &
- sp_256_cmp_equal_9(t4, t3)) {
- sp_256_proj_point_dbl_9(r, p, t);
- }
- else {
- sp_digit* x = t6;
- sp_digit* y = t1;
- sp_digit* z = t2;
- /* H = U2 - U1 */
- sp_256_mont_sub_9(t2, t2, t1, p256_mod);
- /* R = S2 - S1 */
- sp_256_mont_sub_9(t4, t4, t3, p256_mod);
- /* X3 = R^2 - H^3 - 2*U1*H^2 */
- sp_256_mont_sqr_9(t5, t2, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(y, t1, t5, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t5, t5, t2, p256_mod, p256_mp_mod);
- /* Z3 = H*Z1*Z2 */
- sp_256_mont_mul_9(z, p->z, t2, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(z, z, q->z, p256_mod, p256_mp_mod);
- sp_256_mont_sqr_9(x, t4, p256_mod, p256_mp_mod);
- sp_256_mont_sub_9(x, x, t5, p256_mod);
- sp_256_mont_mul_9(t5, t5, t3, p256_mod, p256_mp_mod);
- sp_256_mont_dbl_9(t3, y, p256_mod);
- sp_256_mont_sub_9(x, x, t3, p256_mod);
- /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
- sp_256_mont_sub_9(y, y, x, p256_mod);
- sp_256_mont_mul_9(y, y, t4, p256_mod, p256_mp_mod);
- sp_256_mont_sub_9(y, y, t5, p256_mod);
- {
- int i;
- sp_digit maskp = 0 - (q->infinity & (!p->infinity));
- sp_digit maskq = 0 - (p->infinity & (!q->infinity));
- sp_digit maskt = ~(maskp | maskq);
- sp_digit inf = (sp_digit)(p->infinity & q->infinity);
- for (i = 0; i < 9; i++) {
- r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
- (x[i] & maskt);
- }
- for (i = 0; i < 9; i++) {
- r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
- (y[i] & maskt);
- }
- for (i = 0; i < 9; i++) {
- r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
- (z[i] & maskt);
- }
- r->z[0] |= inf;
- r->infinity = (word32)inf;
- }
- }
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_256_proj_point_add_9_ctx {
- int state;
- sp_256_proj_point_dbl_9_ctx dbl_ctx;
- const sp_point_256* ap[2];
- sp_point_256* rp[2];
- sp_digit* t1;
- sp_digit* t2;
- sp_digit* t3;
- sp_digit* t4;
- sp_digit* t5;
- sp_digit* t6;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- } sp_256_proj_point_add_9_ctx;
- /* Add two Montgomery form projective points.
- *
- * r Result of addition.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static int sp_256_proj_point_add_9_nb(sp_ecc_ctx_t* sp_ctx, sp_point_256* r,
- const sp_point_256* p, const sp_point_256* q, sp_digit* t)
- {
- int err = FP_WOULDBLOCK;
- sp_256_proj_point_add_9_ctx* ctx = (sp_256_proj_point_add_9_ctx*)sp_ctx->data;
- /* Ensure only the first point is the same as the result. */
- if (q == r) {
- const sp_point_256* a = p;
- p = q;
- q = a;
- }
- typedef char ctx_size_test[sizeof(sp_256_proj_point_add_9_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0: /* INIT */
- ctx->t6 = t;
- ctx->t1 = t + 2*9;
- ctx->t2 = t + 4*9;
- ctx->t3 = t + 6*9;
- ctx->t4 = t + 8*9;
- ctx->t5 = t + 10*9;
- ctx->x = ctx->t6;
- ctx->y = ctx->t1;
- ctx->z = ctx->t2;
- ctx->state = 1;
- break;
- case 1:
- /* U1 = X1*Z2^2 */
- sp_256_mont_sqr_9(ctx->t1, q->z, p256_mod, p256_mp_mod);
- ctx->state = 2;
- break;
- case 2:
- sp_256_mont_mul_9(ctx->t3, ctx->t1, q->z, p256_mod, p256_mp_mod);
- ctx->state = 3;
- break;
- case 3:
- sp_256_mont_mul_9(ctx->t1, ctx->t1, p->x, p256_mod, p256_mp_mod);
- ctx->state = 4;
- break;
- case 4:
- /* U2 = X2*Z1^2 */
- sp_256_mont_sqr_9(ctx->t2, p->z, p256_mod, p256_mp_mod);
- ctx->state = 5;
- break;
- case 5:
- sp_256_mont_mul_9(ctx->t4, ctx->t2, p->z, p256_mod, p256_mp_mod);
- ctx->state = 6;
- break;
- case 6:
- sp_256_mont_mul_9(ctx->t2, ctx->t2, q->x, p256_mod, p256_mp_mod);
- ctx->state = 7;
- break;
- case 7:
- /* S1 = Y1*Z2^3 */
- sp_256_mont_mul_9(ctx->t3, ctx->t3, p->y, p256_mod, p256_mp_mod);
- ctx->state = 8;
- break;
- case 8:
- /* S2 = Y2*Z1^3 */
- sp_256_mont_mul_9(ctx->t4, ctx->t4, q->y, p256_mod, p256_mp_mod);
- ctx->state = 9;
- break;
- case 9:
- /* Check double */
- if ((~p->infinity) & (~q->infinity) &
- sp_256_cmp_equal_9(ctx->t2, ctx->t1) &
- sp_256_cmp_equal_9(ctx->t4, ctx->t3)) {
- XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
- sp_256_proj_point_dbl_9(r, p, t);
- ctx->state = 25;
- }
- else {
- ctx->state = 10;
- }
- break;
- case 10:
- /* H = U2 - U1 */
- sp_256_mont_sub_9(ctx->t2, ctx->t2, ctx->t1, p256_mod);
- ctx->state = 11;
- break;
- case 11:
- /* R = S2 - S1 */
- sp_256_mont_sub_9(ctx->t4, ctx->t4, ctx->t3, p256_mod);
- ctx->state = 12;
- break;
- case 12:
- /* X3 = R^2 - H^3 - 2*U1*H^2 */
- sp_256_mont_sqr_9(ctx->t5, ctx->t2, p256_mod, p256_mp_mod);
- ctx->state = 13;
- break;
- case 13:
- sp_256_mont_mul_9(ctx->y, ctx->t1, ctx->t5, p256_mod, p256_mp_mod);
- ctx->state = 14;
- break;
- case 14:
- sp_256_mont_mul_9(ctx->t5, ctx->t5, ctx->t2, p256_mod, p256_mp_mod);
- ctx->state = 15;
- break;
- case 15:
- /* Z3 = H*Z1*Z2 */
- sp_256_mont_mul_9(ctx->z, p->z, ctx->t2, p256_mod, p256_mp_mod);
- ctx->state = 16;
- break;
- case 16:
- sp_256_mont_mul_9(ctx->z, ctx->z, q->z, p256_mod, p256_mp_mod);
- ctx->state = 17;
- break;
- case 17:
- sp_256_mont_sqr_9(ctx->x, ctx->t4, p256_mod, p256_mp_mod);
- ctx->state = 18;
- break;
- case 18:
- sp_256_mont_sub_9(ctx->x, ctx->x, ctx->t5, p256_mod);
- ctx->state = 19;
- break;
- case 19:
- sp_256_mont_mul_9(ctx->t5, ctx->t5, ctx->t3, p256_mod, p256_mp_mod);
- ctx->state = 20;
- break;
- case 20:
- sp_256_mont_dbl_9(ctx->t3, ctx->y, p256_mod);
- sp_256_mont_sub_9(ctx->x, ctx->x, ctx->t3, p256_mod);
- ctx->state = 21;
- break;
- case 21:
- /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
- sp_256_mont_sub_9(ctx->y, ctx->y, ctx->x, p256_mod);
- ctx->state = 22;
- break;
- case 22:
- sp_256_mont_mul_9(ctx->y, ctx->y, ctx->t4, p256_mod, p256_mp_mod);
- ctx->state = 23;
- break;
- case 23:
- sp_256_mont_sub_9(ctx->y, ctx->y, ctx->t5, p256_mod);
- ctx->state = 24;
- break;
- case 24:
- {
- {
- int i;
- sp_digit maskp = 0 - (q->infinity & (!p->infinity));
- sp_digit maskq = 0 - (p->infinity & (!q->infinity));
- sp_digit maskt = ~(maskp | maskq);
- sp_digit inf = (sp_digit)(p->infinity & q->infinity);
- for (i = 0; i < 9; i++) {
- r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
- (ctx->x[i] & maskt);
- }
- for (i = 0; i < 9; i++) {
- r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
- (ctx->y[i] & maskt);
- }
- for (i = 0; i < 9; i++) {
- r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
- (ctx->z[i] & maskt);
- }
- r->z[0] |= inf;
- r->infinity = (word32)inf;
- }
- ctx->state = 25;
- break;
- }
- case 25:
- err = MP_OKAY;
- break;
- }
- if (err == MP_OKAY && ctx->state != 25) {
- err = FP_WOULDBLOCK;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- /* Multiply a number by Montgomery normalizer mod modulus (prime).
- *
- * r The resulting Montgomery form number.
- * a The number to convert.
- * m The modulus (prime).
- * returns MEMORY_E when memory allocation fails and MP_OKAY otherwise.
- */
- static int sp_256_mod_mul_norm_9(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- int64_t* t = NULL;
- #else
- int64_t t[2 * 8];
- #endif
- int64_t* a32 = NULL;
- int64_t o;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (int64_t*)XMALLOC(sizeof(int64_t) * 2 * 8, NULL, DYNAMIC_TYPE_ECC);
- if (t == NULL)
- return MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- a32 = t + 8;
- a32[0] = a[0];
- a32[0] |= a[1] << 29U;
- a32[0] &= 0xffffffffL;
- a32[1] = (a[1] >> 3);
- a32[1] |= a[2] << 26U;
- a32[1] &= 0xffffffffL;
- a32[2] = (a[2] >> 6);
- a32[2] |= a[3] << 23U;
- a32[2] &= 0xffffffffL;
- a32[3] = (a[3] >> 9);
- a32[3] |= a[4] << 20U;
- a32[3] &= 0xffffffffL;
- a32[4] = (a[4] >> 12);
- a32[4] |= a[5] << 17U;
- a32[4] &= 0xffffffffL;
- a32[5] = (a[5] >> 15);
- a32[5] |= a[6] << 14U;
- a32[5] &= 0xffffffffL;
- a32[6] = (a[6] >> 18);
- a32[6] |= a[7] << 11U;
- a32[6] &= 0xffffffffL;
- a32[7] = (a[7] >> 21);
- a32[7] |= a[8] << 8U;
- a32[7] &= 0xffffffffL;
- /* 1 1 0 -1 -1 -1 -1 0 */
- t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6];
- /* 0 1 1 0 -1 -1 -1 -1 */
- t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7];
- /* 0 0 1 1 0 -1 -1 -1 */
- t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7];
- /* -1 -1 0 2 2 1 0 -1 */
- t[3] = 0 - a32[0] - a32[1] + 2 * a32[3] + 2 * a32[4] + a32[5] - a32[7];
- /* 0 -1 -1 0 2 2 1 0 */
- t[4] = 0 - a32[1] - a32[2] + 2 * a32[4] + 2 * a32[5] + a32[6];
- /* 0 0 -1 -1 0 2 2 1 */
- t[5] = 0 - a32[2] - a32[3] + 2 * a32[5] + 2 * a32[6] + a32[7];
- /* -1 -1 0 0 0 1 3 2 */
- t[6] = 0 - a32[0] - a32[1] + a32[5] + 3 * a32[6] + 2 * a32[7];
- /* 1 0 -1 -1 -1 -1 0 3 */
- t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3 * a32[7];
- t[1] += t[0] >> 32U; t[0] &= 0xffffffffL;
- t[2] += t[1] >> 32U; t[1] &= 0xffffffffL;
- t[3] += t[2] >> 32U; t[2] &= 0xffffffffL;
- t[4] += t[3] >> 32U; t[3] &= 0xffffffffL;
- t[5] += t[4] >> 32U; t[4] &= 0xffffffffL;
- t[6] += t[5] >> 32U; t[5] &= 0xffffffffL;
- t[7] += t[6] >> 32U; t[6] &= 0xffffffffL;
- o = t[7] >> 32U; t[7] &= 0xffffffffL;
- t[0] += o;
- t[3] -= o;
- t[6] -= o;
- t[7] += o;
- t[1] += t[0] >> 32U; t[0] &= 0xffffffffL;
- t[2] += t[1] >> 32U; t[1] &= 0xffffffffL;
- t[3] += t[2] >> 32U; t[2] &= 0xffffffffL;
- t[4] += t[3] >> 32U; t[3] &= 0xffffffffL;
- t[5] += t[4] >> 32U; t[4] &= 0xffffffffL;
- t[6] += t[5] >> 32U; t[5] &= 0xffffffffL;
- t[7] += t[6] >> 32U; t[6] &= 0xffffffffL;
- r[0] = (sp_digit)(t[0]) & 0x1fffffffL;
- r[1] = (sp_digit)(t[0] >> 29U);
- r[1] |= (sp_digit)(t[1] << 3U);
- r[1] &= 0x1fffffffL;
- r[2] = (sp_digit)(t[1] >> 26U);
- r[2] |= (sp_digit)(t[2] << 6U);
- r[2] &= 0x1fffffffL;
- r[3] = (sp_digit)(t[2] >> 23U);
- r[3] |= (sp_digit)(t[3] << 9U);
- r[3] &= 0x1fffffffL;
- r[4] = (sp_digit)(t[3] >> 20U);
- r[4] |= (sp_digit)(t[4] << 12U);
- r[4] &= 0x1fffffffL;
- r[5] = (sp_digit)(t[4] >> 17U);
- r[5] |= (sp_digit)(t[5] << 15U);
- r[5] &= 0x1fffffffL;
- r[6] = (sp_digit)(t[5] >> 14U);
- r[6] |= (sp_digit)(t[6] << 18U);
- r[6] &= 0x1fffffffL;
- r[7] = (sp_digit)(t[6] >> 11U);
- r[7] |= (sp_digit)(t[7] << 21U);
- r[7] &= 0x1fffffffL;
- r[8] = (sp_digit)(t[7] >> 8U);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Small implementation using add and double that is cache attack resistant but
- * allocates memory rather than use large stacks.
- * 256 adds and doubles.
- *
- * r Resulting point.
- * g Point to multiply.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_256_ecc_mulmod_9(sp_point_256* r, const sp_point_256* g,
- const sp_digit* k, int map, int ct, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_256* t = NULL;
- sp_digit* tmp = NULL;
- #else
- sp_point_256 t[3];
- sp_digit tmp[2 * 9 * 6];
- #endif
- sp_digit n;
- int i;
- int c;
- int y;
- int err = MP_OKAY;
- /* Implementation is constant time. */
- (void)ct;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 3, heap,
- DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 6, heap,
- DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- XMEMSET(t, 0, sizeof(sp_point_256) * 3);
- /* t[0] = {0, 0, 1} * norm */
- t[0].infinity = 1;
- /* t[1] = {g->x, g->y, g->z} * norm */
- err = sp_256_mod_mul_norm_9(t[1].x, g->x, p256_mod);
- }
- if (err == MP_OKAY)
- err = sp_256_mod_mul_norm_9(t[1].y, g->y, p256_mod);
- if (err == MP_OKAY)
- err = sp_256_mod_mul_norm_9(t[1].z, g->z, p256_mod);
- if (err == MP_OKAY) {
- i = 8;
- c = 24;
- n = k[i--] << (29 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1)
- break;
- n = k[i--];
- c = 29;
- }
- y = (n >> 28) & 1;
- n <<= 1;
- sp_256_proj_point_add_9(&t[y^1], &t[0], &t[1], tmp);
- XMEMCPY(&t[2], (void*)(((size_t)&t[0] & addr_mask[y^1]) +
- ((size_t)&t[1] & addr_mask[y])),
- sizeof(sp_point_256));
- sp_256_proj_point_dbl_9(&t[2], &t[2], tmp);
- XMEMCPY((void*)(((size_t)&t[0] & addr_mask[y^1]) +
- ((size_t)&t[1] & addr_mask[y])), &t[2],
- sizeof(sp_point_256));
- }
- if (map != 0) {
- sp_256_map_9(r, &t[0], tmp);
- }
- else {
- XMEMCPY(r, &t[0], sizeof(sp_point_256));
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (tmp != NULL)
- #endif
- {
- ForceZero(tmp, sizeof(sp_digit) * 2 * 9 * 6);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- #endif
- {
- ForceZero(t, sizeof(sp_point_256) * 3);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_256_ecc_mulmod_9_ctx {
- int state;
- union {
- sp_256_proj_point_dbl_9_ctx dbl_ctx;
- sp_256_proj_point_add_9_ctx add_ctx;
- };
- sp_point_256 t[3];
- sp_digit tmp[2 * 9 * 6];
- sp_digit n;
- int i;
- int c;
- int y;
- } sp_256_ecc_mulmod_9_ctx;
- static int sp_256_ecc_mulmod_9_nb(sp_ecc_ctx_t* sp_ctx, sp_point_256* r,
- const sp_point_256* g, const sp_digit* k, int map, int ct, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_256_ecc_mulmod_9_ctx* ctx = (sp_256_ecc_mulmod_9_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_256_ecc_mulmod_9_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- /* Implementation is constant time. */
- (void)ct;
- switch (ctx->state) {
- case 0: /* INIT */
- XMEMSET(ctx->t, 0, sizeof(sp_point_256) * 3);
- ctx->i = 8;
- ctx->c = 24;
- ctx->n = k[ctx->i--] << (29 - ctx->c);
- /* t[0] = {0, 0, 1} * norm */
- ctx->t[0].infinity = 1;
- ctx->state = 1;
- break;
- case 1: /* T1X */
- /* t[1] = {g->x, g->y, g->z} * norm */
- err = sp_256_mod_mul_norm_9(ctx->t[1].x, g->x, p256_mod);
- ctx->state = 2;
- break;
- case 2: /* T1Y */
- err = sp_256_mod_mul_norm_9(ctx->t[1].y, g->y, p256_mod);
- ctx->state = 3;
- break;
- case 3: /* T1Z */
- err = sp_256_mod_mul_norm_9(ctx->t[1].z, g->z, p256_mod);
- ctx->state = 4;
- break;
- case 4: /* ADDPREP */
- if (ctx->c == 0) {
- if (ctx->i == -1) {
- ctx->state = 7;
- break;
- }
- ctx->n = k[ctx->i--];
- ctx->c = 29;
- }
- ctx->y = (ctx->n >> 28) & 1;
- ctx->n <<= 1;
- XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
- ctx->state = 5;
- break;
- case 5: /* ADD */
- err = sp_256_proj_point_add_9_nb((sp_ecc_ctx_t*)&ctx->add_ctx,
- &ctx->t[ctx->y^1], &ctx->t[0], &ctx->t[1], ctx->tmp);
- if (err == MP_OKAY) {
- XMEMCPY(&ctx->t[2], (void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
- ((size_t)&ctx->t[1] & addr_mask[ctx->y])),
- sizeof(sp_point_256));
- XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
- ctx->state = 6;
- }
- break;
- case 6: /* DBL */
- err = sp_256_proj_point_dbl_9_nb((sp_ecc_ctx_t*)&ctx->dbl_ctx, &ctx->t[2],
- &ctx->t[2], ctx->tmp);
- if (err == MP_OKAY) {
- XMEMCPY((void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
- ((size_t)&ctx->t[1] & addr_mask[ctx->y])), &ctx->t[2],
- sizeof(sp_point_256));
- ctx->state = 4;
- ctx->c--;
- }
- break;
- case 7: /* MAP */
- if (map != 0) {
- sp_256_map_9(r, &ctx->t[0], ctx->tmp);
- }
- else {
- XMEMCPY(r, &ctx->t[0], sizeof(sp_point_256));
- }
- err = MP_OKAY;
- break;
- }
- if (err == MP_OKAY && ctx->state != 7) {
- err = FP_WOULDBLOCK;
- }
- if (err != FP_WOULDBLOCK) {
- ForceZero(ctx->tmp, sizeof(ctx->tmp));
- ForceZero(ctx->t, sizeof(ctx->t));
- }
- (void)heap;
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #else
- /* A table entry for pre-computed points. */
- typedef struct sp_table_entry_256 {
- sp_digit x[9];
- sp_digit y[9];
- } sp_table_entry_256;
- /* Conditionally copy a into r using the mask m.
- * m is -1 to copy and 0 when not.
- *
- * r A single precision number to copy over.
- * a A single precision number to copy.
- * m Mask value to apply.
- */
- static void sp_256_cond_copy_9(sp_digit* r, const sp_digit* a, const sp_digit m)
- {
- sp_digit t[9];
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 9; i++) {
- t[i] = r[i] ^ a[i];
- }
- for (i = 0; i < 9; i++) {
- r[i] ^= t[i] & m;
- }
- #else
- t[ 0] = r[ 0] ^ a[ 0];
- t[ 1] = r[ 1] ^ a[ 1];
- t[ 2] = r[ 2] ^ a[ 2];
- t[ 3] = r[ 3] ^ a[ 3];
- t[ 4] = r[ 4] ^ a[ 4];
- t[ 5] = r[ 5] ^ a[ 5];
- t[ 6] = r[ 6] ^ a[ 6];
- t[ 7] = r[ 7] ^ a[ 7];
- t[ 8] = r[ 8] ^ a[ 8];
- r[ 0] ^= t[ 0] & m;
- r[ 1] ^= t[ 1] & m;
- r[ 2] ^= t[ 2] & m;
- r[ 3] ^= t[ 3] & m;
- r[ 4] ^= t[ 4] & m;
- r[ 5] ^= t[ 5] & m;
- r[ 6] ^= t[ 6] & m;
- r[ 7] ^= t[ 7] & m;
- r[ 8] ^= t[ 8] & m;
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Double the Montgomery form projective point p a number of times.
- *
- * r Result of repeated doubling of point.
- * p Point to double.
- * n Number of times to double
- * t Temporary ordinate data.
- */
- static void sp_256_proj_point_dbl_n_9(sp_point_256* p, int i,
- sp_digit* t)
- {
- sp_digit* w = t;
- sp_digit* a = t + 2*9;
- sp_digit* b = t + 4*9;
- sp_digit* t1 = t + 6*9;
- sp_digit* t2 = t + 8*9;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- volatile int n = i;
- x = p->x;
- y = p->y;
- z = p->z;
- /* Y = 2*Y */
- sp_256_mont_dbl_9(y, y, p256_mod);
- /* W = Z^4 */
- sp_256_mont_sqr_9(w, z, p256_mod, p256_mp_mod);
- sp_256_mont_sqr_9(w, w, p256_mod, p256_mp_mod);
- #ifndef WOLFSSL_SP_SMALL
- while (--n > 0)
- #else
- while (--n >= 0)
- #endif
- {
- /* A = 3*(X^2 - W) */
- sp_256_mont_sqr_9(t1, x, p256_mod, p256_mp_mod);
- sp_256_mont_sub_9(t1, t1, w, p256_mod);
- sp_256_mont_tpl_9(a, t1, p256_mod);
- /* B = X*Y^2 */
- sp_256_mont_sqr_9(t1, y, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(b, t1, x, p256_mod, p256_mp_mod);
- /* X = A^2 - 2B */
- sp_256_mont_sqr_9(x, a, p256_mod, p256_mp_mod);
- sp_256_mont_dbl_9(t2, b, p256_mod);
- sp_256_mont_sub_9(x, x, t2, p256_mod);
- /* B = 2.(B - X) */
- sp_256_mont_sub_9(t2, b, x, p256_mod);
- sp_256_mont_dbl_9(b, t2, p256_mod);
- /* Z = Z*Y */
- sp_256_mont_mul_9(z, z, y, p256_mod, p256_mp_mod);
- /* t1 = Y^4 */
- sp_256_mont_sqr_9(t1, t1, p256_mod, p256_mp_mod);
- #ifdef WOLFSSL_SP_SMALL
- if (n != 0)
- #endif
- {
- /* W = W*Y^4 */
- sp_256_mont_mul_9(w, w, t1, p256_mod, p256_mp_mod);
- }
- /* y = 2*A*(B - X) - Y^4 */
- sp_256_mont_mul_9(y, b, a, p256_mod, p256_mp_mod);
- sp_256_mont_sub_9(y, y, t1, p256_mod);
- }
- #ifndef WOLFSSL_SP_SMALL
- /* A = 3*(X^2 - W) */
- sp_256_mont_sqr_9(t1, x, p256_mod, p256_mp_mod);
- sp_256_mont_sub_9(t1, t1, w, p256_mod);
- sp_256_mont_tpl_9(a, t1, p256_mod);
- /* B = X*Y^2 */
- sp_256_mont_sqr_9(t1, y, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(b, t1, x, p256_mod, p256_mp_mod);
- /* X = A^2 - 2B */
- sp_256_mont_sqr_9(x, a, p256_mod, p256_mp_mod);
- sp_256_mont_dbl_9(t2, b, p256_mod);
- sp_256_mont_sub_9(x, x, t2, p256_mod);
- /* B = 2.(B - X) */
- sp_256_mont_sub_9(t2, b, x, p256_mod);
- sp_256_mont_dbl_9(b, t2, p256_mod);
- /* Z = Z*Y */
- sp_256_mont_mul_9(z, z, y, p256_mod, p256_mp_mod);
- /* t1 = Y^4 */
- sp_256_mont_sqr_9(t1, t1, p256_mod, p256_mp_mod);
- /* y = 2*A*(B - X) - Y^4 */
- sp_256_mont_mul_9(y, b, a, p256_mod, p256_mp_mod);
- sp_256_mont_sub_9(y, y, t1, p256_mod);
- #endif /* WOLFSSL_SP_SMALL */
- /* Y = Y/2 */
- sp_256_mont_div2_9(y, y, p256_mod);
- }
- /* Double the Montgomery form projective point p a number of times.
- *
- * r Result of repeated doubling of point.
- * p Point to double.
- * n Number of times to double
- * t Temporary ordinate data.
- */
- static void sp_256_proj_point_dbl_n_store_9(sp_point_256* r,
- const sp_point_256* p, int n, int m, sp_digit* t)
- {
- sp_digit* w = t;
- sp_digit* a = t + 2*9;
- sp_digit* b = t + 4*9;
- sp_digit* t1 = t + 6*9;
- sp_digit* t2 = t + 8*9;
- sp_digit* x = r[2*m].x;
- sp_digit* y = r[(1<<n)*m].y;
- sp_digit* z = r[2*m].z;
- int i;
- int j;
- for (i=0; i<9; i++) {
- x[i] = p->x[i];
- }
- for (i=0; i<9; i++) {
- y[i] = p->y[i];
- }
- for (i=0; i<9; i++) {
- z[i] = p->z[i];
- }
- /* Y = 2*Y */
- sp_256_mont_dbl_9(y, y, p256_mod);
- /* W = Z^4 */
- sp_256_mont_sqr_9(w, z, p256_mod, p256_mp_mod);
- sp_256_mont_sqr_9(w, w, p256_mod, p256_mp_mod);
- j = m;
- for (i=1; i<=n; i++) {
- j *= 2;
- /* A = 3*(X^2 - W) */
- sp_256_mont_sqr_9(t1, x, p256_mod, p256_mp_mod);
- sp_256_mont_sub_9(t1, t1, w, p256_mod);
- sp_256_mont_tpl_9(a, t1, p256_mod);
- /* B = X*Y^2 */
- sp_256_mont_sqr_9(t1, y, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(b, t1, x, p256_mod, p256_mp_mod);
- x = r[j].x;
- /* X = A^2 - 2B */
- sp_256_mont_sqr_9(x, a, p256_mod, p256_mp_mod);
- sp_256_mont_dbl_9(t2, b, p256_mod);
- sp_256_mont_sub_9(x, x, t2, p256_mod);
- /* B = 2.(B - X) */
- sp_256_mont_sub_9(t2, b, x, p256_mod);
- sp_256_mont_dbl_9(b, t2, p256_mod);
- /* Z = Z*Y */
- sp_256_mont_mul_9(r[j].z, z, y, p256_mod, p256_mp_mod);
- z = r[j].z;
- /* t1 = Y^4 */
- sp_256_mont_sqr_9(t1, t1, p256_mod, p256_mp_mod);
- if (i != n) {
- /* W = W*Y^4 */
- sp_256_mont_mul_9(w, w, t1, p256_mod, p256_mp_mod);
- }
- /* y = 2*A*(B - X) - Y^4 */
- sp_256_mont_mul_9(y, b, a, p256_mod, p256_mp_mod);
- sp_256_mont_sub_9(y, y, t1, p256_mod);
- /* Y = Y/2 */
- sp_256_mont_div2_9(r[j].y, y, p256_mod);
- r[j].infinity = 0;
- }
- }
- /* Add two Montgomery form projective points.
- *
- * ra Result of addition.
- * rs Result of subtraction.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static void sp_256_proj_point_add_sub_9(sp_point_256* ra,
- sp_point_256* rs, const sp_point_256* p, const sp_point_256* q,
- sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2*9;
- sp_digit* t3 = t + 4*9;
- sp_digit* t4 = t + 6*9;
- sp_digit* t5 = t + 8*9;
- sp_digit* t6 = t + 10*9;
- sp_digit* xa = ra->x;
- sp_digit* ya = ra->y;
- sp_digit* za = ra->z;
- sp_digit* xs = rs->x;
- sp_digit* ys = rs->y;
- sp_digit* zs = rs->z;
- XMEMCPY(xa, p->x, sizeof(p->x) / 2);
- XMEMCPY(ya, p->y, sizeof(p->y) / 2);
- XMEMCPY(za, p->z, sizeof(p->z) / 2);
- ra->infinity = 0;
- rs->infinity = 0;
- /* U1 = X1*Z2^2 */
- sp_256_mont_sqr_9(t1, q->z, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t3, t1, q->z, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t1, t1, xa, p256_mod, p256_mp_mod);
- /* U2 = X2*Z1^2 */
- sp_256_mont_sqr_9(t2, za, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t4, t2, za, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t2, t2, q->x, p256_mod, p256_mp_mod);
- /* S1 = Y1*Z2^3 */
- sp_256_mont_mul_9(t3, t3, ya, p256_mod, p256_mp_mod);
- /* S2 = Y2*Z1^3 */
- sp_256_mont_mul_9(t4, t4, q->y, p256_mod, p256_mp_mod);
- /* H = U2 - U1 */
- sp_256_mont_sub_9(t2, t2, t1, p256_mod);
- /* RS = S2 + S1 */
- sp_256_mont_add_9(t6, t4, t3, p256_mod);
- /* R = S2 - S1 */
- sp_256_mont_sub_9(t4, t4, t3, p256_mod);
- /* Z3 = H*Z1*Z2 */
- /* ZS = H*Z1*Z2 */
- sp_256_mont_mul_9(za, za, q->z, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(za, za, t2, p256_mod, p256_mp_mod);
- XMEMCPY(zs, za, sizeof(p->z)/2);
- /* X3 = R^2 - H^3 - 2*U1*H^2 */
- /* XS = RS^2 - H^3 - 2*U1*H^2 */
- sp_256_mont_sqr_9(xa, t4, p256_mod, p256_mp_mod);
- sp_256_mont_sqr_9(xs, t6, p256_mod, p256_mp_mod);
- sp_256_mont_sqr_9(t5, t2, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(ya, t1, t5, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t5, t5, t2, p256_mod, p256_mp_mod);
- sp_256_mont_sub_9(xa, xa, t5, p256_mod);
- sp_256_mont_sub_9(xs, xs, t5, p256_mod);
- sp_256_mont_dbl_9(t1, ya, p256_mod);
- sp_256_mont_sub_9(xa, xa, t1, p256_mod);
- sp_256_mont_sub_9(xs, xs, t1, p256_mod);
- /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
- /* YS = -RS*(U1*H^2 - XS) - S1*H^3 */
- sp_256_mont_sub_9(ys, ya, xs, p256_mod);
- sp_256_mont_sub_9(ya, ya, xa, p256_mod);
- sp_256_mont_mul_9(ya, ya, t4, p256_mod, p256_mp_mod);
- sp_256_sub_9(t6, p256_mod, t6);
- sp_256_mont_mul_9(ys, ys, t6, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t5, t5, t3, p256_mod, p256_mp_mod);
- sp_256_mont_sub_9(ya, ya, t5, p256_mod);
- sp_256_mont_sub_9(ys, ys, t5, p256_mod);
- }
- /* Structure used to describe recoding of scalar multiplication. */
- typedef struct ecc_recode_256 {
- /* Index into pre-computation table. */
- uint8_t i;
- /* Use the negative of the point. */
- uint8_t neg;
- } ecc_recode_256;
- /* The index into pre-computation table to use. */
- static const uint8_t recode_index_9_6[66] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
- 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
- 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
- 0, 1,
- };
- /* Whether to negate y-ordinate. */
- static const uint8_t recode_neg_9_6[66] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 0, 0,
- };
- /* Recode the scalar for multiplication using pre-computed values and
- * subtraction.
- *
- * k Scalar to multiply by.
- * v Vector of operations to perform.
- */
- static void sp_256_ecc_recode_6_9(const sp_digit* k, ecc_recode_256* v)
- {
- int i;
- int j;
- uint8_t y;
- int carry = 0;
- int o;
- sp_digit n;
- j = 0;
- n = k[j];
- o = 0;
- for (i=0; i<43; i++) {
- y = (int8_t)n;
- if (o + 6 < 29) {
- y &= 0x3f;
- n >>= 6;
- o += 6;
- }
- else if (o + 6 == 29) {
- n >>= 6;
- if (++j < 9)
- n = k[j];
- o = 0;
- }
- else if (++j < 9) {
- n = k[j];
- y |= (uint8_t)((n << (29 - o)) & 0x3f);
- o -= 23;
- n >>= o;
- }
- y += (uint8_t)carry;
- v[i].i = recode_index_9_6[y];
- v[i].neg = recode_neg_9_6[y];
- carry = (y >> 6) + v[i].neg;
- }
- }
- #ifndef WC_NO_CACHE_RESISTANT
- /* Touch each possible point that could be being copied.
- *
- * r Point to copy into.
- * table Table - start of the entries to access
- * idx Index of entry to retrieve.
- */
- static void sp_256_get_point_33_9(sp_point_256* r, const sp_point_256* table,
- int idx)
- {
- int i;
- sp_digit mask;
- r->x[0] = 0;
- r->x[1] = 0;
- r->x[2] = 0;
- r->x[3] = 0;
- r->x[4] = 0;
- r->x[5] = 0;
- r->x[6] = 0;
- r->x[7] = 0;
- r->x[8] = 0;
- r->y[0] = 0;
- r->y[1] = 0;
- r->y[2] = 0;
- r->y[3] = 0;
- r->y[4] = 0;
- r->y[5] = 0;
- r->y[6] = 0;
- r->y[7] = 0;
- r->y[8] = 0;
- r->z[0] = 0;
- r->z[1] = 0;
- r->z[2] = 0;
- r->z[3] = 0;
- r->z[4] = 0;
- r->z[5] = 0;
- r->z[6] = 0;
- r->z[7] = 0;
- r->z[8] = 0;
- for (i = 1; i < 33; i++) {
- mask = 0 - (i == idx);
- r->x[0] |= mask & table[i].x[0];
- r->x[1] |= mask & table[i].x[1];
- r->x[2] |= mask & table[i].x[2];
- r->x[3] |= mask & table[i].x[3];
- r->x[4] |= mask & table[i].x[4];
- r->x[5] |= mask & table[i].x[5];
- r->x[6] |= mask & table[i].x[6];
- r->x[7] |= mask & table[i].x[7];
- r->x[8] |= mask & table[i].x[8];
- r->y[0] |= mask & table[i].y[0];
- r->y[1] |= mask & table[i].y[1];
- r->y[2] |= mask & table[i].y[2];
- r->y[3] |= mask & table[i].y[3];
- r->y[4] |= mask & table[i].y[4];
- r->y[5] |= mask & table[i].y[5];
- r->y[6] |= mask & table[i].y[6];
- r->y[7] |= mask & table[i].y[7];
- r->y[8] |= mask & table[i].y[8];
- r->z[0] |= mask & table[i].z[0];
- r->z[1] |= mask & table[i].z[1];
- r->z[2] |= mask & table[i].z[2];
- r->z[3] |= mask & table[i].z[3];
- r->z[4] |= mask & table[i].z[4];
- r->z[5] |= mask & table[i].z[5];
- r->z[6] |= mask & table[i].z[6];
- r->z[7] |= mask & table[i].z[7];
- r->z[8] |= mask & table[i].z[8];
- }
- }
- #endif /* !WC_NO_CACHE_RESISTANT */
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Window technique of 6 bits. (Add-Sub variation.)
- * Calculate 0..32 times the point. Use function that adds and
- * subtracts the same two points.
- * Recode to add or subtract one of the computed points.
- * Double to push up.
- * NOT a sliding window.
- *
- * r Resulting point.
- * g Point to multiply.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_256_ecc_mulmod_win_add_sub_9(sp_point_256* r, const sp_point_256* g,
- const sp_digit* k, int map, int ct, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_256* t = NULL;
- sp_digit* tmp = NULL;
- #else
- sp_point_256 t[33+2];
- sp_digit tmp[2 * 9 * 6];
- #endif
- sp_point_256* rt = NULL;
- sp_point_256* p = NULL;
- sp_digit* negy;
- int i;
- ecc_recode_256 v[43];
- int err = MP_OKAY;
- /* Constant time used for cache attack resistance implementation. */
- (void)ct;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (sp_point_256*)XMALLOC(sizeof(sp_point_256) *
- (33+2), heap, DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 6,
- heap, DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- rt = t + 33;
- p = t + 33+1;
- /* t[0] = {0, 0, 1} * norm */
- XMEMSET(&t[0], 0, sizeof(t[0]));
- t[0].infinity = 1;
- /* t[1] = {g->x, g->y, g->z} * norm */
- err = sp_256_mod_mul_norm_9(t[1].x, g->x, p256_mod);
- }
- if (err == MP_OKAY) {
- err = sp_256_mod_mul_norm_9(t[1].y, g->y, p256_mod);
- }
- if (err == MP_OKAY) {
- err = sp_256_mod_mul_norm_9(t[1].z, g->z, p256_mod);
- }
- if (err == MP_OKAY) {
- t[1].infinity = 0;
- /* t[2] ... t[32] */
- sp_256_proj_point_dbl_n_store_9(t, &t[ 1], 5, 1, tmp);
- sp_256_proj_point_add_9(&t[ 3], &t[ 2], &t[ 1], tmp);
- sp_256_proj_point_dbl_9(&t[ 6], &t[ 3], tmp);
- sp_256_proj_point_add_sub_9(&t[ 7], &t[ 5], &t[ 6], &t[ 1], tmp);
- sp_256_proj_point_dbl_9(&t[10], &t[ 5], tmp);
- sp_256_proj_point_add_sub_9(&t[11], &t[ 9], &t[10], &t[ 1], tmp);
- sp_256_proj_point_dbl_9(&t[12], &t[ 6], tmp);
- sp_256_proj_point_dbl_9(&t[14], &t[ 7], tmp);
- sp_256_proj_point_add_sub_9(&t[15], &t[13], &t[14], &t[ 1], tmp);
- sp_256_proj_point_dbl_9(&t[18], &t[ 9], tmp);
- sp_256_proj_point_add_sub_9(&t[19], &t[17], &t[18], &t[ 1], tmp);
- sp_256_proj_point_dbl_9(&t[20], &t[10], tmp);
- sp_256_proj_point_dbl_9(&t[22], &t[11], tmp);
- sp_256_proj_point_add_sub_9(&t[23], &t[21], &t[22], &t[ 1], tmp);
- sp_256_proj_point_dbl_9(&t[24], &t[12], tmp);
- sp_256_proj_point_dbl_9(&t[26], &t[13], tmp);
- sp_256_proj_point_add_sub_9(&t[27], &t[25], &t[26], &t[ 1], tmp);
- sp_256_proj_point_dbl_9(&t[28], &t[14], tmp);
- sp_256_proj_point_dbl_9(&t[30], &t[15], tmp);
- sp_256_proj_point_add_sub_9(&t[31], &t[29], &t[30], &t[ 1], tmp);
- negy = t[0].y;
- sp_256_ecc_recode_6_9(k, v);
- i = 42;
- #ifndef WC_NO_CACHE_RESISTANT
- if (ct) {
- sp_256_get_point_33_9(rt, t, v[i].i);
- rt->infinity = !v[i].i;
- }
- else
- #endif
- {
- XMEMCPY(rt, &t[v[i].i], sizeof(sp_point_256));
- }
- for (--i; i>=0; i--) {
- sp_256_proj_point_dbl_n_9(rt, 6, tmp);
- #ifndef WC_NO_CACHE_RESISTANT
- if (ct) {
- sp_256_get_point_33_9(p, t, v[i].i);
- p->infinity = !v[i].i;
- }
- else
- #endif
- {
- XMEMCPY(p, &t[v[i].i], sizeof(sp_point_256));
- }
- sp_256_sub_9(negy, p256_mod, p->y);
- sp_256_norm_9(negy);
- sp_256_cond_copy_9(p->y, negy, (sp_digit)0 - v[i].neg);
- sp_256_proj_point_add_9(rt, rt, p, tmp);
- }
- if (map != 0) {
- sp_256_map_9(r, rt, tmp);
- }
- else {
- XMEMCPY(r, rt, sizeof(sp_point_256));
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- if (tmp != NULL)
- XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef FP_ECC
- #endif /* FP_ECC */
- /* Add two Montgomery form projective points. The second point has a q value of
- * one.
- * Only the first point can be the same pointer as the result point.
- *
- * r Result of addition.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static void sp_256_proj_point_add_qz1_9(sp_point_256* r,
- const sp_point_256* p, const sp_point_256* q, sp_digit* t)
- {
- sp_digit* t2 = t;
- sp_digit* t3 = t + 2*9;
- sp_digit* t6 = t + 4*9;
- sp_digit* t1 = t + 6*9;
- sp_digit* t4 = t + 8*9;
- sp_digit* t5 = t + 10*9;
- /* Calculate values to subtract from P->x and P->y. */
- /* U2 = X2*Z1^2 */
- sp_256_mont_sqr_9(t2, p->z, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t4, t2, p->z, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t2, t2, q->x, p256_mod, p256_mp_mod);
- /* S2 = Y2*Z1^3 */
- sp_256_mont_mul_9(t4, t4, q->y, p256_mod, p256_mp_mod);
- if ((~p->infinity) & (~q->infinity) &
- sp_256_cmp_equal_9(p->x, t2) &
- sp_256_cmp_equal_9(p->y, t4)) {
- sp_256_proj_point_dbl_9(r, p, t);
- }
- else {
- sp_digit* x = t2;
- sp_digit* y = t3;
- sp_digit* z = t6;
- /* H = U2 - X1 */
- sp_256_mont_sub_9(t2, t2, p->x, p256_mod);
- /* R = S2 - Y1 */
- sp_256_mont_sub_9(t4, t4, p->y, p256_mod);
- /* Z3 = H*Z1 */
- sp_256_mont_mul_9(z, p->z, t2, p256_mod, p256_mp_mod);
- /* X3 = R^2 - H^3 - 2*X1*H^2 */
- sp_256_mont_sqr_9(t1, t2, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t3, p->x, t1, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t1, t1, t2, p256_mod, p256_mp_mod);
- sp_256_mont_sqr_9(t2, t4, p256_mod, p256_mp_mod);
- sp_256_mont_sub_9(t2, t2, t1, p256_mod);
- sp_256_mont_dbl_9(t5, t3, p256_mod);
- sp_256_mont_sub_9(x, t2, t5, p256_mod);
- /* Y3 = R*(X1*H^2 - X3) - Y1*H^3 */
- sp_256_mont_sub_9(t3, t3, x, p256_mod);
- sp_256_mont_mul_9(t3, t3, t4, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t1, t1, p->y, p256_mod, p256_mp_mod);
- sp_256_mont_sub_9(y, t3, t1, p256_mod);
- {
- int i;
- sp_digit maskp = 0 - (q->infinity & (!p->infinity));
- sp_digit maskq = 0 - (p->infinity & (!q->infinity));
- sp_digit maskt = ~(maskp | maskq);
- sp_digit inf = (sp_digit)(p->infinity & q->infinity);
- for (i = 0; i < 9; i++) {
- r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
- (x[i] & maskt);
- }
- for (i = 0; i < 9; i++) {
- r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
- (y[i] & maskt);
- }
- for (i = 0; i < 9; i++) {
- r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
- (z[i] & maskt);
- }
- r->z[0] |= inf;
- r->infinity = (word32)inf;
- }
- }
- }
- #ifdef FP_ECC
- /* Convert the projective point to affine.
- * Ordinates are in Montgomery form.
- *
- * a Point to convert.
- * t Temporary data.
- */
- static void sp_256_proj_to_affine_9(sp_point_256* a, sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2 * 9;
- sp_digit* tmp = t + 4 * 9;
- sp_256_mont_inv_9(t1, a->z, tmp);
- sp_256_mont_sqr_9(t2, t1, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(t1, t2, t1, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(a->x, a->x, t2, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(a->y, a->y, t1, p256_mod, p256_mp_mod);
- XMEMCPY(a->z, p256_norm_mod, sizeof(p256_norm_mod));
- }
- /* Generate the pre-computed table of points for the base point.
- *
- * width = 8
- * 256 entries
- * 32 bits between
- *
- * a The base point.
- * table Place to store generated point data.
- * tmp Temporary data.
- * heap Heap to use for allocation.
- */
- static int sp_256_gen_stripe_table_9(const sp_point_256* a,
- sp_table_entry_256* table, sp_digit* tmp, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_256* t = NULL;
- #else
- sp_point_256 t[3];
- #endif
- sp_point_256* s1 = NULL;
- sp_point_256* s2 = NULL;
- int i;
- int j;
- int err = MP_OKAY;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 3, heap,
- DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- s1 = t + 1;
- s2 = t + 2;
- err = sp_256_mod_mul_norm_9(t->x, a->x, p256_mod);
- }
- if (err == MP_OKAY) {
- err = sp_256_mod_mul_norm_9(t->y, a->y, p256_mod);
- }
- if (err == MP_OKAY) {
- err = sp_256_mod_mul_norm_9(t->z, a->z, p256_mod);
- }
- if (err == MP_OKAY) {
- t->infinity = 0;
- sp_256_proj_to_affine_9(t, tmp);
- XMEMCPY(s1->z, p256_norm_mod, sizeof(p256_norm_mod));
- s1->infinity = 0;
- XMEMCPY(s2->z, p256_norm_mod, sizeof(p256_norm_mod));
- s2->infinity = 0;
- /* table[0] = {0, 0, infinity} */
- XMEMSET(&table[0], 0, sizeof(sp_table_entry_256));
- /* table[1] = Affine version of 'a' in Montgomery form */
- XMEMCPY(table[1].x, t->x, sizeof(table->x));
- XMEMCPY(table[1].y, t->y, sizeof(table->y));
- for (i=1; i<8; i++) {
- sp_256_proj_point_dbl_n_9(t, 32, tmp);
- sp_256_proj_to_affine_9(t, tmp);
- XMEMCPY(table[1<<i].x, t->x, sizeof(table->x));
- XMEMCPY(table[1<<i].y, t->y, sizeof(table->y));
- }
- for (i=1; i<8; i++) {
- XMEMCPY(s1->x, table[1<<i].x, sizeof(table->x));
- XMEMCPY(s1->y, table[1<<i].y, sizeof(table->y));
- for (j=(1<<i)+1; j<(1<<(i+1)); j++) {
- XMEMCPY(s2->x, table[j-(1<<i)].x, sizeof(table->x));
- XMEMCPY(s2->y, table[j-(1<<i)].y, sizeof(table->y));
- sp_256_proj_point_add_qz1_9(t, s1, s2, tmp);
- sp_256_proj_to_affine_9(t, tmp);
- XMEMCPY(table[j].x, t->x, sizeof(table->x));
- XMEMCPY(table[j].y, t->y, sizeof(table->y));
- }
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif /* FP_ECC */
- #ifndef WC_NO_CACHE_RESISTANT
- /* Touch each possible entry that could be being copied.
- *
- * r Point to copy into.
- * table Table - start of the entries to access
- * idx Index of entry to retrieve.
- */
- static void sp_256_get_entry_256_9(sp_point_256* r,
- const sp_table_entry_256* table, int idx)
- {
- int i;
- sp_digit mask;
- r->x[0] = 0;
- r->x[1] = 0;
- r->x[2] = 0;
- r->x[3] = 0;
- r->x[4] = 0;
- r->x[5] = 0;
- r->x[6] = 0;
- r->x[7] = 0;
- r->x[8] = 0;
- r->y[0] = 0;
- r->y[1] = 0;
- r->y[2] = 0;
- r->y[3] = 0;
- r->y[4] = 0;
- r->y[5] = 0;
- r->y[6] = 0;
- r->y[7] = 0;
- r->y[8] = 0;
- for (i = 1; i < 256; i++) {
- mask = 0 - (i == idx);
- r->x[0] |= mask & table[i].x[0];
- r->x[1] |= mask & table[i].x[1];
- r->x[2] |= mask & table[i].x[2];
- r->x[3] |= mask & table[i].x[3];
- r->x[4] |= mask & table[i].x[4];
- r->x[5] |= mask & table[i].x[5];
- r->x[6] |= mask & table[i].x[6];
- r->x[7] |= mask & table[i].x[7];
- r->x[8] |= mask & table[i].x[8];
- r->y[0] |= mask & table[i].y[0];
- r->y[1] |= mask & table[i].y[1];
- r->y[2] |= mask & table[i].y[2];
- r->y[3] |= mask & table[i].y[3];
- r->y[4] |= mask & table[i].y[4];
- r->y[5] |= mask & table[i].y[5];
- r->y[6] |= mask & table[i].y[6];
- r->y[7] |= mask & table[i].y[7];
- r->y[8] |= mask & table[i].y[8];
- }
- }
- #endif /* !WC_NO_CACHE_RESISTANT */
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Stripe implementation.
- * Pre-generated: 2^0, 2^32, ...
- * Pre-generated: products of all combinations of above.
- * 8 doubles and adds (with qz=1)
- *
- * r Resulting point.
- * k Scalar to multiply by.
- * table Pre-computed table.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_256_ecc_mulmod_stripe_9(sp_point_256* r, const sp_point_256* g,
- const sp_table_entry_256* table, const sp_digit* k, int map,
- int ct, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_256* rt = NULL;
- sp_digit* t = NULL;
- #else
- sp_point_256 rt[2];
- sp_digit t[2 * 9 * 6];
- #endif
- sp_point_256* p = NULL;
- int i;
- int j;
- int y;
- int x;
- int err = MP_OKAY;
- (void)g;
- /* Constant time used for cache attack resistance implementation. */
- (void)ct;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- rt = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (rt == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 6, heap,
- DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = rt + 1;
- XMEMCPY(p->z, p256_norm_mod, sizeof(p256_norm_mod));
- XMEMCPY(rt->z, p256_norm_mod, sizeof(p256_norm_mod));
- y = 0;
- x = 31;
- for (j=0; j<8; j++) {
- y |= (int)(((k[x / 29] >> (x % 29)) & 1) << j);
- x += 32;
- }
- #ifndef WC_NO_CACHE_RESISTANT
- if (ct) {
- sp_256_get_entry_256_9(rt, table, y);
- } else
- #endif
- {
- XMEMCPY(rt->x, table[y].x, sizeof(table[y].x));
- XMEMCPY(rt->y, table[y].y, sizeof(table[y].y));
- }
- rt->infinity = !y;
- for (i=30; i>=0; i--) {
- y = 0;
- x = i;
- for (j=0; j<8; j++) {
- y |= (int)(((k[x / 29] >> (x % 29)) & 1) << j);
- x += 32;
- }
- sp_256_proj_point_dbl_9(rt, rt, t);
- #ifndef WC_NO_CACHE_RESISTANT
- if (ct) {
- sp_256_get_entry_256_9(p, table, y);
- }
- else
- #endif
- {
- XMEMCPY(p->x, table[y].x, sizeof(table[y].x));
- XMEMCPY(p->y, table[y].y, sizeof(table[y].y));
- }
- p->infinity = !y;
- sp_256_proj_point_add_qz1_9(rt, rt, p, t);
- }
- if (map != 0) {
- sp_256_map_9(r, rt, t);
- }
- else {
- XMEMCPY(r, rt, sizeof(sp_point_256));
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- if (rt != NULL)
- XFREE(rt, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef FP_ECC
- #ifndef FP_ENTRIES
- #define FP_ENTRIES 16
- #endif
- /* Cache entry - holds precomputation tables for a point. */
- typedef struct sp_cache_256_t {
- /* X ordinate of point that table was generated from. */
- sp_digit x[9];
- /* Y ordinate of point that table was generated from. */
- sp_digit y[9];
- /* Precomputation table for point. */
- sp_table_entry_256 table[256];
- /* Count of entries in table. */
- uint32_t cnt;
- /* Point and table set in entry. */
- int set;
- } sp_cache_256_t;
- /* Cache of tables. */
- static THREAD_LS_T sp_cache_256_t sp_cache_256[FP_ENTRIES];
- /* Index of last entry in cache. */
- static THREAD_LS_T int sp_cache_256_last = -1;
- /* Cache has been initialized. */
- static THREAD_LS_T int sp_cache_256_inited = 0;
- #ifndef HAVE_THREAD_LS
- static volatile int initCacheMutex_256 = 0;
- static wolfSSL_Mutex sp_cache_256_lock;
- #endif
- /* Get the cache entry for the point.
- *
- * g [in] Point scalar multiplying.
- * cache [out] Cache table to use.
- */
- static void sp_ecc_get_cache_256(const sp_point_256* g, sp_cache_256_t** cache)
- {
- int i;
- int j;
- uint32_t least;
- if (sp_cache_256_inited == 0) {
- for (i=0; i<FP_ENTRIES; i++) {
- sp_cache_256[i].set = 0;
- }
- sp_cache_256_inited = 1;
- }
- /* Compare point with those in cache. */
- for (i=0; i<FP_ENTRIES; i++) {
- if (!sp_cache_256[i].set)
- continue;
- if (sp_256_cmp_equal_9(g->x, sp_cache_256[i].x) &
- sp_256_cmp_equal_9(g->y, sp_cache_256[i].y)) {
- sp_cache_256[i].cnt++;
- break;
- }
- }
- /* No match. */
- if (i == FP_ENTRIES) {
- /* Find empty entry. */
- i = (sp_cache_256_last + 1) % FP_ENTRIES;
- for (; i != sp_cache_256_last; i=(i+1)%FP_ENTRIES) {
- if (!sp_cache_256[i].set) {
- break;
- }
- }
- /* Evict least used. */
- if (i == sp_cache_256_last) {
- least = sp_cache_256[0].cnt;
- for (j=1; j<FP_ENTRIES; j++) {
- if (sp_cache_256[j].cnt < least) {
- i = j;
- least = sp_cache_256[i].cnt;
- }
- }
- }
- XMEMCPY(sp_cache_256[i].x, g->x, sizeof(sp_cache_256[i].x));
- XMEMCPY(sp_cache_256[i].y, g->y, sizeof(sp_cache_256[i].y));
- sp_cache_256[i].set = 1;
- sp_cache_256[i].cnt = 1;
- }
- *cache = &sp_cache_256[i];
- sp_cache_256_last = i;
- }
- #endif /* FP_ECC */
- /* Multiply the base point of P256 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * r Resulting point.
- * g Point to multiply.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_256_ecc_mulmod_9(sp_point_256* r, const sp_point_256* g,
- const sp_digit* k, int map, int ct, void* heap)
- {
- #ifndef FP_ECC
- return sp_256_ecc_mulmod_win_add_sub_9(r, g, k, map, ct, heap);
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* tmp;
- #else
- sp_digit tmp[2 * 9 * 6];
- #endif
- sp_cache_256_t* cache;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 6, heap, DYNAMIC_TYPE_ECC);
- if (tmp == NULL) {
- err = MEMORY_E;
- }
- #endif
- #ifndef HAVE_THREAD_LS
- if (err == MP_OKAY) {
- if (initCacheMutex_256 == 0) {
- wc_InitMutex(&sp_cache_256_lock);
- initCacheMutex_256 = 1;
- }
- if (wc_LockMutex(&sp_cache_256_lock) != 0) {
- err = BAD_MUTEX_E;
- }
- }
- #endif /* HAVE_THREAD_LS */
- if (err == MP_OKAY) {
- sp_ecc_get_cache_256(g, &cache);
- if (cache->cnt == 2)
- sp_256_gen_stripe_table_9(g, cache->table, tmp, heap);
- #ifndef HAVE_THREAD_LS
- wc_UnLockMutex(&sp_cache_256_lock);
- #endif /* HAVE_THREAD_LS */
- if (cache->cnt < 2) {
- err = sp_256_ecc_mulmod_win_add_sub_9(r, g, k, map, ct, heap);
- }
- else {
- err = sp_256_ecc_mulmod_stripe_9(r, g, cache->table, k,
- map, ct, heap);
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- #endif
- }
- #endif
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * p Point to multiply.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_256(const mp_int* km, const ecc_point* gm, ecc_point* r,
- int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_256* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_256 point[1];
- sp_digit k[9];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_256*)XMALLOC(sizeof(sp_point_256), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_256_from_mp(k, 9, km);
- sp_256_point_from_ecc_point_9(point, gm);
- err = sp_256_ecc_mulmod_9(point, point, k, map, 1, heap);
- }
- if (err == MP_OKAY) {
- err = sp_256_point_to_ecc_point_9(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Multiply the point by the scalar, add point a and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * p Point to multiply.
- * am Point to add to scalar multiply result.
- * inMont Point to add is in montgomery form.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_add_256(const mp_int* km, const ecc_point* gm,
- const ecc_point* am, int inMont, ecc_point* r, int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_256* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_256 point[2];
- sp_digit k[9 + 9 * 2 * 6];
- #endif
- sp_point_256* addP = NULL;
- sp_digit* tmp = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(
- sizeof(sp_digit) * (9 + 9 * 2 * 6), heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- addP = point + 1;
- tmp = k + 9;
- sp_256_from_mp(k, 9, km);
- sp_256_point_from_ecc_point_9(point, gm);
- sp_256_point_from_ecc_point_9(addP, am);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_256_mod_mul_norm_9(addP->x, addP->x, p256_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_256_mod_mul_norm_9(addP->y, addP->y, p256_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_256_mod_mul_norm_9(addP->z, addP->z, p256_mod);
- }
- if (err == MP_OKAY) {
- err = sp_256_ecc_mulmod_9(point, point, k, 0, 0, heap);
- }
- if (err == MP_OKAY) {
- sp_256_proj_point_add_9(point, point, addP, tmp);
- if (map) {
- sp_256_map_9(point, point, tmp);
- }
- err = sp_256_point_to_ecc_point_9(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Multiply the base point of P256 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * r Resulting point.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_256_ecc_mulmod_base_9(sp_point_256* r, const sp_digit* k,
- int map, int ct, void* heap)
- {
- /* No pre-computed values. */
- return sp_256_ecc_mulmod_9(r, &p256_base, k, map, ct, heap);
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- static int sp_256_ecc_mulmod_base_9_nb(sp_ecc_ctx_t* sp_ctx, sp_point_256* r,
- const sp_digit* k, int map, int ct, void* heap)
- {
- /* No pre-computed values. */
- return sp_256_ecc_mulmod_9_nb(sp_ctx, r, &p256_base, k, map, ct, heap);
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #else
- /* Striping precomputation table.
- * 8 points combined into a table of 256 points.
- * Distance of 32 between points.
- */
- static const sp_table_entry_256 p256_table[256] = {
- /* 0 */
- { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } },
- /* 1 */
- { { 0x18a9143c,0x0f3986a0,0x1b6d805e,0x152bf8bf,0x0251075b,0x1995bbb1,
- 0x1719e7ed,0x0ed4a6ea,0x0018905f },
- { 0x0e95560a,0x0f929abe,0x06791737,0x1571c974,0x1f3258b4,0x03446e90,
- 0x16174ba2,0x0304b10b,0x008571ff } },
- /* 2 */
- { { 0x0147519a,0x01443012,0x0cdcbc08,0x103d584d,0x1ebc8d09,0x13e553c2,
- 0x03a6a752,0x01bb7beb,0x00d953c5 },
- { 0x1d590f8f,0x0b1b0e67,0x19b245e7,0x12c4d689,0x164cf72e,0x10881175,
- 0x03cdff65,0x0fd3d651,0x00863ebb } },
- /* 3 */
- { { 0x1cdb6485,0x02b5b11a,0x028be5de,0x1e1d445e,0x0300b808,0x0caa27bf,
- 0x0280f9a3,0x0ab6bff0,0x00000760 },
- { 0x038d2010,0x11a75cdc,0x10dc229d,0x029f7664,0x06606540,0x1e9cc215,
- 0x1b838391,0x0c2686e7,0x00830877 } },
- /* 4 */
- { { 0x16a0d2bb,0x1c917e28,0x188d2653,0x1982d834,0x02c8b0d5,0x079d2be3,
- 0x19fe4907,0x0c3fa36c,0x002f5e69 },
- { 0x15a01797,0x00ae385f,0x05586497,0x01689ac1,0x1db523d2,0x0d9b838f,
- 0x1dec1244,0x02d1ade1,0x00f648f9 } },
- /* 5 */
- { { 0x0137bbbc,0x12b3423f,0x1a82fb27,0x088d3d14,0x13463e43,0x13b0bceb,
- 0x0056c710,0x10a267a0,0x005abe02 },
- { 0x004c7dab,0x15541be6,0x098301e4,0x1b3e9886,0x0cc37573,0x0ab13c73,
- 0x0e0c324c,0x0b6d6dee,0x0094bb72 } },
- /* 6 */
- { { 0x120f141c,0x1fcda47b,0x1d6f1d2e,0x13679a5b,0x045c4619,0x1094a088,
- 0x13bf70fd,0x1965efb8,0x00cdd6bb },
- { 0x0af436fd,0x0533805f,0x04c9afb3,0x08fedb73,0x125226f6,0x13c900a7,
- 0x17d8303e,0x17a97b5c,0x00a361be } },
- /* 7 */
- { { 0x197c13c7,0x05512ac2,0x0df0f84a,0x1ac6bea1,0x09d1dc38,0x0d7679e0,
- 0x04b01c0e,0x013896a5,0x00ba12ca },
- { 0x19f91dfd,0x12047d22,0x1a81fee7,0x0876cd9d,0x00b293af,0x1844cebc,
- 0x1d2c7b3a,0x13ae03fd,0x0053ebb9 } },
- /* 8 */
- { { 0x10e63d34,0x1f3f718d,0x1953ead3,0x000ae553,0x1b5a4f46,0x199a6af3,
- 0x00c70124,0x1240daa9,0x008589fb },
- { 0x0583553a,0x1387ae63,0x1592796a,0x121295c4,0x04652087,0x02838802,
- 0x113f3241,0x0da04a83,0x00ebb069 } },
- /* 9 */
- { { 0x0c1647c5,0x10b650ad,0x13d5e651,0x04fa8f89,0x1fbacb81,0x1551bb26,
- 0x168f7199,0x197a364f,0x00eb2820 },
- { 0x0a87e008,0x0037c6c3,0x08de3ce5,0x1bf53b24,0x0ecb2d87,0x17214066,
- 0x08755bb4,0x136ab4fb,0x001f2828 } },
- /* 10 */
- { { 0x1b89da99,0x1dd50601,0x0a1008aa,0x05af3d70,0x005e8a6f,0x1c315c0e,
- 0x158c9e11,0x0b20bca9,0x00337a4b },
- { 0x01f7794a,0x033a8069,0x1b5fd84f,0x000b6efa,0x1d6e8207,0x1bc08267,
- 0x0f582968,0x1abe985f,0x000d65e0 } },
- /* 11 */
- { { 0x15275d38,0x0e84ddf5,0x1828d636,0x114e8a17,0x0b265426,0x17fa4b9f,
- 0x08cbc1d8,0x084a5e94,0x00c23da2 },
- { 0x0b94520c,0x0d0dc278,0x16f5e397,0x0ccec760,0x09ea1096,0x05c34a69,
- 0x1fc4e937,0x1198f219,0x0019de3b } },
- /* 12 */
- { { 0x06c5fe04,0x01d38b61,0x0e86f6c6,0x11bc1677,0x1712c3b2,0x02c35265,
- 0x0ff5d0cb,0x1a923f99,0x00e34dcb },
- { 0x0aa58403,0x0046a35d,0x1a5e94ed,0x12e90d05,0x0a8af9a6,0x00939b55,
- 0x1dfe78e4,0x088f69c1,0x00e7641f } },
- /* 13 */
- { { 0x1f64ba59,0x0ba9ca0e,0x0090bf1f,0x1e21d816,0x01859d33,0x0fe350ac,
- 0x1efd3c1b,0x0ae0a54a,0x004a12df },
- { 0x1439dbd0,0x1d319c7c,0x194f87ef,0x0497a97b,0x1b314d3c,0x07fd10f8,
- 0x091bf579,0x12776b7d,0x006af5aa } },
- /* 14 */
- { { 0x10c91999,0x1085b4c8,0x16012476,0x09688054,0x020900a2,0x0a5a5c66,
- 0x004cf802,0x0b4cd488,0x005fe347 },
- { 0x193e7b4b,0x07c655ef,0x08fe46ac,0x16a034f8,0x06263292,0x04d7668f,
- 0x04590ba2,0x011d9fd5,0x00b544e3 } },
- /* 15 */
- { { 0x16ddfdce,0x03c63748,0x045e7999,0x0522cdf1,0x067e12c3,0x173b26a7,
- 0x082d3a35,0x17b4d618,0x00e0b6b2 },
- { 0x1b7efb57,0x09896f95,0x031001c3,0x181bbcf2,0x1c9441aa,0x1b56b3cd,
- 0x1dd3e40c,0x1bc4b4c6,0x0071c023 } },
- /* 16 */
- { { 0x1fe20925,0x15461225,0x173a19d8,0x0335871f,0x0706391c,0x12eaee9c,
- 0x13d96a5a,0x1a843a64,0x0061d587 },
- { 0x037173ea,0x03b39d15,0x1de2d97a,0x090010a6,0x0b43e238,0x020f02dd,
- 0x1ef843e1,0x0248c43d,0x00fa11fe } },
- /* 17 */
- { { 0x0cb19ffd,0x0448f959,0x048f08c7,0x151ab763,0x1ca8e01b,0x1eb3c562,
- 0x1b72db40,0x0983e277,0x00586eb0 },
- { 0x07e8ed09,0x01ae3729,0x067b7883,0x03467830,0x052fa1e8,0x0b602b63,
- 0x1c449e3f,0x010e10c9,0x0019d5ac } },
- /* 18 */
- { { 0x109a4e1f,0x14cfac09,0x09c01d07,0x1bce37d2,0x08d20ab7,0x1785f7e9,
- 0x18fc9a97,0x07eff38a,0x00e7c007 },
- { 0x0ef59f76,0x1b6b31d0,0x1f2c1407,0x1676a841,0x002d4669,0x0fbd3d33,
- 0x102b0230,0x1fd8cb67,0x00e08504 } },
- /* 19 */
- { { 0x0031b3ca,0x04c7b46d,0x169b59bc,0x19573dcd,0x046e86d1,0x00fd4a79,
- 0x1ad16ff6,0x104b6132,0x0078f018 },
- { 0x1a25787f,0x1f77ef21,0x132b26ed,0x0df01a3b,0x1fc36801,0x043bd9ad,
- 0x11e833a9,0x170fd28e,0x0043a773 } },
- /* 20 */
- { { 0x12b533d5,0x12bbb9a6,0x0f777018,0x1715ed43,0x0c293673,0x1e4d53cf,
- 0x1ac55df9,0x0a38764c,0x00bb6de6 },
- { 0x165259b3,0x1f4981d5,0x0e9d2039,0x015fa7a0,0x0fc27d6a,0x01e8cd9e,
- 0x066f16b2,0x134ba317,0x0060b461 } },
- /* 21 */
- { { 0x1ae5aa1c,0x0b51c708,0x19cd962f,0x0eca5693,0x187edb8b,0x000a772f,
- 0x1f342c4c,0x1655dd7f,0x009d0f27 },
- { 0x1a730a55,0x1492318b,0x0ef20eb2,0x0ab65fbb,0x19a719c9,0x0ff05600,
- 0x12341f07,0x0da6add8,0x00244a56 } },
- /* 22 */
- { { 0x0acf1f96,0x0d81ca57,0x1309c71b,0x02455204,0x1d3b99f2,0x160dc165,
- 0x1da4989a,0x10e6b03d,0x0045e58c },
- { 0x038f9dbc,0x1ffa3ced,0x02281034,0x15e28dd1,0x0bed7a8a,0x0fd92370,
- 0x1e92516b,0x03983c96,0x00c040e2 } },
- /* 23 */
- { { 0x0f8117b6,0x03d78003,0x08d50ce1,0x12d3fee7,0x075eb651,0x1abb0eca,
- 0x1b1d20ac,0x12ed058d,0x001cdf5c },
- { 0x11f04839,0x0dbbada0,0x1785a61f,0x1d59e891,0x132197db,0x0ee8db85,
- 0x1cf6ca48,0x1f1525bf,0x00046755 } },
- /* 24 */
- { { 0x1ce8ffcd,0x04562e95,0x1986a0b3,0x0789165f,0x0d6c70d5,0x10b93901,
- 0x17cfdbc5,0x02277074,0x00046e5e },
- { 0x18007f01,0x1dc7fb26,0x1d0c60f9,0x03de24b5,0x1a03c7fb,0x0f531af0,
- 0x016c1171,0x186607a0,0x006e0106 } },
- /* 25 */
- { { 0x08dd73b1,0x0639ac24,0x17b43652,0x00e11f32,0x02ab7767,0x0f5462b5,
- 0x1c7ce0e1,0x1dbd2039,0x00442594 },
- { 0x12d4b65b,0x07d51648,0x12430dfe,0x0468772d,0x18d1f94c,0x1250af4b,
- 0x1a3b4c9b,0x0a2985dc,0x00a796fa } },
- /* 26 */
- { { 0x023addd7,0x0cfdb024,0x19a4eccd,0x14c307ca,0x13c809e2,0x1bc71e5f,
- 0x1ba7e216,0x1538d2ec,0x00e4ad2d },
- { 0x0e048a61,0x0bfbfa14,0x04b6680d,0x1a331981,0x0d8ef082,0x0d7a601f,
- 0x050ff0e8,0x08d86f6a,0x00c5e940 } },
- /* 27 */
- { { 0x0be75f9e,0x1b529c61,0x048e9e11,0x0353d196,0x1c04b6fd,0x06f85884,
- 0x1d1f6179,0x15fb68c8,0x0063283d },
- { 0x1af2df15,0x139467bd,0x1669fd33,0x0588aa15,0x0bcc3e59,0x1356f41a,
- 0x04e3eac8,0x15633035,0x0068bd19 } },
- /* 28 */
- { { 0x1887d659,0x04756a88,0x164c16b0,0x09abe966,0x14fe3337,0x14c0e7f3,
- 0x1f5a5a61,0x1ea78dfb,0x00495292 },
- { 0x1acec896,0x143c64f0,0x16d12112,0x096421d8,0x160a7d96,0x1bf13326,
- 0x00dd9a5b,0x01a4c06d,0x000ec753 } },
- /* 29 */
- { { 0x0d2687bb,0x0d09d02d,0x0b887e8b,0x1076d5e6,0x0607ba1f,0x0f7a8eea,
- 0x1c2ce43d,0x14cc90c7,0x000f6207 },
- { 0x0f138233,0x0b3f1dd8,0x0aa9c62f,0x0d72d84e,0x088aedd6,0x02039376,
- 0x173e3b40,0x0e411dad,0x00ff0db0 } },
- /* 30 */
- { { 0x0c95d553,0x04fd080a,0x1a02a29d,0x00a5faba,0x1566fa44,0x018bff9d,
- 0x1a8c60ed,0x07910e81,0x00313b51 },
- { 0x08d11549,0x00171560,0x17b8872d,0x1dc21769,0x0320e071,0x03eea3f9,
- 0x1e049ae6,0x1f30de33,0x002d3abc } },
- /* 31 */
- { { 0x015581a2,0x0144280c,0x08846bd3,0x14daacc6,0x12e999a0,0x1d078655,
- 0x137c66e9,0x021bdb31,0x00c036fa },
- { 0x01fbd009,0x0d7045d6,0x1456058a,0x1163200d,0x00d8f0b6,0x193bcdcf,
- 0x06530bac,0x1896da80,0x00a6b2a2 } },
- /* 32 */
- { { 0x0d3549cf,0x019f287b,0x135997b5,0x06d2dff5,0x1fcb46f3,0x1ed66708,
- 0x0181a56f,0x0a55ef93,0x00810ee2 },
- { 0x1159bb2c,0x0a287f0b,0x02cd5ed9,0x1f7d7ceb,0x1ea72f7d,0x1f3a6b4f,
- 0x1d14ac15,0x0f524e62,0x00d48571 } },
- /* 33 */
- { { 0x10cb5a98,0x0ba0d457,0x0c442fc4,0x151f263e,0x02adfd3d,0x1165d59c,
- 0x01386653,0x14e5f34c,0x006a6045 },
- { 0x02b2411d,0x186069fd,0x03a5b805,0x1d707ca2,0x1b3ccbe0,0x0fb9c432,
- 0x1e40ef32,0x1f5f3c2a,0x00d3e45c } },
- /* 34 */
- { { 0x083f7669,0x10fb4ddf,0x01df5af3,0x115d04e5,0x0278d09f,0x172a1922,
- 0x06725522,0x1bdc7858,0x00207755 },
- { 0x0fef1945,0x1deb0ecb,0x0b4a30e1,0x0279df62,0x164aa188,0x08eb396f,
- 0x00367ef3,0x1cae2a96,0x0048dc5e } },
- /* 35 */
- { { 0x17e5a199,0x11bc85ff,0x0732edc4,0x1f719f31,0x19c79e0e,0x15ff0528,
- 0x111709e8,0x1dbbfede,0x00f2fb0a },
- { 0x10b5025f,0x0e04abaf,0x1ea7c890,0x0a87ae81,0x1fbd0550,0x04569c05,
- 0x14963e8f,0x02bb651a,0x00a13e90 } },
- /* 36 */
- { { 0x02b65cbc,0x0fbd1a85,0x119089be,0x0972e454,0x107a10b0,0x1120f11f,
- 0x09bc9973,0x160292ea,0x002bf0d6 },
- { 0x0b216fb7,0x1ea6e9fa,0x17689ab4,0x0f70cff7,0x0505cf7d,0x1c1fb384,
- 0x027ebade,0x0b42c5fd,0x0042a94a } },
- /* 37 */
- { { 0x0aadf191,0x0235685f,0x089a35d6,0x1491204b,0x1c1f60f8,0x182824a6,
- 0x18f7a180,0x0d38cbdb,0x002c2dd9 },
- { 0x13849c17,0x0810b8ec,0x0894375b,0x0911743b,0x05485460,0x03831e1d,
- 0x16f12043,0x03e858ad,0x00f437fa } },
- /* 38 */
- { { 0x0a0f7dab,0x1506b8a2,0x1dba6b1a,0x092f262e,0x197860f0,0x10287af9,
- 0x0aa14b02,0x066a8e0f,0x00aaf45b },
- { 0x018d364a,0x0f1be19e,0x125c5961,0x17360c7c,0x05444d40,0x0b408af6,
- 0x0af3d05c,0x01be9e4e,0x00cdf631 } },
- /* 39 */
- { { 0x0ea8b7ef,0x039e311c,0x0f08a1dd,0x126a310b,0x08e3408e,0x13b915ed,
- 0x1fc90655,0x175b53c5,0x00f0d008 },
- { 0x0414d3b1,0x089338e9,0x067a9d8a,0x0a930b60,0x1cbdbb37,0x1cb6a29d,
- 0x0e2d7186,0x1eb9510f,0x005bd5c2 } },
- /* 40 */
- { { 0x149a3154,0x187a34f7,0x0acba6bb,0x0b4b2adc,0x04a9c3e8,0x160f5549,
- 0x1c6516ab,0x191413c8,0x00aa12df },
- { 0x0df69f1d,0x1793913a,0x1fd79cc9,0x09905945,0x1dd44e0e,0x0739dbd4,
- 0x0406e763,0x0e7c9195,0x006c036e } },
- /* 41 */
- { { 0x0f6e3138,0x07d70950,0x0b4d1697,0x0dde004b,0x12bc5696,0x0325a2b3,
- 0x1892264f,0x0b12d5f7,0x00292ff6 },
- { 0x1e213402,0x09286a22,0x04b27fb5,0x101c4e87,0x072e8f65,0x1cbfed0e,
- 0x09d825ec,0x1206236e,0x00644e0c } },
- /* 42 */
- { { 0x047153f0,0x0f210f0d,0x01063278,0x1876f324,0x17672b86,0x0743b82e,
- 0x09de4ef7,0x127956f3,0x00f25ae7 },
- { 0x0d869d0c,0x198ca51b,0x01b09907,0x0b910493,0x0945e9d5,0x0f5184b7,
- 0x08f927ed,0x0a627b61,0x0039b8e6 } },
- /* 43 */
- { { 0x16fd2e59,0x1baa1005,0x157263cd,0x0580cd24,0x0573935e,0x190d0715,
- 0x0c1b676a,0x05e1e33b,0x0039122f },
- { 0x03cad53c,0x1de70f00,0x1705f8f3,0x16581fcc,0x13877225,0x18e94d50,
- 0x1e35caeb,0x1f19d01f,0x008de80a } },
- /* 44 */
- { { 0x007bbb76,0x1df546c9,0x1e09d62b,0x18fcf842,0x036b1921,0x1ba58e02,
- 0x10137e8a,0x00c5c6d1,0x00871949 },
- { 0x03993df5,0x0fc945dd,0x0cf49aad,0x1aeb6be7,0x15050639,0x13c542da,
- 0x1784046a,0x0d4b6e9f,0x00fc315e } },
- /* 45 */
- { { 0x08d6ecfa,0x10fea0d7,0x1b1fe195,0x1889ec35,0x0741d5f8,0x153da492,
- 0x02226114,0x15bdc712,0x00e6d4a7 },
- { 0x0593c75d,0x02a9768a,0x09c45898,0x0e1b49ba,0x0c7db70a,0x0f49bdd1,
- 0x195f4abb,0x13537c55,0x0035dfaf } },
- /* 46 */
- { { 0x0a736636,0x1cab7e6d,0x0b2adf9a,0x0a3b2f5c,0x0996609f,0x1fa0879a,
- 0x14afec42,0x1ae39061,0x001da5c7 },
- { 0x1cce6825,0x020f2419,0x15cf0ed7,0x1a231ff2,0x036b815a,0x0963f918,
- 0x075a8a15,0x1fbb7e97,0x007077c0 } },
- /* 47 */
- { { 0x06b9661c,0x1b1ffc6a,0x0b3f5c6f,0x1fa6d61a,0x1f8f7a1d,0x10a05423,
- 0x19100dcf,0x05dca1df,0x0053a863 },
- { 0x096d8051,0x0bb7fb43,0x13d1a282,0x18192b8e,0x026bddae,0x06e1af27,
- 0x13058a65,0x0da69c3f,0x00028ca7 } },
- /* 48 */
- { { 0x1c9877ee,0x08ea3ee7,0x074000b4,0x06c42100,0x060b6c8b,0x008baa61,
- 0x011b400b,0x1b0d2c5e,0x0004c17c },
- { 0x10daddf5,0x0cde84a5,0x1395701b,0x046aea49,0x003b5bea,0x0b73396d,
- 0x11d198cd,0x1d3fdb2e,0x00f7ba4d } },
- /* 49 */
- { { 0x0be1263f,0x06dfd1a7,0x0b9f39b4,0x0c6e6ae3,0x0f523557,0x02a9c153,
- 0x11074910,0x000a4263,0x00e31f96 },
- { 0x0a6b6ec6,0x0ddc90b7,0x10bf1134,0x03a25ce7,0x0a29437a,0x1f5644e8,
- 0x11ef0439,0x0b39c69a,0x00aa3a62 } },
- /* 50 */
- { { 0x16f3dcd3,0x1e7cefa9,0x0fdcd83e,0x1bdaa1a5,0x04f5b6ce,0x087d6fa8,
- 0x0bb9245c,0x0c4fcf3b,0x002398dd },
- { 0x0d09569e,0x1a382d1b,0x127dda73,0x0c3376a2,0x0034cea0,0x01bb9afb,
- 0x0843fe70,0x1643808c,0x005717f5 } },
- /* 51 */
- { { 0x01dd895e,0x1f114e49,0x10a11467,0x030a0081,0x17ecd8e5,0x091c8eb1,
- 0x037be84f,0x0ac1c785,0x00660a2c },
- { 0x167fcbd0,0x06544576,0x0a7c25a7,0x0e48f01d,0x12b4dc84,0x1a40b974,
- 0x114ccacb,0x0989ea44,0x00624ee5 } },
- /* 52 */
- { { 0x1897eccc,0x0aa4e726,0x06202a82,0x13a3b27f,0x07c204d4,0x1211821d,
- 0x0f01c8f0,0x1f7257bf,0x004f392a },
- { 0x1de44fd9,0x0b4fc7d3,0x0cc8559a,0x19f7c8af,0x0bc3cb66,0x14019b47,
- 0x06736cbe,0x0ef99b67,0x008a3e79 } },
- /* 53 */
- { { 0x06c4b125,0x0f0c40f8,0x18f2a337,0x09c601ed,0x013e9ae3,0x0cef2e3d,
- 0x1013bda6,0x046e1848,0x003888d0 },
- { 0x04f91081,0x11401ab2,0x0055411d,0x1f9ec2be,0x0d36e3d9,0x16e43196,
- 0x0cd8609f,0x08e30204,0x00a5e62e } },
- /* 54 */
- { { 0x0facd6c8,0x1412f719,0x0f2f1986,0x18c6a8a9,0x19931699,0x16fbcc6f,
- 0x0b70338f,0x1cc8cd4b,0x002c4768 },
- { 0x10a64bc9,0x1a37fc64,0x1de7d72c,0x14c041c8,0x1e884630,0x08325e02,
- 0x0a836527,0x083f3cca,0x007b5e64 } },
- /* 55 */
- { { 0x1d28444a,0x0b4a1160,0x04da8e48,0x0d8bb17c,0x07fcee99,0x17f2fd86,
- 0x11288e1e,0x196191ae,0x00b8af73 },
- { 0x138b86fd,0x1ef41d51,0x02973fd7,0x07e2b14b,0x09433fee,0x07b79056,
- 0x025727ba,0x0befe7e1,0x00a03639 } },
- /* 56 */
- { { 0x010f7770,0x039e35dd,0x0a838923,0x02db0342,0x02b9fa6f,0x1b4128de,
- 0x14cc4037,0x0030ebf6,0x004be36b },
- { 0x1fb56dbb,0x11304374,0x19e93e24,0x1fdf160f,0x12f20306,0x0602b36a,
- 0x0303bab3,0x10e37b80,0x008cbc9a } },
- /* 57 */
- { { 0x00dac4ab,0x098c4ae6,0x0bfc44b8,0x094880e2,0x0ee57a87,0x173e350e,
- 0x17e18cca,0x07c18106,0x0044e755 },
- { 0x1734002d,0x0a81fffb,0x0d10971b,0x0b971616,0x138b59d3,0x013b0743,
- 0x106257dc,0x074bd71f,0x00470a68 } },
- /* 58 */
- { { 0x10513482,0x0dbb0ee4,0x1a49daa0,0x0e405403,0x13083028,0x00f70673,
- 0x1bbf3691,0x1218c7b8,0x00164106 },
- { 0x0d06a2ed,0x081a5033,0x06c402fd,0x1aee8a31,0x018c9dd4,0x173955c1,
- 0x0d3f6452,0x1faf5797,0x00d73479 } },
- /* 59 */
- { { 0x1ad4c6e5,0x16f7d8b2,0x01b4135f,0x19e11eb6,0x1cb14262,0x0dd8c2ba,
- 0x19ac4bb5,0x1c60ee2c,0x00816469 },
- { 0x161e291e,0x1d5cebca,0x17859875,0x1b5e4583,0x00513eb9,0x13f589af,
- 0x1e73d260,0x047e1ba7,0x000a36dd } },
- /* 60 */
- { { 0x01d5533c,0x0c69963a,0x0118a3c2,0x1eb53d0d,0x1bd117c5,0x1456f1a4,
- 0x0460e688,0x1adfb756,0x00e331df },
- { 0x0bcc6ed8,0x08055b43,0x1e898394,0x01877bde,0x050d7716,0x0cd3de74,
- 0x0e26418f,0x054925c6,0x00d3b478 } },
- /* 61 */
- { { 0x13821f90,0x0a4db747,0x1adeab68,0x1bb3dacd,0x1311692e,0x14a98d00,
- 0x16f42ed9,0x0b4990d4,0x00728127 },
- { 0x13ff47e5,0x01c2c7be,0x00591054,0x0c2d78c2,0x19bb15e1,0x188d3efe,
- 0x01658ac3,0x0fd9c28a,0x002c062e } },
- /* 62 */
- { { 0x0159ac2e,0x1b7ccb78,0x16c9c4e9,0x1cee6d97,0x06047281,0x09440472,
- 0x1bc4ab5b,0x1f2589cf,0x00282a35 },
- { 0x00ce5cd2,0x01aa58f6,0x1e708a67,0x13df9226,0x0c11ecf9,0x179c1f41,
- 0x0af664b2,0x026aa9a5,0x00c71cd5 } },
- /* 63 */
- { { 0x09b578f4,0x042ef4e0,0x0bfe9e92,0x09c4b1c7,0x02f1f188,0x18dbac8c,
- 0x0e8e3dda,0x0819e8fe,0x00c50f67 },
- { 0x174b68ea,0x0e256f99,0x0597f8aa,0x0de646d3,0x13050a40,0x111142d2,
- 0x0370be1a,0x14e4252b,0x00b9ecb3 } },
- /* 64 */
- { { 0x14f8b16a,0x17c20877,0x1ec99a95,0x0835fd88,0x087c1972,0x15c736ce,
- 0x0c6c2901,0x0059a855,0x00803f3e },
- { 0x04dbec69,0x18184d40,0x0eb417df,0x170bee77,0x0197fa83,0x1939d6c7,
- 0x17071825,0x01ca0cf5,0x00c09744 } },
- /* 65 */
- { { 0x0379ab34,0x0352b796,0x077e3461,0x1c0d1708,0x068efa8e,0x022c8bb6,
- 0x1cc080c5,0x1ab22be3,0x00f1af32 },
- { 0x1d75bd50,0x0e1ba98a,0x0bd9ef26,0x19ff75ee,0x1723f837,0x120c246b,
- 0x122c184e,0x061c5a83,0x0023d0f1 } },
- /* 66 */
- { { 0x141500d9,0x0bd5b76f,0x0fab6a21,0x1215cbf9,0x059510d8,0x032444b9,
- 0x0b754bfa,0x1ad8147f,0x00b0288d },
- { 0x050bcb08,0x09907983,0x175b85a1,0x1ec626d2,0x1aa7671a,0x1053dcc4,
- 0x0348c7d4,0x09fe8119,0x00ffd372 } },
- /* 67 */
- { { 0x1458e6cb,0x1cb47325,0x1e974a14,0x1b5a4062,0x15f56992,0x1705bd53,
- 0x1b7ce052,0x095af184,0x00f5590f },
- { 0x0f0ba55a,0x1e125e9e,0x1de2eb83,0x08e49418,0x1674a0fc,0x0327b41d,
- 0x088073a6,0x0a9edee9,0x0018d6da } },
- /* 68 */
- { { 0x15be5a2b,0x0c9f112e,0x0d3cf1bb,0x0f3306b2,0x06ffc6fe,0x04931131,
- 0x05a90c50,0x1b2f3204,0x0050bbb4 },
- { 0x057ec63e,0x1c0c8e37,0x07736c8d,0x04588030,0x0e0f6654,0x04cd811b,
- 0x070d06a0,0x03003fc9,0x002b1001 } },
- /* 69 */
- { { 0x1b391593,0x0345ae2c,0x009c3f3f,0x0beb44b3,0x0dcbbc38,0x19d568cd,
- 0x1831c513,0x13307f75,0x00dd5589 },
- { 0x14b82ff4,0x1dc45c73,0x19cd3264,0x007880e3,0x0322ad2e,0x0f57a1e0,
- 0x010669ea,0x0a2293ac,0x00e6e4c5 } },
- /* 70 */
- { { 0x1e9af288,0x0fb2add8,0x0b6a4c55,0x1c34c9ef,0x020e5647,0x1f25e594,
- 0x1bfd0da5,0x1620fdaa,0x0051e00d },
- { 0x171c327e,0x1e8b4dc3,0x05b0ab50,0x1b641695,0x1477929c,0x08fa9ef5,
- 0x05df01f5,0x08293052,0x00e22f42 } },
- /* 71 */
- { { 0x035f1abb,0x0a2f47a3,0x14e21d33,0x18196ad0,0x0034d7ed,0x160fdad4,
- 0x0327251c,0x07aa5b89,0x00f70937 },
- { 0x08af30d6,0x00cb35dd,0x0deda710,0x1ebe95e2,0x1c47e95b,0x0b1549b0,
- 0x0c44e598,0x111ce4eb,0x00bd52d2 } },
- /* 72 */
- { { 0x1c5fa877,0x18aae3d4,0x0e8f522a,0x15ace4fa,0x189d817d,0x1fcf39e8,
- 0x1e990fd0,0x1c99154e,0x00a0d0f8 },
- { 0x0c94f92d,0x1df57ec6,0x1376ce82,0x11917c18,0x0ba14d81,0x12fc5c17,
- 0x08008b31,0x18f28dad,0x00a56c78 } },
- /* 73 */
- { { 0x0dd09529,0x0b11c8d8,0x0b77f3ca,0x1c1d4c7b,0x1f481803,0x1a8fadad,
- 0x19e8b1dc,0x1f0e6346,0x00d8befd },
- { 0x1c0157f4,0x1c8cea17,0x1239942a,0x195daffd,0x08b0af51,0x05a0016a,
- 0x11e337e7,0x14b9d3ec,0x00854a68 } },
- /* 74 */
- { { 0x03506ea5,0x01afb3db,0x1f8359b7,0x0d891349,0x1cd4d928,0x0e9dff4a,
- 0x0a54fc40,0x0173108d,0x005cacea },
- { 0x1ceac44d,0x086fb064,0x13470eaa,0x0535e86a,0x1babe3db,0x1ef456ae,
- 0x1ea42374,0x0246bc9d,0x00e4982d } },
- /* 75 */
- { { 0x034cd55e,0x18825116,0x00344c88,0x12b7664d,0x1d943586,0x0d7d0fd0,
- 0x1267ecd1,0x1ec2d640,0x008046b7 },
- { 0x18e7d098,0x099ac0f1,0x1bc2dc2d,0x0c3d1be8,0x178c4d7f,0x14f52265,
- 0x1d54c37a,0x0f721055,0x00eb17ca } },
- /* 76 */
- { { 0x16a145b9,0x1a8dacc3,0x0f1c7b05,0x1ed61f83,0x115bba5c,0x1ab29c93,
- 0x04c74f80,0x175f56bc,0x00097b00 },
- { 0x165f69e1,0x1336474a,0x0f94666a,0x11eeb56b,0x1d98477e,0x1d08ed27,
- 0x127980ce,0x0f75fb79,0x00f95c74 } },
- /* 77 */
- { { 0x1ebae45e,0x0c780e9d,0x0f1a5555,0x17d3e189,0x04fc6a8e,0x02d8ede3,
- 0x00debadc,0x03cacddb,0x00351260 },
- { 0x1a1161cd,0x19b78f0f,0x197be1e4,0x1571aa98,0x121e5328,0x17713927,
- 0x0dad1d5f,0x046c0d15,0x000ef971 } },
- /* 78 */
- { { 0x14ca4226,0x12cc67ba,0x190b2380,0x1bc271f0,0x017905ee,0x1fba2347,
- 0x12552258,0x066769f7,0x00fc16d9 },
- { 0x07c800ca,0x14b7d98f,0x1e2b6aaf,0x00c6624c,0x1e8b5138,0x024bb7f9,
- 0x085cf589,0x1e372baf,0x0014ca4a } },
- /* 79 */
- { { 0x1d2f81d5,0x123b8dd5,0x1df4659e,0x1f3ad203,0x1c9071a5,0x1f7be56c,
- 0x0c776262,0x0c7eb384,0x004057b0 },
- { 0x09c05c0a,0x1fec17f4,0x1037e16f,0x0238de3b,0x016dbe49,0x065751ad,
- 0x0c4cefbf,0x0c9e2661,0x001c3b5d } },
- /* 80 */
- { { 0x00ec21fe,0x1f0a5ff4,0x156fa097,0x1c22d584,0x05d67f6c,0x0d0397a5,
- 0x0ebe62f1,0x091b6fcc,0x00fad271 },
- { 0x09ab05b3,0x0605b561,0x0946b9a4,0x1350789c,0x0de7d37a,0x043ae155,
- 0x0a1029f7,0x1c73e1c3,0x0077387d } },
- /* 81 */
- { { 0x056c0dd7,0x14f6624d,0x021b1d07,0x1ff9b08c,0x1aecea5c,0x0a047a82,
- 0x11fa3de8,0x1817de18,0x00b37b85 },
- { 0x0c0e6a8f,0x0cb5b726,0x0e23c8cd,0x1a977ed6,0x0ef4efd6,0x09fd61ce,
- 0x0356ae91,0x191f3ec5,0x009c135a } },
- /* 82 */
- { { 0x04e35743,0x15519014,0x08f37bcc,0x1ad5630b,0x19819320,0x18bb0ef8,
- 0x147ee086,0x03f88670,0x00572136 },
- { 0x11fc9168,0x186d9b53,0x17100f07,0x1174e6bc,0x0d8f55f9,0x143f1bde,
- 0x06f7d932,0x193cd762,0x00dcbac3 } },
- /* 83 */
- { { 0x0518cbe2,0x00eccb42,0x07ac13bc,0x05f83139,0x1eebfd24,0x11e3f23f,
- 0x0189c9d9,0x13c5ac4d,0x00b8c1c8 },
- { 0x08e1d569,0x0d2c5eee,0x16233414,0x1013916f,0x131eb563,0x1fecf88f,
- 0x0b509b09,0x1b45f284,0x005d23bb } },
- /* 84 */
- { { 0x15c8f8be,0x10e394a4,0x1cd8afc2,0x03890077,0x1d4ac296,0x0201efb1,
- 0x04027906,0x19723d9d,0x00c109f9 },
- { 0x18945705,0x1684ae82,0x1ae17030,0x107b2dbb,0x0449bb90,0x15c6bd20,
- 0x1b8611a4,0x09e5ddc3,0x009bc334 } },
- /* 85 */
- { { 0x02913074,0x0ad71ab2,0x0950ac43,0x12364e91,0x0732a554,0x1332d988,
- 0x13051a72,0x0a4be349,0x0029591d },
- { 0x184f983f,0x1b7adb5d,0x17e13879,0x1dde833e,0x0a189be7,0x0a4b405d,
- 0x0cb04803,0x03e31de6,0x00637655 } },
- /* 86 */
- { { 0x162976cc,0x0d2f8a72,0x1c4b0e2f,0x1947cc1d,0x0985222b,0x18323665,
- 0x01eaefe8,0x19011c53,0x00bdb79d },
- { 0x0b06a772,0x0965ae4e,0x14db73bf,0x08eb55fc,0x15db838f,0x10113e15,
- 0x052b0a8f,0x0035ba78,0x008ee860 } },
- /* 87 */
- { { 0x04ade873,0x1f4b4c0d,0x1ee92332,0x13549b89,0x14ba57ee,0x144cad02,
- 0x092cb3b8,0x0f4deef5,0x0092e51d },
- { 0x1190a34d,0x045d7d43,0x0f47b465,0x11eeb7ed,0x11144d69,0x13718657,
- 0x0aab403b,0x0de14ad5,0x005182f8 } },
- /* 88 */
- { { 0x1a4cc99c,0x1d310963,0x1b67287e,0x0136d07c,0x18c5aff6,0x13e5ad64,
- 0x1bc976ec,0x0ba80e74,0x0091dcab },
- { 0x1f575a70,0x0db661ea,0x0361fe80,0x06c272df,0x017360cb,0x074644cc,
- 0x1cac5975,0x1b72f2e9,0x0017a0ce } },
- /* 89 */
- { { 0x076c8d3a,0x0430f150,0x03e492ce,0x155a7242,0x035d9701,0x157209d4,
- 0x1d065343,0x0d8fe99b,0x002e8ce3 },
- { 0x037a862b,0x0939ed58,0x19323ea4,0x15376ec1,0x0f2dd01b,0x09c419dd,
- 0x03cfe591,0x19669ecd,0x00f4ccc6 } },
- /* 90 */
- { { 0x11f79687,0x077a92e7,0x1bea0551,0x12a92b25,0x18d297c5,0x0ba0d2e3,
- 0x0f27848c,0x111341be,0x00ac0db4 },
- { 0x1f01747f,0x15fe388e,0x05f7c4e1,0x1726b1de,0x16bb5592,0x0727ae65,
- 0x128b9620,0x0c32992e,0x0095a64a } },
- /* 91 */
- { { 0x015a4c93,0x160f7ed6,0x1614505c,0x0d36e704,0x10bad402,0x1d8e0b65,
- 0x19ddaa37,0x17452420,0x00231e54 },
- { 0x0ae6d2dc,0x186fc8bc,0x044a4629,0x154c7e72,0x172234d6,0x1935af2d,
- 0x0787d89d,0x065b14e6,0x00ab0be0 } },
- /* 92 */
- { { 0x0d131f2d,0x0bd6874c,0x013c4042,0x1e13c676,0x1a748637,0x10cb6af4,
- 0x19e46b21,0x10059ed4,0x00f1bcc8 },
- { 0x08daacb4,0x0e348a07,0x1d940249,0x1c80aac1,0x137a63c4,0x047e23bc,
- 0x09c56473,0x0d2b5d76,0x00851694 } },
- /* 93 */
- { { 0x11dcf593,0x11ae0a1f,0x062f8ef7,0x00565360,0x19d3d782,0x16e14dee,
- 0x1763a736,0x1a5b55aa,0x008f67d9 },
- { 0x1481ea5f,0x0088b2b3,0x13164321,0x05bbd3c6,0x13fa8e7d,0x01fa0282,
- 0x0d77ff75,0x17380e51,0x00f84572 } },
- /* 94 */
- { { 0x17af71c9,0x10d3d38c,0x1cd95957,0x092888f4,0x15063a14,0x1703870e,
- 0x106686d2,0x020c2d65,0x00edee27 },
- { 0x11734121,0x1781a7a8,0x097a7c2c,0x18dcaa94,0x02ecf1ca,0x0479d206,
- 0x1fd23705,0x13689d7a,0x009fd27e } },
- /* 95 */
- { { 0x16e2cb16,0x063b2c57,0x16466d8f,0x16fa59fc,0x15583e3e,0x0c0b0b46,
- 0x0e1d6a31,0x16d2b1fe,0x00a40c2f },
- { 0x1edcc158,0x04f62b07,0x1c8c15a3,0x10098cab,0x07e127ad,0x13824d18,
- 0x1b3f64e5,0x170fb8db,0x0099bc9b } },
- /* 96 */
- { { 0x127dafc6,0x054a90ec,0x02734661,0x03f6d2b8,0x06dde52c,0x00d07c9b,
- 0x19927656,0x01742daf,0x009abe21 },
- { 0x08915220,0x0057c252,0x1605b192,0x062ed49b,0x1ca5afa7,0x1cc38b40,
- 0x12c31f54,0x0af0fe68,0x007881c2 } },
- /* 97 */
- { { 0x00bcf3ff,0x19ccda8f,0x1fdd3da4,0x05978a24,0x1d9680d0,0x12d16e80,
- 0x05023ed1,0x033461d1,0x0015e6e3 },
- { 0x1e0e05f4,0x036b7069,0x16210119,0x0f7bb886,0x050d3fad,0x03e8e27c,
- 0x0b3af987,0x19e3222e,0x000e55fa } },
- /* 98 */
- { { 0x18787564,0x14ecc037,0x1a17399f,0x062e4263,0x1e8d61a3,0x0c655c0c,
- 0x15ddac05,0x0ecdfd2c,0x00d73d09 },
- { 0x1eb7206e,0x1241a128,0x062ed090,0x12521f8c,0x0a520a51,0x1c2caf18,
- 0x142d772e,0x0e91e2b4,0x009250a3 } },
- /* 99 */
- { { 0x1e577410,0x17f847c5,0x1dea31b2,0x011406a0,0x063a4fd4,0x1944f605,
- 0x102fc7d8,0x10583991,0x00774140 },
- { 0x0b0991cd,0x0d207d37,0x1f70a581,0x1410cc93,0x0fd40c1c,0x11e3d992,
- 0x02e4e9a2,0x09a25d64,0x008cb04f } },
- /* 100 */
- { { 0x0906171c,0x0e1682ab,0x09030fec,0x07d39b60,0x06841907,0x15a7ec48,
- 0x0d476e39,0x1de8e247,0x00e4e429 },
- { 0x18ec36f4,0x1c6ea9e1,0x12da89c2,0x05b803fe,0x09a48f9d,0x1703c3cd,
- 0x15497419,0x1fe78dcc,0x0037bca2 } },
- /* 101 */
- { { 0x1f562470,0x06971e3e,0x0592b253,0x04e54581,0x193be44f,0x0efcc063,
- 0x08a9f1b5,0x1b860056,0x0059913e },
- { 0x1750592a,0x109cd41a,0x00f7809e,0x003b01cf,0x1d64f99e,0x01baf502,
- 0x089b3e30,0x0956027c,0x0043786e } },
- /* 102 */
- { { 0x1e56b5a6,0x1995876c,0x1f1a3e7f,0x01b34db3,0x046a7075,0x1422acbc,
- 0x19ebb057,0x1316fcf3,0x008638ca },
- { 0x0afc24b2,0x1ad704b0,0x0b3a3c8b,0x131d5e9b,0x1a78f053,0x0ee85765,
- 0x1bc0edd9,0x0d4f6754,0x001ecdd3 } },
- /* 103 */
- { { 0x0c5ff2f3,0x09d66b13,0x1cea5e17,0x0a2d8050,0x10d54a2d,0x04fd6908,
- 0x0cb6b653,0x10ba8b3e,0x00d85d0f },
- { 0x10b11da3,0x1b805c68,0x00c63127,0x0458614f,0x0decdd2c,0x047a4904,
- 0x118955a6,0x18769da7,0x00a04f19 } },
- /* 104 */
- { { 0x0d7f93bd,0x03c92647,0x0bd47d82,0x0958ba72,0x171afcb6,0x1985410d,
- 0x02c1f2b8,0x1d4b812a,0x0092b2ee },
- { 0x05b6e235,0x0d6264a4,0x0db03c21,0x19495252,0x08891ab2,0x1359f028,
- 0x1db203ea,0x042b0684,0x001ee782 } },
- /* 105 */
- { { 0x063e79f7,0x10517007,0x067641a9,0x01cf65e7,0x1c09df59,0x02a53303,
- 0x05424084,0x1b0af4dc,0x00f3f2ce },
- { 0x110d9b55,0x0028879f,0x19099208,0x1f9f59b0,0x10e7c9d2,0x0d53f45e,
- 0x0843958c,0x0a87b47c,0x000f56a4 } },
- /* 106 */
- { { 0x1043e0df,0x190dffd0,0x001f9b56,0x096d9938,0x0517a6c7,0x17606a54,
- 0x098c6995,0x08232d3c,0x00bd8f17 },
- { 0x1eb7494a,0x14dddc35,0x1cee0e22,0x0fa8de8b,0x1a79a156,0x0953d272,
- 0x08277de8,0x06a6199f,0x002d1a1c } },
- /* 107 */
- { { 0x106508da,0x0971c09a,0x15e569c6,0x03018943,0x144b3336,0x0ca4bd4c,
- 0x091b376d,0x0bd723f7,0x00a107a6 },
- { 0x0f94d639,0x168e8e28,0x162df5f9,0x15e6eb14,0x1ca1c8b4,0x0ac25e9b,
- 0x0bc869f1,0x015f0f53,0x00183d76 } },
- /* 108 */
- { { 0x0dde59a4,0x0eb4b888,0x02fbe1ca,0x1b1a0e1d,0x0be78f1a,0x04b1a797,
- 0x1d508a6d,0x13b84d3a,0x001d4417 },
- { 0x0390d30e,0x196e067c,0x1a04432c,0x164ea61b,0x0339a0a3,0x0ee295e0,
- 0x0988c6bc,0x1852c0da,0x00771f9c } },
- /* 109 */
- { { 0x05040739,0x0cc9f3bc,0x09aa4e66,0x073b7300,0x0fc26445,0x1b797afc,
- 0x063b3d03,0x06206c4e,0x0064427a },
- { 0x05428aa8,0x1a796c3c,0x1ed26a13,0x15b87fd7,0x101ac7b7,0x1636f91e,
- 0x15b4806c,0x092d5d21,0x0049d9b7 } },
- /* 110 */
- { { 0x035d1099,0x03c6c5e2,0x03468233,0x179a9d1d,0x08a412ad,0x1150165b,
- 0x11140b0b,0x0367ec0a,0x009037d8 },
- { 0x074c7b61,0x06dd6138,0x0ff5cb9f,0x006356af,0x15352fe2,0x164b2cb6,
- 0x0e718733,0x0d4f980c,0x0008c3de } },
- /* 111 */
- { { 0x16d552ab,0x07ee8107,0x13607c48,0x15ff300b,0x1129156b,0x1e1f489a,
- 0x0cbc1bed,0x0848af2d,0x00c69094 },
- { 0x01231bd1,0x1d9d74e2,0x11608145,0x18dd0eb9,0x0a1221ea,0x1bd5fceb,
- 0x0b008220,0x00595fc7,0x003fa3db } },
- /* 112 */
- { { 0x05058880,0x1ad1f328,0x0e50fcb5,0x06cbdec8,0x049257da,0x030e7d59,
- 0x03fd051e,0x161fb701,0x00c5c4bd },
- { 0x1272b56b,0x1a89f1a5,0x0e410e9c,0x04fd2a23,0x04969c83,0x11befc42,
- 0x1ad7f633,0x1288d856,0x002d56db } },
- /* 113 */
- { { 0x1f46ac6b,0x030bc17f,0x08b90949,0x1ef24c0f,0x08de1d19,0x11e204d2,
- 0x090bebfa,0x13bca077,0x000f56bd },
- { 0x145cda49,0x1bea7689,0x1bca6744,0x02b1f902,0x03402821,0x12a5575a,
- 0x17c79f1a,0x13a22e76,0x004003bb } },
- /* 114 */
- { { 0x00803387,0x1c740c4d,0x12f5010e,0x022bea73,0x17f21ece,0x1046e943,
- 0x1e790a5c,0x04540fe5,0x00537655 },
- { 0x08a4182d,0x04c0510d,0x0677de69,0x17a0f464,0x1a2d4a2b,0x05170d0c,
- 0x15259d34,0x0b0d8ba8,0x007a056f } },
- /* 115 */
- { { 0x1d8a2a47,0x03592ac4,0x17c9dcd9,0x10529187,0x0d5395b5,0x000755f8,
- 0x19d547b0,0x1e2f4344,0x0077d482 },
- { 0x07853948,0x050decac,0x1efffbae,0x102f7ad9,0x01e47a6f,0x002bc034,
- 0x0392adbb,0x05656716,0x00411501 } },
- /* 116 */
- { { 0x0de28ced,0x039f87a3,0x04fb11cf,0x1b4ec136,0x063921d5,0x074f372e,
- 0x051986e3,0x0e5f7d41,0x00cdf045 },
- { 0x0c53c3b0,0x059e2c5b,0x1ee10f07,0x1c782088,0x1780e97f,0x0570965c,
- 0x0427ecae,0x1b52e706,0x00ee703d } },
- /* 117 */
- { { 0x1f57e43a,0x028a8a07,0x0e046e0d,0x0cc1a763,0x0b986d44,0x0effc7a1,
- 0x1884aced,0x13b42c59,0x002a0ad8 },
- { 0x0bc277ba,0x072534a3,0x10709d99,0x1192a982,0x16274c78,0x1326655f,
- 0x1964506a,0x0cf58568,0x00d62d0b } },
- /* 118 */
- { { 0x0c054ac4,0x0e2ec3d9,0x1f7de20e,0x00b0b3e4,0x128d6570,0x05f9d8c0,
- 0x109bb7df,0x1e532384,0x00b39a23 },
- { 0x10b16ae5,0x094250af,0x0dbd46e5,0x140b6342,0x007830c6,0x009bf938,
- 0x1314758f,0x12580ce9,0x0004ed00 } },
- /* 119 */
- { { 0x1ae90393,0x1a0c2e8c,0x0f593987,0x0f685294,0x0fc14304,0x00d34c2a,
- 0x0e1eb800,0x18202ef8,0x00a0a91f },
- { 0x0e2c831e,0x1851f80d,0x1c9f85bf,0x0d5d0456,0x075b4bb7,0x0450ad18,
- 0x11063c4b,0x1113da41,0x00084cf9 } },
- /* 120 */
- { { 0x1ca6becf,0x0c284ef7,0x1fecca36,0x1d5d00fb,0x0e8b92fc,0x0ae223bc,
- 0x1df97628,0x164e757e,0x00d57955 },
- { 0x11b5d4f1,0x086d3cf1,0x1e9e8708,0x05e09679,0x1c20baa5,0x1044ee13,
- 0x07c75344,0x08405a28,0x008e14ea } },
- /* 121 */
- { { 0x12897042,0x16a81a2f,0x100b12bb,0x0a663e86,0x1fb218d0,0x00ca645e,
- 0x05632367,0x06e5549a,0x00597e1a },
- { 0x0f0bd68c,0x193f60d6,0x00925140,0x17c1b956,0x03e846d4,0x06bd64ff,
- 0x17a96e72,0x06c33369,0x00ca3f02 } },
- /* 122 */
- { { 0x0170bd20,0x095085ab,0x0fd779d6,0x112fe2da,0x0ade20ea,0x1ff8a259,
- 0x1f928cd8,0x0fc61380,0x00bde7fd },
- { 0x18f5432c,0x0b5db695,0x10d112d4,0x1b8397c0,0x15b5a210,0x0f37fc7c,
- 0x0660f6c0,0x01c14fba,0x00b623ad } },
- /* 123 */
- { { 0x00c7b65b,0x1adeb3ab,0x0928a269,0x18ab2047,0x06795ab8,0x07e86bd9,
- 0x0defe088,0x08cb1d82,0x00d6aa2e },
- { 0x1138bb85,0x055e005a,0x0cea5704,0x03a243b0,0x0a32e8c3,0x18058b81,
- 0x04eac93f,0x1c05b98a,0x00111662 } },
- /* 124 */
- { { 0x0fb42b87,0x008a00af,0x1b137fde,0x1ebae036,0x1c129bd9,0x066bd3eb,
- 0x03e19bb3,0x197296ea,0x00db3ee1 },
- { 0x134837cf,0x1379ed87,0x15e353ec,0x1da31772,0x0657de7e,0x0fc9be2b,
- 0x096574b3,0x084a440d,0x00886a64 } },
- /* 125 */
- { { 0x05b569ea,0x011a67db,0x0846704f,0x022283ee,0x0619e200,0x042ed0ad,
- 0x1ef22eb7,0x1d603142,0x00a70cf4 },
- { 0x0c4a6a65,0x127cbd74,0x0d0de3c8,0x0b9e4e02,0x0096036e,0x104f27bf,
- 0x0ddef8e9,0x157a2e8f,0x00aa4772 } },
- /* 126 */
- { { 0x1aa60cc0,0x1b3b098b,0x1a0457d9,0x02c6c206,0x1bb5ac79,0x05da5de0,
- 0x05d37b66,0x1b861f5f,0x00611a6d },
- { 0x015ee47a,0x073c65e6,0x0365a94c,0x12c5049c,0x1ed882e8,0x0d6f9eec,
- 0x1220dbcd,0x1f02c853,0x005cfffa } },
- /* 127 */
- { { 0x1b7a99cd,0x06aa67fc,0x0f116870,0x07733b08,0x139e17bf,0x0847b163,
- 0x05300e2a,0x046fb833,0x006e5a6b },
- { 0x0ba5db77,0x1c5a2a70,0x1d8358fb,0x1100ff59,0x08378b7b,0x00633b30,
- 0x0f339647,0x11a485b5,0x00481a23 } },
- /* 128 */
- { { 0x15d0b34a,0x1a0bde01,0x09f029f8,0x1670d706,0x162d1440,0x1316d601,
- 0x050e3edc,0x099c19bf,0x002c4111 },
- { 0x0d95a0b1,0x1d2e778d,0x1550d88a,0x166f50cf,0x086c9c09,0x06e900f2,
- 0x0a5c9b5b,0x17e85ff2,0x0020477a } },
- /* 129 */
- { { 0x18d65dbf,0x1ba8b9e0,0x07b6b60b,0x1f281c67,0x1001c77b,0x0935ee78,
- 0x1ad9c08b,0x1358ee72,0x00ac6640 },
- { 0x06261cc3,0x185d9b7e,0x039fa422,0x1ef79232,0x06c10213,0x075d522f,
- 0x1e159507,0x0eb98245,0x00ce8e69 } },
- /* 130 */
- { { 0x1c0a67d2,0x1890da0d,0x13492283,0x08ec1488,0x1473762d,0x078eb2cd,
- 0x12a03811,0x0ca4a176,0x0008fde3 },
- { 0x048bf287,0x07761ed4,0x0da75bab,0x0c4305a6,0x09482c2a,0x0fee4922,
- 0x135cd60b,0x1a4acbad,0x002f7e2f } },
- /* 131 */
- { { 0x03770fa7,0x125c96de,0x0410fe6b,0x1d1ab86f,0x01171095,0x074e8bbb,
- 0x0ab953cd,0x05d20ee0,0x00c65be9 },
- { 0x16fd0a40,0x1ac5181f,0x139e12c9,0x1045c779,0x167bfe7d,0x1ac2a7cb,
- 0x0ce9eb93,0x08fa2327,0x004bff8e } },
- /* 132 */
- { { 0x00ff1480,0x0a0e90f8,0x1536c5b3,0x11f6fa0e,0x0f3ea2ab,0x0977ddf0,
- 0x19f6b207,0x1ccaee52,0x003e4e4a },
- { 0x1c5303e6,0x10c79b69,0x0988e5df,0x13329724,0x0c3c03bd,0x07130992,
- 0x00a27b5c,0x1fab1d8c,0x005388ae } },
- /* 133 */
- { { 0x1e5d7713,0x0898bf5a,0x179276ab,0x130bdceb,0x1b26109b,0x1e27e3a7,
- 0x1838cbd6,0x1a29eeb7,0x005cf908 },
- { 0x0e657b12,0x1021a884,0x1bb6799d,0x08434b72,0x0ccc2bfd,0x1a8fc4b8,
- 0x138838a7,0x080c1e01,0x00a698ba } },
- /* 134 */
- { { 0x0f748fec,0x1ed8b437,0x074b3e5c,0x0eab44fd,0x05effe6e,0x12a26713,
- 0x16358c2d,0x114f5d75,0x00b142ef },
- { 0x17d5770a,0x098d7cf8,0x0cd04beb,0x1e76ce59,0x159de66a,0x068def99,
- 0x01d5af58,0x12cb0a2a,0x00d1896a } },
- /* 135 */
- { { 0x13c41c08,0x02cabd59,0x1a38b87b,0x1d2958a8,0x12f6c87d,0x15b9d623,
- 0x08e46205,0x016f303b,0x00267b0e },
- { 0x0e62b988,0x12aa72ec,0x1b4879db,0x1b8eaa22,0x06f99d8d,0x1d781e95,
- 0x0e4d1843,0x0f542232,0x00b54e28 } },
- /* 136 */
- { { 0x178a876b,0x100915a8,0x14412d02,0x1f2dfe10,0x09f7651f,0x18d58a79,
- 0x1398142c,0x116bf0fa,0x0084abb2 },
- { 0x0270790a,0x0f6a1cfc,0x18fd1af5,0x196b3b0b,0x022122d6,0x0e0db60f,
- 0x1901d7d5,0x0ce2ecaa,0x00e5436f } },
- /* 137 */
- { { 0x0286e8d5,0x1fc812f1,0x1114ef94,0x192b690c,0x0e3a0353,0x1adef204,
- 0x067b60cb,0x116b739d,0x000404f6 },
- { 0x0781e8e5,0x1699def5,0x0f0bd6f2,0x1ea0302c,0x1caa33cd,0x14b0008c,
- 0x1c055d5d,0x1be15838,0x003a4263 } },
- /* 138 */
- { { 0x1aeb596d,0x14b2f664,0x0f24ad30,0x1407ce04,0x1396101e,0x1a5b1700,
- 0x0d9d1c12,0x07f20bd4,0x000ca8fd },
- { 0x151b2b61,0x1291d212,0x03f341a4,0x0f513872,0x0a63e1eb,0x095f01c9,
- 0x10cf9fc7,0x0c89bb61,0x0096dca2 } },
- /* 139 */
- { { 0x187510af,0x01dda1d1,0x08da8048,0x1fd55153,0x10378846,0x0bb817ca,
- 0x077348e9,0x024755ab,0x004363e2 },
- { 0x00246a47,0x121d0e3a,0x17749372,0x0571a5ca,0x1af96b36,0x03022ec7,
- 0x0313e6c2,0x0b9b1773,0x00840e11 } },
- /* 140 */
- { { 0x1023e8a7,0x09102f10,0x171e82fc,0x11519bb1,0x05ddfc80,0x11390b1d,
- 0x1b538a4a,0x17a61bda,0x005e0d6a },
- { 0x1cfc0f64,0x1d390e13,0x157b6201,0x1d803a1c,0x19db242e,0x1f7c8e8f,
- 0x09689a9e,0x1e8528b4,0x007dea48 } },
- /* 141 */
- { { 0x05060a81,0x1efb78e7,0x1e55856a,0x1f38e5f1,0x0268be79,0x162a0356,
- 0x1b473f4d,0x17dd7fa2,0x00abc2a2 },
- { 0x13e2eac7,0x16337c8e,0x174119a2,0x0174c7a5,0x0d31b6f1,0x11bb8141,
- 0x1f059e43,0x128d8fdd,0x004ea353 } },
- /* 142 */
- { { 0x1266309d,0x0c517c6a,0x05168fbb,0x038d8103,0x05dc10a5,0x1a2d2bc6,
- 0x1f0f3b2b,0x1123929f,0x003a76e6 },
- { 0x1d7b0d0f,0x15674523,0x161297e6,0x159d2d1e,0x17fbe963,0x06392734,
- 0x1191468c,0x0148cbcc,0x008212a1 } },
- /* 143 */
- { { 0x0fab8caa,0x1be30e1e,0x0508e43b,0x171d081c,0x133ca18e,0x1fb3bf4b,
- 0x05933477,0x0e2b3396,0x00aa7cab },
- { 0x1c837bd1,0x17e4939d,0x1abd75c0,0x080fa186,0x1da49c06,0x09497a11,
- 0x1f0c5d88,0x0e7fc0c2,0x0040e380 } },
- /* 144 */
- { { 0x07bf9b7c,0x07c04125,0x0f8c343d,0x1a46407f,0x19ce3365,0x09904be7,
- 0x149afef9,0x001660aa,0x00e36047 },
- { 0x0cc6c2c7,0x0e5cc88b,0x132fb993,0x106e1174,0x0d9ec726,0x0a1a31bd,
- 0x057f737b,0x0ef47bdc,0x006542d6 } },
- /* 145 */
- { { 0x1b6c377a,0x1995b683,0x0d122f8f,0x00708f20,0x08af76cb,0x09d4106d,
- 0x1c875bf7,0x1dc1376d,0x00a6534a },
- { 0x1035facf,0x050bc068,0x12d1f98c,0x0ab4673b,0x1f39335e,0x07f0e223,
- 0x1c89ba94,0x05fb935d,0x00f3cb67 } },
- /* 146 */
- { { 0x1b55fd83,0x19b8cff1,0x1777443a,0x0f48d90e,0x0a784e0d,0x0fd482e7,
- 0x039cceb2,0x05d55d0e,0x007cafaa },
- { 0x1d53b338,0x1c0a6820,0x01f9b1a6,0x198141df,0x12b0fe0a,0x088408b3,
- 0x08bbee4f,0x183737aa,0x000aab13 } },
- /* 147 */
- { { 0x12681297,0x0e6713c6,0x02551ab7,0x0a1d636a,0x1aaf2cb3,0x18b9bb30,
- 0x0ba4b710,0x00508e02,0x004b91a6 },
- { 0x12f8ddcf,0x07f884ab,0x0446bd37,0x17ec3d35,0x0430e08e,0x1b0561b9,
- 0x12ad23d0,0x0a6e4643,0x0049534c } },
- /* 148 */
- { { 0x107b7e9d,0x1efbeb8f,0x13545be0,0x11df4627,0x07ee3a47,0x1325b602,
- 0x17b9e3bc,0x09facb58,0x00caf46c },
- { 0x12aa8266,0x026863bc,0x0da12ee8,0x08a8cd22,0x116b0edf,0x08b45725,
- 0x1c3d5b99,0x0ae098ce,0x0014ce9e } },
- /* 149 */
- { { 0x165e8f91,0x0a22f1f4,0x03c924a6,0x19437596,0x0a0a0d3a,0x0387c864,
- 0x09c74c73,0x14a7c993,0x001bb708 },
- { 0x158bdd7a,0x0e54f34a,0x0289ac75,0x140a1003,0x0f1ec734,0x1538a64e,
- 0x040ac24e,0x1e5b4600,0x00f9d126 } },
- /* 150 */
- { { 0x0ff9563e,0x04de53d5,0x0645281d,0x0ef5fd69,0x11671dd0,0x0188dfaf,
- 0x11a789e8,0x172e53d9,0x00807afc },
- { 0x09b08b77,0x1c5499be,0x0f1f8e1f,0x074f0a88,0x1d8ba86c,0x1d2ca3b7,
- 0x163217eb,0x1a2cad19,0x00751adc } },
- /* 151 */
- { { 0x10715c0d,0x1751c5a0,0x1da5fde2,0x07d4e31e,0x1f06dd11,0x158a49fd,
- 0x10fd997a,0x0d04a6ee,0x0029ec44 },
- { 0x150bebbc,0x0ca38ce5,0x1415088f,0x1dcb7fc8,0x1edb1399,0x0d9d4696,
- 0x1df64335,0x1c725480,0x00ff9370 } },
- /* 152 */
- { { 0x06b75b65,0x0d16b4de,0x19947156,0x11f1aa4c,0x1d7d2418,0x199f1ef4,
- 0x0068a2a7,0x1174553a,0x00977647 },
- { 0x129af2c7,0x0293116c,0x1a4248e2,0x1ebada9c,0x051e9334,0x03f2d44d,
- 0x0beb39b3,0x07f585f0,0x0074a631 } },
- /* 153 */
- { { 0x175f079c,0x17a6feed,0x18dbeeec,0x00f92a31,0x136dd85b,0x1e7873e6,
- 0x18f46db3,0x02a1fe90,0x00ab75be },
- { 0x173fc9b7,0x0d9b3e00,0x1653f420,0x14e841a4,0x11236b90,0x1f81e204,
- 0x07d857f6,0x05c1688b,0x004ebeac } },
- /* 154 */
- { { 0x1c9f2c53,0x1b62ff3a,0x0ba5047a,0x0440231d,0x0c5d8d25,0x1b19fcad,
- 0x1ff32221,0x0f658375,0x00df9988 },
- { 0x050aaecb,0x1bc77694,0x15a89cae,0x12303603,0x1bcac9d4,0x0a88d8e6,
- 0x01625e37,0x14eef3e8,0x0027b040 } },
- /* 155 */
- { { 0x173b2eb2,0x0202edbf,0x06c84624,0x1f0a111c,0x0327ee0d,0x18a92cb1,
- 0x0fd5406d,0x06fc99f4,0x00b393dd },
- { 0x1fd75165,0x091873d9,0x14cd5528,0x06898579,0x15022d66,0x18df07bd,
- 0x1065b0db,0x025a08c6,0x0009588c } },
- /* 156 */
- { { 0x02601c3b,0x043049f8,0x170cd7f8,0x04a5f19e,0x0ff28fb0,0x194044a5,
- 0x122e5573,0x153b73ec,0x0081c879 },
- { 0x06f56c51,0x007343e6,0x05d86301,0x08e2d27e,0x1353bfed,0x0520c82c,
- 0x0f1113e2,0x1eabf823,0x00fa0d48 } },
- /* 157 */
- { { 0x01608e4d,0x0370e4ef,0x00a08b2f,0x1bb4226b,0x0c2d7010,0x0ee08abf,
- 0x1f5bdadf,0x0ad6d46c,0x008ea0e1 },
- { 0x0383b3b4,0x1aa70179,0x007d4f28,0x0cd7287e,0x03ca5699,0x119596f0,
- 0x16b13fd9,0x049f4016,0x003f5ab9 } },
- /* 158 */
- { { 0x19739efb,0x1bdd86ca,0x1afb034c,0x0361e9cf,0x067d1c75,0x16eb208d,
- 0x15b8b694,0x10e56e84,0x008bc768 },
- { 0x02d3d253,0x0df1db94,0x035de7e9,0x0cf343eb,0x167bba9f,0x00b470b3,
- 0x0d3e872b,0x120c1f9e,0x00b386f1 } },
- /* 159 */
- { { 0x0fedcfc2,0x0f9e09a9,0x1e2bc34c,0x0d7ec4c5,0x088c2539,0x1a7572b9,
- 0x1136680a,0x1ee360d3,0x004cb460 },
- { 0x1b8095ea,0x133da69a,0x101d80eb,0x17f0b2df,0x0a16592b,0x0fb35b0a,
- 0x088f851d,0x0112bdea,0x0052c0d5 } },
- /* 160 */
- { { 0x15339848,0x18e10870,0x1de32348,0x1451d0e0,0x0e170e87,0x1330b4ab,
- 0x102e7477,0x07057613,0x004ac3c9 },
- { 0x0998987d,0x0df02a8b,0x027d3586,0x06ed895c,0x1933d8b2,0x1bb28d1f,
- 0x17d07782,0x18fc72e0,0x00380d94 } },
- /* 161 */
- { { 0x01542e75,0x0d1aad54,0x006e6dc0,0x0e4943dc,0x1708796c,0x14bbb126,
- 0x1ebdace8,0x0e3bc4c6,0x002ce3e1 },
- { 0x15d5bc1a,0x1f7f5a4f,0x1df8ad73,0x0ac0fc4e,0x1756ca65,0x1617ca89,
- 0x19353faa,0x0a416c49,0x002e6cd8 } },
- /* 162 */
- { { 0x0c31c31d,0x142caa5c,0x1c86830d,0x067a00b7,0x19ec9685,0x11373ae3,
- 0x15502f5d,0x08e858d3,0x00ca1775 },
- { 0x16d2dbb2,0x0376d7ff,0x12a74633,0x1b197a2e,0x178e8fd0,0x03c9d522,
- 0x139a1d7a,0x02739565,0x00a976a7 } },
- /* 163 */
- { { 0x13fb353d,0x1328f8dc,0x1f3e9c82,0x195716af,0x15281d75,0x07d398d8,
- 0x0666aa23,0x02e143e9,0x008720a7 },
- { 0x093e1b90,0x01f469bb,0x1db7f0e3,0x0bb8162d,0x08742d34,0x08055a95,
- 0x04f23aa3,0x0538ed31,0x009719ef } },
- /* 164 */
- { { 0x18e35909,0x10776c6a,0x177045a0,0x0db1b867,0x05026936,0x0ce83710,
- 0x13075fe6,0x0edc2ae0,0x00a50729 },
- { 0x04e70b2e,0x0151bf56,0x042aa280,0x19ecaed1,0x12a5c84d,0x1f8c322d,
- 0x1c9735c6,0x13bef6ee,0x0099389c } },
- /* 165 */
- { { 0x1ada7a4b,0x1c604793,0x0e24d988,0x1d3a07fa,0x1512c3ab,0x1744bb37,
- 0x0b91ad9c,0x15440590,0x00a88806 },
- { 0x1380184e,0x10102256,0x1aa2e159,0x16f18824,0x04f17a8c,0x186056c2,
- 0x13f9e759,0x1f68e71b,0x000043bf } },
- /* 166 */
- { { 0x16d5192e,0x0acdaee1,0x042cabe3,0x110ba68b,0x01781acf,0x168508b0,
- 0x019a0d59,0x00374d89,0x0052f3ef },
- { 0x0edcb64d,0x0c339950,0x1a0de7ce,0x10584700,0x0f3090a4,0x12fd3820,
- 0x19d45b2f,0x1133de4f,0x003296bd } },
- /* 167 */
- { { 0x054d81d7,0x1b55d44a,0x1ae6cf11,0x1bcfdea3,0x179869ea,0x10e6c0e2,
- 0x07a58668,0x17f5dcae,0x003b90fe },
- { 0x1496f7cb,0x1c9811f2,0x0d46f124,0x1c83b0ff,0x0b5ce55b,0x0ea44cdf,
- 0x0c600fc7,0x13b3f021,0x006e8806 } },
- /* 168 */
- { { 0x143ea1db,0x11bd588d,0x1674a4b3,0x1fe352a4,0x0f1860a7,0x0110c7c2,
- 0x144e146c,0x1d5bdf55,0x00a7222b },
- { 0x0b0a9144,0x1563c761,0x1e967168,0x0480a3e5,0x1ce385a0,0x1652b0a3,
- 0x1a424747,0x04778558,0x00be94d5 } },
- /* 169 */
- { { 0x0b226ce7,0x17a4a2f0,0x1fa2dc1c,0x1fae8f2c,0x0c63eb8a,0x0378c2d3,
- 0x1d9bb7a9,0x1fd37d18,0x007782de },
- { 0x1db38626,0x10695521,0x1d9eb45d,0x15cf0eed,0x19cdb460,0x037e2a24,
- 0x192cd06e,0x0cf45125,0x00038385 } },
- /* 170 */
- { { 0x19ec1a0f,0x0c6d77eb,0x0ce725cb,0x19adfb9d,0x01a953bb,0x0ffe2c7b,
- 0x1083d55d,0x1895bef6,0x00dbd986 },
- { 0x15f39eb7,0x0d5440a0,0x0365db20,0x05f9eb73,0x1717d6ee,0x03aee797,
- 0x0f415195,0x188d0c17,0x008e24d3 } },
- /* 171 */
- { { 0x1a587390,0x04ec72a4,0x0fb1621d,0x16329e19,0x183c612b,0x1ed2592c,
- 0x1f211b81,0x18880f75,0x00541a99 },
- { 0x024c8842,0x1920b493,0x1b017ff6,0x098255b0,0x1cf62604,0x0a5a27bf,
- 0x17471674,0x093eafa6,0x00c0092c } },
- /* 172 */
- { { 0x1f2e61ef,0x1e63ae1e,0x06cd72b4,0x1083905c,0x129f47e8,0x1868c84f,
- 0x113718b4,0x068e50d2,0x0075e406 },
- { 0x1bc237d0,0x1ea0fe2d,0x13c07279,0x06f7e1d8,0x1d534c95,0x0d0b1415,
- 0x161a4714,0x0b18f090,0x005b7cb6 } },
- /* 173 */
- { { 0x0a28ead1,0x12538424,0x0ed1fda5,0x1b8a11fa,0x05b39802,0x1fe8bb3f,
- 0x1e866b92,0x1751be12,0x007ae13e },
- { 0x0add384e,0x090b77c7,0x0cbfc1bf,0x0345b36d,0x1b5f3036,0x0c3c25e6,
- 0x0ff4812e,0x0e9c551c,0x00787d80 } },
- /* 174 */
- { { 0x157fbb1c,0x0f12eb5b,0x08077af1,0x17bb6594,0x033ffe47,0x14d1b691,
- 0x12112957,0x0333de50,0x005c2228 },
- { 0x08315250,0x19ea542c,0x1c25f05d,0x04345704,0x1d33f21b,0x0750ef7a,
- 0x0ac2adf1,0x15775e1e,0x00e45d37 } },
- /* 175 */
- { { 0x08511c8a,0x16f8f1a1,0x129b34f4,0x0453917b,0x039a7ebb,0x18d3b13e,
- 0x074d5e29,0x04509bf7,0x00ed7bc1 },
- { 0x13dea561,0x191536fc,0x03c3b473,0x07e31ba9,0x123e8544,0x10a02dd6,
- 0x149f62e1,0x1928b94d,0x00aac97c } },
- /* 176 */
- { { 0x016bd00a,0x1aa753a5,0x102f307a,0x13d35beb,0x1fc06d83,0x1bf88fcd,
- 0x113824ae,0x16622c7b,0x00318f97 },
- { 0x030d7138,0x06062df6,0x10c0883b,0x11be4757,0x0360644e,0x0b97d811,
- 0x1d34aede,0x1433509f,0x00fa41fa } },
- /* 177 */
- { { 0x06642269,0x0016cba5,0x0de0ef51,0x10299d37,0x1e60bc81,0x1c723ca0,
- 0x0788e634,0x0583a4dd,0x0038bb6b },
- { 0x0a577f87,0x1272512b,0x047f8731,0x05a4a7b8,0x007288b5,0x155fb114,
- 0x0697fccd,0x00b9cec0,0x0094dd09 } },
- /* 178 */
- { { 0x1e93f92a,0x0b67bee6,0x0d7cc545,0x06679713,0x1e750a01,0x06fce4ca,
- 0x0ba40901,0x0cfa4b85,0x00920778 },
- { 0x0bf39d44,0x1238f008,0x0ed4f5f8,0x1920412d,0x03d8f5f2,0x1bd9ae4e,
- 0x0d453112,0x117a537d,0x0081e842 } },
- /* 179 */
- { { 0x0477199f,0x0ece15d6,0x17b3765b,0x11dddcd6,0x0fd0e8cb,0x0d9ff720,
- 0x12c62bdf,0x0c5b77f4,0x001b94ab },
- { 0x0e47f143,0x0786c59e,0x1d1858d1,0x0c47f8c7,0x1938351e,0x1387e62c,
- 0x03bbc63c,0x0500aab2,0x0006a38e } },
- /* 180 */
- { { 0x13355b49,0x12d809cd,0x1afe66cb,0x04cac169,0x1f3dc20e,0x1d35e934,
- 0x13e3023f,0x04107b3a,0x00a7b36c },
- { 0x1b3e8830,0x068ae1d0,0x07e702d9,0x19d5c351,0x16930d5f,0x12517168,
- 0x08833fbb,0x16945045,0x00be54c6 } },
- /* 181 */
- { { 0x0d91167c,0x166d9efc,0x099897b5,0x187ef3cf,0x0c7f4517,0x12479a35,
- 0x0aedc415,0x157d5c04,0x00bf30a5 },
- { 0x13828a68,0x13bc2df4,0x0fbc0da3,0x038664fe,0x146b2516,0x0ff5ac90,
- 0x04eb846d,0x1bc4e65a,0x00d1c820 } },
- /* 182 */
- { { 0x1038b363,0x01f09a3c,0x01794641,0x023ea8d6,0x0cad158c,0x1d5f3013,
- 0x168d3f95,0x1dad1431,0x00b7d17b },
- { 0x029c2559,0x0652c48f,0x1fff6111,0x1406ecb7,0x069484f7,0x1257ba72,
- 0x11912637,0x0bcc8259,0x003997fd } },
- /* 183 */
- { { 0x0bd61507,0x103a3414,0x09934abc,0x0265aa69,0x015e329e,0x0fd84545,
- 0x0fa3ffb7,0x05278d82,0x000eeb89 },
- { 0x07e259f8,0x0db4d1f5,0x0f9f99fa,0x1b6fcda2,0x1a685ce1,0x0c7b568f,
- 0x1bbc9dcc,0x1f192456,0x00228916 } },
- /* 184 */
- { { 0x0a12ab5b,0x0cd712d8,0x1ef04da5,0x022e3f2a,0x02b0ccc1,0x014f68b7,
- 0x05fa0161,0x03add261,0x00ec05ad },
- { 0x0c3f3708,0x0bdd2df5,0x0d675dc5,0x15f26a61,0x034e531b,0x091b88c1,
- 0x0cdd1ed5,0x0acffe23,0x007d3141 } },
- /* 185 */
- { { 0x16dfefab,0x1ece02e7,0x0cddc1de,0x1e44d1b9,0x0bb95be2,0x16cb9d1c,
- 0x1e8f94fa,0x1f93783a,0x00e9ce66 },
- { 0x0f6a02a1,0x0d50abb3,0x19803b5d,0x010fbec1,0x1c1b938c,0x1f9a3466,
- 0x1947e251,0x002e4500,0x00d9650b } },
- /* 186 */
- { { 0x1a057e60,0x025a6252,0x1bc97914,0x19877d1b,0x1ccbdcbc,0x19040be0,
- 0x1e8a98d4,0x135009d6,0x0014d669 },
- { 0x1b1f411a,0x045420ae,0x035da70b,0x175e17f0,0x177ad09f,0x17c80e17,
- 0x062ad37b,0x0821a86b,0x006f4c68 } },
- /* 187 */
- { { 0x16c24a96,0x1936fa74,0x0f6668e1,0x1b790bf9,0x0e30a534,0x17794595,
- 0x0aecf119,0x1fac2313,0x004c4350 },
- { 0x1855b8da,0x0b3fb8b7,0x0f0e284a,0x0847288c,0x1334341a,0x0a09f574,
- 0x02d70df8,0x084b4623,0x00a726d2 } },
- /* 188 */
- { { 0x148c1086,0x17359f74,0x14e8b876,0x1ca07b97,0x022f3f1d,0x169f81e8,
- 0x0e48fcd7,0x10598d9e,0x0013639e },
- { 0x0dafaa86,0x1649c7de,0x15289626,0x178bf64c,0x11329f45,0x19372282,
- 0x168c658e,0x1c383466,0x00ca9365 } },
- /* 189 */
- { { 0x0c3b2d20,0x10ad63aa,0x138906cd,0x14a82f20,0x1071d742,0x10e2664e,
- 0x0a96c214,0x0692e16e,0x009ce29c },
- { 0x0d3e0ad6,0x0640fb9b,0x1e10d323,0x01b53de5,0x062d9806,0x0e8d3674,
- 0x1e60d7b4,0x1af56855,0x0048c4ab } },
- /* 190 */
- { { 0x00c7485a,0x110d8662,0x09d36ff4,0x08ab77ca,0x1d2e8ead,0x1b4c4931,
- 0x0f2d24f1,0x065ecf66,0x0078017c },
- { 0x130cb5ee,0x0e9abb4c,0x1023b4ae,0x029d2818,0x11a4dc0d,0x1faa9397,
- 0x1013e2de,0x0a9bcb83,0x0053cd04 } },
- /* 191 */
- { { 0x1d28ccac,0x06ac2fd2,0x16dd1baf,0x047cac00,0x123aa5f8,0x1850e680,
- 0x0a3df1e7,0x183a7aff,0x00eea465 },
- { 0x0551803b,0x00832cf8,0x19abdc1e,0x16b33ef9,0x08e706c0,0x13b81494,
- 0x064d0656,0x148f5cd2,0x001b6e42 } },
- /* 192 */
- { { 0x167d04c3,0x14049be7,0x1bae044b,0x0257c513,0x14d601e3,0x0c43c92c,
- 0x14f55ad7,0x02830ff7,0x000224da },
- { 0x0c5fe36f,0x1d5dc318,0x1d47d7e1,0x1e78c09d,0x029ec580,0x18dfd9da,
- 0x1cce593e,0x1e0857ff,0x0060838e } },
- /* 193 */
- { { 0x1e0bbe99,0x19659793,0x0a8e7b90,0x1489e609,0x139037bd,0x1e3d4fd4,
- 0x190d7d25,0x0045a662,0x00636eb2 },
- { 0x13ae00aa,0x07e8730c,0x0b9b4bff,0x1401fc63,0x1901c875,0x0c514fc9,
- 0x0eb3d0d9,0x16c72431,0x008844ee } },
- /* 194 */
- { { 0x0b3bae58,0x0a0b8e93,0x18e7cf84,0x07bee22f,0x0eada7db,0x1e3fc0d4,
- 0x027b34de,0x1b8a3f6f,0x0027ba83 },
- { 0x1bf54de5,0x1efa1cff,0x1f869c69,0x0e06176b,0x17a48727,0x071aed94,
- 0x12ad0bba,0x0690fe74,0x00adb62d } },
- /* 195 */
- { { 0x0175df2a,0x188b4515,0x030cba66,0x15409ec3,0x10916082,0x19738a35,
- 0x02cb2793,0x0ecebcf9,0x00b990fd },
- { 0x0df37313,0x014ecb5a,0x0d01e242,0x00aaf3a1,0x077111c2,0x17253c04,
- 0x06359b26,0x1f29a21a,0x0081707e } },
- /* 196 */
- { { 0x03d6ff96,0x1ebe5590,0x010cd825,0x0a37f81b,0x0db4b5b8,0x11e26821,
- 0x09709a20,0x1d5ab515,0x003792da },
- { 0x141afa0b,0x140c432c,0x160d9c54,0x13ce8285,0x0e0a7f3e,0x1293adf2,
- 0x06e85f20,0x0bd29600,0x005abd63 } },
- /* 197 */
- { { 0x0ac4927c,0x13fd4270,0x1233c8dc,0x10c06b4f,0x0a0dfe38,0x0af5256e,
- 0x184292f3,0x04308d56,0x005995bf },
- { 0x029dfa33,0x087c305c,0x03f062fa,0x1fc55d2b,0x10366caa,0x17a23c31,
- 0x047a6cee,0x145a9068,0x0044c32c } },
- /* 198 */
- { { 0x040ed80c,0x1a54bf8f,0x14b2a0a9,0x07196263,0x16ad95f9,0x0925be16,
- 0x15314fc8,0x1f701054,0x001f2162 },
- { 0x120b173e,0x1233e62b,0x17c4be5f,0x114ccc10,0x165dc40e,0x0107264e,
- 0x1f2633af,0x05787d20,0x008f1d40 } },
- /* 199 */
- { { 0x1bc4058a,0x1ac97ce7,0x0bd59c13,0x1c296c52,0x18c57b15,0x1f1bde0e,
- 0x0fe71573,0x08724ddb,0x00b1980f },
- { 0x12c76b09,0x0619f049,0x0c1fde26,0x0a4f3a67,0x1b4611df,0x156a431d,
- 0x1915bc23,0x1366e891,0x002828ad } },
- /* 200 */
- { { 0x04cf4ac5,0x0b391626,0x1992beda,0x18347fbb,0x10832f5a,0x1d517044,
- 0x0e401546,0x04eb4296,0x004973f1 },
- { 0x122eac5d,0x0cec19a9,0x166d5a39,0x0fddea17,0x083935e0,0x1907d12c,
- 0x0b1eacd9,0x1a1b62d1,0x006dac8e } },
- /* 201 */
- { { 0x0da835ef,0x1daa2d77,0x043b547d,0x0227a43a,0x01b094aa,0x12f009ba,
- 0x19300d69,0x0b24173b,0x004b23ef },
- { 0x1c4c7341,0x015db401,0x162f0dfa,0x0ee0da7e,0x03ee8d45,0x1c31d28f,
- 0x0939cd49,0x069bbe93,0x004dd715 } },
- /* 202 */
- { { 0x15476cd9,0x1ca23394,0x069c96ef,0x1a0e5fc6,0x167e0648,0x045c7e25,
- 0x16ec5107,0x0005e949,0x00fd3170 },
- { 0x0995d0e1,0x05a1ffa4,0x1dca6a87,0x0d2ba21d,0x1898276e,0x1cbb20bc,
- 0x0d978357,0x1192ad3e,0x0014fac5 } },
- /* 203 */
- { { 0x1312ae18,0x0cd0032f,0x124ff26b,0x0b1b81f9,0x12846519,0x0120453e,
- 0x09436685,0x0a26d57b,0x00ed7c76 },
- { 0x05d4abbc,0x113878d1,0x0844fa91,0x1bb1e7e3,0x1952f9b5,0x183aada8,
- 0x1d4f1826,0x1ee9a5d3,0x00fefcb7 } },
- /* 204 */
- { { 0x1a119185,0x084a4bd5,0x1116e92f,0x1d186155,0x01179d54,0x1cef5529,
- 0x002d2491,0x0fd0fc1b,0x001801a5 },
- { 0x1cafffb0,0x19e9fc6f,0x09549001,0x0678175c,0x1dfbc6cf,0x1b1dadaf,
- 0x0191e075,0x03c3d5a2,0x009f8fc1 } },
- /* 205 */
- { { 0x1e69544c,0x0c1d0b8a,0x12de04c5,0x1f0acfe0,0x04c320ea,0x147e93c5,
- 0x06a4788a,0x13a7a74d,0x00a9d380 },
- { 0x19a2da3b,0x1b616162,0x057211e4,0x1979ec31,0x1086938c,0x122731ea,
- 0x1bdd7994,0x15dc22f1,0x003006b9 } },
- /* 206 */
- { { 0x09eead28,0x1d8f9586,0x1d37ef02,0x1ec6bb13,0x089397ee,0x0bfed967,
- 0x1d841d1d,0x1ae8bf1e,0x000ab85f },
- { 0x1e5b4549,0x06d3e499,0x048bc87b,0x0576b92f,0x180404be,0x093a5a1d,
- 0x0b089868,0x0ea23d28,0x00b122d6 } },
- /* 207 */
- { { 0x06a5ae7a,0x1f303df3,0x0b72f8ce,0x0e07f4ed,0x0e5c501e,0x0180a75b,
- 0x0bb2be41,0x18212fb7,0x009f599d },
- { 0x0ff250ed,0x0badb8c0,0x0688371b,0x122ae869,0x027a38eb,0x02d20859,
- 0x0de10958,0x1c114529,0x007d5528 } },
- /* 208 */
- { { 0x00c26def,0x07ac7b31,0x0acb47bc,0x0b0bd4b0,0x03881025,0x0bcd80e7,
- 0x1cc3ef9f,0x002607e2,0x0028ccea },
- { 0x19644ba5,0x0ed5e68b,0x1ffc2e34,0x0c87d00d,0x1e17b1fc,0x1b7e3359,
- 0x0efe9829,0x09143a02,0x00c18baf } },
- /* 209 */
- { { 0x1dc4216d,0x0731c642,0x1850ab0d,0x0020ce40,0x1064a00c,0x10b8cafa,
- 0x05af514e,0x13b6f52b,0x009def80 },
- { 0x07ab8d2c,0x0f432173,0x0de8ad90,0x080866c4,0x0218bb42,0x1536b262,
- 0x1395f541,0x160d1011,0x000357f8 } },
- /* 210 */
- { { 0x0cd2cc88,0x14edf322,0x0e3ce763,0x03851be1,0x0a0c8cc6,0x0c3a6698,
- 0x021d28c2,0x1ba36913,0x00e4a01a },
- { 0x157cd8f9,0x168f7567,0x1653120b,0x0cfa7d7a,0x0f7871b7,0x0e38bde9,
- 0x10c29ca5,0x0f39c219,0x00466d7d } },
- /* 211 */
- { { 0x1dada2c7,0x1e98c494,0x06a89f51,0x014d871f,0x059e14fa,0x1e944105,
- 0x146a4393,0x0448a3d5,0x00c672a5 },
- { 0x1d86b655,0x0303e642,0x0b52bc4c,0x06ba77f3,0x172a6f02,0x03402b88,
- 0x144e6682,0x1f5e54ce,0x005e3d64 } },
- /* 212 */
- { { 0x1b3b4416,0x1320863c,0x0c9b666a,0x1f9f0bd5,0x16a74cd8,0x1ba56db2,
- 0x0bf17aff,0x12bd71c8,0x006c8a7a },
- { 0x102a63bd,0x06305d3d,0x03c011c4,0x1e460717,0x190b06b2,0x1b9c1896,
- 0x0a4631b0,0x0455b059,0x00348ae4 } },
- /* 213 */
- { { 0x1ccda2fb,0x1a3a331a,0x01c9b49f,0x1995431c,0x11f2022a,0x1bc12495,
- 0x14ba16b7,0x1c1b3de5,0x00c1074d },
- { 0x0e9a65b3,0x079e7225,0x15c546ff,0x03c9580b,0x09788fd7,0x0fa86735,
- 0x1ff351c4,0x1b793ca9,0x00fbadfb } },
- /* 214 */
- { { 0x00a99363,0x189f8e69,0x1c89dd45,0x0acb1ed9,0x159b2b91,0x1ae69269,
- 0x1f365a05,0x16906e2d,0x00b7f976 },
- { 0x1d6dbf74,0x1ac7126a,0x10ebcd95,0x0775fae3,0x1dfe38d2,0x1bb00121,
- 0x001523d1,0x05d95f99,0x00f4d41b } },
- /* 215 */
- { { 0x1dabd48d,0x0f8e7947,0x101e2914,0x037c6c65,0x146e9ce8,0x14ba08b8,
- 0x1c41ab38,0x1d5c02c1,0x00180824 },
- { 0x06e58358,0x1c3b4c5b,0x1b28d600,0x0d0ea59c,0x1e6c5635,0x071a2f20,
- 0x149608e0,0x073079ed,0x0067e5f6 } },
- /* 216 */
- { { 0x0f4899ef,0x04e65c6e,0x0ed1303e,0x002be13d,0x18ec9949,0x093b592c,
- 0x1f1951be,0x13409823,0x009fef78 },
- { 0x13d2a071,0x09b3f67a,0x1466c25b,0x1c34ff48,0x02eefb10,0x1fd8308f,
- 0x188329ac,0x10353389,0x00bc80c1 } },
- /* 217 */
- { { 0x05eb82e6,0x1929b7c7,0x1b2e4825,0x109f8fea,0x1da5e1a4,0x10b8a85a,
- 0x1c431e38,0x0c53f19b,0x0049270e },
- { 0x0a6b50ad,0x11cdbddf,0x0e23ff06,0x05098344,0x1197b9a0,0x158bc083,
- 0x1dfd500f,0x1f2c26e5,0x00d2ee52 } },
- /* 218 */
- { { 0x08e0362a,0x1be6942c,0x09765374,0x1f514f1f,0x0a526442,0x1b72d21a,
- 0x1ccebfe0,0x17dcb576,0x00dfb478 },
- { 0x073eede6,0x08f8e73b,0x16cbc12a,0x1215a856,0x0da2fa53,0x1bdfaa98,
- 0x1ce9799b,0x16811be8,0x00d9a140 } },
- /* 219 */
- { { 0x0e8ea498,0x10110dab,0x18fb8243,0x08f0526a,0x12ade623,0x01c899ae,
- 0x0c6b81ae,0x11ac47e9,0x00760c05 },
- { 0x0198aa79,0x1c4dac66,0x1eae9fc2,0x1121a5e0,0x0556af74,0x00887ef1,
- 0x10253881,0x05b1e320,0x00714198 } },
- /* 220 */
- { { 0x0d4b0f45,0x1850719a,0x0aa5385b,0x10167072,0x01d5ed92,0x126359e3,
- 0x191cebcc,0x19d13aa9,0x003af9d1 },
- { 0x00930371,0x0c7bcc09,0x105c25ff,0x04cc9843,0x0309beda,0x02ee6e21,
- 0x17583a55,0x186e72af,0x00b1f815 } },
- /* 221 */
- { { 0x09fec44a,0x07d53c74,0x0a932be1,0x055c8e79,0x0a624c8c,0x003ee0db,
- 0x0149a472,0x0282a87e,0x00a41aed },
- { 0x1d5ffe04,0x121a9ccb,0x16db8810,0x1965bec4,0x177758ba,0x105f43c0,
- 0x03be1759,0x1bb0df6c,0x00d6e9c1 } },
- /* 222 */
- { { 0x06853264,0x15174bf6,0x0c1282ce,0x0a676fc4,0x0e9be771,0x15dbdc75,
- 0x03086e44,0x0215d37f,0x009c9c6e },
- { 0x0030b74c,0x1184d2cf,0x18c7a428,0x0e929ad4,0x179f24ed,0x0591d24d,
- 0x06da27d1,0x12c81f4c,0x00566bd5 } },
- /* 223 */
- { { 0x018061f3,0x136008c6,0x00ff1c01,0x164ba6f9,0x13245190,0x04701393,
- 0x117bc17f,0x121ea4a6,0x00cf2c73 },
- { 0x10eb30cf,0x04de75a0,0x1ddc0ea8,0x05d7741a,0x1f255cfd,0x021d0a87,
- 0x05e7a10b,0x0ab15441,0x0002f517 } },
- /* 224 */
- { { 0x0ddb7d07,0x0b77bca5,0x1155400e,0x1f8e8448,0x0a3ce0b4,0x075663c5,
- 0x05f7ebfe,0x14bd1a9b,0x0014e9ad },
- { 0x0f7079e2,0x15240509,0x0c2003b6,0x15479bc9,0x0157d45b,0x0f16bc1c,
- 0x0ba005d9,0x1571d3b3,0x00a0ad4f } },
- /* 225 */
- { { 0x0a653618,0x1fdbb10a,0x1aaa97c2,0x05027863,0x09d5e187,0x139ba24a,
- 0x1478554f,0x170dcadd,0x00bcd530 },
- { 0x12e9c47b,0x14df4299,0x00166ac5,0x0eedfd6a,0x1fbb4dc2,0x0bb08c95,
- 0x107736ea,0x19ed2f26,0x00909283 } },
- /* 226 */
- { { 0x16e81a13,0x1d801923,0x05c48e59,0x1c3532c4,0x019d69be,0x1b0de997,
- 0x126823b4,0x19359c2a,0x0035eeb7 },
- { 0x1e4e5bdc,0x140572d3,0x13bb1b84,0x1a59a76d,0x06bc12dc,0x11263713,
- 0x01914b90,0x1e88915d,0x009a8b2c } },
- /* 227 */
- { { 0x09d03b59,0x1238df90,0x16bcaafd,0x1cc5476c,0x1eec9c90,0x18b475ea,
- 0x0de7fdff,0x1e9a8922,0x006bdb60 },
- { 0x0a55bc30,0x16d7f5e4,0x025ff836,0x1d5a2c20,0x03bddc79,0x0ba0a60f,
- 0x02a50b86,0x1fb29741,0x0001ec3c } },
- /* 228 */
- { { 0x1c9485c2,0x1313bf5e,0x1ec431ee,0x1934f245,0x08d8a48c,0x0b07b851,
- 0x13d93d87,0x1808ea8c,0x00d1acb1 },
- { 0x06f36612,0x13481589,0x186362f4,0x07489dc0,0x157ee59c,0x14099841,
- 0x1b0937e2,0x13a80ac4,0x007dcd07 } },
- /* 229 */
- { { 0x105a4b48,0x073ea69f,0x08c1dc97,0x1a52a46e,0x0915aadc,0x1cb8c095,
- 0x06e3463d,0x1126efa3,0x000bf535 },
- { 0x0c68ea73,0x0f66cad3,0x0e96134d,0x07779504,0x1a723c7f,0x1a637a39,
- 0x1bf27ed9,0x1b3c2cd0,0x00d28be4 } },
- /* 230 */
- { { 0x18fa8e4b,0x095cc831,0x0ff63f17,0x1e30dd12,0x1b6fc559,0x115521b7,
- 0x0338e9b7,0x154a21f1,0x00d76007 },
- { 0x123a4988,0x088555b2,0x17409ccb,0x0b9e88e9,0x07278b45,0x184151a0,
- 0x0c05fd19,0x0d166077,0x00f2b52f } },
- /* 231 */
- { { 0x1835b4ca,0x0abf57d4,0x19a72f03,0x0465f976,0x031982d2,0x1b406332,
- 0x14ea3bba,0x11d98b5d,0x00d8dbe9 },
- { 0x05a02709,0x1d4df1fe,0x0e87ea32,0x1cd1cbeb,0x0a85230b,0x01e6f887,
- 0x1c17faf5,0x147dcab2,0x00e01593 } },
- /* 232 */
- { { 0x0a75a0a6,0x1f2d7a87,0x01600cf4,0x044d58af,0x16406512,0x0a87e80b,
- 0x1c19bf9b,0x1635d71d,0x00afec07 },
- { 0x00bb0a31,0x1dccab3c,0x0c26ab9f,0x15e7986e,0x1f3896f1,0x10ad00d5,
- 0x1f76454e,0x0a8dc5b7,0x00a71b93 } },
- /* 233 */
- { { 0x18f593d2,0x1c709700,0x1e048aef,0x12085140,0x0f2add1a,0x02ed85d2,
- 0x0f645414,0x0b8c50a4,0x0053a200 },
- { 0x07f2b935,0x1e45b1cf,0x00a58681,0x1f2eb583,0x0ca2c2bf,0x1753ba8c,
- 0x18f61af3,0x1367ab11,0x00bf47d1 } },
- /* 234 */
- { { 0x1d7665d5,0x194b3d3e,0x0bd37959,0x0060ae5e,0x0903f4e3,0x02d7406a,
- 0x06d85100,0x0fe73934,0x00001c2c },
- { 0x09efc6d6,0x01d400a3,0x11e9c905,0x017b54f7,0x150a4c81,0x1385d3c0,
- 0x066d7d95,0x1cf0dff7,0x00fdadf8 } },
- /* 235 */
- { { 0x1fc00785,0x09c65c47,0x123ad9ff,0x14eb2276,0x08fbc77f,0x082adf9b,
- 0x12501153,0x09ab5487,0x003a838e },
- { 0x1e97bb9a,0x10b31949,0x07653655,0x1266c688,0x12a839eb,0x08d3056d,
- 0x168d4556,0x0af0e7c3,0x003cdb82 } },
- /* 236 */
- { { 0x1de77eab,0x1b8a054b,0x19204244,0x038a1a82,0x1d0dff7e,0x05696758,
- 0x1ee9d8b7,0x113e3eaf,0x005a60cc },
- { 0x00d45673,0x059b1c12,0x04f19560,0x057c32b2,0x0b7411b8,0x025c6eb2,
- 0x1f0015ca,0x0dfb7fb1,0x00922ff5 } },
- /* 237 */
- { { 0x09a129a1,0x1932ef76,0x0a138106,0x039caf98,0x1be3ca5b,0x0623675f,
- 0x158810e0,0x0fbed8b9,0x0072919a },
- { 0x0fb90f9a,0x0c7a29d4,0x1900c6ca,0x13801711,0x11856d71,0x073bbcb7,
- 0x026b8cb0,0x1006c481,0x005e7917 } },
- /* 238 */
- { { 0x1f63cdfb,0x00b762ab,0x12b93f57,0x146ae3e3,0x197ca8e6,0x15f52b02,
- 0x1eaff389,0x0e3c4985,0x004e0a53 },
- { 0x05765357,0x1b52069d,0x1ce8ad09,0x135e881a,0x11a323c8,0x185720e8,
- 0x13bae3cd,0x031aacc0,0x00f5ff78 } },
- /* 239 */
- { { 0x1a09df21,0x1f9f1ff0,0x1ba391fe,0x0ba51dcc,0x0901526d,0x1e8514e4,
- 0x1990825a,0x1d2a67eb,0x00e41df0 },
- { 0x13ba9e3f,0x02fed205,0x0136254c,0x0819d64c,0x167c7f23,0x10c93f81,
- 0x157c219b,0x0dd589e2,0x008edd7d } },
- /* 240 */
- { { 0x0bfc8ff3,0x0d0ee070,0x0dbd0bf2,0x1fb057d2,0x181ef14e,0x17be6651,
- 0x1a599c05,0x195db15d,0x001432c1 },
- { 0x10b23c26,0x0342414b,0x0d6c9cfb,0x1fd0e60e,0x10f5aa64,0x1b72f577,
- 0x0b1b8e27,0x016b591a,0x00caef48 } },
- /* 241 */
- { { 0x15315922,0x122e4bc3,0x18f32954,0x12a2e260,0x0f2cbd82,0x10685b27,
- 0x08dbcf39,0x0fd1df5c,0x00d0ba17 },
- { 0x11b3af60,0x1d4d747d,0x0b688394,0x12d5ca7a,0x0ef281a7,0x1b02efcf,
- 0x18580758,0x0f838a95,0x00f31c95 } },
- /* 242 */
- { { 0x09cc4597,0x07ac6a92,0x18280a30,0x002b6175,0x0814adc5,0x1e2ab9a5,
- 0x10ebbf17,0x1972dc2f,0x00013404 },
- { 0x09a824bf,0x14f12c2e,0x07abb5ec,0x0630bc00,0x168acd59,0x134130f7,
- 0x19b235bb,0x09723267,0x006f377c } },
- /* 243 */
- { { 0x08333fd2,0x1c9dd68d,0x0aa56e27,0x060404b4,0x15acea89,0x081bf57b,
- 0x14188479,0x09da5a12,0x006dba3e },
- { 0x104399cd,0x0477cc66,0x0dceb7a9,0x038cddcd,0x0caf3181,0x03a960bf,
- 0x129dcbd8,0x08477d9e,0x00f13cf3 } },
- /* 244 */
- { { 0x0919e2eb,0x175cf605,0x0b03da33,0x13432bec,0x0229983a,0x1ddb3d5d,
- 0x0b4f3ee8,0x1524e977,0x00c83fa9 },
- { 0x02fa1ce0,0x0be8d85b,0x063befc3,0x16c1ea68,0x06f04e58,0x17cf2938,
- 0x1a0efea3,0x1e8bae04,0x00b49d70 } },
- /* 245 */
- { { 0x1ad5513b,0x0a63a887,0x1d478b64,0x065dd962,0x19d5905f,0x020c6cfd,
- 0x073db614,0x1761861e,0x0059cfad },
- { 0x15cb7fd6,0x0b3d611a,0x0109a8f8,0x06cf7104,0x18864249,0x02c64853,
- 0x0d9fabbb,0x0c46a949,0x005babf3 } },
- /* 246 */
- { { 0x0e424865,0x1e4c0e8f,0x1955dfcd,0x0050f1e5,0x0c0588b0,0x1878dcf0,
- 0x03c1c0a5,0x14f204d9,0x006188c6 },
- { 0x10f244da,0x17cd0cde,0x02021cc1,0x19dab9f6,0x136371ec,0x07cdcf90,
- 0x0764d51c,0x0ebbea17,0x00993fe4 } },
- /* 247 */
- { { 0x1b2c3609,0x0718e6fc,0x11b53a9a,0x16338058,0x1510184e,0x160d4d3b,
- 0x05adeb27,0x0cc9900c,0x0081f764 },
- { 0x15fbe978,0x0be152d3,0x00ecd587,0x07fda7e3,0x1d2bf674,0x0f82280e,
- 0x18360e34,0x054bfd20,0x00564a81 } },
- /* 248 */
- { { 0x1a817d1d,0x12d327a7,0x0a0b83de,0x12d0897d,0x1f9aa55f,0x0d07e6ab,
- 0x15b2d7fd,0x19e01ca3,0x00226bf3 },
- { 0x0f2833cf,0x168d4fc9,0x13e26a35,0x0146b49e,0x17f7720a,0x1624c79f,
- 0x00d8454d,0x08ffe4af,0x0068779f } },
- /* 249 */
- { { 0x13043d08,0x0d860e0b,0x10083e9e,0x08cee83f,0x126d0a54,0x1f144d36,
- 0x182f4dd9,0x1a3d6125,0x0097bcb0 },
- { 0x132ed3c3,0x15b75547,0x006f120a,0x09e2a365,0x178f3c8a,0x1a79dfd0,
- 0x1955346f,0x1d014f08,0x00a872ff } },
- /* 250 */
- { { 0x032b2086,0x0d5bc9ad,0x183d21ac,0x16e21d02,0x0e6bee1e,0x06c89db5,
- 0x0daa6f43,0x1f96e654,0x0002812b },
- { 0x0f605318,0x11febe56,0x1f5b4769,0x1cbaa1fb,0x0d619646,0x01cc1081,
- 0x1abe875a,0x193fca72,0x0007391c } },
- /* 251 */
- { { 0x0b80d02b,0x080abf84,0x01dfdff1,0x0667a2c5,0x142ae6b8,0x0d7c3c6a,
- 0x0821eb28,0x1b8fcda5,0x00355d2a },
- { 0x087386e1,0x00f99ad1,0x190c9d6d,0x0e5529f1,0x189eafd2,0x1166f3cc,
- 0x09e4a1b2,0x1c6f8547,0x003dc2b1 } },
- /* 252 */
- { { 0x04581352,0x144e90e0,0x19e0afb5,0x01904a6e,0x1701f0a0,0x0ac84ff6,
- 0x11ac80ef,0x020799b0,0x00c47869 },
- { 0x04c768ed,0x0dd3b841,0x107d95d7,0x1dd404d0,0x0ce0e72f,0x1f6ab566,
- 0x14c9ccc4,0x0d1ab769,0x00ccc429 } },
- /* 253 */
- { { 0x1d7620b9,0x07286f09,0x04a95aa5,0x14b914b3,0x087c9d89,0x1b2033aa,
- 0x073f7001,0x0855490e,0x00e147eb },
- { 0x0cf3ae46,0x1a55a775,0x0d43ef89,0x126df6a0,0x040eafd4,0x1f23a464,
- 0x1b8f7cab,0x08e101d2,0x00239ac0 } },
- /* 254 */
- { { 0x0bfee8d4,0x00e8f9a9,0x1ec3fb12,0x016b9ff4,0x1af3cce8,0x064f1674,
- 0x16744171,0x147ebefc,0x00c55fa1 },
- { 0x0257c227,0x0c378a74,0x0af802cc,0x02ca7e68,0x04fb2c5b,0x04cc5548,
- 0x1a6426bf,0x139a9e96,0x00094cd9 } },
- /* 255 */
- { { 0x1703beba,0x14c0e426,0x13aca462,0x03a2a065,0x149ec863,0x1964f1de,
- 0x14ce9117,0x16c85575,0x00b90a30 },
- { 0x14a5abf9,0x032a027d,0x16dd80ed,0x0ea186eb,0x1d89f004,0x0166651a,
- 0x13ddbe69,0x13436f24,0x00019f8b } },
- };
- /* Multiply the base point of P256 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Stripe implementation.
- * Pre-generated: 2^0, 2^32, ...
- * Pre-generated: products of all combinations of above.
- * 8 doubles and adds (with qz=1)
- *
- * r Resulting point.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_256_ecc_mulmod_base_9(sp_point_256* r, const sp_digit* k,
- int map, int ct, void* heap)
- {
- return sp_256_ecc_mulmod_stripe_9(r, &p256_base, p256_table,
- k, map, ct, heap);
- }
- #endif
- /* Multiply the base point of P256 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_base_256(const mp_int* km, ecc_point* r, int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_256* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_256 point[1];
- sp_digit k[9];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_256*)XMALLOC(sizeof(sp_point_256), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_256_from_mp(k, 9, km);
- err = sp_256_ecc_mulmod_base_9(point, k, map, 1, heap);
- }
- if (err == MP_OKAY) {
- err = sp_256_point_to_ecc_point_9(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Multiply the base point of P256 by the scalar, add point a and return
- * the result. If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * am Point to add to scalar multiply result.
- * inMont Point to add is in montgomery form.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_base_add_256(const mp_int* km, const ecc_point* am,
- int inMont, ecc_point* r, int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_256* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_256 point[2];
- sp_digit k[9 + 9 * 2 * 6];
- #endif
- sp_point_256* addP = NULL;
- sp_digit* tmp = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(
- sizeof(sp_digit) * (9 + 9 * 2 * 6),
- heap, DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- addP = point + 1;
- tmp = k + 9;
- sp_256_from_mp(k, 9, km);
- sp_256_point_from_ecc_point_9(addP, am);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_256_mod_mul_norm_9(addP->x, addP->x, p256_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_256_mod_mul_norm_9(addP->y, addP->y, p256_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_256_mod_mul_norm_9(addP->z, addP->z, p256_mod);
- }
- if (err == MP_OKAY) {
- err = sp_256_ecc_mulmod_base_9(point, k, 0, 0, heap);
- }
- if (err == MP_OKAY) {
- sp_256_proj_point_add_9(point, point, addP, tmp);
- if (map) {
- sp_256_map_9(point, point, tmp);
- }
- err = sp_256_point_to_ecc_point_9(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
- defined(HAVE_ECC_VERIFY)
- #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN | HAVE_ECC_SIGN | HAVE_ECC_VERIFY */
- /* Add 1 to a. (a = a + 1)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_256_add_one_9(sp_digit* a)
- {
- a[0]++;
- sp_256_norm_9(a);
- }
- /* Read big endian unsigned byte array into r.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a Byte array.
- * n Number of bytes in array to read.
- */
- static void sp_256_from_bin(sp_digit* r, int size, const byte* a, int n)
- {
- int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = n-1; i >= 0; i--) {
- r[j] |= (((sp_digit)a[i]) << s);
- if (s >= 21U) {
- r[j] &= 0x1fffffff;
- s = 29U - s;
- if (j + 1 >= size) {
- break;
- }
- r[++j] = (sp_digit)a[i] >> s;
- s = 8U - s;
- }
- else {
- s += 8U;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- }
- /* Generates a scalar that is in the range 1..order-1.
- *
- * rng Random number generator.
- * k Scalar value.
- * returns RNG failures, MEMORY_E when memory allocation fails and
- * MP_OKAY on success.
- */
- static int sp_256_ecc_gen_k_9(WC_RNG* rng, sp_digit* k)
- {
- int err;
- byte buf[32];
- do {
- err = wc_RNG_GenerateBlock(rng, buf, sizeof(buf));
- if (err == 0) {
- sp_256_from_bin(k, 9, buf, (int)sizeof(buf));
- if (sp_256_cmp_9(k, p256_order2) <= 0) {
- sp_256_add_one_9(k);
- break;
- }
- }
- }
- while (err == 0);
- return err;
- }
- /* Makes a random EC key pair.
- *
- * rng Random number generator.
- * priv Generated private value.
- * pub Generated public point.
- * heap Heap to use for allocation.
- * returns ECC_INF_E when the point does not have the correct order, RNG
- * failures, MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_make_key_256(WC_RNG* rng, mp_int* priv, ecc_point* pub, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_256* point = NULL;
- sp_digit* k = NULL;
- #else
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- sp_point_256 point[2];
- #else
- sp_point_256 point[1];
- #endif
- sp_digit k[9];
- #endif
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- sp_point_256* infinity = NULL;
- #endif
- int err = MP_OKAY;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- point = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, heap, DYNAMIC_TYPE_ECC);
- #else
- point = (sp_point_256*)XMALLOC(sizeof(sp_point_256), heap, DYNAMIC_TYPE_ECC);
- #endif
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- infinity = point + 1;
- #endif
- err = sp_256_ecc_gen_k_9(rng, k);
- }
- if (err == MP_OKAY) {
- err = sp_256_ecc_mulmod_base_9(point, k, 1, 1, NULL);
- }
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- if (err == MP_OKAY) {
- err = sp_256_ecc_mulmod_9(infinity, point, p256_order, 1, 1, NULL);
- }
- if (err == MP_OKAY) {
- if (sp_256_iszero_9(point->x) || sp_256_iszero_9(point->y)) {
- err = ECC_INF_E;
- }
- }
- #endif
- if (err == MP_OKAY) {
- err = sp_256_to_mp(k, priv);
- }
- if (err == MP_OKAY) {
- err = sp_256_point_to_ecc_point_9(point, pub);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL) {
- /* point is not sensitive, so no need to zeroize */
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- }
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_ecc_key_gen_256_ctx {
- int state;
- sp_256_ecc_mulmod_9_ctx mulmod_ctx;
- sp_digit k[9];
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- sp_point_256 point[2];
- #else
- sp_point_256 point[1];
- #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
- } sp_ecc_key_gen_256_ctx;
- int sp_ecc_make_key_256_nb(sp_ecc_ctx_t* sp_ctx, WC_RNG* rng, mp_int* priv,
- ecc_point* pub, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_ecc_key_gen_256_ctx* ctx = (sp_ecc_key_gen_256_ctx*)sp_ctx->data;
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- sp_point_256* infinity = ctx->point + 1;
- #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
- typedef char ctx_size_test[sizeof(sp_ecc_key_gen_256_ctx)
- >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0:
- err = sp_256_ecc_gen_k_9(rng, ctx->k);
- if (err == MP_OKAY) {
- err = FP_WOULDBLOCK;
- ctx->state = 1;
- }
- break;
- case 1:
- err = sp_256_ecc_mulmod_base_9_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
- ctx->point, ctx->k, 1, 1, heap);
- if (err == MP_OKAY) {
- err = FP_WOULDBLOCK;
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
- ctx->state = 2;
- #else
- ctx->state = 3;
- #endif
- }
- break;
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- case 2:
- err = sp_256_ecc_mulmod_9_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
- infinity, ctx->point, p256_order, 1, 1);
- if (err == MP_OKAY) {
- if (sp_256_iszero_9(ctx->point->x) ||
- sp_256_iszero_9(ctx->point->y)) {
- err = ECC_INF_E;
- }
- else {
- err = FP_WOULDBLOCK;
- ctx->state = 3;
- }
- }
- break;
- #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
- case 3:
- err = sp_256_to_mp(ctx->k, priv);
- if (err == MP_OKAY) {
- err = sp_256_point_to_ecc_point_9(ctx->point, pub);
- }
- break;
- }
- if (err != FP_WOULDBLOCK) {
- XMEMSET(ctx, 0, sizeof(sp_ecc_key_gen_256_ctx));
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #ifdef HAVE_ECC_DHE
- /* Write r as big endian to byte array.
- * Fixed length number of bytes written: 32
- *
- * r A single precision integer.
- * a Byte array.
- */
- static void sp_256_to_bin_9(sp_digit* r, byte* a)
- {
- int i;
- int j;
- int s = 0;
- int b;
- for (i=0; i<8; i++) {
- r[i+1] += r[i] >> 29;
- r[i] &= 0x1fffffff;
- }
- j = 263 / 8 - 1;
- a[j] = 0;
- for (i=0; i<9 && j>=0; i++) {
- b = 0;
- /* lint allow cast of mismatch sp_digit and int */
- a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
- b += 8 - s;
- if (j < 0) {
- break;
- }
- while (b < 29) {
- a[j--] = (byte)(r[i] >> b);
- b += 8;
- if (j < 0) {
- break;
- }
- }
- s = 8 - (b - 29);
- if (j >= 0) {
- a[j] = 0;
- }
- if (s != 0) {
- j++;
- }
- }
- }
- /* Multiply the point by the scalar and serialize the X ordinate.
- * The number is 0 padded to maximum size on output.
- *
- * priv Scalar to multiply the point by.
- * pub Point to multiply.
- * out Buffer to hold X ordinate.
- * outLen On entry, size of the buffer in bytes.
- * On exit, length of data in buffer in bytes.
- * heap Heap to use for allocation.
- * returns BUFFER_E if the buffer is to small for output size,
- * MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_secret_gen_256(const mp_int* priv, const ecc_point* pub, byte* out,
- word32* outLen, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_256* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_256 point[1];
- sp_digit k[9];
- #endif
- int err = MP_OKAY;
- if (*outLen < 32U) {
- err = BUFFER_E;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- point = (sp_point_256*)XMALLOC(sizeof(sp_point_256), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_256_from_mp(k, 9, priv);
- sp_256_point_from_ecc_point_9(point, pub);
- err = sp_256_ecc_mulmod_9(point, point, k, 1, 1, heap);
- }
- if (err == MP_OKAY) {
- sp_256_to_bin_9(point->x, out);
- *outLen = 32;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_ecc_sec_gen_256_ctx {
- int state;
- union {
- sp_256_ecc_mulmod_9_ctx mulmod_ctx;
- };
- sp_digit k[9];
- sp_point_256 point;
- } sp_ecc_sec_gen_256_ctx;
- int sp_ecc_secret_gen_256_nb(sp_ecc_ctx_t* sp_ctx, const mp_int* priv,
- const ecc_point* pub, byte* out, word32* outLen, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_ecc_sec_gen_256_ctx* ctx = (sp_ecc_sec_gen_256_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_ecc_sec_gen_256_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- if (*outLen < 32U) {
- err = BUFFER_E;
- }
- switch (ctx->state) {
- case 0:
- sp_256_from_mp(ctx->k, 9, priv);
- sp_256_point_from_ecc_point_9(&ctx->point, pub);
- ctx->state = 1;
- break;
- case 1:
- err = sp_256_ecc_mulmod_9_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
- &ctx->point, &ctx->point, ctx->k, 1, 1, heap);
- if (err == MP_OKAY) {
- sp_256_to_bin_9(ctx->point.x, out);
- *outLen = 32;
- }
- break;
- }
- if (err == MP_OKAY && ctx->state != 1) {
- err = FP_WOULDBLOCK;
- }
- if (err != FP_WOULDBLOCK) {
- XMEMSET(ctx, 0, sizeof(sp_ecc_sec_gen_256_ctx));
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #endif /* HAVE_ECC_DHE */
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- #endif
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- SP_NOINLINE static void sp_256_rshift_9(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- #ifdef WOLFSSL_SP_SMALL
- for (i=0; i<8; i++) {
- r[i] = ((a[i] >> n) | (a[i + 1] << (29 - n))) & 0x1fffffff;
- }
- #else
- for (i=0; i<8; i += 8) {
- r[i+0] = (a[i+0] >> n) | ((a[i+1] << (29 - n)) & 0x1fffffff);
- r[i+1] = (a[i+1] >> n) | ((a[i+2] << (29 - n)) & 0x1fffffff);
- r[i+2] = (a[i+2] >> n) | ((a[i+3] << (29 - n)) & 0x1fffffff);
- r[i+3] = (a[i+3] >> n) | ((a[i+4] << (29 - n)) & 0x1fffffff);
- r[i+4] = (a[i+4] >> n) | ((a[i+5] << (29 - n)) & 0x1fffffff);
- r[i+5] = (a[i+5] >> n) | ((a[i+6] << (29 - n)) & 0x1fffffff);
- r[i+6] = (a[i+6] >> n) | ((a[i+7] << (29 - n)) & 0x1fffffff);
- r[i+7] = (a[i+7] >> n) | ((a[i+8] << (29 - n)) & 0x1fffffff);
- }
- #endif /* WOLFSSL_SP_SMALL */
- r[8] = a[8] >> n;
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_256_mul_d_9(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 9; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x1fffffff);
- t >>= 29;
- }
- r[9] = (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t[9];
- t[ 0] = tb * a[ 0];
- t[ 1] = tb * a[ 1];
- t[ 2] = tb * a[ 2];
- t[ 3] = tb * a[ 3];
- t[ 4] = tb * a[ 4];
- t[ 5] = tb * a[ 5];
- t[ 6] = tb * a[ 6];
- t[ 7] = tb * a[ 7];
- t[ 8] = tb * a[ 8];
- r[ 0] = (sp_digit) (t[ 0] & 0x1fffffff);
- r[ 1] = (sp_digit)((t[ 0] >> 29) + (t[ 1] & 0x1fffffff));
- r[ 2] = (sp_digit)((t[ 1] >> 29) + (t[ 2] & 0x1fffffff));
- r[ 3] = (sp_digit)((t[ 2] >> 29) + (t[ 3] & 0x1fffffff));
- r[ 4] = (sp_digit)((t[ 3] >> 29) + (t[ 4] & 0x1fffffff));
- r[ 5] = (sp_digit)((t[ 4] >> 29) + (t[ 5] & 0x1fffffff));
- r[ 6] = (sp_digit)((t[ 5] >> 29) + (t[ 6] & 0x1fffffff));
- r[ 7] = (sp_digit)((t[ 6] >> 29) + (t[ 7] & 0x1fffffff));
- r[ 8] = (sp_digit)((t[ 7] >> 29) + (t[ 8] & 0x1fffffff));
- r[ 9] = (sp_digit) (t[ 8] >> 29);
- #endif /* WOLFSSL_SP_SMALL */
- }
- SP_NOINLINE static void sp_256_lshift_18(sp_digit* r, const sp_digit* a,
- byte n)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- r[18] = a[17] >> (29 - n);
- for (i=17; i>0; i--) {
- r[i] = ((a[i] << n) | (a[i-1] >> (29 - n))) & 0x1fffffff;
- }
- #else
- sp_int_digit s;
- sp_int_digit t;
- s = (sp_int_digit)a[17];
- r[18] = s >> (29U - n);
- s = (sp_int_digit)(a[17]); t = (sp_int_digit)(a[16]);
- r[17] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[16]); t = (sp_int_digit)(a[15]);
- r[16] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[15]); t = (sp_int_digit)(a[14]);
- r[15] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[14]); t = (sp_int_digit)(a[13]);
- r[14] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[13]); t = (sp_int_digit)(a[12]);
- r[13] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[12]); t = (sp_int_digit)(a[11]);
- r[12] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[11]); t = (sp_int_digit)(a[10]);
- r[11] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[10]); t = (sp_int_digit)(a[9]);
- r[10] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[9]); t = (sp_int_digit)(a[8]);
- r[9] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[8]); t = (sp_int_digit)(a[7]);
- r[8] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[7]); t = (sp_int_digit)(a[6]);
- r[7] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[6]); t = (sp_int_digit)(a[5]);
- r[6] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[5]); t = (sp_int_digit)(a[4]);
- r[5] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[4]); t = (sp_int_digit)(a[3]);
- r[4] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[3]); t = (sp_int_digit)(a[2]);
- r[3] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[2]); t = (sp_int_digit)(a[1]);
- r[2] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- s = (sp_int_digit)(a[1]); t = (sp_int_digit)(a[0]);
- r[1] = ((s << n) | (t >> (29U - n))) & 0x1fffffff;
- #endif /* WOLFSSL_SP_SMALL */
- r[0] = (a[0] << n) & 0x1fffffff;
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Simplified based on top word of divisor being (1 << 29) - 1
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_256_div_9(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- sp_digit r1;
- sp_digit mask;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 9 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 9 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 18 + 1;
- sd = t2 + 9 + 1;
- sp_256_mul_d_9(sd, d, (sp_digit)1 << 5);
- sp_256_lshift_18(t1, a, 5);
- t1[9 + 9] += t1[9 + 9 - 1] >> 29;
- t1[9 + 9 - 1] &= 0x1fffffff;
- for (i=8; i>=0; i--) {
- r1 = t1[9 + i];
- sp_256_mul_d_9(t2, sd, r1);
- (void)sp_256_sub_9(&t1[i], &t1[i], t2);
- t1[9 + i] -= t2[9];
- sp_256_norm_9(&t1[i + 1]);
- mask = ~((t1[9 + i] - 1) >> 31);
- sp_256_cond_sub_9(t1 + i, t1 + i, sd, mask);
- sp_256_norm_9(&t1[i + 1]);
- }
- sp_256_norm_9(t1);
- sp_256_rshift_9(r, t1, 5);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_256_mod_9(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_256_div_9(a, m, NULL, r);
- }
- #endif
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- /* Multiply two number mod the order of P256 curve. (r = a * b mod order)
- *
- * r Result of the multiplication.
- * a First operand of the multiplication.
- * b Second operand of the multiplication.
- */
- static void sp_256_mont_mul_order_9(sp_digit* r, const sp_digit* a, const sp_digit* b)
- {
- sp_256_mul_9(r, a, b);
- sp_256_mont_reduce_order_9(r, p256_order, p256_mp_order);
- }
- #if defined(HAVE_ECC_SIGN) || (defined(HAVE_ECC_VERIFY) && defined(WOLFSSL_SP_SMALL))
- #ifdef WOLFSSL_SP_SMALL
- /* Order-2 for the P256 curve. */
- static const uint32_t p256_order_minus_2[8] = {
- 0xfc63254fU,0xf3b9cac2U,0xa7179e84U,0xbce6faadU,0xffffffffU,0xffffffffU,
- 0x00000000U,0xffffffffU
- };
- #else
- /* The low half of the order-2 of the P256 curve. */
- static const sp_int_digit p256_order_low[4] = {
- 0xfc63254fU,0xf3b9cac2U,0xa7179e84U,0xbce6faadU
- };
- #endif /* WOLFSSL_SP_SMALL */
- /* Square number mod the order of P256 curve. (r = a * a mod order)
- *
- * r Result of the squaring.
- * a Number to square.
- */
- static void sp_256_mont_sqr_order_9(sp_digit* r, const sp_digit* a)
- {
- sp_256_sqr_9(r, a);
- sp_256_mont_reduce_order_9(r, p256_order, p256_mp_order);
- }
- #ifndef WOLFSSL_SP_SMALL
- /* Square number mod the order of P256 curve a number of times.
- * (r = a ^ n mod order)
- *
- * r Result of the squaring.
- * a Number to square.
- */
- static void sp_256_mont_sqr_n_order_9(sp_digit* r, const sp_digit* a, int n)
- {
- int i;
- sp_256_mont_sqr_order_9(r, a);
- for (i=1; i<n; i++) {
- sp_256_mont_sqr_order_9(r, r);
- }
- }
- #endif /* !WOLFSSL_SP_SMALL */
- /* Invert the number, in Montgomery form, modulo the order of the P256 curve.
- * (r = 1 / a mod order)
- *
- * r Inverse result.
- * a Number to invert.
- * td Temporary data.
- */
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_256_mont_inv_order_9_ctx {
- int state;
- int i;
- } sp_256_mont_inv_order_9_ctx;
- static int sp_256_mont_inv_order_9_nb(sp_ecc_ctx_t* sp_ctx, sp_digit* r, const sp_digit* a,
- sp_digit* t)
- {
- int err = FP_WOULDBLOCK;
- sp_256_mont_inv_order_9_ctx* ctx = (sp_256_mont_inv_order_9_ctx*)sp_ctx;
- typedef char ctx_size_test[sizeof(sp_256_mont_inv_order_9_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0:
- XMEMCPY(t, a, sizeof(sp_digit) * 9);
- ctx->i = 254;
- ctx->state = 1;
- break;
- case 1:
- sp_256_mont_sqr_order_9(t, t);
- ctx->state = 2;
- break;
- case 2:
- if ((p256_order_minus_2[ctx->i / 32] & ((sp_int_digit)1 << (ctx->i % 32))) != 0) {
- sp_256_mont_mul_order_9(t, t, a);
- }
- ctx->i--;
- ctx->state = (ctx->i == 0) ? 3 : 1;
- break;
- case 3:
- XMEMCPY(r, t, sizeof(sp_digit) * 9U);
- err = MP_OKAY;
- break;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- static void sp_256_mont_inv_order_9(sp_digit* r, const sp_digit* a,
- sp_digit* td)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_digit* t = td;
- int i;
- XMEMCPY(t, a, sizeof(sp_digit) * 9);
- for (i=254; i>=0; i--) {
- sp_256_mont_sqr_order_9(t, t);
- if ((p256_order_minus_2[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
- sp_256_mont_mul_order_9(t, t, a);
- }
- }
- XMEMCPY(r, t, sizeof(sp_digit) * 9U);
- #else
- sp_digit* t = td;
- sp_digit* t2 = td + 2 * 9;
- sp_digit* t3 = td + 4 * 9;
- int i;
- /* t = a^2 */
- sp_256_mont_sqr_order_9(t, a);
- /* t = a^3 = t * a */
- sp_256_mont_mul_order_9(t, t, a);
- /* t2= a^c = t ^ 2 ^ 2 */
- sp_256_mont_sqr_n_order_9(t2, t, 2);
- /* t3= a^f = t2 * t */
- sp_256_mont_mul_order_9(t3, t2, t);
- /* t2= a^f0 = t3 ^ 2 ^ 4 */
- sp_256_mont_sqr_n_order_9(t2, t3, 4);
- /* t = a^ff = t2 * t3 */
- sp_256_mont_mul_order_9(t, t2, t3);
- /* t2= a^ff00 = t ^ 2 ^ 8 */
- sp_256_mont_sqr_n_order_9(t2, t, 8);
- /* t = a^ffff = t2 * t */
- sp_256_mont_mul_order_9(t, t2, t);
- /* t2= a^ffff0000 = t ^ 2 ^ 16 */
- sp_256_mont_sqr_n_order_9(t2, t, 16);
- /* t = a^ffffffff = t2 * t */
- sp_256_mont_mul_order_9(t, t2, t);
- /* t2= a^ffffffff0000000000000000 = t ^ 2 ^ 64 */
- sp_256_mont_sqr_n_order_9(t2, t, 64);
- /* t2= a^ffffffff00000000ffffffff = t2 * t */
- sp_256_mont_mul_order_9(t2, t2, t);
- /* t2= a^ffffffff00000000ffffffff00000000 = t2 ^ 2 ^ 32 */
- sp_256_mont_sqr_n_order_9(t2, t2, 32);
- /* t2= a^ffffffff00000000ffffffffffffffff = t2 * t */
- sp_256_mont_mul_order_9(t2, t2, t);
- /* t2= a^ffffffff00000000ffffffffffffffffbce6 */
- sp_256_mont_sqr_order_9(t2, t2);
- sp_256_mont_mul_order_9(t2, t2, a);
- sp_256_mont_sqr_n_order_9(t2, t2, 5);
- sp_256_mont_mul_order_9(t2, t2, t3);
- for (i=121; i>=112; i--) {
- sp_256_mont_sqr_order_9(t2, t2);
- if ((p256_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
- sp_256_mont_mul_order_9(t2, t2, a);
- }
- }
- /* t2= a^ffffffff00000000ffffffffffffffffbce6f */
- sp_256_mont_sqr_n_order_9(t2, t2, 4);
- sp_256_mont_mul_order_9(t2, t2, t3);
- /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84 */
- for (i=107; i>=64; i--) {
- sp_256_mont_sqr_order_9(t2, t2);
- if ((p256_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
- sp_256_mont_mul_order_9(t2, t2, a);
- }
- }
- /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f */
- sp_256_mont_sqr_n_order_9(t2, t2, 4);
- sp_256_mont_mul_order_9(t2, t2, t3);
- /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2 */
- for (i=59; i>=32; i--) {
- sp_256_mont_sqr_order_9(t2, t2);
- if ((p256_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
- sp_256_mont_mul_order_9(t2, t2, a);
- }
- }
- /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2f */
- sp_256_mont_sqr_n_order_9(t2, t2, 4);
- sp_256_mont_mul_order_9(t2, t2, t3);
- /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254 */
- for (i=27; i>=0; i--) {
- sp_256_mont_sqr_order_9(t2, t2);
- if ((p256_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
- sp_256_mont_mul_order_9(t2, t2, a);
- }
- }
- /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632540 */
- sp_256_mont_sqr_n_order_9(t2, t2, 4);
- /* r = a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f */
- sp_256_mont_mul_order_9(r, t2, t3);
- #endif /* WOLFSSL_SP_SMALL */
- }
- #endif /* HAVE_ECC_SIGN || (HAVE_ECC_VERIFY && WOLFSSL_SP_SMALL) */
- #endif /* HAVE_ECC_SIGN | HAVE_ECC_VERIFY */
- #ifdef HAVE_ECC_SIGN
- #ifndef SP_ECC_MAX_SIG_GEN
- #define SP_ECC_MAX_SIG_GEN 64
- #endif
- /* Calculate second signature value S from R, k and private value.
- *
- * s = (r * x + e) / k
- *
- * s Signature value.
- * r First signature value.
- * k Ephemeral private key.
- * x Private key as a number.
- * e Hash of message as a number.
- * tmp Temporary storage for intermediate numbers.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_256_calc_s_9(sp_digit* s, const sp_digit* r, sp_digit* k,
- sp_digit* x, const sp_digit* e, sp_digit* tmp)
- {
- int err;
- sp_digit carry;
- sp_int32 c;
- sp_digit* kInv = k;
- /* Conv k to Montgomery form (mod order) */
- sp_256_mul_9(k, k, p256_norm_order);
- err = sp_256_mod_9(k, k, p256_order);
- if (err == MP_OKAY) {
- sp_256_norm_9(k);
- /* kInv = 1/k mod order */
- sp_256_mont_inv_order_9(kInv, k, tmp);
- sp_256_norm_9(kInv);
- /* s = r * x + e */
- sp_256_mul_9(x, x, r);
- err = sp_256_mod_9(x, x, p256_order);
- }
- if (err == MP_OKAY) {
- sp_256_norm_9(x);
- carry = sp_256_add_9(s, e, x);
- sp_256_cond_sub_9(s, s, p256_order, 0 - carry);
- sp_256_norm_9(s);
- c = sp_256_cmp_9(s, p256_order);
- sp_256_cond_sub_9(s, s, p256_order,
- (sp_digit)0 - (sp_digit)(c >= 0));
- sp_256_norm_9(s);
- /* s = s * k^-1 mod order */
- sp_256_mont_mul_order_9(s, s, kInv);
- sp_256_norm_9(s);
- }
- return err;
- }
- /* Sign the hash using the private key.
- * e = [hash, 256 bits] from binary
- * r = (k.G)->x mod order
- * s = (r * x + e) / k mod order
- * The hash is truncated to the first 256 bits.
- *
- * hash Hash to sign.
- * hashLen Length of the hash data.
- * rng Random number generator.
- * priv Private part of key - scalar.
- * rm First part of result as an mp_int.
- * sm Sirst part of result as an mp_int.
- * heap Heap to use for allocation.
- * returns RNG failures, MEMORY_E when memory allocation fails and
- * MP_OKAY on success.
- */
- int sp_ecc_sign_256(const byte* hash, word32 hashLen, WC_RNG* rng,
- const mp_int* priv, mp_int* rm, mp_int* sm, mp_int* km, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* e = NULL;
- sp_point_256* point = NULL;
- #else
- sp_digit e[7 * 2 * 9];
- sp_point_256 point[1];
- #endif
- sp_digit* x = NULL;
- sp_digit* k = NULL;
- sp_digit* r = NULL;
- sp_digit* tmp = NULL;
- sp_digit* s = NULL;
- sp_int32 c;
- int err = MP_OKAY;
- int i;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- point = (sp_point_256*)XMALLOC(sizeof(sp_point_256), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- e = (sp_digit*)XMALLOC(sizeof(sp_digit) * 7 * 2 * 9, heap,
- DYNAMIC_TYPE_ECC);
- if (e == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- x = e + 2 * 9;
- k = e + 4 * 9;
- r = e + 6 * 9;
- tmp = e + 8 * 9;
- s = e;
- if (hashLen > 32U) {
- hashLen = 32U;
- }
- }
- for (i = SP_ECC_MAX_SIG_GEN; err == MP_OKAY && i > 0; i--) {
- /* New random point. */
- if (km == NULL || mp_iszero(km)) {
- err = sp_256_ecc_gen_k_9(rng, k);
- }
- else {
- sp_256_from_mp(k, 9, km);
- mp_zero(km);
- }
- if (err == MP_OKAY) {
- err = sp_256_ecc_mulmod_base_9(point, k, 1, 1, heap);
- }
- if (err == MP_OKAY) {
- /* r = point->x mod order */
- XMEMCPY(r, point->x, sizeof(sp_digit) * 9U);
- sp_256_norm_9(r);
- c = sp_256_cmp_9(r, p256_order);
- sp_256_cond_sub_9(r, r, p256_order,
- (sp_digit)0 - (sp_digit)(c >= 0));
- sp_256_norm_9(r);
- if (!sp_256_iszero_9(r)) {
- /* x is modified in calculation of s. */
- sp_256_from_mp(x, 9, priv);
- /* s ptr == e ptr, e is modified in calculation of s. */
- sp_256_from_bin(e, 9, hash, (int)hashLen);
- err = sp_256_calc_s_9(s, r, k, x, e, tmp);
- /* Check that signature is usable. */
- if ((err == MP_OKAY) && (!sp_256_iszero_9(s))) {
- break;
- }
- }
- }
- #ifdef WOLFSSL_ECDSA_SET_K_ONE_LOOP
- i = 1;
- #endif
- }
- if (i == 0) {
- err = RNG_FAILURE_E;
- }
- if (err == MP_OKAY) {
- err = sp_256_to_mp(r, rm);
- }
- if (err == MP_OKAY) {
- err = sp_256_to_mp(s, sm);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (e != NULL)
- #endif
- {
- ForceZero(e, sizeof(sp_digit) * 7 * 2 * 9);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(e, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (point != NULL)
- #endif
- {
- ForceZero(point, sizeof(sp_point_256));
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_ecc_sign_256_ctx {
- int state;
- union {
- sp_256_ecc_mulmod_9_ctx mulmod_ctx;
- sp_256_mont_inv_order_9_ctx mont_inv_order_ctx;
- };
- sp_digit e[2*9];
- sp_digit x[2*9];
- sp_digit k[2*9];
- sp_digit r[2*9];
- sp_digit tmp[3 * 2*9];
- sp_point_256 point;
- sp_digit* s;
- sp_digit* kInv;
- int i;
- } sp_ecc_sign_256_ctx;
- int sp_ecc_sign_256_nb(sp_ecc_ctx_t* sp_ctx, const byte* hash, word32 hashLen, WC_RNG* rng,
- mp_int* priv, mp_int* rm, mp_int* sm, mp_int* km, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_ecc_sign_256_ctx* ctx = (sp_ecc_sign_256_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_ecc_sign_256_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0: /* INIT */
- ctx->s = ctx->e;
- ctx->kInv = ctx->k;
- ctx->i = SP_ECC_MAX_SIG_GEN;
- ctx->state = 1;
- break;
- case 1: /* GEN */
- /* New random point. */
- if (km == NULL || mp_iszero(km)) {
- err = sp_256_ecc_gen_k_9(rng, ctx->k);
- }
- else {
- sp_256_from_mp(ctx->k, 9, km);
- mp_zero(km);
- }
- XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
- ctx->state = 2;
- break;
- case 2: /* MULMOD */
- err = sp_256_ecc_mulmod_9_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
- &ctx->point, &p256_base, ctx->k, 1, 1, heap);
- if (err == MP_OKAY) {
- ctx->state = 3;
- }
- break;
- case 3: /* MODORDER */
- {
- sp_int32 c;
- /* r = point->x mod order */
- XMEMCPY(ctx->r, ctx->point.x, sizeof(sp_digit) * 9U);
- sp_256_norm_9(ctx->r);
- c = sp_256_cmp_9(ctx->r, p256_order);
- sp_256_cond_sub_9(ctx->r, ctx->r, p256_order,
- (sp_digit)0 - (sp_digit)(c >= 0));
- sp_256_norm_9(ctx->r);
- if (hashLen > 32U) {
- hashLen = 32U;
- }
- sp_256_from_mp(ctx->x, 9, priv);
- sp_256_from_bin(ctx->e, 9, hash, (int)hashLen);
- ctx->state = 4;
- break;
- }
- case 4: /* KMODORDER */
- /* Conv k to Montgomery form (mod order) */
- sp_256_mul_9(ctx->k, ctx->k, p256_norm_order);
- err = sp_256_mod_9(ctx->k, ctx->k, p256_order);
- if (err == MP_OKAY) {
- sp_256_norm_9(ctx->k);
- XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
- ctx->state = 5;
- }
- break;
- case 5: /* KINV */
- /* kInv = 1/k mod order */
- err = sp_256_mont_inv_order_9_nb((sp_ecc_ctx_t*)&ctx->mont_inv_order_ctx, ctx->kInv, ctx->k, ctx->tmp);
- if (err == MP_OKAY) {
- XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
- ctx->state = 6;
- }
- break;
- case 6: /* KINVNORM */
- sp_256_norm_9(ctx->kInv);
- ctx->state = 7;
- break;
- case 7: /* R */
- /* s = r * x + e */
- sp_256_mul_9(ctx->x, ctx->x, ctx->r);
- ctx->state = 8;
- break;
- case 8: /* S1 */
- err = sp_256_mod_9(ctx->x, ctx->x, p256_order);
- if (err == MP_OKAY)
- ctx->state = 9;
- break;
- case 9: /* S2 */
- {
- sp_digit carry;
- sp_int32 c;
- sp_256_norm_9(ctx->x);
- carry = sp_256_add_9(ctx->s, ctx->e, ctx->x);
- sp_256_cond_sub_9(ctx->s, ctx->s,
- p256_order, 0 - carry);
- sp_256_norm_9(ctx->s);
- c = sp_256_cmp_9(ctx->s, p256_order);
- sp_256_cond_sub_9(ctx->s, ctx->s, p256_order,
- (sp_digit)0 - (sp_digit)(c >= 0));
- sp_256_norm_9(ctx->s);
- /* s = s * k^-1 mod order */
- sp_256_mont_mul_order_9(ctx->s, ctx->s, ctx->kInv);
- sp_256_norm_9(ctx->s);
- /* Check that signature is usable. */
- if (sp_256_iszero_9(ctx->s) == 0) {
- ctx->state = 10;
- break;
- }
- #ifdef WOLFSSL_ECDSA_SET_K_ONE_LOOP
- ctx->i = 1;
- #endif
- /* not usable gen, try again */
- ctx->i--;
- if (ctx->i == 0) {
- err = RNG_FAILURE_E;
- }
- ctx->state = 1;
- break;
- }
- case 10: /* RES */
- err = sp_256_to_mp(ctx->r, rm);
- if (err == MP_OKAY) {
- err = sp_256_to_mp(ctx->s, sm);
- }
- break;
- }
- if (err == MP_OKAY && ctx->state != 10) {
- err = FP_WOULDBLOCK;
- }
- if (err != FP_WOULDBLOCK) {
- XMEMSET(ctx->e, 0, sizeof(sp_digit) * 2U * 9U);
- XMEMSET(ctx->x, 0, sizeof(sp_digit) * 2U * 9U);
- XMEMSET(ctx->k, 0, sizeof(sp_digit) * 2U * 9U);
- XMEMSET(ctx->r, 0, sizeof(sp_digit) * 2U * 9U);
- XMEMSET(ctx->tmp, 0, sizeof(sp_digit) * 3U * 2U * 9U);
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #endif /* HAVE_ECC_SIGN */
- #ifndef WOLFSSL_SP_SMALL
- static const char sp_256_tab32_9[32] = {
- 1, 10, 2, 11, 14, 22, 3, 30,
- 12, 15, 17, 19, 23, 26, 4, 31,
- 9, 13, 21, 29, 16, 18, 25, 8,
- 20, 28, 24, 7, 27, 6, 5, 32};
- static int sp_256_num_bits_29_9(sp_digit v)
- {
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- return sp_256_tab32_9[(uint32_t)(v*0x07C4ACDD) >> 27];
- }
- static int sp_256_num_bits_9(const sp_digit* a)
- {
- int i;
- int r = 0;
- for (i = 8; i >= 0; i--) {
- if (a[i] != 0) {
- r = sp_256_num_bits_29_9(a[i]);
- r += i * 29;
- break;
- }
- }
- return r;
- }
- /* Non-constant time modular inversion.
- *
- * @param [out] r Resulting number.
- * @param [in] a Number to invert.
- * @param [in] m Modulus.
- * @return MP_OKAY on success.
- * @return MEMEORY_E when dynamic memory allocation fails.
- */
- static int sp_256_mod_inv_9(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* u = NULL;
- #else
- sp_digit u[9 * 4];
- #endif
- sp_digit* v = NULL;
- sp_digit* b = NULL;
- sp_digit* d = NULL;
- int ut;
- int vt;
- #ifdef WOLFSSL_SP_SMALL_STACK
- u = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9 * 4, NULL,
- DYNAMIC_TYPE_ECC);
- if (u == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- v = u + 9;
- b = u + 2 * 9;
- d = u + 3 * 9;
- XMEMCPY(u, m, sizeof(sp_digit) * 9);
- XMEMCPY(v, a, sizeof(sp_digit) * 9);
- ut = sp_256_num_bits_9(u);
- vt = sp_256_num_bits_9(v);
- XMEMSET(b, 0, sizeof(sp_digit) * 9);
- if ((v[0] & 1) == 0) {
- sp_256_rshift1_9(v, v);
- XMEMCPY(d, m, sizeof(sp_digit) * 9);
- d[0]++;
- sp_256_rshift1_9(d, d);
- vt--;
- while ((v[0] & 1) == 0) {
- sp_256_rshift1_9(v, v);
- if (d[0] & 1)
- sp_256_add_9(d, d, m);
- sp_256_rshift1_9(d, d);
- vt--;
- }
- }
- else {
- XMEMSET(d+1, 0, sizeof(sp_digit) * (9 - 1));
- d[0] = 1;
- }
- while (ut > 1 && vt > 1) {
- if ((ut > vt) || ((ut == vt) &&
- (sp_256_cmp_9(u, v) >= 0))) {
- sp_256_sub_9(u, u, v);
- sp_256_norm_9(u);
- sp_256_sub_9(b, b, d);
- sp_256_norm_9(b);
- if (b[8] < 0)
- sp_256_add_9(b, b, m);
- sp_256_norm_9(b);
- ut = sp_256_num_bits_9(u);
- do {
- sp_256_rshift1_9(u, u);
- if (b[0] & 1)
- sp_256_add_9(b, b, m);
- sp_256_rshift1_9(b, b);
- ut--;
- }
- while (ut > 0 && (u[0] & 1) == 0);
- }
- else {
- sp_256_sub_9(v, v, u);
- sp_256_norm_9(v);
- sp_256_sub_9(d, d, b);
- sp_256_norm_9(d);
- if (d[8] < 0)
- sp_256_add_9(d, d, m);
- sp_256_norm_9(d);
- vt = sp_256_num_bits_9(v);
- do {
- sp_256_rshift1_9(v, v);
- if (d[0] & 1)
- sp_256_add_9(d, d, m);
- sp_256_rshift1_9(d, d);
- vt--;
- }
- while (vt > 0 && (v[0] & 1) == 0);
- }
- }
- if (ut == 1)
- XMEMCPY(r, b, sizeof(sp_digit) * 9);
- else
- XMEMCPY(r, d, sizeof(sp_digit) * 9);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (u != NULL)
- XFREE(u, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif /* WOLFSSL_SP_SMALL */
- /* Add point p1 into point p2. Handles p1 == p2 and result at infinity.
- *
- * p1 First point to add and holds result.
- * p2 Second point to add.
- * tmp Temporary storage for intermediate numbers.
- */
- static void sp_256_add_points_9(sp_point_256* p1, const sp_point_256* p2,
- sp_digit* tmp)
- {
- sp_256_proj_point_add_9(p1, p1, p2, tmp);
- if (sp_256_iszero_9(p1->z)) {
- if (sp_256_iszero_9(p1->x) && sp_256_iszero_9(p1->y)) {
- sp_256_proj_point_dbl_9(p1, p2, tmp);
- }
- else {
- /* Y ordinate is not used from here - don't set. */
- p1->x[0] = 0;
- p1->x[1] = 0;
- p1->x[2] = 0;
- p1->x[3] = 0;
- p1->x[4] = 0;
- p1->x[5] = 0;
- p1->x[6] = 0;
- p1->x[7] = 0;
- p1->x[8] = 0;
- XMEMCPY(p1->z, p256_norm_mod, sizeof(p256_norm_mod));
- }
- }
- }
- /* Calculate the verification point: [e/s]G + [r/s]Q
- *
- * p1 Calculated point.
- * p2 Public point and temporary.
- * s Second part of signature as a number.
- * u1 Temporary number.
- * u2 Temporary number.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_256_calc_vfy_point_9(sp_point_256* p1, sp_point_256* p2,
- sp_digit* s, sp_digit* u1, sp_digit* u2, sp_digit* tmp, void* heap)
- {
- int err;
- #ifndef WOLFSSL_SP_SMALL
- err = sp_256_mod_inv_9(s, s, p256_order);
- if (err == MP_OKAY)
- #endif /* !WOLFSSL_SP_SMALL */
- {
- sp_256_mul_9(s, s, p256_norm_order);
- err = sp_256_mod_9(s, s, p256_order);
- }
- if (err == MP_OKAY) {
- sp_256_norm_9(s);
- #ifdef WOLFSSL_SP_SMALL
- {
- sp_256_mont_inv_order_9(s, s, tmp);
- sp_256_mont_mul_order_9(u1, u1, s);
- sp_256_mont_mul_order_9(u2, u2, s);
- }
- #else
- {
- sp_256_mont_mul_order_9(u1, u1, s);
- sp_256_mont_mul_order_9(u2, u2, s);
- }
- #endif /* WOLFSSL_SP_SMALL */
- {
- err = sp_256_ecc_mulmod_base_9(p1, u1, 0, 0, heap);
- }
- }
- if ((err == MP_OKAY) && sp_256_iszero_9(p1->z)) {
- p1->infinity = 1;
- }
- if (err == MP_OKAY) {
- err = sp_256_ecc_mulmod_9(p2, p2, u2, 0, 0, heap);
- }
- if ((err == MP_OKAY) && sp_256_iszero_9(p2->z)) {
- p2->infinity = 1;
- }
- if (err == MP_OKAY) {
- sp_256_add_points_9(p1, p2, tmp);
- }
- return err;
- }
- #ifdef HAVE_ECC_VERIFY
- /* Verify the signature values with the hash and public key.
- * e = Truncate(hash, 256)
- * u1 = e/s mod order
- * u2 = r/s mod order
- * r == (u1.G + u2.Q)->x mod order
- * Optimization: Leave point in projective form.
- * (x, y, 1) == (x' / z'*z', y' / z'*z'*z', z' / z')
- * (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x'
- * The hash is truncated to the first 256 bits.
- *
- * hash Hash to sign.
- * hashLen Length of the hash data.
- * rng Random number generator.
- * priv Private part of key - scalar.
- * rm First part of result as an mp_int.
- * sm Sirst part of result as an mp_int.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_verify_256(const byte* hash, word32 hashLen, const mp_int* pX,
- const mp_int* pY, const mp_int* pZ, const mp_int* rm, const mp_int* sm,
- int* res, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* u1 = NULL;
- sp_point_256* p1 = NULL;
- #else
- sp_digit u1[18 * 9];
- sp_point_256 p1[2];
- #endif
- sp_digit* u2 = NULL;
- sp_digit* s = NULL;
- sp_digit* tmp = NULL;
- sp_point_256* p2 = NULL;
- sp_digit carry;
- sp_int32 c = 0;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- p1 = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (p1 == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- u1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 18 * 9, heap,
- DYNAMIC_TYPE_ECC);
- if (u1 == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- u2 = u1 + 2 * 9;
- s = u1 + 4 * 9;
- tmp = u1 + 6 * 9;
- p2 = p1 + 1;
- if (hashLen > 32U) {
- hashLen = 32U;
- }
- sp_256_from_bin(u1, 9, hash, (int)hashLen);
- sp_256_from_mp(u2, 9, rm);
- sp_256_from_mp(s, 9, sm);
- sp_256_from_mp(p2->x, 9, pX);
- sp_256_from_mp(p2->y, 9, pY);
- sp_256_from_mp(p2->z, 9, pZ);
- err = sp_256_calc_vfy_point_9(p1, p2, s, u1, u2, tmp, heap);
- }
- if (err == MP_OKAY) {
- /* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
- /* Reload r and convert to Montgomery form. */
- sp_256_from_mp(u2, 9, rm);
- err = sp_256_mod_mul_norm_9(u2, u2, p256_mod);
- }
- if (err == MP_OKAY) {
- /* u1 = r.z'.z' mod prime */
- sp_256_mont_sqr_9(p1->z, p1->z, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(u1, u2, p1->z, p256_mod, p256_mp_mod);
- *res = (int)(sp_256_cmp_9(p1->x, u1) == 0);
- if (*res == 0) {
- /* Reload r and add order. */
- sp_256_from_mp(u2, 9, rm);
- carry = sp_256_add_9(u2, u2, p256_order);
- /* Carry means result is greater than mod and is not valid. */
- if (carry == 0) {
- sp_256_norm_9(u2);
- /* Compare with mod and if greater or equal then not valid. */
- c = sp_256_cmp_9(u2, p256_mod);
- }
- }
- if ((*res == 0) && (c < 0)) {
- /* Convert to Montogomery form */
- err = sp_256_mod_mul_norm_9(u2, u2, p256_mod);
- if (err == MP_OKAY) {
- /* u1 = (r + 1*order).z'.z' mod prime */
- {
- sp_256_mont_mul_9(u1, u2, p1->z, p256_mod, p256_mp_mod);
- }
- *res = (sp_256_cmp_9(p1->x, u1) == 0);
- }
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (u1 != NULL)
- XFREE(u1, heap, DYNAMIC_TYPE_ECC);
- if (p1 != NULL)
- XFREE(p1, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_ecc_verify_256_ctx {
- int state;
- union {
- sp_256_ecc_mulmod_9_ctx mulmod_ctx;
- sp_256_mont_inv_order_9_ctx mont_inv_order_ctx;
- sp_256_proj_point_dbl_9_ctx dbl_ctx;
- sp_256_proj_point_add_9_ctx add_ctx;
- };
- sp_digit u1[2*9];
- sp_digit u2[2*9];
- sp_digit s[2*9];
- sp_digit tmp[2*9 * 6];
- sp_point_256 p1;
- sp_point_256 p2;
- } sp_ecc_verify_256_ctx;
- int sp_ecc_verify_256_nb(sp_ecc_ctx_t* sp_ctx, const byte* hash,
- word32 hashLen, const mp_int* pX, const mp_int* pY, const mp_int* pZ,
- const mp_int* rm, const mp_int* sm, int* res, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_ecc_verify_256_ctx* ctx = (sp_ecc_verify_256_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_ecc_verify_256_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0: /* INIT */
- if (hashLen > 32U) {
- hashLen = 32U;
- }
- sp_256_from_bin(ctx->u1, 9, hash, (int)hashLen);
- sp_256_from_mp(ctx->u2, 9, rm);
- sp_256_from_mp(ctx->s, 9, sm);
- sp_256_from_mp(ctx->p2.x, 9, pX);
- sp_256_from_mp(ctx->p2.y, 9, pY);
- sp_256_from_mp(ctx->p2.z, 9, pZ);
- ctx->state = 1;
- break;
- case 1: /* NORMS0 */
- sp_256_mul_9(ctx->s, ctx->s, p256_norm_order);
- err = sp_256_mod_9(ctx->s, ctx->s, p256_order);
- if (err == MP_OKAY)
- ctx->state = 2;
- break;
- case 2: /* NORMS1 */
- sp_256_norm_9(ctx->s);
- XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
- ctx->state = 3;
- break;
- case 3: /* NORMS2 */
- err = sp_256_mont_inv_order_9_nb((sp_ecc_ctx_t*)&ctx->mont_inv_order_ctx, ctx->s, ctx->s, ctx->tmp);
- if (err == MP_OKAY) {
- ctx->state = 4;
- }
- break;
- case 4: /* NORMS3 */
- sp_256_mont_mul_order_9(ctx->u1, ctx->u1, ctx->s);
- ctx->state = 5;
- break;
- case 5: /* NORMS4 */
- sp_256_mont_mul_order_9(ctx->u2, ctx->u2, ctx->s);
- XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
- ctx->state = 6;
- break;
- case 6: /* MULBASE */
- err = sp_256_ecc_mulmod_9_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx, &ctx->p1, &p256_base, ctx->u1, 0, 0, heap);
- if (err == MP_OKAY) {
- if (sp_256_iszero_9(ctx->p1.z)) {
- ctx->p1.infinity = 1;
- }
- XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
- ctx->state = 7;
- }
- break;
- case 7: /* MULMOD */
- err = sp_256_ecc_mulmod_9_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx, &ctx->p2, &ctx->p2, ctx->u2, 0, 0, heap);
- if (err == MP_OKAY) {
- if (sp_256_iszero_9(ctx->p2.z)) {
- ctx->p2.infinity = 1;
- }
- XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
- ctx->state = 8;
- }
- break;
- case 8: /* ADD */
- err = sp_256_proj_point_add_9_nb((sp_ecc_ctx_t*)&ctx->add_ctx, &ctx->p1, &ctx->p1, &ctx->p2, ctx->tmp);
- if (err == MP_OKAY)
- ctx->state = 9;
- break;
- case 9: /* MONT */
- /* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
- /* Reload r and convert to Montgomery form. */
- sp_256_from_mp(ctx->u2, 9, rm);
- err = sp_256_mod_mul_norm_9(ctx->u2, ctx->u2, p256_mod);
- if (err == MP_OKAY)
- ctx->state = 10;
- break;
- case 10: /* SQR */
- /* u1 = r.z'.z' mod prime */
- sp_256_mont_sqr_9(ctx->p1.z, ctx->p1.z, p256_mod, p256_mp_mod);
- ctx->state = 11;
- break;
- case 11: /* MUL */
- sp_256_mont_mul_9(ctx->u1, ctx->u2, ctx->p1.z, p256_mod, p256_mp_mod);
- ctx->state = 12;
- break;
- case 12: /* RES */
- {
- sp_int32 c = 0;
- err = MP_OKAY; /* math okay, now check result */
- *res = (int)(sp_256_cmp_9(ctx->p1.x, ctx->u1) == 0);
- if (*res == 0) {
- sp_digit carry;
- /* Reload r and add order. */
- sp_256_from_mp(ctx->u2, 9, rm);
- carry = sp_256_add_9(ctx->u2, ctx->u2, p256_order);
- /* Carry means result is greater than mod and is not valid. */
- if (carry == 0) {
- sp_256_norm_9(ctx->u2);
- /* Compare with mod and if greater or equal then not valid. */
- c = sp_256_cmp_9(ctx->u2, p256_mod);
- }
- }
- if ((*res == 0) && (c < 0)) {
- /* Convert to Montogomery form */
- err = sp_256_mod_mul_norm_9(ctx->u2, ctx->u2, p256_mod);
- if (err == MP_OKAY) {
- /* u1 = (r + 1*order).z'.z' mod prime */
- sp_256_mont_mul_9(ctx->u1, ctx->u2, ctx->p1.z, p256_mod,
- p256_mp_mod);
- *res = (int)(sp_256_cmp_9(ctx->p1.x, ctx->u1) == 0);
- }
- }
- break;
- }
- } /* switch */
- if (err == MP_OKAY && ctx->state != 12) {
- err = FP_WOULDBLOCK;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #endif /* HAVE_ECC_VERIFY */
- #ifdef HAVE_ECC_CHECK_KEY
- /* Check that the x and y ordinates are a valid point on the curve.
- *
- * point EC point.
- * heap Heap to use if dynamically allocating.
- * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
- * not on the curve and MP_OKAY otherwise.
- */
- static int sp_256_ecc_is_point_9(const sp_point_256* point,
- void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[9 * 4];
- #endif
- sp_digit* t2 = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9 * 4, heap, DYNAMIC_TYPE_ECC);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)heap;
- if (err == MP_OKAY) {
- t2 = t1 + 2 * 9;
- /* y^2 - x^3 - a.x = b */
- sp_256_sqr_9(t1, point->y);
- (void)sp_256_mod_9(t1, t1, p256_mod);
- sp_256_sqr_9(t2, point->x);
- (void)sp_256_mod_9(t2, t2, p256_mod);
- sp_256_mul_9(t2, t2, point->x);
- (void)sp_256_mod_9(t2, t2, p256_mod);
- sp_256_mont_sub_9(t1, t1, t2, p256_mod);
- /* y^2 - x^3 + 3.x = b, when a = -3 */
- sp_256_mont_add_9(t1, t1, point->x, p256_mod);
- sp_256_mont_add_9(t1, t1, point->x, p256_mod);
- sp_256_mont_add_9(t1, t1, point->x, p256_mod);
- if (sp_256_cmp_9(t1, p256_b) != 0) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Check that the x and y ordinates are a valid point on the curve.
- *
- * pX X ordinate of EC point.
- * pY Y ordinate of EC point.
- * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
- * not on the curve and MP_OKAY otherwise.
- */
- int sp_ecc_is_point_256(const mp_int* pX, const mp_int* pY)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_256* pub = NULL;
- #else
- sp_point_256 pub[1];
- #endif
- const byte one[1] = { 1 };
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- pub = (sp_point_256*)XMALLOC(sizeof(sp_point_256), NULL,
- DYNAMIC_TYPE_ECC);
- if (pub == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- sp_256_from_mp(pub->x, 9, pX);
- sp_256_from_mp(pub->y, 9, pY);
- sp_256_from_bin(pub->z, 9, one, (int)sizeof(one));
- err = sp_256_ecc_is_point_9(pub, NULL);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (pub != NULL)
- XFREE(pub, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Check that the private scalar generates the EC point (px, py), the point is
- * on the curve and the point has the correct order.
- *
- * pX X ordinate of EC point.
- * pY Y ordinate of EC point.
- * privm Private scalar that generates EC point.
- * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
- * not on the curve, ECC_INF_E if the point does not have the correct order,
- * ECC_PRIV_KEY_E when the private scalar doesn't generate the EC point and
- * MP_OKAY otherwise.
- */
- int sp_ecc_check_key_256(const mp_int* pX, const mp_int* pY,
- const mp_int* privm, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* priv = NULL;
- sp_point_256* pub = NULL;
- #else
- sp_digit priv[9];
- sp_point_256 pub[2];
- #endif
- sp_point_256* p = NULL;
- const byte one[1] = { 1 };
- int err = MP_OKAY;
- /* Quick check the lengs of public key ordinates and private key are in
- * range. Proper check later.
- */
- if (((mp_count_bits(pX) > 256) ||
- (mp_count_bits(pY) > 256) ||
- ((privm != NULL) && (mp_count_bits(privm) > 256)))) {
- err = ECC_OUT_OF_RANGE_E;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- pub = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (pub == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY && privm) {
- priv = (sp_digit*)XMALLOC(sizeof(sp_digit) * 9, heap,
- DYNAMIC_TYPE_ECC);
- if (priv == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = pub + 1;
- sp_256_from_mp(pub->x, 9, pX);
- sp_256_from_mp(pub->y, 9, pY);
- sp_256_from_bin(pub->z, 9, one, (int)sizeof(one));
- if (privm)
- sp_256_from_mp(priv, 9, privm);
- /* Check point at infinitiy. */
- if ((sp_256_iszero_9(pub->x) != 0) &&
- (sp_256_iszero_9(pub->y) != 0)) {
- err = ECC_INF_E;
- }
- }
- /* Check range of X and Y */
- if ((err == MP_OKAY) &&
- ((sp_256_cmp_9(pub->x, p256_mod) >= 0) ||
- (sp_256_cmp_9(pub->y, p256_mod) >= 0))) {
- err = ECC_OUT_OF_RANGE_E;
- }
- if (err == MP_OKAY) {
- /* Check point is on curve */
- err = sp_256_ecc_is_point_9(pub, heap);
- }
- if (err == MP_OKAY) {
- /* Point * order = infinity */
- err = sp_256_ecc_mulmod_9(p, pub, p256_order, 1, 1, heap);
- }
- /* Check result is infinity */
- if ((err == MP_OKAY) && ((sp_256_iszero_9(p->x) == 0) ||
- (sp_256_iszero_9(p->y) == 0))) {
- err = ECC_INF_E;
- }
- if (privm) {
- if (err == MP_OKAY) {
- /* Base * private = point */
- err = sp_256_ecc_mulmod_base_9(p, priv, 1, 1, heap);
- }
- /* Check result is public key */
- if ((err == MP_OKAY) &&
- ((sp_256_cmp_9(p->x, pub->x) != 0) ||
- (sp_256_cmp_9(p->y, pub->y) != 0))) {
- err = ECC_PRIV_KEY_E;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (pub != NULL)
- XFREE(pub, heap, DYNAMIC_TYPE_ECC);
- if (priv != NULL)
- XFREE(priv, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif
- #ifdef WOLFSSL_PUBLIC_ECC_ADD_DBL
- /* Add two projective EC points together.
- * (pX, pY, pZ) + (qX, qY, qZ) = (rX, rY, rZ)
- *
- * pX First EC point's X ordinate.
- * pY First EC point's Y ordinate.
- * pZ First EC point's Z ordinate.
- * qX Second EC point's X ordinate.
- * qY Second EC point's Y ordinate.
- * qZ Second EC point's Z ordinate.
- * rX Resultant EC point's X ordinate.
- * rY Resultant EC point's Y ordinate.
- * rZ Resultant EC point's Z ordinate.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- int sp_ecc_proj_add_point_256(mp_int* pX, mp_int* pY, mp_int* pZ,
- mp_int* qX, mp_int* qY, mp_int* qZ,
- mp_int* rX, mp_int* rY, mp_int* rZ)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* tmp = NULL;
- sp_point_256* p = NULL;
- #else
- sp_digit tmp[2 * 9 * 6];
- sp_point_256 p[2];
- #endif
- sp_point_256* q = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- p = (sp_point_256*)XMALLOC(sizeof(sp_point_256) * 2, NULL,
- DYNAMIC_TYPE_ECC);
- if (p == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 6, NULL,
- DYNAMIC_TYPE_ECC);
- if (tmp == NULL) {
- err = MEMORY_E;
- }
- }
- #endif
- if (err == MP_OKAY) {
- q = p + 1;
- sp_256_from_mp(p->x, 9, pX);
- sp_256_from_mp(p->y, 9, pY);
- sp_256_from_mp(p->z, 9, pZ);
- sp_256_from_mp(q->x, 9, qX);
- sp_256_from_mp(q->y, 9, qY);
- sp_256_from_mp(q->z, 9, qZ);
- p->infinity = sp_256_iszero_9(p->x) &
- sp_256_iszero_9(p->y);
- q->infinity = sp_256_iszero_9(q->x) &
- sp_256_iszero_9(q->y);
- sp_256_proj_point_add_9(p, p, q, tmp);
- }
- if (err == MP_OKAY) {
- err = sp_256_to_mp(p->x, rX);
- }
- if (err == MP_OKAY) {
- err = sp_256_to_mp(p->y, rY);
- }
- if (err == MP_OKAY) {
- err = sp_256_to_mp(p->z, rZ);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (tmp != NULL)
- XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
- if (p != NULL)
- XFREE(p, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Double a projective EC point.
- * (pX, pY, pZ) + (pX, pY, pZ) = (rX, rY, rZ)
- *
- * pX EC point's X ordinate.
- * pY EC point's Y ordinate.
- * pZ EC point's Z ordinate.
- * rX Resultant EC point's X ordinate.
- * rY Resultant EC point's Y ordinate.
- * rZ Resultant EC point's Z ordinate.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- int sp_ecc_proj_dbl_point_256(mp_int* pX, mp_int* pY, mp_int* pZ,
- mp_int* rX, mp_int* rY, mp_int* rZ)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* tmp = NULL;
- sp_point_256* p = NULL;
- #else
- sp_digit tmp[2 * 9 * 2];
- sp_point_256 p[1];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- p = (sp_point_256*)XMALLOC(sizeof(sp_point_256), NULL,
- DYNAMIC_TYPE_ECC);
- if (p == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 2, NULL,
- DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_256_from_mp(p->x, 9, pX);
- sp_256_from_mp(p->y, 9, pY);
- sp_256_from_mp(p->z, 9, pZ);
- p->infinity = sp_256_iszero_9(p->x) &
- sp_256_iszero_9(p->y);
- sp_256_proj_point_dbl_9(p, p, tmp);
- }
- if (err == MP_OKAY) {
- err = sp_256_to_mp(p->x, rX);
- }
- if (err == MP_OKAY) {
- err = sp_256_to_mp(p->y, rY);
- }
- if (err == MP_OKAY) {
- err = sp_256_to_mp(p->z, rZ);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (tmp != NULL)
- XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
- if (p != NULL)
- XFREE(p, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Map a projective EC point to affine in place.
- * pZ will be one.
- *
- * pX EC point's X ordinate.
- * pY EC point's Y ordinate.
- * pZ EC point's Z ordinate.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- int sp_ecc_map_256(mp_int* pX, mp_int* pY, mp_int* pZ)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* tmp = NULL;
- sp_point_256* p = NULL;
- #else
- sp_digit tmp[2 * 9 * 4];
- sp_point_256 p[1];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- p = (sp_point_256*)XMALLOC(sizeof(sp_point_256), NULL,
- DYNAMIC_TYPE_ECC);
- if (p == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 9 * 4, NULL,
- DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_256_from_mp(p->x, 9, pX);
- sp_256_from_mp(p->y, 9, pY);
- sp_256_from_mp(p->z, 9, pZ);
- p->infinity = sp_256_iszero_9(p->x) &
- sp_256_iszero_9(p->y);
- sp_256_map_9(p, p, tmp);
- }
- if (err == MP_OKAY) {
- err = sp_256_to_mp(p->x, pX);
- }
- if (err == MP_OKAY) {
- err = sp_256_to_mp(p->y, pY);
- }
- if (err == MP_OKAY) {
- err = sp_256_to_mp(p->z, pZ);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (tmp != NULL)
- XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
- if (p != NULL)
- XFREE(p, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif /* WOLFSSL_PUBLIC_ECC_ADD_DBL */
- #ifdef HAVE_COMP_KEY
- /* Find the square root of a number mod the prime of the curve.
- *
- * y The number to operate on and the result.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- static int sp_256_mont_sqrt_9(sp_digit* y)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 9];
- #endif
- sp_digit* t2 = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 4 * 9, NULL, DYNAMIC_TYPE_ECC);
- if (t1 == NULL) {
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- t2 = t1 + 2 * 9;
- {
- /* t2 = y ^ 0x2 */
- sp_256_mont_sqr_9(t2, y, p256_mod, p256_mp_mod);
- /* t1 = y ^ 0x3 */
- sp_256_mont_mul_9(t1, t2, y, p256_mod, p256_mp_mod);
- /* t2 = y ^ 0xc */
- sp_256_mont_sqr_n_9(t2, t1, 2, p256_mod, p256_mp_mod);
- /* t1 = y ^ 0xf */
- sp_256_mont_mul_9(t1, t1, t2, p256_mod, p256_mp_mod);
- /* t2 = y ^ 0xf0 */
- sp_256_mont_sqr_n_9(t2, t1, 4, p256_mod, p256_mp_mod);
- /* t1 = y ^ 0xff */
- sp_256_mont_mul_9(t1, t1, t2, p256_mod, p256_mp_mod);
- /* t2 = y ^ 0xff00 */
- sp_256_mont_sqr_n_9(t2, t1, 8, p256_mod, p256_mp_mod);
- /* t1 = y ^ 0xffff */
- sp_256_mont_mul_9(t1, t1, t2, p256_mod, p256_mp_mod);
- /* t2 = y ^ 0xffff0000 */
- sp_256_mont_sqr_n_9(t2, t1, 16, p256_mod, p256_mp_mod);
- /* t1 = y ^ 0xffffffff */
- sp_256_mont_mul_9(t1, t1, t2, p256_mod, p256_mp_mod);
- /* t1 = y ^ 0xffffffff00000000 */
- sp_256_mont_sqr_n_9(t1, t1, 32, p256_mod, p256_mp_mod);
- /* t1 = y ^ 0xffffffff00000001 */
- sp_256_mont_mul_9(t1, t1, y, p256_mod, p256_mp_mod);
- /* t1 = y ^ 0xffffffff00000001000000000000000000000000 */
- sp_256_mont_sqr_n_9(t1, t1, 96, p256_mod, p256_mp_mod);
- /* t1 = y ^ 0xffffffff00000001000000000000000000000001 */
- sp_256_mont_mul_9(t1, t1, y, p256_mod, p256_mp_mod);
- sp_256_mont_sqr_n_9(y, t1, 94, p256_mod, p256_mp_mod);
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Uncompress the point given the X ordinate.
- *
- * xm X ordinate.
- * odd Whether the Y ordinate is odd.
- * ym Calculated Y ordinate.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- int sp_ecc_uncompress_256(mp_int* xm, int odd, mp_int* ym)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* x = NULL;
- #else
- sp_digit x[4 * 9];
- #endif
- sp_digit* y = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- x = (sp_digit*)XMALLOC(sizeof(sp_digit) * 4 * 9, NULL, DYNAMIC_TYPE_ECC);
- if (x == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- y = x + 2 * 9;
- sp_256_from_mp(x, 9, xm);
- err = sp_256_mod_mul_norm_9(x, x, p256_mod);
- }
- if (err == MP_OKAY) {
- /* y = x^3 */
- {
- sp_256_mont_sqr_9(y, x, p256_mod, p256_mp_mod);
- sp_256_mont_mul_9(y, y, x, p256_mod, p256_mp_mod);
- }
- /* y = x^3 - 3x */
- sp_256_mont_sub_9(y, y, x, p256_mod);
- sp_256_mont_sub_9(y, y, x, p256_mod);
- sp_256_mont_sub_9(y, y, x, p256_mod);
- /* y = x^3 - 3x + b */
- err = sp_256_mod_mul_norm_9(x, p256_b, p256_mod);
- }
- if (err == MP_OKAY) {
- sp_256_mont_add_9(y, y, x, p256_mod);
- /* y = sqrt(x^3 - 3x + b) */
- err = sp_256_mont_sqrt_9(y);
- }
- if (err == MP_OKAY) {
- XMEMSET(y + 9, 0, 9U * sizeof(sp_digit));
- sp_256_mont_reduce_9(y, p256_mod, p256_mp_mod);
- if ((((word32)y[0] ^ (word32)odd) & 1U) != 0U) {
- sp_256_mont_sub_9(y, p256_mod, y, p256_mod);
- }
- err = sp_256_to_mp(y, ym);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (x != NULL)
- XFREE(x, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif
- #endif /* !WOLFSSL_SP_NO_256 */
- #ifdef WOLFSSL_SP_384
- /* Point structure to use. */
- typedef struct sp_point_384 {
- /* X ordinate of point. */
- sp_digit x[2 * 15];
- /* Y ordinate of point. */
- sp_digit y[2 * 15];
- /* Z ordinate of point. */
- sp_digit z[2 * 15];
- /* Indicates point is at infinity. */
- int infinity;
- } sp_point_384;
- /* The modulus (prime) of the curve P384. */
- static const sp_digit p384_mod[15] = {
- 0x3ffffff,0x000003f,0x0000000,0x3fc0000,0x2ffffff,0x3ffffff,0x3ffffff,
- 0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,
- 0x00fffff
- };
- /* The Montgomery normalizer for modulus of the curve P384. */
- static const sp_digit p384_norm_mod[15] = {
- 0x0000001,0x3ffffc0,0x3ffffff,0x003ffff,0x1000000,0x0000000,0x0000000,
- 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- 0x0000000
- };
- /* The Montgomery multiplier for modulus of the curve P384. */
- static sp_digit p384_mp_mod = 0x000001;
- #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
- defined(HAVE_ECC_VERIFY)
- /* The order of the curve P384. */
- static const sp_digit p384_order[15] = {
- 0x0c52973,0x3065ab3,0x277aece,0x2c922c2,0x3581a0d,0x10dcb77,0x234d81f,
- 0x3ffff1d,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,
- 0x00fffff
- };
- #endif
- /* The order of the curve P384 minus 2. */
- static const sp_digit p384_order2[15] = {
- 0x0c52971,0x3065ab3,0x277aece,0x2c922c2,0x3581a0d,0x10dcb77,0x234d81f,
- 0x3ffff1d,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,0x3ffffff,
- 0x00fffff
- };
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- /* The Montgomery normalizer for order of the curve P384. */
- static const sp_digit p384_norm_order[15] = {
- 0x33ad68d,0x0f9a54c,0x1885131,0x136dd3d,0x0a7e5f2,0x2f23488,0x1cb27e0,
- 0x00000e2,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- 0x0000000
- };
- #endif
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- /* The Montgomery multiplier for order of the curve P384. */
- static sp_digit p384_mp_order = 0x8fdc45;
- #endif
- /* The base point of curve P384. */
- static const sp_point_384 p384_base = {
- /* X ordinate */
- {
- 0x2760ab7,0x1178e1c,0x296c3a5,0x176fd54,0x05502f2,0x0950a8e,0x3741e08,
- 0x26e6167,0x3628ba7,0x11b874e,0x3320ad7,0x2c71c7b,0x305378e,0x288afa2,
- 0x00aa87c,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0
- },
- /* Y ordinate */
- {
- 0x0ea0e5f,0x0c75f24,0x019d7a4,0x33875fa,0x00a60b1,0x17c2e30,0x1a3113b,
- 0x051f3a7,0x1bd289a,0x27e3d07,0x1292dc2,0x27a62fe,0x22c6f5d,0x392a589,
- 0x003617d,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0
- },
- /* Z ordinate */
- {
- 0x0000001,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- 0x0000000,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0
- },
- /* infinity */
- 0
- };
- #if defined(HAVE_ECC_CHECK_KEY) || defined(HAVE_COMP_KEY)
- static const sp_digit p384_b[15] = {
- 0x3ec2aef,0x1723b74,0x119d2a8,0x23628bb,0x2c65639,0x004e1d6,0x14088f5,
- 0x104480c,0x06efe81,0x2460767,0x23f82d1,0x23815af,0x2e7e498,0x3e9f88f,
- 0x00b3312
- };
- #endif
- #ifdef WOLFSSL_SP_SMALL
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_384_mul_15(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 lo;
- c = ((sp_uint64)a[14]) * b[14];
- r[29] = (sp_digit)(c >> 26);
- c &= 0x3ffffff;
- for (k = 27; k >= 0; k--) {
- if (k >= 15) {
- i = k - 14;
- imax = 14;
- }
- else {
- i = 0;
- imax = k;
- }
- lo = 0;
- for (; i <= imax; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 26;
- r[k + 2] += (sp_digit)(c >> 26);
- r[k + 1] = (sp_digit)(c & 0x3ffffff);
- c = lo & 0x3ffffff;
- }
- r[0] = (sp_digit)c;
- }
- #else
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_384_mul_15(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_int64 t0;
- sp_int64 t1;
- sp_digit t[15];
- t0 = ((sp_int64)a[ 0]) * b[ 0];
- t1 = ((sp_int64)a[ 0]) * b[ 1]
- + ((sp_int64)a[ 1]) * b[ 0];
- t[ 0] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[ 0]) * b[ 2]
- + ((sp_int64)a[ 1]) * b[ 1]
- + ((sp_int64)a[ 2]) * b[ 0];
- t[ 1] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_int64)a[ 0]) * b[ 3]
- + ((sp_int64)a[ 1]) * b[ 2]
- + ((sp_int64)a[ 2]) * b[ 1]
- + ((sp_int64)a[ 3]) * b[ 0];
- t[ 2] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[ 0]) * b[ 4]
- + ((sp_int64)a[ 1]) * b[ 3]
- + ((sp_int64)a[ 2]) * b[ 2]
- + ((sp_int64)a[ 3]) * b[ 1]
- + ((sp_int64)a[ 4]) * b[ 0];
- t[ 3] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_int64)a[ 0]) * b[ 5]
- + ((sp_int64)a[ 1]) * b[ 4]
- + ((sp_int64)a[ 2]) * b[ 3]
- + ((sp_int64)a[ 3]) * b[ 2]
- + ((sp_int64)a[ 4]) * b[ 1]
- + ((sp_int64)a[ 5]) * b[ 0];
- t[ 4] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[ 0]) * b[ 6]
- + ((sp_int64)a[ 1]) * b[ 5]
- + ((sp_int64)a[ 2]) * b[ 4]
- + ((sp_int64)a[ 3]) * b[ 3]
- + ((sp_int64)a[ 4]) * b[ 2]
- + ((sp_int64)a[ 5]) * b[ 1]
- + ((sp_int64)a[ 6]) * b[ 0];
- t[ 5] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_int64)a[ 0]) * b[ 7]
- + ((sp_int64)a[ 1]) * b[ 6]
- + ((sp_int64)a[ 2]) * b[ 5]
- + ((sp_int64)a[ 3]) * b[ 4]
- + ((sp_int64)a[ 4]) * b[ 3]
- + ((sp_int64)a[ 5]) * b[ 2]
- + ((sp_int64)a[ 6]) * b[ 1]
- + ((sp_int64)a[ 7]) * b[ 0];
- t[ 6] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[ 0]) * b[ 8]
- + ((sp_int64)a[ 1]) * b[ 7]
- + ((sp_int64)a[ 2]) * b[ 6]
- + ((sp_int64)a[ 3]) * b[ 5]
- + ((sp_int64)a[ 4]) * b[ 4]
- + ((sp_int64)a[ 5]) * b[ 3]
- + ((sp_int64)a[ 6]) * b[ 2]
- + ((sp_int64)a[ 7]) * b[ 1]
- + ((sp_int64)a[ 8]) * b[ 0];
- t[ 7] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_int64)a[ 0]) * b[ 9]
- + ((sp_int64)a[ 1]) * b[ 8]
- + ((sp_int64)a[ 2]) * b[ 7]
- + ((sp_int64)a[ 3]) * b[ 6]
- + ((sp_int64)a[ 4]) * b[ 5]
- + ((sp_int64)a[ 5]) * b[ 4]
- + ((sp_int64)a[ 6]) * b[ 3]
- + ((sp_int64)a[ 7]) * b[ 2]
- + ((sp_int64)a[ 8]) * b[ 1]
- + ((sp_int64)a[ 9]) * b[ 0];
- t[ 8] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[ 0]) * b[10]
- + ((sp_int64)a[ 1]) * b[ 9]
- + ((sp_int64)a[ 2]) * b[ 8]
- + ((sp_int64)a[ 3]) * b[ 7]
- + ((sp_int64)a[ 4]) * b[ 6]
- + ((sp_int64)a[ 5]) * b[ 5]
- + ((sp_int64)a[ 6]) * b[ 4]
- + ((sp_int64)a[ 7]) * b[ 3]
- + ((sp_int64)a[ 8]) * b[ 2]
- + ((sp_int64)a[ 9]) * b[ 1]
- + ((sp_int64)a[10]) * b[ 0];
- t[ 9] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_int64)a[ 0]) * b[11]
- + ((sp_int64)a[ 1]) * b[10]
- + ((sp_int64)a[ 2]) * b[ 9]
- + ((sp_int64)a[ 3]) * b[ 8]
- + ((sp_int64)a[ 4]) * b[ 7]
- + ((sp_int64)a[ 5]) * b[ 6]
- + ((sp_int64)a[ 6]) * b[ 5]
- + ((sp_int64)a[ 7]) * b[ 4]
- + ((sp_int64)a[ 8]) * b[ 3]
- + ((sp_int64)a[ 9]) * b[ 2]
- + ((sp_int64)a[10]) * b[ 1]
- + ((sp_int64)a[11]) * b[ 0];
- t[10] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[ 0]) * b[12]
- + ((sp_int64)a[ 1]) * b[11]
- + ((sp_int64)a[ 2]) * b[10]
- + ((sp_int64)a[ 3]) * b[ 9]
- + ((sp_int64)a[ 4]) * b[ 8]
- + ((sp_int64)a[ 5]) * b[ 7]
- + ((sp_int64)a[ 6]) * b[ 6]
- + ((sp_int64)a[ 7]) * b[ 5]
- + ((sp_int64)a[ 8]) * b[ 4]
- + ((sp_int64)a[ 9]) * b[ 3]
- + ((sp_int64)a[10]) * b[ 2]
- + ((sp_int64)a[11]) * b[ 1]
- + ((sp_int64)a[12]) * b[ 0];
- t[11] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_int64)a[ 0]) * b[13]
- + ((sp_int64)a[ 1]) * b[12]
- + ((sp_int64)a[ 2]) * b[11]
- + ((sp_int64)a[ 3]) * b[10]
- + ((sp_int64)a[ 4]) * b[ 9]
- + ((sp_int64)a[ 5]) * b[ 8]
- + ((sp_int64)a[ 6]) * b[ 7]
- + ((sp_int64)a[ 7]) * b[ 6]
- + ((sp_int64)a[ 8]) * b[ 5]
- + ((sp_int64)a[ 9]) * b[ 4]
- + ((sp_int64)a[10]) * b[ 3]
- + ((sp_int64)a[11]) * b[ 2]
- + ((sp_int64)a[12]) * b[ 1]
- + ((sp_int64)a[13]) * b[ 0];
- t[12] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[ 0]) * b[14]
- + ((sp_int64)a[ 1]) * b[13]
- + ((sp_int64)a[ 2]) * b[12]
- + ((sp_int64)a[ 3]) * b[11]
- + ((sp_int64)a[ 4]) * b[10]
- + ((sp_int64)a[ 5]) * b[ 9]
- + ((sp_int64)a[ 6]) * b[ 8]
- + ((sp_int64)a[ 7]) * b[ 7]
- + ((sp_int64)a[ 8]) * b[ 6]
- + ((sp_int64)a[ 9]) * b[ 5]
- + ((sp_int64)a[10]) * b[ 4]
- + ((sp_int64)a[11]) * b[ 3]
- + ((sp_int64)a[12]) * b[ 2]
- + ((sp_int64)a[13]) * b[ 1]
- + ((sp_int64)a[14]) * b[ 0];
- t[13] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_int64)a[ 1]) * b[14]
- + ((sp_int64)a[ 2]) * b[13]
- + ((sp_int64)a[ 3]) * b[12]
- + ((sp_int64)a[ 4]) * b[11]
- + ((sp_int64)a[ 5]) * b[10]
- + ((sp_int64)a[ 6]) * b[ 9]
- + ((sp_int64)a[ 7]) * b[ 8]
- + ((sp_int64)a[ 8]) * b[ 7]
- + ((sp_int64)a[ 9]) * b[ 6]
- + ((sp_int64)a[10]) * b[ 5]
- + ((sp_int64)a[11]) * b[ 4]
- + ((sp_int64)a[12]) * b[ 3]
- + ((sp_int64)a[13]) * b[ 2]
- + ((sp_int64)a[14]) * b[ 1];
- t[14] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[ 2]) * b[14]
- + ((sp_int64)a[ 3]) * b[13]
- + ((sp_int64)a[ 4]) * b[12]
- + ((sp_int64)a[ 5]) * b[11]
- + ((sp_int64)a[ 6]) * b[10]
- + ((sp_int64)a[ 7]) * b[ 9]
- + ((sp_int64)a[ 8]) * b[ 8]
- + ((sp_int64)a[ 9]) * b[ 7]
- + ((sp_int64)a[10]) * b[ 6]
- + ((sp_int64)a[11]) * b[ 5]
- + ((sp_int64)a[12]) * b[ 4]
- + ((sp_int64)a[13]) * b[ 3]
- + ((sp_int64)a[14]) * b[ 2];
- r[15] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_int64)a[ 3]) * b[14]
- + ((sp_int64)a[ 4]) * b[13]
- + ((sp_int64)a[ 5]) * b[12]
- + ((sp_int64)a[ 6]) * b[11]
- + ((sp_int64)a[ 7]) * b[10]
- + ((sp_int64)a[ 8]) * b[ 9]
- + ((sp_int64)a[ 9]) * b[ 8]
- + ((sp_int64)a[10]) * b[ 7]
- + ((sp_int64)a[11]) * b[ 6]
- + ((sp_int64)a[12]) * b[ 5]
- + ((sp_int64)a[13]) * b[ 4]
- + ((sp_int64)a[14]) * b[ 3];
- r[16] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[ 4]) * b[14]
- + ((sp_int64)a[ 5]) * b[13]
- + ((sp_int64)a[ 6]) * b[12]
- + ((sp_int64)a[ 7]) * b[11]
- + ((sp_int64)a[ 8]) * b[10]
- + ((sp_int64)a[ 9]) * b[ 9]
- + ((sp_int64)a[10]) * b[ 8]
- + ((sp_int64)a[11]) * b[ 7]
- + ((sp_int64)a[12]) * b[ 6]
- + ((sp_int64)a[13]) * b[ 5]
- + ((sp_int64)a[14]) * b[ 4];
- r[17] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_int64)a[ 5]) * b[14]
- + ((sp_int64)a[ 6]) * b[13]
- + ((sp_int64)a[ 7]) * b[12]
- + ((sp_int64)a[ 8]) * b[11]
- + ((sp_int64)a[ 9]) * b[10]
- + ((sp_int64)a[10]) * b[ 9]
- + ((sp_int64)a[11]) * b[ 8]
- + ((sp_int64)a[12]) * b[ 7]
- + ((sp_int64)a[13]) * b[ 6]
- + ((sp_int64)a[14]) * b[ 5];
- r[18] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[ 6]) * b[14]
- + ((sp_int64)a[ 7]) * b[13]
- + ((sp_int64)a[ 8]) * b[12]
- + ((sp_int64)a[ 9]) * b[11]
- + ((sp_int64)a[10]) * b[10]
- + ((sp_int64)a[11]) * b[ 9]
- + ((sp_int64)a[12]) * b[ 8]
- + ((sp_int64)a[13]) * b[ 7]
- + ((sp_int64)a[14]) * b[ 6];
- r[19] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_int64)a[ 7]) * b[14]
- + ((sp_int64)a[ 8]) * b[13]
- + ((sp_int64)a[ 9]) * b[12]
- + ((sp_int64)a[10]) * b[11]
- + ((sp_int64)a[11]) * b[10]
- + ((sp_int64)a[12]) * b[ 9]
- + ((sp_int64)a[13]) * b[ 8]
- + ((sp_int64)a[14]) * b[ 7];
- r[20] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[ 8]) * b[14]
- + ((sp_int64)a[ 9]) * b[13]
- + ((sp_int64)a[10]) * b[12]
- + ((sp_int64)a[11]) * b[11]
- + ((sp_int64)a[12]) * b[10]
- + ((sp_int64)a[13]) * b[ 9]
- + ((sp_int64)a[14]) * b[ 8];
- r[21] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_int64)a[ 9]) * b[14]
- + ((sp_int64)a[10]) * b[13]
- + ((sp_int64)a[11]) * b[12]
- + ((sp_int64)a[12]) * b[11]
- + ((sp_int64)a[13]) * b[10]
- + ((sp_int64)a[14]) * b[ 9];
- r[22] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[10]) * b[14]
- + ((sp_int64)a[11]) * b[13]
- + ((sp_int64)a[12]) * b[12]
- + ((sp_int64)a[13]) * b[11]
- + ((sp_int64)a[14]) * b[10];
- r[23] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_int64)a[11]) * b[14]
- + ((sp_int64)a[12]) * b[13]
- + ((sp_int64)a[13]) * b[12]
- + ((sp_int64)a[14]) * b[11];
- r[24] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[12]) * b[14]
- + ((sp_int64)a[13]) * b[13]
- + ((sp_int64)a[14]) * b[12];
- r[25] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = ((sp_int64)a[13]) * b[14]
- + ((sp_int64)a[14]) * b[13];
- r[26] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[14]) * b[14];
- r[27] = t1 & 0x3ffffff; t0 += t1 >> 26;
- r[28] = t0 & 0x3ffffff;
- r[29] = (sp_digit)(t0 >> 26);
- XMEMCPY(r, t, sizeof(t));
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_384_sqr_15(sp_digit* r, const sp_digit* a)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 t;
- c = ((sp_uint64)a[14]) * a[14];
- r[29] = (sp_digit)(c >> 26);
- c = (c & 0x3ffffff) << 26;
- for (k = 27; k >= 0; k--) {
- i = (k + 1) / 2;
- if ((k & 1) == 0) {
- c += ((sp_uint64)a[i]) * a[i];
- i++;
- }
- if (k < 14) {
- imax = k;
- }
- else {
- imax = 14;
- }
- t = 0;
- for (; i <= imax; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- r[k + 2] += (sp_digit) (c >> 52);
- r[k + 1] = (sp_digit)((c >> 26) & 0x3ffffff);
- c = (c & 0x3ffffff) << 26;
- }
- r[0] = (sp_digit)(c >> 26);
- }
- #else
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_384_sqr_15(sp_digit* r, const sp_digit* a)
- {
- sp_int64 t0;
- sp_int64 t1;
- sp_digit t[15];
- t0 = ((sp_int64)a[ 0]) * a[ 0];
- t1 = (((sp_int64)a[ 0]) * a[ 1]) * 2;
- t[ 0] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_int64)a[ 0]) * a[ 2]) * 2
- + ((sp_int64)a[ 1]) * a[ 1];
- t[ 1] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_int64)a[ 0]) * a[ 3]
- + ((sp_int64)a[ 1]) * a[ 2]) * 2;
- t[ 2] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_int64)a[ 0]) * a[ 4]
- + ((sp_int64)a[ 1]) * a[ 3]) * 2
- + ((sp_int64)a[ 2]) * a[ 2];
- t[ 3] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_int64)a[ 0]) * a[ 5]
- + ((sp_int64)a[ 1]) * a[ 4]
- + ((sp_int64)a[ 2]) * a[ 3]) * 2;
- t[ 4] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_int64)a[ 0]) * a[ 6]
- + ((sp_int64)a[ 1]) * a[ 5]
- + ((sp_int64)a[ 2]) * a[ 4]) * 2
- + ((sp_int64)a[ 3]) * a[ 3];
- t[ 5] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_int64)a[ 0]) * a[ 7]
- + ((sp_int64)a[ 1]) * a[ 6]
- + ((sp_int64)a[ 2]) * a[ 5]
- + ((sp_int64)a[ 3]) * a[ 4]) * 2;
- t[ 6] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_int64)a[ 0]) * a[ 8]
- + ((sp_int64)a[ 1]) * a[ 7]
- + ((sp_int64)a[ 2]) * a[ 6]
- + ((sp_int64)a[ 3]) * a[ 5]) * 2
- + ((sp_int64)a[ 4]) * a[ 4];
- t[ 7] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_int64)a[ 0]) * a[ 9]
- + ((sp_int64)a[ 1]) * a[ 8]
- + ((sp_int64)a[ 2]) * a[ 7]
- + ((sp_int64)a[ 3]) * a[ 6]
- + ((sp_int64)a[ 4]) * a[ 5]) * 2;
- t[ 8] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_int64)a[ 0]) * a[10]
- + ((sp_int64)a[ 1]) * a[ 9]
- + ((sp_int64)a[ 2]) * a[ 8]
- + ((sp_int64)a[ 3]) * a[ 7]
- + ((sp_int64)a[ 4]) * a[ 6]) * 2
- + ((sp_int64)a[ 5]) * a[ 5];
- t[ 9] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_int64)a[ 0]) * a[11]
- + ((sp_int64)a[ 1]) * a[10]
- + ((sp_int64)a[ 2]) * a[ 9]
- + ((sp_int64)a[ 3]) * a[ 8]
- + ((sp_int64)a[ 4]) * a[ 7]
- + ((sp_int64)a[ 5]) * a[ 6]) * 2;
- t[10] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_int64)a[ 0]) * a[12]
- + ((sp_int64)a[ 1]) * a[11]
- + ((sp_int64)a[ 2]) * a[10]
- + ((sp_int64)a[ 3]) * a[ 9]
- + ((sp_int64)a[ 4]) * a[ 8]
- + ((sp_int64)a[ 5]) * a[ 7]) * 2
- + ((sp_int64)a[ 6]) * a[ 6];
- t[11] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_int64)a[ 0]) * a[13]
- + ((sp_int64)a[ 1]) * a[12]
- + ((sp_int64)a[ 2]) * a[11]
- + ((sp_int64)a[ 3]) * a[10]
- + ((sp_int64)a[ 4]) * a[ 9]
- + ((sp_int64)a[ 5]) * a[ 8]
- + ((sp_int64)a[ 6]) * a[ 7]) * 2;
- t[12] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_int64)a[ 0]) * a[14]
- + ((sp_int64)a[ 1]) * a[13]
- + ((sp_int64)a[ 2]) * a[12]
- + ((sp_int64)a[ 3]) * a[11]
- + ((sp_int64)a[ 4]) * a[10]
- + ((sp_int64)a[ 5]) * a[ 9]
- + ((sp_int64)a[ 6]) * a[ 8]) * 2
- + ((sp_int64)a[ 7]) * a[ 7];
- t[13] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_int64)a[ 1]) * a[14]
- + ((sp_int64)a[ 2]) * a[13]
- + ((sp_int64)a[ 3]) * a[12]
- + ((sp_int64)a[ 4]) * a[11]
- + ((sp_int64)a[ 5]) * a[10]
- + ((sp_int64)a[ 6]) * a[ 9]
- + ((sp_int64)a[ 7]) * a[ 8]) * 2;
- t[14] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_int64)a[ 2]) * a[14]
- + ((sp_int64)a[ 3]) * a[13]
- + ((sp_int64)a[ 4]) * a[12]
- + ((sp_int64)a[ 5]) * a[11]
- + ((sp_int64)a[ 6]) * a[10]
- + ((sp_int64)a[ 7]) * a[ 9]) * 2
- + ((sp_int64)a[ 8]) * a[ 8];
- r[15] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_int64)a[ 3]) * a[14]
- + ((sp_int64)a[ 4]) * a[13]
- + ((sp_int64)a[ 5]) * a[12]
- + ((sp_int64)a[ 6]) * a[11]
- + ((sp_int64)a[ 7]) * a[10]
- + ((sp_int64)a[ 8]) * a[ 9]) * 2;
- r[16] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_int64)a[ 4]) * a[14]
- + ((sp_int64)a[ 5]) * a[13]
- + ((sp_int64)a[ 6]) * a[12]
- + ((sp_int64)a[ 7]) * a[11]
- + ((sp_int64)a[ 8]) * a[10]) * 2
- + ((sp_int64)a[ 9]) * a[ 9];
- r[17] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_int64)a[ 5]) * a[14]
- + ((sp_int64)a[ 6]) * a[13]
- + ((sp_int64)a[ 7]) * a[12]
- + ((sp_int64)a[ 8]) * a[11]
- + ((sp_int64)a[ 9]) * a[10]) * 2;
- r[18] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_int64)a[ 6]) * a[14]
- + ((sp_int64)a[ 7]) * a[13]
- + ((sp_int64)a[ 8]) * a[12]
- + ((sp_int64)a[ 9]) * a[11]) * 2
- + ((sp_int64)a[10]) * a[10];
- r[19] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_int64)a[ 7]) * a[14]
- + ((sp_int64)a[ 8]) * a[13]
- + ((sp_int64)a[ 9]) * a[12]
- + ((sp_int64)a[10]) * a[11]) * 2;
- r[20] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_int64)a[ 8]) * a[14]
- + ((sp_int64)a[ 9]) * a[13]
- + ((sp_int64)a[10]) * a[12]) * 2
- + ((sp_int64)a[11]) * a[11];
- r[21] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_int64)a[ 9]) * a[14]
- + ((sp_int64)a[10]) * a[13]
- + ((sp_int64)a[11]) * a[12]) * 2;
- r[22] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_int64)a[10]) * a[14]
- + ((sp_int64)a[11]) * a[13]) * 2
- + ((sp_int64)a[12]) * a[12];
- r[23] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_int64)a[11]) * a[14]
- + ((sp_int64)a[12]) * a[13]) * 2;
- r[24] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = (((sp_int64)a[12]) * a[14]) * 2
- + ((sp_int64)a[13]) * a[13];
- r[25] = t1 & 0x3ffffff; t0 += t1 >> 26;
- t1 = (((sp_int64)a[13]) * a[14]) * 2;
- r[26] = t0 & 0x3ffffff; t1 += t0 >> 26;
- t0 = ((sp_int64)a[14]) * a[14];
- r[27] = t1 & 0x3ffffff; t0 += t1 >> 26;
- r[28] = t0 & 0x3ffffff;
- r[29] = (sp_digit)(t0 >> 26);
- XMEMCPY(r, t, sizeof(t));
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_384_add_15(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 15; i++) {
- r[i] = a[i] + b[i];
- }
- return 0;
- }
- #else
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_384_add_15(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- r[ 0] = a[ 0] + b[ 0];
- r[ 1] = a[ 1] + b[ 1];
- r[ 2] = a[ 2] + b[ 2];
- r[ 3] = a[ 3] + b[ 3];
- r[ 4] = a[ 4] + b[ 4];
- r[ 5] = a[ 5] + b[ 5];
- r[ 6] = a[ 6] + b[ 6];
- r[ 7] = a[ 7] + b[ 7];
- r[ 8] = a[ 8] + b[ 8];
- r[ 9] = a[ 9] + b[ 9];
- r[10] = a[10] + b[10];
- r[11] = a[11] + b[11];
- r[12] = a[12] + b[12];
- r[13] = a[13] + b[13];
- r[14] = a[14] + b[14];
- return 0;
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_384_sub_15(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 15; i++) {
- r[i] = a[i] - b[i];
- }
- return 0;
- }
- #else
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_384_sub_15(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- r[ 0] = a[ 0] - b[ 0];
- r[ 1] = a[ 1] - b[ 1];
- r[ 2] = a[ 2] - b[ 2];
- r[ 3] = a[ 3] - b[ 3];
- r[ 4] = a[ 4] - b[ 4];
- r[ 5] = a[ 5] - b[ 5];
- r[ 6] = a[ 6] - b[ 6];
- r[ 7] = a[ 7] - b[ 7];
- r[ 8] = a[ 8] - b[ 8];
- r[ 9] = a[ 9] - b[ 9];
- r[10] = a[10] - b[10];
- r[11] = a[11] - b[11];
- r[12] = a[12] - b[12];
- r[13] = a[13] - b[13];
- r[14] = a[14] - b[14];
- return 0;
- }
- #endif /* WOLFSSL_SP_SMALL */
- /* Convert an mp_int to an array of sp_digit.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a A multi-precision integer.
- */
- static void sp_384_from_mp(sp_digit* r, int size, const mp_int* a)
- {
- #if DIGIT_BIT == 26
- int i;
- sp_digit j = (sp_digit)0 - (sp_digit)a->used;
- int o = 0;
- for (i = 0; i < size; i++) {
- sp_digit mask = (sp_digit)0 - (j >> 25);
- r[i] = a->dp[o] & mask;
- j++;
- o += (int)(j >> 25);
- }
- #elif DIGIT_BIT > 26
- unsigned int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i] << s);
- r[j] &= 0x3ffffff;
- s = 26U - s;
- if (j + 1 >= size) {
- break;
- }
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- while ((s + 26U) <= (word32)DIGIT_BIT) {
- s += 26U;
- r[j] &= 0x3ffffff;
- if (j + 1 >= size) {
- break;
- }
- if (s < (word32)DIGIT_BIT) {
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- }
- else {
- r[++j] = (sp_digit)0;
- }
- }
- s = (word32)DIGIT_BIT - s;
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #else
- unsigned int i;
- int j = 0;
- int s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i]) << s;
- if (s + DIGIT_BIT >= 26) {
- r[j] &= 0x3ffffff;
- if (j + 1 >= size) {
- break;
- }
- s = 26 - s;
- if (s == DIGIT_BIT) {
- r[++j] = 0;
- s = 0;
- }
- else {
- r[++j] = a->dp[i] >> s;
- s = DIGIT_BIT - s;
- }
- }
- else {
- s += DIGIT_BIT;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #endif
- }
- /* Convert a point of type ecc_point to type sp_point_384.
- *
- * p Point of type sp_point_384 (result).
- * pm Point of type ecc_point.
- */
- static void sp_384_point_from_ecc_point_15(sp_point_384* p,
- const ecc_point* pm)
- {
- XMEMSET(p->x, 0, sizeof(p->x));
- XMEMSET(p->y, 0, sizeof(p->y));
- XMEMSET(p->z, 0, sizeof(p->z));
- sp_384_from_mp(p->x, 15, pm->x);
- sp_384_from_mp(p->y, 15, pm->y);
- sp_384_from_mp(p->z, 15, pm->z);
- p->infinity = 0;
- }
- /* Convert an array of sp_digit to an mp_int.
- *
- * a A single precision integer.
- * r A multi-precision integer.
- */
- static int sp_384_to_mp(const sp_digit* a, mp_int* r)
- {
- int err;
- err = mp_grow(r, (384 + DIGIT_BIT - 1) / DIGIT_BIT);
- if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
- #if DIGIT_BIT == 26
- XMEMCPY(r->dp, a, sizeof(sp_digit) * 15);
- r->used = 15;
- mp_clamp(r);
- #elif DIGIT_BIT < 26
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 15; i++) {
- r->dp[j] |= (mp_digit)(a[i] << s);
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- s = DIGIT_BIT - s;
- r->dp[++j] = (mp_digit)(a[i] >> s);
- while (s + DIGIT_BIT <= 26) {
- s += DIGIT_BIT;
- r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- if (s == SP_WORD_SIZE) {
- r->dp[j] = 0;
- }
- else {
- r->dp[j] = (mp_digit)(a[i] >> s);
- }
- }
- s = 26 - s;
- }
- r->used = (384 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #else
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 15; i++) {
- r->dp[j] |= ((mp_digit)a[i]) << s;
- if (s + 26 >= DIGIT_BIT) {
- #if DIGIT_BIT != 32 && DIGIT_BIT != 64
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- #endif
- s = DIGIT_BIT - s;
- r->dp[++j] = a[i] >> s;
- s = 26 - s;
- }
- else {
- s += 26;
- }
- }
- r->used = (384 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #endif
- }
- return err;
- }
- /* Convert a point of type sp_point_384 to type ecc_point.
- *
- * p Point of type sp_point_384.
- * pm Point of type ecc_point (result).
- * returns MEMORY_E when allocation of memory in ecc_point fails otherwise
- * MP_OKAY.
- */
- static int sp_384_point_to_ecc_point_15(const sp_point_384* p, ecc_point* pm)
- {
- int err;
- err = sp_384_to_mp(p->x, pm->x);
- if (err == MP_OKAY) {
- err = sp_384_to_mp(p->y, pm->y);
- }
- if (err == MP_OKAY) {
- err = sp_384_to_mp(p->z, pm->z);
- }
- return err;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_384_cmp_15(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i=14; i>=0; i--) {
- r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 25);
- }
- #else
- r |= (a[14] - b[14]) & (0 - (sp_digit)1);
- r |= (a[13] - b[13]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[12] - b[12]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[11] - b[11]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[10] - b[10]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[ 9] - b[ 9]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[ 8] - b[ 8]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[ 7] - b[ 7]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[ 6] - b[ 6]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[ 5] - b[ 5]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[ 4] - b[ 4]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[ 3] - b[ 3]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[ 2] - b[ 2]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[ 1] - b[ 1]) & ~(((sp_digit)0 - r) >> 25);
- r |= (a[ 0] - b[ 0]) & ~(((sp_digit)0 - r) >> 25);
- #endif /* WOLFSSL_SP_SMALL */
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_384_cond_sub_15(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 15; i++) {
- r[i] = a[i] - (b[i] & m);
- }
- #else
- r[ 0] = a[ 0] - (b[ 0] & m);
- r[ 1] = a[ 1] - (b[ 1] & m);
- r[ 2] = a[ 2] - (b[ 2] & m);
- r[ 3] = a[ 3] - (b[ 3] & m);
- r[ 4] = a[ 4] - (b[ 4] & m);
- r[ 5] = a[ 5] - (b[ 5] & m);
- r[ 6] = a[ 6] - (b[ 6] & m);
- r[ 7] = a[ 7] - (b[ 7] & m);
- r[ 8] = a[ 8] - (b[ 8] & m);
- r[ 9] = a[ 9] - (b[ 9] & m);
- r[10] = a[10] - (b[10] & m);
- r[11] = a[11] - (b[11] & m);
- r[12] = a[12] - (b[12] & m);
- r[13] = a[13] - (b[13] & m);
- r[14] = a[14] - (b[14] & m);
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_384_mul_add_15(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t[4];
- int i;
- t[0] = 0;
- for (i = 0; i < 12; i += 4) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- r[i+0] = t[0] & 0x3ffffff;
- t[1] += t[0] >> 26;
- r[i+1] = t[1] & 0x3ffffff;
- t[2] += t[1] >> 26;
- r[i+2] = t[2] & 0x3ffffff;
- t[3] += t[2] >> 26;
- r[i+3] = t[3] & 0x3ffffff;
- t[0] = t[3] >> 26;
- }
- t[0] += (tb * a[12]) + r[12];
- t[1] = (tb * a[13]) + r[13];
- t[2] = (tb * a[14]) + r[14];
- r[12] = t[0] & 0x3ffffff;
- t[1] += t[0] >> 26;
- r[13] = t[1] & 0x3ffffff;
- t[2] += t[1] >> 26;
- r[14] = t[2] & 0x3ffffff;
- r[15] += (sp_digit)(t[2] >> 26);
- #else
- sp_int64 tb = b;
- sp_int64 t[15];
- t[ 0] = tb * a[ 0];
- t[ 1] = tb * a[ 1];
- t[ 2] = tb * a[ 2];
- t[ 3] = tb * a[ 3];
- t[ 4] = tb * a[ 4];
- t[ 5] = tb * a[ 5];
- t[ 6] = tb * a[ 6];
- t[ 7] = tb * a[ 7];
- t[ 8] = tb * a[ 8];
- t[ 9] = tb * a[ 9];
- t[10] = tb * a[10];
- t[11] = tb * a[11];
- t[12] = tb * a[12];
- t[13] = tb * a[13];
- t[14] = tb * a[14];
- r[ 0] += (sp_digit) (t[ 0] & 0x3ffffff);
- r[ 1] += (sp_digit)((t[ 0] >> 26) + (t[ 1] & 0x3ffffff));
- r[ 2] += (sp_digit)((t[ 1] >> 26) + (t[ 2] & 0x3ffffff));
- r[ 3] += (sp_digit)((t[ 2] >> 26) + (t[ 3] & 0x3ffffff));
- r[ 4] += (sp_digit)((t[ 3] >> 26) + (t[ 4] & 0x3ffffff));
- r[ 5] += (sp_digit)((t[ 4] >> 26) + (t[ 5] & 0x3ffffff));
- r[ 6] += (sp_digit)((t[ 5] >> 26) + (t[ 6] & 0x3ffffff));
- r[ 7] += (sp_digit)((t[ 6] >> 26) + (t[ 7] & 0x3ffffff));
- r[ 8] += (sp_digit)((t[ 7] >> 26) + (t[ 8] & 0x3ffffff));
- r[ 9] += (sp_digit)((t[ 8] >> 26) + (t[ 9] & 0x3ffffff));
- r[10] += (sp_digit)((t[ 9] >> 26) + (t[10] & 0x3ffffff));
- r[11] += (sp_digit)((t[10] >> 26) + (t[11] & 0x3ffffff));
- r[12] += (sp_digit)((t[11] >> 26) + (t[12] & 0x3ffffff));
- r[13] += (sp_digit)((t[12] >> 26) + (t[13] & 0x3ffffff));
- r[14] += (sp_digit)((t[13] >> 26) + (t[14] & 0x3ffffff));
- r[15] += (sp_digit) (t[14] >> 26);
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Normalize the values in each word to 26 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_384_norm_15(sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 14; i++) {
- a[i+1] += a[i] >> 26;
- a[i] &= 0x3ffffff;
- }
- #else
- a[1] += a[0] >> 26; a[0] &= 0x3ffffff;
- a[2] += a[1] >> 26; a[1] &= 0x3ffffff;
- a[3] += a[2] >> 26; a[2] &= 0x3ffffff;
- a[4] += a[3] >> 26; a[3] &= 0x3ffffff;
- a[5] += a[4] >> 26; a[4] &= 0x3ffffff;
- a[6] += a[5] >> 26; a[5] &= 0x3ffffff;
- a[7] += a[6] >> 26; a[6] &= 0x3ffffff;
- a[8] += a[7] >> 26; a[7] &= 0x3ffffff;
- a[9] += a[8] >> 26; a[8] &= 0x3ffffff;
- a[10] += a[9] >> 26; a[9] &= 0x3ffffff;
- a[11] += a[10] >> 26; a[10] &= 0x3ffffff;
- a[12] += a[11] >> 26; a[11] &= 0x3ffffff;
- a[13] += a[12] >> 26; a[12] &= 0x3ffffff;
- a[14] += a[13] >> 26; a[13] &= 0x3ffffff;
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Shift the result in the high 384 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_384_mont_shift_15(sp_digit* r, const sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- sp_int64 n = a[14] >> 20;
- n += ((sp_int64)a[15]) << 6;
- for (i = 0; i < 14; i++) {
- r[i] = n & 0x3ffffff;
- n >>= 26;
- n += ((sp_int64)a[16 + i]) << 6;
- }
- r[14] = (sp_digit)n;
- #else
- sp_int64 n = a[14] >> 20;
- n += ((sp_int64)a[15]) << 6;
- r[ 0] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[16]) << 6;
- r[ 1] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[17]) << 6;
- r[ 2] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[18]) << 6;
- r[ 3] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[19]) << 6;
- r[ 4] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[20]) << 6;
- r[ 5] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[21]) << 6;
- r[ 6] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[22]) << 6;
- r[ 7] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[23]) << 6;
- r[ 8] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[24]) << 6;
- r[ 9] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[25]) << 6;
- r[10] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[26]) << 6;
- r[11] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[27]) << 6;
- r[12] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[28]) << 6;
- r[13] = n & 0x3ffffff; n >>= 26; n += ((sp_int64)a[29]) << 6;
- r[14] = (sp_digit)n;
- #endif /* WOLFSSL_SP_SMALL */
- XMEMSET(&r[15], 0, sizeof(*r) * 15U);
- }
- /* Reduce the number back to 384 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_384_mont_reduce_order_15(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_384_norm_15(a + 15);
- for (i=0; i<14; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x3ffffff;
- sp_384_mul_add_15(a+i, m, mu);
- a[i+1] += a[i] >> 26;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0xfffffL;
- sp_384_mul_add_15(a+i, m, mu);
- a[i+1] += a[i] >> 26;
- a[i] &= 0x3ffffff;
- sp_384_mont_shift_15(a, a);
- over = a[14] >> 20;
- sp_384_cond_sub_15(a, a, m, ~((over - 1) >> 31));
- sp_384_norm_15(a);
- }
- /* Reduce the number back to 384 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_384_mont_reduce_15(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit am;
- (void)m;
- (void)mp;
- for (i = 0; i < 14; i++) {
- am = (a[i] * 0x1) & 0x3ffffff;
- a[i + 1] += (am << 6) & 0x3ffffff;
- a[i + 2] += am >> 20;
- a[i + 3] -= (am << 18) & 0x3ffffff;
- a[i + 4] -= am >> 8;
- a[i + 4] -= (am << 24) & 0x3ffffff;
- a[i + 5] -= am >> 2;
- a[i + 14] += (am << 20) & 0x3ffffff;
- a[i + 15] += am >> 6;
- a[i + 1] += a[i] >> 26;
- }
- am = (a[14] * 0x1) & 0xfffff;
- a[14 + 1] += (am << 6) & 0x3ffffff;
- a[14 + 2] += am >> 20;
- a[14 + 3] -= (am << 18) & 0x3ffffff;
- a[14 + 4] -= am >> 8;
- a[14 + 4] -= (am << 24) & 0x3ffffff;
- a[14 + 5] -= am >> 2;
- a[14 + 14] += (am << 20) & 0x3ffffff;
- a[14 + 15] += am >> 6;
- a[0] = (a[14] >> 20) + ((a[15] << 6) & 0x3ffffff);
- a[1] = (a[15] >> 20) + ((a[16] << 6) & 0x3ffffff);
- a[2] = (a[16] >> 20) + ((a[17] << 6) & 0x3ffffff);
- a[3] = (a[17] >> 20) + ((a[18] << 6) & 0x3ffffff);
- a[4] = (a[18] >> 20) + ((a[19] << 6) & 0x3ffffff);
- a[5] = (a[19] >> 20) + ((a[20] << 6) & 0x3ffffff);
- a[6] = (a[20] >> 20) + ((a[21] << 6) & 0x3ffffff);
- a[7] = (a[21] >> 20) + ((a[22] << 6) & 0x3ffffff);
- a[8] = (a[22] >> 20) + ((a[23] << 6) & 0x3ffffff);
- a[9] = (a[23] >> 20) + ((a[24] << 6) & 0x3ffffff);
- a[10] = (a[24] >> 20) + ((a[25] << 6) & 0x3ffffff);
- a[11] = (a[25] >> 20) + ((a[26] << 6) & 0x3ffffff);
- a[12] = (a[26] >> 20) + ((a[27] << 6) & 0x3ffffff);
- a[13] = (a[27] >> 20) + ((a[28] << 6) & 0x3ffffff);
- a[14] = (a[14 + 14] >> 20) + (a[29] << 6);
- a[1] += a[0] >> 26; a[0] &= 0x3ffffff;
- a[2] += a[1] >> 26; a[1] &= 0x3ffffff;
- a[3] += a[2] >> 26; a[2] &= 0x3ffffff;
- a[4] += a[3] >> 26; a[3] &= 0x3ffffff;
- a[5] += a[4] >> 26; a[4] &= 0x3ffffff;
- a[6] += a[5] >> 26; a[5] &= 0x3ffffff;
- a[7] += a[6] >> 26; a[6] &= 0x3ffffff;
- a[8] += a[7] >> 26; a[7] &= 0x3ffffff;
- a[9] += a[8] >> 26; a[8] &= 0x3ffffff;
- a[10] += a[9] >> 26; a[9] &= 0x3ffffff;
- a[11] += a[10] >> 26; a[10] &= 0x3ffffff;
- a[12] += a[11] >> 26; a[11] &= 0x3ffffff;
- a[13] += a[12] >> 26; a[12] &= 0x3ffffff;
- a[14] += a[13] >> 26; a[13] &= 0x3ffffff;
- /* Get the bit over, if any. */
- am = a[14] >> 20;
- /* Create mask. */
- am = 0 - am;
- a[0] -= 0x03ffffff & am;
- a[1] -= 0x0000003f & am;
- /* p384_mod[2] is zero */
- a[3] -= 0x03fc0000 & am;
- a[4] -= 0x02ffffff & am;
- a[5] -= 0x03ffffff & am;
- a[6] -= 0x03ffffff & am;
- a[7] -= 0x03ffffff & am;
- a[8] -= 0x03ffffff & am;
- a[9] -= 0x03ffffff & am;
- a[10] -= 0x03ffffff & am;
- a[11] -= 0x03ffffff & am;
- a[12] -= 0x03ffffff & am;
- a[13] -= 0x03ffffff & am;
- a[14] -= 0x000fffff & am;
- a[1] += a[0] >> 26; a[0] &= 0x3ffffff;
- a[2] += a[1] >> 26; a[1] &= 0x3ffffff;
- a[3] += a[2] >> 26; a[2] &= 0x3ffffff;
- a[4] += a[3] >> 26; a[3] &= 0x3ffffff;
- a[5] += a[4] >> 26; a[4] &= 0x3ffffff;
- a[6] += a[5] >> 26; a[5] &= 0x3ffffff;
- a[7] += a[6] >> 26; a[6] &= 0x3ffffff;
- a[8] += a[7] >> 26; a[7] &= 0x3ffffff;
- a[9] += a[8] >> 26; a[8] &= 0x3ffffff;
- a[10] += a[9] >> 26; a[9] &= 0x3ffffff;
- a[11] += a[10] >> 26; a[10] &= 0x3ffffff;
- a[12] += a[11] >> 26; a[11] &= 0x3ffffff;
- a[13] += a[12] >> 26; a[12] &= 0x3ffffff;
- a[14] += a[13] >> 26; a[13] &= 0x3ffffff;
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_384_mont_mul_15(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_384_mul_15(r, a, b);
- sp_384_mont_reduce_15(r, m, mp);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_384_mont_sqr_15(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_384_sqr_15(r, a);
- sp_384_mont_reduce_15(r, m, mp);
- }
- #if !defined(WOLFSSL_SP_SMALL) || defined(HAVE_COMP_KEY)
- /* Square the Montgomery form number a number of times. (r = a ^ n mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * n Number of times to square.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_384_mont_sqr_n_15(sp_digit* r,
- const sp_digit* a, int n, const sp_digit* m, sp_digit mp)
- {
- sp_384_mont_sqr_15(r, a, m, mp);
- for (; n > 1; n--) {
- sp_384_mont_sqr_15(r, r, m, mp);
- }
- }
- #endif /* !WOLFSSL_SP_SMALL || HAVE_COMP_KEY */
- #ifdef WOLFSSL_SP_SMALL
- /* Mod-2 for the P384 curve. */
- static const uint32_t p384_mod_minus_2[12] = {
- 0xfffffffdU,0x00000000U,0x00000000U,0xffffffffU,0xfffffffeU,0xffffffffU,
- 0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU
- };
- #endif /* !WOLFSSL_SP_SMALL */
- /* Invert the number, in Montgomery form, modulo the modulus (prime) of the
- * P384 curve. (r = 1 / a mod m)
- *
- * r Inverse result.
- * a Number to invert.
- * td Temporary data.
- */
- static void sp_384_mont_inv_15(sp_digit* r, const sp_digit* a, sp_digit* td)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_digit* t = td;
- int i;
- XMEMCPY(t, a, sizeof(sp_digit) * 15);
- for (i=382; i>=0; i--) {
- sp_384_mont_sqr_15(t, t, p384_mod, p384_mp_mod);
- if (p384_mod_minus_2[i / 32] & ((sp_digit)1 << (i % 32)))
- sp_384_mont_mul_15(t, t, a, p384_mod, p384_mp_mod);
- }
- XMEMCPY(r, t, sizeof(sp_digit) * 15);
- #else
- sp_digit* t1 = td;
- sp_digit* t2 = td + 2 * 15;
- sp_digit* t3 = td + 4 * 15;
- sp_digit* t4 = td + 6 * 15;
- sp_digit* t5 = td + 8 * 15;
- /* 0x2 */
- sp_384_mont_sqr_15(t1, a, p384_mod, p384_mp_mod);
- /* 0x3 */
- sp_384_mont_mul_15(t5, t1, a, p384_mod, p384_mp_mod);
- /* 0xc */
- sp_384_mont_sqr_n_15(t1, t5, 2, p384_mod, p384_mp_mod);
- /* 0xf */
- sp_384_mont_mul_15(t2, t5, t1, p384_mod, p384_mp_mod);
- /* 0x1e */
- sp_384_mont_sqr_15(t1, t2, p384_mod, p384_mp_mod);
- /* 0x1f */
- sp_384_mont_mul_15(t4, t1, a, p384_mod, p384_mp_mod);
- /* 0x3e0 */
- sp_384_mont_sqr_n_15(t1, t4, 5, p384_mod, p384_mp_mod);
- /* 0x3ff */
- sp_384_mont_mul_15(t2, t4, t1, p384_mod, p384_mp_mod);
- /* 0x7fe0 */
- sp_384_mont_sqr_n_15(t1, t2, 5, p384_mod, p384_mp_mod);
- /* 0x7fff */
- sp_384_mont_mul_15(t4, t4, t1, p384_mod, p384_mp_mod);
- /* 0x3fff8000 */
- sp_384_mont_sqr_n_15(t1, t4, 15, p384_mod, p384_mp_mod);
- /* 0x3fffffff */
- sp_384_mont_mul_15(t2, t4, t1, p384_mod, p384_mp_mod);
- /* 0xfffffffc */
- sp_384_mont_sqr_n_15(t3, t2, 2, p384_mod, p384_mp_mod);
- /* 0xfffffffd */
- sp_384_mont_mul_15(r, t3, a, p384_mod, p384_mp_mod);
- /* 0xffffffff */
- sp_384_mont_mul_15(t3, t5, t3, p384_mod, p384_mp_mod);
- /* 0xfffffffc0000000 */
- sp_384_mont_sqr_n_15(t1, t2, 30, p384_mod, p384_mp_mod);
- /* 0xfffffffffffffff */
- sp_384_mont_mul_15(t2, t2, t1, p384_mod, p384_mp_mod);
- /* 0xfffffffffffffff000000000000000 */
- sp_384_mont_sqr_n_15(t1, t2, 60, p384_mod, p384_mp_mod);
- /* 0xffffffffffffffffffffffffffffff */
- sp_384_mont_mul_15(t2, t2, t1, p384_mod, p384_mp_mod);
- /* 0xffffffffffffffffffffffffffffff000000000000000000000000000000 */
- sp_384_mont_sqr_n_15(t1, t2, 120, p384_mod, p384_mp_mod);
- /* 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
- sp_384_mont_mul_15(t2, t2, t1, p384_mod, p384_mp_mod);
- /* 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8000 */
- sp_384_mont_sqr_n_15(t1, t2, 15, p384_mod, p384_mp_mod);
- /* 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
- sp_384_mont_mul_15(t2, t4, t1, p384_mod, p384_mp_mod);
- /* 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe00000000 */
- sp_384_mont_sqr_n_15(t1, t2, 33, p384_mod, p384_mp_mod);
- /* 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff */
- sp_384_mont_mul_15(t2, t3, t1, p384_mod, p384_mp_mod);
- /* 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff000000000000000000000000 */
- sp_384_mont_sqr_n_15(t1, t2, 96, p384_mod, p384_mp_mod);
- /* 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffd */
- sp_384_mont_mul_15(r, r, t1, p384_mod, p384_mp_mod);
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Map the Montgomery form projective coordinate point to an affine point.
- *
- * r Resulting affine coordinate point.
- * p Montgomery form projective coordinate point.
- * t Temporary ordinate data.
- */
- static void sp_384_map_15(sp_point_384* r, const sp_point_384* p,
- sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2*15;
- sp_int32 n;
- sp_384_mont_inv_15(t1, p->z, t + 2*15);
- sp_384_mont_sqr_15(t2, t1, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t1, t2, t1, p384_mod, p384_mp_mod);
- /* x /= z^2 */
- sp_384_mont_mul_15(r->x, p->x, t2, p384_mod, p384_mp_mod);
- XMEMSET(r->x + 15, 0, sizeof(sp_digit) * 15U);
- sp_384_mont_reduce_15(r->x, p384_mod, p384_mp_mod);
- /* Reduce x to less than modulus */
- n = sp_384_cmp_15(r->x, p384_mod);
- sp_384_cond_sub_15(r->x, r->x, p384_mod, ~(n >> 25));
- sp_384_norm_15(r->x);
- /* y /= z^3 */
- sp_384_mont_mul_15(r->y, p->y, t1, p384_mod, p384_mp_mod);
- XMEMSET(r->y + 15, 0, sizeof(sp_digit) * 15U);
- sp_384_mont_reduce_15(r->y, p384_mod, p384_mp_mod);
- /* Reduce y to less than modulus */
- n = sp_384_cmp_15(r->y, p384_mod);
- sp_384_cond_sub_15(r->y, r->y, p384_mod, ~(n >> 25));
- sp_384_norm_15(r->y);
- XMEMSET(r->z, 0, sizeof(r->z) / 2);
- r->z[0] = 1;
- }
- /* Add two Montgomery form numbers (r = a + b % m).
- *
- * r Result of addition.
- * a First number to add in Montgomery form.
- * b Second number to add in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_384_mont_add_15(sp_digit* r, const sp_digit* a, const sp_digit* b,
- const sp_digit* m)
- {
- sp_digit over;
- (void)sp_384_add_15(r, a, b);
- sp_384_norm_15(r);
- over = r[14] >> 20;
- sp_384_cond_sub_15(r, r, m, ~((over - 1) >> 31));
- sp_384_norm_15(r);
- }
- /* Double a Montgomery form number (r = a + a % m).
- *
- * r Result of doubling.
- * a Number to double in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_384_mont_dbl_15(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- sp_digit over;
- (void)sp_384_add_15(r, a, a);
- sp_384_norm_15(r);
- over = r[14] >> 20;
- sp_384_cond_sub_15(r, r, m, ~((over - 1) >> 31));
- sp_384_norm_15(r);
- }
- /* Triple a Montgomery form number (r = a + a + a % m).
- *
- * r Result of Tripling.
- * a Number to triple in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_384_mont_tpl_15(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- sp_digit over;
- (void)sp_384_add_15(r, a, a);
- sp_384_norm_15(r);
- over = r[14] >> 20;
- sp_384_cond_sub_15(r, r, m, ~((over - 1) >> 31));
- sp_384_norm_15(r);
- (void)sp_384_add_15(r, r, a);
- sp_384_norm_15(r);
- over = r[14] >> 20;
- sp_384_cond_sub_15(r, r, m, ~((over - 1) >> 31));
- sp_384_norm_15(r);
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_384_cond_add_15(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 15; i++) {
- r[i] = a[i] + (b[i] & m);
- }
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifndef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_384_cond_add_15(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- r[ 0] = a[ 0] + (b[ 0] & m);
- r[ 1] = a[ 1] + (b[ 1] & m);
- r[ 2] = a[ 2] + (b[ 2] & m);
- r[ 3] = a[ 3] + (b[ 3] & m);
- r[ 4] = a[ 4] + (b[ 4] & m);
- r[ 5] = a[ 5] + (b[ 5] & m);
- r[ 6] = a[ 6] + (b[ 6] & m);
- r[ 7] = a[ 7] + (b[ 7] & m);
- r[ 8] = a[ 8] + (b[ 8] & m);
- r[ 9] = a[ 9] + (b[ 9] & m);
- r[10] = a[10] + (b[10] & m);
- r[11] = a[11] + (b[11] & m);
- r[12] = a[12] + (b[12] & m);
- r[13] = a[13] + (b[13] & m);
- r[14] = a[14] + (b[14] & m);
- }
- #endif /* !WOLFSSL_SP_SMALL */
- /* Subtract two Montgomery form numbers (r = a - b % m).
- *
- * r Result of subtration.
- * a Number to subtract from in Montgomery form.
- * b Number to subtract with in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_384_mont_sub_15(sp_digit* r, const sp_digit* a, const sp_digit* b,
- const sp_digit* m)
- {
- (void)sp_384_sub_15(r, a, b);
- sp_384_norm_15(r);
- sp_384_cond_add_15(r, r, m, r[14] >> 20);
- sp_384_norm_15(r);
- }
- /* Shift number left one bit.
- * Bottom bit is lost.
- *
- * r Result of shift.
- * a Number to shift.
- */
- SP_NOINLINE static void sp_384_rshift1_15(sp_digit* r, const sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i=0; i<14; i++) {
- r[i] = (a[i] >> 1) + ((a[i + 1] << 25) & 0x3ffffff);
- }
- #else
- r[0] = (a[0] >> 1) + ((a[1] << 25) & 0x3ffffff);
- r[1] = (a[1] >> 1) + ((a[2] << 25) & 0x3ffffff);
- r[2] = (a[2] >> 1) + ((a[3] << 25) & 0x3ffffff);
- r[3] = (a[3] >> 1) + ((a[4] << 25) & 0x3ffffff);
- r[4] = (a[4] >> 1) + ((a[5] << 25) & 0x3ffffff);
- r[5] = (a[5] >> 1) + ((a[6] << 25) & 0x3ffffff);
- r[6] = (a[6] >> 1) + ((a[7] << 25) & 0x3ffffff);
- r[7] = (a[7] >> 1) + ((a[8] << 25) & 0x3ffffff);
- r[8] = (a[8] >> 1) + ((a[9] << 25) & 0x3ffffff);
- r[9] = (a[9] >> 1) + ((a[10] << 25) & 0x3ffffff);
- r[10] = (a[10] >> 1) + ((a[11] << 25) & 0x3ffffff);
- r[11] = (a[11] >> 1) + ((a[12] << 25) & 0x3ffffff);
- r[12] = (a[12] >> 1) + ((a[13] << 25) & 0x3ffffff);
- r[13] = (a[13] >> 1) + ((a[14] << 25) & 0x3ffffff);
- #endif
- r[14] = a[14] >> 1;
- }
- /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m)
- *
- * r Result of division by 2.
- * a Number to divide.
- * m Modulus (prime).
- */
- static void sp_384_mont_div2_15(sp_digit* r, const sp_digit* a,
- const sp_digit* m)
- {
- sp_384_cond_add_15(r, a, m, 0 - (a[0] & 1));
- sp_384_norm_15(r);
- sp_384_rshift1_15(r, r);
- }
- /* Double the Montgomery form projective point p.
- *
- * r Result of doubling point.
- * p Point to double.
- * t Temporary ordinate data.
- */
- static void sp_384_proj_point_dbl_15(sp_point_384* r, const sp_point_384* p,
- sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2*15;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- x = r->x;
- y = r->y;
- z = r->z;
- /* Put infinity into result. */
- if (r != p) {
- r->infinity = p->infinity;
- }
- /* T1 = Z * Z */
- sp_384_mont_sqr_15(t1, p->z, p384_mod, p384_mp_mod);
- /* Z = Y * Z */
- sp_384_mont_mul_15(z, p->y, p->z, p384_mod, p384_mp_mod);
- /* Z = 2Z */
- sp_384_mont_dbl_15(z, z, p384_mod);
- /* T2 = X - T1 */
- sp_384_mont_sub_15(t2, p->x, t1, p384_mod);
- /* T1 = X + T1 */
- sp_384_mont_add_15(t1, p->x, t1, p384_mod);
- /* T2 = T1 * T2 */
- sp_384_mont_mul_15(t2, t1, t2, p384_mod, p384_mp_mod);
- /* T1 = 3T2 */
- sp_384_mont_tpl_15(t1, t2, p384_mod);
- /* Y = 2Y */
- sp_384_mont_dbl_15(y, p->y, p384_mod);
- /* Y = Y * Y */
- sp_384_mont_sqr_15(y, y, p384_mod, p384_mp_mod);
- /* T2 = Y * Y */
- sp_384_mont_sqr_15(t2, y, p384_mod, p384_mp_mod);
- /* T2 = T2/2 */
- sp_384_mont_div2_15(t2, t2, p384_mod);
- /* Y = Y * X */
- sp_384_mont_mul_15(y, y, p->x, p384_mod, p384_mp_mod);
- /* X = T1 * T1 */
- sp_384_mont_sqr_15(x, t1, p384_mod, p384_mp_mod);
- /* X = X - Y */
- sp_384_mont_sub_15(x, x, y, p384_mod);
- /* X = X - Y */
- sp_384_mont_sub_15(x, x, y, p384_mod);
- /* Y = Y - X */
- sp_384_mont_sub_15(y, y, x, p384_mod);
- /* Y = Y * T1 */
- sp_384_mont_mul_15(y, y, t1, p384_mod, p384_mp_mod);
- /* Y = Y - T2 */
- sp_384_mont_sub_15(y, y, t2, p384_mod);
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_384_proj_point_dbl_15_ctx {
- int state;
- sp_digit* t1;
- sp_digit* t2;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- } sp_384_proj_point_dbl_15_ctx;
- /* Double the Montgomery form projective point p.
- *
- * r Result of doubling point.
- * p Point to double.
- * t Temporary ordinate data.
- */
- static int sp_384_proj_point_dbl_15_nb(sp_ecc_ctx_t* sp_ctx, sp_point_384* r,
- const sp_point_384* p, sp_digit* t)
- {
- int err = FP_WOULDBLOCK;
- sp_384_proj_point_dbl_15_ctx* ctx = (sp_384_proj_point_dbl_15_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_384_proj_point_dbl_15_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0:
- ctx->t1 = t;
- ctx->t2 = t + 2*15;
- ctx->x = r->x;
- ctx->y = r->y;
- ctx->z = r->z;
- /* Put infinity into result. */
- if (r != p) {
- r->infinity = p->infinity;
- }
- ctx->state = 1;
- break;
- case 1:
- /* T1 = Z * Z */
- sp_384_mont_sqr_15(ctx->t1, p->z, p384_mod, p384_mp_mod);
- ctx->state = 2;
- break;
- case 2:
- /* Z = Y * Z */
- sp_384_mont_mul_15(ctx->z, p->y, p->z, p384_mod, p384_mp_mod);
- ctx->state = 3;
- break;
- case 3:
- /* Z = 2Z */
- sp_384_mont_dbl_15(ctx->z, ctx->z, p384_mod);
- ctx->state = 4;
- break;
- case 4:
- /* T2 = X - T1 */
- sp_384_mont_sub_15(ctx->t2, p->x, ctx->t1, p384_mod);
- ctx->state = 5;
- break;
- case 5:
- /* T1 = X + T1 */
- sp_384_mont_add_15(ctx->t1, p->x, ctx->t1, p384_mod);
- ctx->state = 6;
- break;
- case 6:
- /* T2 = T1 * T2 */
- sp_384_mont_mul_15(ctx->t2, ctx->t1, ctx->t2, p384_mod, p384_mp_mod);
- ctx->state = 7;
- break;
- case 7:
- /* T1 = 3T2 */
- sp_384_mont_tpl_15(ctx->t1, ctx->t2, p384_mod);
- ctx->state = 8;
- break;
- case 8:
- /* Y = 2Y */
- sp_384_mont_dbl_15(ctx->y, p->y, p384_mod);
- ctx->state = 9;
- break;
- case 9:
- /* Y = Y * Y */
- sp_384_mont_sqr_15(ctx->y, ctx->y, p384_mod, p384_mp_mod);
- ctx->state = 10;
- break;
- case 10:
- /* T2 = Y * Y */
- sp_384_mont_sqr_15(ctx->t2, ctx->y, p384_mod, p384_mp_mod);
- ctx->state = 11;
- break;
- case 11:
- /* T2 = T2/2 */
- sp_384_mont_div2_15(ctx->t2, ctx->t2, p384_mod);
- ctx->state = 12;
- break;
- case 12:
- /* Y = Y * X */
- sp_384_mont_mul_15(ctx->y, ctx->y, p->x, p384_mod, p384_mp_mod);
- ctx->state = 13;
- break;
- case 13:
- /* X = T1 * T1 */
- sp_384_mont_sqr_15(ctx->x, ctx->t1, p384_mod, p384_mp_mod);
- ctx->state = 14;
- break;
- case 14:
- /* X = X - Y */
- sp_384_mont_sub_15(ctx->x, ctx->x, ctx->y, p384_mod);
- ctx->state = 15;
- break;
- case 15:
- /* X = X - Y */
- sp_384_mont_sub_15(ctx->x, ctx->x, ctx->y, p384_mod);
- ctx->state = 16;
- break;
- case 16:
- /* Y = Y - X */
- sp_384_mont_sub_15(ctx->y, ctx->y, ctx->x, p384_mod);
- ctx->state = 17;
- break;
- case 17:
- /* Y = Y * T1 */
- sp_384_mont_mul_15(ctx->y, ctx->y, ctx->t1, p384_mod, p384_mp_mod);
- ctx->state = 18;
- break;
- case 18:
- /* Y = Y - T2 */
- sp_384_mont_sub_15(ctx->y, ctx->y, ctx->t2, p384_mod);
- ctx->state = 19;
- /* fall-through */
- case 19:
- err = MP_OKAY;
- break;
- }
- if (err == MP_OKAY && ctx->state != 19) {
- err = FP_WOULDBLOCK;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- /* Compare two numbers to determine if they are equal.
- * Constant time implementation.
- *
- * a First number to compare.
- * b Second number to compare.
- * returns 1 when equal and 0 otherwise.
- */
- static int sp_384_cmp_equal_15(const sp_digit* a, const sp_digit* b)
- {
- return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2]) |
- (a[3] ^ b[3]) | (a[4] ^ b[4]) | (a[5] ^ b[5]) |
- (a[6] ^ b[6]) | (a[7] ^ b[7]) | (a[8] ^ b[8]) |
- (a[9] ^ b[9]) | (a[10] ^ b[10]) | (a[11] ^ b[11]) |
- (a[12] ^ b[12]) | (a[13] ^ b[13]) | (a[14] ^ b[14])) == 0;
- }
- /* Returns 1 if the number of zero.
- * Implementation is constant time.
- *
- * a Number to check.
- * returns 1 if the number is zero and 0 otherwise.
- */
- static int sp_384_iszero_15(const sp_digit* a)
- {
- return (a[0] | a[1] | a[2] | a[3] | a[4] | a[5] | a[6] | a[7] |
- a[8] | a[9] | a[10] | a[11] | a[12] | a[13] | a[14]) == 0;
- }
- /* Add two Montgomery form projective points.
- *
- * r Result of addition.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static void sp_384_proj_point_add_15(sp_point_384* r,
- const sp_point_384* p, const sp_point_384* q, sp_digit* t)
- {
- sp_digit* t6 = t;
- sp_digit* t1 = t + 2*15;
- sp_digit* t2 = t + 4*15;
- sp_digit* t3 = t + 6*15;
- sp_digit* t4 = t + 8*15;
- sp_digit* t5 = t + 10*15;
- /* U1 = X1*Z2^2 */
- sp_384_mont_sqr_15(t1, q->z, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t3, t1, q->z, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t1, t1, p->x, p384_mod, p384_mp_mod);
- /* U2 = X2*Z1^2 */
- sp_384_mont_sqr_15(t2, p->z, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t4, t2, p->z, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t2, t2, q->x, p384_mod, p384_mp_mod);
- /* S1 = Y1*Z2^3 */
- sp_384_mont_mul_15(t3, t3, p->y, p384_mod, p384_mp_mod);
- /* S2 = Y2*Z1^3 */
- sp_384_mont_mul_15(t4, t4, q->y, p384_mod, p384_mp_mod);
- /* Check double */
- if ((~p->infinity) & (~q->infinity) &
- sp_384_cmp_equal_15(t2, t1) &
- sp_384_cmp_equal_15(t4, t3)) {
- sp_384_proj_point_dbl_15(r, p, t);
- }
- else {
- sp_digit* x = t6;
- sp_digit* y = t1;
- sp_digit* z = t2;
- /* H = U2 - U1 */
- sp_384_mont_sub_15(t2, t2, t1, p384_mod);
- /* R = S2 - S1 */
- sp_384_mont_sub_15(t4, t4, t3, p384_mod);
- /* X3 = R^2 - H^3 - 2*U1*H^2 */
- sp_384_mont_sqr_15(t5, t2, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(y, t1, t5, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t5, t5, t2, p384_mod, p384_mp_mod);
- /* Z3 = H*Z1*Z2 */
- sp_384_mont_mul_15(z, p->z, t2, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(z, z, q->z, p384_mod, p384_mp_mod);
- sp_384_mont_sqr_15(x, t4, p384_mod, p384_mp_mod);
- sp_384_mont_sub_15(x, x, t5, p384_mod);
- sp_384_mont_mul_15(t5, t5, t3, p384_mod, p384_mp_mod);
- sp_384_mont_dbl_15(t3, y, p384_mod);
- sp_384_mont_sub_15(x, x, t3, p384_mod);
- /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
- sp_384_mont_sub_15(y, y, x, p384_mod);
- sp_384_mont_mul_15(y, y, t4, p384_mod, p384_mp_mod);
- sp_384_mont_sub_15(y, y, t5, p384_mod);
- {
- int i;
- sp_digit maskp = 0 - (q->infinity & (!p->infinity));
- sp_digit maskq = 0 - (p->infinity & (!q->infinity));
- sp_digit maskt = ~(maskp | maskq);
- sp_digit inf = (sp_digit)(p->infinity & q->infinity);
- for (i = 0; i < 15; i++) {
- r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
- (x[i] & maskt);
- }
- for (i = 0; i < 15; i++) {
- r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
- (y[i] & maskt);
- }
- for (i = 0; i < 15; i++) {
- r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
- (z[i] & maskt);
- }
- r->z[0] |= inf;
- r->infinity = (word32)inf;
- }
- }
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_384_proj_point_add_15_ctx {
- int state;
- sp_384_proj_point_dbl_15_ctx dbl_ctx;
- const sp_point_384* ap[2];
- sp_point_384* rp[2];
- sp_digit* t1;
- sp_digit* t2;
- sp_digit* t3;
- sp_digit* t4;
- sp_digit* t5;
- sp_digit* t6;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- } sp_384_proj_point_add_15_ctx;
- /* Add two Montgomery form projective points.
- *
- * r Result of addition.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static int sp_384_proj_point_add_15_nb(sp_ecc_ctx_t* sp_ctx, sp_point_384* r,
- const sp_point_384* p, const sp_point_384* q, sp_digit* t)
- {
- int err = FP_WOULDBLOCK;
- sp_384_proj_point_add_15_ctx* ctx = (sp_384_proj_point_add_15_ctx*)sp_ctx->data;
- /* Ensure only the first point is the same as the result. */
- if (q == r) {
- const sp_point_384* a = p;
- p = q;
- q = a;
- }
- typedef char ctx_size_test[sizeof(sp_384_proj_point_add_15_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0: /* INIT */
- ctx->t6 = t;
- ctx->t1 = t + 2*15;
- ctx->t2 = t + 4*15;
- ctx->t3 = t + 6*15;
- ctx->t4 = t + 8*15;
- ctx->t5 = t + 10*15;
- ctx->x = ctx->t6;
- ctx->y = ctx->t1;
- ctx->z = ctx->t2;
- ctx->state = 1;
- break;
- case 1:
- /* U1 = X1*Z2^2 */
- sp_384_mont_sqr_15(ctx->t1, q->z, p384_mod, p384_mp_mod);
- ctx->state = 2;
- break;
- case 2:
- sp_384_mont_mul_15(ctx->t3, ctx->t1, q->z, p384_mod, p384_mp_mod);
- ctx->state = 3;
- break;
- case 3:
- sp_384_mont_mul_15(ctx->t1, ctx->t1, p->x, p384_mod, p384_mp_mod);
- ctx->state = 4;
- break;
- case 4:
- /* U2 = X2*Z1^2 */
- sp_384_mont_sqr_15(ctx->t2, p->z, p384_mod, p384_mp_mod);
- ctx->state = 5;
- break;
- case 5:
- sp_384_mont_mul_15(ctx->t4, ctx->t2, p->z, p384_mod, p384_mp_mod);
- ctx->state = 6;
- break;
- case 6:
- sp_384_mont_mul_15(ctx->t2, ctx->t2, q->x, p384_mod, p384_mp_mod);
- ctx->state = 7;
- break;
- case 7:
- /* S1 = Y1*Z2^3 */
- sp_384_mont_mul_15(ctx->t3, ctx->t3, p->y, p384_mod, p384_mp_mod);
- ctx->state = 8;
- break;
- case 8:
- /* S2 = Y2*Z1^3 */
- sp_384_mont_mul_15(ctx->t4, ctx->t4, q->y, p384_mod, p384_mp_mod);
- ctx->state = 9;
- break;
- case 9:
- /* Check double */
- if ((~p->infinity) & (~q->infinity) &
- sp_384_cmp_equal_15(ctx->t2, ctx->t1) &
- sp_384_cmp_equal_15(ctx->t4, ctx->t3)) {
- XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
- sp_384_proj_point_dbl_15(r, p, t);
- ctx->state = 25;
- }
- else {
- ctx->state = 10;
- }
- break;
- case 10:
- /* H = U2 - U1 */
- sp_384_mont_sub_15(ctx->t2, ctx->t2, ctx->t1, p384_mod);
- ctx->state = 11;
- break;
- case 11:
- /* R = S2 - S1 */
- sp_384_mont_sub_15(ctx->t4, ctx->t4, ctx->t3, p384_mod);
- ctx->state = 12;
- break;
- case 12:
- /* X3 = R^2 - H^3 - 2*U1*H^2 */
- sp_384_mont_sqr_15(ctx->t5, ctx->t2, p384_mod, p384_mp_mod);
- ctx->state = 13;
- break;
- case 13:
- sp_384_mont_mul_15(ctx->y, ctx->t1, ctx->t5, p384_mod, p384_mp_mod);
- ctx->state = 14;
- break;
- case 14:
- sp_384_mont_mul_15(ctx->t5, ctx->t5, ctx->t2, p384_mod, p384_mp_mod);
- ctx->state = 15;
- break;
- case 15:
- /* Z3 = H*Z1*Z2 */
- sp_384_mont_mul_15(ctx->z, p->z, ctx->t2, p384_mod, p384_mp_mod);
- ctx->state = 16;
- break;
- case 16:
- sp_384_mont_mul_15(ctx->z, ctx->z, q->z, p384_mod, p384_mp_mod);
- ctx->state = 17;
- break;
- case 17:
- sp_384_mont_sqr_15(ctx->x, ctx->t4, p384_mod, p384_mp_mod);
- ctx->state = 18;
- break;
- case 18:
- sp_384_mont_sub_15(ctx->x, ctx->x, ctx->t5, p384_mod);
- ctx->state = 19;
- break;
- case 19:
- sp_384_mont_mul_15(ctx->t5, ctx->t5, ctx->t3, p384_mod, p384_mp_mod);
- ctx->state = 20;
- break;
- case 20:
- sp_384_mont_dbl_15(ctx->t3, ctx->y, p384_mod);
- sp_384_mont_sub_15(ctx->x, ctx->x, ctx->t3, p384_mod);
- ctx->state = 21;
- break;
- case 21:
- /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
- sp_384_mont_sub_15(ctx->y, ctx->y, ctx->x, p384_mod);
- ctx->state = 22;
- break;
- case 22:
- sp_384_mont_mul_15(ctx->y, ctx->y, ctx->t4, p384_mod, p384_mp_mod);
- ctx->state = 23;
- break;
- case 23:
- sp_384_mont_sub_15(ctx->y, ctx->y, ctx->t5, p384_mod);
- ctx->state = 24;
- break;
- case 24:
- {
- {
- int i;
- sp_digit maskp = 0 - (q->infinity & (!p->infinity));
- sp_digit maskq = 0 - (p->infinity & (!q->infinity));
- sp_digit maskt = ~(maskp | maskq);
- sp_digit inf = (sp_digit)(p->infinity & q->infinity);
- for (i = 0; i < 15; i++) {
- r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
- (ctx->x[i] & maskt);
- }
- for (i = 0; i < 15; i++) {
- r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
- (ctx->y[i] & maskt);
- }
- for (i = 0; i < 15; i++) {
- r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
- (ctx->z[i] & maskt);
- }
- r->z[0] |= inf;
- r->infinity = (word32)inf;
- }
- ctx->state = 25;
- break;
- }
- case 25:
- err = MP_OKAY;
- break;
- }
- if (err == MP_OKAY && ctx->state != 25) {
- err = FP_WOULDBLOCK;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- /* Multiply a number by Montgomery normalizer mod modulus (prime).
- *
- * r The resulting Montgomery form number.
- * a The number to convert.
- * m The modulus (prime).
- * returns MEMORY_E when memory allocation fails and MP_OKAY otherwise.
- */
- static int sp_384_mod_mul_norm_15(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- int64_t* t = NULL;
- #else
- int64_t t[2 * 12];
- #endif
- int64_t* a32 = NULL;
- int64_t o;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (int64_t*)XMALLOC(sizeof(int64_t) * 2 * 12, NULL, DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- a32 = t + 12;
- a32[0] = a[0];
- a32[0] |= a[1] << 26U;
- a32[0] &= 0xffffffffL;
- a32[1] = (a[1] >> 6);
- a32[1] |= a[2] << 20U;
- a32[1] &= 0xffffffffL;
- a32[2] = (a[2] >> 12);
- a32[2] |= a[3] << 14U;
- a32[2] &= 0xffffffffL;
- a32[3] = (a[3] >> 18);
- a32[3] |= a[4] << 8U;
- a32[3] &= 0xffffffffL;
- a32[4] = (a[4] >> 24);
- a32[4] |= a[5] << 2U;
- a32[4] |= a[6] << 28U;
- a32[4] &= 0xffffffffL;
- a32[5] = (a[6] >> 4);
- a32[5] |= a[7] << 22U;
- a32[5] &= 0xffffffffL;
- a32[6] = (a[7] >> 10);
- a32[6] |= a[8] << 16U;
- a32[6] &= 0xffffffffL;
- a32[7] = (a[8] >> 16);
- a32[7] |= a[9] << 10U;
- a32[7] &= 0xffffffffL;
- a32[8] = (a[9] >> 22);
- a32[8] |= a[10] << 4U;
- a32[8] |= a[11] << 30U;
- a32[8] &= 0xffffffffL;
- a32[9] = (a[11] >> 2);
- a32[9] |= a[12] << 24U;
- a32[9] &= 0xffffffffL;
- a32[10] = (a[12] >> 8);
- a32[10] |= a[13] << 18U;
- a32[10] &= 0xffffffffL;
- a32[11] = (a[13] >> 14);
- a32[11] |= a[14] << 12U;
- a32[11] &= 0xffffffffL;
- /* 1 0 0 0 0 0 0 0 1 1 0 -1 */
- t[0] = 0 + a32[0] + a32[8] + a32[9] - a32[11];
- /* -1 1 0 0 0 0 0 0 -1 0 1 1 */
- t[1] = 0 - a32[0] + a32[1] - a32[8] + a32[10] + a32[11];
- /* 0 -1 1 0 0 0 0 0 0 -1 0 1 */
- t[2] = 0 - a32[1] + a32[2] - a32[9] + a32[11];
- /* 1 0 -1 1 0 0 0 0 1 1 -1 -1 */
- t[3] = 0 + a32[0] - a32[2] + a32[3] + a32[8] + a32[9] - a32[10] - a32[11];
- /* 1 1 0 -1 1 0 0 0 1 2 1 -2 */
- t[4] = 0 + a32[0] + a32[1] - a32[3] + a32[4] + a32[8] + 2 * a32[9] + a32[10] - 2 * a32[11];
- /* 0 1 1 0 -1 1 0 0 0 1 2 1 */
- t[5] = 0 + a32[1] + a32[2] - a32[4] + a32[5] + a32[9] + 2 * a32[10] + a32[11];
- /* 0 0 1 1 0 -1 1 0 0 0 1 2 */
- t[6] = 0 + a32[2] + a32[3] - a32[5] + a32[6] + a32[10] + 2 * a32[11];
- /* 0 0 0 1 1 0 -1 1 0 0 0 1 */
- t[7] = 0 + a32[3] + a32[4] - a32[6] + a32[7] + a32[11];
- /* 0 0 0 0 1 1 0 -1 1 0 0 0 */
- t[8] = 0 + a32[4] + a32[5] - a32[7] + a32[8];
- /* 0 0 0 0 0 1 1 0 -1 1 0 0 */
- t[9] = 0 + a32[5] + a32[6] - a32[8] + a32[9];
- /* 0 0 0 0 0 0 1 1 0 -1 1 0 */
- t[10] = 0 + a32[6] + a32[7] - a32[9] + a32[10];
- /* 0 0 0 0 0 0 0 1 1 0 -1 1 */
- t[11] = 0 + a32[7] + a32[8] - a32[10] + a32[11];
- t[1] += t[0] >> 32; t[0] &= 0xffffffff;
- t[2] += t[1] >> 32; t[1] &= 0xffffffff;
- t[3] += t[2] >> 32; t[2] &= 0xffffffff;
- t[4] += t[3] >> 32; t[3] &= 0xffffffff;
- t[5] += t[4] >> 32; t[4] &= 0xffffffff;
- t[6] += t[5] >> 32; t[5] &= 0xffffffff;
- t[7] += t[6] >> 32; t[6] &= 0xffffffff;
- t[8] += t[7] >> 32; t[7] &= 0xffffffff;
- t[9] += t[8] >> 32; t[8] &= 0xffffffff;
- t[10] += t[9] >> 32; t[9] &= 0xffffffff;
- t[11] += t[10] >> 32; t[10] &= 0xffffffff;
- o = t[11] >> 32; t[11] &= 0xffffffff;
- t[0] += o;
- t[1] -= o;
- t[3] += o;
- t[4] += o;
- t[1] += t[0] >> 32; t[0] &= 0xffffffff;
- t[2] += t[1] >> 32; t[1] &= 0xffffffff;
- t[3] += t[2] >> 32; t[2] &= 0xffffffff;
- t[4] += t[3] >> 32; t[3] &= 0xffffffff;
- t[5] += t[4] >> 32; t[4] &= 0xffffffff;
- t[6] += t[5] >> 32; t[5] &= 0xffffffff;
- t[7] += t[6] >> 32; t[6] &= 0xffffffff;
- t[8] += t[7] >> 32; t[7] &= 0xffffffff;
- t[9] += t[8] >> 32; t[8] &= 0xffffffff;
- t[10] += t[9] >> 32; t[9] &= 0xffffffff;
- t[11] += t[10] >> 32; t[10] &= 0xffffffff;
- r[0] = (sp_digit)(t[0]) & 0x3ffffffL;
- r[1] = (sp_digit)(t[0] >> 26U);
- r[1] |= (sp_digit)(t[1] << 6U);
- r[1] &= 0x3ffffffL;
- r[2] = (sp_digit)(t[1] >> 20U);
- r[2] |= (sp_digit)(t[2] << 12U);
- r[2] &= 0x3ffffffL;
- r[3] = (sp_digit)(t[2] >> 14U);
- r[3] |= (sp_digit)(t[3] << 18U);
- r[3] &= 0x3ffffffL;
- r[4] = (sp_digit)(t[3] >> 8U);
- r[4] |= (sp_digit)(t[4] << 24U);
- r[4] &= 0x3ffffffL;
- r[5] = (sp_digit)(t[4] >> 2U) & 0x3ffffffL;
- r[6] = (sp_digit)(t[4] >> 28U);
- r[6] |= (sp_digit)(t[5] << 4U);
- r[6] &= 0x3ffffffL;
- r[7] = (sp_digit)(t[5] >> 22U);
- r[7] |= (sp_digit)(t[6] << 10U);
- r[7] &= 0x3ffffffL;
- r[8] = (sp_digit)(t[6] >> 16U);
- r[8] |= (sp_digit)(t[7] << 16U);
- r[8] &= 0x3ffffffL;
- r[9] = (sp_digit)(t[7] >> 10U);
- r[9] |= (sp_digit)(t[8] << 22U);
- r[9] &= 0x3ffffffL;
- r[10] = (sp_digit)(t[8] >> 4U) & 0x3ffffffL;
- r[11] = (sp_digit)(t[8] >> 30U);
- r[11] |= (sp_digit)(t[9] << 2U);
- r[11] &= 0x3ffffffL;
- r[12] = (sp_digit)(t[9] >> 24U);
- r[12] |= (sp_digit)(t[10] << 8U);
- r[12] &= 0x3ffffffL;
- r[13] = (sp_digit)(t[10] >> 18U);
- r[13] |= (sp_digit)(t[11] << 14U);
- r[13] &= 0x3ffffffL;
- r[14] = (sp_digit)(t[11] >> 12U);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Small implementation using add and double that is cache attack resistant but
- * allocates memory rather than use large stacks.
- * 384 adds and doubles.
- *
- * r Resulting point.
- * g Point to multiply.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_384_ecc_mulmod_15(sp_point_384* r, const sp_point_384* g,
- const sp_digit* k, int map, int ct, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_384* t = NULL;
- sp_digit* tmp = NULL;
- #else
- sp_point_384 t[3];
- sp_digit tmp[2 * 15 * 6];
- #endif
- sp_digit n;
- int i;
- int c;
- int y;
- int err = MP_OKAY;
- /* Implementation is constant time. */
- (void)ct;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 3, heap,
- DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 6, heap,
- DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- XMEMSET(t, 0, sizeof(sp_point_384) * 3);
- /* t[0] = {0, 0, 1} * norm */
- t[0].infinity = 1;
- /* t[1] = {g->x, g->y, g->z} * norm */
- err = sp_384_mod_mul_norm_15(t[1].x, g->x, p384_mod);
- }
- if (err == MP_OKAY)
- err = sp_384_mod_mul_norm_15(t[1].y, g->y, p384_mod);
- if (err == MP_OKAY)
- err = sp_384_mod_mul_norm_15(t[1].z, g->z, p384_mod);
- if (err == MP_OKAY) {
- i = 14;
- c = 20;
- n = k[i--] << (26 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1)
- break;
- n = k[i--];
- c = 26;
- }
- y = (n >> 25) & 1;
- n <<= 1;
- sp_384_proj_point_add_15(&t[y^1], &t[0], &t[1], tmp);
- XMEMCPY(&t[2], (void*)(((size_t)&t[0] & addr_mask[y^1]) +
- ((size_t)&t[1] & addr_mask[y])),
- sizeof(sp_point_384));
- sp_384_proj_point_dbl_15(&t[2], &t[2], tmp);
- XMEMCPY((void*)(((size_t)&t[0] & addr_mask[y^1]) +
- ((size_t)&t[1] & addr_mask[y])), &t[2],
- sizeof(sp_point_384));
- }
- if (map != 0) {
- sp_384_map_15(r, &t[0], tmp);
- }
- else {
- XMEMCPY(r, &t[0], sizeof(sp_point_384));
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (tmp != NULL)
- #endif
- {
- ForceZero(tmp, sizeof(sp_digit) * 2 * 15 * 6);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- #endif
- {
- ForceZero(t, sizeof(sp_point_384) * 3);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_384_ecc_mulmod_15_ctx {
- int state;
- union {
- sp_384_proj_point_dbl_15_ctx dbl_ctx;
- sp_384_proj_point_add_15_ctx add_ctx;
- };
- sp_point_384 t[3];
- sp_digit tmp[2 * 15 * 6];
- sp_digit n;
- int i;
- int c;
- int y;
- } sp_384_ecc_mulmod_15_ctx;
- static int sp_384_ecc_mulmod_15_nb(sp_ecc_ctx_t* sp_ctx, sp_point_384* r,
- const sp_point_384* g, const sp_digit* k, int map, int ct, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_384_ecc_mulmod_15_ctx* ctx = (sp_384_ecc_mulmod_15_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_384_ecc_mulmod_15_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- /* Implementation is constant time. */
- (void)ct;
- switch (ctx->state) {
- case 0: /* INIT */
- XMEMSET(ctx->t, 0, sizeof(sp_point_384) * 3);
- ctx->i = 14;
- ctx->c = 20;
- ctx->n = k[ctx->i--] << (26 - ctx->c);
- /* t[0] = {0, 0, 1} * norm */
- ctx->t[0].infinity = 1;
- ctx->state = 1;
- break;
- case 1: /* T1X */
- /* t[1] = {g->x, g->y, g->z} * norm */
- err = sp_384_mod_mul_norm_15(ctx->t[1].x, g->x, p384_mod);
- ctx->state = 2;
- break;
- case 2: /* T1Y */
- err = sp_384_mod_mul_norm_15(ctx->t[1].y, g->y, p384_mod);
- ctx->state = 3;
- break;
- case 3: /* T1Z */
- err = sp_384_mod_mul_norm_15(ctx->t[1].z, g->z, p384_mod);
- ctx->state = 4;
- break;
- case 4: /* ADDPREP */
- if (ctx->c == 0) {
- if (ctx->i == -1) {
- ctx->state = 7;
- break;
- }
- ctx->n = k[ctx->i--];
- ctx->c = 26;
- }
- ctx->y = (ctx->n >> 25) & 1;
- ctx->n <<= 1;
- XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
- ctx->state = 5;
- break;
- case 5: /* ADD */
- err = sp_384_proj_point_add_15_nb((sp_ecc_ctx_t*)&ctx->add_ctx,
- &ctx->t[ctx->y^1], &ctx->t[0], &ctx->t[1], ctx->tmp);
- if (err == MP_OKAY) {
- XMEMCPY(&ctx->t[2], (void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
- ((size_t)&ctx->t[1] & addr_mask[ctx->y])),
- sizeof(sp_point_384));
- XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
- ctx->state = 6;
- }
- break;
- case 6: /* DBL */
- err = sp_384_proj_point_dbl_15_nb((sp_ecc_ctx_t*)&ctx->dbl_ctx, &ctx->t[2],
- &ctx->t[2], ctx->tmp);
- if (err == MP_OKAY) {
- XMEMCPY((void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
- ((size_t)&ctx->t[1] & addr_mask[ctx->y])), &ctx->t[2],
- sizeof(sp_point_384));
- ctx->state = 4;
- ctx->c--;
- }
- break;
- case 7: /* MAP */
- if (map != 0) {
- sp_384_map_15(r, &ctx->t[0], ctx->tmp);
- }
- else {
- XMEMCPY(r, &ctx->t[0], sizeof(sp_point_384));
- }
- err = MP_OKAY;
- break;
- }
- if (err == MP_OKAY && ctx->state != 7) {
- err = FP_WOULDBLOCK;
- }
- if (err != FP_WOULDBLOCK) {
- ForceZero(ctx->tmp, sizeof(ctx->tmp));
- ForceZero(ctx->t, sizeof(ctx->t));
- }
- (void)heap;
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #else
- /* A table entry for pre-computed points. */
- typedef struct sp_table_entry_384 {
- sp_digit x[15];
- sp_digit y[15];
- } sp_table_entry_384;
- /* Conditionally copy a into r using the mask m.
- * m is -1 to copy and 0 when not.
- *
- * r A single precision number to copy over.
- * a A single precision number to copy.
- * m Mask value to apply.
- */
- static void sp_384_cond_copy_15(sp_digit* r, const sp_digit* a, const sp_digit m)
- {
- sp_digit t[15];
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 15; i++) {
- t[i] = r[i] ^ a[i];
- }
- for (i = 0; i < 15; i++) {
- r[i] ^= t[i] & m;
- }
- #else
- t[ 0] = r[ 0] ^ a[ 0];
- t[ 1] = r[ 1] ^ a[ 1];
- t[ 2] = r[ 2] ^ a[ 2];
- t[ 3] = r[ 3] ^ a[ 3];
- t[ 4] = r[ 4] ^ a[ 4];
- t[ 5] = r[ 5] ^ a[ 5];
- t[ 6] = r[ 6] ^ a[ 6];
- t[ 7] = r[ 7] ^ a[ 7];
- t[ 8] = r[ 8] ^ a[ 8];
- t[ 9] = r[ 9] ^ a[ 9];
- t[10] = r[10] ^ a[10];
- t[11] = r[11] ^ a[11];
- t[12] = r[12] ^ a[12];
- t[13] = r[13] ^ a[13];
- t[14] = r[14] ^ a[14];
- r[ 0] ^= t[ 0] & m;
- r[ 1] ^= t[ 1] & m;
- r[ 2] ^= t[ 2] & m;
- r[ 3] ^= t[ 3] & m;
- r[ 4] ^= t[ 4] & m;
- r[ 5] ^= t[ 5] & m;
- r[ 6] ^= t[ 6] & m;
- r[ 7] ^= t[ 7] & m;
- r[ 8] ^= t[ 8] & m;
- r[ 9] ^= t[ 9] & m;
- r[10] ^= t[10] & m;
- r[11] ^= t[11] & m;
- r[12] ^= t[12] & m;
- r[13] ^= t[13] & m;
- r[14] ^= t[14] & m;
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Double the Montgomery form projective point p a number of times.
- *
- * r Result of repeated doubling of point.
- * p Point to double.
- * n Number of times to double
- * t Temporary ordinate data.
- */
- static void sp_384_proj_point_dbl_n_15(sp_point_384* p, int i,
- sp_digit* t)
- {
- sp_digit* w = t;
- sp_digit* a = t + 2*15;
- sp_digit* b = t + 4*15;
- sp_digit* t1 = t + 6*15;
- sp_digit* t2 = t + 8*15;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- volatile int n = i;
- x = p->x;
- y = p->y;
- z = p->z;
- /* Y = 2*Y */
- sp_384_mont_dbl_15(y, y, p384_mod);
- /* W = Z^4 */
- sp_384_mont_sqr_15(w, z, p384_mod, p384_mp_mod);
- sp_384_mont_sqr_15(w, w, p384_mod, p384_mp_mod);
- #ifndef WOLFSSL_SP_SMALL
- while (--n > 0)
- #else
- while (--n >= 0)
- #endif
- {
- /* A = 3*(X^2 - W) */
- sp_384_mont_sqr_15(t1, x, p384_mod, p384_mp_mod);
- sp_384_mont_sub_15(t1, t1, w, p384_mod);
- sp_384_mont_tpl_15(a, t1, p384_mod);
- /* B = X*Y^2 */
- sp_384_mont_sqr_15(t1, y, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(b, t1, x, p384_mod, p384_mp_mod);
- /* X = A^2 - 2B */
- sp_384_mont_sqr_15(x, a, p384_mod, p384_mp_mod);
- sp_384_mont_dbl_15(t2, b, p384_mod);
- sp_384_mont_sub_15(x, x, t2, p384_mod);
- /* B = 2.(B - X) */
- sp_384_mont_sub_15(t2, b, x, p384_mod);
- sp_384_mont_dbl_15(b, t2, p384_mod);
- /* Z = Z*Y */
- sp_384_mont_mul_15(z, z, y, p384_mod, p384_mp_mod);
- /* t1 = Y^4 */
- sp_384_mont_sqr_15(t1, t1, p384_mod, p384_mp_mod);
- #ifdef WOLFSSL_SP_SMALL
- if (n != 0)
- #endif
- {
- /* W = W*Y^4 */
- sp_384_mont_mul_15(w, w, t1, p384_mod, p384_mp_mod);
- }
- /* y = 2*A*(B - X) - Y^4 */
- sp_384_mont_mul_15(y, b, a, p384_mod, p384_mp_mod);
- sp_384_mont_sub_15(y, y, t1, p384_mod);
- }
- #ifndef WOLFSSL_SP_SMALL
- /* A = 3*(X^2 - W) */
- sp_384_mont_sqr_15(t1, x, p384_mod, p384_mp_mod);
- sp_384_mont_sub_15(t1, t1, w, p384_mod);
- sp_384_mont_tpl_15(a, t1, p384_mod);
- /* B = X*Y^2 */
- sp_384_mont_sqr_15(t1, y, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(b, t1, x, p384_mod, p384_mp_mod);
- /* X = A^2 - 2B */
- sp_384_mont_sqr_15(x, a, p384_mod, p384_mp_mod);
- sp_384_mont_dbl_15(t2, b, p384_mod);
- sp_384_mont_sub_15(x, x, t2, p384_mod);
- /* B = 2.(B - X) */
- sp_384_mont_sub_15(t2, b, x, p384_mod);
- sp_384_mont_dbl_15(b, t2, p384_mod);
- /* Z = Z*Y */
- sp_384_mont_mul_15(z, z, y, p384_mod, p384_mp_mod);
- /* t1 = Y^4 */
- sp_384_mont_sqr_15(t1, t1, p384_mod, p384_mp_mod);
- /* y = 2*A*(B - X) - Y^4 */
- sp_384_mont_mul_15(y, b, a, p384_mod, p384_mp_mod);
- sp_384_mont_sub_15(y, y, t1, p384_mod);
- #endif /* WOLFSSL_SP_SMALL */
- /* Y = Y/2 */
- sp_384_mont_div2_15(y, y, p384_mod);
- }
- /* Double the Montgomery form projective point p a number of times.
- *
- * r Result of repeated doubling of point.
- * p Point to double.
- * n Number of times to double
- * t Temporary ordinate data.
- */
- static void sp_384_proj_point_dbl_n_store_15(sp_point_384* r,
- const sp_point_384* p, int n, int m, sp_digit* t)
- {
- sp_digit* w = t;
- sp_digit* a = t + 2*15;
- sp_digit* b = t + 4*15;
- sp_digit* t1 = t + 6*15;
- sp_digit* t2 = t + 8*15;
- sp_digit* x = r[2*m].x;
- sp_digit* y = r[(1<<n)*m].y;
- sp_digit* z = r[2*m].z;
- int i;
- int j;
- for (i=0; i<15; i++) {
- x[i] = p->x[i];
- }
- for (i=0; i<15; i++) {
- y[i] = p->y[i];
- }
- for (i=0; i<15; i++) {
- z[i] = p->z[i];
- }
- /* Y = 2*Y */
- sp_384_mont_dbl_15(y, y, p384_mod);
- /* W = Z^4 */
- sp_384_mont_sqr_15(w, z, p384_mod, p384_mp_mod);
- sp_384_mont_sqr_15(w, w, p384_mod, p384_mp_mod);
- j = m;
- for (i=1; i<=n; i++) {
- j *= 2;
- /* A = 3*(X^2 - W) */
- sp_384_mont_sqr_15(t1, x, p384_mod, p384_mp_mod);
- sp_384_mont_sub_15(t1, t1, w, p384_mod);
- sp_384_mont_tpl_15(a, t1, p384_mod);
- /* B = X*Y^2 */
- sp_384_mont_sqr_15(t1, y, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(b, t1, x, p384_mod, p384_mp_mod);
- x = r[j].x;
- /* X = A^2 - 2B */
- sp_384_mont_sqr_15(x, a, p384_mod, p384_mp_mod);
- sp_384_mont_dbl_15(t2, b, p384_mod);
- sp_384_mont_sub_15(x, x, t2, p384_mod);
- /* B = 2.(B - X) */
- sp_384_mont_sub_15(t2, b, x, p384_mod);
- sp_384_mont_dbl_15(b, t2, p384_mod);
- /* Z = Z*Y */
- sp_384_mont_mul_15(r[j].z, z, y, p384_mod, p384_mp_mod);
- z = r[j].z;
- /* t1 = Y^4 */
- sp_384_mont_sqr_15(t1, t1, p384_mod, p384_mp_mod);
- if (i != n) {
- /* W = W*Y^4 */
- sp_384_mont_mul_15(w, w, t1, p384_mod, p384_mp_mod);
- }
- /* y = 2*A*(B - X) - Y^4 */
- sp_384_mont_mul_15(y, b, a, p384_mod, p384_mp_mod);
- sp_384_mont_sub_15(y, y, t1, p384_mod);
- /* Y = Y/2 */
- sp_384_mont_div2_15(r[j].y, y, p384_mod);
- r[j].infinity = 0;
- }
- }
- /* Add two Montgomery form projective points.
- *
- * ra Result of addition.
- * rs Result of subtraction.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static void sp_384_proj_point_add_sub_15(sp_point_384* ra,
- sp_point_384* rs, const sp_point_384* p, const sp_point_384* q,
- sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2*15;
- sp_digit* t3 = t + 4*15;
- sp_digit* t4 = t + 6*15;
- sp_digit* t5 = t + 8*15;
- sp_digit* t6 = t + 10*15;
- sp_digit* xa = ra->x;
- sp_digit* ya = ra->y;
- sp_digit* za = ra->z;
- sp_digit* xs = rs->x;
- sp_digit* ys = rs->y;
- sp_digit* zs = rs->z;
- XMEMCPY(xa, p->x, sizeof(p->x) / 2);
- XMEMCPY(ya, p->y, sizeof(p->y) / 2);
- XMEMCPY(za, p->z, sizeof(p->z) / 2);
- ra->infinity = 0;
- rs->infinity = 0;
- /* U1 = X1*Z2^2 */
- sp_384_mont_sqr_15(t1, q->z, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t3, t1, q->z, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t1, t1, xa, p384_mod, p384_mp_mod);
- /* U2 = X2*Z1^2 */
- sp_384_mont_sqr_15(t2, za, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t4, t2, za, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t2, t2, q->x, p384_mod, p384_mp_mod);
- /* S1 = Y1*Z2^3 */
- sp_384_mont_mul_15(t3, t3, ya, p384_mod, p384_mp_mod);
- /* S2 = Y2*Z1^3 */
- sp_384_mont_mul_15(t4, t4, q->y, p384_mod, p384_mp_mod);
- /* H = U2 - U1 */
- sp_384_mont_sub_15(t2, t2, t1, p384_mod);
- /* RS = S2 + S1 */
- sp_384_mont_add_15(t6, t4, t3, p384_mod);
- /* R = S2 - S1 */
- sp_384_mont_sub_15(t4, t4, t3, p384_mod);
- /* Z3 = H*Z1*Z2 */
- /* ZS = H*Z1*Z2 */
- sp_384_mont_mul_15(za, za, q->z, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(za, za, t2, p384_mod, p384_mp_mod);
- XMEMCPY(zs, za, sizeof(p->z)/2);
- /* X3 = R^2 - H^3 - 2*U1*H^2 */
- /* XS = RS^2 - H^3 - 2*U1*H^2 */
- sp_384_mont_sqr_15(xa, t4, p384_mod, p384_mp_mod);
- sp_384_mont_sqr_15(xs, t6, p384_mod, p384_mp_mod);
- sp_384_mont_sqr_15(t5, t2, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(ya, t1, t5, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t5, t5, t2, p384_mod, p384_mp_mod);
- sp_384_mont_sub_15(xa, xa, t5, p384_mod);
- sp_384_mont_sub_15(xs, xs, t5, p384_mod);
- sp_384_mont_dbl_15(t1, ya, p384_mod);
- sp_384_mont_sub_15(xa, xa, t1, p384_mod);
- sp_384_mont_sub_15(xs, xs, t1, p384_mod);
- /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
- /* YS = -RS*(U1*H^2 - XS) - S1*H^3 */
- sp_384_mont_sub_15(ys, ya, xs, p384_mod);
- sp_384_mont_sub_15(ya, ya, xa, p384_mod);
- sp_384_mont_mul_15(ya, ya, t4, p384_mod, p384_mp_mod);
- sp_384_sub_15(t6, p384_mod, t6);
- sp_384_mont_mul_15(ys, ys, t6, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t5, t5, t3, p384_mod, p384_mp_mod);
- sp_384_mont_sub_15(ya, ya, t5, p384_mod);
- sp_384_mont_sub_15(ys, ys, t5, p384_mod);
- }
- /* Structure used to describe recoding of scalar multiplication. */
- typedef struct ecc_recode_384 {
- /* Index into pre-computation table. */
- uint8_t i;
- /* Use the negative of the point. */
- uint8_t neg;
- } ecc_recode_384;
- /* The index into pre-computation table to use. */
- static const uint8_t recode_index_15_6[66] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
- 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
- 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
- 0, 1,
- };
- /* Whether to negate y-ordinate. */
- static const uint8_t recode_neg_15_6[66] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 0, 0,
- };
- /* Recode the scalar for multiplication using pre-computed values and
- * subtraction.
- *
- * k Scalar to multiply by.
- * v Vector of operations to perform.
- */
- static void sp_384_ecc_recode_6_15(const sp_digit* k, ecc_recode_384* v)
- {
- int i;
- int j;
- uint8_t y;
- int carry = 0;
- int o;
- sp_digit n;
- j = 0;
- n = k[j];
- o = 0;
- for (i=0; i<65; i++) {
- y = (int8_t)n;
- if (o + 6 < 26) {
- y &= 0x3f;
- n >>= 6;
- o += 6;
- }
- else if (o + 6 == 26) {
- n >>= 6;
- if (++j < 15)
- n = k[j];
- o = 0;
- }
- else if (++j < 15) {
- n = k[j];
- y |= (uint8_t)((n << (26 - o)) & 0x3f);
- o -= 20;
- n >>= o;
- }
- y += (uint8_t)carry;
- v[i].i = recode_index_15_6[y];
- v[i].neg = recode_neg_15_6[y];
- carry = (y >> 6) + v[i].neg;
- }
- }
- #ifndef WC_NO_CACHE_RESISTANT
- /* Touch each possible point that could be being copied.
- *
- * r Point to copy into.
- * table Table - start of the entries to access
- * idx Index of entry to retrieve.
- */
- static void sp_384_get_point_33_15(sp_point_384* r, const sp_point_384* table,
- int idx)
- {
- int i;
- sp_digit mask;
- r->x[0] = 0;
- r->x[1] = 0;
- r->x[2] = 0;
- r->x[3] = 0;
- r->x[4] = 0;
- r->x[5] = 0;
- r->x[6] = 0;
- r->x[7] = 0;
- r->x[8] = 0;
- r->x[9] = 0;
- r->x[10] = 0;
- r->x[11] = 0;
- r->x[12] = 0;
- r->x[13] = 0;
- r->x[14] = 0;
- r->y[0] = 0;
- r->y[1] = 0;
- r->y[2] = 0;
- r->y[3] = 0;
- r->y[4] = 0;
- r->y[5] = 0;
- r->y[6] = 0;
- r->y[7] = 0;
- r->y[8] = 0;
- r->y[9] = 0;
- r->y[10] = 0;
- r->y[11] = 0;
- r->y[12] = 0;
- r->y[13] = 0;
- r->y[14] = 0;
- r->z[0] = 0;
- r->z[1] = 0;
- r->z[2] = 0;
- r->z[3] = 0;
- r->z[4] = 0;
- r->z[5] = 0;
- r->z[6] = 0;
- r->z[7] = 0;
- r->z[8] = 0;
- r->z[9] = 0;
- r->z[10] = 0;
- r->z[11] = 0;
- r->z[12] = 0;
- r->z[13] = 0;
- r->z[14] = 0;
- for (i = 1; i < 33; i++) {
- mask = 0 - (i == idx);
- r->x[0] |= mask & table[i].x[0];
- r->x[1] |= mask & table[i].x[1];
- r->x[2] |= mask & table[i].x[2];
- r->x[3] |= mask & table[i].x[3];
- r->x[4] |= mask & table[i].x[4];
- r->x[5] |= mask & table[i].x[5];
- r->x[6] |= mask & table[i].x[6];
- r->x[7] |= mask & table[i].x[7];
- r->x[8] |= mask & table[i].x[8];
- r->x[9] |= mask & table[i].x[9];
- r->x[10] |= mask & table[i].x[10];
- r->x[11] |= mask & table[i].x[11];
- r->x[12] |= mask & table[i].x[12];
- r->x[13] |= mask & table[i].x[13];
- r->x[14] |= mask & table[i].x[14];
- r->y[0] |= mask & table[i].y[0];
- r->y[1] |= mask & table[i].y[1];
- r->y[2] |= mask & table[i].y[2];
- r->y[3] |= mask & table[i].y[3];
- r->y[4] |= mask & table[i].y[4];
- r->y[5] |= mask & table[i].y[5];
- r->y[6] |= mask & table[i].y[6];
- r->y[7] |= mask & table[i].y[7];
- r->y[8] |= mask & table[i].y[8];
- r->y[9] |= mask & table[i].y[9];
- r->y[10] |= mask & table[i].y[10];
- r->y[11] |= mask & table[i].y[11];
- r->y[12] |= mask & table[i].y[12];
- r->y[13] |= mask & table[i].y[13];
- r->y[14] |= mask & table[i].y[14];
- r->z[0] |= mask & table[i].z[0];
- r->z[1] |= mask & table[i].z[1];
- r->z[2] |= mask & table[i].z[2];
- r->z[3] |= mask & table[i].z[3];
- r->z[4] |= mask & table[i].z[4];
- r->z[5] |= mask & table[i].z[5];
- r->z[6] |= mask & table[i].z[6];
- r->z[7] |= mask & table[i].z[7];
- r->z[8] |= mask & table[i].z[8];
- r->z[9] |= mask & table[i].z[9];
- r->z[10] |= mask & table[i].z[10];
- r->z[11] |= mask & table[i].z[11];
- r->z[12] |= mask & table[i].z[12];
- r->z[13] |= mask & table[i].z[13];
- r->z[14] |= mask & table[i].z[14];
- }
- }
- #endif /* !WC_NO_CACHE_RESISTANT */
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Window technique of 6 bits. (Add-Sub variation.)
- * Calculate 0..32 times the point. Use function that adds and
- * subtracts the same two points.
- * Recode to add or subtract one of the computed points.
- * Double to push up.
- * NOT a sliding window.
- *
- * r Resulting point.
- * g Point to multiply.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_384_ecc_mulmod_win_add_sub_15(sp_point_384* r, const sp_point_384* g,
- const sp_digit* k, int map, int ct, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_384* t = NULL;
- sp_digit* tmp = NULL;
- #else
- sp_point_384 t[33+2];
- sp_digit tmp[2 * 15 * 6];
- #endif
- sp_point_384* rt = NULL;
- sp_point_384* p = NULL;
- sp_digit* negy;
- int i;
- ecc_recode_384 v[65];
- int err = MP_OKAY;
- /* Constant time used for cache attack resistance implementation. */
- (void)ct;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (sp_point_384*)XMALLOC(sizeof(sp_point_384) *
- (33+2), heap, DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 6,
- heap, DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- rt = t + 33;
- p = t + 33+1;
- /* t[0] = {0, 0, 1} * norm */
- XMEMSET(&t[0], 0, sizeof(t[0]));
- t[0].infinity = 1;
- /* t[1] = {g->x, g->y, g->z} * norm */
- err = sp_384_mod_mul_norm_15(t[1].x, g->x, p384_mod);
- }
- if (err == MP_OKAY) {
- err = sp_384_mod_mul_norm_15(t[1].y, g->y, p384_mod);
- }
- if (err == MP_OKAY) {
- err = sp_384_mod_mul_norm_15(t[1].z, g->z, p384_mod);
- }
- if (err == MP_OKAY) {
- t[1].infinity = 0;
- /* t[2] ... t[32] */
- sp_384_proj_point_dbl_n_store_15(t, &t[ 1], 5, 1, tmp);
- sp_384_proj_point_add_15(&t[ 3], &t[ 2], &t[ 1], tmp);
- sp_384_proj_point_dbl_15(&t[ 6], &t[ 3], tmp);
- sp_384_proj_point_add_sub_15(&t[ 7], &t[ 5], &t[ 6], &t[ 1], tmp);
- sp_384_proj_point_dbl_15(&t[10], &t[ 5], tmp);
- sp_384_proj_point_add_sub_15(&t[11], &t[ 9], &t[10], &t[ 1], tmp);
- sp_384_proj_point_dbl_15(&t[12], &t[ 6], tmp);
- sp_384_proj_point_dbl_15(&t[14], &t[ 7], tmp);
- sp_384_proj_point_add_sub_15(&t[15], &t[13], &t[14], &t[ 1], tmp);
- sp_384_proj_point_dbl_15(&t[18], &t[ 9], tmp);
- sp_384_proj_point_add_sub_15(&t[19], &t[17], &t[18], &t[ 1], tmp);
- sp_384_proj_point_dbl_15(&t[20], &t[10], tmp);
- sp_384_proj_point_dbl_15(&t[22], &t[11], tmp);
- sp_384_proj_point_add_sub_15(&t[23], &t[21], &t[22], &t[ 1], tmp);
- sp_384_proj_point_dbl_15(&t[24], &t[12], tmp);
- sp_384_proj_point_dbl_15(&t[26], &t[13], tmp);
- sp_384_proj_point_add_sub_15(&t[27], &t[25], &t[26], &t[ 1], tmp);
- sp_384_proj_point_dbl_15(&t[28], &t[14], tmp);
- sp_384_proj_point_dbl_15(&t[30], &t[15], tmp);
- sp_384_proj_point_add_sub_15(&t[31], &t[29], &t[30], &t[ 1], tmp);
- negy = t[0].y;
- sp_384_ecc_recode_6_15(k, v);
- i = 64;
- #ifndef WC_NO_CACHE_RESISTANT
- if (ct) {
- sp_384_get_point_33_15(rt, t, v[i].i);
- rt->infinity = !v[i].i;
- }
- else
- #endif
- {
- XMEMCPY(rt, &t[v[i].i], sizeof(sp_point_384));
- }
- for (--i; i>=0; i--) {
- sp_384_proj_point_dbl_n_15(rt, 6, tmp);
- #ifndef WC_NO_CACHE_RESISTANT
- if (ct) {
- sp_384_get_point_33_15(p, t, v[i].i);
- p->infinity = !v[i].i;
- }
- else
- #endif
- {
- XMEMCPY(p, &t[v[i].i], sizeof(sp_point_384));
- }
- sp_384_sub_15(negy, p384_mod, p->y);
- sp_384_norm_15(negy);
- sp_384_cond_copy_15(p->y, negy, (sp_digit)0 - v[i].neg);
- sp_384_proj_point_add_15(rt, rt, p, tmp);
- }
- if (map != 0) {
- sp_384_map_15(r, rt, tmp);
- }
- else {
- XMEMCPY(r, rt, sizeof(sp_point_384));
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- if (tmp != NULL)
- XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef FP_ECC
- #endif /* FP_ECC */
- /* Add two Montgomery form projective points. The second point has a q value of
- * one.
- * Only the first point can be the same pointer as the result point.
- *
- * r Result of addition.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static void sp_384_proj_point_add_qz1_15(sp_point_384* r,
- const sp_point_384* p, const sp_point_384* q, sp_digit* t)
- {
- sp_digit* t2 = t;
- sp_digit* t3 = t + 2*15;
- sp_digit* t6 = t + 4*15;
- sp_digit* t1 = t + 6*15;
- sp_digit* t4 = t + 8*15;
- sp_digit* t5 = t + 10*15;
- /* Calculate values to subtract from P->x and P->y. */
- /* U2 = X2*Z1^2 */
- sp_384_mont_sqr_15(t2, p->z, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t4, t2, p->z, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t2, t2, q->x, p384_mod, p384_mp_mod);
- /* S2 = Y2*Z1^3 */
- sp_384_mont_mul_15(t4, t4, q->y, p384_mod, p384_mp_mod);
- if ((~p->infinity) & (~q->infinity) &
- sp_384_cmp_equal_15(p->x, t2) &
- sp_384_cmp_equal_15(p->y, t4)) {
- sp_384_proj_point_dbl_15(r, p, t);
- }
- else {
- sp_digit* x = t2;
- sp_digit* y = t3;
- sp_digit* z = t6;
- /* H = U2 - X1 */
- sp_384_mont_sub_15(t2, t2, p->x, p384_mod);
- /* R = S2 - Y1 */
- sp_384_mont_sub_15(t4, t4, p->y, p384_mod);
- /* Z3 = H*Z1 */
- sp_384_mont_mul_15(z, p->z, t2, p384_mod, p384_mp_mod);
- /* X3 = R^2 - H^3 - 2*X1*H^2 */
- sp_384_mont_sqr_15(t1, t2, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t3, p->x, t1, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t1, t1, t2, p384_mod, p384_mp_mod);
- sp_384_mont_sqr_15(t2, t4, p384_mod, p384_mp_mod);
- sp_384_mont_sub_15(t2, t2, t1, p384_mod);
- sp_384_mont_dbl_15(t5, t3, p384_mod);
- sp_384_mont_sub_15(x, t2, t5, p384_mod);
- /* Y3 = R*(X1*H^2 - X3) - Y1*H^3 */
- sp_384_mont_sub_15(t3, t3, x, p384_mod);
- sp_384_mont_mul_15(t3, t3, t4, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t1, t1, p->y, p384_mod, p384_mp_mod);
- sp_384_mont_sub_15(y, t3, t1, p384_mod);
- {
- int i;
- sp_digit maskp = 0 - (q->infinity & (!p->infinity));
- sp_digit maskq = 0 - (p->infinity & (!q->infinity));
- sp_digit maskt = ~(maskp | maskq);
- sp_digit inf = (sp_digit)(p->infinity & q->infinity);
- for (i = 0; i < 15; i++) {
- r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
- (x[i] & maskt);
- }
- for (i = 0; i < 15; i++) {
- r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
- (y[i] & maskt);
- }
- for (i = 0; i < 15; i++) {
- r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
- (z[i] & maskt);
- }
- r->z[0] |= inf;
- r->infinity = (word32)inf;
- }
- }
- }
- #ifdef FP_ECC
- /* Convert the projective point to affine.
- * Ordinates are in Montgomery form.
- *
- * a Point to convert.
- * t Temporary data.
- */
- static void sp_384_proj_to_affine_15(sp_point_384* a, sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2 * 15;
- sp_digit* tmp = t + 4 * 15;
- sp_384_mont_inv_15(t1, a->z, tmp);
- sp_384_mont_sqr_15(t2, t1, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(t1, t2, t1, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(a->x, a->x, t2, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(a->y, a->y, t1, p384_mod, p384_mp_mod);
- XMEMCPY(a->z, p384_norm_mod, sizeof(p384_norm_mod));
- }
- /* Generate the pre-computed table of points for the base point.
- *
- * width = 8
- * 256 entries
- * 48 bits between
- *
- * a The base point.
- * table Place to store generated point data.
- * tmp Temporary data.
- * heap Heap to use for allocation.
- */
- static int sp_384_gen_stripe_table_15(const sp_point_384* a,
- sp_table_entry_384* table, sp_digit* tmp, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_384* t = NULL;
- #else
- sp_point_384 t[3];
- #endif
- sp_point_384* s1 = NULL;
- sp_point_384* s2 = NULL;
- int i;
- int j;
- int err = MP_OKAY;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 3, heap,
- DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- s1 = t + 1;
- s2 = t + 2;
- err = sp_384_mod_mul_norm_15(t->x, a->x, p384_mod);
- }
- if (err == MP_OKAY) {
- err = sp_384_mod_mul_norm_15(t->y, a->y, p384_mod);
- }
- if (err == MP_OKAY) {
- err = sp_384_mod_mul_norm_15(t->z, a->z, p384_mod);
- }
- if (err == MP_OKAY) {
- t->infinity = 0;
- sp_384_proj_to_affine_15(t, tmp);
- XMEMCPY(s1->z, p384_norm_mod, sizeof(p384_norm_mod));
- s1->infinity = 0;
- XMEMCPY(s2->z, p384_norm_mod, sizeof(p384_norm_mod));
- s2->infinity = 0;
- /* table[0] = {0, 0, infinity} */
- XMEMSET(&table[0], 0, sizeof(sp_table_entry_384));
- /* table[1] = Affine version of 'a' in Montgomery form */
- XMEMCPY(table[1].x, t->x, sizeof(table->x));
- XMEMCPY(table[1].y, t->y, sizeof(table->y));
- for (i=1; i<8; i++) {
- sp_384_proj_point_dbl_n_15(t, 48, tmp);
- sp_384_proj_to_affine_15(t, tmp);
- XMEMCPY(table[1<<i].x, t->x, sizeof(table->x));
- XMEMCPY(table[1<<i].y, t->y, sizeof(table->y));
- }
- for (i=1; i<8; i++) {
- XMEMCPY(s1->x, table[1<<i].x, sizeof(table->x));
- XMEMCPY(s1->y, table[1<<i].y, sizeof(table->y));
- for (j=(1<<i)+1; j<(1<<(i+1)); j++) {
- XMEMCPY(s2->x, table[j-(1<<i)].x, sizeof(table->x));
- XMEMCPY(s2->y, table[j-(1<<i)].y, sizeof(table->y));
- sp_384_proj_point_add_qz1_15(t, s1, s2, tmp);
- sp_384_proj_to_affine_15(t, tmp);
- XMEMCPY(table[j].x, t->x, sizeof(table->x));
- XMEMCPY(table[j].y, t->y, sizeof(table->y));
- }
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif /* FP_ECC */
- #ifndef WC_NO_CACHE_RESISTANT
- /* Touch each possible entry that could be being copied.
- *
- * r Point to copy into.
- * table Table - start of the entries to access
- * idx Index of entry to retrieve.
- */
- static void sp_384_get_entry_256_15(sp_point_384* r,
- const sp_table_entry_384* table, int idx)
- {
- int i;
- sp_digit mask;
- r->x[0] = 0;
- r->x[1] = 0;
- r->x[2] = 0;
- r->x[3] = 0;
- r->x[4] = 0;
- r->x[5] = 0;
- r->x[6] = 0;
- r->x[7] = 0;
- r->x[8] = 0;
- r->x[9] = 0;
- r->x[10] = 0;
- r->x[11] = 0;
- r->x[12] = 0;
- r->x[13] = 0;
- r->x[14] = 0;
- r->y[0] = 0;
- r->y[1] = 0;
- r->y[2] = 0;
- r->y[3] = 0;
- r->y[4] = 0;
- r->y[5] = 0;
- r->y[6] = 0;
- r->y[7] = 0;
- r->y[8] = 0;
- r->y[9] = 0;
- r->y[10] = 0;
- r->y[11] = 0;
- r->y[12] = 0;
- r->y[13] = 0;
- r->y[14] = 0;
- for (i = 1; i < 256; i++) {
- mask = 0 - (i == idx);
- r->x[0] |= mask & table[i].x[0];
- r->x[1] |= mask & table[i].x[1];
- r->x[2] |= mask & table[i].x[2];
- r->x[3] |= mask & table[i].x[3];
- r->x[4] |= mask & table[i].x[4];
- r->x[5] |= mask & table[i].x[5];
- r->x[6] |= mask & table[i].x[6];
- r->x[7] |= mask & table[i].x[7];
- r->x[8] |= mask & table[i].x[8];
- r->x[9] |= mask & table[i].x[9];
- r->x[10] |= mask & table[i].x[10];
- r->x[11] |= mask & table[i].x[11];
- r->x[12] |= mask & table[i].x[12];
- r->x[13] |= mask & table[i].x[13];
- r->x[14] |= mask & table[i].x[14];
- r->y[0] |= mask & table[i].y[0];
- r->y[1] |= mask & table[i].y[1];
- r->y[2] |= mask & table[i].y[2];
- r->y[3] |= mask & table[i].y[3];
- r->y[4] |= mask & table[i].y[4];
- r->y[5] |= mask & table[i].y[5];
- r->y[6] |= mask & table[i].y[6];
- r->y[7] |= mask & table[i].y[7];
- r->y[8] |= mask & table[i].y[8];
- r->y[9] |= mask & table[i].y[9];
- r->y[10] |= mask & table[i].y[10];
- r->y[11] |= mask & table[i].y[11];
- r->y[12] |= mask & table[i].y[12];
- r->y[13] |= mask & table[i].y[13];
- r->y[14] |= mask & table[i].y[14];
- }
- }
- #endif /* !WC_NO_CACHE_RESISTANT */
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Stripe implementation.
- * Pre-generated: 2^0, 2^48, ...
- * Pre-generated: products of all combinations of above.
- * 8 doubles and adds (with qz=1)
- *
- * r Resulting point.
- * k Scalar to multiply by.
- * table Pre-computed table.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_384_ecc_mulmod_stripe_15(sp_point_384* r, const sp_point_384* g,
- const sp_table_entry_384* table, const sp_digit* k, int map,
- int ct, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_384* rt = NULL;
- sp_digit* t = NULL;
- #else
- sp_point_384 rt[2];
- sp_digit t[2 * 15 * 6];
- #endif
- sp_point_384* p = NULL;
- int i;
- int j;
- int y;
- int x;
- int err = MP_OKAY;
- (void)g;
- /* Constant time used for cache attack resistance implementation. */
- (void)ct;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- rt = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (rt == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 6, heap,
- DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = rt + 1;
- XMEMCPY(p->z, p384_norm_mod, sizeof(p384_norm_mod));
- XMEMCPY(rt->z, p384_norm_mod, sizeof(p384_norm_mod));
- y = 0;
- x = 47;
- for (j=0; j<8; j++) {
- y |= (int)(((k[x / 26] >> (x % 26)) & 1) << j);
- x += 48;
- }
- #ifndef WC_NO_CACHE_RESISTANT
- if (ct) {
- sp_384_get_entry_256_15(rt, table, y);
- } else
- #endif
- {
- XMEMCPY(rt->x, table[y].x, sizeof(table[y].x));
- XMEMCPY(rt->y, table[y].y, sizeof(table[y].y));
- }
- rt->infinity = !y;
- for (i=46; i>=0; i--) {
- y = 0;
- x = i;
- for (j=0; j<8; j++) {
- y |= (int)(((k[x / 26] >> (x % 26)) & 1) << j);
- x += 48;
- }
- sp_384_proj_point_dbl_15(rt, rt, t);
- #ifndef WC_NO_CACHE_RESISTANT
- if (ct) {
- sp_384_get_entry_256_15(p, table, y);
- }
- else
- #endif
- {
- XMEMCPY(p->x, table[y].x, sizeof(table[y].x));
- XMEMCPY(p->y, table[y].y, sizeof(table[y].y));
- }
- p->infinity = !y;
- sp_384_proj_point_add_qz1_15(rt, rt, p, t);
- }
- if (map != 0) {
- sp_384_map_15(r, rt, t);
- }
- else {
- XMEMCPY(r, rt, sizeof(sp_point_384));
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- if (rt != NULL)
- XFREE(rt, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef FP_ECC
- #ifndef FP_ENTRIES
- #define FP_ENTRIES 16
- #endif
- /* Cache entry - holds precomputation tables for a point. */
- typedef struct sp_cache_384_t {
- /* X ordinate of point that table was generated from. */
- sp_digit x[15];
- /* Y ordinate of point that table was generated from. */
- sp_digit y[15];
- /* Precomputation table for point. */
- sp_table_entry_384 table[256];
- /* Count of entries in table. */
- uint32_t cnt;
- /* Point and table set in entry. */
- int set;
- } sp_cache_384_t;
- /* Cache of tables. */
- static THREAD_LS_T sp_cache_384_t sp_cache_384[FP_ENTRIES];
- /* Index of last entry in cache. */
- static THREAD_LS_T int sp_cache_384_last = -1;
- /* Cache has been initialized. */
- static THREAD_LS_T int sp_cache_384_inited = 0;
- #ifndef HAVE_THREAD_LS
- static volatile int initCacheMutex_384 = 0;
- static wolfSSL_Mutex sp_cache_384_lock;
- #endif
- /* Get the cache entry for the point.
- *
- * g [in] Point scalar multiplying.
- * cache [out] Cache table to use.
- */
- static void sp_ecc_get_cache_384(const sp_point_384* g, sp_cache_384_t** cache)
- {
- int i;
- int j;
- uint32_t least;
- if (sp_cache_384_inited == 0) {
- for (i=0; i<FP_ENTRIES; i++) {
- sp_cache_384[i].set = 0;
- }
- sp_cache_384_inited = 1;
- }
- /* Compare point with those in cache. */
- for (i=0; i<FP_ENTRIES; i++) {
- if (!sp_cache_384[i].set)
- continue;
- if (sp_384_cmp_equal_15(g->x, sp_cache_384[i].x) &
- sp_384_cmp_equal_15(g->y, sp_cache_384[i].y)) {
- sp_cache_384[i].cnt++;
- break;
- }
- }
- /* No match. */
- if (i == FP_ENTRIES) {
- /* Find empty entry. */
- i = (sp_cache_384_last + 1) % FP_ENTRIES;
- for (; i != sp_cache_384_last; i=(i+1)%FP_ENTRIES) {
- if (!sp_cache_384[i].set) {
- break;
- }
- }
- /* Evict least used. */
- if (i == sp_cache_384_last) {
- least = sp_cache_384[0].cnt;
- for (j=1; j<FP_ENTRIES; j++) {
- if (sp_cache_384[j].cnt < least) {
- i = j;
- least = sp_cache_384[i].cnt;
- }
- }
- }
- XMEMCPY(sp_cache_384[i].x, g->x, sizeof(sp_cache_384[i].x));
- XMEMCPY(sp_cache_384[i].y, g->y, sizeof(sp_cache_384[i].y));
- sp_cache_384[i].set = 1;
- sp_cache_384[i].cnt = 1;
- }
- *cache = &sp_cache_384[i];
- sp_cache_384_last = i;
- }
- #endif /* FP_ECC */
- /* Multiply the base point of P384 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * r Resulting point.
- * g Point to multiply.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_384_ecc_mulmod_15(sp_point_384* r, const sp_point_384* g,
- const sp_digit* k, int map, int ct, void* heap)
- {
- #ifndef FP_ECC
- return sp_384_ecc_mulmod_win_add_sub_15(r, g, k, map, ct, heap);
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* tmp;
- #else
- sp_digit tmp[2 * 15 * 7];
- #endif
- sp_cache_384_t* cache;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 7, heap, DYNAMIC_TYPE_ECC);
- if (tmp == NULL) {
- err = MEMORY_E;
- }
- #endif
- #ifndef HAVE_THREAD_LS
- if (err == MP_OKAY) {
- if (initCacheMutex_384 == 0) {
- wc_InitMutex(&sp_cache_384_lock);
- initCacheMutex_384 = 1;
- }
- if (wc_LockMutex(&sp_cache_384_lock) != 0) {
- err = BAD_MUTEX_E;
- }
- }
- #endif /* HAVE_THREAD_LS */
- if (err == MP_OKAY) {
- sp_ecc_get_cache_384(g, &cache);
- if (cache->cnt == 2)
- sp_384_gen_stripe_table_15(g, cache->table, tmp, heap);
- #ifndef HAVE_THREAD_LS
- wc_UnLockMutex(&sp_cache_384_lock);
- #endif /* HAVE_THREAD_LS */
- if (cache->cnt < 2) {
- err = sp_384_ecc_mulmod_win_add_sub_15(r, g, k, map, ct, heap);
- }
- else {
- err = sp_384_ecc_mulmod_stripe_15(r, g, cache->table, k,
- map, ct, heap);
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- #endif
- }
- #endif
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * p Point to multiply.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_384(const mp_int* km, const ecc_point* gm, ecc_point* r,
- int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_384* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_384 point[1];
- sp_digit k[15];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_384*)XMALLOC(sizeof(sp_point_384), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_384_from_mp(k, 15, km);
- sp_384_point_from_ecc_point_15(point, gm);
- err = sp_384_ecc_mulmod_15(point, point, k, map, 1, heap);
- }
- if (err == MP_OKAY) {
- err = sp_384_point_to_ecc_point_15(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Multiply the point by the scalar, add point a and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * p Point to multiply.
- * am Point to add to scalar multiply result.
- * inMont Point to add is in montgomery form.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_add_384(const mp_int* km, const ecc_point* gm,
- const ecc_point* am, int inMont, ecc_point* r, int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_384* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_384 point[2];
- sp_digit k[15 + 15 * 2 * 6];
- #endif
- sp_point_384* addP = NULL;
- sp_digit* tmp = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(
- sizeof(sp_digit) * (15 + 15 * 2 * 6), heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- addP = point + 1;
- tmp = k + 15;
- sp_384_from_mp(k, 15, km);
- sp_384_point_from_ecc_point_15(point, gm);
- sp_384_point_from_ecc_point_15(addP, am);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_384_mod_mul_norm_15(addP->x, addP->x, p384_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_384_mod_mul_norm_15(addP->y, addP->y, p384_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_384_mod_mul_norm_15(addP->z, addP->z, p384_mod);
- }
- if (err == MP_OKAY) {
- err = sp_384_ecc_mulmod_15(point, point, k, 0, 0, heap);
- }
- if (err == MP_OKAY) {
- sp_384_proj_point_add_15(point, point, addP, tmp);
- if (map) {
- sp_384_map_15(point, point, tmp);
- }
- err = sp_384_point_to_ecc_point_15(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Multiply the base point of P384 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * r Resulting point.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_384_ecc_mulmod_base_15(sp_point_384* r, const sp_digit* k,
- int map, int ct, void* heap)
- {
- /* No pre-computed values. */
- return sp_384_ecc_mulmod_15(r, &p384_base, k, map, ct, heap);
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- static int sp_384_ecc_mulmod_base_15_nb(sp_ecc_ctx_t* sp_ctx, sp_point_384* r,
- const sp_digit* k, int map, int ct, void* heap)
- {
- /* No pre-computed values. */
- return sp_384_ecc_mulmod_15_nb(sp_ctx, r, &p384_base, k, map, ct, heap);
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #else
- /* Striping precomputation table.
- * 8 points combined into a table of 256 points.
- * Distance of 48 between points.
- */
- static const sp_table_entry_384 p384_table[256] = {
- /* 0 */
- { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00 },
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00 } },
- /* 1 */
- { { 0x1c0b528,0x01d5992,0x0e383dd,0x38a835b,0x220e378,0x106d35b,
- 0x1c3afc5,0x03bfe1e,0x28459a3,0x2d91521,0x214ede2,0x0bfdc8d,
- 0x2151381,0x3708a67,0x004d3aa },
- { 0x303a4fe,0x10f6b52,0x29ac230,0x2fdeed2,0x0a1bfa8,0x3a0ec14,
- 0x2de7562,0x3ff662e,0x21968f4,0x031b0d4,0x3969a84,0x2000898,
- 0x1c5e9dd,0x2f09685,0x002b78a } },
- /* 2 */
- { { 0x30c535b,0x191d4ca,0x2296298,0x14dc141,0x090dd69,0x05aae6b,
- 0x0cd6b42,0x35da80e,0x3b7be12,0x2cf7e6d,0x1f347bd,0x3d365e1,
- 0x1448913,0x32704fa,0x00222c5 },
- { 0x280dc64,0x39e5bc9,0x24175f8,0x2dd60d4,0x0120e7c,0x041d02e,
- 0x0b5d8ad,0x37b9895,0x2fb5337,0x1f0e2e3,0x14f0224,0x2230b86,
- 0x1bc4cf6,0x17cdb09,0x007b5c7 } },
- /* 3 */
- { { 0x2dffea5,0x28f30e7,0x29fce26,0x070df5f,0x235bbfd,0x2f78fbd,
- 0x27700d9,0x23d6bc3,0x3471a53,0x0c0e03a,0x05bf9eb,0x276a2ec,
- 0x20c3e2e,0x31cc691,0x00dbb93 },
- { 0x126b605,0x2e8983d,0x153737d,0x23bf5e1,0x295d497,0x35ca812,
- 0x2d793ae,0x16c6893,0x3777600,0x089a520,0x1e681f8,0x3d55ee6,
- 0x154ef99,0x155f592,0x00ae5f9 } },
- /* 4 */
- { { 0x26feef9,0x20315fc,0x1240244,0x250e838,0x3c31a26,0x1cf8af1,
- 0x1002c32,0x3b531cd,0x1c53ef1,0x22310ba,0x3f4948e,0x22eafd9,
- 0x3863202,0x3d0e2a5,0x006a502 },
- { 0x34536fe,0x04e91ad,0x30ebf5f,0x2af62a7,0x01d218b,0x1c8c9da,
- 0x336bcc3,0x23060c3,0x331576e,0x1b14c5e,0x1bbcb76,0x0755e9a,
- 0x3d4dcef,0x24c2cf8,0x00917c4 } },
- /* 5 */
- { { 0x349ddd0,0x09b8bb8,0x0250114,0x3e66cbf,0x29f117e,0x3005d29,
- 0x36b480e,0x2119bfc,0x2761845,0x253d2f7,0x0580604,0x0bb6db4,
- 0x3ca922f,0x1744677,0x008adc7 },
- { 0x3d5a7ce,0x27425ed,0x11e9a61,0x3968d10,0x3874275,0x3692d3b,
- 0x03e0470,0x0763d50,0x3d97790,0x3cbaeab,0x2747170,0x18faf3a,
- 0x180365e,0x2511fe7,0x0012a36 } },
- /* 6 */
- { { 0x3c52870,0x2701e93,0x296128f,0x120694e,0x1ce0b37,0x3860a36,
- 0x10fa180,0x0896b55,0x2f76adb,0x22892ae,0x2e58a34,0x07b4295,
- 0x2cb62d1,0x079a522,0x00f3d81 },
- { 0x061ed22,0x2375dd3,0x3c9d861,0x3e602d1,0x10bb747,0x39ae156,
- 0x3f796fd,0x087a48a,0x06d680a,0x37f7f47,0x2af2c9d,0x36c55dc,
- 0x10f3dc0,0x279b07a,0x00a0937 } },
- /* 7 */
- { { 0x085c629,0x319bbf8,0x089a386,0x184256f,0x15fc2a4,0x00fd2d0,
- 0x13d6312,0x363d44d,0x32b7e4b,0x25f2865,0x27df8ce,0x1dce02a,
- 0x24ea3b0,0x0e27b9f,0x00d8a90 },
- { 0x3b14461,0x1d371f9,0x0f781bc,0x0503271,0x0dc2cb0,0x13bc284,
- 0x34b3a68,0x1ff894a,0x25d2032,0x16f79ba,0x260f961,0x07b10d5,
- 0x18173b7,0x2812e2b,0x00eede5 } },
- /* 8 */
- { { 0x13b9a2d,0x132ece2,0x0c5d558,0x02c0214,0x1820c66,0x37cb50f,
- 0x26d8267,0x3a00504,0x3f00109,0x33756ee,0x38172f1,0x2e4bb8c,
- 0x030d985,0x3e4fcc5,0x00609d4 },
- { 0x2daf9d6,0x16681fa,0x1fb01e0,0x1b03c49,0x370e653,0x183c839,
- 0x2207515,0x0ea6b58,0x1ae7aaf,0x3a96522,0x24bae14,0x1c38bd9,
- 0x082497b,0x1c05db4,0x000dd03 } },
- /* 9 */
- { { 0x110521f,0x04efa21,0x0c174cc,0x2a7dc93,0x387315b,0x14f7098,
- 0x1d83bb3,0x2495ed2,0x2fe0c27,0x1e2d9df,0x093c953,0x0287073,
- 0x02c9951,0x336291c,0x0033e30 },
- { 0x208353f,0x3f22748,0x2b2bf0f,0x2373b50,0x10170fa,0x1b8a97d,
- 0x0851ed2,0x0b25824,0x055ecb5,0x12049d9,0x3fe1adf,0x11b1385,
- 0x28eab06,0x11fac21,0x00513f0 } },
- /* 10 */
- { { 0x35bdf53,0x1847d37,0x1a6dc07,0x29d62c4,0x045d331,0x313b8e5,
- 0x165daf1,0x1e34562,0x3e75a58,0x16ea2fa,0x02dd302,0x3302862,
- 0x3eb8bae,0x2266a48,0x00cf2a3 },
- { 0x24fd048,0x324a074,0x025df98,0x1662eec,0x3841bfb,0x26ae754,
- 0x1df8cec,0x0113ae3,0x0b67fef,0x094e293,0x2323666,0x0ab087c,
- 0x2f06509,0x0e142d9,0x00a919d } },
- /* 11 */
- { { 0x1d480d8,0x00ed021,0x3a7d3db,0x1e46ca1,0x28cd9f4,0x2a3ceeb,
- 0x24dc754,0x0624a3c,0x0003db4,0x1520bae,0x1c56e0f,0x2fe7ace,
- 0x1dc6f38,0x0c826a4,0x008b977 },
- { 0x209cfc2,0x2c16c9c,0x1b70a31,0x21416cb,0x34c49bf,0x186549e,
- 0x062498d,0x146e959,0x0391fac,0x08ff944,0x2b4b834,0x013d57a,
- 0x2eabffb,0x0370131,0x00c07c1 } },
- /* 12 */
- { { 0x332f048,0x0bf9336,0x16dfad2,0x2451d7b,0x35f23bf,0x299adb2,
- 0x0ce0c0a,0x0170294,0x289f034,0x2b7d89e,0x395e2d6,0x1d20df7,
- 0x2e64e36,0x16dae90,0x00081c9 },
- { 0x31d6ceb,0x0f80db9,0x0271eba,0x33db1ac,0x1b45bcc,0x1a11c07,
- 0x347e630,0x148fd9e,0x142e712,0x3183e3e,0x1cd47ad,0x108d1c9,
- 0x09cbb82,0x35e61d9,0x0083027 } },
- /* 13 */
- { { 0x215b0b8,0x0a7a98d,0x2c41b39,0x3f69536,0x0b41441,0x16da8da,
- 0x15d556b,0x3c17a26,0x129167e,0x3ea0351,0x2d25a27,0x2f2d285,
- 0x15b68f6,0x2931ef5,0x00210d6 },
- { 0x1351130,0x012aec9,0x37ebf38,0x26640f8,0x01d2df6,0x2130972,
- 0x201efc0,0x23a457c,0x087a1c6,0x14c68a3,0x163f62a,0x36b494d,
- 0x015d481,0x39c35b1,0x005dd6d } },
- /* 14 */
- { { 0x06612ce,0x11c3f61,0x199729f,0x3b36863,0x2986f3e,0x3cd2be1,
- 0x04c1612,0x2be2dae,0x00846dd,0x3d7bc29,0x249e795,0x1016803,
- 0x37a3714,0x2c5aa8b,0x005f491 },
- { 0x341b38d,0x01eb936,0x3caac7f,0x27863ef,0x1ef7d11,0x1110ec6,
- 0x18e0761,0x26498e8,0x01a79a1,0x390d5a1,0x22226fb,0x3d2a473,
- 0x0872191,0x1230f32,0x00dc772 } },
- /* 15 */
- { { 0x0b1ec9d,0x03fc6b9,0x3706d57,0x03b9fbb,0x221d23e,0x2867821,
- 0x1e40f4c,0x2c9c0f3,0x3c4cd4b,0x31f5948,0x3f13aa6,0x307c1b2,
- 0x04b6016,0x116b453,0x005aa72 },
- { 0x0b74de8,0x20519d1,0x134e37f,0x05d882a,0x1839e7a,0x3a2c6a8,
- 0x0d14e8d,0x1d78bdd,0x251f30d,0x3a1e27e,0x081c261,0x2c9014b,
- 0x165ee09,0x19e0cf1,0x00654e2 } },
- /* 16 */
- { { 0x39fbe67,0x081778b,0x0e44378,0x20dfdca,0x1c4afcb,0x20b803c,
- 0x0ec06c6,0x1508f6f,0x1c3114d,0x3bca851,0x3a52463,0x07661d1,
- 0x17b0aa0,0x16c5f5c,0x00fc093 },
- { 0x0d01f95,0x0ef13f5,0x2d34965,0x2a25582,0x39aa83e,0x3e38fcf,
- 0x3943dca,0x385bbdd,0x210e86f,0x3dc1dd2,0x3f9ffdc,0x18b9bc6,
- 0x345c96b,0x0e79621,0x008a72f } },
- /* 17 */
- { { 0x341c342,0x3793688,0x042273a,0x153a9c1,0x3dd326e,0x1d073bc,
- 0x2c7d983,0x05524cd,0x00d59e6,0x347abe8,0x3d9a3ef,0x0fb624a,
- 0x2c7e4cd,0x09b3171,0x0003faf },
- { 0x045f8ac,0x38bf3cc,0x1e73087,0x0c85d3c,0x314a655,0x382be69,
- 0x384f28f,0x24d6cb3,0x2842cdc,0x1777f5e,0x2929c89,0x03c45ed,
- 0x3cfcc4c,0x0b59322,0x0035657 } },
- /* 18 */
- { { 0x18c1bba,0x2eb005f,0x33d57ec,0x30e42c3,0x36058f9,0x1865f43,
- 0x2116e3f,0x2c4a2bb,0x0684033,0x0f1375c,0x0209b98,0x2136e9b,
- 0x1bc4af0,0x0b3e0c7,0x0097c7c },
- { 0x16010e8,0x398777e,0x2a172f4,0x0814a7e,0x0d97e4e,0x274dfc8,
- 0x2666606,0x1b5c93b,0x1ed3d36,0x3f3304e,0x13488e0,0x02dbb88,
- 0x2d53369,0x3717ce9,0x007cad1 } },
- /* 19 */
- { { 0x257a41f,0x2a6a076,0x39b6660,0x04bb000,0x1e74a04,0x3876b45,
- 0x343c6b5,0x0753108,0x3f54668,0x24a13cf,0x23749e8,0x0421fc5,
- 0x32f13b5,0x0f31be7,0x00070f2 },
- { 0x1186e14,0x0847697,0x0dff542,0x0dff76c,0x084748f,0x2c7d060,
- 0x23aab4d,0x0b43906,0x27ba640,0x1497b59,0x02f5835,0x0a492a4,
- 0x0a6892f,0x39f3e91,0x005844e } },
- /* 20 */
- { { 0x33b236f,0x02181cf,0x21dafab,0x0760788,0x019e9d4,0x249ed0a,
- 0x36571e3,0x3c7dbcf,0x1337550,0x010d22a,0x285e62f,0x19ee65a,
- 0x052bf71,0x1d65fd5,0x0062d43 },
- { 0x2955926,0x3fae7bc,0x0353d85,0x07db7de,0x1440a56,0x328dad6,
- 0x1668ec9,0x28058e2,0x1a1a22d,0x1014afc,0x3609325,0x3effdcb,
- 0x209f3bd,0x3ca3888,0x0094e50 } },
- /* 21 */
- { { 0x062e8af,0x0b96ccc,0x136990b,0x1d7a28f,0x1a85723,0x0076dec,
- 0x21b00b2,0x06a88ff,0x2f0ee65,0x1fa49b7,0x39b10ad,0x10b26fa,
- 0x0be7465,0x026e8bf,0x00098e3 },
- { 0x3f1d63f,0x37bacff,0x1374779,0x02882ff,0x323d0e8,0x1da3de5,
- 0x12bb3b8,0x0a15a11,0x34d1f95,0x2b3dd6e,0x29ea3fa,0x39ad000,
- 0x33a538f,0x390204d,0x0012bd3 } },
- /* 22 */
- { { 0x04cbba5,0x0de0344,0x1d4cc02,0x11fe8d7,0x36207e7,0x32a6da8,
- 0x0239281,0x1ec40d7,0x3e89798,0x213fc66,0x0022eee,0x11daefe,
- 0x3e74db8,0x28534ee,0x00aa0a4 },
- { 0x07d4543,0x250cc46,0x206620f,0x1c1e7db,0x1321538,0x31fa0b8,
- 0x30f74ea,0x01aae0e,0x3a2828f,0x3e9dd22,0x026ef35,0x3c0a62b,
- 0x27dbdc5,0x01c23a6,0x000f0c5 } },
- /* 23 */
- { { 0x2f029dd,0x3091337,0x21b80c5,0x21e1419,0x13dabc6,0x3847660,
- 0x12b865f,0x36eb666,0x38f6274,0x0ba6006,0x098da24,0x1398c64,
- 0x13d08e5,0x246a469,0x009929a },
- { 0x1285887,0x3ff5c8d,0x010237b,0x097c506,0x0bc7594,0x34b9b88,
- 0x00cc35f,0x0bb964a,0x00cfbc4,0x29cd718,0x0837619,0x2b4a192,
- 0x0c57bb7,0x08c69de,0x00a3627 } },
- /* 24 */
- { { 0x1361ed8,0x266d724,0x366cae7,0x1d5b18c,0x247d71b,0x2c9969a,
- 0x0dd5211,0x1edd153,0x25998d7,0x0380856,0x3ab29db,0x09366de,
- 0x1e53644,0x2b31ff6,0x008b0ff },
- { 0x3b5d9ef,0x217448d,0x174746d,0x18afea4,0x15b106d,0x3e66e8b,
- 0x0479f85,0x13793b4,0x1231d10,0x3c39bce,0x25e8983,0x2a13210,
- 0x05a7083,0x382be04,0x00a9507 } },
- /* 25 */
- { { 0x0cf381c,0x1a29b85,0x31ccf6c,0x2f708b8,0x3af9d27,0x2a29732,
- 0x168d4da,0x393488d,0x2c0e338,0x3f90c7b,0x0f52ad1,0x2a0a3fa,
- 0x2cd80f1,0x15e7a1a,0x00db6a0 },
- { 0x107832a,0x159cb91,0x1289288,0x17e21f9,0x073fc27,0x1584342,
- 0x3802780,0x3d6c197,0x154075f,0x16366d1,0x09f712b,0x23a3ec4,
- 0x29cf23a,0x3218baf,0x0039f0a } },
- /* 26 */
- { { 0x052edf5,0x2afde13,0x2e53d8f,0x3969626,0x3dcd737,0x1e46ac5,
- 0x118bf0d,0x01b2652,0x156bcff,0x16d7ef6,0x1ca46d4,0x34c0cbb,
- 0x3e486f6,0x1f85068,0x002cdff },
- { 0x1f47ec8,0x12cee98,0x0608667,0x18fbbe1,0x08a8821,0x31a1fe4,
- 0x17c7054,0x3c89e89,0x2edf6cd,0x1b8c32c,0x3f6ea84,0x1319329,
- 0x3cd3c2c,0x05f331a,0x00186fa } },
- /* 27 */
- { { 0x1fcb91e,0x0fd4d87,0x358a48a,0x04d91b4,0x083595e,0x044a1e6,
- 0x15827b9,0x1d5eaf4,0x2b82187,0x08f3984,0x21bd737,0x0c54285,
- 0x2f56887,0x14c2d98,0x00f4684 },
- { 0x01896f6,0x0e542d0,0x2090883,0x269dfcf,0x1e11cb8,0x239fd29,
- 0x312cac4,0x19dfacb,0x369f606,0x0cc4f75,0x16579f9,0x33c22cc,
- 0x0f22bfd,0x3b251ae,0x006429c } },
- /* 28 */
- { { 0x375f9a4,0x137552e,0x3570498,0x2e4a74e,0x24aef06,0x35b9307,
- 0x384ca23,0x3bcd6d7,0x011b083,0x3c93187,0x392ca9f,0x129ce48,
- 0x0a800ce,0x145d9cc,0x00865d6 },
- { 0x22b4a2b,0x37f9d9c,0x3e0eca3,0x3e5ec20,0x112c04b,0x2e1ae29,
- 0x3ce5b51,0x0f83200,0x32d6a7e,0x10ff1d8,0x081adbe,0x265c30b,
- 0x216b1c8,0x0eb4483,0x003cbcd } },
- /* 29 */
- { { 0x030ce93,0x2d331fb,0x20a2fbf,0x1f6dc9c,0x010ed6c,0x1ed5540,
- 0x275bf74,0x3df0fb1,0x103333f,0x0241c96,0x1075bfc,0x30e5cf9,
- 0x0f31bc7,0x32c01eb,0x00b049e },
- { 0x358839c,0x1dbabd3,0x1e4fb40,0x36a8ac1,0x2101896,0x2d0319b,
- 0x2033b0a,0x192e8fd,0x2ebc8d8,0x2867ba7,0x07bf6d2,0x1b3c555,
- 0x2477deb,0x198fe09,0x008e5a9 } },
- /* 30 */
- { { 0x3fbd5e1,0x18bf77d,0x2b1d69e,0x151da44,0x338ecfe,0x0768efe,
- 0x1a3d56d,0x3c35211,0x10e1c86,0x2012525,0x3bc36ce,0x32b6fe4,
- 0x0c8d183,0x15c93f3,0x0041fce },
- { 0x332c144,0x24e70a0,0x246e05f,0x22c21c7,0x2b17f24,0x1ba2bfd,
- 0x0534e26,0x318a4f6,0x1dc3b85,0x0c741bc,0x23131b7,0x01a8cba,
- 0x364e5db,0x21362cf,0x00f2951 } },
- /* 31 */
- { { 0x2ddc103,0x14ffdcd,0x206fd96,0x0de57bd,0x025f43e,0x381b73a,
- 0x2301fcf,0x3bafc27,0x34130b6,0x0216bc8,0x0ff56b2,0x2c4ad4c,
- 0x23c6b79,0x1267fa6,0x009b4fb },
- { 0x1d27ac2,0x13e2494,0x1389015,0x38d5b29,0x2d33167,0x3f01969,
- 0x28ec1fa,0x1b26de0,0x2587f74,0x1c25668,0x0c44f83,0x23c6f8c,
- 0x32fdbb1,0x045f104,0x00a7946 } },
- /* 32 */
- { { 0x23c647b,0x09addd7,0x1348c04,0x0e633c1,0x1bfcbd9,0x1cb034f,
- 0x1312e31,0x11cdcc7,0x1e6ee75,0x057d27f,0x2da7ee6,0x154c3c1,
- 0x3a5fb89,0x2c2ba2c,0x00cf281 },
- { 0x1b8a543,0x125cd50,0x1d30fd1,0x29cc203,0x341a625,0x14e4233,
- 0x3aae076,0x289e38a,0x036ba02,0x230f405,0x3b21b8f,0x34088b9,
- 0x01297a0,0x03a75fb,0x00fdc27 } },
- /* 33 */
- { { 0x07f41d6,0x1cf032f,0x1641008,0x0f86deb,0x3d97611,0x0e110fe,
- 0x136ff42,0x0b914a9,0x0e241e6,0x180c340,0x1f545fc,0x0ba619d,
- 0x1208c53,0x04223a4,0x00cd033 },
- { 0x397612c,0x0132665,0x34e2d1a,0x00bba99,0x1d4393e,0x065d0a8,
- 0x2fa69ee,0x1643b55,0x08085f0,0x3774aad,0x08a2243,0x33bf149,
- 0x03f41a5,0x1ed950e,0x0048cc6 } },
- /* 34 */
- { { 0x014ab48,0x010c3bf,0x2a744e5,0x13c99c1,0x2195b7f,0x32207fd,
- 0x28a228c,0x004f4bf,0x0e2d945,0x2ec6e5a,0x0b92162,0x1aa95e5,
- 0x2754a93,0x1adcd93,0x004fb76 },
- { 0x1e1ff7f,0x24ef28c,0x269113f,0x32b393c,0x2696eb5,0x0ac2780,
- 0x354bf8a,0x0ffe3fd,0x09ce58e,0x0163c4f,0x1678c0b,0x15cd1bc,
- 0x292b3b7,0x036ea19,0x00d5420 } },
- /* 35 */
- { { 0x1da1265,0x0c2ef5b,0x18dd9a0,0x3f3a25c,0x0f7b4f3,0x0d8196e,
- 0x24931f9,0x090729a,0x1875f72,0x1ef39cb,0x2577585,0x2ed472d,
- 0x136756c,0x20553a6,0x00c7161 },
- { 0x2e32189,0x283de4b,0x00b2e81,0x0989df7,0x3ef2fab,0x1c7d1a7,
- 0x24f6feb,0x3e16679,0x233dfda,0x06d1233,0x3e6b5df,0x1707132,
- 0x05f7b3f,0x2c00779,0x00fb8df } },
- /* 36 */
- { { 0x15bb921,0x117e9d3,0x267ec73,0x2f934ad,0x25c7e04,0x20b5e8f,
- 0x2d3a802,0x2ca911f,0x3f87e47,0x39709dd,0x08488e2,0x2cec400,
- 0x35b4589,0x1f0acba,0x009aad7 },
- { 0x2ac34ae,0x06f29f6,0x3326d68,0x3949abe,0x02452e4,0x0687b85,
- 0x0879244,0x1eb7832,0x0d4c240,0x31d0ec1,0x3c17a2a,0x17a666f,
- 0x01a06cb,0x3e0929c,0x004dca2 } },
- /* 37 */
- { { 0x127bc1a,0x0c72984,0x13be68e,0x26c5fab,0x1a3edd5,0x097d685,
- 0x36b645e,0x385799e,0x394a420,0x39d8885,0x0b1e872,0x13f60ed,
- 0x2ce1b79,0x3c0ecb7,0x007cab3 },
- { 0x29b3586,0x26fc572,0x0bd7711,0x0913494,0x0a55459,0x31af3c9,
- 0x3633eac,0x3e2105c,0x0c2b1b6,0x0e6f4c2,0x047d38c,0x2b81bd5,
- 0x1fe1c3b,0x04d7cd0,0x0054dcc } },
- /* 38 */
- { { 0x03caf0d,0x0d66365,0x313356d,0x2a4897f,0x2ce044e,0x18feb7a,
- 0x1f6a7c5,0x3709e7b,0x14473e8,0x2d8cbae,0x3190dca,0x12d19f8,
- 0x31e3181,0x3cc5b6e,0x002d4f4 },
- { 0x143b7ca,0x2604728,0x39508d6,0x0cb79f3,0x24ec1ac,0x1ed7fa0,
- 0x3ab5fd3,0x3c76488,0x2e49390,0x03a0985,0x3580461,0x3fd2c81,
- 0x308f0ab,0x38561d6,0x0011b9b } },
- /* 39 */
- { { 0x3be682c,0x0c68f4e,0x32dd4ae,0x099d3bb,0x0bc7c5d,0x311f750,
- 0x2fd10a3,0x2e7864a,0x23bc14a,0x13b1f82,0x32e495e,0x1b0f746,
- 0x3cd856a,0x17a4c26,0x00085ee },
- { 0x02e67fd,0x06a4223,0x2af2f38,0x2038987,0x132083a,0x1b7bb85,
- 0x0d6a499,0x131e43f,0x3035e52,0x278ee3e,0x1d5b08b,0x30d8364,
- 0x2719f8d,0x0b21fc9,0x003a06e } },
- /* 40 */
- { { 0x237cac0,0x27d6a1c,0x27945cd,0x2750d61,0x293f0b5,0x253db13,
- 0x04a764e,0x20b4d0e,0x12bb627,0x160c13b,0x0de0601,0x236e2cf,
- 0x2190f0b,0x354d76f,0x004336d },
- { 0x2ab473a,0x10d54e4,0x1046574,0x1d6f97b,0x0031c72,0x06426a9,
- 0x38678c2,0x0b76cf9,0x04f9920,0x152adf8,0x2977e63,0x1234819,
- 0x198be26,0x061024c,0x00d427d } },
- /* 41 */
- { { 0x39b5a31,0x2123d43,0x362a822,0x1a2eab6,0x0bb0034,0x0d5d567,
- 0x3a04723,0x3a10c8c,0x08079ae,0x0d27bda,0x2eb9e1e,0x2619e82,
- 0x39a55a8,0x0c6c7db,0x00c1519 },
- { 0x174251e,0x13ac2eb,0x295ed26,0x18d2afc,0x037b9b2,0x1258344,
- 0x00921b0,0x1f702d8,0x1bc4da7,0x1c3794f,0x12b1869,0x366eacf,
- 0x16ddf01,0x31ebdc5,0x00ad54e } },
- /* 42 */
- { { 0x1efdc58,0x1370d5e,0x0ddb8e7,0x1a53fda,0x1456bd3,0x0c825a9,
- 0x0e74ccd,0x20f41c9,0x3423867,0x139073f,0x3c70d8a,0x131fc85,
- 0x219a2a0,0x34bf986,0x0041199 },
- { 0x1c05dd2,0x268f80a,0x3da9d38,0x1af9f8f,0x0535f2a,0x30ad37e,
- 0x2cf72d7,0x14a509b,0x1f4fe74,0x259e09d,0x1d23f51,0x0672732,
- 0x08fc463,0x00b6201,0x001e05a } },
- /* 43 */
- { { 0x0d5ffe8,0x3238bb5,0x17f275c,0x25b6fa8,0x2f8bb48,0x3b8f2d2,
- 0x059790c,0x18594d4,0x285a47c,0x3d301bb,0x12935d2,0x23ffc96,
- 0x3d7c7f9,0x15c8cbf,0x0034c4a },
- { 0x20376a2,0x05201ba,0x1e02c4b,0x1413c45,0x02ea5e7,0x39575f0,
- 0x2d76e21,0x113694c,0x011f310,0x0da3725,0x31b7799,0x1cb9195,
- 0x0cfd592,0x22ee4ea,0x00adaa3 } },
- /* 44 */
- { { 0x14ed72a,0x031c49f,0x39a34bf,0x192e87d,0x0da0e92,0x130e7a9,
- 0x00258bf,0x144e123,0x2d82a71,0x0294e53,0x3f06c66,0x3d4473a,
- 0x037cd4a,0x3bbfb17,0x00fcebc },
- { 0x39ae8c1,0x2dd6a9d,0x206ef23,0x332b479,0x2deff59,0x09d5720,
- 0x3526fd2,0x33bf7cf,0x344bb32,0x359316a,0x115bdef,0x1b8468a,
- 0x3813ea9,0x11a8450,0x00ab197 } },
- /* 45 */
- { { 0x0837d7d,0x1e1617b,0x0ba443c,0x2f2e3b8,0x2ca5b6f,0x176ed7b,
- 0x2924d9d,0x07294d3,0x104bb4f,0x1cfd3e8,0x398640f,0x1162dc8,
- 0x007ea15,0x2aa75fd,0x004231f },
- { 0x16e6896,0x01987be,0x0f9d53e,0x1a740ec,0x1554e4c,0x31e1634,
- 0x3cb07b9,0x013eb53,0x39352cb,0x1dfa549,0x0974e7f,0x17c55d2,
- 0x157c85f,0x1561adb,0x002e3fa } },
- /* 46 */
- { { 0x29951a8,0x35200da,0x2ad042c,0x22109e4,0x3a8b15b,0x2eca69c,
- 0x28bcf9a,0x0cfa063,0x0924099,0x12ff668,0x2fb88dc,0x028d653,
- 0x2445876,0x218d01c,0x0014418 },
- { 0x1caedc7,0x295bba6,0x01c9162,0x3364744,0x28fb12e,0x24c80b6,
- 0x2719673,0x35e5ba9,0x04aa4cc,0x206ab23,0x1cf185a,0x2c140d8,
- 0x1095a7d,0x1b3633f,0x000c9f8 } },
- /* 47 */
- { { 0x0b2a556,0x0a051c4,0x30b29a7,0x190c9ed,0x3767ca9,0x38de66d,
- 0x2d9e125,0x3aca813,0x2dc22a3,0x319e074,0x0d9450a,0x3445bac,
- 0x3e08a5b,0x07f29fa,0x00eccac },
- { 0x02d6e94,0x21113f7,0x321bde6,0x0a4d7b3,0x03621f4,0x2780e8b,
- 0x22d5432,0x1fc2853,0x0d57d3e,0x254f90b,0x33ed00b,0x289b025,
- 0x12272bb,0x30e715f,0x0000297 } },
- /* 48 */
- { { 0x0243a7d,0x2aac42e,0x0c5b3aa,0x0fa3e96,0x06eeef9,0x2b9fdd9,
- 0x26fca39,0x0134fe1,0x22661ab,0x1990416,0x03945d6,0x15e3628,
- 0x3848ca3,0x0f91e46,0x00b08cd },
- { 0x16d2411,0x3717e1d,0x128c45e,0x3669d54,0x0d4a790,0x2797da8,
- 0x0f09634,0x2faab0b,0x27df649,0x3b19b49,0x0467039,0x39b65a2,
- 0x3816f3c,0x31ad0bd,0x0050046 } },
- /* 49 */
- { { 0x2425043,0x3858099,0x389092a,0x3f7c236,0x11ff66a,0x3c58b39,
- 0x2f5a7f8,0x1663ce1,0x2a0fcf5,0x38634b7,0x1a8ca18,0x0dcace8,
- 0x0e6f778,0x03ae334,0x00df0d2 },
- { 0x1bb4045,0x357875d,0x14b77ed,0x33ae5b6,0x2252a47,0x31899dd,
- 0x3293582,0x040c6f6,0x14340dd,0x3614f0e,0x3d5f47f,0x326fb3d,
- 0x0044a9d,0x00beeb9,0x0027c23 } },
- /* 50 */
- { { 0x32d49ce,0x34822a3,0x30a22d1,0x00858b7,0x10d91aa,0x2681fd9,
- 0x1cce870,0x2404a71,0x38b8433,0x377c1c8,0x019442c,0x0a38b21,
- 0x22aba50,0x0d61c81,0x002dcbd },
- { 0x0680967,0x2f0f2f9,0x172cb5f,0x1167e4b,0x12a7bc6,0x05b0da7,
- 0x2c76e11,0x3a36201,0x37a3177,0x1d71419,0x0569df5,0x0dce7ad,
- 0x3f40b75,0x3bd8db0,0x002d481 } },
- /* 51 */
- { { 0x2a1103e,0x34e7f7f,0x1b171a2,0x24a57e0,0x2eaae55,0x166c992,
- 0x10aa18f,0x0bb836f,0x01acb59,0x0e430e7,0x1750cca,0x18be036,
- 0x3cc6cdf,0x0a0f7e5,0x00da4d8 },
- { 0x2201067,0x374d187,0x1f6b0a6,0x165a7ec,0x31531f8,0x3580487,
- 0x15e5521,0x0724522,0x2b04c04,0x202c86a,0x3cc1ccf,0x225b11a,
- 0x1bde79d,0x0eccc50,0x00d24da } },
- /* 52 */
- { { 0x3b0a354,0x2814dd4,0x1cd8575,0x3d031b7,0x0392ff2,0x1855ee5,
- 0x0e8cff5,0x203442e,0x3bd3b1b,0x141cf95,0x3fedee1,0x1d783c0,
- 0x26f192a,0x0392aa3,0x0075238 },
- { 0x158ffe9,0x3889f19,0x14151f4,0x06067b1,0x13a3486,0x1e65c21,
- 0x382d5ef,0x1ab0aac,0x2ffddc4,0x3179b7a,0x3c8d094,0x05101e3,
- 0x237c6e5,0x3947d83,0x00f674f } },
- /* 53 */
- { { 0x363408f,0x21eb96b,0x27376fb,0x2a735d6,0x1a39c36,0x3d31863,
- 0x33313fc,0x32235e0,0x082f034,0x23ef351,0x39b3528,0x1a69d84,
- 0x1d9c944,0x07159ad,0x0077a71 },
- { 0x04f8d65,0x25771e5,0x2ba84a6,0x194586a,0x1e6da5f,0x118059a,
- 0x14e9c32,0x1d24619,0x3f528ae,0x22f22e4,0x0f5580d,0x0747a0e,
- 0x32cc85f,0x286b3a8,0x008ccf9 } },
- /* 54 */
- { { 0x196fee2,0x2c4431c,0x094528a,0x18e1d32,0x175799d,0x26bb6b7,
- 0x2293482,0x23fd289,0x07b2be8,0x1a5c533,0x158d60d,0x04a4f3f,
- 0x164e9f7,0x32ccca9,0x00da6b6 },
- { 0x1d821c2,0x3f76c4f,0x323df43,0x17e4374,0x0f2f278,0x121227e,
- 0x2464190,0x19d2644,0x326d24c,0x3185983,0x0803c15,0x0767a33,
- 0x1c4c996,0x0563eab,0x00631c6 } },
- /* 55 */
- { { 0x1752366,0x0baf83f,0x288bacf,0x0384e6f,0x2b93c34,0x3c805e7,
- 0x3664850,0x29e1663,0x254ff1d,0x3852080,0x0f85c16,0x1e389d9,
- 0x3191352,0x3915eaa,0x00a246e },
- { 0x3763b33,0x187ad14,0x3c0d438,0x3f11702,0x1c49f03,0x35ac7a8,
- 0x3f16bca,0x27266bf,0x08b6fd4,0x0f38ce4,0x37fde8c,0x147a6ff,
- 0x02c5e5c,0x28e7fc5,0x00076a7 } },
- /* 56 */
- { { 0x2338d10,0x0e77fa7,0x011b046,0x1bfd0ad,0x28ee699,0x21d73bc,
- 0x0461d1a,0x342ea58,0x2d695b4,0x30415ed,0x2906e0b,0x18e494a,
- 0x20f8a27,0x026b870,0x002c19f },
- { 0x2f4c43d,0x3f0fc3b,0x0aa95b8,0x2a01ea1,0x3e2e1b1,0x0d74af6,
- 0x0555288,0x0cb757d,0x24d2071,0x143d2bb,0x3907f67,0x3e0ce30,
- 0x131f0e9,0x3724381,0x007a874 } },
- /* 57 */
- { { 0x3c27050,0x08b5165,0x0bf884b,0x3dd679c,0x3bd0b8d,0x25ce2e6,
- 0x1674057,0x1f13ed3,0x1f5cd91,0x0d1fd35,0x13ce6e3,0x2671338,
- 0x10f8b90,0x34e5487,0x00942bf },
- { 0x03b566d,0x23c3da9,0x37de502,0x1a486ff,0x1af6e86,0x1108cb3,
- 0x36f856c,0x01a6a0f,0x179f915,0x1595a01,0x2cfecb8,0x082568b,
- 0x1ba16d1,0x1abb6c0,0x00cf7f0 } },
- /* 58 */
- { { 0x2f96c80,0x1b8f123,0x209c0f5,0x2ccf76d,0x1d521f2,0x3705143,
- 0x2941027,0x07f88af,0x07102a9,0x38b4868,0x1efa37d,0x1bdd3e8,
- 0x028a12e,0x02e055b,0x009a9a9 },
- { 0x1c7dfcb,0x3aa7aa7,0x1d62c54,0x3f0b0b0,0x3c74e66,0x274f819,
- 0x23f9674,0x0e2b67c,0x24654dd,0x0c71f0e,0x1946cee,0x0016211,
- 0x0045dc7,0x0da1173,0x0089856 } },
- /* 59 */
- { { 0x0e73946,0x29f353f,0x056329d,0x2d48c5a,0x28f697d,0x2ea4bb1,
- 0x235e9cc,0x34faa38,0x15f9f91,0x3557519,0x2a50a6c,0x1a27c8e,
- 0x2a1a0f3,0x3098879,0x00dcf21 },
- { 0x1b818bf,0x2f20b98,0x2243cff,0x25b691e,0x3c74a2f,0x2f06833,
- 0x0e980a8,0x32db48d,0x2b57929,0x33cd7f5,0x2fe17d6,0x11a384b,
- 0x2dafb81,0x2b9562c,0x00ddea6 } },
- /* 60 */
- { { 0x2787b2e,0x37a21df,0x310d294,0x07ce6a4,0x1258acc,0x3050997,
- 0x19714aa,0x122824b,0x11c708b,0x0462d56,0x21abbf7,0x331aec3,
- 0x307b927,0x3e8d5a0,0x00c0581 },
- { 0x24d4d58,0x3d628fc,0x23279e0,0x2e38338,0x2febe9b,0x346f9c0,
- 0x3d6a419,0x3264e47,0x245faca,0x3669f62,0x1e50d66,0x3028232,
- 0x18201ab,0x0bdc192,0x0002c34 } },
- /* 61 */
- { { 0x17bdbc2,0x1c501c5,0x1605ccd,0x31ab438,0x372fa89,0x24a8057,
- 0x13da2bb,0x3f95ac7,0x3cda0a3,0x1e2b679,0x24f0673,0x03b72f4,
- 0x35be616,0x2ccd849,0x0079d4d },
- { 0x33497c4,0x0c7f657,0x2fb0d3d,0x3b81064,0x38cafea,0x0e942bc,
- 0x3ca7451,0x2ab9784,0x1678c85,0x3c62098,0x1eb556f,0x01b3aa2,
- 0x149f3ce,0x2656f6d,0x002eef1 } },
- /* 62 */
- { { 0x0596edc,0x1f4fad4,0x03a28ed,0x18a4149,0x3aa3593,0x12db40a,
- 0x12c2c2a,0x3b1a288,0x327c4fb,0x35847f5,0x384f733,0x02e3fde,
- 0x1af0e8a,0x2e417c3,0x00d85a6 },
- { 0x0091cf7,0x2267d75,0x276860e,0x19cbbfc,0x04fef2b,0x030ce59,
- 0x3195cb1,0x1aa3f07,0x3699362,0x2a09d74,0x0d6c840,0x1e413d0,
- 0x28acdc7,0x1ff5ea1,0x0088d8b } },
- /* 63 */
- { { 0x3d98425,0x08dc8de,0x154e85f,0x24b1c2c,0x2d44639,0x19a1e8b,
- 0x300ee29,0x053f72e,0x3f7c832,0x12417f6,0x1359368,0x0674a4c,
- 0x1218e20,0x0e4fbd4,0x000428c },
- { 0x01e909a,0x1d88fe6,0x12da40c,0x215ef86,0x2925133,0x004241f,
- 0x3e480f4,0x2d16523,0x07c3120,0x3375e86,0x21fd8f3,0x35dc0b6,
- 0x0efc5c9,0x14ef8d6,0x0066e47 } },
- /* 64 */
- { { 0x2973cf4,0x34d3845,0x34f7070,0x22df93c,0x120aee0,0x3ae2b4a,
- 0x1af9b95,0x177689a,0x036a6a4,0x0377828,0x23df41e,0x22d4a39,
- 0x0df2aa1,0x06ca898,0x0003cc7 },
- { 0x06b1dd7,0x19dc2a8,0x35d324a,0x0467499,0x25bfa9c,0x1a1110c,
- 0x01e2a19,0x1b3c1cf,0x18d131a,0x10d9815,0x2ee7945,0x0a2720c,
- 0x0ddcdb0,0x2c071b6,0x00a6aef } },
- /* 65 */
- { { 0x1ab5245,0x1192d00,0x13ffba1,0x1b71236,0x09b8d0b,0x0eb49cb,
- 0x1867dc9,0x371de4e,0x05eae9f,0x36faf82,0x094ea8b,0x2b9440e,
- 0x022e173,0x2268e6b,0x00740fc },
- { 0x0e23b23,0x22c28ca,0x04d05e2,0x0bb84c4,0x1235272,0x0289903,
- 0x267a18b,0x0df0fd1,0x32e49bb,0x2ab1d29,0x281e183,0x3dcd3c3,
- 0x1c0eb79,0x2db0ff6,0x00bffe5 } },
- /* 66 */
- { { 0x2a2123f,0x0d63d71,0x1f6db1a,0x257f8a3,0x1927b2d,0x06674be,
- 0x302753f,0x20b7225,0x14c1a3f,0x0429cdd,0x377affe,0x0f40a75,
- 0x2d34d06,0x05fb6b9,0x0054398 },
- { 0x38b83c4,0x1e7bbda,0x1682f79,0x0527651,0x2615cb2,0x1795fab,
- 0x0e4facc,0x11f763c,0x1b81130,0x2010ae2,0x13f3650,0x20d5b72,
- 0x1f32f88,0x34617f4,0x00bf008 } },
- /* 67 */
- { { 0x28068db,0x0aa8913,0x1a47801,0x10695ca,0x1c72cc6,0x0fc1a47,
- 0x33df2c4,0x0517cf0,0x3471d92,0x1be815c,0x397f794,0x3f03cbe,
- 0x121bfae,0x172cbe0,0x00813d7 },
- { 0x383bba6,0x04f1c90,0x0b3f056,0x1c29089,0x2a924ce,0x3c85e69,
- 0x1cecbe5,0x0ad8796,0x0aa79f6,0x25e38ba,0x13ad807,0x30b30ed,
- 0x0fa963a,0x35c763d,0x0055518 } },
- /* 68 */
- { { 0x0623f3b,0x3ca4880,0x2bff03c,0x0457ca7,0x3095c71,0x02a9a08,
- 0x1722478,0x302c10b,0x3a17458,0x001131e,0x0959ec2,0x18bdfbc,
- 0x2929fca,0x2adfe32,0x0040ae2 },
- { 0x127b102,0x14ddeaa,0x1771b8c,0x283700c,0x2398a86,0x085a901,
- 0x108f9dc,0x0cc0012,0x33a918d,0x26d08e9,0x20b9473,0x12c3fc7,
- 0x1f69763,0x1c94b5a,0x00e29de } },
- /* 69 */
- { { 0x035af04,0x3450021,0x12da744,0x077fb06,0x25f255b,0x0db7150,
- 0x17dc123,0x1a2a07c,0x2a7636a,0x3972430,0x3704ca1,0x0327add,
- 0x3d65a96,0x3c79bec,0x009de8c },
- { 0x11d3d06,0x3fb8354,0x12c7c60,0x04fe7ad,0x0466e23,0x01ac245,
- 0x3c0f5f2,0x2a935d0,0x3ac2191,0x090bd56,0x3febdbc,0x3f1f23f,
- 0x0ed1cce,0x02079ba,0x00d4fa6 } },
- /* 70 */
- { { 0x0ab9645,0x10174ec,0x3711b5e,0x26357c7,0x2aeec7f,0x2170a9b,
- 0x1423115,0x1a5122b,0x39e512c,0x18116b2,0x290db1c,0x041b13a,
- 0x26563ae,0x0f56263,0x00b89f3 },
- { 0x3ed2ce4,0x01f365f,0x1b2043b,0x05f7605,0x1f9934e,0x2a068d2,
- 0x38d4d50,0x201859d,0x2de5291,0x0a7985a,0x17e6711,0x01b6c1b,
- 0x08091fa,0x33c6212,0x001da23 } },
- /* 71 */
- { { 0x2f2c4b5,0x311acd0,0x1e47821,0x3bd9816,0x1931513,0x1bd4334,
- 0x30ae436,0x2c49dc0,0x2c943e7,0x010ed4d,0x1fca536,0x189633d,
- 0x17abf00,0x39e5ad5,0x00e4e3e },
- { 0x0c8b22f,0x2ce4009,0x1054bb6,0x307f2fc,0x32eb5e2,0x19d24ab,
- 0x3b18c95,0x0e55e4d,0x2e4acf5,0x1bc250c,0x1dbf3a5,0x17d6a74,
- 0x087cf58,0x07f6f82,0x00f8675 } },
- /* 72 */
- { { 0x110e0b2,0x0e672e7,0x11b7157,0x1598371,0x01c0d59,0x3d60c24,
- 0x096b8a1,0x0121075,0x0268859,0x219962f,0x03213f2,0x3022adc,
- 0x18de488,0x3dcdeb9,0x008d2e0 },
- { 0x06cfee6,0x26f2552,0x3c579b7,0x31fa796,0x2036a26,0x362ba5e,
- 0x103601c,0x012506b,0x387ff3a,0x101a41f,0x2c7eb58,0x23d2efc,
- 0x10a5a07,0x2fd5fa3,0x00e3731 } },
- /* 73 */
- { { 0x1cd0abe,0x08a0af8,0x2fa272f,0x17a1fbf,0x1d4f901,0x30e0d2f,
- 0x1898066,0x273b674,0x0c1b8a2,0x3272337,0x3ee82eb,0x006e7d3,
- 0x2a75606,0x0af1c81,0x0037105 },
- { 0x2f32562,0x2842491,0x1bb476f,0x1305cd4,0x1daad53,0x0d8daed,
- 0x164c37b,0x138030f,0x05145d5,0x300e2a3,0x32c09e7,0x0798600,
- 0x3515130,0x2b9e55c,0x009764e } },
- /* 74 */
- { { 0x3d5256a,0x06c67f2,0x3a3b879,0x3c9b284,0x04007e0,0x33c1a41,
- 0x3794604,0x1d6240e,0x022b6c1,0x22c62a7,0x01d4590,0x32df5f6,
- 0x368f1a1,0x2a7486e,0x006e13f },
- { 0x31e6e16,0x20f18a9,0x09ed471,0x23b861d,0x15cf0ef,0x397b502,
- 0x1c7f9b2,0x05f84b2,0x2cce6e1,0x3c10bba,0x13fb5a7,0x1b52058,
- 0x1feb1b8,0x03b7279,0x00ea1cf } },
- /* 75 */
- { { 0x2a4cc9b,0x15cf273,0x08f36e6,0x076bf3b,0x2541796,0x10e2dbd,
- 0x0bf02aa,0x3aa2201,0x03cdcd4,0x3ee252c,0x3799571,0x3e01fa4,
- 0x156e8d0,0x1fd6188,0x003466a },
- { 0x2515664,0x166b355,0x2b0b51e,0x0f28f17,0x355b0f9,0x2909e76,
- 0x206b026,0x3823a12,0x179c5fa,0x0972141,0x2663a1a,0x01ee36e,
- 0x3fc8dcf,0x2ef3d1b,0x0049a36 } },
- /* 76 */
- { { 0x2d93106,0x3d6b311,0x3c9ce47,0x382aa25,0x265b7ad,0x0b5f92f,
- 0x0f4c941,0x32aa4df,0x380d4b2,0x0e8aba6,0x260357a,0x1f38273,
- 0x0d5f95e,0x199f23b,0x0029f77 },
- { 0x0a0b1c5,0x21a3d6a,0x0ad8df6,0x33d8a5e,0x1240858,0x30000a8,
- 0x3ac101d,0x2a8143d,0x1d7ffe9,0x1c74a2a,0x1b962c9,0x1261359,
- 0x0c8b274,0x002cf4a,0x00a8a7c } },
- /* 77 */
- { { 0x211a338,0x22a14ab,0x16e77c5,0x3c746be,0x3a78613,0x0d5731c,
- 0x1767d25,0x0b799fa,0x009792a,0x09ae8dc,0x124386b,0x183d860,
- 0x176747d,0x14c4445,0x00ab09b },
- { 0x0eb9dd0,0x0121066,0x032895a,0x330541c,0x1e6c17a,0x2271b92,
- 0x06da454,0x054c2bf,0x20abb21,0x0ead169,0x3d7ea93,0x2359649,
- 0x242c6c5,0x3194255,0x00a3ef3 } },
- /* 78 */
- { { 0x3010879,0x1083a77,0x217989d,0x174e55d,0x29d2525,0x0e544ed,
- 0x1efd50e,0x30c4e73,0x05bd5d1,0x0793bf9,0x3f7af77,0x052779c,
- 0x2b06bc0,0x13d0d02,0x0055a6b },
- { 0x3eaf771,0x094947a,0x0288f13,0x0a21e35,0x22ab441,0x23816bf,
- 0x15832e1,0x2d8aff3,0x348cc1f,0x2bbd4a8,0x01c4792,0x34209d3,
- 0x06dc72b,0x211a1df,0x00345c5 } },
- /* 79 */
- { { 0x2a65e90,0x173ac2f,0x199cde1,0x0ac905b,0x00987f7,0x3618f7b,
- 0x1b578df,0x0d5e113,0x34bac6a,0x27d85ed,0x1b48e99,0x18af5eb,
- 0x1a1be9e,0x3987aac,0x00877ca },
- { 0x2358610,0x3776a8e,0x2b0723a,0x344c978,0x22fc4d6,0x1615d53,
- 0x3198f51,0x2d61225,0x12cb392,0x07dd061,0x355f7de,0x09e0132,
- 0x0efae99,0x13b46aa,0x00e9e6c } },
- /* 80 */
- { { 0x0683186,0x36d8e66,0x0ea9867,0x0937731,0x1fb5cf4,0x13c39ef,
- 0x1a7ffed,0x27dfb32,0x31c7a77,0x09f15fd,0x16b25ef,0x1dd01e7,
- 0x0168090,0x240ed02,0x0090eae },
- { 0x2e1fceb,0x2ab9783,0x1a1fdf2,0x093a1b0,0x33ff1da,0x2864fb7,
- 0x3587d6c,0x275aa03,0x123dc9b,0x0e95a55,0x0592030,0x2102402,
- 0x1bdef7b,0x37f2e9b,0x001efa4 } },
- /* 81 */
- { { 0x0540015,0x20e3e78,0x37dcfbd,0x11b0e41,0x02c3239,0x3586449,
- 0x1fb9e6a,0x0baa22c,0x00c0ca6,0x3e58491,0x2dbe00f,0x366d4b0,
- 0x176439a,0x2a86b86,0x00f52ab },
- { 0x0ac32ad,0x226250b,0x0f91d0e,0x1098aa6,0x3dfb79e,0x1dbd572,
- 0x052ecf2,0x0f84995,0x0d27ad2,0x036c6b0,0x1e4986f,0x2317dab,
- 0x2327df6,0x0dee0b3,0x00389ac } },
- /* 82 */
- { { 0x0e60f5b,0x0622d3e,0x2ada511,0x05522a8,0x27fe670,0x206af28,
- 0x333cb83,0x3f25f6c,0x19ddaf3,0x0ec579b,0x36aabc0,0x093dbac,
- 0x348b44b,0x277dca9,0x00c5978 },
- { 0x1cf5279,0x32e294a,0x1a6c26f,0x3f006b6,0x37a3c6b,0x2e2eb26,
- 0x2cf88d4,0x3410619,0x1899c80,0x23d3226,0x30add14,0x2810905,
- 0x01a41f0,0x11e5176,0x005a02f } },
- /* 83 */
- { { 0x1c90202,0x321df30,0x3570fa5,0x103e2b1,0x3d099d4,0x05e207d,
- 0x0a5b1bd,0x0075d0a,0x3db5b25,0x2d87899,0x32e4465,0x226fc13,
- 0x24cb8f8,0x3821daa,0x004da3a },
- { 0x3e66861,0x03f89b8,0x386d3ef,0x14ccc62,0x35e7729,0x11ce5b7,
- 0x035fbc7,0x3f4df0f,0x29c439f,0x1144568,0x32d7037,0x312f65e,
- 0x06b9dbf,0x03a9589,0x0008863 } },
- /* 84 */
- { { 0x0a9e8c9,0x1a19b6e,0x091ecd9,0x2e16ee0,0x2a11963,0x116cf34,
- 0x390d530,0x194131f,0x2b580f3,0x31d569c,0x21d3751,0x3e2ce64,
- 0x193de46,0x32454f0,0x004bffd },
- { 0x09554e7,0x170126e,0x2be6cd1,0x153de89,0x0353c67,0x350765c,
- 0x202370b,0x1db01e5,0x30b12b1,0x3778591,0x00c8809,0x2e845d5,
- 0x1fb1e56,0x170f90d,0x00e2db3 } },
- /* 85 */
- { { 0x328e33f,0x392aad8,0x36d1d71,0x0aebe04,0x1548678,0x1b55c8c,
- 0x24995f8,0x2a5a01e,0x1bd1651,0x37c7c29,0x36803b6,0x3716c91,
- 0x1a935a5,0x32f10b7,0x005c587 },
- { 0x2e8b4c0,0x336ccae,0x11382b6,0x22ec4cc,0x066d159,0x35fa585,
- 0x23b2d25,0x3017528,0x2a674a8,0x3a4f900,0x1a7ce82,0x2b2539b,
- 0x3d46545,0x0a07918,0x00eb9f8 } },
- /* 86 */
- { { 0x2cf5b9b,0x03e747f,0x166a34e,0x0afc81a,0x0a115b1,0x3aa814d,
- 0x11cf3b1,0x163e556,0x3cbfb15,0x157c0a4,0x1bc703a,0x2141e90,
- 0x01f811c,0x207218b,0x0092e6b },
- { 0x1af24e3,0x3af19b3,0x3c70cc9,0x335cbf3,0x068917e,0x055ee92,
- 0x09a9308,0x2cac9b7,0x008b06a,0x1175097,0x36e929c,0x0be339c,
- 0x0932436,0x15f18ba,0x0009f6f } },
- /* 87 */
- { { 0x29375fb,0x35ade34,0x11571c7,0x07b8d74,0x3fabd85,0x090fa91,
- 0x362dcd4,0x02c3fdb,0x0608fe3,0x2477649,0x3fc6e70,0x059b7eb,
- 0x1e6a708,0x1a4c220,0x00c6c4c },
- { 0x2a53fb0,0x1a3e1f5,0x11f9203,0x27e7ad3,0x038718e,0x3f5f9e4,
- 0x308acda,0x0a8700f,0x34472fe,0x3420d7a,0x08076e5,0x014240e,
- 0x0e7317e,0x197a98e,0x00538f7 } },
- /* 88 */
- { { 0x2663b4b,0x0927670,0x38dd0e0,0x16d1f34,0x3e700ab,0x3119567,
- 0x12559d2,0x399b6c6,0x0a84bcd,0x163e7dd,0x3e2aced,0x058548c,
- 0x03a5bad,0x011cf74,0x00c155c },
- { 0x3e454eb,0x2a1e64e,0x1ccd346,0x36e0edf,0x266ee94,0x2e74aaf,
- 0x2d8378a,0x3cd547d,0x1d27733,0x0928e5b,0x353553c,0x26f502b,
- 0x1d94341,0x2635cc7,0x00d0ead } },
- /* 89 */
- { { 0x0142408,0x382c3bb,0x3310908,0x2e50452,0x398943c,0x1d0ac75,
- 0x1bf7d81,0x04bd00f,0x36b6934,0x3349c37,0x0f69e20,0x0195252,
- 0x243a1c5,0x030da5f,0x00a76a9 },
- { 0x224825a,0x28ce111,0x34c2e0f,0x02e2b30,0x382e48c,0x26853ca,
- 0x24bd14e,0x0200dec,0x1e24db3,0x0d3d775,0x132da0a,0x1dea79e,
- 0x253dc0c,0x03c9d31,0x0020db9 } },
- /* 90 */
- { { 0x26c5fd9,0x05e6dc3,0x2eea261,0x08db260,0x2f8bec1,0x1255edf,
- 0x283338d,0x3d9a91d,0x2640a72,0x03311f9,0x1bad935,0x152fda8,
- 0x0e95abd,0x31abd15,0x00dfbf4 },
- { 0x107f4fa,0x29ebe9a,0x27353f7,0x3821972,0x27311fa,0x2925ab6,
- 0x337ab82,0x2de6c91,0x1f115fe,0x044f909,0x21b93c2,0x3a5f142,
- 0x13eb5e9,0x3ab1377,0x00b26b6 } },
- /* 91 */
- { { 0x22e5f2b,0x2ae7d4a,0x1ac481c,0x0a6fce1,0x2f93caf,0x242658e,
- 0x3f35c3c,0x050f3d2,0x30074c9,0x142079c,0x0281b4c,0x295fea3,
- 0x007413e,0x01726cd,0x00e4979 },
- { 0x1ab3cfb,0x1b76295,0x36adf55,0x1ad4636,0x1d444b9,0x3bd2e55,
- 0x35425a5,0x1aa8cd3,0x3acecd2,0x1f769e8,0x1a655e9,0x1f6846f,
- 0x24c70b5,0x3bff080,0x0002da3 } },
- /* 92 */
- { { 0x081d0d9,0x2c00d99,0x1fe2e24,0x396063f,0x03740db,0x243f680,
- 0x3c1f451,0x1ff7b07,0x2803cf2,0x38ca724,0x2934f43,0x0d72d4d,
- 0x0e8fe74,0x2975e21,0x002b505 },
- { 0x11adcc9,0x331a99c,0x21e16cf,0x1714c78,0x1f03432,0x2caa2a6,
- 0x34a9679,0x2f7fe8b,0x0423c21,0x1a757ce,0x31b57d6,0x171e044,
- 0x093b9b2,0x13602e0,0x00db534 } },
- /* 93 */
- { { 0x250a2f5,0x0b999eb,0x21d10d7,0x22b92a1,0x39b7f8d,0x0c37c72,
- 0x29f70f3,0x3bf0e84,0x1d7e04f,0x07a42a9,0x272c3ae,0x1587b2f,
- 0x155faff,0x10a336e,0x000d8fb },
- { 0x3663784,0x0d7dcf5,0x056ad22,0x319f8b1,0x0c05bae,0x2b6ff33,
- 0x0292e42,0x0435797,0x188efb1,0x0d3f45e,0x119d49f,0x395dcd3,
- 0x279fe27,0x133a13d,0x00188ac } },
- /* 94 */
- { { 0x396c53e,0x0d133e9,0x009b7ee,0x13421a0,0x1bbf607,0x1d284a5,
- 0x1594f74,0x18cb47c,0x2dcac11,0x2999ddb,0x04e2fa5,0x1889e2c,
- 0x0a89a18,0x33cb215,0x0052665 },
- { 0x104ab58,0x1d91920,0x3d6d7e3,0x04dc813,0x1167759,0x13a8466,
- 0x0a06a54,0x103761b,0x25b1c92,0x26a8fdd,0x2474614,0x21406a4,
- 0x251d75f,0x38c3734,0x007b982 } },
- /* 95 */
- { { 0x15f3060,0x3a7bf30,0x3be6e44,0x0baa1fa,0x05ad62f,0x1e54035,
- 0x099d41c,0x2a744d9,0x1c0336f,0x3e99b5b,0x1afd3b1,0x2bf1255,
- 0x1822bf8,0x2c93972,0x001d8cc },
- { 0x1d7584b,0x0508ade,0x20dd403,0x203a8fc,0x1c54a05,0x1611a31,
- 0x037c8f9,0x1dcd4fe,0x110fbea,0x30f60bc,0x3dffe2f,0x26a1de1,
- 0x0480367,0x18ec81c,0x0048eba } },
- /* 96 */
- { { 0x346e2f6,0x0435077,0x036789b,0x3e06545,0x313ab57,0x351a721,
- 0x3372b91,0x15e6019,0x2fa4f6c,0x3c30656,0x272c9ac,0x10e84a8,
- 0x2bdacea,0x232d9e2,0x009dadd },
- { 0x182579a,0x15b1af8,0x02d8cce,0x36cb49b,0x086feba,0x2911d17,
- 0x268ee12,0x011e871,0x18698dc,0x35602b3,0x11b9ec2,0x0ade731,
- 0x0f6a05a,0x1821015,0x00007da } },
- /* 97 */
- { { 0x3b00dd0,0x328d485,0x27a69e3,0x32c3a06,0x1046779,0x120b61c,
- 0x19fef3d,0x0fef2e6,0x134d923,0x039bce0,0x348cd0e,0x0b0c007,
- 0x066ae11,0x15d8f1b,0x00934e7 },
- { 0x33234dc,0x353f0f5,0x2fc1b44,0x18a193a,0x2fcae20,0x1afbc86,
- 0x3afe252,0x17f7e10,0x107f3b7,0x2d84d54,0x394c2e6,0x19e96a9,
- 0x0a37283,0x26c6152,0x003d262 } },
- /* 98 */
- { { 0x37cfaf8,0x01863d0,0x0299623,0x32c80cb,0x25b8742,0x0a4d90e,
- 0x1f72472,0x13de652,0x31a0946,0x0ee0103,0x0f25414,0x2518b49,
- 0x07e7604,0x1488d9b,0x00abd6b },
- { 0x1338f55,0x2ce4af5,0x1a0c119,0x3380525,0x21a80a9,0x235d4df,
- 0x118ca7f,0x2dd8bcc,0x1c26bf4,0x32dc56b,0x28482b6,0x1418596,
- 0x3c84d24,0x1f1a5a9,0x00d958d } },
- /* 99 */
- { { 0x1c21f31,0x22aa1ef,0x258c9ad,0x2d2018f,0x0adb3ca,0x01f75ee,
- 0x186283b,0x31ad3bf,0x3621be7,0x3b1ee6d,0x015582d,0x3d61d04,
- 0x2ddf32e,0x14b8a66,0x00c970c },
- { 0x2f24d66,0x00b8a88,0x100a78f,0x041d330,0x2efec1d,0x24c5b86,
- 0x2a6a390,0x37526bc,0x2055849,0x3339f08,0x16bffc4,0x07f9d72,
- 0x06ec09c,0x3f49ee8,0x00cad98 } },
- /* 100 */
- { { 0x248b73e,0x1b8b42d,0x285eed7,0x39473f4,0x1a9f92c,0x3b44f78,
- 0x086c062,0x06a4ea3,0x34ea519,0x3c74e95,0x1ad1b8b,0x1737e2c,
- 0x2cfe338,0x0a291f4,0x00bbecc },
- { 0x1cec548,0x0c9b01a,0x20b298d,0x377c902,0x24f5bc1,0x2415c8d,
- 0x1a70622,0x2529090,0x1c5c682,0x283f1ba,0x2319f17,0x0120e2e,
- 0x01c6f4d,0x33c67ff,0x008b612 } },
- /* 101 */
- { { 0x03830eb,0x02d4053,0x10c59bb,0x0f23b83,0x13d08f8,0x26ea4e2,
- 0x2626427,0x0a45292,0x0449cbc,0x0175750,0x074c46f,0x27ae0f8,
- 0x2d7d6ae,0x163dd3a,0x0063bb7 },
- { 0x2bb29e0,0x034bab1,0x341e1c4,0x21d2c0b,0x295aa2d,0x0f2c666,
- 0x1891755,0x13db64a,0x2fe5158,0x337646e,0x31a1aae,0x057bee4,
- 0x00f9e37,0x396d19e,0x00c1b6a } },
- /* 102 */
- { { 0x2772f41,0x34f92d0,0x39d1cde,0x174ef2d,0x03a700d,0x03fbb98,
- 0x30d50e8,0x352ed10,0x1fcf5e5,0x3d113bc,0x26e358f,0x180653f,
- 0x1b43cc6,0x3cc9aa4,0x00e68a2 },
- { 0x37fe4d2,0x09dd725,0x01eb584,0x171f8a9,0x278fdef,0x3e37c03,
- 0x3bec02f,0x149757c,0x0cd5852,0x37d2e10,0x0e6988b,0x1c120e9,
- 0x0b83708,0x38e7319,0x0039499 } },
- /* 103 */
- { { 0x08df5fe,0x177a02c,0x0362fc0,0x1f18ee8,0x00c1295,0x173c50a,
- 0x379414d,0x1885ba8,0x32a54ef,0x2315644,0x39e65cf,0x357c4be,
- 0x1d66333,0x09e05a5,0x0009c60 },
- { 0x1f7a2fb,0x073b518,0x2eb83ac,0x11353d7,0x1dd8384,0x0c63f2b,
- 0x238c6c8,0x2a1920a,0x2e5e9f1,0x1cc56f8,0x042daf4,0x1ed5dc5,
- 0x25f9e31,0x012a56a,0x0081b59 } },
- /* 104 */
- { { 0x321d232,0x2c71422,0x3a756b6,0x30230b2,0x387f3db,0x3a7c3eb,
- 0x274b46a,0x201e69f,0x185bb7b,0x140da82,0x0d974a2,0x0616e42,
- 0x35ec94f,0x3bc366b,0x005aa7c },
- { 0x3dcfffc,0x19a9c15,0x3225e05,0x36ae114,0x16ea311,0x0cda2aa,
- 0x2a1a8d2,0x154b5cb,0x08348cd,0x17b66c8,0x080ea43,0x21e59f3,
- 0x04173b9,0x31d5b04,0x00ad735 } },
- /* 105 */
- { { 0x2e76ef4,0x216acf3,0x2b93aea,0x112bc74,0x3449974,0x2b2e48f,
- 0x11929be,0x2f03021,0x19051e3,0x0ac202d,0x19be68a,0x3b87619,
- 0x26cdac4,0x086592c,0x00f00de },
- { 0x2e90d4d,0x3ed703c,0x2c648d7,0x29ddf67,0x000e219,0x3471247,
- 0x26febd5,0x1161713,0x3541a8f,0x302038d,0x08d2af9,0x26e1b21,
- 0x398514a,0x36dad99,0x002ed70 } },
- /* 106 */
- { { 0x06f25cb,0x1104596,0x370faee,0x07e83f3,0x0f7b686,0x228d43a,
- 0x12cd201,0x0a1bd57,0x3e592dc,0x1e186fc,0x2226aba,0x2c63fe9,
- 0x17b039a,0x1efaa61,0x00d1582 },
- { 0x2e6acef,0x07d51e4,0x3ac326c,0x322b07e,0x1422c63,0x32ff5c7,
- 0x18760df,0x048928b,0x139b251,0x04d7da9,0x048d1a2,0x2a23e84,
- 0x199dbba,0x2fa7afe,0x0049f1a } },
- /* 107 */
- { { 0x3492b73,0x27d3d3d,0x2b1a16f,0x07b2ce4,0x0cf28ec,0x2729bff,
- 0x3130d46,0x3e96116,0x140b72e,0x14a2ea3,0x1ca066f,0x3a61f1d,
- 0x022ebac,0x09192b4,0x003e399 },
- { 0x12555bb,0x0b6139d,0x239463a,0x12a70ab,0x2aaa93b,0x2254e72,
- 0x00424ec,0x26a6736,0x26daa11,0x25b5ad6,0x379f262,0x140cd30,
- 0x0c7d3bd,0x097bbcf,0x00899e9 } },
- /* 108 */
- { { 0x3825dc4,0x3cd946f,0x0462b7f,0x31102e7,0x30f741c,0x3313ed6,
- 0x1ff5a95,0x15bf9dc,0x09b47fd,0x0f2e7a7,0x1626c0d,0x3c14f6d,
- 0x14098bd,0x19d7df8,0x00a97ce },
- { 0x0934f5e,0x3f968db,0x046f68a,0x12333bf,0x26cd5e1,0x1ea2161,
- 0x358570d,0x235031d,0x35edd55,0x05265e3,0x24ae00c,0x3542229,
- 0x25bb2a1,0x1c83c75,0x0058f2a } },
- /* 109 */
- { { 0x24daedb,0x376928f,0x305266f,0x0499746,0x038318c,0x312efd7,
- 0x1910a24,0x33450a3,0x1c478a9,0x39d8bf9,0x12cc0ae,0x397aeab,
- 0x0654c08,0x095f283,0x00d2cdf },
- { 0x0b717d2,0x1f162c2,0x107a48f,0x128e1b3,0x2380718,0x39f4044,
- 0x00f626a,0x05ec0c9,0x21bc439,0x200fa4d,0x20aea01,0x186a1d8,
- 0x26372f2,0x1a91f87,0x0053f55 } },
- /* 110 */
- { { 0x3512a90,0x33b958b,0x29f1c84,0x0106c3a,0x224b3c0,0x09b307a,
- 0x215d2de,0x3bdf43b,0x22cf0c9,0x176121d,0x1534143,0x09ba717,
- 0x16b3110,0x0f73f6c,0x008f5b7 },
- { 0x2c75d95,0x26fbcb4,0x0dda1f6,0x206f819,0x28d33d5,0x1fb4d79,
- 0x024c125,0x30a0630,0x1f9c309,0x0fe350d,0x1696019,0x0a54187,
- 0x09541fd,0x35e3a79,0x0066618 } },
- /* 111 */
- { { 0x0e382de,0x33f5163,0x0dde571,0x3bb7a40,0x1175806,0x12ae8ed,
- 0x0499653,0x3b25586,0x38ade7a,0x3fa265d,0x3f4aa97,0x3c03dbb,
- 0x30c6de8,0x32d4042,0x00ae971 },
- { 0x2f788f1,0x1fbaf0e,0x3e2d182,0x3ff904f,0x0d46229,0x1d0726d,
- 0x15455b4,0x093ae28,0x290f8e4,0x097c0b9,0x1ae8771,0x28480bb,
- 0x04f6d40,0x3689925,0x0049b3b } },
- /* 112 */
- { { 0x35b2d69,0x31819c0,0x11b0d63,0x035afb6,0x2b50715,0x2bece6c,
- 0x35f82f7,0x0ad987c,0x0011601,0x02e6f67,0x2d0a5f5,0x365e583,
- 0x2f7c900,0x11449c5,0x00ed705 },
- { 0x27abdb4,0x1bbfd04,0x301c157,0x263c079,0x36850d6,0x3f21f8b,
- 0x27d7493,0x0f9227e,0x06fb0ce,0x002daf3,0x37d8c1c,0x3ef87d7,
- 0x19cc6f4,0x0c3809c,0x00cf752 } },
- /* 113 */
- { { 0x22d94ed,0x075b09c,0x020e676,0x084dc62,0x2d1ec3f,0x17439f1,
- 0x240b702,0x33cc596,0x30ebaf3,0x0359fe0,0x393ea43,0x0ece01e,
- 0x16c6963,0x03a82f2,0x0017faa },
- { 0x3866b98,0x3cd20b7,0x12d4e6b,0x3a6a76d,0x1205c1e,0x3e6ae1a,
- 0x2f9bbdf,0x2e61547,0x2d175ee,0x28e18f6,0x13cf442,0x085b0ef,
- 0x0e321ef,0x238fe72,0x003fb22 } },
- /* 114 */
- { { 0x360ac07,0x26dc301,0x3f4d94f,0x2ba75e6,0x1f3c9cc,0x17ff20f,
- 0x0ea084c,0x30e39cf,0x143dc49,0x03bd43e,0x3c9e733,0x19e8aba,
- 0x27fbaf4,0x12d913a,0x005ee53 },
- { 0x3609e7f,0x2d89c80,0x09f020c,0x1558bf7,0x3098443,0x3c515fd,
- 0x1c8e580,0x16506bd,0x26cb4b2,0x1747d42,0x2ec8239,0x32c91f0,
- 0x1ca3377,0x079768f,0x00a5f3e } },
- /* 115 */
- { { 0x185fa94,0x122759f,0x0e47023,0x0dcb6e7,0x10ba405,0x3b5eab4,
- 0x1f7a1fa,0x32d003f,0x1739a4c,0x3295ec3,0x1b18967,0x3f3b265,
- 0x34d2448,0x2dbadc9,0x00f30b5 },
- { 0x01c5338,0x2d1dcf2,0x2bd07cc,0x39a8fb5,0x2b85639,0x355bab6,
- 0x1df95f1,0x01eb5f6,0x17f0a16,0x1b895b5,0x157574d,0x29fff72,
- 0x3a8c46d,0x0118071,0x0065f84 } },
- /* 116 */
- { { 0x3a1e7f1,0x17432f2,0x1f648d4,0x3000ad5,0x2ef0a08,0x1f86624,
- 0x1ca31b1,0x241f9dc,0x2cb4885,0x2b8610f,0x364ce16,0x1e5faf0,
- 0x0b33867,0x2cb637d,0x00816d2 },
- { 0x1aa8671,0x02c394e,0x35f5e87,0x393040a,0x39f0db3,0x1c831a5,
- 0x2966591,0x034a8d0,0x09e613c,0x042b532,0x018ddd6,0x3e402c9,
- 0x2e20e1a,0x29cb4cd,0x00e087c } },
- /* 117 */
- { { 0x3a10079,0x20c7fea,0x3ff2222,0x1edb593,0x00dc5f8,0x3a32ccc,
- 0x1479073,0x0cfed11,0x2a2702a,0x17a056a,0x1fba321,0x235acb9,
- 0x149c833,0x172de7d,0x000f753 },
- { 0x2e95923,0x3b365cb,0x009f471,0x0df1b47,0x21e868b,0x199bbd3,
- 0x07b8ecc,0x12ff0af,0x189808a,0x3bd5059,0x3fbc4d2,0x0fa7b88,
- 0x1125bf2,0x0db0b5d,0x0043572 } },
- /* 118 */
- { { 0x29cdb1b,0x1db656e,0x391efe1,0x004be09,0x245a1ca,0x3793328,
- 0x254af24,0x2f2e65d,0x10e5cc4,0x2af6fe7,0x2d97ac0,0x29f7d42,
- 0x19fd6f6,0x0ac184d,0x00c5211 },
- { 0x305eae3,0x36738d3,0x2c2b696,0x00ba50e,0x3903adc,0x2122f85,
- 0x0753470,0x1cf96a4,0x1702a39,0x247883c,0x2feb67e,0x2ab3071,
- 0x3c6b9e1,0x30cb85a,0x002ca0a } },
- /* 119 */
- { { 0x3871eb5,0x284b93b,0x0a7affe,0x176a2fc,0x294c2f2,0x204d3aa,
- 0x1e4c2a7,0x3ec4134,0x2fb0360,0x3847b45,0x05fc11b,0x0a6db6e,
- 0x390fa40,0x2adfd34,0x005e9f7 },
- { 0x0646612,0x1b5cbcc,0x10d8507,0x0777687,0x3a0afed,0x1687440,
- 0x0222578,0x1af34a4,0x2174e27,0x372d267,0x11246c3,0x34769c5,
- 0x2044316,0x1b4d626,0x00c72d5 } },
- /* 120 */
- { { 0x2e5bb45,0x3ff1d36,0x16dcdf5,0x128986f,0x399068c,0x2a63b1e,
- 0x0afa7aa,0x3a5b770,0x200f121,0x33b74bb,0x1414045,0x0f31ef8,
- 0x2f50e16,0x2f38cd6,0x00b0b1b },
- { 0x1a06293,0x035e140,0x2644d44,0x1f1954b,0x2cdebab,0x31d5f91,
- 0x0b8dbc8,0x38f2d23,0x3783cab,0x2a07e73,0x3123f59,0x3409846,
- 0x3784ddd,0x223bbac,0x003dc7b } },
- /* 121 */
- { { 0x0741456,0x234e631,0x2121e1b,0x00980ca,0x3a9dfa9,0x098c916,
- 0x3fc86d1,0x1c63072,0x3625244,0x13d0471,0x05b0fc5,0x1487550,
- 0x2498596,0x11bb6ea,0x001afab },
- { 0x274b4ad,0x240aea1,0x3d12a75,0x2b56b61,0x1486b43,0x1b83426,
- 0x31c7363,0x35b59ca,0x207bb6c,0x38e6243,0x19bace4,0x0a26671,
- 0x35e3381,0x0c2ded4,0x00d8da4 } },
- /* 122 */
- { { 0x2b75791,0x19590b1,0x2bfb39f,0x2988601,0x0050947,0x0d8bbe1,
- 0x23e3701,0x08e4432,0x2ed8c3d,0x326f182,0x332e1dd,0x12219c5,
- 0x2e0779b,0x367aa63,0x0012d10 },
- { 0x251b7dc,0x0a08b4d,0x1138b6f,0x2ea02af,0x06345a5,0x1cb4f21,
- 0x0332624,0x1d49d88,0x140acc5,0x2f55287,0x024447c,0x291ace9,
- 0x1a4966e,0x015cbec,0x005bc41 } },
- /* 123 */
- { { 0x351cd0e,0x315e8e9,0x07d6e70,0x067ae8f,0x2190d84,0x351f556,
- 0x03bee79,0x31b62c7,0x266f912,0x1b6a504,0x007a6ad,0x3a6ab31,
- 0x3891112,0x3c45ba0,0x00d6ce5 },
- { 0x0e1f2ce,0x32a5edc,0x1434063,0x1ca084f,0x2a3e47c,0x137e042,
- 0x16e2418,0x2069280,0x3b0dfd8,0x35a22b5,0x289bf0a,0x1f667f2,
- 0x02d23a3,0x0ce688f,0x00d8e3f } },
- /* 124 */
- { { 0x10bed6f,0x14c58dd,0x0b0abdf,0x0ca0f9a,0x3808abc,0x2ec228c,
- 0x2366275,0x12afa16,0x20f6b0e,0x37dca8e,0x3af0c6a,0x1c5b467,
- 0x1b25ff7,0x00814de,0x0022dcc },
- { 0x1a56e11,0x02fe37e,0x3f21740,0x35d5a91,0x06cb8ba,0x29bad91,
- 0x17176f7,0x2d919f2,0x0f7d1f5,0x13a3f61,0x04ddb05,0x0c82a51,
- 0x286f598,0x2e8c777,0x0007071 } },
- /* 125 */
- { { 0x0f8fcb9,0x3e83966,0x170c6fd,0x3825343,0x089cec8,0x01b482a,
- 0x0993971,0x3327282,0x39aba8a,0x32456fe,0x1507e01,0x1c3252d,
- 0x21ffb13,0x29822a0,0x0083246 },
- { 0x23c378f,0x1cea7ef,0x1be9a82,0x224d689,0x37e5447,0x3764a75,
- 0x3a49724,0x361e1b3,0x19d365b,0x3a61ffb,0x1c29a7a,0x20ab251,
- 0x17ec549,0x175d777,0x004589a } },
- /* 126 */
- { { 0x15540a9,0x2ec5d2a,0x05b09fa,0x1bc058b,0x07cfb88,0x28f7b86,
- 0x3e766be,0x189305e,0x01fe88e,0x23fdf69,0x0b919c3,0x02dc7ae,
- 0x3f9a9ad,0x0b83cc7,0x0086a52 },
- { 0x28bc259,0x39bdca1,0x39e4bc8,0x0e0f33b,0x16130c6,0x2919955,
- 0x31f4549,0x2fed027,0x30919b2,0x0a39b03,0x0ca7bb2,0x1711b24,
- 0x3b67b94,0x05a136b,0x00acd87 } },
- /* 127 */
- { { 0x0c53841,0x31cb284,0x3ced090,0x06d5693,0x1c20ae0,0x0408d2b,
- 0x37ebd5e,0x081900f,0x26a8589,0x0acfd0a,0x34a1472,0x2f0c302,
- 0x124ccbd,0x10de328,0x00971bc },
- { 0x17ff2ff,0x27d1b54,0x147b6f7,0x38bb2ea,0x26a9c96,0x0a49448,
- 0x39f2f46,0x247c579,0x3b16a4e,0x28c2a5a,0x2d4c72d,0x11f248c,
- 0x1e4df11,0x047d604,0x0065bc3 } },
- /* 128 */
- { { 0x39b3239,0x1f75f44,0x3bae87c,0x139360c,0x18b5782,0x3ffc005,
- 0x3c48789,0x2bc6af2,0x38b909e,0x223ff3b,0x31443a7,0x017d3bb,
- 0x0bfed99,0x128b857,0x00020dd },
- { 0x306d695,0x25a7b28,0x2f60ca2,0x2b6e4f2,0x1df940c,0x1fa9b8e,
- 0x37fab78,0x13f959f,0x10ff98c,0x38343b8,0x019cb91,0x11a1e6b,
- 0x17ab4c6,0x1431f47,0x004b4ea } },
- /* 129 */
- { { 0x20db57e,0x102515e,0x170219e,0x2b66a32,0x1e6017c,0x2f973fe,
- 0x3739e51,0x0e28b6f,0x3cda7a9,0x30d91ac,0x28350df,0x1444215,
- 0x098b504,0x1bcd5b8,0x00ad3bd },
- { 0x22e3e3e,0x3aeaffb,0x26cb935,0x0091ce4,0x2fbd017,0x3a7ed6a,
- 0x335b029,0x3bfc1f1,0x3852e3f,0x2b14a86,0x046b405,0x266af4c,
- 0x3997191,0x33b0e40,0x00e306f } },
- /* 130 */
- { { 0x3e4712c,0x26bb208,0x18eed6d,0x1b30f06,0x27ca837,0x06faf62,
- 0x1831873,0x3fbcf9b,0x3f3d88b,0x1fb55eb,0x0f44edc,0x29917bb,
- 0x3151772,0x342d72e,0x00d4e63 },
- { 0x2ee0ecf,0x39e8733,0x2e8e98c,0x0cd4e0f,0x08f0126,0x1ad157a,
- 0x079078a,0x23018ee,0x196c765,0x2b2f34f,0x0783336,0x075bf9c,
- 0x3713672,0x098d699,0x00f21a7 } },
- /* 131 */
- { { 0x186ba11,0x22cf365,0x048019d,0x2ca2970,0x0d9e0ae,0x08c3bd7,
- 0x261dbf2,0x2fc2790,0x1ee02e6,0x10256a7,0x00dc778,0x18dc8f2,
- 0x157b189,0x2ebc514,0x005c97d },
- { 0x3c4503e,0x1d10d12,0x337097e,0x0c6169a,0x30fb1cb,0x3481752,
- 0x0df2bec,0x19768fa,0x1bcf8f7,0x2925f74,0x2c988a1,0x3be571d,
- 0x04cfa92,0x2ea9937,0x003f924 } },
- /* 132 */
- { { 0x268b448,0x06e375c,0x1b946bf,0x287bf5e,0x3d4c28b,0x138d547,
- 0x21f8c8e,0x21ea4be,0x2d45c91,0x35da78e,0x00326c0,0x210ed35,
- 0x1d66928,0x0251435,0x00fefc8 },
- { 0x0339366,0x216ff64,0x2c3a30c,0x3c5733d,0x04eeb56,0x2333477,
- 0x32b1492,0x25e3839,0x1b5f2ce,0x0dcfba1,0x3165bb2,0x3acafcc,
- 0x10abfcd,0x248d390,0x008106c } },
- /* 133 */
- { { 0x102f4ee,0x3c0585f,0x1225c8d,0x11c6388,0x08a7815,0x2b3e790,
- 0x2895eb6,0x18cf53a,0x0b56e5a,0x2e2c003,0x3e981ff,0x0761b55,
- 0x1bc32f3,0x0a7111d,0x00f5c80 },
- { 0x3568973,0x1587386,0x16ec764,0x20698a6,0x02f809b,0x2821502,
- 0x113d64d,0x38c2679,0x15de61c,0x0309f60,0x272999e,0x29bfe64,
- 0x173f70d,0x1de7fab,0x00bd284 } },
- /* 134 */
- { { 0x31cdf2b,0x0f0be66,0x2151603,0x01af17e,0x32a99cf,0x085dece,
- 0x27d2591,0x1520df4,0x273c448,0x1ec7c54,0x102e229,0x355f604,
- 0x2acb75f,0x005f1fd,0x003d43e },
- { 0x270eb28,0x22ec2ce,0x306b41a,0x238fa02,0x167de2d,0x030a379,
- 0x245a417,0x1808c24,0x0b1a7b2,0x3ab5f6f,0x2cbc6c1,0x2c228d4,
- 0x3041f70,0x2d9a6cc,0x00b504f } },
- /* 135 */
- { { 0x17a27c2,0x216ad7e,0x011ba8e,0x22f0428,0x16ac5ec,0x3ef3c58,
- 0x345533f,0x0298155,0x2856579,0x0005e03,0x19ee75b,0x146fe16,
- 0x29881e4,0x18ece70,0x008907a },
- { 0x20189ed,0x119ce09,0x35cb76d,0x0d91ef4,0x2284a44,0x032ad87,
- 0x0e8c402,0x3c82b5d,0x38c416c,0x398992f,0x1fd820c,0x169b255,
- 0x3b5fcfa,0x1343c92,0x00fa715 } },
- /* 136 */
- { { 0x33f5034,0x20b3b26,0x28fd184,0x16b3679,0x3962d44,0x15d1bc8,
- 0x2fb1d69,0x1292c99,0x25a58c9,0x1b19ab7,0x2d68a5b,0x2f6a09b,
- 0x0d6aedb,0x2935eac,0x0005664 },
- { 0x25e32fc,0x13f9440,0x3252bcd,0x2fea5b7,0x161a5ae,0x0564a8c,
- 0x0a07e23,0x1545f62,0x0de9890,0x1d76765,0x1fd440e,0x2ed0041,
- 0x3db4c96,0x1e8ba01,0x001b0c4 } },
- /* 137 */
- { { 0x0223878,0x29ab202,0x15585c2,0x1a79969,0x1ba08c2,0x2ef09ff,
- 0x2b1b9b9,0x181f748,0x1bf72b9,0x224645c,0x2588dc5,0x2d157e7,
- 0x22d939a,0x05b88d9,0x006d549 },
- { 0x31de0c1,0x23a4e0e,0x278f8da,0x1aa013c,0x1a84d18,0x0d185a5,
- 0x0988ccd,0x2c32efd,0x3bee10e,0x37d7ab8,0x3f2a66e,0x3e2da3e,
- 0x1b5701f,0x3d9f0c1,0x00a68da } },
- /* 138 */
- { { 0x0b2e045,0x0133fd1,0x05d4c10,0x0d92c70,0x391b5e1,0x2292281,
- 0x2e40908,0x2ec694e,0x195ea11,0x29cfeca,0x3d93a4e,0x01215c0,
- 0x08a5f32,0x37a0eff,0x00cce45 },
- { 0x2b3106e,0x12a5fb0,0x0b4faff,0x0c2da12,0x09069c6,0x35d8907,
- 0x2837a6e,0x3db3fb6,0x3136cc3,0x222836b,0x3da018a,0x2741274,
- 0x13ba319,0x1ac7642,0x00f867c } },
- /* 139 */
- { { 0x2527296,0x10a9595,0x178de4d,0x0f739c4,0x0ae26c7,0x3094599,
- 0x20adac6,0x2b875c2,0x3ae5dc0,0x3e04d20,0x1aab2da,0x1d3ab37,
- 0x15f4f75,0x0b730b5,0x00c56b5 },
- { 0x1f32923,0x2f059e5,0x2a89872,0x2056f74,0x04be175,0x1da67c0,
- 0x17f1e7a,0x3780a6d,0x0723ac2,0x257f367,0x1237773,0x2bcee86,
- 0x0b97f83,0x38aff14,0x00a64d4 } },
- /* 140 */
- { { 0x2552b40,0x0b6b883,0x12e8217,0x0974d35,0x062f497,0x1e563e6,
- 0x30ee400,0x375d1e4,0x290751f,0x0d5b68a,0x353e48c,0x064a0d3,
- 0x3c343f1,0x309a394,0x0034d2a },
- { 0x3111286,0x0f08604,0x1827107,0x0536a76,0x0201dac,0x3a574de,
- 0x2c29dbe,0x382c7b0,0x1191f3e,0x324c5bc,0x144ce71,0x24327c1,
- 0x1212778,0x22bc9d8,0x00d7713 } },
- /* 141 */
- { { 0x34ad1cd,0x1179b4e,0x1bc1780,0x1392a92,0x2cd86b9,0x359de85,
- 0x251f1df,0x0da5d5f,0x135fa61,0x0f64a42,0x34f4d89,0x0fe564c,
- 0x3cf9b7a,0x122d757,0x008c9c2 },
- { 0x370d4e9,0x0e9209b,0x0ae99f2,0x1518c64,0x0172734,0x2c20692,
- 0x1d7c135,0x149c52f,0x38928d6,0x3c78b78,0x25841d1,0x2eaa897,
- 0x372e50b,0x29e5d19,0x00c4c18 } },
- /* 142 */
- { { 0x13375ac,0x389a056,0x211310e,0x2f9f757,0x04f3288,0x103cd4e,
- 0x17b2fb2,0x2c78a6a,0x09f1de6,0x23e8442,0x1351bc5,0x1b69588,
- 0x285b551,0x0464b7e,0x00573b6 },
- { 0x0ba7df5,0x259a0db,0x2b4089e,0x05630a2,0x3f299be,0x350ff2f,
- 0x1c9348a,0x3becfa4,0x3cc9a1c,0x17a6ef1,0x338b277,0x2b761d9,
- 0x2aa01c8,0x3cb9dd7,0x006e3b1 } },
- /* 143 */
- { { 0x277788b,0x16a222d,0x173c036,0x310ff58,0x2634ae8,0x392636f,
- 0x0987619,0x1e6acc1,0x26dc8f7,0x242310f,0x0c09aca,0x22b8e11,
- 0x0d17006,0x1c2c806,0x002380c },
- { 0x297c5ec,0x1fef0e8,0x3948cf7,0x14f2915,0x2dacbc8,0x0dafb1f,
- 0x10de043,0x31184da,0x06414ee,0x3c9aeeb,0x1f713ab,0x308f1f8,
- 0x1569ed1,0x3f379bf,0x00f08bb } },
- /* 144 */
- { { 0x0770ee3,0x058fd21,0x17065f8,0x251d128,0x10e0c7f,0x06cb51b,
- 0x0f05f7e,0x3666a72,0x3e7d01f,0x2d05fab,0x11440e5,0x28577d4,
- 0x2fbcf2b,0x14aa469,0x00dc5c5 },
- { 0x270f721,0x1c75d28,0x085b862,0x1d68011,0x132c0a0,0x37be81d,
- 0x1a87e38,0x083fa74,0x3acbf0d,0x16d6429,0x0feda1f,0x031070a,
- 0x2ec2443,0x21e563d,0x00454d2 } },
- /* 145 */
- { { 0x0525435,0x1e98d5f,0x3dbc52b,0x1fcdf12,0x13d9ef5,0x3ff311d,
- 0x393e9ed,0x3cef8ae,0x2987710,0x3bdee2e,0x21b727d,0x3ba1b68,
- 0x10d0142,0x3c64b92,0x0055ac3 },
- { 0x0c1c390,0x38e9bb0,0x1e7b487,0x11511b3,0x1036fb3,0x25aba54,
- 0x1eb2764,0x048d022,0x0d971ed,0x1bb7fb5,0x100f0b4,0x06c3756,
- 0x2f0d366,0x3c6e160,0x0011bd6 } },
- /* 146 */
- { { 0x36bc9d1,0x24d43c1,0x12c35cf,0x2fb3cf3,0x015d903,0x16bc0c7,
- 0x0fc8c22,0x3195c87,0x2488b1c,0x1f82b4c,0x30014e8,0x27ee58d,
- 0x31658dd,0x1684a5f,0x00f0f3a },
- { 0x1f703aa,0x023eebc,0x20babb9,0x080bd9d,0x12f9cc4,0x1a8e2d4,
- 0x0eec666,0x1176803,0x33005d6,0x1137b68,0x37de339,0x33d71cb,
- 0x0c906b9,0x14086b5,0x00aeef6 } },
- /* 147 */
- { { 0x219045d,0x0f22c5e,0x024c058,0x00b414a,0x0ae7c31,0x3db3e96,
- 0x234979f,0x0cf00a8,0x3c962c7,0x27fa77f,0x1c0c4b0,0x1fe8942,
- 0x218053a,0x1eed3f8,0x0051643 },
- { 0x2a23ddb,0x138f570,0x104e945,0x21ca270,0x30726d8,0x3f45490,
- 0x37d9184,0x242ea25,0x33f6d77,0x3f15679,0x065af85,0x34fa1f5,
- 0x2e46b8f,0x31d17fb,0x00a2615 } },
- /* 148 */
- { { 0x335167d,0x181ea10,0x0887c8d,0x01383d7,0x18b42d8,0x263447e,
- 0x1f13df3,0x0319d7e,0x0872074,0x2d6aa94,0x23d9234,0x36a69aa,
- 0x0bad183,0x3138a95,0x00bd3a5 },
- { 0x1b0f658,0x0e4530b,0x373add1,0x1b968fc,0x329dcb6,0x09169ca,
- 0x162df55,0x0211eff,0x02391e4,0x3867460,0x3136b1a,0x37dd36e,
- 0x3bc5bd9,0x2dacfe4,0x0072a06 } },
- /* 149 */
- { { 0x119d96f,0x067b0eb,0x00996da,0x293eca9,0x2b342da,0x1889c7a,
- 0x21633a6,0x0152c39,0x281ce8c,0x18ef3b3,0x0bd62dc,0x3238186,
- 0x38d8b7c,0x3867b95,0x00ae189 },
- { 0x0ed1eed,0x1e89777,0x13ab73e,0x029e1d7,0x2c1257f,0x33fbc09,
- 0x32d5a21,0x3d870b2,0x39bb1fd,0x33663bc,0x24e83e6,0x239bda4,
- 0x3088bcd,0x01db1ed,0x00d71e7 } },
- /* 150 */
- { { 0x14245bf,0x0da0c27,0x153b339,0x05cab0a,0x122d962,0x1b0f0f3,
- 0x3f5a825,0x267a2ce,0x2910d06,0x254326f,0x0f36645,0x025118e,
- 0x37c35ec,0x36e944e,0x006c056 },
- { 0x05ab0e3,0x29aa0c1,0x1295687,0x1fd1172,0x08d40b5,0x05bd655,
- 0x345048a,0x02a1c3c,0x2393d8f,0x0992d71,0x1f71c5e,0x18d4e8a,
- 0x30dd410,0x11d61d3,0x00dd58b } },
- /* 151 */
- { { 0x2230c72,0x30213d8,0x05e367e,0x329204e,0x0f14f6c,0x3369ddd,
- 0x0bb4074,0x2edafd6,0x1b1aa2d,0x0785404,0x0c035ab,0x220da74,
- 0x1f2fdd4,0x092a091,0x00ef83c },
- { 0x3dc2538,0x1cca3e7,0x246afb5,0x24c647f,0x0798082,0x0bb7952,
- 0x0f5c443,0x008b38a,0x299ea1a,0x3c6cf36,0x3df2ec7,0x398e6dc,
- 0x29a1839,0x1cadd83,0x0077b62 } },
- /* 152 */
- { { 0x25d56d5,0x3546f69,0x16e02b1,0x3e5fa9a,0x03a9b71,0x2413d31,
- 0x250ecc9,0x1d2de54,0x2ebe757,0x2a2f135,0x2aeeb9a,0x0d0fe2b,
- 0x204cb0e,0x07464c3,0x00c473c },
- { 0x24cd8ae,0x0c86c41,0x221c282,0x0795588,0x1f4b437,0x06fc488,
- 0x0c81ecd,0x020bf07,0x3a9e2c8,0x2294a81,0x3a64a95,0x0363966,
- 0x32c9a35,0x0f79bec,0x0029e4f } },
- /* 153 */
- { { 0x289aaa5,0x2755b2e,0x059e0aa,0x3031318,0x0f0208a,0x35b7729,
- 0x00d9c6b,0x3dd29d0,0x075f2c2,0x0ece139,0x31562dd,0x04187f2,
- 0x13b8d4c,0x0920b85,0x003924e },
- { 0x09808ab,0x2e36621,0x2a36f38,0x1829246,0x229bf32,0x20883b7,
- 0x159ada8,0x3108a14,0x15bbe5b,0x1e2d1e4,0x1730096,0x0d35cbb,
- 0x15d0da9,0x0e60b94,0x00c4f30 } },
- /* 154 */
- { { 0x31de38b,0x27b9086,0x2760e3e,0x169098d,0x2a124e2,0x00596c6,
- 0x3f73c09,0x0d31642,0x2341464,0x248600a,0x2e1fa10,0x2aa0fc8,
- 0x051e954,0x00f3b67,0x001d4bd },
- { 0x18751e6,0x25a8e1e,0x07f5c2d,0x17e30d4,0x0ed2723,0x23093e2,
- 0x3b80e2c,0x13de2d7,0x2fad37f,0x1be1cfb,0x3224ba9,0x0a7f5d3,
- 0x1714972,0x06667b7,0x009dcd9 } },
- /* 155 */
- { { 0x294f22a,0x3e06993,0x0341ee9,0x24bdc7b,0x2e56098,0x2660a13,
- 0x018ddda,0x2c261b2,0x2953b54,0x267f51c,0x0e8a7cc,0x29ab00c,
- 0x3a38247,0x397ac81,0x00de684 },
- { 0x36b956b,0x347b34a,0x35834bd,0x053c06c,0x0090844,0x148cec5,
- 0x380b325,0x2f17b8b,0x054ef5e,0x09683fb,0x3f8b29a,0x33c979a,
- 0x1e01474,0x3e81fca,0x001c757 } },
- /* 156 */
- { { 0x30fdfe4,0x2d712ba,0x13671bc,0x2cfc226,0x3d7c649,0x16f020e,
- 0x368e3f0,0x2981ebb,0x246a78a,0x115e81b,0x21223a4,0x04dbb30,
- 0x1a50ba2,0x12114bd,0x0089bd6 },
- { 0x055f15a,0x1046e51,0x00fd724,0x1c022a7,0x323dfa9,0x36d8efb,
- 0x0da4d16,0x0910dec,0x2c1fb16,0x2dbe29f,0x298284f,0x2b273bb,
- 0x26022c1,0x20accd5,0x00085a5 } },
- /* 157 */
- { { 0x01f138a,0x2d87e7b,0x0c2815c,0x0c19a3c,0x311c9a2,0x3e4fce3,
- 0x029729d,0x21236b2,0x2984048,0x3f3bc95,0x2bba8fb,0x1a1b680,
- 0x0619a3f,0x29e0447,0x00ed5fe },
- { 0x2d1c833,0x3dcef35,0x3f809b4,0x01a1b9e,0x1509516,0x10ac754,
- 0x2735080,0x27b0a8a,0x2495fb8,0x0a7bdba,0x1ef8b89,0x00233a5,
- 0x0568bf1,0x1a126ba,0x0078a7e } },
- /* 158 */
- { { 0x0470cd8,0x20e9f04,0x30003fe,0x20be1b7,0x1927346,0x2a5026d,
- 0x1ac06bd,0x2717ed7,0x2609493,0x3079ea5,0x1cc116d,0x31b0541,
- 0x2c8ccde,0x10219ae,0x001a52b },
- { 0x2864045,0x0e8d95b,0x2fc1530,0x0aa44e7,0x345eae7,0x3cc7553,
- 0x3ec6466,0x229b60e,0x06f6e95,0x00bed2a,0x0ff4403,0x181c639,
- 0x2e0df67,0x1f8fa46,0x0000811 } },
- /* 159 */
- { { 0x04310a2,0x20cee8e,0x09fc5d5,0x3707f5b,0x0bdfb4e,0x12713ee,
- 0x24f1028,0x0787ee6,0x39a581c,0x3797ec8,0x10a9746,0x112cb9f,
- 0x142b9ba,0x1da0ef6,0x0078f7b },
- { 0x07607ae,0x3232872,0x2a7e076,0x0bb572a,0x182b23c,0x1d8f918,
- 0x181f392,0x37c45a9,0x24a3886,0x0b2a297,0x264e7f2,0x1fa433c,
- 0x0fcfcc8,0x21c0857,0x0004f74 } },
- /* 160 */
- { { 0x01d161c,0x1744585,0x2d17528,0x03a4f13,0x267cd2e,0x30d861f,
- 0x062a647,0x213284b,0x139ed25,0x27d4ca5,0x02fbbd6,0x31ddf11,
- 0x3c50ac4,0x1dd86f7,0x00107de },
- { 0x16beebd,0x1b7317a,0x2151997,0x256a196,0x3be2aff,0x3621cab,
- 0x0a9da19,0x05f3038,0x23da63c,0x3178d5e,0x215cc67,0x07f7f63,
- 0x0c6d8d3,0x3bf5e5c,0x00c44bb } },
- /* 161 */
- { { 0x00c62f1,0x3e0f893,0x1572703,0x3b93865,0x19b1e28,0x389b33b,
- 0x02858bf,0x0e3e9aa,0x04bc436,0x234e072,0x25ba43d,0x3dca19e,
- 0x0274394,0x20f442e,0x003b4a7 },
- { 0x176451e,0x2b5ed5d,0x35c8ee1,0x25c52da,0x0c3d0b5,0x32b306e,
- 0x030954f,0x275ecf7,0x10e472c,0x21577c4,0x02f8a32,0x321bb5c,
- 0x0098f97,0x104e237,0x00d0433 } },
- /* 162 */
- { { 0x0a8f2fe,0x034548b,0x141f1a6,0x121246f,0x1616409,0x237f80d,
- 0x2e29a55,0x1218db6,0x3ea278e,0x1669856,0x1ad7c8e,0x36d11de,
- 0x2c2fcbb,0x18c0b3a,0x001c706 },
- { 0x1699b4b,0x2d531a6,0x17e85e2,0x1b48e78,0x2b509ca,0x2818ea0,
- 0x0165fee,0x0b809ca,0x09db6a2,0x3dad798,0x326ee1d,0x204e416,
- 0x091fa12,0x1c890e5,0x0007b9f } },
- /* 163 */
- { { 0x0ff4e49,0x0bb0512,0x0129159,0x05db591,0x03e4e9f,0x055ab30,
- 0x0f82881,0x0ac2deb,0x3a8bb09,0x356a8d2,0x3d38393,0x03e4089,
- 0x38187cd,0x1377a93,0x0041672 },
- { 0x0139e73,0x3990730,0x187d3c4,0x33e4793,0x2e0fe46,0x2ad87e2,
- 0x33c792c,0x21d4fb6,0x1e4d386,0x2932d1b,0x20f1098,0x1270874,
- 0x0ea6ee4,0x0167d6e,0x005e5fd } },
- /* 164 */
- { { 0x1856031,0x2b7519d,0x3bd07fc,0x337abcb,0x089c7a4,0x2a1f120,
- 0x3523ce7,0x2ba406b,0x09561d9,0x1797f04,0x3cdb95f,0x2d6193e,
- 0x32c7d3f,0x223aed6,0x00beb51 },
- { 0x2e65825,0x158f0ce,0x16413d1,0x310395f,0x3116854,0x250baf4,
- 0x373d341,0x156cc47,0x104c069,0x0893716,0x195a0a6,0x035320e,
- 0x37b7d8a,0x21b5755,0x00fb26b } },
- /* 165 */
- { { 0x286ae17,0x04239f1,0x1a56c53,0x0e74707,0x29090d7,0x2bb142b,
- 0x03b0139,0x1aac916,0x08ba49a,0x0376682,0x3382f85,0x064bbab,
- 0x2910e28,0x1d5bd7f,0x00cc8df },
- { 0x0ab7630,0x208e8e7,0x3fc1877,0x26bee39,0x264984a,0x192ff05,
- 0x08ef9c3,0x0aa6951,0x071c44e,0x26eed3e,0x035c95e,0x06906ad,
- 0x10a0690,0x397eaa9,0x00c6c23 } },
- /* 166 */
- { { 0x034d8dd,0x005b064,0x279bb78,0x12c2c4f,0x1856bb4,0x0c90681,
- 0x06409ab,0x3b48617,0x19a2d78,0x0a34bf8,0x326eddf,0x31f09b5,
- 0x04f04dc,0x3d7c944,0x003ccaf },
- { 0x321f843,0x35fb71a,0x1e4c397,0x377a5d7,0x2da88e4,0x3d6ada7,
- 0x33d3964,0x1b30149,0x0e39aae,0x054dda0,0x3e6f946,0x1273394,
- 0x3ffd3f7,0x2f6655e,0x00021dd } },
- /* 167 */
- { { 0x37233cf,0x11617dd,0x26f07b6,0x3d8250a,0x0fe6771,0x3f9bbbc,
- 0x2aba7ad,0x200a58d,0x3568603,0x198eefa,0x1e8fcf3,0x3b9610b,
- 0x20524ac,0x2a67528,0x0048d9a },
- { 0x1a5e57a,0x1e9d303,0x16c9cff,0x0f39527,0x3c23259,0x03c8a1e,
- 0x104bccf,0x182d5a1,0x18dbc83,0x05b5f42,0x1b402f4,0x317c525,
- 0x11bf1ea,0x3c46e1f,0x0061936 } },
- /* 168 */
- { { 0x0153a9d,0x36859ee,0x2cf0aa9,0x2b27a0f,0x0a49fe3,0x2d984e1,
- 0x018f8e1,0x1378453,0x1ab3843,0x1987093,0x283dae9,0x25cf0e8,
- 0x14fc93d,0x280609d,0x00c99ba },
- { 0x026b1e3,0x34663d3,0x2202477,0x21a9d45,0x212e8e1,0x18ab77e,
- 0x2e52f63,0x0a14ce1,0x295c396,0x00c7a3d,0x2aaedb6,0x30abc4d,
- 0x374acde,0x1318a73,0x00fcfdb } },
- /* 169 */
- { { 0x0a40298,0x3ba5633,0x11956b3,0x14fcbd7,0x3c38781,0x34bab96,
- 0x165630e,0x1f3c831,0x37e3a69,0x2b4226c,0x2d5029e,0x3b4ab1e,
- 0x1da6ac2,0x3eb43c3,0x007e5cd },
- { 0x1b86202,0x109b7f6,0x2054f98,0x2c50cd7,0x2ed1960,0x3c518e7,
- 0x1b02463,0x319c07f,0x1c30db6,0x045fdc2,0x373421e,0x31a1eb9,
- 0x1a8acbf,0x31289b0,0x0013fef } },
- /* 170 */
- { { 0x3fa0a5f,0x068661f,0x2109e36,0x00b18ff,0x1f4b261,0x31d3844,
- 0x0acbc56,0x3aebc99,0x1fa77ab,0x152bd11,0x24cddb7,0x2313f74,
- 0x06eea44,0x15f5114,0x000b131 },
- { 0x2e9993d,0x1ac565c,0x2cbe22a,0x3921797,0x12c3c57,0x360f868,
- 0x33560bf,0x320ee99,0x382c3b8,0x39af88f,0x00bbe38,0x2c4ea59,
- 0x3399b40,0x00ceb45,0x0066eea } },
- /* 171 */
- { { 0x0c6c693,0x31ba56d,0x3d3849f,0x378dabd,0x0efc735,0x17f90bf,
- 0x13343d3,0x2df0f81,0x27c6a9a,0x13c2a90,0x0a0fcb2,0x27c10d9,
- 0x3bc50c7,0x090e4fa,0x0016287 },
- { 0x2927e1e,0x35af405,0x184c5c3,0x3499cee,0x240158e,0x33522e6,
- 0x386fc84,0x0a0b69f,0x1a660ea,0x34590fb,0x22a1bee,0x2ce4fab,
- 0x31a9445,0x0e78655,0x00664c8 } },
- /* 172 */
- { { 0x3eeaf94,0x115d409,0x21e7577,0x097aa67,0x22875c9,0x021ab7a,
- 0x27e7ba5,0x1093f04,0x2a086fe,0x05d9494,0x2b6c028,0x10f31b0,
- 0x1312d11,0x262759c,0x00c9bb2 },
- { 0x1acb0a5,0x30cdf14,0x0f78880,0x0574f18,0x1a37109,0x098adbb,
- 0x2113c09,0x2060925,0x1f89ce4,0x1974976,0x3381358,0x2dab5ca,
- 0x2159c53,0x3af1303,0x000ea3b } },
- /* 173 */
- { { 0x1e49bea,0x29142b1,0x1a59cab,0x055f017,0x0684e54,0x39eb0db,
- 0x29cab9d,0x255ee8b,0x35f2e6f,0x05329e6,0x09b817b,0x1ec091c,
- 0x1df0fef,0x2641f62,0x00eb304 },
- { 0x2fe5096,0x3dcc1d1,0x2aaf508,0x3a0b813,0x0695810,0x144bddb,
- 0x2f1bd93,0x281ae23,0x3513ebc,0x1ddd984,0x0cf158b,0x35218eb,
- 0x257daf7,0x391253b,0x00b2a81 } },
- /* 174 */
- { { 0x153e6ba,0x22396db,0x0ea2ff2,0x2a45121,0x0a90de1,0x34cf23b,
- 0x2db60ce,0x1a900be,0x2f328b6,0x355e75b,0x2c24372,0x0b75b77,
- 0x2ec7d4f,0x3f24759,0x00e9e33 },
- { 0x39eab6e,0x2267480,0x3b5e110,0x1e8fa5e,0x2a31a66,0x3f739a3,
- 0x00166dc,0x3552d88,0x3ae5137,0x3efa0fa,0x0800acd,0x17df61d,
- 0x38c8608,0x04cc31b,0x00cf4ab } },
- /* 175 */
- { { 0x31e08fb,0x1961164,0x22c003f,0x078541b,0x3643855,0x30da587,
- 0x11f0dc9,0x324595e,0x329e3dc,0x29a041e,0x3495d2c,0x0908dd3,
- 0x1895b83,0x198dbb9,0x00d8cfb },
- { 0x0349b1b,0x383c5a8,0x2b86525,0x1b1283e,0x133cd2c,0x2be376a,
- 0x012ee82,0x1eb4d1b,0x0ba71e9,0x01f3109,0x37621eb,0x1d9b77c,
- 0x0d39069,0x3d5a97c,0x0095565 } },
- /* 176 */
- { { 0x20f5e94,0x1eefc86,0x1327e0e,0x054760b,0x2f771e1,0x3ac447e,
- 0x033e3dc,0x198e040,0x04dd342,0x1b49a5d,0x00d01ef,0x3cb6768,
- 0x1ceafbd,0x31c6812,0x001cb80 },
- { 0x221c677,0x060ca27,0x398b17f,0x0146723,0x36452af,0x02d9e65,
- 0x39c5f78,0x3cf50d6,0x0be40f8,0x2970b87,0x26d667c,0x3e45959,
- 0x16e7943,0x01673e7,0x009faaa } },
- /* 177 */
- { { 0x2078fe6,0x0918602,0x11dd8ad,0x399193f,0x0f6cc73,0x0f8dd12,
- 0x2ce34dc,0x06d7d34,0x0c5e327,0x0989254,0x2fc5af7,0x2443d7b,
- 0x32bc662,0x2fe2a84,0x008b585 },
- { 0x039327f,0x08e616a,0x252f117,0x1f52ab0,0x234e2d2,0x0a5b313,
- 0x2f59ef6,0x0f7a500,0x15c4705,0x2c02b81,0x28b4f09,0x08aa5c8,
- 0x0180efc,0x0993e83,0x00a9e86 } },
- /* 178 */
- { { 0x0310ecc,0x2d8892f,0x14ed0b7,0x3c59fe8,0x08a1a74,0x0850e57,
- 0x1d09607,0x044a21f,0x109f5c9,0x237c6cf,0x06b264a,0x3fc8f1a,
- 0x0d4c539,0x2740f96,0x00dc2d4 },
- { 0x1d6f501,0x0adf4ea,0x14f7215,0x0930102,0x3f4c32e,0x24e2643,
- 0x366596d,0x081ff18,0x38f94fb,0x2c21341,0x328594c,0x267c75c,
- 0x196b3fd,0x29932cb,0x0036def } },
- /* 179 */
- { { 0x3ed7cbe,0x26de044,0x3d0e461,0x0565e12,0x295e500,0x31dc17f,
- 0x32251c2,0x3420ca8,0x3995f0d,0x2e8ddab,0x0361a45,0x10971b0,
- 0x11e7b55,0x33bc7ca,0x00812d2 },
- { 0x3d94972,0x1606817,0x0383ccf,0x0e795b7,0x026e20e,0x0f6fefc,
- 0x13685d6,0x315d402,0x0cc36b8,0x1c7f059,0x390ef5e,0x316ae04,
- 0x08c66b9,0x2fac9a4,0x0040086 } },
- /* 180 */
- { { 0x3e3c115,0x153de4d,0x1a8ae5e,0x2330511,0x169b8ee,0x1d965c2,
- 0x2edff2b,0x3ef99e6,0x1631b46,0x1f8a238,0x118d7bb,0x12113c3,
- 0x26424db,0x0f4122a,0x00e0ea2 },
- { 0x3d80a73,0x30393bc,0x0f98714,0x278ef59,0x087a0aa,0x3b18c20,
- 0x04b8a82,0x2068e21,0x030255d,0x3382b27,0x055397f,0x05448dd,
- 0x2015586,0x1190be0,0x000b979 } },
- /* 181 */
- { { 0x2e03080,0x2895692,0x09fb127,0x2d1602a,0x1232306,0x105bd4e,
- 0x28cd6a6,0x0a83813,0x1ee13b0,0x2abadc3,0x0c09684,0x00e33e1,
- 0x033eea3,0x30f0a39,0x00a710e },
- { 0x01b1f7d,0x1c959da,0x017077a,0x254bf0a,0x086fbce,0x15cd6b2,
- 0x008683f,0x23a4f4d,0x22a6bd6,0x14e8c93,0x0027d15,0x31d0d4f,
- 0x271777e,0x1533510,0x00ab603 } },
- /* 182 */
- { { 0x34c209d,0x14d0abb,0x270432a,0x1d02358,0x22ba752,0x209757f,
- 0x34af6fc,0x1ffc52e,0x1ced28e,0x1870e46,0x1e0340f,0x3f0bf73,
- 0x33ba91d,0x2ebca7c,0x00c6580 },
- { 0x1d442cb,0x0879d50,0x24e4ae1,0x3f4e91c,0x04c7727,0x093cd1d,
- 0x16d6a45,0x10a8b95,0x0c77856,0x361f84f,0x217845f,0x0bbeec6,
- 0x0485718,0x33c5385,0x00dcec0 } },
- /* 183 */
- { { 0x1539819,0x225507a,0x1bf11cb,0x13e7653,0x0c8cb3b,0x05f695e,
- 0x353f634,0x2827874,0x3fb8053,0x22de9a5,0x035d8b7,0x2105cc7,
- 0x2a7a98d,0x35bed95,0x0085748 },
- { 0x1859c5d,0x00e51f0,0x22a21fd,0x3054d74,0x06ce965,0x328eab7,
- 0x26a13e0,0x13bfc65,0x01d4fb1,0x36600b9,0x36dd3fc,0x01232ed,
- 0x15bbaa9,0x0ad7a51,0x0089b18 } },
- /* 184 */
- { { 0x3360710,0x1eb5a90,0x136bd77,0x3bd57a6,0x0841287,0x12886c9,
- 0x35c6700,0x21bc6eb,0x25f35ad,0x3bcb01c,0x0707e72,0x23e9943,
- 0x03e5233,0x34bb622,0x002bf8e },
- { 0x16e0d6a,0x04b3d2d,0x290cb02,0x049a10c,0x350537e,0x22cf71b,
- 0x3184a19,0x2dc8b62,0x2350210,0x3b4afa6,0x159781e,0x1d01b6d,
- 0x1853440,0x16442f0,0x005a78d } },
- /* 185 */
- { { 0x348b02c,0x1ea8ab5,0x3b954d5,0x14684ac,0x0be5b34,0x11c4496,
- 0x0a7a456,0x14f6eb7,0x11a3221,0x2d65f82,0x32eb1ea,0x09c4018,
- 0x3f301f3,0x32e8a1c,0x00bd9ad },
- { 0x0543f7f,0x31e744e,0x1fefd1d,0x24a486c,0x1000220,0x3977e3b,
- 0x1b3ef51,0x2512a1b,0x2049e6b,0x122232b,0x391a32b,0x2f4a7b1,
- 0x1c13e71,0x081a9b4,0x00d3516 } },
- /* 186 */
- { { 0x1924f43,0x1ae5495,0x28d52ef,0x2b93e77,0x2d2f401,0x371a010,
- 0x33e8d7a,0x06ed3f1,0x30c0d9d,0x2589fa9,0x3bf3567,0x2ecf8fa,
- 0x2dee4c3,0x152b620,0x007e8a2 },
- { 0x1924407,0x01bd42d,0x044a089,0x18686b5,0x2f14a0e,0x17cdce3,
- 0x0efa216,0x3c586a8,0x1d6ae71,0x375831f,0x3175894,0x20e43eb,
- 0x34c009e,0x3480527,0x00d115c } },
- /* 187 */
- { { 0x12abf77,0x38b0769,0x25682f2,0x295508c,0x0c2a0dc,0x1259b73,
- 0x023ea25,0x340e7b5,0x3c7cd0d,0x1f92324,0x176405c,0x1528894,
- 0x18f2e1e,0x2c59c35,0x001efb5 },
- { 0x0fb1471,0x07e7665,0x141da75,0x07d9f4a,0x0fdb31e,0x0dccda6,
- 0x074eb25,0x3d92a9b,0x11189a0,0x1b4c557,0x24b8d2b,0x0533f92,
- 0x0e9e344,0x2fa3dea,0x008d5a4 } },
- /* 188 */
- { { 0x2669e98,0x1ad3514,0x2a035c9,0x08a3f50,0x24547f9,0x0a145d3,
- 0x1c1319d,0x3fe833d,0x1ae064b,0x1e01734,0x246d27e,0x3a2f13c,
- 0x01e1150,0x263f55e,0x00f89ef },
- { 0x2e0b63f,0x3e57db7,0x23a4b4f,0x11c8899,0x0ad8500,0x348f3a7,
- 0x2918604,0x27d6409,0x1ce5001,0x38f94c2,0x29a508a,0x39bdc89,
- 0x3a52c27,0x194899e,0x00e9376 } },
- /* 189 */
- { { 0x0368708,0x34a2730,0x2e1da04,0x0bd78c1,0x2c45887,0x0c44bfa,
- 0x3a23de3,0x390b9db,0x1746efd,0x05c638e,0x1d20609,0x3263370,
- 0x31987f0,0x2988529,0x005fa3c },
- { 0x0aa9f2a,0x20622f7,0x060deee,0x0c9626a,0x3312cc7,0x18ebac7,
- 0x008dd6c,0x0ad4fe6,0x3db4ea6,0x1dc3f50,0x090b6e9,0x0aff8d2,
- 0x26aa62c,0x18f3e90,0x00105f8 } },
- /* 190 */
- { { 0x38059ad,0x25e576c,0x3ea00b2,0x1fa4191,0x25686b7,0x2d1ce8f,
- 0x30470ed,0x3478bbf,0x340f9b6,0x1c9e348,0x3d594ec,0x2ffe56e,
- 0x3f23deb,0x0cd34e9,0x00f4b72 },
- { 0x1a83f0b,0x2166029,0x28b32a2,0x06a5c5a,0x20786c4,0x0944604,
- 0x0901bd2,0x379b84e,0x221e2fe,0x0346d54,0x1f4eb59,0x01b8993,
- 0x2462e08,0x25f9d8b,0x006c4c8 } },
- /* 191 */
- { { 0x0b41d9d,0x2e417ed,0x265bd10,0x199148e,0x3826ca4,0x1a67e8d,
- 0x1bbd13b,0x23e414d,0x3d773bc,0x356e64c,0x0d2118a,0x0cb587f,
- 0x25fd093,0x24fb529,0x00158c6 },
- { 0x2806e63,0x3ecaa39,0x251b4dd,0x3b2d779,0x2e31ed3,0x066f1a6,
- 0x060e518,0x2c7e3e5,0x0d62c76,0x0d88a70,0x101970a,0x1e3c8c6,
- 0x272b8bb,0x083e73b,0x0031f38 } },
- /* 192 */
- { { 0x09e1c72,0x072bcb0,0x0cf4e93,0x2604a64,0x00715f2,0x10c98b6,
- 0x2ad81d9,0x234fcce,0x37a7304,0x1974a4a,0x1c7415f,0x14aaa93,
- 0x19587b1,0x3f643f4,0x00c3d10 },
- { 0x1ddadd0,0x2cd715d,0x294cf76,0x14479ed,0x19f5f4a,0x0198c09,
- 0x1ab7ebc,0x182c0bc,0x0879202,0x1807273,0x05d39da,0x2c7d868,
- 0x29c4ec4,0x1b13ad2,0x006dcd7 } },
- /* 193 */
- { { 0x1c83f01,0x0245bff,0x24f90ba,0x112554f,0x2354c8b,0x3f17988,
- 0x0c511af,0x39e1e9b,0x26ae95b,0x0ae551c,0x35b41a6,0x0120455,
- 0x1e989cb,0x1b37aff,0x00fa2ae },
- { 0x324659a,0x1aef1c3,0x1c43637,0x3f530a2,0x313a999,0x326af62,
- 0x134184e,0x2ac131c,0x3f6a789,0x30a300a,0x13e526e,0x2107af3,
- 0x093a8ff,0x2479902,0x00442b1 } },
- /* 194 */
- { { 0x22b6e20,0x31b18be,0x18614ca,0x26fdb5a,0x197f29e,0x325b44b,
- 0x0ab1dbb,0x042348a,0x3275e8e,0x15bae44,0x0077124,0x2cf5345,
- 0x2803ad4,0x188f2a2,0x0061b20 },
- { 0x2a560b1,0x3ced069,0x3cf42c2,0x100e167,0x3879e1d,0x0936ff0,
- 0x1b51450,0x14c55f3,0x3153bfa,0x2957423,0x2a93823,0x15f5dce,
- 0x2c9a22f,0x16731a8,0x00a97f2 } },
- /* 195 */
- { { 0x18edbbb,0x18c5ef9,0x1f13c30,0x071e77f,0x225ade5,0x1b60f75,
- 0x1beaf11,0x3e495ad,0x2441dd8,0x2fa00e2,0x32a87b6,0x00050f2,
- 0x038de7f,0x0037d6d,0x00a885d },
- { 0x39e48bd,0x1d9e433,0x2768e9f,0x3c29458,0x3f0bdf9,0x35ed5f2,
- 0x36709fa,0x176dc10,0x012f7c1,0x2df8547,0x1d90ee3,0x053c089,
- 0x21a8d35,0x200cb0d,0x002e84e } },
- /* 196 */
- { { 0x23ec8d8,0x1d81f55,0x0cb7227,0x07f8e4d,0x2a66181,0x163f577,
- 0x272e7af,0x131a8f2,0x2046229,0x25e6276,0x36bbefe,0x2cdc22f,
- 0x17c8288,0x33dd4fb,0x000d524 },
- { 0x330c073,0x1a6728b,0x1cf369f,0x12e7707,0x2f0fa26,0x17c2abd,
- 0x0a45680,0x26ebd13,0x3c7d19b,0x1c3d6c8,0x2abd110,0x064fd07,
- 0x09b8339,0x02b4a9f,0x009e3e1 } },
- /* 197 */
- { { 0x0ae972f,0x2093c35,0x06e7a90,0x0af1ba1,0x243eef0,0x2748582,
- 0x0606122,0x13a45f9,0x0acfe60,0x08a685e,0x0eb184b,0x015bc11,
- 0x0cdf423,0x157fad5,0x004fcad },
- { 0x2728d15,0x3e5bceb,0x0331a0f,0x31b1a80,0x28a2680,0x3b94955,
- 0x04cae07,0x176b57e,0x03ac5a6,0x3d7918b,0x22d23f4,0x0ae077f,
- 0x1eb075d,0x006f16c,0x006e473 } },
- /* 198 */
- { { 0x38219b9,0x0475a2b,0x107a774,0x39946c6,0x1cb883c,0x004e0ed,
- 0x087e571,0x25c3497,0x059982f,0x0a71f66,0x118305d,0x1aaf294,
- 0x3a5dbaa,0x34be404,0x00725fe },
- { 0x3abd109,0x336ebea,0x2528487,0x15a1d61,0x0c0f8cf,0x2b56095,
- 0x2591e68,0x3549a80,0x1d1debb,0x0701c6c,0x161e7e3,0x1f7fa2e,
- 0x3dfe192,0x17e6498,0x0055f89 } },
- /* 199 */
- { { 0x175645b,0x26c036c,0x0b92f89,0x09ed96d,0x351f3a6,0x19ce67b,
- 0x33ac8db,0x2f0828b,0x27fe400,0x0b9c5e1,0x1967b95,0x3324080,
- 0x11de142,0x1d44fb3,0x003d596 },
- { 0x3979775,0x3af37b6,0x3e88d41,0x2f1a8b9,0x299ba61,0x085413c,
- 0x1149a53,0x0beb40e,0x31427ba,0x239f708,0x357d836,0x1558c22,
- 0x280a79f,0x1b255f6,0x002b6d1 } },
- /* 200 */
- { { 0x39ad982,0x3d79d89,0x01a684a,0x0b6722e,0x39bb4c9,0x39a6399,
- 0x1ad44e0,0x3059f5e,0x048265f,0x33a2fa4,0x0c3a4cc,0x0d7df98,
- 0x23a33f1,0x34e2e21,0x00a0a10 },
- { 0x386efd9,0x1c91f34,0x06c2e19,0x3e6d48d,0x00eefd3,0x2181ef2,
- 0x2415f97,0x1d33b08,0x0625086,0x1e8aa3e,0x08c9d60,0x0ab427b,
- 0x2764fa7,0x3b7943e,0x00cd9f0 } },
- /* 201 */
- { { 0x1a46d4d,0x0e471f4,0x1693063,0x0467ac0,0x22df51c,0x127a0f7,
- 0x0498008,0x20e0b16,0x1aa8ad0,0x1923f42,0x2a74273,0x01761ce,
- 0x1600ca4,0x187b87e,0x00ee49e },
- { 0x0c76f73,0x19daf92,0x0b2ad76,0x3d8049d,0x1d9c100,0x0fe1c63,
- 0x0bb67c8,0x035cc44,0x02002fc,0x37b2169,0x344656a,0x1127879,
- 0x1939bc0,0x0dd8df6,0x0028ce7 } },
- /* 202 */
- { { 0x0544ac7,0x26bdc91,0x042697e,0x356e804,0x1f2c658,0x2ceb7ef,
- 0x2dec39f,0x02c1dcc,0x391a2df,0x2344beb,0x2171e20,0x3099c94,
- 0x0fa548a,0x37216c9,0x00f820c },
- { 0x0f4cf77,0x29bbaa5,0x33c6307,0x34a5128,0x118c783,0x2dd06b1,
- 0x139d4c0,0x2db912e,0x1153ffb,0x1075eb3,0x3a255e4,0x2892161,
- 0x36d5006,0x125338c,0x0014fbc } },
- /* 203 */
- { { 0x1584e3c,0x0830314,0x00279b9,0x167df95,0x2c7733c,0x2108aef,
- 0x0ce1398,0x35aaf89,0x012523b,0x3c46b6a,0x388e6de,0x01a2002,
- 0x0582dde,0x19c7fa3,0x007b872 },
- { 0x1e53510,0x11bca1f,0x19684e7,0x267de5c,0x2492f8b,0x364a2b0,
- 0x080bc77,0x2c6d47b,0x248432e,0x3ace44f,0x32028f6,0x0212198,
- 0x2f38bad,0x20d63f0,0x00122bb } },
- /* 204 */
- { { 0x30b29c3,0x3cec78e,0x01510a9,0x0c93e91,0x3837b64,0x1eca3a9,
- 0x105c921,0x05d42e6,0x1379845,0x07ce6f2,0x0e8b6da,0x0e0f093,
- 0x220b2cd,0x1f6c041,0x00299f5 },
- { 0x0afdce3,0x2b0e596,0x2f477b6,0x2ccf417,0x3a15206,0x26ec0bf,
- 0x2e37e2b,0x2593282,0x0ab9db3,0x2841dd8,0x27954be,0x277a681,
- 0x03f82e2,0x2b610c7,0x00446a1 } },
- /* 205 */
- { { 0x06b8195,0x3b3a817,0x31b9c6f,0x317d279,0x3d744a7,0x1de9eb9,
- 0x296acc1,0x1ce9ea3,0x06c3587,0x246815d,0x3756736,0x0588518,
- 0x1c971a4,0x1fde1f4,0x00aa021 },
- { 0x3fd3226,0x274561d,0x00be61e,0x01393d8,0x30f6f23,0x29b7fc1,
- 0x04cebc7,0x0a892a7,0x20109f1,0x27456be,0x0c863ee,0x2eb6c8a,
- 0x38c782b,0x039397a,0x00a2829 } },
- /* 206 */
- { { 0x29de330,0x21fe80f,0x145b55b,0x1986570,0x012b260,0x2482fbc,
- 0x0536e0a,0x16b7382,0x32c4d19,0x1deffdb,0x145f418,0x0c67a76,
- 0x2ce477f,0x218fe24,0x00f9848 },
- { 0x3e37657,0x3f074d3,0x245ad0e,0x20973c3,0x23c58de,0x2c332ef,
- 0x2ad21a8,0x0bf1589,0x208af95,0x1f4a8c4,0x2b43735,0x1e46657,
- 0x15d4f81,0x0c3e63a,0x005f19d } },
- /* 207 */
- { { 0x26865bb,0x20f6683,0x16a672e,0x0efd8d1,0x222f5af,0x18f2367,
- 0x1e9c734,0x25c3902,0x178dfe6,0x2903a79,0x311b91c,0x1adbbe9,
- 0x225a387,0x0b3e509,0x0089551 },
- { 0x34e462b,0x23b6a32,0x27c884c,0x129104b,0x384c015,0x3adedc7,
- 0x325db1c,0x021dc10,0x1e366f7,0x3054df7,0x1992b9a,0x2824e64,
- 0x0ae77f3,0x181b526,0x00a7316 } },
- /* 208 */
- { { 0x2d260f5,0x2434bf2,0x28c0139,0x0a7bb03,0x176c3be,0x3def5f5,
- 0x05bee00,0x3692df7,0x3d2efeb,0x3a6f859,0x1122b87,0x38f779a,
- 0x1415ccc,0x2c260ad,0x0075a28 },
- { 0x04607a6,0x042f37a,0x3f0df68,0x0a1bd36,0x3c6d581,0x2d36bfa,
- 0x2d577d1,0x0a3affa,0x0b2066b,0x2e6f110,0x0b17e84,0x3c76a5e,
- 0x1a57553,0x012f36a,0x0004595 } },
- /* 209 */
- { { 0x29e5836,0x0e6808c,0x269d13e,0x147dc5c,0x32c9e7d,0x09b258e,
- 0x2c58d6f,0x1efd716,0x0437996,0x34ec31b,0x15908d9,0x2efa8fd,
- 0x09ad160,0x079fc1f,0x00d8481 },
- { 0x3d20e4a,0x18269d6,0x3aa8fe7,0x34829c2,0x2e4325d,0x0d800e1,
- 0x11f370b,0x10c08dc,0x22fd092,0x1a5fe55,0x0acc443,0x037030d,
- 0x1cdd404,0x097379e,0x00fd6d7 } },
- /* 210 */
- { { 0x313eafb,0x3f438f3,0x2e5fb3e,0x2ed6a82,0x121009c,0x240889e,
- 0x00c5537,0x269b792,0x334b2fc,0x1dd573c,0x07096ae,0x19296fc,
- 0x3813985,0x2742f48,0x00ddd64 },
- { 0x2045041,0x3842c62,0x1572d0d,0x04f255f,0x06e05b4,0x383ec97,
- 0x1ff8064,0x18bed71,0x39b6411,0x2764cc5,0x257439f,0x3521217,
- 0x172aa42,0x342a2a3,0x0070c5b } },
- /* 211 */
- { { 0x3bdf646,0x1c5ce25,0x1f7ca76,0x2d2acca,0x3aa1485,0x23c97f7,
- 0x3e11d6f,0x0609338,0x07ec622,0x01da8ff,0x3392474,0x17ca07f,
- 0x13a9a04,0x353a5b4,0x0024557 },
- { 0x14c27cd,0x32012f7,0x3fea875,0x3d03d71,0x211c5f0,0x3157fdf,
- 0x0c880bd,0x3c406b2,0x2c51103,0x24ab377,0x399faa8,0x0d06887,
- 0x16b5738,0x28b33a7,0x00c7b67 } },
- /* 212 */
- { { 0x2357586,0x35c93e3,0x0da09a0,0x3d77d92,0x11d7f4f,0x37b98a9,
- 0x3e6c9bf,0x2cdca70,0x2f00389,0x2412673,0x18eab87,0x0101436,
- 0x11617e9,0x06d9b01,0x00e8eef },
- { 0x37e3ca9,0x16ffaf0,0x391debf,0x1b69382,0x07c5e94,0x312fa8a,
- 0x0973142,0x2cadde4,0x109ee67,0x3a07db0,0x1afc5ed,0x08df66f,
- 0x304c7af,0x0804aae,0x00d2e60 } },
- /* 213 */
- { { 0x24f57bf,0x1818322,0x182a615,0x25bfc44,0x0f97586,0x0a5bbc0,
- 0x36773c6,0x1a2660c,0x3ceff66,0x3270152,0x319cd11,0x2845845,
- 0x1acfad6,0x19076f8,0x009824a },
- { 0x289fd01,0x2de97ee,0x39d80b7,0x026227d,0x0f8d3b8,0x15e0a17,
- 0x21ea08f,0x20a2317,0x136ae6d,0x3deb1d1,0x3521ef5,0x0de8801,
- 0x0a25d5d,0x0612c98,0x005ecc4 } },
- /* 214 */
- { { 0x308c8d3,0x3aec669,0x01ecddc,0x13f18fe,0x1e63ed0,0x061cfe5,
- 0x05f5a01,0x1db5741,0x14479f2,0x0ced6b5,0x025ae5b,0x09ca8f5,
- 0x2160581,0x1404433,0x008bfeb },
- { 0x08228bf,0x0e02722,0x37df423,0x33ecabf,0x34bd82a,0x32f529f,
- 0x28f1800,0x0c8f671,0x1246b44,0x1ff35dc,0x091db95,0x303f3da,
- 0x28f7f60,0x3624136,0x00cfbb4 } },
- /* 215 */
- { { 0x326139a,0x2977e4e,0x3eb89a6,0x20ecb31,0x13e076a,0x2a592f3,
- 0x28e82d5,0x235ad1e,0x239b927,0x262938a,0x2444354,0x141b263,
- 0x0d56693,0x2a3fc78,0x0006497 },
- { 0x31efa05,0x3a3664a,0x3e333de,0x2a114e4,0x12da63c,0x3c15e6b,
- 0x2f7277c,0x363aa92,0x2393236,0x16bd2d1,0x32b617f,0x32b656c,
- 0x3b1246c,0x22e2e22,0x00ce76d } },
- /* 216 */
- { { 0x03843dc,0x094de82,0x13b463d,0x0507905,0x089eb35,0x2a6bf25,
- 0x35ebc4e,0x2bb5d45,0x1808ed1,0x1de9949,0x185e829,0x0a55847,
- 0x0b73d67,0x1a2ed61,0x008dd2d },
- { 0x133c3a4,0x04e7980,0x38ea237,0x2ad2f49,0x19de838,0x018bf36,
- 0x29b072c,0x21c1ba0,0x14f63ba,0x31c1cc3,0x13cd05e,0x20120ff,
- 0x1f84d60,0x16e0321,0x00872ab } },
- /* 217 */
- { { 0x19d4d49,0x1ddb4e6,0x05e7fc0,0x37bb0fd,0x1a3eb59,0x36b87f0,
- 0x190e440,0x1c7fef2,0x31ea153,0x14cd65a,0x1bc7ab2,0x11f72ca,
- 0x39582d4,0x0fa4d65,0x00cd5b6 },
- { 0x3d1ff11,0x0d9be9d,0x2903ae3,0x017b7b9,0x259f28f,0x110cefc,
- 0x03fed1a,0x38039bd,0x09bdf9c,0x3055027,0x2ca9c5d,0x2d737b6,
- 0x3bdb421,0x16560b5,0x00f9f33 } },
- /* 218 */
- { { 0x022c792,0x110de25,0x38bf959,0x08f2562,0x1239ea9,0x3c1d950,
- 0x21a247d,0x315112d,0x285bb9f,0x2534a73,0x0b42455,0x1a4a99c,
- 0x069009a,0x1680392,0x006e0ca },
- { 0x1b3bece,0x269e0a1,0x18926b7,0x0e7187e,0x241f35e,0x39d1fe0,
- 0x02099aa,0x1675bfe,0x23fd0ca,0x3d6322b,0x19406b5,0x324c38a,
- 0x242434a,0x3ae677c,0x002ce04 } },
- /* 219 */
- { { 0x2c37b82,0x1ae6506,0x0d83436,0x23496c1,0x0ff0c72,0x2711edf,
- 0x1513611,0x04f9c7d,0x1edbeff,0x376fcb5,0x212a683,0x23bf547,
- 0x0f9c4f7,0x16e6627,0x0082cd8 },
- { 0x0cb5d37,0x31b6db8,0x1a15e23,0x2f5cbb8,0x0818aee,0x21dc6c5,
- 0x12aafd2,0x205f608,0x1d91def,0x3def088,0x1445c51,0x3100e8a,
- 0x3746bda,0x145c4b0,0x00711b0 } },
- /* 220 */
- { { 0x2a99ecc,0x27b5217,0x35e10ed,0x036e32a,0x0f79950,0x15c32f7,
- 0x2c87dcb,0x3ebb2a3,0x2c2d35d,0x114b3ec,0x2e4d80a,0x0c7eb89,
- 0x2abe58d,0x3727737,0x00e6a37 },
- { 0x1eca452,0x1968d07,0x344e5d3,0x29435a2,0x109a5f8,0x181d12c,
- 0x238ea5a,0x127a564,0x00dbb42,0x0fcbfb7,0x2909b2e,0x2571d3a,
- 0x08250e3,0x0694e4e,0x00e156d } },
- /* 221 */
- { { 0x3181ae9,0x1acf411,0x3808d79,0x2a11065,0x0baf44b,0x133cfeb,
- 0x1330943,0x1711b9a,0x2dec3bd,0x1906a9a,0x2ed947c,0x369d763,
- 0x1a5254f,0x104a7a9,0x00acd9d },
- { 0x030301b,0x31568f5,0x2a4965c,0x33ded4b,0x03c9a5b,0x16541fc,
- 0x1319cf1,0x2a3748b,0x1b5de74,0x18bb82e,0x077ac2b,0x309a87a,
- 0x3c31420,0x0f6a4b9,0x00387d7 } },
- /* 222 */
- { { 0x0d3fdac,0x120cfa3,0x1b8e13c,0x1ccccb9,0x376fcd4,0x0bf87f4,
- 0x271b4be,0x363b3fd,0x28b5d98,0x0535cd3,0x114bbc1,0x3ab4f19,
- 0x10494b1,0x2161ece,0x00d14ca },
- { 0x12d37e9,0x110ebd7,0x062295a,0x1cc0119,0x073c6ea,0x15d5411,
- 0x0aeb4b1,0x23fba91,0x175fab5,0x3ee8fe1,0x1c680a6,0x1e76f27,
- 0x3ddfc97,0x3d69ecd,0x00e1ee5 } },
- /* 223 */
- { { 0x2d29f46,0x2d19204,0x3137cd0,0x02c3b54,0x193295b,0x02fbdb2,
- 0x2260948,0x22c02ff,0x3885424,0x1299595,0x00e7f9c,0x310ff2a,
- 0x01ea169,0x0deef85,0x0021908 },
- { 0x1b26cfb,0x38566a8,0x2852875,0x21debff,0x290ca9f,0x0b29663,
- 0x26550d9,0x2b44457,0x05d1938,0x1f8f825,0x366ef93,0x1d8daec,
- 0x069e5ef,0x342ece6,0x00b6034 } },
- /* 224 */
- { { 0x2d8356e,0x1578c09,0x226f4d2,0x3b74c51,0x0f83666,0x0323b59,
- 0x1ddf61d,0x1ed8508,0x3c52667,0x0e5b91c,0x1e9b18b,0x352bdfa,
- 0x13f75da,0x352aa4e,0x00fceff },
- { 0x1c731d5,0x04e2844,0x01d9843,0x286cbc5,0x105bcb3,0x05edd9c,
- 0x21fa956,0x3b1ec83,0x01288cc,0x22fbf3a,0x10f1b56,0x081cf72,
- 0x15cb758,0x18687c1,0x00f5722 } },
- /* 225 */
- { { 0x2973088,0x1209dcd,0x3980f31,0x0221aa7,0x1c008e7,0x011b098,
- 0x395947e,0x2f2806d,0x27dca76,0x037c79a,0x31acddf,0x2bf6219,
- 0x0d8f4ab,0x13644d9,0x00ff705 },
- { 0x2260594,0x18d51f8,0x277e2cf,0x1cb5cec,0x2468a53,0x3e6f4d7,
- 0x019e24e,0x0f30f1d,0x0202404,0x34ad287,0x090b39c,0x23c11ea,
- 0x1a2e3a2,0x3a851be,0x00dca2c } },
- /* 226 */
- { { 0x3277538,0x221cd94,0x3738ab7,0x0973da5,0x1a734e2,0x2c8b8b0,
- 0x2e1d1e6,0x348499b,0x389ebe1,0x18b1854,0x02bb076,0x1b2b500,
- 0x0f207f3,0x170cf99,0x0012088 },
- { 0x0fbfec2,0x1df55a4,0x34ae59e,0x2ab5e95,0x3f9e781,0x3411794,
- 0x1410b05,0x17c3a00,0x0aaa91b,0x074ed7c,0x3fbb352,0x3477c01,
- 0x3ee9ab3,0x0cfb1ca,0x0011c4b } },
- /* 227 */
- { { 0x3c3a7f3,0x2e60ca0,0x2354d32,0x33e2362,0x28083ab,0x03d3b16,
- 0x3164045,0x0a41f7a,0x3f0641e,0x38635d1,0x31bbf03,0x225e2bb,
- 0x0cd894e,0x1f72228,0x0093244 },
- { 0x33d5897,0x383faf3,0x0e6d561,0x0bc4d80,0x3fc3a68,0x05a9adc,
- 0x0b9d73d,0x3d6031e,0x2ded29b,0x339c4ff,0x08d69e5,0x089488c,
- 0x3fda40a,0x295c7fd,0x003a924 } },
- /* 228 */
- { { 0x0093bee,0x115532d,0x2ec0fb6,0x0969631,0x3a6d65a,0x0f43b4d,
- 0x26994d4,0x0b51104,0x2515515,0x3695a26,0x284caa8,0x397aa30,
- 0x25538b8,0x353f47c,0x0033f05 },
- { 0x3615d6e,0x37f8246,0x07dae0f,0x23dc154,0x02ded7e,0x1eef320,
- 0x1631e51,0x3447f75,0x13e267f,0x353e1d1,0x3f89d62,0x369c8ff,
- 0x1a21dc6,0x2b8b8f3,0x0055cbc } },
- /* 229 */
- { { 0x34e84f3,0x2f2539a,0x2c35336,0x0c53bdc,0x1728630,0x3ad5fe6,
- 0x05fdeee,0x3386db6,0x272a42e,0x29fd38c,0x36f0320,0x21b2ed4,
- 0x331e67f,0x28ae48c,0x00f09b6 },
- { 0x2778435,0x0fb3c55,0x32d221d,0x2660c8e,0x32977ba,0x1c12f03,
- 0x1b57fb1,0x01229a8,0x38b389f,0x375ddf3,0x2c6b42c,0x3885d3e,
- 0x2c55a9c,0x2ffc279,0x00404e2 } },
- /* 230 */
- { { 0x04c5ddb,0x2c4d788,0x150e9b9,0x110fbfd,0x29dbfe0,0x30ef83d,
- 0x2ab4bfe,0x395bcd7,0x30d0a43,0x0e2d30f,0x0e73f9b,0x07199cc,
- 0x0c9054c,0x22f4b1e,0x0092ed3 },
- { 0x386e27c,0x00fdaa8,0x0507c70,0x1beb3b6,0x0b9c4f4,0x277d519,
- 0x024ec85,0x1cbaba8,0x1524295,0x112be58,0x21fc119,0x273578b,
- 0x2358c27,0x280ca07,0x00aa376 } },
- /* 231 */
- { { 0x0dbc95c,0x16488cf,0x337a078,0x1abbcb8,0x0aae1aa,0x1caa151,
- 0x00108d4,0x1edf701,0x3e68d03,0x1203214,0x0c7eee2,0x084c572,
- 0x07752d2,0x215a3b9,0x00195d3 },
- { 0x2cd7fbe,0x06e80f6,0x052bd4b,0x07b4f83,0x24b5ac6,0x2aaded4,
- 0x13c0526,0x0ffa9a3,0x08c660e,0x13c35c9,0x3145efb,0x36cfe24,
- 0x0936daf,0x268e3d0,0x00a73fd } },
- /* 232 */
- { { 0x31b17ce,0x2e7bcee,0x3f31891,0x19f1849,0x1140236,0x015487f,
- 0x32e58d3,0x202204a,0x049e350,0x1ce91f9,0x3f75150,0x27f212f,
- 0x0d16ee4,0x1c894c4,0x004023f },
- { 0x33399fa,0x2397b6d,0x2a3ea60,0x36354ca,0x1f12632,0x117a105,
- 0x22758e8,0x361844e,0x3851fc2,0x0ab92db,0x339d02f,0x1e7d6c4,
- 0x19ebd38,0x0a9a036,0x00446d2 } },
- /* 233 */
- { { 0x3e164f1,0x008c092,0x19200f5,0x35a22e0,0x38d09d2,0x212b3bf,
- 0x0056f19,0x3a03545,0x1f075e9,0x0e97137,0x1f496a9,0x32d1f9b,
- 0x36bf738,0x35ace37,0x00899e1 },
- { 0x19eb2a6,0x21fa22d,0x338b69e,0x18e6d1f,0x1280d9d,0x1953a55,
- 0x1411ea3,0x2960566,0x0fd969a,0x1f3e375,0x130742a,0x170aebd,
- 0x33085ff,0x14d868d,0x00a4391 } },
- /* 234 */
- { { 0x0a4bdd2,0x39ca8ea,0x37026ac,0x346da3b,0x0c656cd,0x03136b6,
- 0x233e7e9,0x0714352,0x08a9d95,0x192bb38,0x085d68e,0x20016b8,
- 0x102b8ea,0x1f5dbdd,0x00fdd7a },
- { 0x0d6fa45,0x3ec29a6,0x2b8cce6,0x1c84413,0x0228f86,0x28275f7,
- 0x3d8787d,0x0c19748,0x28b2ae9,0x1954850,0x2a56c36,0x3eae8f7,
- 0x0aca595,0x00e42a2,0x00edbe5 } },
- /* 235 */
- { { 0x3b26c82,0x3682b6f,0x2f9cd64,0x0f254b0,0x0e5d70b,0x1f9dfda,
- 0x28f365f,0x35a57d7,0x00208f2,0x19c8d38,0x112e7be,0x3e403bb,
- 0x3734efa,0x24d12b3,0x0027dc6 },
- { 0x260a46a,0x13fd7b0,0x1c2880e,0x338b70c,0x27da5eb,0x29a7d54,
- 0x1c5d73c,0x2130921,0x32969cc,0x2b37eda,0x2d6d4ec,0x0716bfb,
- 0x0763703,0x1320889,0x00c7bbf } },
- /* 236 */
- { { 0x1fe01b2,0x2dcb1d2,0x11b89d5,0x219e4ea,0x0347851,0x3d1810e,
- 0x3a3c54c,0x06dbe8e,0x03d3ab2,0x2dcfa39,0x3e57b8a,0x337a382,
- 0x0426450,0x0e9f748,0x006488b },
- { 0x1dc4582,0x0e62cf7,0x06fea9e,0x2a56fb1,0x31698c1,0x15b4e10,
- 0x1446ef1,0x0a689fc,0x1d87703,0x20ff497,0x2c71066,0x2c48868,
- 0x2e6cf05,0x30aa9cb,0x0065b2d } },
- /* 237 */
- { { 0x1021d63,0x2217df3,0x1f0821a,0x057fa98,0x23f344b,0x173dcf9,
- 0x1ba6ddc,0x22c8eb5,0x18f227a,0x0455343,0x1c55931,0x1d0dcf3,
- 0x20fa19b,0x1c56618,0x004feab },
- { 0x19ec924,0x224e39f,0x2550509,0x179b51f,0x284d54a,0x2d85d41,
- 0x2d1bdc1,0x1a29068,0x3826158,0x1267f85,0x3005a92,0x0769e00,
- 0x379b617,0x17b5f63,0x00a70bf } },
- /* 238 */
- { { 0x22216c5,0x049437f,0x33510bc,0x141d806,0x22c37e2,0x1bc1adf,
- 0x300175d,0x2e6ded8,0x0a18bfe,0x35377a3,0x382f843,0x08410ca,
- 0x00afd4f,0x0be6c6b,0x008d70e },
- { 0x2e91abb,0x1cede2a,0x28f225c,0x28e18c0,0x30230dc,0x173cc2d,
- 0x123ecfe,0x3c9962e,0x2c25506,0x27b5d53,0x329a5e3,0x106e231,
- 0x3889b8e,0x3b0aeaf,0x00ee67c } },
- /* 239 */
- { { 0x3e46c65,0x0eb3d46,0x1d7ae18,0x23f9d59,0x2978953,0x2589ed3,
- 0x073391d,0x2461e1e,0x0c19f1d,0x22fd2b1,0x0691f5c,0x2e67d8d,
- 0x1fb985d,0x200dd28,0x00a68df },
- { 0x392b5fa,0x123b46f,0x1c323c4,0x104f82f,0x0a098c8,0x26fc05b,
- 0x34cd557,0x0913639,0x09c115e,0x3977c34,0x3410b66,0x062b404,
- 0x0213094,0x132c5e8,0x008b612 } },
- /* 240 */
- { { 0x26e3392,0x3b0ebf0,0x2e00425,0x1c285c8,0x3c07f84,0x08d5ad0,
- 0x028190e,0x1669b73,0x1ffb1ef,0x053b65f,0x063028c,0x0aceb47,
- 0x18988c2,0x0f09a30,0x0007072 },
- { 0x0f49e7d,0x28c0bd3,0x252270d,0x24cfc4a,0x0c5e87c,0x2165052,
- 0x2cdd1d1,0x04931d2,0x3abca74,0x22b57dc,0x169fd47,0x0b928fb,
- 0x17cc3e7,0x21a1ec4,0x0061593 } },
- /* 241 */
- { { 0x1aa0486,0x2e55dea,0x15577b7,0x0d6818f,0x36e41fb,0x2a411f5,
- 0x17d5c7d,0x1eea6c0,0x28068a8,0x0e31d20,0x1f08ad9,0x117e973,
- 0x08a28ab,0x085d30a,0x00cd9fb },
- { 0x347843d,0x1119095,0x11e3595,0x1b29584,0x134d64c,0x2ff3a35,
- 0x247ea14,0x099fc4b,0x2056169,0x145dd03,0x2ed03fb,0x1250e3b,
- 0x3f5135c,0x2b753f0,0x009da30 } },
- /* 242 */
- { { 0x0fa5200,0x214a0b3,0x313dc4e,0x23da866,0x3270760,0x15c9b8b,
- 0x39a53df,0x1f79772,0x3c9e942,0x2984901,0x154d582,0x1685f87,
- 0x2e1183e,0x1f79956,0x00b9987 },
- { 0x15254de,0x3a5cac0,0x37c56f0,0x2c7c29b,0x292a56d,0x195be2c,
- 0x17e4e1a,0x0660f4a,0x052ad98,0x1267f80,0x07cfed8,0x194b4bc,
- 0x01738d3,0x14ba10f,0x00c7843 } },
- /* 243 */
- { { 0x29b2d8a,0x242bc1f,0x19646ee,0x0615f3c,0x0ac8d70,0x07ca3bf,
- 0x2d90317,0x2c83bdb,0x1a96812,0x39fdc35,0x31c61ee,0x2d55fd3,
- 0x2375827,0x355f189,0x00f1c9b },
- { 0x21a6194,0x1f4050a,0x2b845cf,0x02c6242,0x2dd614e,0x3a4f0a9,
- 0x39de100,0x24714fb,0x175e0cd,0x0be633d,0x14befc3,0x13b0318,
- 0x1d68c50,0x299989e,0x00d0513 } },
- /* 244 */
- { { 0x059fb6a,0x2b6eb6a,0x3666a8e,0x39f6ca0,0x1cf8346,0x388b8d5,
- 0x35e61a3,0x271adec,0x22c9963,0x20a4fb3,0x16f241c,0x0058b89,
- 0x21ddafa,0x1ee6fde,0x00d2e6c },
- { 0x0075e63,0x39894d0,0x0286d0d,0x187e7b2,0x02405aa,0x3f91525,
- 0x37830a8,0x2723088,0x2c7364e,0x013f406,0x104ba75,0x270f486,
- 0x3520b4d,0x3852bc6,0x00d589b } },
- /* 245 */
- { { 0x262e53b,0x1da93d1,0x3676135,0x147e41d,0x335ec2f,0x1f02be5,
- 0x297d139,0x22d6198,0x1fe9e59,0x13b4c80,0x1e70f60,0x2f1d4a9,
- 0x2d95149,0x14d6ec4,0x00b54af },
- { 0x12c1c76,0x2930ac8,0x0dfd36e,0x31fac94,0x218f5bb,0x2828691,
- 0x1466cc9,0x3645e83,0x1a4dac2,0x1549593,0x0e95fab,0x19567d2,
- 0x27a3320,0x0642729,0x007487c } },
- /* 246 */
- { { 0x1e98e9c,0x2ff8df7,0x119975a,0x098a904,0x099b90b,0x336c7df,
- 0x010996d,0x159d46d,0x3118b3b,0x3aacd1b,0x31f8ae1,0x214864f,
- 0x398c104,0x089dae2,0x001ec4d },
- { 0x1452baa,0x2f24991,0x2572ba3,0x162b312,0x2387d18,0x147c5c7,
- 0x38eff6e,0x0700251,0x37d931e,0x23cd5c1,0x254c8ca,0x3b9df37,
- 0x1c9a4ff,0x0bfd547,0x00fb489 } },
- /* 247 */
- { { 0x1b8dff8,0x2f6b40b,0x05a25b1,0x3f5688a,0x1d462f4,0x2802d18,
- 0x2aad8ed,0x1b46c75,0x3cf4130,0x250fefb,0x2a13fe1,0x23a1bcd,
- 0x0940442,0x04605fe,0x00c8b2f },
- { 0x0d51afb,0x14a2abc,0x1d06762,0x291526c,0x2a3e2fe,0x28f77d9,
- 0x3ad8f2e,0x3481a1b,0x04b4fbd,0x2836733,0x0189ff5,0x3a5f533,
- 0x319a6cd,0x0f58667,0x00c3679 } },
- /* 248 */
- { { 0x1b85197,0x22426d4,0x2895ea3,0x342d324,0x3ffb17d,0x376cfcf,
- 0x30878b1,0x3c3c83a,0x0ffc57c,0x0ac174a,0x1abd57e,0x2f78b9c,
- 0x01b20d8,0x0a37103,0x007f2be },
- { 0x19a2d48,0x137288a,0x182d655,0x0ba0dde,0x25130ba,0x01c65c6,
- 0x23205f1,0x2097621,0x2827cf2,0x2c57b98,0x03748f2,0x2db15fc,
- 0x385a0d4,0x13690c0,0x00a9e3f } },
- /* 249 */
- { { 0x3fbc9c6,0x2df3b20,0x377e33e,0x31d1505,0x024a311,0x3c1d9ff,
- 0x1377f74,0x00b6b20,0x2364ab7,0x184ab6b,0x2a77969,0x3f2db6c,
- 0x2a6adb7,0x0a10073,0x004a6fb },
- { 0x1fc73de,0x2c74ab3,0x3d325e8,0x2346c0b,0x1d0efae,0x2076146,
- 0x19c190d,0x225c4fe,0x3fafc80,0x2cf063d,0x11b7ae7,0x3dc4f9d,
- 0x3c3f841,0x10d7c1f,0x000a4b3 } },
- /* 250 */
- { { 0x19b7d2e,0x28f1300,0x0b897dd,0x06b5371,0x0631c8d,0x336cc4f,
- 0x09cd6e1,0x2ec1952,0x1104c07,0x07512bb,0x35f000d,0x25f84e9,
- 0x1df4d8f,0x193f769,0x000e9ee },
- { 0x2346910,0x267cecf,0x0ad7eaa,0x087e8a5,0x1622f69,0x342cbfa,
- 0x2aa20d0,0x206e88a,0x3991e58,0x093fb4b,0x0157180,0x3cecb5b,
- 0x2e17c9a,0x1ea371f,0x00919e6 } },
- /* 251 */
- { { 0x2250533,0x13f931d,0x3ef8c72,0x395f605,0x18a2080,0x1cb25d4,
- 0x2fb0f41,0x1c0ba8a,0x1eb17c0,0x266c433,0x09b7e3e,0x0e5d78f,
- 0x0cdc5bf,0x1f7c734,0x0020611 },
- { 0x205ebd5,0x127986f,0x02c0fb0,0x1705b1e,0x1eb0bb5,0x2dffb42,
- 0x2331b8a,0x18fc04e,0x31d6328,0x17db162,0x0d3b619,0x193bdb9,
- 0x3f11662,0x2d8e694,0x0092c51 } },
- /* 252 */
- { { 0x08b364d,0x31ef20a,0x25c4a57,0x021ed07,0x14a562e,0x262a684,
- 0x1d21c66,0x126e5a6,0x181f3f8,0x2a93b65,0x1eb726b,0x08fbbce,
- 0x084f9a2,0x308f30a,0x0013159 },
- { 0x23f4963,0x0c7960e,0x2a81739,0x2242b69,0x3965003,0x2aca542,
- 0x28a1c65,0x2ad48fb,0x149775f,0x1bbb7d2,0x0f2671b,0x3594b85,
- 0x22f5563,0x2470f13,0x00fed44 } },
- /* 253 */
- { { 0x0eb453e,0x3ab70fd,0x1a5b335,0x18f2b74,0x25ff74b,0x3612a46,
- 0x33d0d75,0x28cdda4,0x2b9b49b,0x22728fb,0x004c15b,0x1beb33b,
- 0x1a7e41f,0x0c9b702,0x004ef19 },
- { 0x1ca3233,0x0b4c90f,0x1d4b53d,0x2428896,0x20ee405,0x151bc00,
- 0x022edb5,0x1adc463,0x00109ea,0x06490a6,0x30e91e6,0x3682b76,
- 0x23c50aa,0x3bd2665,0x005fe53 } },
- /* 254 */
- { { 0x0c28c65,0x3741ae4,0x247d372,0x0b04673,0x2176524,0x2c8bf20,
- 0x01fb806,0x3330701,0x307b0a7,0x3999fb7,0x1261bec,0x256679c,
- 0x3f22ac7,0x26e8673,0x00bc69d },
- { 0x3c06819,0x35df344,0x379d009,0x2bb8a0a,0x0635a66,0x096c6fa,
- 0x1ac4a62,0x023e53b,0x0e45240,0x115f53d,0x3056af8,0x0a66b16,
- 0x3c386ee,0x1130e82,0x00cc384 } },
- /* 255 */
- { { 0x14c2356,0x190ec73,0x07be490,0x145d415,0x0740a48,0x1251301,
- 0x3eaf29d,0x2628190,0x079299a,0x26e95c9,0x2e05fdf,0x2ca7c5b,
- 0x32d7b48,0x3d84226,0x0033fb4 },
- { 0x150f955,0x01240aa,0x3ddf867,0x137fb70,0x297e103,0x17eeda8,
- 0x1320b60,0x266ec84,0x13f4322,0x0c8f5ee,0x0590e4a,0x386815e,
- 0x00ce61f,0x161bd63,0x008e1d0 } },
- };
- /* Multiply the base point of P384 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Stripe implementation.
- * Pre-generated: 2^0, 2^48, ...
- * Pre-generated: products of all combinations of above.
- * 8 doubles and adds (with qz=1)
- *
- * r Resulting point.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_384_ecc_mulmod_base_15(sp_point_384* r, const sp_digit* k,
- int map, int ct, void* heap)
- {
- return sp_384_ecc_mulmod_stripe_15(r, &p384_base, p384_table,
- k, map, ct, heap);
- }
- #endif
- /* Multiply the base point of P384 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_base_384(const mp_int* km, ecc_point* r, int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_384* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_384 point[1];
- sp_digit k[15];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_384*)XMALLOC(sizeof(sp_point_384), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_384_from_mp(k, 15, km);
- err = sp_384_ecc_mulmod_base_15(point, k, map, 1, heap);
- }
- if (err == MP_OKAY) {
- err = sp_384_point_to_ecc_point_15(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Multiply the base point of P384 by the scalar, add point a and return
- * the result. If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * am Point to add to scalar multiply result.
- * inMont Point to add is in montgomery form.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_base_add_384(const mp_int* km, const ecc_point* am,
- int inMont, ecc_point* r, int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_384* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_384 point[2];
- sp_digit k[15 + 15 * 2 * 6];
- #endif
- sp_point_384* addP = NULL;
- sp_digit* tmp = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(
- sizeof(sp_digit) * (15 + 15 * 2 * 6),
- heap, DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- addP = point + 1;
- tmp = k + 15;
- sp_384_from_mp(k, 15, km);
- sp_384_point_from_ecc_point_15(addP, am);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_384_mod_mul_norm_15(addP->x, addP->x, p384_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_384_mod_mul_norm_15(addP->y, addP->y, p384_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_384_mod_mul_norm_15(addP->z, addP->z, p384_mod);
- }
- if (err == MP_OKAY) {
- err = sp_384_ecc_mulmod_base_15(point, k, 0, 0, heap);
- }
- if (err == MP_OKAY) {
- sp_384_proj_point_add_15(point, point, addP, tmp);
- if (map) {
- sp_384_map_15(point, point, tmp);
- }
- err = sp_384_point_to_ecc_point_15(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
- defined(HAVE_ECC_VERIFY)
- #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN | HAVE_ECC_SIGN | HAVE_ECC_VERIFY */
- /* Add 1 to a. (a = a + 1)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_384_add_one_15(sp_digit* a)
- {
- a[0]++;
- sp_384_norm_15(a);
- }
- /* Read big endian unsigned byte array into r.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a Byte array.
- * n Number of bytes in array to read.
- */
- static void sp_384_from_bin(sp_digit* r, int size, const byte* a, int n)
- {
- int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = n-1; i >= 0; i--) {
- r[j] |= (((sp_digit)a[i]) << s);
- if (s >= 18U) {
- r[j] &= 0x3ffffff;
- s = 26U - s;
- if (j + 1 >= size) {
- break;
- }
- r[++j] = (sp_digit)a[i] >> s;
- s = 8U - s;
- }
- else {
- s += 8U;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- }
- /* Generates a scalar that is in the range 1..order-1.
- *
- * rng Random number generator.
- * k Scalar value.
- * returns RNG failures, MEMORY_E when memory allocation fails and
- * MP_OKAY on success.
- */
- static int sp_384_ecc_gen_k_15(WC_RNG* rng, sp_digit* k)
- {
- int err;
- byte buf[48];
- do {
- err = wc_RNG_GenerateBlock(rng, buf, sizeof(buf));
- if (err == 0) {
- sp_384_from_bin(k, 15, buf, (int)sizeof(buf));
- if (sp_384_cmp_15(k, p384_order2) <= 0) {
- sp_384_add_one_15(k);
- break;
- }
- }
- }
- while (err == 0);
- return err;
- }
- /* Makes a random EC key pair.
- *
- * rng Random number generator.
- * priv Generated private value.
- * pub Generated public point.
- * heap Heap to use for allocation.
- * returns ECC_INF_E when the point does not have the correct order, RNG
- * failures, MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_make_key_384(WC_RNG* rng, mp_int* priv, ecc_point* pub, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_384* point = NULL;
- sp_digit* k = NULL;
- #else
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- sp_point_384 point[2];
- #else
- sp_point_384 point[1];
- #endif
- sp_digit k[15];
- #endif
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- sp_point_384* infinity = NULL;
- #endif
- int err = MP_OKAY;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- point = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, heap, DYNAMIC_TYPE_ECC);
- #else
- point = (sp_point_384*)XMALLOC(sizeof(sp_point_384), heap, DYNAMIC_TYPE_ECC);
- #endif
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- infinity = point + 1;
- #endif
- err = sp_384_ecc_gen_k_15(rng, k);
- }
- if (err == MP_OKAY) {
- err = sp_384_ecc_mulmod_base_15(point, k, 1, 1, NULL);
- }
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- if (err == MP_OKAY) {
- err = sp_384_ecc_mulmod_15(infinity, point, p384_order, 1, 1, NULL);
- }
- if (err == MP_OKAY) {
- if (sp_384_iszero_15(point->x) || sp_384_iszero_15(point->y)) {
- err = ECC_INF_E;
- }
- }
- #endif
- if (err == MP_OKAY) {
- err = sp_384_to_mp(k, priv);
- }
- if (err == MP_OKAY) {
- err = sp_384_point_to_ecc_point_15(point, pub);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL) {
- /* point is not sensitive, so no need to zeroize */
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- }
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_ecc_key_gen_384_ctx {
- int state;
- sp_384_ecc_mulmod_15_ctx mulmod_ctx;
- sp_digit k[15];
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- sp_point_384 point[2];
- #else
- sp_point_384 point[1];
- #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
- } sp_ecc_key_gen_384_ctx;
- int sp_ecc_make_key_384_nb(sp_ecc_ctx_t* sp_ctx, WC_RNG* rng, mp_int* priv,
- ecc_point* pub, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_ecc_key_gen_384_ctx* ctx = (sp_ecc_key_gen_384_ctx*)sp_ctx->data;
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- sp_point_384* infinity = ctx->point + 1;
- #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
- typedef char ctx_size_test[sizeof(sp_ecc_key_gen_384_ctx)
- >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0:
- err = sp_384_ecc_gen_k_15(rng, ctx->k);
- if (err == MP_OKAY) {
- err = FP_WOULDBLOCK;
- ctx->state = 1;
- }
- break;
- case 1:
- err = sp_384_ecc_mulmod_base_15_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
- ctx->point, ctx->k, 1, 1, heap);
- if (err == MP_OKAY) {
- err = FP_WOULDBLOCK;
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
- ctx->state = 2;
- #else
- ctx->state = 3;
- #endif
- }
- break;
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- case 2:
- err = sp_384_ecc_mulmod_15_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
- infinity, ctx->point, p384_order, 1, 1);
- if (err == MP_OKAY) {
- if (sp_384_iszero_15(ctx->point->x) ||
- sp_384_iszero_15(ctx->point->y)) {
- err = ECC_INF_E;
- }
- else {
- err = FP_WOULDBLOCK;
- ctx->state = 3;
- }
- }
- break;
- #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
- case 3:
- err = sp_384_to_mp(ctx->k, priv);
- if (err == MP_OKAY) {
- err = sp_384_point_to_ecc_point_15(ctx->point, pub);
- }
- break;
- }
- if (err != FP_WOULDBLOCK) {
- XMEMSET(ctx, 0, sizeof(sp_ecc_key_gen_384_ctx));
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #ifdef HAVE_ECC_DHE
- /* Write r as big endian to byte array.
- * Fixed length number of bytes written: 48
- *
- * r A single precision integer.
- * a Byte array.
- */
- static void sp_384_to_bin_15(sp_digit* r, byte* a)
- {
- int i;
- int j;
- int s = 0;
- int b;
- for (i=0; i<14; i++) {
- r[i+1] += r[i] >> 26;
- r[i] &= 0x3ffffff;
- }
- j = 391 / 8 - 1;
- a[j] = 0;
- for (i=0; i<15 && j>=0; i++) {
- b = 0;
- /* lint allow cast of mismatch sp_digit and int */
- a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
- b += 8 - s;
- if (j < 0) {
- break;
- }
- while (b < 26) {
- a[j--] = (byte)(r[i] >> b);
- b += 8;
- if (j < 0) {
- break;
- }
- }
- s = 8 - (b - 26);
- if (j >= 0) {
- a[j] = 0;
- }
- if (s != 0) {
- j++;
- }
- }
- }
- /* Multiply the point by the scalar and serialize the X ordinate.
- * The number is 0 padded to maximum size on output.
- *
- * priv Scalar to multiply the point by.
- * pub Point to multiply.
- * out Buffer to hold X ordinate.
- * outLen On entry, size of the buffer in bytes.
- * On exit, length of data in buffer in bytes.
- * heap Heap to use for allocation.
- * returns BUFFER_E if the buffer is to small for output size,
- * MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_secret_gen_384(const mp_int* priv, const ecc_point* pub, byte* out,
- word32* outLen, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_384* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_384 point[1];
- sp_digit k[15];
- #endif
- int err = MP_OKAY;
- if (*outLen < 48U) {
- err = BUFFER_E;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- point = (sp_point_384*)XMALLOC(sizeof(sp_point_384), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_384_from_mp(k, 15, priv);
- sp_384_point_from_ecc_point_15(point, pub);
- err = sp_384_ecc_mulmod_15(point, point, k, 1, 1, heap);
- }
- if (err == MP_OKAY) {
- sp_384_to_bin_15(point->x, out);
- *outLen = 48;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_ecc_sec_gen_384_ctx {
- int state;
- union {
- sp_384_ecc_mulmod_15_ctx mulmod_ctx;
- };
- sp_digit k[15];
- sp_point_384 point;
- } sp_ecc_sec_gen_384_ctx;
- int sp_ecc_secret_gen_384_nb(sp_ecc_ctx_t* sp_ctx, const mp_int* priv,
- const ecc_point* pub, byte* out, word32* outLen, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_ecc_sec_gen_384_ctx* ctx = (sp_ecc_sec_gen_384_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_ecc_sec_gen_384_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- if (*outLen < 32U) {
- err = BUFFER_E;
- }
- switch (ctx->state) {
- case 0:
- sp_384_from_mp(ctx->k, 15, priv);
- sp_384_point_from_ecc_point_15(&ctx->point, pub);
- ctx->state = 1;
- break;
- case 1:
- err = sp_384_ecc_mulmod_15_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
- &ctx->point, &ctx->point, ctx->k, 1, 1, heap);
- if (err == MP_OKAY) {
- sp_384_to_bin_15(ctx->point.x, out);
- *outLen = 48;
- }
- break;
- }
- if (err == MP_OKAY && ctx->state != 1) {
- err = FP_WOULDBLOCK;
- }
- if (err != FP_WOULDBLOCK) {
- XMEMSET(ctx, 0, sizeof(sp_ecc_sec_gen_384_ctx));
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #endif /* HAVE_ECC_DHE */
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- #endif
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- SP_NOINLINE static void sp_384_rshift_15(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- #ifdef WOLFSSL_SP_SMALL
- for (i=0; i<14; i++) {
- r[i] = ((a[i] >> n) | (a[i + 1] << (26 - n))) & 0x3ffffff;
- }
- #else
- for (i=0; i<8; i += 8) {
- r[i+0] = (a[i+0] >> n) | ((a[i+1] << (26 - n)) & 0x3ffffff);
- r[i+1] = (a[i+1] >> n) | ((a[i+2] << (26 - n)) & 0x3ffffff);
- r[i+2] = (a[i+2] >> n) | ((a[i+3] << (26 - n)) & 0x3ffffff);
- r[i+3] = (a[i+3] >> n) | ((a[i+4] << (26 - n)) & 0x3ffffff);
- r[i+4] = (a[i+4] >> n) | ((a[i+5] << (26 - n)) & 0x3ffffff);
- r[i+5] = (a[i+5] >> n) | ((a[i+6] << (26 - n)) & 0x3ffffff);
- r[i+6] = (a[i+6] >> n) | ((a[i+7] << (26 - n)) & 0x3ffffff);
- r[i+7] = (a[i+7] >> n) | ((a[i+8] << (26 - n)) & 0x3ffffff);
- }
- r[8] = (a[8] >> n) | ((a[9] << (26 - n)) & 0x3ffffff);
- r[9] = (a[9] >> n) | ((a[10] << (26 - n)) & 0x3ffffff);
- r[10] = (a[10] >> n) | ((a[11] << (26 - n)) & 0x3ffffff);
- r[11] = (a[11] >> n) | ((a[12] << (26 - n)) & 0x3ffffff);
- r[12] = (a[12] >> n) | ((a[13] << (26 - n)) & 0x3ffffff);
- r[13] = (a[13] >> n) | ((a[14] << (26 - n)) & 0x3ffffff);
- #endif /* WOLFSSL_SP_SMALL */
- r[14] = a[14] >> n;
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_384_mul_d_15(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 15; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x3ffffff);
- t >>= 26;
- }
- r[15] = (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t[15];
- t[ 0] = tb * a[ 0];
- t[ 1] = tb * a[ 1];
- t[ 2] = tb * a[ 2];
- t[ 3] = tb * a[ 3];
- t[ 4] = tb * a[ 4];
- t[ 5] = tb * a[ 5];
- t[ 6] = tb * a[ 6];
- t[ 7] = tb * a[ 7];
- t[ 8] = tb * a[ 8];
- t[ 9] = tb * a[ 9];
- t[10] = tb * a[10];
- t[11] = tb * a[11];
- t[12] = tb * a[12];
- t[13] = tb * a[13];
- t[14] = tb * a[14];
- r[ 0] = (sp_digit) (t[ 0] & 0x3ffffff);
- r[ 1] = (sp_digit)((t[ 0] >> 26) + (t[ 1] & 0x3ffffff));
- r[ 2] = (sp_digit)((t[ 1] >> 26) + (t[ 2] & 0x3ffffff));
- r[ 3] = (sp_digit)((t[ 2] >> 26) + (t[ 3] & 0x3ffffff));
- r[ 4] = (sp_digit)((t[ 3] >> 26) + (t[ 4] & 0x3ffffff));
- r[ 5] = (sp_digit)((t[ 4] >> 26) + (t[ 5] & 0x3ffffff));
- r[ 6] = (sp_digit)((t[ 5] >> 26) + (t[ 6] & 0x3ffffff));
- r[ 7] = (sp_digit)((t[ 6] >> 26) + (t[ 7] & 0x3ffffff));
- r[ 8] = (sp_digit)((t[ 7] >> 26) + (t[ 8] & 0x3ffffff));
- r[ 9] = (sp_digit)((t[ 8] >> 26) + (t[ 9] & 0x3ffffff));
- r[10] = (sp_digit)((t[ 9] >> 26) + (t[10] & 0x3ffffff));
- r[11] = (sp_digit)((t[10] >> 26) + (t[11] & 0x3ffffff));
- r[12] = (sp_digit)((t[11] >> 26) + (t[12] & 0x3ffffff));
- r[13] = (sp_digit)((t[12] >> 26) + (t[13] & 0x3ffffff));
- r[14] = (sp_digit)((t[13] >> 26) + (t[14] & 0x3ffffff));
- r[15] = (sp_digit) (t[14] >> 26);
- #endif /* WOLFSSL_SP_SMALL */
- }
- SP_NOINLINE static void sp_384_lshift_30(sp_digit* r, const sp_digit* a,
- byte n)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- r[30] = a[29] >> (26 - n);
- for (i=29; i>0; i--) {
- r[i] = ((a[i] << n) | (a[i-1] >> (26 - n))) & 0x3ffffff;
- }
- #else
- sp_int_digit s;
- sp_int_digit t;
- s = (sp_int_digit)a[29];
- r[30] = s >> (26U - n);
- s = (sp_int_digit)(a[29]); t = (sp_int_digit)(a[28]);
- r[29] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[28]); t = (sp_int_digit)(a[27]);
- r[28] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[27]); t = (sp_int_digit)(a[26]);
- r[27] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[26]); t = (sp_int_digit)(a[25]);
- r[26] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[25]); t = (sp_int_digit)(a[24]);
- r[25] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[24]); t = (sp_int_digit)(a[23]);
- r[24] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[23]); t = (sp_int_digit)(a[22]);
- r[23] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[22]); t = (sp_int_digit)(a[21]);
- r[22] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[21]); t = (sp_int_digit)(a[20]);
- r[21] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[20]); t = (sp_int_digit)(a[19]);
- r[20] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[19]); t = (sp_int_digit)(a[18]);
- r[19] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[18]); t = (sp_int_digit)(a[17]);
- r[18] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[17]); t = (sp_int_digit)(a[16]);
- r[17] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[16]); t = (sp_int_digit)(a[15]);
- r[16] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[15]); t = (sp_int_digit)(a[14]);
- r[15] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[14]); t = (sp_int_digit)(a[13]);
- r[14] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[13]); t = (sp_int_digit)(a[12]);
- r[13] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[12]); t = (sp_int_digit)(a[11]);
- r[12] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[11]); t = (sp_int_digit)(a[10]);
- r[11] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[10]); t = (sp_int_digit)(a[9]);
- r[10] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[9]); t = (sp_int_digit)(a[8]);
- r[9] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[8]); t = (sp_int_digit)(a[7]);
- r[8] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[7]); t = (sp_int_digit)(a[6]);
- r[7] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[6]); t = (sp_int_digit)(a[5]);
- r[6] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[5]); t = (sp_int_digit)(a[4]);
- r[5] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[4]); t = (sp_int_digit)(a[3]);
- r[4] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[3]); t = (sp_int_digit)(a[2]);
- r[3] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[2]); t = (sp_int_digit)(a[1]);
- r[2] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- s = (sp_int_digit)(a[1]); t = (sp_int_digit)(a[0]);
- r[1] = ((s << n) | (t >> (26U - n))) & 0x3ffffff;
- #endif /* WOLFSSL_SP_SMALL */
- r[0] = (a[0] << n) & 0x3ffffff;
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Simplified based on top word of divisor being (1 << 26) - 1
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_384_div_15(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- sp_digit r1;
- sp_digit mask;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 15 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 15 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 30 + 1;
- sd = t2 + 15 + 1;
- sp_384_mul_d_15(sd, d, (sp_digit)1 << 6);
- sp_384_lshift_30(t1, a, 6);
- t1[15 + 15] += t1[15 + 15 - 1] >> 26;
- t1[15 + 15 - 1] &= 0x3ffffff;
- for (i=14; i>=0; i--) {
- r1 = t1[15 + i];
- sp_384_mul_d_15(t2, sd, r1);
- (void)sp_384_sub_15(&t1[i], &t1[i], t2);
- t1[15 + i] -= t2[15];
- sp_384_norm_15(&t1[i + 1]);
- mask = ~((t1[15 + i] - 1) >> 31);
- sp_384_cond_sub_15(t1 + i, t1 + i, sd, mask);
- sp_384_norm_15(&t1[i + 1]);
- }
- sp_384_norm_15(t1);
- sp_384_rshift_15(r, t1, 6);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_384_mod_15(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_384_div_15(a, m, NULL, r);
- }
- #endif
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- /* Multiply two number mod the order of P384 curve. (r = a * b mod order)
- *
- * r Result of the multiplication.
- * a First operand of the multiplication.
- * b Second operand of the multiplication.
- */
- static void sp_384_mont_mul_order_15(sp_digit* r, const sp_digit* a, const sp_digit* b)
- {
- sp_384_mul_15(r, a, b);
- sp_384_mont_reduce_order_15(r, p384_order, p384_mp_order);
- }
- #if defined(HAVE_ECC_SIGN) || (defined(HAVE_ECC_VERIFY) && defined(WOLFSSL_SP_SMALL))
- #ifdef WOLFSSL_SP_SMALL
- /* Order-2 for the P384 curve. */
- static const uint32_t p384_order_minus_2[12] = {
- 0xccc52971U,0xecec196aU,0x48b0a77aU,0x581a0db2U,0xf4372ddfU,0xc7634d81U,
- 0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU
- };
- #else
- /* The low half of the order-2 of the P384 curve. */
- static const uint32_t p384_order_low[6] = {
- 0xccc52971U,0xecec196aU,0x48b0a77aU,0x581a0db2U,0xf4372ddfU,0xc7634d81U
- };
- #endif /* WOLFSSL_SP_SMALL */
- /* Square number mod the order of P384 curve. (r = a * a mod order)
- *
- * r Result of the squaring.
- * a Number to square.
- */
- static void sp_384_mont_sqr_order_15(sp_digit* r, const sp_digit* a)
- {
- sp_384_sqr_15(r, a);
- sp_384_mont_reduce_order_15(r, p384_order, p384_mp_order);
- }
- #ifndef WOLFSSL_SP_SMALL
- /* Square number mod the order of P384 curve a number of times.
- * (r = a ^ n mod order)
- *
- * r Result of the squaring.
- * a Number to square.
- */
- static void sp_384_mont_sqr_n_order_15(sp_digit* r, const sp_digit* a, int n)
- {
- int i;
- sp_384_mont_sqr_order_15(r, a);
- for (i=1; i<n; i++) {
- sp_384_mont_sqr_order_15(r, r);
- }
- }
- #endif /* !WOLFSSL_SP_SMALL */
- /* Invert the number, in Montgomery form, modulo the order of the P384 curve.
- * (r = 1 / a mod order)
- *
- * r Inverse result.
- * a Number to invert.
- * td Temporary data.
- */
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_384_mont_inv_order_15_ctx {
- int state;
- int i;
- } sp_384_mont_inv_order_15_ctx;
- static int sp_384_mont_inv_order_15_nb(sp_ecc_ctx_t* sp_ctx, sp_digit* r, const sp_digit* a,
- sp_digit* t)
- {
- int err = FP_WOULDBLOCK;
- sp_384_mont_inv_order_15_ctx* ctx = (sp_384_mont_inv_order_15_ctx*)sp_ctx;
- typedef char ctx_size_test[sizeof(sp_384_mont_inv_order_15_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0:
- XMEMCPY(t, a, sizeof(sp_digit) * 15);
- ctx->i = 382;
- ctx->state = 1;
- break;
- case 1:
- sp_384_mont_sqr_order_15(t, t);
- ctx->state = 2;
- break;
- case 2:
- if ((p384_order_minus_2[ctx->i / 32] & ((sp_int_digit)1 << (ctx->i % 32))) != 0) {
- sp_384_mont_mul_order_15(t, t, a);
- }
- ctx->i--;
- ctx->state = (ctx->i == 0) ? 3 : 1;
- break;
- case 3:
- XMEMCPY(r, t, sizeof(sp_digit) * 15U);
- err = MP_OKAY;
- break;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- static void sp_384_mont_inv_order_15(sp_digit* r, const sp_digit* a,
- sp_digit* td)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_digit* t = td;
- int i;
- XMEMCPY(t, a, sizeof(sp_digit) * 15);
- for (i=382; i>=0; i--) {
- sp_384_mont_sqr_order_15(t, t);
- if ((p384_order_minus_2[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
- sp_384_mont_mul_order_15(t, t, a);
- }
- }
- XMEMCPY(r, t, sizeof(sp_digit) * 15U);
- #else
- sp_digit* t = td;
- sp_digit* t2 = td + 2 * 15;
- sp_digit* t3 = td + 4 * 15;
- int i;
- /* t = a^2 */
- sp_384_mont_sqr_order_15(t, a);
- /* t = a^3 = t * a */
- sp_384_mont_mul_order_15(t, t, a);
- /* t2= a^c = t ^ 2 ^ 2 */
- sp_384_mont_sqr_n_order_15(t2, t, 2);
- /* t = a^f = t2 * t */
- sp_384_mont_mul_order_15(t, t2, t);
- /* t2= a^f0 = t ^ 2 ^ 4 */
- sp_384_mont_sqr_n_order_15(t2, t, 4);
- /* t = a^ff = t2 * t */
- sp_384_mont_mul_order_15(t, t2, t);
- /* t2= a^ff00 = t ^ 2 ^ 8 */
- sp_384_mont_sqr_n_order_15(t2, t, 8);
- /* t3= a^ffff = t2 * t */
- sp_384_mont_mul_order_15(t3, t2, t);
- /* t2= a^ffff0000 = t3 ^ 2 ^ 16 */
- sp_384_mont_sqr_n_order_15(t2, t3, 16);
- /* t = a^ffffffff = t2 * t3 */
- sp_384_mont_mul_order_15(t, t2, t3);
- /* t2= a^ffffffff0000 = t ^ 2 ^ 16 */
- sp_384_mont_sqr_n_order_15(t2, t, 16);
- /* t = a^ffffffffffff = t2 * t3 */
- sp_384_mont_mul_order_15(t, t2, t3);
- /* t2= a^ffffffffffff000000000000 = t ^ 2 ^ 48 */
- sp_384_mont_sqr_n_order_15(t2, t, 48);
- /* t= a^fffffffffffffffffffffffff = t2 * t */
- sp_384_mont_mul_order_15(t, t2, t);
- /* t2= a^ffffffffffffffffffffffff000000000000000000000000 */
- sp_384_mont_sqr_n_order_15(t2, t, 96);
- /* t2= a^ffffffffffffffffffffffffffffffffffffffffffffffff = t2 * t */
- sp_384_mont_mul_order_15(t2, t2, t);
- for (i=191; i>=1; i--) {
- sp_384_mont_sqr_order_15(t2, t2);
- if ((p384_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
- sp_384_mont_mul_order_15(t2, t2, a);
- }
- }
- sp_384_mont_sqr_order_15(t2, t2);
- sp_384_mont_mul_order_15(r, t2, a);
- #endif /* WOLFSSL_SP_SMALL */
- }
- #endif /* HAVE_ECC_SIGN || (HAVE_ECC_VERIFY && WOLFSSL_SP_SMALL) */
- #endif /* HAVE_ECC_SIGN | HAVE_ECC_VERIFY */
- #ifdef HAVE_ECC_SIGN
- #ifndef SP_ECC_MAX_SIG_GEN
- #define SP_ECC_MAX_SIG_GEN 64
- #endif
- /* Calculate second signature value S from R, k and private value.
- *
- * s = (r * x + e) / k
- *
- * s Signature value.
- * r First signature value.
- * k Ephemeral private key.
- * x Private key as a number.
- * e Hash of message as a number.
- * tmp Temporary storage for intermediate numbers.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_384_calc_s_15(sp_digit* s, const sp_digit* r, sp_digit* k,
- sp_digit* x, const sp_digit* e, sp_digit* tmp)
- {
- int err;
- sp_digit carry;
- sp_int32 c;
- sp_digit* kInv = k;
- /* Conv k to Montgomery form (mod order) */
- sp_384_mul_15(k, k, p384_norm_order);
- err = sp_384_mod_15(k, k, p384_order);
- if (err == MP_OKAY) {
- sp_384_norm_15(k);
- /* kInv = 1/k mod order */
- sp_384_mont_inv_order_15(kInv, k, tmp);
- sp_384_norm_15(kInv);
- /* s = r * x + e */
- sp_384_mul_15(x, x, r);
- err = sp_384_mod_15(x, x, p384_order);
- }
- if (err == MP_OKAY) {
- sp_384_norm_15(x);
- carry = sp_384_add_15(s, e, x);
- sp_384_cond_sub_15(s, s, p384_order, 0 - carry);
- sp_384_norm_15(s);
- c = sp_384_cmp_15(s, p384_order);
- sp_384_cond_sub_15(s, s, p384_order,
- (sp_digit)0 - (sp_digit)(c >= 0));
- sp_384_norm_15(s);
- /* s = s * k^-1 mod order */
- sp_384_mont_mul_order_15(s, s, kInv);
- sp_384_norm_15(s);
- }
- return err;
- }
- /* Sign the hash using the private key.
- * e = [hash, 384 bits] from binary
- * r = (k.G)->x mod order
- * s = (r * x + e) / k mod order
- * The hash is truncated to the first 384 bits.
- *
- * hash Hash to sign.
- * hashLen Length of the hash data.
- * rng Random number generator.
- * priv Private part of key - scalar.
- * rm First part of result as an mp_int.
- * sm Sirst part of result as an mp_int.
- * heap Heap to use for allocation.
- * returns RNG failures, MEMORY_E when memory allocation fails and
- * MP_OKAY on success.
- */
- int sp_ecc_sign_384(const byte* hash, word32 hashLen, WC_RNG* rng,
- const mp_int* priv, mp_int* rm, mp_int* sm, mp_int* km, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* e = NULL;
- sp_point_384* point = NULL;
- #else
- sp_digit e[7 * 2 * 15];
- sp_point_384 point[1];
- #endif
- sp_digit* x = NULL;
- sp_digit* k = NULL;
- sp_digit* r = NULL;
- sp_digit* tmp = NULL;
- sp_digit* s = NULL;
- sp_int32 c;
- int err = MP_OKAY;
- int i;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- point = (sp_point_384*)XMALLOC(sizeof(sp_point_384), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- e = (sp_digit*)XMALLOC(sizeof(sp_digit) * 7 * 2 * 15, heap,
- DYNAMIC_TYPE_ECC);
- if (e == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- x = e + 2 * 15;
- k = e + 4 * 15;
- r = e + 6 * 15;
- tmp = e + 8 * 15;
- s = e;
- if (hashLen > 48U) {
- hashLen = 48U;
- }
- }
- for (i = SP_ECC_MAX_SIG_GEN; err == MP_OKAY && i > 0; i--) {
- /* New random point. */
- if (km == NULL || mp_iszero(km)) {
- err = sp_384_ecc_gen_k_15(rng, k);
- }
- else {
- sp_384_from_mp(k, 15, km);
- mp_zero(km);
- }
- if (err == MP_OKAY) {
- err = sp_384_ecc_mulmod_base_15(point, k, 1, 1, heap);
- }
- if (err == MP_OKAY) {
- /* r = point->x mod order */
- XMEMCPY(r, point->x, sizeof(sp_digit) * 15U);
- sp_384_norm_15(r);
- c = sp_384_cmp_15(r, p384_order);
- sp_384_cond_sub_15(r, r, p384_order,
- (sp_digit)0 - (sp_digit)(c >= 0));
- sp_384_norm_15(r);
- if (!sp_384_iszero_15(r)) {
- /* x is modified in calculation of s. */
- sp_384_from_mp(x, 15, priv);
- /* s ptr == e ptr, e is modified in calculation of s. */
- sp_384_from_bin(e, 15, hash, (int)hashLen);
- err = sp_384_calc_s_15(s, r, k, x, e, tmp);
- /* Check that signature is usable. */
- if ((err == MP_OKAY) && (!sp_384_iszero_15(s))) {
- break;
- }
- }
- }
- #ifdef WOLFSSL_ECDSA_SET_K_ONE_LOOP
- i = 1;
- #endif
- }
- if (i == 0) {
- err = RNG_FAILURE_E;
- }
- if (err == MP_OKAY) {
- err = sp_384_to_mp(r, rm);
- }
- if (err == MP_OKAY) {
- err = sp_384_to_mp(s, sm);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (e != NULL)
- #endif
- {
- ForceZero(e, sizeof(sp_digit) * 7 * 2 * 15);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(e, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (point != NULL)
- #endif
- {
- ForceZero(point, sizeof(sp_point_384));
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_ecc_sign_384_ctx {
- int state;
- union {
- sp_384_ecc_mulmod_15_ctx mulmod_ctx;
- sp_384_mont_inv_order_15_ctx mont_inv_order_ctx;
- };
- sp_digit e[2*15];
- sp_digit x[2*15];
- sp_digit k[2*15];
- sp_digit r[2*15];
- sp_digit tmp[3 * 2*15];
- sp_point_384 point;
- sp_digit* s;
- sp_digit* kInv;
- int i;
- } sp_ecc_sign_384_ctx;
- int sp_ecc_sign_384_nb(sp_ecc_ctx_t* sp_ctx, const byte* hash, word32 hashLen, WC_RNG* rng,
- mp_int* priv, mp_int* rm, mp_int* sm, mp_int* km, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_ecc_sign_384_ctx* ctx = (sp_ecc_sign_384_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_ecc_sign_384_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0: /* INIT */
- ctx->s = ctx->e;
- ctx->kInv = ctx->k;
- ctx->i = SP_ECC_MAX_SIG_GEN;
- ctx->state = 1;
- break;
- case 1: /* GEN */
- /* New random point. */
- if (km == NULL || mp_iszero(km)) {
- err = sp_384_ecc_gen_k_15(rng, ctx->k);
- }
- else {
- sp_384_from_mp(ctx->k, 15, km);
- mp_zero(km);
- }
- XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
- ctx->state = 2;
- break;
- case 2: /* MULMOD */
- err = sp_384_ecc_mulmod_15_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
- &ctx->point, &p384_base, ctx->k, 1, 1, heap);
- if (err == MP_OKAY) {
- ctx->state = 3;
- }
- break;
- case 3: /* MODORDER */
- {
- sp_int32 c;
- /* r = point->x mod order */
- XMEMCPY(ctx->r, ctx->point.x, sizeof(sp_digit) * 15U);
- sp_384_norm_15(ctx->r);
- c = sp_384_cmp_15(ctx->r, p384_order);
- sp_384_cond_sub_15(ctx->r, ctx->r, p384_order,
- (sp_digit)0 - (sp_digit)(c >= 0));
- sp_384_norm_15(ctx->r);
- if (hashLen > 48U) {
- hashLen = 48U;
- }
- sp_384_from_mp(ctx->x, 15, priv);
- sp_384_from_bin(ctx->e, 15, hash, (int)hashLen);
- ctx->state = 4;
- break;
- }
- case 4: /* KMODORDER */
- /* Conv k to Montgomery form (mod order) */
- sp_384_mul_15(ctx->k, ctx->k, p384_norm_order);
- err = sp_384_mod_15(ctx->k, ctx->k, p384_order);
- if (err == MP_OKAY) {
- sp_384_norm_15(ctx->k);
- XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
- ctx->state = 5;
- }
- break;
- case 5: /* KINV */
- /* kInv = 1/k mod order */
- err = sp_384_mont_inv_order_15_nb((sp_ecc_ctx_t*)&ctx->mont_inv_order_ctx, ctx->kInv, ctx->k, ctx->tmp);
- if (err == MP_OKAY) {
- XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
- ctx->state = 6;
- }
- break;
- case 6: /* KINVNORM */
- sp_384_norm_15(ctx->kInv);
- ctx->state = 7;
- break;
- case 7: /* R */
- /* s = r * x + e */
- sp_384_mul_15(ctx->x, ctx->x, ctx->r);
- ctx->state = 8;
- break;
- case 8: /* S1 */
- err = sp_384_mod_15(ctx->x, ctx->x, p384_order);
- if (err == MP_OKAY)
- ctx->state = 9;
- break;
- case 9: /* S2 */
- {
- sp_digit carry;
- sp_int32 c;
- sp_384_norm_15(ctx->x);
- carry = sp_384_add_15(ctx->s, ctx->e, ctx->x);
- sp_384_cond_sub_15(ctx->s, ctx->s,
- p384_order, 0 - carry);
- sp_384_norm_15(ctx->s);
- c = sp_384_cmp_15(ctx->s, p384_order);
- sp_384_cond_sub_15(ctx->s, ctx->s, p384_order,
- (sp_digit)0 - (sp_digit)(c >= 0));
- sp_384_norm_15(ctx->s);
- /* s = s * k^-1 mod order */
- sp_384_mont_mul_order_15(ctx->s, ctx->s, ctx->kInv);
- sp_384_norm_15(ctx->s);
- /* Check that signature is usable. */
- if (sp_384_iszero_15(ctx->s) == 0) {
- ctx->state = 10;
- break;
- }
- #ifdef WOLFSSL_ECDSA_SET_K_ONE_LOOP
- ctx->i = 1;
- #endif
- /* not usable gen, try again */
- ctx->i--;
- if (ctx->i == 0) {
- err = RNG_FAILURE_E;
- }
- ctx->state = 1;
- break;
- }
- case 10: /* RES */
- err = sp_384_to_mp(ctx->r, rm);
- if (err == MP_OKAY) {
- err = sp_384_to_mp(ctx->s, sm);
- }
- break;
- }
- if (err == MP_OKAY && ctx->state != 10) {
- err = FP_WOULDBLOCK;
- }
- if (err != FP_WOULDBLOCK) {
- XMEMSET(ctx->e, 0, sizeof(sp_digit) * 2U * 15U);
- XMEMSET(ctx->x, 0, sizeof(sp_digit) * 2U * 15U);
- XMEMSET(ctx->k, 0, sizeof(sp_digit) * 2U * 15U);
- XMEMSET(ctx->r, 0, sizeof(sp_digit) * 2U * 15U);
- XMEMSET(ctx->tmp, 0, sizeof(sp_digit) * 3U * 2U * 15U);
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #endif /* HAVE_ECC_SIGN */
- #ifndef WOLFSSL_SP_SMALL
- static const char sp_384_tab32_15[32] = {
- 1, 10, 2, 11, 14, 22, 3, 30,
- 12, 15, 17, 19, 23, 26, 4, 31,
- 9, 13, 21, 29, 16, 18, 25, 8,
- 20, 28, 24, 7, 27, 6, 5, 32};
- static int sp_384_num_bits_26_15(sp_digit v)
- {
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- return sp_384_tab32_15[(uint32_t)(v*0x07C4ACDD) >> 27];
- }
- static int sp_384_num_bits_15(const sp_digit* a)
- {
- int i;
- int r = 0;
- for (i = 14; i >= 0; i--) {
- if (a[i] != 0) {
- r = sp_384_num_bits_26_15(a[i]);
- r += i * 26;
- break;
- }
- }
- return r;
- }
- /* Non-constant time modular inversion.
- *
- * @param [out] r Resulting number.
- * @param [in] a Number to invert.
- * @param [in] m Modulus.
- * @return MP_OKAY on success.
- * @return MEMEORY_E when dynamic memory allocation fails.
- */
- static int sp_384_mod_inv_15(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* u = NULL;
- #else
- sp_digit u[15 * 4];
- #endif
- sp_digit* v = NULL;
- sp_digit* b = NULL;
- sp_digit* d = NULL;
- int ut;
- int vt;
- #ifdef WOLFSSL_SP_SMALL_STACK
- u = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15 * 4, NULL,
- DYNAMIC_TYPE_ECC);
- if (u == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- v = u + 15;
- b = u + 2 * 15;
- d = u + 3 * 15;
- XMEMCPY(u, m, sizeof(sp_digit) * 15);
- XMEMCPY(v, a, sizeof(sp_digit) * 15);
- ut = sp_384_num_bits_15(u);
- vt = sp_384_num_bits_15(v);
- XMEMSET(b, 0, sizeof(sp_digit) * 15);
- if ((v[0] & 1) == 0) {
- sp_384_rshift1_15(v, v);
- XMEMCPY(d, m, sizeof(sp_digit) * 15);
- d[0]++;
- sp_384_rshift1_15(d, d);
- vt--;
- while ((v[0] & 1) == 0) {
- sp_384_rshift1_15(v, v);
- if (d[0] & 1)
- sp_384_add_15(d, d, m);
- sp_384_rshift1_15(d, d);
- vt--;
- }
- }
- else {
- XMEMSET(d+1, 0, sizeof(sp_digit) * (15 - 1));
- d[0] = 1;
- }
- while (ut > 1 && vt > 1) {
- if ((ut > vt) || ((ut == vt) &&
- (sp_384_cmp_15(u, v) >= 0))) {
- sp_384_sub_15(u, u, v);
- sp_384_norm_15(u);
- sp_384_sub_15(b, b, d);
- sp_384_norm_15(b);
- if (b[14] < 0)
- sp_384_add_15(b, b, m);
- sp_384_norm_15(b);
- ut = sp_384_num_bits_15(u);
- do {
- sp_384_rshift1_15(u, u);
- if (b[0] & 1)
- sp_384_add_15(b, b, m);
- sp_384_rshift1_15(b, b);
- ut--;
- }
- while (ut > 0 && (u[0] & 1) == 0);
- }
- else {
- sp_384_sub_15(v, v, u);
- sp_384_norm_15(v);
- sp_384_sub_15(d, d, b);
- sp_384_norm_15(d);
- if (d[14] < 0)
- sp_384_add_15(d, d, m);
- sp_384_norm_15(d);
- vt = sp_384_num_bits_15(v);
- do {
- sp_384_rshift1_15(v, v);
- if (d[0] & 1)
- sp_384_add_15(d, d, m);
- sp_384_rshift1_15(d, d);
- vt--;
- }
- while (vt > 0 && (v[0] & 1) == 0);
- }
- }
- if (ut == 1)
- XMEMCPY(r, b, sizeof(sp_digit) * 15);
- else
- XMEMCPY(r, d, sizeof(sp_digit) * 15);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (u != NULL)
- XFREE(u, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif /* WOLFSSL_SP_SMALL */
- /* Add point p1 into point p2. Handles p1 == p2 and result at infinity.
- *
- * p1 First point to add and holds result.
- * p2 Second point to add.
- * tmp Temporary storage for intermediate numbers.
- */
- static void sp_384_add_points_15(sp_point_384* p1, const sp_point_384* p2,
- sp_digit* tmp)
- {
- sp_384_proj_point_add_15(p1, p1, p2, tmp);
- if (sp_384_iszero_15(p1->z)) {
- if (sp_384_iszero_15(p1->x) && sp_384_iszero_15(p1->y)) {
- sp_384_proj_point_dbl_15(p1, p2, tmp);
- }
- else {
- /* Y ordinate is not used from here - don't set. */
- p1->x[0] = 0;
- p1->x[1] = 0;
- p1->x[2] = 0;
- p1->x[3] = 0;
- p1->x[4] = 0;
- p1->x[5] = 0;
- p1->x[6] = 0;
- p1->x[7] = 0;
- p1->x[8] = 0;
- p1->x[9] = 0;
- p1->x[10] = 0;
- p1->x[11] = 0;
- p1->x[12] = 0;
- p1->x[13] = 0;
- p1->x[14] = 0;
- XMEMCPY(p1->z, p384_norm_mod, sizeof(p384_norm_mod));
- }
- }
- }
- /* Calculate the verification point: [e/s]G + [r/s]Q
- *
- * p1 Calculated point.
- * p2 Public point and temporary.
- * s Second part of signature as a number.
- * u1 Temporary number.
- * u2 Temporary number.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_384_calc_vfy_point_15(sp_point_384* p1, sp_point_384* p2,
- sp_digit* s, sp_digit* u1, sp_digit* u2, sp_digit* tmp, void* heap)
- {
- int err;
- #ifndef WOLFSSL_SP_SMALL
- err = sp_384_mod_inv_15(s, s, p384_order);
- if (err == MP_OKAY)
- #endif /* !WOLFSSL_SP_SMALL */
- {
- sp_384_mul_15(s, s, p384_norm_order);
- err = sp_384_mod_15(s, s, p384_order);
- }
- if (err == MP_OKAY) {
- sp_384_norm_15(s);
- #ifdef WOLFSSL_SP_SMALL
- {
- sp_384_mont_inv_order_15(s, s, tmp);
- sp_384_mont_mul_order_15(u1, u1, s);
- sp_384_mont_mul_order_15(u2, u2, s);
- }
- #else
- {
- sp_384_mont_mul_order_15(u1, u1, s);
- sp_384_mont_mul_order_15(u2, u2, s);
- }
- #endif /* WOLFSSL_SP_SMALL */
- {
- err = sp_384_ecc_mulmod_base_15(p1, u1, 0, 0, heap);
- }
- }
- if ((err == MP_OKAY) && sp_384_iszero_15(p1->z)) {
- p1->infinity = 1;
- }
- if (err == MP_OKAY) {
- err = sp_384_ecc_mulmod_15(p2, p2, u2, 0, 0, heap);
- }
- if ((err == MP_OKAY) && sp_384_iszero_15(p2->z)) {
- p2->infinity = 1;
- }
- if (err == MP_OKAY) {
- sp_384_add_points_15(p1, p2, tmp);
- }
- return err;
- }
- #ifdef HAVE_ECC_VERIFY
- /* Verify the signature values with the hash and public key.
- * e = Truncate(hash, 384)
- * u1 = e/s mod order
- * u2 = r/s mod order
- * r == (u1.G + u2.Q)->x mod order
- * Optimization: Leave point in projective form.
- * (x, y, 1) == (x' / z'*z', y' / z'*z'*z', z' / z')
- * (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x'
- * The hash is truncated to the first 384 bits.
- *
- * hash Hash to sign.
- * hashLen Length of the hash data.
- * rng Random number generator.
- * priv Private part of key - scalar.
- * rm First part of result as an mp_int.
- * sm Sirst part of result as an mp_int.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_verify_384(const byte* hash, word32 hashLen, const mp_int* pX,
- const mp_int* pY, const mp_int* pZ, const mp_int* rm, const mp_int* sm,
- int* res, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* u1 = NULL;
- sp_point_384* p1 = NULL;
- #else
- sp_digit u1[18 * 15];
- sp_point_384 p1[2];
- #endif
- sp_digit* u2 = NULL;
- sp_digit* s = NULL;
- sp_digit* tmp = NULL;
- sp_point_384* p2 = NULL;
- sp_digit carry;
- sp_int32 c = 0;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- p1 = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (p1 == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- u1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 18 * 15, heap,
- DYNAMIC_TYPE_ECC);
- if (u1 == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- u2 = u1 + 2 * 15;
- s = u1 + 4 * 15;
- tmp = u1 + 6 * 15;
- p2 = p1 + 1;
- if (hashLen > 48U) {
- hashLen = 48U;
- }
- sp_384_from_bin(u1, 15, hash, (int)hashLen);
- sp_384_from_mp(u2, 15, rm);
- sp_384_from_mp(s, 15, sm);
- sp_384_from_mp(p2->x, 15, pX);
- sp_384_from_mp(p2->y, 15, pY);
- sp_384_from_mp(p2->z, 15, pZ);
- err = sp_384_calc_vfy_point_15(p1, p2, s, u1, u2, tmp, heap);
- }
- if (err == MP_OKAY) {
- /* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
- /* Reload r and convert to Montgomery form. */
- sp_384_from_mp(u2, 15, rm);
- err = sp_384_mod_mul_norm_15(u2, u2, p384_mod);
- }
- if (err == MP_OKAY) {
- /* u1 = r.z'.z' mod prime */
- sp_384_mont_sqr_15(p1->z, p1->z, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(u1, u2, p1->z, p384_mod, p384_mp_mod);
- *res = (int)(sp_384_cmp_15(p1->x, u1) == 0);
- if (*res == 0) {
- /* Reload r and add order. */
- sp_384_from_mp(u2, 15, rm);
- carry = sp_384_add_15(u2, u2, p384_order);
- /* Carry means result is greater than mod and is not valid. */
- if (carry == 0) {
- sp_384_norm_15(u2);
- /* Compare with mod and if greater or equal then not valid. */
- c = sp_384_cmp_15(u2, p384_mod);
- }
- }
- if ((*res == 0) && (c < 0)) {
- /* Convert to Montogomery form */
- err = sp_384_mod_mul_norm_15(u2, u2, p384_mod);
- if (err == MP_OKAY) {
- /* u1 = (r + 1*order).z'.z' mod prime */
- {
- sp_384_mont_mul_15(u1, u2, p1->z, p384_mod, p384_mp_mod);
- }
- *res = (sp_384_cmp_15(p1->x, u1) == 0);
- }
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (u1 != NULL)
- XFREE(u1, heap, DYNAMIC_TYPE_ECC);
- if (p1 != NULL)
- XFREE(p1, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_ecc_verify_384_ctx {
- int state;
- union {
- sp_384_ecc_mulmod_15_ctx mulmod_ctx;
- sp_384_mont_inv_order_15_ctx mont_inv_order_ctx;
- sp_384_proj_point_dbl_15_ctx dbl_ctx;
- sp_384_proj_point_add_15_ctx add_ctx;
- };
- sp_digit u1[2*15];
- sp_digit u2[2*15];
- sp_digit s[2*15];
- sp_digit tmp[2*15 * 6];
- sp_point_384 p1;
- sp_point_384 p2;
- } sp_ecc_verify_384_ctx;
- int sp_ecc_verify_384_nb(sp_ecc_ctx_t* sp_ctx, const byte* hash,
- word32 hashLen, const mp_int* pX, const mp_int* pY, const mp_int* pZ,
- const mp_int* rm, const mp_int* sm, int* res, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_ecc_verify_384_ctx* ctx = (sp_ecc_verify_384_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_ecc_verify_384_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0: /* INIT */
- if (hashLen > 48U) {
- hashLen = 48U;
- }
- sp_384_from_bin(ctx->u1, 15, hash, (int)hashLen);
- sp_384_from_mp(ctx->u2, 15, rm);
- sp_384_from_mp(ctx->s, 15, sm);
- sp_384_from_mp(ctx->p2.x, 15, pX);
- sp_384_from_mp(ctx->p2.y, 15, pY);
- sp_384_from_mp(ctx->p2.z, 15, pZ);
- ctx->state = 1;
- break;
- case 1: /* NORMS0 */
- sp_384_mul_15(ctx->s, ctx->s, p384_norm_order);
- err = sp_384_mod_15(ctx->s, ctx->s, p384_order);
- if (err == MP_OKAY)
- ctx->state = 2;
- break;
- case 2: /* NORMS1 */
- sp_384_norm_15(ctx->s);
- XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
- ctx->state = 3;
- break;
- case 3: /* NORMS2 */
- err = sp_384_mont_inv_order_15_nb((sp_ecc_ctx_t*)&ctx->mont_inv_order_ctx, ctx->s, ctx->s, ctx->tmp);
- if (err == MP_OKAY) {
- ctx->state = 4;
- }
- break;
- case 4: /* NORMS3 */
- sp_384_mont_mul_order_15(ctx->u1, ctx->u1, ctx->s);
- ctx->state = 5;
- break;
- case 5: /* NORMS4 */
- sp_384_mont_mul_order_15(ctx->u2, ctx->u2, ctx->s);
- XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
- ctx->state = 6;
- break;
- case 6: /* MULBASE */
- err = sp_384_ecc_mulmod_15_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx, &ctx->p1, &p384_base, ctx->u1, 0, 0, heap);
- if (err == MP_OKAY) {
- if (sp_384_iszero_15(ctx->p1.z)) {
- ctx->p1.infinity = 1;
- }
- XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
- ctx->state = 7;
- }
- break;
- case 7: /* MULMOD */
- err = sp_384_ecc_mulmod_15_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx, &ctx->p2, &ctx->p2, ctx->u2, 0, 0, heap);
- if (err == MP_OKAY) {
- if (sp_384_iszero_15(ctx->p2.z)) {
- ctx->p2.infinity = 1;
- }
- XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
- ctx->state = 8;
- }
- break;
- case 8: /* ADD */
- err = sp_384_proj_point_add_15_nb((sp_ecc_ctx_t*)&ctx->add_ctx, &ctx->p1, &ctx->p1, &ctx->p2, ctx->tmp);
- if (err == MP_OKAY)
- ctx->state = 9;
- break;
- case 9: /* MONT */
- /* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
- /* Reload r and convert to Montgomery form. */
- sp_384_from_mp(ctx->u2, 15, rm);
- err = sp_384_mod_mul_norm_15(ctx->u2, ctx->u2, p384_mod);
- if (err == MP_OKAY)
- ctx->state = 10;
- break;
- case 10: /* SQR */
- /* u1 = r.z'.z' mod prime */
- sp_384_mont_sqr_15(ctx->p1.z, ctx->p1.z, p384_mod, p384_mp_mod);
- ctx->state = 11;
- break;
- case 11: /* MUL */
- sp_384_mont_mul_15(ctx->u1, ctx->u2, ctx->p1.z, p384_mod, p384_mp_mod);
- ctx->state = 12;
- break;
- case 12: /* RES */
- {
- sp_int32 c = 0;
- err = MP_OKAY; /* math okay, now check result */
- *res = (int)(sp_384_cmp_15(ctx->p1.x, ctx->u1) == 0);
- if (*res == 0) {
- sp_digit carry;
- /* Reload r and add order. */
- sp_384_from_mp(ctx->u2, 15, rm);
- carry = sp_384_add_15(ctx->u2, ctx->u2, p384_order);
- /* Carry means result is greater than mod and is not valid. */
- if (carry == 0) {
- sp_384_norm_15(ctx->u2);
- /* Compare with mod and if greater or equal then not valid. */
- c = sp_384_cmp_15(ctx->u2, p384_mod);
- }
- }
- if ((*res == 0) && (c < 0)) {
- /* Convert to Montogomery form */
- err = sp_384_mod_mul_norm_15(ctx->u2, ctx->u2, p384_mod);
- if (err == MP_OKAY) {
- /* u1 = (r + 1*order).z'.z' mod prime */
- sp_384_mont_mul_15(ctx->u1, ctx->u2, ctx->p1.z, p384_mod,
- p384_mp_mod);
- *res = (int)(sp_384_cmp_15(ctx->p1.x, ctx->u1) == 0);
- }
- }
- break;
- }
- } /* switch */
- if (err == MP_OKAY && ctx->state != 12) {
- err = FP_WOULDBLOCK;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #endif /* HAVE_ECC_VERIFY */
- #ifdef HAVE_ECC_CHECK_KEY
- /* Check that the x and y ordinates are a valid point on the curve.
- *
- * point EC point.
- * heap Heap to use if dynamically allocating.
- * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
- * not on the curve and MP_OKAY otherwise.
- */
- static int sp_384_ecc_is_point_15(const sp_point_384* point,
- void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[15 * 4];
- #endif
- sp_digit* t2 = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15 * 4, heap, DYNAMIC_TYPE_ECC);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)heap;
- if (err == MP_OKAY) {
- t2 = t1 + 2 * 15;
- /* y^2 - x^3 - a.x = b */
- sp_384_sqr_15(t1, point->y);
- (void)sp_384_mod_15(t1, t1, p384_mod);
- sp_384_sqr_15(t2, point->x);
- (void)sp_384_mod_15(t2, t2, p384_mod);
- sp_384_mul_15(t2, t2, point->x);
- (void)sp_384_mod_15(t2, t2, p384_mod);
- sp_384_mont_sub_15(t1, t1, t2, p384_mod);
- /* y^2 - x^3 + 3.x = b, when a = -3 */
- sp_384_mont_add_15(t1, t1, point->x, p384_mod);
- sp_384_mont_add_15(t1, t1, point->x, p384_mod);
- sp_384_mont_add_15(t1, t1, point->x, p384_mod);
- if (sp_384_cmp_15(t1, p384_b) != 0) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Check that the x and y ordinates are a valid point on the curve.
- *
- * pX X ordinate of EC point.
- * pY Y ordinate of EC point.
- * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
- * not on the curve and MP_OKAY otherwise.
- */
- int sp_ecc_is_point_384(const mp_int* pX, const mp_int* pY)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_384* pub = NULL;
- #else
- sp_point_384 pub[1];
- #endif
- const byte one[1] = { 1 };
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- pub = (sp_point_384*)XMALLOC(sizeof(sp_point_384), NULL,
- DYNAMIC_TYPE_ECC);
- if (pub == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- sp_384_from_mp(pub->x, 15, pX);
- sp_384_from_mp(pub->y, 15, pY);
- sp_384_from_bin(pub->z, 15, one, (int)sizeof(one));
- err = sp_384_ecc_is_point_15(pub, NULL);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (pub != NULL)
- XFREE(pub, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Check that the private scalar generates the EC point (px, py), the point is
- * on the curve and the point has the correct order.
- *
- * pX X ordinate of EC point.
- * pY Y ordinate of EC point.
- * privm Private scalar that generates EC point.
- * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
- * not on the curve, ECC_INF_E if the point does not have the correct order,
- * ECC_PRIV_KEY_E when the private scalar doesn't generate the EC point and
- * MP_OKAY otherwise.
- */
- int sp_ecc_check_key_384(const mp_int* pX, const mp_int* pY,
- const mp_int* privm, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* priv = NULL;
- sp_point_384* pub = NULL;
- #else
- sp_digit priv[15];
- sp_point_384 pub[2];
- #endif
- sp_point_384* p = NULL;
- const byte one[1] = { 1 };
- int err = MP_OKAY;
- /* Quick check the lengs of public key ordinates and private key are in
- * range. Proper check later.
- */
- if (((mp_count_bits(pX) > 384) ||
- (mp_count_bits(pY) > 384) ||
- ((privm != NULL) && (mp_count_bits(privm) > 384)))) {
- err = ECC_OUT_OF_RANGE_E;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- pub = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (pub == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY && privm) {
- priv = (sp_digit*)XMALLOC(sizeof(sp_digit) * 15, heap,
- DYNAMIC_TYPE_ECC);
- if (priv == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = pub + 1;
- sp_384_from_mp(pub->x, 15, pX);
- sp_384_from_mp(pub->y, 15, pY);
- sp_384_from_bin(pub->z, 15, one, (int)sizeof(one));
- if (privm)
- sp_384_from_mp(priv, 15, privm);
- /* Check point at infinitiy. */
- if ((sp_384_iszero_15(pub->x) != 0) &&
- (sp_384_iszero_15(pub->y) != 0)) {
- err = ECC_INF_E;
- }
- }
- /* Check range of X and Y */
- if ((err == MP_OKAY) &&
- ((sp_384_cmp_15(pub->x, p384_mod) >= 0) ||
- (sp_384_cmp_15(pub->y, p384_mod) >= 0))) {
- err = ECC_OUT_OF_RANGE_E;
- }
- if (err == MP_OKAY) {
- /* Check point is on curve */
- err = sp_384_ecc_is_point_15(pub, heap);
- }
- if (err == MP_OKAY) {
- /* Point * order = infinity */
- err = sp_384_ecc_mulmod_15(p, pub, p384_order, 1, 1, heap);
- }
- /* Check result is infinity */
- if ((err == MP_OKAY) && ((sp_384_iszero_15(p->x) == 0) ||
- (sp_384_iszero_15(p->y) == 0))) {
- err = ECC_INF_E;
- }
- if (privm) {
- if (err == MP_OKAY) {
- /* Base * private = point */
- err = sp_384_ecc_mulmod_base_15(p, priv, 1, 1, heap);
- }
- /* Check result is public key */
- if ((err == MP_OKAY) &&
- ((sp_384_cmp_15(p->x, pub->x) != 0) ||
- (sp_384_cmp_15(p->y, pub->y) != 0))) {
- err = ECC_PRIV_KEY_E;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (pub != NULL)
- XFREE(pub, heap, DYNAMIC_TYPE_ECC);
- if (priv != NULL)
- XFREE(priv, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif
- #ifdef WOLFSSL_PUBLIC_ECC_ADD_DBL
- /* Add two projective EC points together.
- * (pX, pY, pZ) + (qX, qY, qZ) = (rX, rY, rZ)
- *
- * pX First EC point's X ordinate.
- * pY First EC point's Y ordinate.
- * pZ First EC point's Z ordinate.
- * qX Second EC point's X ordinate.
- * qY Second EC point's Y ordinate.
- * qZ Second EC point's Z ordinate.
- * rX Resultant EC point's X ordinate.
- * rY Resultant EC point's Y ordinate.
- * rZ Resultant EC point's Z ordinate.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- int sp_ecc_proj_add_point_384(mp_int* pX, mp_int* pY, mp_int* pZ,
- mp_int* qX, mp_int* qY, mp_int* qZ,
- mp_int* rX, mp_int* rY, mp_int* rZ)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* tmp = NULL;
- sp_point_384* p = NULL;
- #else
- sp_digit tmp[2 * 15 * 6];
- sp_point_384 p[2];
- #endif
- sp_point_384* q = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- p = (sp_point_384*)XMALLOC(sizeof(sp_point_384) * 2, NULL,
- DYNAMIC_TYPE_ECC);
- if (p == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 6, NULL,
- DYNAMIC_TYPE_ECC);
- if (tmp == NULL) {
- err = MEMORY_E;
- }
- }
- #endif
- if (err == MP_OKAY) {
- q = p + 1;
- sp_384_from_mp(p->x, 15, pX);
- sp_384_from_mp(p->y, 15, pY);
- sp_384_from_mp(p->z, 15, pZ);
- sp_384_from_mp(q->x, 15, qX);
- sp_384_from_mp(q->y, 15, qY);
- sp_384_from_mp(q->z, 15, qZ);
- p->infinity = sp_384_iszero_15(p->x) &
- sp_384_iszero_15(p->y);
- q->infinity = sp_384_iszero_15(q->x) &
- sp_384_iszero_15(q->y);
- sp_384_proj_point_add_15(p, p, q, tmp);
- }
- if (err == MP_OKAY) {
- err = sp_384_to_mp(p->x, rX);
- }
- if (err == MP_OKAY) {
- err = sp_384_to_mp(p->y, rY);
- }
- if (err == MP_OKAY) {
- err = sp_384_to_mp(p->z, rZ);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (tmp != NULL)
- XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
- if (p != NULL)
- XFREE(p, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Double a projective EC point.
- * (pX, pY, pZ) + (pX, pY, pZ) = (rX, rY, rZ)
- *
- * pX EC point's X ordinate.
- * pY EC point's Y ordinate.
- * pZ EC point's Z ordinate.
- * rX Resultant EC point's X ordinate.
- * rY Resultant EC point's Y ordinate.
- * rZ Resultant EC point's Z ordinate.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- int sp_ecc_proj_dbl_point_384(mp_int* pX, mp_int* pY, mp_int* pZ,
- mp_int* rX, mp_int* rY, mp_int* rZ)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* tmp = NULL;
- sp_point_384* p = NULL;
- #else
- sp_digit tmp[2 * 15 * 2];
- sp_point_384 p[1];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- p = (sp_point_384*)XMALLOC(sizeof(sp_point_384), NULL,
- DYNAMIC_TYPE_ECC);
- if (p == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 2, NULL,
- DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_384_from_mp(p->x, 15, pX);
- sp_384_from_mp(p->y, 15, pY);
- sp_384_from_mp(p->z, 15, pZ);
- p->infinity = sp_384_iszero_15(p->x) &
- sp_384_iszero_15(p->y);
- sp_384_proj_point_dbl_15(p, p, tmp);
- }
- if (err == MP_OKAY) {
- err = sp_384_to_mp(p->x, rX);
- }
- if (err == MP_OKAY) {
- err = sp_384_to_mp(p->y, rY);
- }
- if (err == MP_OKAY) {
- err = sp_384_to_mp(p->z, rZ);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (tmp != NULL)
- XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
- if (p != NULL)
- XFREE(p, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Map a projective EC point to affine in place.
- * pZ will be one.
- *
- * pX EC point's X ordinate.
- * pY EC point's Y ordinate.
- * pZ EC point's Z ordinate.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- int sp_ecc_map_384(mp_int* pX, mp_int* pY, mp_int* pZ)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* tmp = NULL;
- sp_point_384* p = NULL;
- #else
- sp_digit tmp[2 * 15 * 6];
- sp_point_384 p[1];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- p = (sp_point_384*)XMALLOC(sizeof(sp_point_384), NULL,
- DYNAMIC_TYPE_ECC);
- if (p == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 15 * 6, NULL,
- DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_384_from_mp(p->x, 15, pX);
- sp_384_from_mp(p->y, 15, pY);
- sp_384_from_mp(p->z, 15, pZ);
- p->infinity = sp_384_iszero_15(p->x) &
- sp_384_iszero_15(p->y);
- sp_384_map_15(p, p, tmp);
- }
- if (err == MP_OKAY) {
- err = sp_384_to_mp(p->x, pX);
- }
- if (err == MP_OKAY) {
- err = sp_384_to_mp(p->y, pY);
- }
- if (err == MP_OKAY) {
- err = sp_384_to_mp(p->z, pZ);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (tmp != NULL)
- XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
- if (p != NULL)
- XFREE(p, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif /* WOLFSSL_PUBLIC_ECC_ADD_DBL */
- #ifdef HAVE_COMP_KEY
- /* Find the square root of a number mod the prime of the curve.
- *
- * y The number to operate on and the result.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- static int sp_384_mont_sqrt_15(sp_digit* y)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[5 * 2 * 15];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* t3 = NULL;
- sp_digit* t4 = NULL;
- sp_digit* t5 = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 5 * 2 * 15, NULL, DYNAMIC_TYPE_ECC);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- t2 = t1 + 2 * 15;
- t3 = t1 + 4 * 15;
- t4 = t1 + 6 * 15;
- t5 = t1 + 8 * 15;
- {
- /* t2 = y ^ 0x2 */
- sp_384_mont_sqr_15(t2, y, p384_mod, p384_mp_mod);
- /* t1 = y ^ 0x3 */
- sp_384_mont_mul_15(t1, t2, y, p384_mod, p384_mp_mod);
- /* t5 = y ^ 0xc */
- sp_384_mont_sqr_n_15(t5, t1, 2, p384_mod, p384_mp_mod);
- /* t1 = y ^ 0xf */
- sp_384_mont_mul_15(t1, t1, t5, p384_mod, p384_mp_mod);
- /* t2 = y ^ 0x1e */
- sp_384_mont_sqr_15(t2, t1, p384_mod, p384_mp_mod);
- /* t3 = y ^ 0x1f */
- sp_384_mont_mul_15(t3, t2, y, p384_mod, p384_mp_mod);
- /* t2 = y ^ 0x3e0 */
- sp_384_mont_sqr_n_15(t2, t3, 5, p384_mod, p384_mp_mod);
- /* t1 = y ^ 0x3ff */
- sp_384_mont_mul_15(t1, t3, t2, p384_mod, p384_mp_mod);
- /* t2 = y ^ 0x7fe0 */
- sp_384_mont_sqr_n_15(t2, t1, 5, p384_mod, p384_mp_mod);
- /* t3 = y ^ 0x7fff */
- sp_384_mont_mul_15(t3, t3, t2, p384_mod, p384_mp_mod);
- /* t2 = y ^ 0x3fff800 */
- sp_384_mont_sqr_n_15(t2, t3, 15, p384_mod, p384_mp_mod);
- /* t4 = y ^ 0x3ffffff */
- sp_384_mont_mul_15(t4, t3, t2, p384_mod, p384_mp_mod);
- /* t2 = y ^ 0xffffffc000000 */
- sp_384_mont_sqr_n_15(t2, t4, 30, p384_mod, p384_mp_mod);
- /* t1 = y ^ 0xfffffffffffff */
- sp_384_mont_mul_15(t1, t4, t2, p384_mod, p384_mp_mod);
- /* t2 = y ^ 0xfffffffffffffff000000000000000 */
- sp_384_mont_sqr_n_15(t2, t1, 60, p384_mod, p384_mp_mod);
- /* t1 = y ^ 0xffffffffffffffffffffffffffffff */
- sp_384_mont_mul_15(t1, t1, t2, p384_mod, p384_mp_mod);
- /* t2 = y ^ 0xffffffffffffffffffffffffffffff000000000000000000000000000000 */
- sp_384_mont_sqr_n_15(t2, t1, 120, p384_mod, p384_mp_mod);
- /* t1 = y ^ 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
- sp_384_mont_mul_15(t1, t1, t2, p384_mod, p384_mp_mod);
- /* t2 = y ^ 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8000 */
- sp_384_mont_sqr_n_15(t2, t1, 15, p384_mod, p384_mp_mod);
- /* t1 = y ^ 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
- sp_384_mont_mul_15(t1, t3, t2, p384_mod, p384_mp_mod);
- /* t2 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80000000 */
- sp_384_mont_sqr_n_15(t2, t1, 31, p384_mod, p384_mp_mod);
- /* t1 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffff */
- sp_384_mont_mul_15(t1, t4, t2, p384_mod, p384_mp_mod);
- /* t2 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffff0 */
- sp_384_mont_sqr_n_15(t2, t1, 4, p384_mod, p384_mp_mod);
- /* t1 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffffc */
- sp_384_mont_mul_15(t1, t5, t2, p384_mod, p384_mp_mod);
- /* t2 = y ^ 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000 */
- sp_384_mont_sqr_n_15(t2, t1, 62, p384_mod, p384_mp_mod);
- /* t1 = y ^ 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000001 */
- sp_384_mont_mul_15(t1, y, t2, p384_mod, p384_mp_mod);
- /* t2 = y ^ 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffffc00000000000000040000000 */
- sp_384_mont_sqr_n_15(y, t1, 30, p384_mod, p384_mp_mod);
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Uncompress the point given the X ordinate.
- *
- * xm X ordinate.
- * odd Whether the Y ordinate is odd.
- * ym Calculated Y ordinate.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- int sp_ecc_uncompress_384(mp_int* xm, int odd, mp_int* ym)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* x = NULL;
- #else
- sp_digit x[4 * 15];
- #endif
- sp_digit* y = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- x = (sp_digit*)XMALLOC(sizeof(sp_digit) * 4 * 15, NULL, DYNAMIC_TYPE_ECC);
- if (x == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- y = x + 2 * 15;
- sp_384_from_mp(x, 15, xm);
- err = sp_384_mod_mul_norm_15(x, x, p384_mod);
- }
- if (err == MP_OKAY) {
- /* y = x^3 */
- {
- sp_384_mont_sqr_15(y, x, p384_mod, p384_mp_mod);
- sp_384_mont_mul_15(y, y, x, p384_mod, p384_mp_mod);
- }
- /* y = x^3 - 3x */
- sp_384_mont_sub_15(y, y, x, p384_mod);
- sp_384_mont_sub_15(y, y, x, p384_mod);
- sp_384_mont_sub_15(y, y, x, p384_mod);
- /* y = x^3 - 3x + b */
- err = sp_384_mod_mul_norm_15(x, p384_b, p384_mod);
- }
- if (err == MP_OKAY) {
- sp_384_mont_add_15(y, y, x, p384_mod);
- /* y = sqrt(x^3 - 3x + b) */
- err = sp_384_mont_sqrt_15(y);
- }
- if (err == MP_OKAY) {
- XMEMSET(y + 15, 0, 15U * sizeof(sp_digit));
- sp_384_mont_reduce_15(y, p384_mod, p384_mp_mod);
- if ((((word32)y[0] ^ (word32)odd) & 1U) != 0U) {
- sp_384_mont_sub_15(y, p384_mod, y, p384_mod);
- }
- err = sp_384_to_mp(y, ym);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (x != NULL)
- XFREE(x, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif
- #endif /* WOLFSSL_SP_384 */
- #ifdef WOLFSSL_SP_521
- /* Point structure to use. */
- typedef struct sp_point_521 {
- /* X ordinate of point. */
- sp_digit x[2 * 21];
- /* Y ordinate of point. */
- sp_digit y[2 * 21];
- /* Z ordinate of point. */
- sp_digit z[2 * 21];
- /* Indicates point is at infinity. */
- int infinity;
- } sp_point_521;
- /* The modulus (prime) of the curve P521. */
- static const sp_digit p521_mod[21] = {
- 0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,
- 0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,
- 0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x01fffff
- };
- /* The Montgomery normalizer for modulus of the curve P521. */
- static const sp_digit p521_norm_mod[21] = {
- 0x0000001,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000
- };
- /* The Montgomery multiplier for modulus of the curve P521. */
- static sp_digit p521_mp_mod = 0x000001;
- #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
- defined(HAVE_ECC_VERIFY)
- /* The order of the curve P521. */
- static const sp_digit p521_order[21] = {
- 0x1386409,0x1db8f48,0x1ebaedb,0x1113388,0x1bb5c9b,0x04d2e81,0x00523dc,
- 0x0d6ff98,0x1bf2f96,0x0c343c1,0x1fffe94,0x1ffffff,0x1ffffff,0x1ffffff,
- 0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x01fffff
- };
- #endif
- /* The order of the curve P521 minus 2. */
- static const sp_digit p521_order2[21] = {
- 0x1386407,0x1db8f48,0x1ebaedb,0x1113388,0x1bb5c9b,0x04d2e81,0x00523dc,
- 0x0d6ff98,0x1bf2f96,0x0c343c1,0x1fffe94,0x1ffffff,0x1ffffff,0x1ffffff,
- 0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x1ffffff,0x01fffff
- };
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- /* The Montgomery normalizer for order of the curve P521. */
- static const sp_digit p521_norm_order[21] = {
- 0x0c79bf7,0x02470b7,0x0145124,0x0eecc77,0x044a364,0x1b2d17e,0x1fadc23,
- 0x1290067,0x040d069,0x13cbc3e,0x000016b,0x0000000,0x0000000,0x0000000,
- 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000
- };
- #endif
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- /* The Montgomery multiplier for order of the curve P521. */
- static sp_digit p521_mp_order = 0x1a995c7;
- #endif
- /* The base point of curve P521. */
- static const sp_point_521 p521_base = {
- /* X ordinate */
- {
- 0x0e5bd66,0x13f18e1,0x0a6fe5f,0x030ad48,0x1348b3c,0x1fd46f1,0x1049e8b,
- 0x051fc3b,0x1efe759,0x0a5af3b,0x14f6ea8,0x1ec0d69,0x01f828a,0x029fda9,
- 0x19204e4,0x1688538,0x1662395,0x0cf1f65,0x1013a73,0x1c0d6e0,0x00c6858,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0
- },
- /* Y ordinate */
- {
- 0x1d16650,0x14a3b4f,0x090222f,0x0d44e58,0x153c708,0x1683b09,0x0e404fe,
- 0x0818aa1,0x15ef426,0x1f7394c,0x1998b25,0x1a2e4e7,0x0817afb,0x0bcda23,
- 0x1d51125,0x037b331,0x1b42c7d,0x02e452f,0x08ef001,0x12d4f13,0x0118392,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0
- },
- /* Z ordinate */
- {
- 0x0000001,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0
- },
- /* infinity */
- 0
- };
- #if defined(HAVE_ECC_CHECK_KEY) || defined(HAVE_COMP_KEY)
- static const sp_digit p521_b[21] = {
- 0x1503f00,0x08fea35,0x13c7bd1,0x107a586,0x1573df8,0x18df839,0x102f4ee,
- 0x0f62ca5,0x1ec7e93,0x10c9ca8,0x0427855,0x13231de,0x13b8b48,0x0cd98af,
- 0x169c96e,0x081dd45,0x1a0b685,0x1c94d10,0x1872687,0x1d72c31,0x0051953
- };
- #endif
- #ifdef WOLFSSL_SP_SMALL
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_521_mul_21(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 lo;
- c = ((sp_uint64)a[20]) * b[20];
- r[41] = (sp_digit)(c >> 25);
- c &= 0x1ffffff;
- for (k = 39; k >= 0; k--) {
- if (k >= 21) {
- i = k - 20;
- imax = 20;
- }
- else {
- i = 0;
- imax = k;
- }
- lo = 0;
- for (; i <= imax; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 25;
- r[k + 2] += (sp_digit)(c >> 25);
- r[k + 1] = (sp_digit)(c & 0x1ffffff);
- c = lo & 0x1ffffff;
- }
- r[0] = (sp_digit)c;
- }
- #else
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_521_mul_21(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- int j;
- sp_int64 t[42];
- XMEMSET(t, 0, sizeof(t));
- for (i=0; i<21; i++) {
- for (j=0; j<21; j++) {
- t[i+j] += ((sp_int64)a[i]) * b[j];
- }
- }
- for (i=0; i<41; i++) {
- r[i] = t[i] & 0x1ffffff;
- t[i+1] += t[i] >> 25;
- }
- r[41] = (sp_digit)t[41];
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_521_sqr_21(sp_digit* r, const sp_digit* a)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 t;
- c = ((sp_uint64)a[20]) * a[20];
- r[41] = (sp_digit)(c >> 25);
- c = (c & 0x1ffffff) << 25;
- for (k = 39; k >= 0; k--) {
- i = (k + 1) / 2;
- if ((k & 1) == 0) {
- c += ((sp_uint64)a[i]) * a[i];
- i++;
- }
- if (k < 20) {
- imax = k;
- }
- else {
- imax = 20;
- }
- t = 0;
- for (; i <= imax; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- r[k + 2] += (sp_digit) (c >> 50);
- r[k + 1] = (sp_digit)((c >> 25) & 0x1ffffff);
- c = (c & 0x1ffffff) << 25;
- }
- r[0] = (sp_digit)(c >> 25);
- }
- #else
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_521_sqr_21(sp_digit* r, const sp_digit* a)
- {
- int i;
- int j;
- sp_int64 t[42];
- XMEMSET(t, 0, sizeof(t));
- for (i=0; i<21; i++) {
- for (j=0; j<i; j++) {
- t[i+j] += (((sp_int64)a[i]) * a[j]) * 2;
- }
- t[i+i] += ((sp_int64)a[i]) * a[i];
- }
- for (i=0; i<41; i++) {
- r[i] = t[i] & 0x1ffffff;
- t[i+1] += t[i] >> 25;
- }
- r[41] = (sp_digit)t[41];
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_521_add_21(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 21; i++) {
- r[i] = a[i] + b[i];
- }
- return 0;
- }
- #else
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_521_add_21(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 16; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- r[16] = a[16] + b[16];
- r[17] = a[17] + b[17];
- r[18] = a[18] + b[18];
- r[19] = a[19] + b[19];
- r[20] = a[20] + b[20];
- return 0;
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_521_sub_21(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 21; i++) {
- r[i] = a[i] - b[i];
- }
- return 0;
- }
- #else
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_521_sub_21(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 16; i += 8) {
- r[i + 0] = a[i + 0] - b[i + 0];
- r[i + 1] = a[i + 1] - b[i + 1];
- r[i + 2] = a[i + 2] - b[i + 2];
- r[i + 3] = a[i + 3] - b[i + 3];
- r[i + 4] = a[i + 4] - b[i + 4];
- r[i + 5] = a[i + 5] - b[i + 5];
- r[i + 6] = a[i + 6] - b[i + 6];
- r[i + 7] = a[i + 7] - b[i + 7];
- }
- r[16] = a[16] - b[16];
- r[17] = a[17] - b[17];
- r[18] = a[18] - b[18];
- r[19] = a[19] - b[19];
- r[20] = a[20] - b[20];
- return 0;
- }
- #endif /* WOLFSSL_SP_SMALL */
- /* Convert an mp_int to an array of sp_digit.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a A multi-precision integer.
- */
- static void sp_521_from_mp(sp_digit* r, int size, const mp_int* a)
- {
- #if DIGIT_BIT == 25
- int i;
- sp_digit j = (sp_digit)0 - (sp_digit)a->used;
- int o = 0;
- for (i = 0; i < size; i++) {
- sp_digit mask = (sp_digit)0 - (j >> 24);
- r[i] = a->dp[o] & mask;
- j++;
- o += (int)(j >> 24);
- }
- #elif DIGIT_BIT > 25
- unsigned int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i] << s);
- r[j] &= 0x1ffffff;
- s = 25U - s;
- if (j + 1 >= size) {
- break;
- }
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- while ((s + 25U) <= (word32)DIGIT_BIT) {
- s += 25U;
- r[j] &= 0x1ffffff;
- if (j + 1 >= size) {
- break;
- }
- if (s < (word32)DIGIT_BIT) {
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- }
- else {
- r[++j] = (sp_digit)0;
- }
- }
- s = (word32)DIGIT_BIT - s;
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #else
- unsigned int i;
- int j = 0;
- int s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i]) << s;
- if (s + DIGIT_BIT >= 25) {
- r[j] &= 0x1ffffff;
- if (j + 1 >= size) {
- break;
- }
- s = 25 - s;
- if (s == DIGIT_BIT) {
- r[++j] = 0;
- s = 0;
- }
- else {
- r[++j] = a->dp[i] >> s;
- s = DIGIT_BIT - s;
- }
- }
- else {
- s += DIGIT_BIT;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #endif
- }
- /* Convert a point of type ecc_point to type sp_point_521.
- *
- * p Point of type sp_point_521 (result).
- * pm Point of type ecc_point.
- */
- static void sp_521_point_from_ecc_point_21(sp_point_521* p,
- const ecc_point* pm)
- {
- XMEMSET(p->x, 0, sizeof(p->x));
- XMEMSET(p->y, 0, sizeof(p->y));
- XMEMSET(p->z, 0, sizeof(p->z));
- sp_521_from_mp(p->x, 21, pm->x);
- sp_521_from_mp(p->y, 21, pm->y);
- sp_521_from_mp(p->z, 21, pm->z);
- p->infinity = 0;
- }
- /* Convert an array of sp_digit to an mp_int.
- *
- * a A single precision integer.
- * r A multi-precision integer.
- */
- static int sp_521_to_mp(const sp_digit* a, mp_int* r)
- {
- int err;
- err = mp_grow(r, (521 + DIGIT_BIT - 1) / DIGIT_BIT);
- if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
- #if DIGIT_BIT == 25
- XMEMCPY(r->dp, a, sizeof(sp_digit) * 21);
- r->used = 21;
- mp_clamp(r);
- #elif DIGIT_BIT < 25
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 21; i++) {
- r->dp[j] |= (mp_digit)(a[i] << s);
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- s = DIGIT_BIT - s;
- r->dp[++j] = (mp_digit)(a[i] >> s);
- while (s + DIGIT_BIT <= 25) {
- s += DIGIT_BIT;
- r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- if (s == SP_WORD_SIZE) {
- r->dp[j] = 0;
- }
- else {
- r->dp[j] = (mp_digit)(a[i] >> s);
- }
- }
- s = 25 - s;
- }
- r->used = (521 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #else
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 21; i++) {
- r->dp[j] |= ((mp_digit)a[i]) << s;
- if (s + 25 >= DIGIT_BIT) {
- #if DIGIT_BIT != 32 && DIGIT_BIT != 64
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- #endif
- s = DIGIT_BIT - s;
- r->dp[++j] = a[i] >> s;
- s = 25 - s;
- }
- else {
- s += 25;
- }
- }
- r->used = (521 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #endif
- }
- return err;
- }
- /* Convert a point of type sp_point_521 to type ecc_point.
- *
- * p Point of type sp_point_521.
- * pm Point of type ecc_point (result).
- * returns MEMORY_E when allocation of memory in ecc_point fails otherwise
- * MP_OKAY.
- */
- static int sp_521_point_to_ecc_point_21(const sp_point_521* p, ecc_point* pm)
- {
- int err;
- err = sp_521_to_mp(p->x, pm->x);
- if (err == MP_OKAY) {
- err = sp_521_to_mp(p->y, pm->y);
- }
- if (err == MP_OKAY) {
- err = sp_521_to_mp(p->z, pm->z);
- }
- return err;
- }
- /* Normalize the values in each word to 25 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_521_norm_21(sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 20; i++) {
- a[i+1] += a[i] >> 25;
- a[i] &= 0x1ffffff;
- }
- #else
- int i;
- for (i = 0; i < 16; i += 8) {
- a[i+1] += a[i+0] >> 25; a[i+0] &= 0x1ffffff;
- a[i+2] += a[i+1] >> 25; a[i+1] &= 0x1ffffff;
- a[i+3] += a[i+2] >> 25; a[i+2] &= 0x1ffffff;
- a[i+4] += a[i+3] >> 25; a[i+3] &= 0x1ffffff;
- a[i+5] += a[i+4] >> 25; a[i+4] &= 0x1ffffff;
- a[i+6] += a[i+5] >> 25; a[i+5] &= 0x1ffffff;
- a[i+7] += a[i+6] >> 25; a[i+6] &= 0x1ffffff;
- a[i+8] += a[i+7] >> 25; a[i+7] &= 0x1ffffff;
- }
- a[17] += a[16] >> 25; a[16] &= 0x1ffffff;
- a[18] += a[17] >> 25; a[17] &= 0x1ffffff;
- a[19] += a[18] >> 25; a[18] &= 0x1ffffff;
- a[20] += a[19] >> 25; a[19] &= 0x1ffffff;
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Reduce the number back to 521 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_521_mont_reduce_21(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- (void)m;
- (void)mp;
- for (i = 0; i < 20; i++) {
- a[i] += ((a[20 + i] >> 21) + (a[20 + i + 1] << 4)) & 0x1ffffff;
- }
- a[20] &= 0x1fffff;
- a[20] += ((a[40] >> 21) + (a[41] << 4)) & 0x1ffffff;
- sp_521_norm_21(a);
- a[0] += a[20] >> 21;
- a[20] &= 0x1fffff;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_521_cmp_21(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i=20; i>=0; i--) {
- r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 24);
- }
- #else
- int i;
- r |= (a[20] - b[20]) & (0 - (sp_digit)1);
- r |= (a[19] - b[19]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[18] - b[18]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[17] - b[17]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[16] - b[16]) & ~(((sp_digit)0 - r) >> 24);
- for (i = 8; i >= 0; i -= 8) {
- r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 24);
- }
- #endif /* WOLFSSL_SP_SMALL */
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_521_cond_sub_21(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 21; i++) {
- r[i] = a[i] - (b[i] & m);
- }
- #else
- int i;
- for (i = 0; i < 16; i += 8) {
- r[i + 0] = a[i + 0] - (b[i + 0] & m);
- r[i + 1] = a[i + 1] - (b[i + 1] & m);
- r[i + 2] = a[i + 2] - (b[i + 2] & m);
- r[i + 3] = a[i + 3] - (b[i + 3] & m);
- r[i + 4] = a[i + 4] - (b[i + 4] & m);
- r[i + 5] = a[i + 5] - (b[i + 5] & m);
- r[i + 6] = a[i + 6] - (b[i + 6] & m);
- r[i + 7] = a[i + 7] - (b[i + 7] & m);
- }
- r[16] = a[16] - (b[16] & m);
- r[17] = a[17] - (b[17] & m);
- r[18] = a[18] - (b[18] & m);
- r[19] = a[19] - (b[19] & m);
- r[20] = a[20] - (b[20] & m);
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_521_mul_add_21(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t[4];
- int i;
- t[0] = 0;
- for (i = 0; i < 20; i += 4) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- r[i+0] = t[0] & 0x1ffffff;
- t[1] += t[0] >> 25;
- r[i+1] = t[1] & 0x1ffffff;
- t[2] += t[1] >> 25;
- r[i+2] = t[2] & 0x1ffffff;
- t[3] += t[2] >> 25;
- r[i+3] = t[3] & 0x1ffffff;
- t[0] = t[3] >> 25;
- }
- t[0] += (tb * a[20]) + r[20];
- r[20] = t[0] & 0x1ffffff;
- r[21] += (sp_digit)(t[0] >> 25);
- #else
- sp_int64 tb = b;
- sp_int64 t[8];
- int i;
- t[0] = tb * a[0]; r[0] += (sp_digit)(t[0] & 0x1ffffff);
- for (i = 0; i < 16; i += 8) {
- t[1] = tb * a[i+1];
- r[i+1] += (sp_digit)((t[0] >> 25) + (t[1] & 0x1ffffff));
- t[2] = tb * a[i+2];
- r[i+2] += (sp_digit)((t[1] >> 25) + (t[2] & 0x1ffffff));
- t[3] = tb * a[i+3];
- r[i+3] += (sp_digit)((t[2] >> 25) + (t[3] & 0x1ffffff));
- t[4] = tb * a[i+4];
- r[i+4] += (sp_digit)((t[3] >> 25) + (t[4] & 0x1ffffff));
- t[5] = tb * a[i+5];
- r[i+5] += (sp_digit)((t[4] >> 25) + (t[5] & 0x1ffffff));
- t[6] = tb * a[i+6];
- r[i+6] += (sp_digit)((t[5] >> 25) + (t[6] & 0x1ffffff));
- t[7] = tb * a[i+7];
- r[i+7] += (sp_digit)((t[6] >> 25) + (t[7] & 0x1ffffff));
- t[0] = tb * a[i+8];
- r[i+8] += (sp_digit)((t[7] >> 25) + (t[0] & 0x1ffffff));
- }
- t[1] = tb * a[17];
- r[17] += (sp_digit)((t[0] >> 25) + (t[1] & 0x1ffffff));
- t[2] = tb * a[18];
- r[18] += (sp_digit)((t[1] >> 25) + (t[2] & 0x1ffffff));
- t[3] = tb * a[19];
- r[19] += (sp_digit)((t[2] >> 25) + (t[3] & 0x1ffffff));
- t[4] = tb * a[20];
- r[20] += (sp_digit)((t[3] >> 25) + (t[4] & 0x1ffffff));
- r[21] += (sp_digit)(t[4] >> 25);
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Shift the result in the high 521 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_521_mont_shift_21(sp_digit* r, const sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- sp_digit n;
- sp_digit s;
- s = a[21];
- n = a[20] >> 21;
- for (i = 0; i < 20; i++) {
- n += (s & 0x1ffffff) << 4;
- r[i] = n & 0x1ffffff;
- n >>= 25;
- s = a[22 + i] + (s >> 25);
- }
- n += s << 4;
- r[20] = n;
- #else
- sp_digit n;
- sp_digit s;
- int i;
- s = a[21]; n = a[20] >> 21;
- for (i = 0; i < 16; i += 8) {
- n += (s & 0x1ffffff) << 4; r[i+0] = n & 0x1ffffff;
- n >>= 25; s = a[i+22] + (s >> 25);
- n += (s & 0x1ffffff) << 4; r[i+1] = n & 0x1ffffff;
- n >>= 25; s = a[i+23] + (s >> 25);
- n += (s & 0x1ffffff) << 4; r[i+2] = n & 0x1ffffff;
- n >>= 25; s = a[i+24] + (s >> 25);
- n += (s & 0x1ffffff) << 4; r[i+3] = n & 0x1ffffff;
- n >>= 25; s = a[i+25] + (s >> 25);
- n += (s & 0x1ffffff) << 4; r[i+4] = n & 0x1ffffff;
- n >>= 25; s = a[i+26] + (s >> 25);
- n += (s & 0x1ffffff) << 4; r[i+5] = n & 0x1ffffff;
- n >>= 25; s = a[i+27] + (s >> 25);
- n += (s & 0x1ffffff) << 4; r[i+6] = n & 0x1ffffff;
- n >>= 25; s = a[i+28] + (s >> 25);
- n += (s & 0x1ffffff) << 4; r[i+7] = n & 0x1ffffff;
- n >>= 25; s = a[i+29] + (s >> 25);
- }
- n += (s & 0x1ffffff) << 4; r[16] = n & 0x1ffffff;
- n >>= 25; s = a[38] + (s >> 25);
- n += (s & 0x1ffffff) << 4; r[17] = n & 0x1ffffff;
- n >>= 25; s = a[39] + (s >> 25);
- n += (s & 0x1ffffff) << 4; r[18] = n & 0x1ffffff;
- n >>= 25; s = a[40] + (s >> 25);
- n += (s & 0x1ffffff) << 4; r[19] = n & 0x1ffffff;
- n >>= 25; s = a[41] + (s >> 25);
- n += s << 4; r[20] = n;
- #endif /* WOLFSSL_SP_SMALL */
- XMEMSET(&r[21], 0, sizeof(*r) * 21U);
- }
- /* Reduce the number back to 521 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_521_mont_reduce_order_21(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_521_norm_21(a + 21);
- for (i=0; i<20; i++) {
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1ffffff;
- sp_521_mul_add_21(a+i, m, mu);
- a[i+1] += a[i] >> 25;
- }
- mu = ((sp_uint32)a[i] * (sp_uint32)mp) & 0x1fffffL;
- sp_521_mul_add_21(a+i, m, mu);
- a[i+1] += a[i] >> 25;
- a[i] &= 0x1ffffff;
- sp_521_mont_shift_21(a, a);
- over = a[20] >> 21;
- sp_521_cond_sub_21(a, a, m, ~((over - 1) >> 31));
- sp_521_norm_21(a);
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_521_mont_mul_21(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_521_mul_21(r, a, b);
- sp_521_mont_reduce_21(r, m, mp);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_521_mont_sqr_21(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_521_sqr_21(r, a);
- sp_521_mont_reduce_21(r, m, mp);
- }
- #ifndef WOLFSSL_SP_SMALL
- /* Square the Montgomery form number a number of times. (r = a ^ n mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * n Number of times to square.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_521_mont_sqr_n_21(sp_digit* r,
- const sp_digit* a, int n, const sp_digit* m, sp_digit mp)
- {
- sp_521_mont_sqr_21(r, a, m, mp);
- for (; n > 1; n--) {
- sp_521_mont_sqr_21(r, r, m, mp);
- }
- }
- #endif /* !WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Mod-2 for the P521 curve. */
- static const uint32_t p521_mod_minus_2[17] = {
- 0xfffffffdU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,
- 0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,
- 0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0x000001ffU
- };
- #endif /* !WOLFSSL_SP_SMALL */
- /* Invert the number, in Montgomery form, modulo the modulus (prime) of the
- * P521 curve. (r = 1 / a mod m)
- *
- * r Inverse result.
- * a Number to invert.
- * td Temporary data.
- */
- static void sp_521_mont_inv_21(sp_digit* r, const sp_digit* a, sp_digit* td)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_digit* t = td;
- int i;
- XMEMCPY(t, a, sizeof(sp_digit) * 21);
- for (i=519; i>=0; i--) {
- sp_521_mont_sqr_21(t, t, p521_mod, p521_mp_mod);
- if (p521_mod_minus_2[i / 32] & ((sp_digit)1 << (i % 32)))
- sp_521_mont_mul_21(t, t, a, p521_mod, p521_mp_mod);
- }
- XMEMCPY(r, t, sizeof(sp_digit) * 21);
- #else
- sp_digit* t1 = td;
- sp_digit* t2 = td + 2 * 21;
- sp_digit* t3 = td + 4 * 21;
- /* 0x2 */
- sp_521_mont_sqr_21(t1, a, p521_mod, p521_mp_mod);
- /* 0x3 */
- sp_521_mont_mul_21(t2, t1, a, p521_mod, p521_mp_mod);
- /* 0x6 */
- sp_521_mont_sqr_21(t1, t2, p521_mod, p521_mp_mod);
- /* 0x7 */
- sp_521_mont_mul_21(t3, t1, a, p521_mod, p521_mp_mod);
- /* 0xc */
- sp_521_mont_sqr_n_21(t1, t2, 2, p521_mod, p521_mp_mod);
- /* 0xf */
- sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
- /* 0x78 */
- sp_521_mont_sqr_n_21(t1, t2, 3, p521_mod, p521_mp_mod);
- /* 0x7f */
- sp_521_mont_mul_21(t3, t3, t1, p521_mod, p521_mp_mod);
- /* 0xf0 */
- sp_521_mont_sqr_n_21(t1, t2, 4, p521_mod, p521_mp_mod);
- /* 0xff */
- sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
- /* 0xff00 */
- sp_521_mont_sqr_n_21(t1, t2, 8, p521_mod, p521_mp_mod);
- /* 0xffff */
- sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
- /* 0xffff0000 */
- sp_521_mont_sqr_n_21(t1, t2, 16, p521_mod, p521_mp_mod);
- /* 0xffffffff */
- sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
- /* 0xffffffff00000000 */
- sp_521_mont_sqr_n_21(t1, t2, 32, p521_mod, p521_mp_mod);
- /* 0xffffffffffffffff */
- sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
- /* 0xffffffffffffffff0000000000000000 */
- sp_521_mont_sqr_n_21(t1, t2, 64, p521_mod, p521_mp_mod);
- /* 0xffffffffffffffffffffffffffffffff */
- sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
- /* 0xffffffffffffffffffffffffffffffff00000000000000000000000000000000 */
- sp_521_mont_sqr_n_21(t1, t2, 128, p521_mod, p521_mp_mod);
- /* 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
- sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
- /* 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0000000000000000000000000000000000000000000000000000000000000000 */
- sp_521_mont_sqr_n_21(t1, t2, 256, p521_mod, p521_mp_mod);
- /* 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
- sp_521_mont_mul_21(t2, t2, t1, p521_mod, p521_mp_mod);
- /* 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80 */
- sp_521_mont_sqr_n_21(t1, t2, 7, p521_mod, p521_mp_mod);
- /* 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff */
- sp_521_mont_mul_21(t2, t3, t1, p521_mod, p521_mp_mod);
- /* 0x1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc */
- sp_521_mont_sqr_n_21(t1, t2, 2, p521_mod, p521_mp_mod);
- /* 0x1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd */
- sp_521_mont_mul_21(r, t1, a, p521_mod, p521_mp_mod);
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Map the Montgomery form projective coordinate point to an affine point.
- *
- * r Resulting affine coordinate point.
- * p Montgomery form projective coordinate point.
- * t Temporary ordinate data.
- */
- static void sp_521_map_21(sp_point_521* r, const sp_point_521* p,
- sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2*21;
- sp_int32 n;
- sp_521_mont_inv_21(t1, p->z, t + 2*21);
- sp_521_mont_sqr_21(t2, t1, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t1, t2, t1, p521_mod, p521_mp_mod);
- /* x /= z^2 */
- sp_521_mont_mul_21(r->x, p->x, t2, p521_mod, p521_mp_mod);
- XMEMSET(r->x + 21, 0, sizeof(sp_digit) * 21U);
- sp_521_mont_reduce_21(r->x, p521_mod, p521_mp_mod);
- /* Reduce x to less than modulus */
- n = sp_521_cmp_21(r->x, p521_mod);
- sp_521_cond_sub_21(r->x, r->x, p521_mod, ~(n >> 24));
- sp_521_norm_21(r->x);
- /* y /= z^3 */
- sp_521_mont_mul_21(r->y, p->y, t1, p521_mod, p521_mp_mod);
- XMEMSET(r->y + 21, 0, sizeof(sp_digit) * 21U);
- sp_521_mont_reduce_21(r->y, p521_mod, p521_mp_mod);
- /* Reduce y to less than modulus */
- n = sp_521_cmp_21(r->y, p521_mod);
- sp_521_cond_sub_21(r->y, r->y, p521_mod, ~(n >> 24));
- sp_521_norm_21(r->y);
- XMEMSET(r->z, 0, sizeof(r->z) / 2);
- r->z[0] = 1;
- }
- /* Add two Montgomery form numbers (r = a + b % m).
- *
- * r Result of addition.
- * a First number to add in Montgomery form.
- * b Second number to add in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_521_mont_add_21(sp_digit* r, const sp_digit* a, const sp_digit* b,
- const sp_digit* m)
- {
- sp_digit over;
- (void)sp_521_add_21(r, a, b);
- sp_521_norm_21(r);
- over = r[20] >> 21;
- sp_521_cond_sub_21(r, r, m, ~((over - 1) >> 31));
- sp_521_norm_21(r);
- }
- /* Double a Montgomery form number (r = a + a % m).
- *
- * r Result of doubling.
- * a Number to double in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_521_mont_dbl_21(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- sp_digit over;
- (void)sp_521_add_21(r, a, a);
- sp_521_norm_21(r);
- over = r[20] >> 21;
- sp_521_cond_sub_21(r, r, m, ~((over - 1) >> 31));
- sp_521_norm_21(r);
- }
- /* Triple a Montgomery form number (r = a + a + a % m).
- *
- * r Result of Tripling.
- * a Number to triple in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_521_mont_tpl_21(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- sp_digit over;
- (void)sp_521_add_21(r, a, a);
- sp_521_norm_21(r);
- over = r[20] >> 21;
- sp_521_cond_sub_21(r, r, m, ~((over - 1) >> 31));
- sp_521_norm_21(r);
- (void)sp_521_add_21(r, r, a);
- sp_521_norm_21(r);
- over = r[20] >> 21;
- sp_521_cond_sub_21(r, r, m, ~((over - 1) >> 31));
- sp_521_norm_21(r);
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_521_cond_add_21(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 21; i++) {
- r[i] = a[i] + (b[i] & m);
- }
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifndef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_521_cond_add_21(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 16; i += 8) {
- r[i + 0] = a[i + 0] + (b[i + 0] & m);
- r[i + 1] = a[i + 1] + (b[i + 1] & m);
- r[i + 2] = a[i + 2] + (b[i + 2] & m);
- r[i + 3] = a[i + 3] + (b[i + 3] & m);
- r[i + 4] = a[i + 4] + (b[i + 4] & m);
- r[i + 5] = a[i + 5] + (b[i + 5] & m);
- r[i + 6] = a[i + 6] + (b[i + 6] & m);
- r[i + 7] = a[i + 7] + (b[i + 7] & m);
- }
- r[16] = a[16] + (b[16] & m);
- r[17] = a[17] + (b[17] & m);
- r[18] = a[18] + (b[18] & m);
- r[19] = a[19] + (b[19] & m);
- r[20] = a[20] + (b[20] & m);
- }
- #endif /* !WOLFSSL_SP_SMALL */
- /* Subtract two Montgomery form numbers (r = a - b % m).
- *
- * r Result of subtration.
- * a Number to subtract from in Montgomery form.
- * b Number to subtract with in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_521_mont_sub_21(sp_digit* r, const sp_digit* a, const sp_digit* b,
- const sp_digit* m)
- {
- (void)sp_521_sub_21(r, a, b);
- sp_521_norm_21(r);
- sp_521_cond_add_21(r, r, m, r[20] >> 21);
- sp_521_norm_21(r);
- }
- /* Shift number left one bit.
- * Bottom bit is lost.
- *
- * r Result of shift.
- * a Number to shift.
- */
- SP_NOINLINE static void sp_521_rshift1_21(sp_digit* r, const sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i=0; i<20; i++) {
- r[i] = (a[i] >> 1) + ((a[i + 1] << 24) & 0x1ffffff);
- }
- #else
- r[0] = (a[0] >> 1) + ((a[1] << 24) & 0x1ffffff);
- r[1] = (a[1] >> 1) + ((a[2] << 24) & 0x1ffffff);
- r[2] = (a[2] >> 1) + ((a[3] << 24) & 0x1ffffff);
- r[3] = (a[3] >> 1) + ((a[4] << 24) & 0x1ffffff);
- r[4] = (a[4] >> 1) + ((a[5] << 24) & 0x1ffffff);
- r[5] = (a[5] >> 1) + ((a[6] << 24) & 0x1ffffff);
- r[6] = (a[6] >> 1) + ((a[7] << 24) & 0x1ffffff);
- r[7] = (a[7] >> 1) + ((a[8] << 24) & 0x1ffffff);
- r[8] = (a[8] >> 1) + ((a[9] << 24) & 0x1ffffff);
- r[9] = (a[9] >> 1) + ((a[10] << 24) & 0x1ffffff);
- r[10] = (a[10] >> 1) + ((a[11] << 24) & 0x1ffffff);
- r[11] = (a[11] >> 1) + ((a[12] << 24) & 0x1ffffff);
- r[12] = (a[12] >> 1) + ((a[13] << 24) & 0x1ffffff);
- r[13] = (a[13] >> 1) + ((a[14] << 24) & 0x1ffffff);
- r[14] = (a[14] >> 1) + ((a[15] << 24) & 0x1ffffff);
- r[15] = (a[15] >> 1) + ((a[16] << 24) & 0x1ffffff);
- r[16] = (a[16] >> 1) + ((a[17] << 24) & 0x1ffffff);
- r[17] = (a[17] >> 1) + ((a[18] << 24) & 0x1ffffff);
- r[18] = (a[18] >> 1) + ((a[19] << 24) & 0x1ffffff);
- r[19] = (a[19] >> 1) + ((a[20] << 24) & 0x1ffffff);
- #endif
- r[20] = a[20] >> 1;
- }
- /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m)
- *
- * r Result of division by 2.
- * a Number to divide.
- * m Modulus (prime).
- */
- static void sp_521_mont_div2_21(sp_digit* r, const sp_digit* a,
- const sp_digit* m)
- {
- sp_521_cond_add_21(r, a, m, 0 - (a[0] & 1));
- sp_521_norm_21(r);
- sp_521_rshift1_21(r, r);
- }
- /* Double the Montgomery form projective point p.
- *
- * r Result of doubling point.
- * p Point to double.
- * t Temporary ordinate data.
- */
- static void sp_521_proj_point_dbl_21(sp_point_521* r, const sp_point_521* p,
- sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2*21;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- x = r->x;
- y = r->y;
- z = r->z;
- /* Put infinity into result. */
- if (r != p) {
- r->infinity = p->infinity;
- }
- /* T1 = Z * Z */
- sp_521_mont_sqr_21(t1, p->z, p521_mod, p521_mp_mod);
- /* Z = Y * Z */
- sp_521_mont_mul_21(z, p->y, p->z, p521_mod, p521_mp_mod);
- /* Z = 2Z */
- sp_521_mont_dbl_21(z, z, p521_mod);
- /* T2 = X - T1 */
- sp_521_mont_sub_21(t2, p->x, t1, p521_mod);
- /* T1 = X + T1 */
- sp_521_mont_add_21(t1, p->x, t1, p521_mod);
- /* T2 = T1 * T2 */
- sp_521_mont_mul_21(t2, t1, t2, p521_mod, p521_mp_mod);
- /* T1 = 3T2 */
- sp_521_mont_tpl_21(t1, t2, p521_mod);
- /* Y = 2Y */
- sp_521_mont_dbl_21(y, p->y, p521_mod);
- /* Y = Y * Y */
- sp_521_mont_sqr_21(y, y, p521_mod, p521_mp_mod);
- /* T2 = Y * Y */
- sp_521_mont_sqr_21(t2, y, p521_mod, p521_mp_mod);
- /* T2 = T2/2 */
- sp_521_mont_div2_21(t2, t2, p521_mod);
- /* Y = Y * X */
- sp_521_mont_mul_21(y, y, p->x, p521_mod, p521_mp_mod);
- /* X = T1 * T1 */
- sp_521_mont_sqr_21(x, t1, p521_mod, p521_mp_mod);
- /* X = X - Y */
- sp_521_mont_sub_21(x, x, y, p521_mod);
- /* X = X - Y */
- sp_521_mont_sub_21(x, x, y, p521_mod);
- /* Y = Y - X */
- sp_521_mont_sub_21(y, y, x, p521_mod);
- /* Y = Y * T1 */
- sp_521_mont_mul_21(y, y, t1, p521_mod, p521_mp_mod);
- /* Y = Y - T2 */
- sp_521_mont_sub_21(y, y, t2, p521_mod);
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_521_proj_point_dbl_21_ctx {
- int state;
- sp_digit* t1;
- sp_digit* t2;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- } sp_521_proj_point_dbl_21_ctx;
- /* Double the Montgomery form projective point p.
- *
- * r Result of doubling point.
- * p Point to double.
- * t Temporary ordinate data.
- */
- static int sp_521_proj_point_dbl_21_nb(sp_ecc_ctx_t* sp_ctx, sp_point_521* r,
- const sp_point_521* p, sp_digit* t)
- {
- int err = FP_WOULDBLOCK;
- sp_521_proj_point_dbl_21_ctx* ctx = (sp_521_proj_point_dbl_21_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_521_proj_point_dbl_21_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0:
- ctx->t1 = t;
- ctx->t2 = t + 2*21;
- ctx->x = r->x;
- ctx->y = r->y;
- ctx->z = r->z;
- /* Put infinity into result. */
- if (r != p) {
- r->infinity = p->infinity;
- }
- ctx->state = 1;
- break;
- case 1:
- /* T1 = Z * Z */
- sp_521_mont_sqr_21(ctx->t1, p->z, p521_mod, p521_mp_mod);
- ctx->state = 2;
- break;
- case 2:
- /* Z = Y * Z */
- sp_521_mont_mul_21(ctx->z, p->y, p->z, p521_mod, p521_mp_mod);
- ctx->state = 3;
- break;
- case 3:
- /* Z = 2Z */
- sp_521_mont_dbl_21(ctx->z, ctx->z, p521_mod);
- ctx->state = 4;
- break;
- case 4:
- /* T2 = X - T1 */
- sp_521_mont_sub_21(ctx->t2, p->x, ctx->t1, p521_mod);
- ctx->state = 5;
- break;
- case 5:
- /* T1 = X + T1 */
- sp_521_mont_add_21(ctx->t1, p->x, ctx->t1, p521_mod);
- ctx->state = 6;
- break;
- case 6:
- /* T2 = T1 * T2 */
- sp_521_mont_mul_21(ctx->t2, ctx->t1, ctx->t2, p521_mod, p521_mp_mod);
- ctx->state = 7;
- break;
- case 7:
- /* T1 = 3T2 */
- sp_521_mont_tpl_21(ctx->t1, ctx->t2, p521_mod);
- ctx->state = 8;
- break;
- case 8:
- /* Y = 2Y */
- sp_521_mont_dbl_21(ctx->y, p->y, p521_mod);
- ctx->state = 9;
- break;
- case 9:
- /* Y = Y * Y */
- sp_521_mont_sqr_21(ctx->y, ctx->y, p521_mod, p521_mp_mod);
- ctx->state = 10;
- break;
- case 10:
- /* T2 = Y * Y */
- sp_521_mont_sqr_21(ctx->t2, ctx->y, p521_mod, p521_mp_mod);
- ctx->state = 11;
- break;
- case 11:
- /* T2 = T2/2 */
- sp_521_mont_div2_21(ctx->t2, ctx->t2, p521_mod);
- ctx->state = 12;
- break;
- case 12:
- /* Y = Y * X */
- sp_521_mont_mul_21(ctx->y, ctx->y, p->x, p521_mod, p521_mp_mod);
- ctx->state = 13;
- break;
- case 13:
- /* X = T1 * T1 */
- sp_521_mont_sqr_21(ctx->x, ctx->t1, p521_mod, p521_mp_mod);
- ctx->state = 14;
- break;
- case 14:
- /* X = X - Y */
- sp_521_mont_sub_21(ctx->x, ctx->x, ctx->y, p521_mod);
- ctx->state = 15;
- break;
- case 15:
- /* X = X - Y */
- sp_521_mont_sub_21(ctx->x, ctx->x, ctx->y, p521_mod);
- ctx->state = 16;
- break;
- case 16:
- /* Y = Y - X */
- sp_521_mont_sub_21(ctx->y, ctx->y, ctx->x, p521_mod);
- ctx->state = 17;
- break;
- case 17:
- /* Y = Y * T1 */
- sp_521_mont_mul_21(ctx->y, ctx->y, ctx->t1, p521_mod, p521_mp_mod);
- ctx->state = 18;
- break;
- case 18:
- /* Y = Y - T2 */
- sp_521_mont_sub_21(ctx->y, ctx->y, ctx->t2, p521_mod);
- ctx->state = 19;
- /* fall-through */
- case 19:
- err = MP_OKAY;
- break;
- }
- if (err == MP_OKAY && ctx->state != 19) {
- err = FP_WOULDBLOCK;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- /* Compare two numbers to determine if they are equal.
- * Constant time implementation.
- *
- * a First number to compare.
- * b Second number to compare.
- * returns 1 when equal and 0 otherwise.
- */
- static int sp_521_cmp_equal_21(const sp_digit* a, const sp_digit* b)
- {
- return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2]) |
- (a[3] ^ b[3]) | (a[4] ^ b[4]) | (a[5] ^ b[5]) |
- (a[6] ^ b[6]) | (a[7] ^ b[7]) | (a[8] ^ b[8]) |
- (a[9] ^ b[9]) | (a[10] ^ b[10]) | (a[11] ^ b[11]) |
- (a[12] ^ b[12]) | (a[13] ^ b[13]) | (a[14] ^ b[14]) |
- (a[15] ^ b[15]) | (a[16] ^ b[16]) | (a[17] ^ b[17]) |
- (a[18] ^ b[18]) | (a[19] ^ b[19]) | (a[20] ^ b[20])) == 0;
- }
- /* Returns 1 if the number of zero.
- * Implementation is constant time.
- *
- * a Number to check.
- * returns 1 if the number is zero and 0 otherwise.
- */
- static int sp_521_iszero_21(const sp_digit* a)
- {
- return (a[0] | a[1] | a[2] | a[3] | a[4] | a[5] | a[6] | a[7] |
- a[8] | a[9] | a[10] | a[11] | a[12] | a[13] | a[14] | a[15] |
- a[16] | a[17] | a[18] | a[19] | a[20]) == 0;
- }
- /* Add two Montgomery form projective points.
- *
- * r Result of addition.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static void sp_521_proj_point_add_21(sp_point_521* r,
- const sp_point_521* p, const sp_point_521* q, sp_digit* t)
- {
- sp_digit* t6 = t;
- sp_digit* t1 = t + 2*21;
- sp_digit* t2 = t + 4*21;
- sp_digit* t3 = t + 6*21;
- sp_digit* t4 = t + 8*21;
- sp_digit* t5 = t + 10*21;
- /* U1 = X1*Z2^2 */
- sp_521_mont_sqr_21(t1, q->z, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t3, t1, q->z, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t1, t1, p->x, p521_mod, p521_mp_mod);
- /* U2 = X2*Z1^2 */
- sp_521_mont_sqr_21(t2, p->z, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t4, t2, p->z, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t2, t2, q->x, p521_mod, p521_mp_mod);
- /* S1 = Y1*Z2^3 */
- sp_521_mont_mul_21(t3, t3, p->y, p521_mod, p521_mp_mod);
- /* S2 = Y2*Z1^3 */
- sp_521_mont_mul_21(t4, t4, q->y, p521_mod, p521_mp_mod);
- /* Check double */
- if ((~p->infinity) & (~q->infinity) &
- sp_521_cmp_equal_21(t2, t1) &
- sp_521_cmp_equal_21(t4, t3)) {
- sp_521_proj_point_dbl_21(r, p, t);
- }
- else {
- sp_digit* x = t6;
- sp_digit* y = t1;
- sp_digit* z = t2;
- /* H = U2 - U1 */
- sp_521_mont_sub_21(t2, t2, t1, p521_mod);
- /* R = S2 - S1 */
- sp_521_mont_sub_21(t4, t4, t3, p521_mod);
- /* X3 = R^2 - H^3 - 2*U1*H^2 */
- sp_521_mont_sqr_21(t5, t2, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(y, t1, t5, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t5, t5, t2, p521_mod, p521_mp_mod);
- /* Z3 = H*Z1*Z2 */
- sp_521_mont_mul_21(z, p->z, t2, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(z, z, q->z, p521_mod, p521_mp_mod);
- sp_521_mont_sqr_21(x, t4, p521_mod, p521_mp_mod);
- sp_521_mont_sub_21(x, x, t5, p521_mod);
- sp_521_mont_mul_21(t5, t5, t3, p521_mod, p521_mp_mod);
- sp_521_mont_dbl_21(t3, y, p521_mod);
- sp_521_mont_sub_21(x, x, t3, p521_mod);
- /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
- sp_521_mont_sub_21(y, y, x, p521_mod);
- sp_521_mont_mul_21(y, y, t4, p521_mod, p521_mp_mod);
- sp_521_mont_sub_21(y, y, t5, p521_mod);
- {
- int i;
- sp_digit maskp = 0 - (q->infinity & (!p->infinity));
- sp_digit maskq = 0 - (p->infinity & (!q->infinity));
- sp_digit maskt = ~(maskp | maskq);
- sp_digit inf = (sp_digit)(p->infinity & q->infinity);
- for (i = 0; i < 21; i++) {
- r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
- (x[i] & maskt);
- }
- for (i = 0; i < 21; i++) {
- r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
- (y[i] & maskt);
- }
- for (i = 0; i < 21; i++) {
- r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
- (z[i] & maskt);
- }
- r->z[0] |= inf;
- r->infinity = (word32)inf;
- }
- }
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_521_proj_point_add_21_ctx {
- int state;
- sp_521_proj_point_dbl_21_ctx dbl_ctx;
- const sp_point_521* ap[2];
- sp_point_521* rp[2];
- sp_digit* t1;
- sp_digit* t2;
- sp_digit* t3;
- sp_digit* t4;
- sp_digit* t5;
- sp_digit* t6;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- } sp_521_proj_point_add_21_ctx;
- /* Add two Montgomery form projective points.
- *
- * r Result of addition.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static int sp_521_proj_point_add_21_nb(sp_ecc_ctx_t* sp_ctx, sp_point_521* r,
- const sp_point_521* p, const sp_point_521* q, sp_digit* t)
- {
- int err = FP_WOULDBLOCK;
- sp_521_proj_point_add_21_ctx* ctx = (sp_521_proj_point_add_21_ctx*)sp_ctx->data;
- /* Ensure only the first point is the same as the result. */
- if (q == r) {
- const sp_point_521* a = p;
- p = q;
- q = a;
- }
- typedef char ctx_size_test[sizeof(sp_521_proj_point_add_21_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0: /* INIT */
- ctx->t6 = t;
- ctx->t1 = t + 2*21;
- ctx->t2 = t + 4*21;
- ctx->t3 = t + 6*21;
- ctx->t4 = t + 8*21;
- ctx->t5 = t + 10*21;
- ctx->x = ctx->t6;
- ctx->y = ctx->t1;
- ctx->z = ctx->t2;
- ctx->state = 1;
- break;
- case 1:
- /* U1 = X1*Z2^2 */
- sp_521_mont_sqr_21(ctx->t1, q->z, p521_mod, p521_mp_mod);
- ctx->state = 2;
- break;
- case 2:
- sp_521_mont_mul_21(ctx->t3, ctx->t1, q->z, p521_mod, p521_mp_mod);
- ctx->state = 3;
- break;
- case 3:
- sp_521_mont_mul_21(ctx->t1, ctx->t1, p->x, p521_mod, p521_mp_mod);
- ctx->state = 4;
- break;
- case 4:
- /* U2 = X2*Z1^2 */
- sp_521_mont_sqr_21(ctx->t2, p->z, p521_mod, p521_mp_mod);
- ctx->state = 5;
- break;
- case 5:
- sp_521_mont_mul_21(ctx->t4, ctx->t2, p->z, p521_mod, p521_mp_mod);
- ctx->state = 6;
- break;
- case 6:
- sp_521_mont_mul_21(ctx->t2, ctx->t2, q->x, p521_mod, p521_mp_mod);
- ctx->state = 7;
- break;
- case 7:
- /* S1 = Y1*Z2^3 */
- sp_521_mont_mul_21(ctx->t3, ctx->t3, p->y, p521_mod, p521_mp_mod);
- ctx->state = 8;
- break;
- case 8:
- /* S2 = Y2*Z1^3 */
- sp_521_mont_mul_21(ctx->t4, ctx->t4, q->y, p521_mod, p521_mp_mod);
- ctx->state = 9;
- break;
- case 9:
- /* Check double */
- if ((~p->infinity) & (~q->infinity) &
- sp_521_cmp_equal_21(ctx->t2, ctx->t1) &
- sp_521_cmp_equal_21(ctx->t4, ctx->t3)) {
- XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
- sp_521_proj_point_dbl_21(r, p, t);
- ctx->state = 25;
- }
- else {
- ctx->state = 10;
- }
- break;
- case 10:
- /* H = U2 - U1 */
- sp_521_mont_sub_21(ctx->t2, ctx->t2, ctx->t1, p521_mod);
- ctx->state = 11;
- break;
- case 11:
- /* R = S2 - S1 */
- sp_521_mont_sub_21(ctx->t4, ctx->t4, ctx->t3, p521_mod);
- ctx->state = 12;
- break;
- case 12:
- /* X3 = R^2 - H^3 - 2*U1*H^2 */
- sp_521_mont_sqr_21(ctx->t5, ctx->t2, p521_mod, p521_mp_mod);
- ctx->state = 13;
- break;
- case 13:
- sp_521_mont_mul_21(ctx->y, ctx->t1, ctx->t5, p521_mod, p521_mp_mod);
- ctx->state = 14;
- break;
- case 14:
- sp_521_mont_mul_21(ctx->t5, ctx->t5, ctx->t2, p521_mod, p521_mp_mod);
- ctx->state = 15;
- break;
- case 15:
- /* Z3 = H*Z1*Z2 */
- sp_521_mont_mul_21(ctx->z, p->z, ctx->t2, p521_mod, p521_mp_mod);
- ctx->state = 16;
- break;
- case 16:
- sp_521_mont_mul_21(ctx->z, ctx->z, q->z, p521_mod, p521_mp_mod);
- ctx->state = 17;
- break;
- case 17:
- sp_521_mont_sqr_21(ctx->x, ctx->t4, p521_mod, p521_mp_mod);
- ctx->state = 18;
- break;
- case 18:
- sp_521_mont_sub_21(ctx->x, ctx->x, ctx->t5, p521_mod);
- ctx->state = 19;
- break;
- case 19:
- sp_521_mont_mul_21(ctx->t5, ctx->t5, ctx->t3, p521_mod, p521_mp_mod);
- ctx->state = 20;
- break;
- case 20:
- sp_521_mont_dbl_21(ctx->t3, ctx->y, p521_mod);
- sp_521_mont_sub_21(ctx->x, ctx->x, ctx->t3, p521_mod);
- ctx->state = 21;
- break;
- case 21:
- /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
- sp_521_mont_sub_21(ctx->y, ctx->y, ctx->x, p521_mod);
- ctx->state = 22;
- break;
- case 22:
- sp_521_mont_mul_21(ctx->y, ctx->y, ctx->t4, p521_mod, p521_mp_mod);
- ctx->state = 23;
- break;
- case 23:
- sp_521_mont_sub_21(ctx->y, ctx->y, ctx->t5, p521_mod);
- ctx->state = 24;
- break;
- case 24:
- {
- {
- int i;
- sp_digit maskp = 0 - (q->infinity & (!p->infinity));
- sp_digit maskq = 0 - (p->infinity & (!q->infinity));
- sp_digit maskt = ~(maskp | maskq);
- sp_digit inf = (sp_digit)(p->infinity & q->infinity);
- for (i = 0; i < 21; i++) {
- r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
- (ctx->x[i] & maskt);
- }
- for (i = 0; i < 21; i++) {
- r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
- (ctx->y[i] & maskt);
- }
- for (i = 0; i < 21; i++) {
- r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
- (ctx->z[i] & maskt);
- }
- r->z[0] |= inf;
- r->infinity = (word32)inf;
- }
- ctx->state = 25;
- break;
- }
- case 25:
- err = MP_OKAY;
- break;
- }
- if (err == MP_OKAY && ctx->state != 25) {
- err = FP_WOULDBLOCK;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- /* Multiply a number by Montgomery normalizer mod modulus (prime).
- *
- * r The resulting Montgomery form number.
- * a The number to convert.
- * m The modulus (prime).
- * returns MEMORY_E when memory allocation fails and MP_OKAY otherwise.
- */
- static int sp_521_mod_mul_norm_21(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- (void)m;
- if (r != a) {
- XMEMCPY(r, a, 21 * sizeof(sp_digit));
- }
- return MP_OKAY;
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Small implementation using add and double that is cache attack resistant but
- * allocates memory rather than use large stacks.
- * 521 adds and doubles.
- *
- * r Resulting point.
- * g Point to multiply.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_521_ecc_mulmod_21(sp_point_521* r, const sp_point_521* g,
- const sp_digit* k, int map, int ct, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_521* t = NULL;
- sp_digit* tmp = NULL;
- #else
- sp_point_521 t[3];
- sp_digit tmp[2 * 21 * 6];
- #endif
- sp_digit n;
- int i;
- int c;
- int y;
- int err = MP_OKAY;
- /* Implementation is constant time. */
- (void)ct;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 3, heap,
- DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 6, heap,
- DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- XMEMSET(t, 0, sizeof(sp_point_521) * 3);
- /* t[0] = {0, 0, 1} * norm */
- t[0].infinity = 1;
- /* t[1] = {g->x, g->y, g->z} * norm */
- err = sp_521_mod_mul_norm_21(t[1].x, g->x, p521_mod);
- }
- if (err == MP_OKAY)
- err = sp_521_mod_mul_norm_21(t[1].y, g->y, p521_mod);
- if (err == MP_OKAY)
- err = sp_521_mod_mul_norm_21(t[1].z, g->z, p521_mod);
- if (err == MP_OKAY) {
- i = 20;
- c = 21;
- n = k[i--] << (25 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1)
- break;
- n = k[i--];
- c = 25;
- }
- y = (n >> 24) & 1;
- n <<= 1;
- sp_521_proj_point_add_21(&t[y^1], &t[0], &t[1], tmp);
- XMEMCPY(&t[2], (void*)(((size_t)&t[0] & addr_mask[y^1]) +
- ((size_t)&t[1] & addr_mask[y])),
- sizeof(sp_point_521));
- sp_521_proj_point_dbl_21(&t[2], &t[2], tmp);
- XMEMCPY((void*)(((size_t)&t[0] & addr_mask[y^1]) +
- ((size_t)&t[1] & addr_mask[y])), &t[2],
- sizeof(sp_point_521));
- }
- if (map != 0) {
- sp_521_map_21(r, &t[0], tmp);
- }
- else {
- XMEMCPY(r, &t[0], sizeof(sp_point_521));
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (tmp != NULL)
- #endif
- {
- ForceZero(tmp, sizeof(sp_digit) * 2 * 21 * 6);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- #endif
- {
- ForceZero(t, sizeof(sp_point_521) * 3);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_521_ecc_mulmod_21_ctx {
- int state;
- union {
- sp_521_proj_point_dbl_21_ctx dbl_ctx;
- sp_521_proj_point_add_21_ctx add_ctx;
- };
- sp_point_521 t[3];
- sp_digit tmp[2 * 21 * 6];
- sp_digit n;
- int i;
- int c;
- int y;
- } sp_521_ecc_mulmod_21_ctx;
- static int sp_521_ecc_mulmod_21_nb(sp_ecc_ctx_t* sp_ctx, sp_point_521* r,
- const sp_point_521* g, const sp_digit* k, int map, int ct, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_521_ecc_mulmod_21_ctx* ctx = (sp_521_ecc_mulmod_21_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_521_ecc_mulmod_21_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- /* Implementation is constant time. */
- (void)ct;
- switch (ctx->state) {
- case 0: /* INIT */
- XMEMSET(ctx->t, 0, sizeof(sp_point_521) * 3);
- ctx->i = 20;
- ctx->c = 21;
- ctx->n = k[ctx->i--] << (25 - ctx->c);
- /* t[0] = {0, 0, 1} * norm */
- ctx->t[0].infinity = 1;
- ctx->state = 1;
- break;
- case 1: /* T1X */
- /* t[1] = {g->x, g->y, g->z} * norm */
- err = sp_521_mod_mul_norm_21(ctx->t[1].x, g->x, p521_mod);
- ctx->state = 2;
- break;
- case 2: /* T1Y */
- err = sp_521_mod_mul_norm_21(ctx->t[1].y, g->y, p521_mod);
- ctx->state = 3;
- break;
- case 3: /* T1Z */
- err = sp_521_mod_mul_norm_21(ctx->t[1].z, g->z, p521_mod);
- ctx->state = 4;
- break;
- case 4: /* ADDPREP */
- if (ctx->c == 0) {
- if (ctx->i == -1) {
- ctx->state = 7;
- break;
- }
- ctx->n = k[ctx->i--];
- ctx->c = 25;
- }
- ctx->y = (ctx->n >> 24) & 1;
- ctx->n <<= 1;
- XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
- ctx->state = 5;
- break;
- case 5: /* ADD */
- err = sp_521_proj_point_add_21_nb((sp_ecc_ctx_t*)&ctx->add_ctx,
- &ctx->t[ctx->y^1], &ctx->t[0], &ctx->t[1], ctx->tmp);
- if (err == MP_OKAY) {
- XMEMCPY(&ctx->t[2], (void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
- ((size_t)&ctx->t[1] & addr_mask[ctx->y])),
- sizeof(sp_point_521));
- XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
- ctx->state = 6;
- }
- break;
- case 6: /* DBL */
- err = sp_521_proj_point_dbl_21_nb((sp_ecc_ctx_t*)&ctx->dbl_ctx, &ctx->t[2],
- &ctx->t[2], ctx->tmp);
- if (err == MP_OKAY) {
- XMEMCPY((void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
- ((size_t)&ctx->t[1] & addr_mask[ctx->y])), &ctx->t[2],
- sizeof(sp_point_521));
- ctx->state = 4;
- ctx->c--;
- }
- break;
- case 7: /* MAP */
- if (map != 0) {
- sp_521_map_21(r, &ctx->t[0], ctx->tmp);
- }
- else {
- XMEMCPY(r, &ctx->t[0], sizeof(sp_point_521));
- }
- err = MP_OKAY;
- break;
- }
- if (err == MP_OKAY && ctx->state != 7) {
- err = FP_WOULDBLOCK;
- }
- if (err != FP_WOULDBLOCK) {
- ForceZero(ctx->tmp, sizeof(ctx->tmp));
- ForceZero(ctx->t, sizeof(ctx->t));
- }
- (void)heap;
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #else
- /* A table entry for pre-computed points. */
- typedef struct sp_table_entry_521 {
- sp_digit x[21];
- sp_digit y[21];
- } sp_table_entry_521;
- /* Conditionally copy a into r using the mask m.
- * m is -1 to copy and 0 when not.
- *
- * r A single precision number to copy over.
- * a A single precision number to copy.
- * m Mask value to apply.
- */
- static void sp_521_cond_copy_21(sp_digit* r, const sp_digit* a, const sp_digit m)
- {
- sp_digit t[21];
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 21; i++) {
- t[i] = r[i] ^ a[i];
- }
- for (i = 0; i < 21; i++) {
- r[i] ^= t[i] & m;
- }
- #else
- t[ 0] = r[ 0] ^ a[ 0];
- t[ 1] = r[ 1] ^ a[ 1];
- t[ 2] = r[ 2] ^ a[ 2];
- t[ 3] = r[ 3] ^ a[ 3];
- t[ 4] = r[ 4] ^ a[ 4];
- t[ 5] = r[ 5] ^ a[ 5];
- t[ 6] = r[ 6] ^ a[ 6];
- t[ 7] = r[ 7] ^ a[ 7];
- t[ 8] = r[ 8] ^ a[ 8];
- t[ 9] = r[ 9] ^ a[ 9];
- t[10] = r[10] ^ a[10];
- t[11] = r[11] ^ a[11];
- t[12] = r[12] ^ a[12];
- t[13] = r[13] ^ a[13];
- t[14] = r[14] ^ a[14];
- t[15] = r[15] ^ a[15];
- t[16] = r[16] ^ a[16];
- t[17] = r[17] ^ a[17];
- t[18] = r[18] ^ a[18];
- t[19] = r[19] ^ a[19];
- t[20] = r[20] ^ a[20];
- r[ 0] ^= t[ 0] & m;
- r[ 1] ^= t[ 1] & m;
- r[ 2] ^= t[ 2] & m;
- r[ 3] ^= t[ 3] & m;
- r[ 4] ^= t[ 4] & m;
- r[ 5] ^= t[ 5] & m;
- r[ 6] ^= t[ 6] & m;
- r[ 7] ^= t[ 7] & m;
- r[ 8] ^= t[ 8] & m;
- r[ 9] ^= t[ 9] & m;
- r[10] ^= t[10] & m;
- r[11] ^= t[11] & m;
- r[12] ^= t[12] & m;
- r[13] ^= t[13] & m;
- r[14] ^= t[14] & m;
- r[15] ^= t[15] & m;
- r[16] ^= t[16] & m;
- r[17] ^= t[17] & m;
- r[18] ^= t[18] & m;
- r[19] ^= t[19] & m;
- r[20] ^= t[20] & m;
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Double the Montgomery form projective point p a number of times.
- *
- * r Result of repeated doubling of point.
- * p Point to double.
- * n Number of times to double
- * t Temporary ordinate data.
- */
- static void sp_521_proj_point_dbl_n_21(sp_point_521* p, int i,
- sp_digit* t)
- {
- sp_digit* w = t;
- sp_digit* a = t + 2*21;
- sp_digit* b = t + 4*21;
- sp_digit* t1 = t + 6*21;
- sp_digit* t2 = t + 8*21;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- volatile int n = i;
- x = p->x;
- y = p->y;
- z = p->z;
- /* Y = 2*Y */
- sp_521_mont_dbl_21(y, y, p521_mod);
- /* W = Z^4 */
- sp_521_mont_sqr_21(w, z, p521_mod, p521_mp_mod);
- sp_521_mont_sqr_21(w, w, p521_mod, p521_mp_mod);
- #ifndef WOLFSSL_SP_SMALL
- while (--n > 0)
- #else
- while (--n >= 0)
- #endif
- {
- /* A = 3*(X^2 - W) */
- sp_521_mont_sqr_21(t1, x, p521_mod, p521_mp_mod);
- sp_521_mont_sub_21(t1, t1, w, p521_mod);
- sp_521_mont_tpl_21(a, t1, p521_mod);
- /* B = X*Y^2 */
- sp_521_mont_sqr_21(t1, y, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(b, t1, x, p521_mod, p521_mp_mod);
- /* X = A^2 - 2B */
- sp_521_mont_sqr_21(x, a, p521_mod, p521_mp_mod);
- sp_521_mont_dbl_21(t2, b, p521_mod);
- sp_521_mont_sub_21(x, x, t2, p521_mod);
- /* B = 2.(B - X) */
- sp_521_mont_sub_21(t2, b, x, p521_mod);
- sp_521_mont_dbl_21(b, t2, p521_mod);
- /* Z = Z*Y */
- sp_521_mont_mul_21(z, z, y, p521_mod, p521_mp_mod);
- /* t1 = Y^4 */
- sp_521_mont_sqr_21(t1, t1, p521_mod, p521_mp_mod);
- #ifdef WOLFSSL_SP_SMALL
- if (n != 0)
- #endif
- {
- /* W = W*Y^4 */
- sp_521_mont_mul_21(w, w, t1, p521_mod, p521_mp_mod);
- }
- /* y = 2*A*(B - X) - Y^4 */
- sp_521_mont_mul_21(y, b, a, p521_mod, p521_mp_mod);
- sp_521_mont_sub_21(y, y, t1, p521_mod);
- }
- #ifndef WOLFSSL_SP_SMALL
- /* A = 3*(X^2 - W) */
- sp_521_mont_sqr_21(t1, x, p521_mod, p521_mp_mod);
- sp_521_mont_sub_21(t1, t1, w, p521_mod);
- sp_521_mont_tpl_21(a, t1, p521_mod);
- /* B = X*Y^2 */
- sp_521_mont_sqr_21(t1, y, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(b, t1, x, p521_mod, p521_mp_mod);
- /* X = A^2 - 2B */
- sp_521_mont_sqr_21(x, a, p521_mod, p521_mp_mod);
- sp_521_mont_dbl_21(t2, b, p521_mod);
- sp_521_mont_sub_21(x, x, t2, p521_mod);
- /* B = 2.(B - X) */
- sp_521_mont_sub_21(t2, b, x, p521_mod);
- sp_521_mont_dbl_21(b, t2, p521_mod);
- /* Z = Z*Y */
- sp_521_mont_mul_21(z, z, y, p521_mod, p521_mp_mod);
- /* t1 = Y^4 */
- sp_521_mont_sqr_21(t1, t1, p521_mod, p521_mp_mod);
- /* y = 2*A*(B - X) - Y^4 */
- sp_521_mont_mul_21(y, b, a, p521_mod, p521_mp_mod);
- sp_521_mont_sub_21(y, y, t1, p521_mod);
- #endif /* WOLFSSL_SP_SMALL */
- /* Y = Y/2 */
- sp_521_mont_div2_21(y, y, p521_mod);
- }
- /* Double the Montgomery form projective point p a number of times.
- *
- * r Result of repeated doubling of point.
- * p Point to double.
- * n Number of times to double
- * t Temporary ordinate data.
- */
- static void sp_521_proj_point_dbl_n_store_21(sp_point_521* r,
- const sp_point_521* p, int n, int m, sp_digit* t)
- {
- sp_digit* w = t;
- sp_digit* a = t + 2*21;
- sp_digit* b = t + 4*21;
- sp_digit* t1 = t + 6*21;
- sp_digit* t2 = t + 8*21;
- sp_digit* x = r[2*m].x;
- sp_digit* y = r[(1<<n)*m].y;
- sp_digit* z = r[2*m].z;
- int i;
- int j;
- for (i=0; i<21; i++) {
- x[i] = p->x[i];
- }
- for (i=0; i<21; i++) {
- y[i] = p->y[i];
- }
- for (i=0; i<21; i++) {
- z[i] = p->z[i];
- }
- /* Y = 2*Y */
- sp_521_mont_dbl_21(y, y, p521_mod);
- /* W = Z^4 */
- sp_521_mont_sqr_21(w, z, p521_mod, p521_mp_mod);
- sp_521_mont_sqr_21(w, w, p521_mod, p521_mp_mod);
- j = m;
- for (i=1; i<=n; i++) {
- j *= 2;
- /* A = 3*(X^2 - W) */
- sp_521_mont_sqr_21(t1, x, p521_mod, p521_mp_mod);
- sp_521_mont_sub_21(t1, t1, w, p521_mod);
- sp_521_mont_tpl_21(a, t1, p521_mod);
- /* B = X*Y^2 */
- sp_521_mont_sqr_21(t1, y, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(b, t1, x, p521_mod, p521_mp_mod);
- x = r[j].x;
- /* X = A^2 - 2B */
- sp_521_mont_sqr_21(x, a, p521_mod, p521_mp_mod);
- sp_521_mont_dbl_21(t2, b, p521_mod);
- sp_521_mont_sub_21(x, x, t2, p521_mod);
- /* B = 2.(B - X) */
- sp_521_mont_sub_21(t2, b, x, p521_mod);
- sp_521_mont_dbl_21(b, t2, p521_mod);
- /* Z = Z*Y */
- sp_521_mont_mul_21(r[j].z, z, y, p521_mod, p521_mp_mod);
- z = r[j].z;
- /* t1 = Y^4 */
- sp_521_mont_sqr_21(t1, t1, p521_mod, p521_mp_mod);
- if (i != n) {
- /* W = W*Y^4 */
- sp_521_mont_mul_21(w, w, t1, p521_mod, p521_mp_mod);
- }
- /* y = 2*A*(B - X) - Y^4 */
- sp_521_mont_mul_21(y, b, a, p521_mod, p521_mp_mod);
- sp_521_mont_sub_21(y, y, t1, p521_mod);
- /* Y = Y/2 */
- sp_521_mont_div2_21(r[j].y, y, p521_mod);
- r[j].infinity = 0;
- }
- }
- /* Add two Montgomery form projective points.
- *
- * ra Result of addition.
- * rs Result of subtraction.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static void sp_521_proj_point_add_sub_21(sp_point_521* ra,
- sp_point_521* rs, const sp_point_521* p, const sp_point_521* q,
- sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2*21;
- sp_digit* t3 = t + 4*21;
- sp_digit* t4 = t + 6*21;
- sp_digit* t5 = t + 8*21;
- sp_digit* t6 = t + 10*21;
- sp_digit* xa = ra->x;
- sp_digit* ya = ra->y;
- sp_digit* za = ra->z;
- sp_digit* xs = rs->x;
- sp_digit* ys = rs->y;
- sp_digit* zs = rs->z;
- XMEMCPY(xa, p->x, sizeof(p->x) / 2);
- XMEMCPY(ya, p->y, sizeof(p->y) / 2);
- XMEMCPY(za, p->z, sizeof(p->z) / 2);
- ra->infinity = 0;
- rs->infinity = 0;
- /* U1 = X1*Z2^2 */
- sp_521_mont_sqr_21(t1, q->z, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t3, t1, q->z, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t1, t1, xa, p521_mod, p521_mp_mod);
- /* U2 = X2*Z1^2 */
- sp_521_mont_sqr_21(t2, za, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t4, t2, za, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t2, t2, q->x, p521_mod, p521_mp_mod);
- /* S1 = Y1*Z2^3 */
- sp_521_mont_mul_21(t3, t3, ya, p521_mod, p521_mp_mod);
- /* S2 = Y2*Z1^3 */
- sp_521_mont_mul_21(t4, t4, q->y, p521_mod, p521_mp_mod);
- /* H = U2 - U1 */
- sp_521_mont_sub_21(t2, t2, t1, p521_mod);
- /* RS = S2 + S1 */
- sp_521_mont_add_21(t6, t4, t3, p521_mod);
- /* R = S2 - S1 */
- sp_521_mont_sub_21(t4, t4, t3, p521_mod);
- /* Z3 = H*Z1*Z2 */
- /* ZS = H*Z1*Z2 */
- sp_521_mont_mul_21(za, za, q->z, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(za, za, t2, p521_mod, p521_mp_mod);
- XMEMCPY(zs, za, sizeof(p->z)/2);
- /* X3 = R^2 - H^3 - 2*U1*H^2 */
- /* XS = RS^2 - H^3 - 2*U1*H^2 */
- sp_521_mont_sqr_21(xa, t4, p521_mod, p521_mp_mod);
- sp_521_mont_sqr_21(xs, t6, p521_mod, p521_mp_mod);
- sp_521_mont_sqr_21(t5, t2, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(ya, t1, t5, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t5, t5, t2, p521_mod, p521_mp_mod);
- sp_521_mont_sub_21(xa, xa, t5, p521_mod);
- sp_521_mont_sub_21(xs, xs, t5, p521_mod);
- sp_521_mont_dbl_21(t1, ya, p521_mod);
- sp_521_mont_sub_21(xa, xa, t1, p521_mod);
- sp_521_mont_sub_21(xs, xs, t1, p521_mod);
- /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
- /* YS = -RS*(U1*H^2 - XS) - S1*H^3 */
- sp_521_mont_sub_21(ys, ya, xs, p521_mod);
- sp_521_mont_sub_21(ya, ya, xa, p521_mod);
- sp_521_mont_mul_21(ya, ya, t4, p521_mod, p521_mp_mod);
- sp_521_sub_21(t6, p521_mod, t6);
- sp_521_mont_mul_21(ys, ys, t6, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t5, t5, t3, p521_mod, p521_mp_mod);
- sp_521_mont_sub_21(ya, ya, t5, p521_mod);
- sp_521_mont_sub_21(ys, ys, t5, p521_mod);
- }
- /* Structure used to describe recoding of scalar multiplication. */
- typedef struct ecc_recode_521 {
- /* Index into pre-computation table. */
- uint8_t i;
- /* Use the negative of the point. */
- uint8_t neg;
- } ecc_recode_521;
- /* The index into pre-computation table to use. */
- static const uint8_t recode_index_21_6[66] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
- 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
- 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
- 0, 1,
- };
- /* Whether to negate y-ordinate. */
- static const uint8_t recode_neg_21_6[66] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 0, 0,
- };
- /* Recode the scalar for multiplication using pre-computed values and
- * subtraction.
- *
- * k Scalar to multiply by.
- * v Vector of operations to perform.
- */
- static void sp_521_ecc_recode_6_21(const sp_digit* k, ecc_recode_521* v)
- {
- int i;
- int j;
- uint8_t y;
- int carry = 0;
- int o;
- sp_digit n;
- j = 0;
- n = k[j];
- o = 0;
- for (i=0; i<87; i++) {
- y = (int8_t)n;
- if (o + 6 < 25) {
- y &= 0x3f;
- n >>= 6;
- o += 6;
- }
- else if (o + 6 == 25) {
- n >>= 6;
- if (++j < 21)
- n = k[j];
- o = 0;
- }
- else if (++j < 21) {
- n = k[j];
- y |= (uint8_t)((n << (25 - o)) & 0x3f);
- o -= 19;
- n >>= o;
- }
- y += (uint8_t)carry;
- v[i].i = recode_index_21_6[y];
- v[i].neg = recode_neg_21_6[y];
- carry = (y >> 6) + v[i].neg;
- }
- }
- #ifndef WC_NO_CACHE_RESISTANT
- /* Touch each possible point that could be being copied.
- *
- * r Point to copy into.
- * table Table - start of the entries to access
- * idx Index of entry to retrieve.
- */
- static void sp_521_get_point_33_21(sp_point_521* r, const sp_point_521* table,
- int idx)
- {
- int i;
- sp_digit mask;
- r->x[0] = 0;
- r->x[1] = 0;
- r->x[2] = 0;
- r->x[3] = 0;
- r->x[4] = 0;
- r->x[5] = 0;
- r->x[6] = 0;
- r->x[7] = 0;
- r->x[8] = 0;
- r->x[9] = 0;
- r->x[10] = 0;
- r->x[11] = 0;
- r->x[12] = 0;
- r->x[13] = 0;
- r->x[14] = 0;
- r->x[15] = 0;
- r->x[16] = 0;
- r->x[17] = 0;
- r->x[18] = 0;
- r->x[19] = 0;
- r->x[20] = 0;
- r->y[0] = 0;
- r->y[1] = 0;
- r->y[2] = 0;
- r->y[3] = 0;
- r->y[4] = 0;
- r->y[5] = 0;
- r->y[6] = 0;
- r->y[7] = 0;
- r->y[8] = 0;
- r->y[9] = 0;
- r->y[10] = 0;
- r->y[11] = 0;
- r->y[12] = 0;
- r->y[13] = 0;
- r->y[14] = 0;
- r->y[15] = 0;
- r->y[16] = 0;
- r->y[17] = 0;
- r->y[18] = 0;
- r->y[19] = 0;
- r->y[20] = 0;
- r->z[0] = 0;
- r->z[1] = 0;
- r->z[2] = 0;
- r->z[3] = 0;
- r->z[4] = 0;
- r->z[5] = 0;
- r->z[6] = 0;
- r->z[7] = 0;
- r->z[8] = 0;
- r->z[9] = 0;
- r->z[10] = 0;
- r->z[11] = 0;
- r->z[12] = 0;
- r->z[13] = 0;
- r->z[14] = 0;
- r->z[15] = 0;
- r->z[16] = 0;
- r->z[17] = 0;
- r->z[18] = 0;
- r->z[19] = 0;
- r->z[20] = 0;
- for (i = 1; i < 33; i++) {
- mask = 0 - (i == idx);
- r->x[0] |= mask & table[i].x[0];
- r->x[1] |= mask & table[i].x[1];
- r->x[2] |= mask & table[i].x[2];
- r->x[3] |= mask & table[i].x[3];
- r->x[4] |= mask & table[i].x[4];
- r->x[5] |= mask & table[i].x[5];
- r->x[6] |= mask & table[i].x[6];
- r->x[7] |= mask & table[i].x[7];
- r->x[8] |= mask & table[i].x[8];
- r->x[9] |= mask & table[i].x[9];
- r->x[10] |= mask & table[i].x[10];
- r->x[11] |= mask & table[i].x[11];
- r->x[12] |= mask & table[i].x[12];
- r->x[13] |= mask & table[i].x[13];
- r->x[14] |= mask & table[i].x[14];
- r->x[15] |= mask & table[i].x[15];
- r->x[16] |= mask & table[i].x[16];
- r->x[17] |= mask & table[i].x[17];
- r->x[18] |= mask & table[i].x[18];
- r->x[19] |= mask & table[i].x[19];
- r->x[20] |= mask & table[i].x[20];
- r->y[0] |= mask & table[i].y[0];
- r->y[1] |= mask & table[i].y[1];
- r->y[2] |= mask & table[i].y[2];
- r->y[3] |= mask & table[i].y[3];
- r->y[4] |= mask & table[i].y[4];
- r->y[5] |= mask & table[i].y[5];
- r->y[6] |= mask & table[i].y[6];
- r->y[7] |= mask & table[i].y[7];
- r->y[8] |= mask & table[i].y[8];
- r->y[9] |= mask & table[i].y[9];
- r->y[10] |= mask & table[i].y[10];
- r->y[11] |= mask & table[i].y[11];
- r->y[12] |= mask & table[i].y[12];
- r->y[13] |= mask & table[i].y[13];
- r->y[14] |= mask & table[i].y[14];
- r->y[15] |= mask & table[i].y[15];
- r->y[16] |= mask & table[i].y[16];
- r->y[17] |= mask & table[i].y[17];
- r->y[18] |= mask & table[i].y[18];
- r->y[19] |= mask & table[i].y[19];
- r->y[20] |= mask & table[i].y[20];
- r->z[0] |= mask & table[i].z[0];
- r->z[1] |= mask & table[i].z[1];
- r->z[2] |= mask & table[i].z[2];
- r->z[3] |= mask & table[i].z[3];
- r->z[4] |= mask & table[i].z[4];
- r->z[5] |= mask & table[i].z[5];
- r->z[6] |= mask & table[i].z[6];
- r->z[7] |= mask & table[i].z[7];
- r->z[8] |= mask & table[i].z[8];
- r->z[9] |= mask & table[i].z[9];
- r->z[10] |= mask & table[i].z[10];
- r->z[11] |= mask & table[i].z[11];
- r->z[12] |= mask & table[i].z[12];
- r->z[13] |= mask & table[i].z[13];
- r->z[14] |= mask & table[i].z[14];
- r->z[15] |= mask & table[i].z[15];
- r->z[16] |= mask & table[i].z[16];
- r->z[17] |= mask & table[i].z[17];
- r->z[18] |= mask & table[i].z[18];
- r->z[19] |= mask & table[i].z[19];
- r->z[20] |= mask & table[i].z[20];
- }
- }
- #endif /* !WC_NO_CACHE_RESISTANT */
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Window technique of 6 bits. (Add-Sub variation.)
- * Calculate 0..32 times the point. Use function that adds and
- * subtracts the same two points.
- * Recode to add or subtract one of the computed points.
- * Double to push up.
- * NOT a sliding window.
- *
- * r Resulting point.
- * g Point to multiply.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_521_ecc_mulmod_win_add_sub_21(sp_point_521* r, const sp_point_521* g,
- const sp_digit* k, int map, int ct, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_521* t = NULL;
- sp_digit* tmp = NULL;
- #else
- sp_point_521 t[33+2];
- sp_digit tmp[2 * 21 * 6];
- #endif
- sp_point_521* rt = NULL;
- sp_point_521* p = NULL;
- sp_digit* negy;
- int i;
- ecc_recode_521 v[87];
- int err = MP_OKAY;
- /* Constant time used for cache attack resistance implementation. */
- (void)ct;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (sp_point_521*)XMALLOC(sizeof(sp_point_521) *
- (33+2), heap, DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 6,
- heap, DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- rt = t + 33;
- p = t + 33+1;
- /* t[0] = {0, 0, 1} * norm */
- XMEMSET(&t[0], 0, sizeof(t[0]));
- t[0].infinity = 1;
- /* t[1] = {g->x, g->y, g->z} * norm */
- err = sp_521_mod_mul_norm_21(t[1].x, g->x, p521_mod);
- }
- if (err == MP_OKAY) {
- err = sp_521_mod_mul_norm_21(t[1].y, g->y, p521_mod);
- }
- if (err == MP_OKAY) {
- err = sp_521_mod_mul_norm_21(t[1].z, g->z, p521_mod);
- }
- if (err == MP_OKAY) {
- t[1].infinity = 0;
- /* t[2] ... t[32] */
- sp_521_proj_point_dbl_n_store_21(t, &t[ 1], 5, 1, tmp);
- sp_521_proj_point_add_21(&t[ 3], &t[ 2], &t[ 1], tmp);
- sp_521_proj_point_dbl_21(&t[ 6], &t[ 3], tmp);
- sp_521_proj_point_add_sub_21(&t[ 7], &t[ 5], &t[ 6], &t[ 1], tmp);
- sp_521_proj_point_dbl_21(&t[10], &t[ 5], tmp);
- sp_521_proj_point_add_sub_21(&t[11], &t[ 9], &t[10], &t[ 1], tmp);
- sp_521_proj_point_dbl_21(&t[12], &t[ 6], tmp);
- sp_521_proj_point_dbl_21(&t[14], &t[ 7], tmp);
- sp_521_proj_point_add_sub_21(&t[15], &t[13], &t[14], &t[ 1], tmp);
- sp_521_proj_point_dbl_21(&t[18], &t[ 9], tmp);
- sp_521_proj_point_add_sub_21(&t[19], &t[17], &t[18], &t[ 1], tmp);
- sp_521_proj_point_dbl_21(&t[20], &t[10], tmp);
- sp_521_proj_point_dbl_21(&t[22], &t[11], tmp);
- sp_521_proj_point_add_sub_21(&t[23], &t[21], &t[22], &t[ 1], tmp);
- sp_521_proj_point_dbl_21(&t[24], &t[12], tmp);
- sp_521_proj_point_dbl_21(&t[26], &t[13], tmp);
- sp_521_proj_point_add_sub_21(&t[27], &t[25], &t[26], &t[ 1], tmp);
- sp_521_proj_point_dbl_21(&t[28], &t[14], tmp);
- sp_521_proj_point_dbl_21(&t[30], &t[15], tmp);
- sp_521_proj_point_add_sub_21(&t[31], &t[29], &t[30], &t[ 1], tmp);
- negy = t[0].y;
- sp_521_ecc_recode_6_21(k, v);
- i = 86;
- #ifndef WC_NO_CACHE_RESISTANT
- if (ct) {
- sp_521_get_point_33_21(rt, t, v[i].i);
- rt->infinity = !v[i].i;
- }
- else
- #endif
- {
- XMEMCPY(rt, &t[v[i].i], sizeof(sp_point_521));
- }
- for (--i; i>=0; i--) {
- sp_521_proj_point_dbl_n_21(rt, 6, tmp);
- #ifndef WC_NO_CACHE_RESISTANT
- if (ct) {
- sp_521_get_point_33_21(p, t, v[i].i);
- p->infinity = !v[i].i;
- }
- else
- #endif
- {
- XMEMCPY(p, &t[v[i].i], sizeof(sp_point_521));
- }
- sp_521_sub_21(negy, p521_mod, p->y);
- sp_521_norm_21(negy);
- sp_521_cond_copy_21(p->y, negy, (sp_digit)0 - v[i].neg);
- sp_521_proj_point_add_21(rt, rt, p, tmp);
- }
- if (map != 0) {
- sp_521_map_21(r, rt, tmp);
- }
- else {
- XMEMCPY(r, rt, sizeof(sp_point_521));
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- if (tmp != NULL)
- XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef FP_ECC
- #endif /* FP_ECC */
- /* Add two Montgomery form projective points. The second point has a q value of
- * one.
- * Only the first point can be the same pointer as the result point.
- *
- * r Result of addition.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static void sp_521_proj_point_add_qz1_21(sp_point_521* r,
- const sp_point_521* p, const sp_point_521* q, sp_digit* t)
- {
- sp_digit* t2 = t;
- sp_digit* t3 = t + 2*21;
- sp_digit* t6 = t + 4*21;
- sp_digit* t1 = t + 6*21;
- sp_digit* t4 = t + 8*21;
- sp_digit* t5 = t + 10*21;
- /* Calculate values to subtract from P->x and P->y. */
- /* U2 = X2*Z1^2 */
- sp_521_mont_sqr_21(t2, p->z, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t4, t2, p->z, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t2, t2, q->x, p521_mod, p521_mp_mod);
- /* S2 = Y2*Z1^3 */
- sp_521_mont_mul_21(t4, t4, q->y, p521_mod, p521_mp_mod);
- if ((~p->infinity) & (~q->infinity) &
- sp_521_cmp_equal_21(p->x, t2) &
- sp_521_cmp_equal_21(p->y, t4)) {
- sp_521_proj_point_dbl_21(r, p, t);
- }
- else {
- sp_digit* x = t2;
- sp_digit* y = t3;
- sp_digit* z = t6;
- /* H = U2 - X1 */
- sp_521_mont_sub_21(t2, t2, p->x, p521_mod);
- /* R = S2 - Y1 */
- sp_521_mont_sub_21(t4, t4, p->y, p521_mod);
- /* Z3 = H*Z1 */
- sp_521_mont_mul_21(z, p->z, t2, p521_mod, p521_mp_mod);
- /* X3 = R^2 - H^3 - 2*X1*H^2 */
- sp_521_mont_sqr_21(t1, t2, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t3, p->x, t1, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t1, t1, t2, p521_mod, p521_mp_mod);
- sp_521_mont_sqr_21(t2, t4, p521_mod, p521_mp_mod);
- sp_521_mont_sub_21(t2, t2, t1, p521_mod);
- sp_521_mont_dbl_21(t5, t3, p521_mod);
- sp_521_mont_sub_21(x, t2, t5, p521_mod);
- /* Y3 = R*(X1*H^2 - X3) - Y1*H^3 */
- sp_521_mont_sub_21(t3, t3, x, p521_mod);
- sp_521_mont_mul_21(t3, t3, t4, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t1, t1, p->y, p521_mod, p521_mp_mod);
- sp_521_mont_sub_21(y, t3, t1, p521_mod);
- {
- int i;
- sp_digit maskp = 0 - (q->infinity & (!p->infinity));
- sp_digit maskq = 0 - (p->infinity & (!q->infinity));
- sp_digit maskt = ~(maskp | maskq);
- sp_digit inf = (sp_digit)(p->infinity & q->infinity);
- for (i = 0; i < 21; i++) {
- r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
- (x[i] & maskt);
- }
- for (i = 0; i < 21; i++) {
- r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
- (y[i] & maskt);
- }
- for (i = 0; i < 21; i++) {
- r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
- (z[i] & maskt);
- }
- r->z[0] |= inf;
- r->infinity = (word32)inf;
- }
- }
- }
- #ifdef FP_ECC
- /* Convert the projective point to affine.
- * Ordinates are in Montgomery form.
- *
- * a Point to convert.
- * t Temporary data.
- */
- static void sp_521_proj_to_affine_21(sp_point_521* a, sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2 * 21;
- sp_digit* tmp = t + 4 * 21;
- sp_521_mont_inv_21(t1, a->z, tmp);
- sp_521_mont_sqr_21(t2, t1, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(t1, t2, t1, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(a->x, a->x, t2, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(a->y, a->y, t1, p521_mod, p521_mp_mod);
- XMEMCPY(a->z, p521_norm_mod, sizeof(p521_norm_mod));
- }
- /* Generate the pre-computed table of points for the base point.
- *
- * width = 8
- * 256 entries
- * 65 bits between
- *
- * a The base point.
- * table Place to store generated point data.
- * tmp Temporary data.
- * heap Heap to use for allocation.
- */
- static int sp_521_gen_stripe_table_21(const sp_point_521* a,
- sp_table_entry_521* table, sp_digit* tmp, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_521* t = NULL;
- #else
- sp_point_521 t[3];
- #endif
- sp_point_521* s1 = NULL;
- sp_point_521* s2 = NULL;
- int i;
- int j;
- int err = MP_OKAY;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 3, heap,
- DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- s1 = t + 1;
- s2 = t + 2;
- err = sp_521_mod_mul_norm_21(t->x, a->x, p521_mod);
- }
- if (err == MP_OKAY) {
- err = sp_521_mod_mul_norm_21(t->y, a->y, p521_mod);
- }
- if (err == MP_OKAY) {
- err = sp_521_mod_mul_norm_21(t->z, a->z, p521_mod);
- }
- if (err == MP_OKAY) {
- t->infinity = 0;
- sp_521_proj_to_affine_21(t, tmp);
- XMEMCPY(s1->z, p521_norm_mod, sizeof(p521_norm_mod));
- s1->infinity = 0;
- XMEMCPY(s2->z, p521_norm_mod, sizeof(p521_norm_mod));
- s2->infinity = 0;
- /* table[0] = {0, 0, infinity} */
- XMEMSET(&table[0], 0, sizeof(sp_table_entry_521));
- /* table[1] = Affine version of 'a' in Montgomery form */
- XMEMCPY(table[1].x, t->x, sizeof(table->x));
- XMEMCPY(table[1].y, t->y, sizeof(table->y));
- for (i=1; i<8; i++) {
- sp_521_proj_point_dbl_n_21(t, 66, tmp);
- sp_521_proj_to_affine_21(t, tmp);
- XMEMCPY(table[1<<i].x, t->x, sizeof(table->x));
- XMEMCPY(table[1<<i].y, t->y, sizeof(table->y));
- }
- for (i=1; i<8; i++) {
- XMEMCPY(s1->x, table[1<<i].x, sizeof(table->x));
- XMEMCPY(s1->y, table[1<<i].y, sizeof(table->y));
- for (j=(1<<i)+1; j<(1<<(i+1)); j++) {
- XMEMCPY(s2->x, table[j-(1<<i)].x, sizeof(table->x));
- XMEMCPY(s2->y, table[j-(1<<i)].y, sizeof(table->y));
- sp_521_proj_point_add_qz1_21(t, s1, s2, tmp);
- sp_521_proj_to_affine_21(t, tmp);
- XMEMCPY(table[j].x, t->x, sizeof(table->x));
- XMEMCPY(table[j].y, t->y, sizeof(table->y));
- }
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif /* FP_ECC */
- #ifndef WC_NO_CACHE_RESISTANT
- /* Touch each possible entry that could be being copied.
- *
- * r Point to copy into.
- * table Table - start of the entries to access
- * idx Index of entry to retrieve.
- */
- static void sp_521_get_entry_256_21(sp_point_521* r,
- const sp_table_entry_521* table, int idx)
- {
- int i;
- sp_digit mask;
- r->x[0] = 0;
- r->x[1] = 0;
- r->x[2] = 0;
- r->x[3] = 0;
- r->x[4] = 0;
- r->x[5] = 0;
- r->x[6] = 0;
- r->x[7] = 0;
- r->x[8] = 0;
- r->x[9] = 0;
- r->x[10] = 0;
- r->x[11] = 0;
- r->x[12] = 0;
- r->x[13] = 0;
- r->x[14] = 0;
- r->x[15] = 0;
- r->x[16] = 0;
- r->x[17] = 0;
- r->x[18] = 0;
- r->x[19] = 0;
- r->x[20] = 0;
- r->y[0] = 0;
- r->y[1] = 0;
- r->y[2] = 0;
- r->y[3] = 0;
- r->y[4] = 0;
- r->y[5] = 0;
- r->y[6] = 0;
- r->y[7] = 0;
- r->y[8] = 0;
- r->y[9] = 0;
- r->y[10] = 0;
- r->y[11] = 0;
- r->y[12] = 0;
- r->y[13] = 0;
- r->y[14] = 0;
- r->y[15] = 0;
- r->y[16] = 0;
- r->y[17] = 0;
- r->y[18] = 0;
- r->y[19] = 0;
- r->y[20] = 0;
- for (i = 1; i < 256; i++) {
- mask = 0 - (i == idx);
- r->x[0] |= mask & table[i].x[0];
- r->x[1] |= mask & table[i].x[1];
- r->x[2] |= mask & table[i].x[2];
- r->x[3] |= mask & table[i].x[3];
- r->x[4] |= mask & table[i].x[4];
- r->x[5] |= mask & table[i].x[5];
- r->x[6] |= mask & table[i].x[6];
- r->x[7] |= mask & table[i].x[7];
- r->x[8] |= mask & table[i].x[8];
- r->x[9] |= mask & table[i].x[9];
- r->x[10] |= mask & table[i].x[10];
- r->x[11] |= mask & table[i].x[11];
- r->x[12] |= mask & table[i].x[12];
- r->x[13] |= mask & table[i].x[13];
- r->x[14] |= mask & table[i].x[14];
- r->x[15] |= mask & table[i].x[15];
- r->x[16] |= mask & table[i].x[16];
- r->x[17] |= mask & table[i].x[17];
- r->x[18] |= mask & table[i].x[18];
- r->x[19] |= mask & table[i].x[19];
- r->x[20] |= mask & table[i].x[20];
- r->y[0] |= mask & table[i].y[0];
- r->y[1] |= mask & table[i].y[1];
- r->y[2] |= mask & table[i].y[2];
- r->y[3] |= mask & table[i].y[3];
- r->y[4] |= mask & table[i].y[4];
- r->y[5] |= mask & table[i].y[5];
- r->y[6] |= mask & table[i].y[6];
- r->y[7] |= mask & table[i].y[7];
- r->y[8] |= mask & table[i].y[8];
- r->y[9] |= mask & table[i].y[9];
- r->y[10] |= mask & table[i].y[10];
- r->y[11] |= mask & table[i].y[11];
- r->y[12] |= mask & table[i].y[12];
- r->y[13] |= mask & table[i].y[13];
- r->y[14] |= mask & table[i].y[14];
- r->y[15] |= mask & table[i].y[15];
- r->y[16] |= mask & table[i].y[16];
- r->y[17] |= mask & table[i].y[17];
- r->y[18] |= mask & table[i].y[18];
- r->y[19] |= mask & table[i].y[19];
- r->y[20] |= mask & table[i].y[20];
- }
- }
- #endif /* !WC_NO_CACHE_RESISTANT */
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Stripe implementation.
- * Pre-generated: 2^0, 2^65, ...
- * Pre-generated: products of all combinations of above.
- * 8 doubles and adds (with qz=1)
- *
- * r Resulting point.
- * k Scalar to multiply by.
- * table Pre-computed table.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_521_ecc_mulmod_stripe_21(sp_point_521* r, const sp_point_521* g,
- const sp_table_entry_521* table, const sp_digit* k, int map,
- int ct, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_521* rt = NULL;
- sp_digit* t = NULL;
- #else
- sp_point_521 rt[2];
- sp_digit t[2 * 21 * 6];
- #endif
- sp_point_521* p = NULL;
- int i;
- int j;
- int y;
- int x;
- int err = MP_OKAY;
- (void)g;
- /* Constant time used for cache attack resistance implementation. */
- (void)ct;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- rt = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (rt == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 6, heap,
- DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = rt + 1;
- XMEMCPY(p->z, p521_norm_mod, sizeof(p521_norm_mod));
- XMEMCPY(rt->z, p521_norm_mod, sizeof(p521_norm_mod));
- y = 0;
- x = 65;
- for (j=0; j<8 && x<521; j++) {
- y |= (int)(((k[x / 25] >> (x % 25)) & 1) << j);
- x += 66;
- }
- #ifndef WC_NO_CACHE_RESISTANT
- if (ct) {
- sp_521_get_entry_256_21(rt, table, y);
- } else
- #endif
- {
- XMEMCPY(rt->x, table[y].x, sizeof(table[y].x));
- XMEMCPY(rt->y, table[y].y, sizeof(table[y].y));
- }
- rt->infinity = !y;
- for (i=64; i>=0; i--) {
- y = 0;
- x = i;
- for (j=0; j<8 && x<521; j++) {
- y |= (int)(((k[x / 25] >> (x % 25)) & 1) << j);
- x += 66;
- }
- sp_521_proj_point_dbl_21(rt, rt, t);
- #ifndef WC_NO_CACHE_RESISTANT
- if (ct) {
- sp_521_get_entry_256_21(p, table, y);
- }
- else
- #endif
- {
- XMEMCPY(p->x, table[y].x, sizeof(table[y].x));
- XMEMCPY(p->y, table[y].y, sizeof(table[y].y));
- }
- p->infinity = !y;
- sp_521_proj_point_add_qz1_21(rt, rt, p, t);
- }
- if (map != 0) {
- sp_521_map_21(r, rt, t);
- }
- else {
- XMEMCPY(r, rt, sizeof(sp_point_521));
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- if (rt != NULL)
- XFREE(rt, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef FP_ECC
- #ifndef FP_ENTRIES
- #define FP_ENTRIES 16
- #endif
- /* Cache entry - holds precomputation tables for a point. */
- typedef struct sp_cache_521_t {
- /* X ordinate of point that table was generated from. */
- sp_digit x[21];
- /* Y ordinate of point that table was generated from. */
- sp_digit y[21];
- /* Precomputation table for point. */
- sp_table_entry_521 table[256];
- /* Count of entries in table. */
- uint32_t cnt;
- /* Point and table set in entry. */
- int set;
- } sp_cache_521_t;
- /* Cache of tables. */
- static THREAD_LS_T sp_cache_521_t sp_cache_521[FP_ENTRIES];
- /* Index of last entry in cache. */
- static THREAD_LS_T int sp_cache_521_last = -1;
- /* Cache has been initialized. */
- static THREAD_LS_T int sp_cache_521_inited = 0;
- #ifndef HAVE_THREAD_LS
- static volatile int initCacheMutex_521 = 0;
- static wolfSSL_Mutex sp_cache_521_lock;
- #endif
- /* Get the cache entry for the point.
- *
- * g [in] Point scalar multiplying.
- * cache [out] Cache table to use.
- */
- static void sp_ecc_get_cache_521(const sp_point_521* g, sp_cache_521_t** cache)
- {
- int i;
- int j;
- uint32_t least;
- if (sp_cache_521_inited == 0) {
- for (i=0; i<FP_ENTRIES; i++) {
- sp_cache_521[i].set = 0;
- }
- sp_cache_521_inited = 1;
- }
- /* Compare point with those in cache. */
- for (i=0; i<FP_ENTRIES; i++) {
- if (!sp_cache_521[i].set)
- continue;
- if (sp_521_cmp_equal_21(g->x, sp_cache_521[i].x) &
- sp_521_cmp_equal_21(g->y, sp_cache_521[i].y)) {
- sp_cache_521[i].cnt++;
- break;
- }
- }
- /* No match. */
- if (i == FP_ENTRIES) {
- /* Find empty entry. */
- i = (sp_cache_521_last + 1) % FP_ENTRIES;
- for (; i != sp_cache_521_last; i=(i+1)%FP_ENTRIES) {
- if (!sp_cache_521[i].set) {
- break;
- }
- }
- /* Evict least used. */
- if (i == sp_cache_521_last) {
- least = sp_cache_521[0].cnt;
- for (j=1; j<FP_ENTRIES; j++) {
- if (sp_cache_521[j].cnt < least) {
- i = j;
- least = sp_cache_521[i].cnt;
- }
- }
- }
- XMEMCPY(sp_cache_521[i].x, g->x, sizeof(sp_cache_521[i].x));
- XMEMCPY(sp_cache_521[i].y, g->y, sizeof(sp_cache_521[i].y));
- sp_cache_521[i].set = 1;
- sp_cache_521[i].cnt = 1;
- }
- *cache = &sp_cache_521[i];
- sp_cache_521_last = i;
- }
- #endif /* FP_ECC */
- /* Multiply the base point of P521 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * r Resulting point.
- * g Point to multiply.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_521_ecc_mulmod_21(sp_point_521* r, const sp_point_521* g,
- const sp_digit* k, int map, int ct, void* heap)
- {
- #ifndef FP_ECC
- return sp_521_ecc_mulmod_win_add_sub_21(r, g, k, map, ct, heap);
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* tmp;
- #else
- sp_digit tmp[2 * 21 * 6];
- #endif
- sp_cache_521_t* cache;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 6, heap, DYNAMIC_TYPE_ECC);
- if (tmp == NULL) {
- err = MEMORY_E;
- }
- #endif
- #ifndef HAVE_THREAD_LS
- if (err == MP_OKAY) {
- if (initCacheMutex_521 == 0) {
- wc_InitMutex(&sp_cache_521_lock);
- initCacheMutex_521 = 1;
- }
- if (wc_LockMutex(&sp_cache_521_lock) != 0) {
- err = BAD_MUTEX_E;
- }
- }
- #endif /* HAVE_THREAD_LS */
- if (err == MP_OKAY) {
- sp_ecc_get_cache_521(g, &cache);
- if (cache->cnt == 2)
- sp_521_gen_stripe_table_21(g, cache->table, tmp, heap);
- #ifndef HAVE_THREAD_LS
- wc_UnLockMutex(&sp_cache_521_lock);
- #endif /* HAVE_THREAD_LS */
- if (cache->cnt < 2) {
- err = sp_521_ecc_mulmod_win_add_sub_21(r, g, k, map, ct, heap);
- }
- else {
- err = sp_521_ecc_mulmod_stripe_21(r, g, cache->table, k,
- map, ct, heap);
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- #endif
- }
- #endif
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * p Point to multiply.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_521(const mp_int* km, const ecc_point* gm, ecc_point* r,
- int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_521* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_521 point[1];
- sp_digit k[21];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_521*)XMALLOC(sizeof(sp_point_521), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_521_from_mp(k, 21, km);
- sp_521_point_from_ecc_point_21(point, gm);
- err = sp_521_ecc_mulmod_21(point, point, k, map, 1, heap);
- }
- if (err == MP_OKAY) {
- err = sp_521_point_to_ecc_point_21(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Multiply the point by the scalar, add point a and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * p Point to multiply.
- * am Point to add to scalar multiply result.
- * inMont Point to add is in montgomery form.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_add_521(const mp_int* km, const ecc_point* gm,
- const ecc_point* am, int inMont, ecc_point* r, int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_521* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_521 point[2];
- sp_digit k[21 + 21 * 2 * 6];
- #endif
- sp_point_521* addP = NULL;
- sp_digit* tmp = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(
- sizeof(sp_digit) * (21 + 21 * 2 * 6), heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- addP = point + 1;
- tmp = k + 21;
- sp_521_from_mp(k, 21, km);
- sp_521_point_from_ecc_point_21(point, gm);
- sp_521_point_from_ecc_point_21(addP, am);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_521_mod_mul_norm_21(addP->x, addP->x, p521_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_521_mod_mul_norm_21(addP->y, addP->y, p521_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_521_mod_mul_norm_21(addP->z, addP->z, p521_mod);
- }
- if (err == MP_OKAY) {
- err = sp_521_ecc_mulmod_21(point, point, k, 0, 0, heap);
- }
- if (err == MP_OKAY) {
- sp_521_proj_point_add_21(point, point, addP, tmp);
- if (map) {
- sp_521_map_21(point, point, tmp);
- }
- err = sp_521_point_to_ecc_point_21(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Multiply the base point of P521 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * r Resulting point.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_521_ecc_mulmod_base_21(sp_point_521* r, const sp_digit* k,
- int map, int ct, void* heap)
- {
- /* No pre-computed values. */
- return sp_521_ecc_mulmod_21(r, &p521_base, k, map, ct, heap);
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- static int sp_521_ecc_mulmod_base_21_nb(sp_ecc_ctx_t* sp_ctx, sp_point_521* r,
- const sp_digit* k, int map, int ct, void* heap)
- {
- /* No pre-computed values. */
- return sp_521_ecc_mulmod_21_nb(sp_ctx, r, &p521_base, k, map, ct, heap);
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #else
- /* Striping precomputation table.
- * 8 points combined into a table of 256 points.
- * Distance of 66 between points.
- */
- static const sp_table_entry_521 p521_table[256] = {
- /* 0 */
- { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } },
- /* 1 */
- { { 0x0e5bd66,0x13f18e1,0x0a6fe5f,0x030ad48,0x1348b3c,0x1fd46f1,
- 0x1049e8b,0x051fc3b,0x1efe759,0x0a5af3b,0x14f6ea8,0x1ec0d69,
- 0x01f828a,0x029fda9,0x19204e4,0x1688538,0x1662395,0x0cf1f65,
- 0x1013a73,0x1c0d6e0,0x00c6858 },
- { 0x1d16650,0x14a3b4f,0x090222f,0x0d44e58,0x153c708,0x1683b09,
- 0x0e404fe,0x0818aa1,0x15ef426,0x1f7394c,0x1998b25,0x1a2e4e7,
- 0x0817afb,0x0bcda23,0x1d51125,0x037b331,0x1b42c7d,0x02e452f,
- 0x08ef001,0x12d4f13,0x0118392 } },
- /* 2 */
- { { 0x10ccb51,0x0c33387,0x1d2a00e,0x026ca92,0x187e1d0,0x194f6cd,
- 0x13c86ca,0x06efeb1,0x0a3add3,0x16074d5,0x023fec1,0x0ba1d3a,
- 0x07f13b3,0x0b3b0b1,0x02fd132,0x07de9bb,0x014758a,0x1d250c6,
- 0x0010eb6,0x0aedbb4,0x013e96a },
- { 0x12d95a3,0x1127c31,0x00a4af7,0x0298a49,0x19f15ef,0x0d5d0cb,
- 0x018fa6f,0x00f55bb,0x0a962b7,0x0f029fa,0x1636637,0x05bc284,
- 0x1cc598a,0x030e11a,0x0968674,0x1a6593f,0x110e8ff,0x0076a32,
- 0x1de33ab,0x153ba3d,0x01852ae } },
- /* 3 */
- { { 0x0af1fe3,0x08eec75,0x14af42a,0x0488016,0x0db3866,0x15f8690,
- 0x01aa486,0x081fed4,0x0a768c9,0x00943cd,0x1bb0de5,0x1579343,
- 0x1cf3791,0x139c1a1,0x04fef98,0x1578392,0x0abe222,0x1b945a1,
- 0x0e7bcc4,0x18150c5,0x0157874 },
- { 0x0f03d49,0x078c273,0x180c2b2,0x083c917,0x09c357e,0x0e5ef7d,
- 0x17bce05,0x078059c,0x15fd8dc,0x120e3d5,0x0c4275e,0x0f93f5d,
- 0x184bef6,0x1427a69,0x0633286,0x0155c5f,0x07d672f,0x1bf01ea,
- 0x15625a2,0x0356b03,0x000724b } },
- /* 4 */
- { { 0x19314e0,0x196a5ef,0x0ab2413,0x1bcf401,0x1aae850,0x177d81e,
- 0x0420d60,0x1a4f246,0x1ec7fe6,0x078e141,0x15d2a20,0x132c333,
- 0x072d5b3,0x1ca803f,0x0482e6c,0x1e07cbe,0x1734773,0x118691b,
- 0x0de2da1,0x0324e67,0x0121f4c },
- { 0x08b51f0,0x1ffb6fd,0x17c3c40,0x0281c57,0x0e7afb5,0x12a0b8d,
- 0x0e03a0c,0x12a2260,0x0cda10d,0x01a80dc,0x0a3007a,0x0e3c9e7,
- 0x0910577,0x1640383,0x14865aa,0x070431e,0x0aaa562,0x09b04d8,
- 0x12829fc,0x0af20d2,0x01db8c2 } },
- /* 5 */
- { { 0x0c0958d,0x1b86659,0x0e1cc00,0x0cd34f6,0x09aef16,0x064d9c4,
- 0x1cf3d20,0x0924f25,0x0fab3e1,0x194c279,0x12259c2,0x086ca0e,
- 0x0a9751e,0x1699ed9,0x0ae6756,0x09b5539,0x132b44a,0x0a6ca2e,
- 0x1b1dcc9,0x1994a42,0x000aa26 },
- { 0x1e66d18,0x10ea0fc,0x19eb36f,0x0d5422f,0x00aeef9,0x186925c,
- 0x0528b76,0x17e0a64,0x15c98b7,0x0e7d913,0x0f2121b,0x086dbfa,
- 0x0c613e7,0x1e526a9,0x1c0fe84,0x03cc8dc,0x1771855,0x0864714,
- 0x1ea149f,0x121d597,0x01c6f5e } },
- /* 6 */
- { { 0x0b2d58f,0x178f3a5,0x000a8b0,0x185412f,0x01bbf82,0x05dbb56,
- 0x1ac91dc,0x17acb07,0x15667f7,0x1276cf6,0x1a25fa3,0x1b0dfb2,
- 0x15d8c01,0x1fdf078,0x0e5684c,0x1b962cc,0x19dd99c,0x0a8f279,
- 0x0837ac9,0x108494e,0x0082de0 },
- { 0x0ea91af,0x129d930,0x1f765ea,0x0ef463b,0x04384af,0x084ddf5,
- 0x1c8e573,0x1c39b05,0x0f30058,0x0be0ced,0x1e3a5e6,0x018dcb8,
- 0x05443b6,0x0bad8c2,0x0ba6d7d,0x19c2df5,0x13308c2,0x12e7437,
- 0x1d8fea1,0x19cb1e9,0x0073983 } },
- /* 7 */
- { { 0x017609d,0x09898c1,0x1002bba,0x084825f,0x1f8a9dd,0x163194b,
- 0x19930a1,0x0bdc22f,0x07bf1c6,0x01bc16b,0x0fbb973,0x09b71a0,
- 0x19e8c14,0x0d5c9bc,0x0b2b2ca,0x1098e03,0x1b5b077,0x190af58,
- 0x0bff361,0x013f503,0x00f82c4 },
- { 0x18139a4,0x09bb31b,0x0a4c01f,0x176ab7d,0x06d969e,0x045e4ee,
- 0x035bda3,0x0858f8c,0x15f93f2,0x0274230,0x1c5f661,0x1454e82,
- 0x0e8461c,0x185f890,0x04c39e7,0x133af1d,0x0026b56,0x170aaa5,
- 0x093edb7,0x18ee04d,0x007de69 } },
- /* 8 */
- { { 0x1ee80d7,0x08dd825,0x19a586d,0x1eed25b,0x0e1f6a1,0x15e1de8,
- 0x191b283,0x1e106f3,0x1930644,0x005ffd3,0x16c1dc7,0x170e721,
- 0x0997c67,0x1d6d0e7,0x170cf87,0x16a2412,0x0ddac54,0x11e2805,
- 0x0c46195,0x03a6c1a,0x00b0c23 },
- { 0x1bcab2f,0x0494c1c,0x082818a,0x00c9ba4,0x00c0678,0x1ee1506,
- 0x18211d8,0x1c60c5e,0x11938c3,0x074ed39,0x11bae62,0x1e5aa5c,
- 0x1d69be8,0x152ef07,0x17234b5,0x01c4dca,0x163db2c,0x1f9d1fe,
- 0x192ffd5,0x18db3e3,0x014a899 } },
- /* 9 */
- { { 0x005ce88,0x171d0f6,0x080a7fd,0x0d6d5fa,0x18fc249,0x1f5803f,
- 0x081ddbe,0x080173a,0x1eebded,0x087605e,0x1c03ded,0x0e84d26,
- 0x0eaef97,0x1fbd818,0x1b8de84,0x03eef00,0x1171b90,0x1ae78be,
- 0x0a56b83,0x0dcbbf9,0x0159903 },
- { 0x00e8e0c,0x1b25a80,0x17e402b,0x080df69,0x13f2ae0,0x0f91dd6,
- 0x1699d12,0x152bec3,0x0255b25,0x0548c21,0x0f19403,0x07cd1c6,
- 0x01fa6af,0x016013e,0x0dcf003,0x0814a28,0x1a19728,0x04cf9e6,
- 0x03a1090,0x0c56f3a,0x00e798c } },
- /* 10 */
- { { 0x04d0f28,0x1e25457,0x01bba31,0x1eacda0,0x1a8a55e,0x1720119,
- 0x17d9419,0x0ec6f30,0x15d321b,0x0f6655a,0x146c1e3,0x0dad706,
- 0x0b38b96,0x0beaa45,0x022794d,0x156165d,0x02fe631,0x1bd4f47,
- 0x1d714de,0x0c1f2bc,0x005945c },
- { 0x067d79c,0x13e9a3c,0x0602f28,0x0b03903,0x1f460b1,0x15c628b,
- 0x166ae5d,0x1b2fd85,0x061b91e,0x0682243,0x07457ff,0x144bb38,
- 0x19730a7,0x1ca64ed,0x0b3c967,0x0b47714,0x1875dec,0x1473c25,
- 0x1944c7b,0x0a4c0e7,0x0004062 } },
- /* 11 */
- { { 0x1631bba,0x0272e78,0x14937b8,0x1e2ade8,0x00e6c1d,0x0184c82,
- 0x0fcc393,0x18e0cc0,0x16b6abe,0x1b24d21,0x053dbb6,0x0139ed7,
- 0x15354f5,0x1b5bf05,0x1b3d1a4,0x0dba4ff,0x07eba1e,0x153d388,
- 0x0251432,0x1db58ad,0x0022889 },
- { 0x05596f2,0x148b768,0x0e2e404,0x1960479,0x03901da,0x0a55f0f,
- 0x14fb39f,0x0264a03,0x0a9c903,0x140a820,0x051b42c,0x07e38da,
- 0x169dbcd,0x1a770c4,0x08756c5,0x04df6df,0x161a912,0x024d750,
- 0x02a0261,0x19ddbf7,0x0154754 } },
- /* 12 */
- { { 0x070b2f0,0x113d821,0x135ed93,0x117e9ae,0x04b34e4,0x13915d4,
- 0x0fa2c30,0x039630d,0x19ff9b7,0x0a52c4e,0x15af13d,0x09be69f,
- 0x1d9887e,0x1a097a4,0x119a7f5,0x13a2d6f,0x1bb77f8,0x020046c,
- 0x040b81d,0x1284d79,0x01cfafb },
- { 0x02935ca,0x07968b3,0x111b329,0x0732fb9,0x0847c70,0x1e3cfc1,
- 0x1a794d4,0x1e98113,0x15215f0,0x16c6cc4,0x046e767,0x1179012,
- 0x0359cf0,0x16f13d5,0x00d5039,0x0641a96,0x03ef69e,0x1a97a6b,
- 0x13bc64e,0x02ffad2,0x00e6a02 } },
- /* 13 */
- { { 0x0214780,0x0f313ba,0x07aaddf,0x0e40e8b,0x0a06681,0x03fd80e,
- 0x1e6dfa7,0x18fef0a,0x1d6d4b7,0x0aaa460,0x12a8e79,0x03214cd,
- 0x0f45756,0x0c282d2,0x0506c0e,0x0c9d7f0,0x17c4c88,0x1d2e506,
- 0x184a74f,0x15f2a13,0x0053bf8 },
- { 0x1285092,0x194ec42,0x197ef26,0x151ddab,0x02f31da,0x0c555cc,
- 0x1a43bd8,0x1a33866,0x0d2626e,0x1770a7a,0x1638243,0x0e160fd,
- 0x0042295,0x039b682,0x1de483a,0x1a03a32,0x1ffede7,0x1a3f712,
- 0x11eadce,0x0438757,0x01b93c9 } },
- /* 14 */
- { { 0x08b2b14,0x103e650,0x11fc2da,0x177e2e9,0x0a978de,0x0659525,
- 0x0e0a310,0x0705239,0x090adc8,0x0e3c139,0x1b779a5,0x1655183,
- 0x0008da8,0x087de91,0x073acbe,0x1729ce8,0x1e5322d,0x12fc4e4,
- 0x1cf1523,0x0cc10b6,0x007d182 },
- { 0x1efd012,0x1fc1516,0x1fbda7a,0x08b42a6,0x01ecb09,0x18408e8,
- 0x1d4d4fb,0x1d478aa,0x1b2bd4d,0x0e44153,0x05a7216,0x12e4f7f,
- 0x1b00a1f,0x0592d68,0x0eb7d78,0x0c00a0c,0x106f253,0x0260ff9,
- 0x044bf86,0x02b7d88,0x01178e5 } },
- /* 15 */
- { { 0x1e3d3d5,0x03c3ff7,0x089e4c5,0x0b3b12e,0x09e76f6,0x1b567a9,
- 0x1fb4782,0x1b22b8e,0x01c5e8d,0x015bd90,0x199ebe7,0x11e2bea,
- 0x1478803,0x19abb77,0x031d9bf,0x02a95e7,0x1c80040,0x1cf8311,
- 0x1a20ed4,0x078897b,0x009647d },
- { 0x01b21a4,0x1ab1c6f,0x0704c81,0x02ae210,0x1b6399c,0x001accd,
- 0x1819dd7,0x1ea645c,0x1ade60c,0x03fef3f,0x0641657,0x0881df8,
- 0x001b195,0x0ebd9cb,0x1c2b233,0x14e7cfc,0x03d6a6f,0x02552d4,
- 0x0c201d9,0x119f58c,0x004234f } },
- /* 16 */
- { { 0x06492ad,0x0f38d14,0x0b13b8c,0x08cbf0d,0x08f3de4,0x189e5a0,
- 0x0035369,0x009d12e,0x1a86b71,0x1687af4,0x0b0585e,0x1c9e4ae,
- 0x19d9a62,0x12e60e4,0x1488fbc,0x05c18ef,0x1613b96,0x0f6ffb4,
- 0x0762c81,0x1a51e70,0x008e818 },
- { 0x0df1f60,0x118e7c6,0x183dc84,0x16ce2ee,0x0b640f2,0x02d201c,
- 0x1be3381,0x13f7ce4,0x0037068,0x11142ee,0x08372d0,0x1f1ee5d,
- 0x037196b,0x0404331,0x1bde157,0x1fc9142,0x1c7c326,0x06a70cf,
- 0x1da2fd1,0x190add1,0x013efdb } },
- /* 17 */
- { { 0x0a3ace5,0x06827f3,0x070778d,0x1d12c32,0x0dbb603,0x0f687a0,
- 0x0001fdd,0x16b69b8,0x095b259,0x0f0735e,0x17c0805,0x14cc4c2,
- 0x18dfbcb,0x098f51f,0x1b150cf,0x1f04965,0x0e4103f,0x1215858,
- 0x1200ccb,0x02a0c18,0x0111193 },
- { 0x05452f1,0x1f51402,0x1cee665,0x1ee3e7e,0x00b678c,0x1499474,
- 0x0f77107,0x04694a5,0x0e6af1c,0x1f932b7,0x08579ed,0x0b73688,
- 0x0bc4380,0x1852014,0x09cd3cb,0x0edc475,0x0794224,0x1f1e392,
- 0x031833d,0x05d160d,0x01f16dc } },
- /* 18 */
- { { 0x1fc0de5,0x1d737ff,0x1c92f37,0x1f5694b,0x0801814,0x15546ed,
- 0x0d963a8,0x0823202,0x1da4f04,0x1d8e57a,0x001847c,0x19b6682,
- 0x08f24b9,0x0b7067c,0x10c93b6,0x0b90491,0x1342305,0x0a5bf51,
- 0x0424b8a,0x06b6c91,0x01d36e8 },
- { 0x1372f27,0x1bd7383,0x0669fad,0x150775c,0x0779b4f,0x014f5da,
- 0x16b8595,0x07f42eb,0x0fc03ef,0x0176133,0x071f125,0x0d52d32,
- 0x1c0e5fc,0x0b129e9,0x1d8793d,0x1ce7141,0x158de74,0x0bd08ff,
- 0x0937a46,0x0499a8c,0x0002605 } },
- /* 19 */
- { { 0x1342e08,0x0e86500,0x02bd16d,0x016e93e,0x109ed4f,0x14ec022,
- 0x00b6594,0x139d6aa,0x16d8035,0x15843ed,0x0120017,0x150e987,
- 0x04eaa66,0x03ad43c,0x1cb1e83,0x062fdd2,0x0216874,0x0460b4f,
- 0x1727efd,0x0aadc1c,0x014f81c },
- { 0x120674d,0x05895f0,0x02b09ac,0x12433e0,0x06bf09b,0x0c65536,
- 0x1ccb759,0x13c3c3c,0x18292d9,0x1b8e2d7,0x16fe031,0x0a524bf,
- 0x1d5d813,0x1b3361b,0x06f5e60,0x1ed01cc,0x06a1d0d,0x1c6d64a,
- 0x0e7c260,0x19ed098,0x009f58d } },
- /* 20 */
- { { 0x17dc837,0x148813d,0x0710505,0x096a1d6,0x0d71975,0x133a0d9,
- 0x024ab5f,0x07009e8,0x1bc824a,0x0853f8e,0x082f3c7,0x00ad91c,
- 0x10570b2,0x0d0c0ed,0x0cb8ee7,0x0a114ce,0x16e0a7b,0x13c4031,
- 0x07dc124,0x1ea0599,0x004511a },
- { 0x16f4ffa,0x106ca62,0x03e82e0,0x0589e18,0x1c6205a,0x1030350,
- 0x0f53a86,0x1f733e6,0x079b316,0x1d5b233,0x0903f06,0x10a5c9e,
- 0x0305aa0,0x096bee2,0x14e6de2,0x180e644,0x11206e3,0x181b2bf,
- 0x1b6d98c,0x00a5019,0x0059284 } },
- /* 21 */
- { { 0x197760c,0x04388a1,0x141a434,0x0c393f9,0x19020b7,0x1f127bd,
- 0x11fea61,0x1418ffd,0x0522335,0x119dc50,0x0728403,0x15fb5c4,
- 0x0073dbe,0x1d81911,0x0301828,0x0bb4c8b,0x1b8ee14,0x1cdce39,
- 0x1ffd8bb,0x0cc3ca4,0x00aa31c },
- { 0x1430b5e,0x0c75840,0x15a6bd4,0x14a1dc1,0x132f9ce,0x175f45d,
- 0x0c2d6a9,0x1121d9b,0x09fe1d6,0x18afbf9,0x0732687,0x11e634b,
- 0x03ce5d6,0x0455953,0x159e650,0x19ca9e9,0x0ef4347,0x1742d8e,
- 0x01b41dd,0x0847805,0x01768ff } },
- /* 22 */
- { { 0x1dcec23,0x0082619,0x1466159,0x179ba0e,0x1af0d61,0x07984d5,
- 0x0bd4531,0x02a90db,0x1de4887,0x00de47a,0x0e6e8fc,0x15e3a6a,
- 0x0cddd6b,0x1d1df47,0x1f99974,0x10cbf76,0x0c3cb5d,0x07c8ced,
- 0x0485268,0x007b47e,0x0173fe2 },
- { 0x0d4a3d1,0x174d0bc,0x1b6010e,0x110ca62,0x04d5cf5,0x0bb231d,
- 0x09b0104,0x089d5e0,0x1f84afa,0x0b631c7,0x0908b4c,0x072fffd,
- 0x13512f2,0x13115b0,0x07aa811,0x00d1ad2,0x0a397e7,0x02442b7,
- 0x1286ccf,0x0365c7e,0x01b542d } },
- /* 23 */
- { { 0x1487402,0x196af0f,0x1757d46,0x0cf55e3,0x036016e,0x14e1057,
- 0x1c7d5b6,0x1fa3d67,0x1ece45b,0x0dbe9b0,0x0a78609,0x0c6604f,
- 0x0942db0,0x14208b2,0x08a1ddf,0x0e7a17e,0x0c44587,0x07afe70,
- 0x175e97c,0x062a3a5,0x001fb2b },
- { 0x1aa096a,0x1b9f47d,0x01e0409,0x17c1275,0x152726e,0x1f8bc08,
- 0x1341cb1,0x0ecb8a7,0x0ab5dca,0x069efe8,0x1cb528e,0x1b0b0fd,
- 0x02bb4a7,0x1bf588e,0x070804e,0x1445eb9,0x0340b6d,0x0af1a9e,
- 0x0c97b2b,0x1aa14b4,0x0039846 } },
- /* 24 */
- { { 0x077df58,0x13b9b0b,0x15b1db6,0x0e396a1,0x164bd56,0x0407f91,
- 0x11f5c28,0x0600887,0x1865324,0x0542a14,0x04079e8,0x1ba586a,
- 0x1682002,0x0462e6b,0x0f1850d,0x1e27f7d,0x1aeca6c,0x07f8ac8,
- 0x02fe370,0x0f85cd3,0x00fb91c },
- { 0x0de14d5,0x02e5689,0x0089a9f,0x1ecac39,0x1c448c5,0x0dd9ed5,
- 0x190c1f3,0x1af3f1b,0x1c76811,0x02c7808,0x1881267,0x00dcea8,
- 0x091e898,0x04d3a72,0x0ab428b,0x06f87ca,0x05cb2be,0x0901a34,
- 0x082f1cb,0x0c648a1,0x00ec7a8 } },
- /* 25 */
- { { 0x086786e,0x0c610c5,0x0b20ce0,0x08426fc,0x0d537f7,0x1375907,
- 0x043469f,0x006bb2d,0x05cdc48,0x1c87638,0x1ef5d65,0x059049e,
- 0x1446916,0x070f878,0x19fbe75,0x02b9413,0x08bce99,0x1e98609,
- 0x11c489b,0x028becd,0x002d810 },
- { 0x11d87e5,0x1a4fadb,0x1b68c49,0x02f6059,0x05f3b14,0x1d7f8b1,
- 0x1b4bb82,0x04e048a,0x1fcae66,0x1fbd9d4,0x16617e5,0x1f1e6f7,
- 0x010d6eb,0x1fd3686,0x0aa06e5,0x1e26e41,0x00121f2,0x0d94f8d,
- 0x130376c,0x0d45f0b,0x003de32 } },
- /* 26 */
- { { 0x0c2ee78,0x19cc59c,0x0fb89bc,0x034eb41,0x00c3d10,0x0d3fc72,
- 0x05c1959,0x0ba6b46,0x104019e,0x094c2f1,0x1d2dbb4,0x0c85702,
- 0x0a21e2a,0x17c0529,0x0857ba2,0x1b01c4b,0x1e68518,0x12e8f07,
- 0x13dbaa6,0x1782700,0x00848cb },
- { 0x1d45169,0x143486f,0x0341da0,0x10b3a7d,0x18d7e09,0x1c5fe11,
- 0x0204736,0x09046eb,0x0162cf6,0x04caa3d,0x056e321,0x167769a,
- 0x06494ba,0x03024cd,0x0b2f15f,0x19fdb04,0x04ea8a1,0x1d62191,
- 0x1f19662,0x0c68d2a,0x00d9435 } },
- /* 27 */
- { { 0x0271323,0x14929b4,0x135cac1,0x10939a0,0x04d9e0a,0x18e63e9,
- 0x17efcac,0x0c355c6,0x157a3e3,0x07b25a7,0x13a1591,0x0d0c052,
- 0x0e14904,0x01e76a5,0x120bb9d,0x1b48fbb,0x0a57e2c,0x065c953,
- 0x1f07e5a,0x1885df7,0x013f989 },
- { 0x0651600,0x0c5efdc,0x0bbafb6,0x08f479f,0x0c36343,0x18d1134,
- 0x0950cd6,0x00f2742,0x1d58255,0x0c6d3ee,0x1ac7a55,0x16470a5,
- 0x05a5173,0x114afaa,0x16b9614,0x1a203be,0x0ef6646,0x172a371,
- 0x1627e18,0x02d458b,0x01faf7e } },
- /* 28 */
- { { 0x1ec136d,0x0364763,0x146c35d,0x0f9a226,0x18e1d82,0x03d08b7,
- 0x0eb4fc6,0x0caec94,0x1136e84,0x18dcb47,0x060f08b,0x05290a1,
- 0x19d41aa,0x1f38b92,0x08fb312,0x0293842,0x152763c,0x0ee6e55,
- 0x008ae0b,0x0a16302,0x016da7f },
- { 0x0a5e258,0x1299686,0x09efe67,0x0f2f6c5,0x0148ad1,0x1feef7d,
- 0x090bb1d,0x1891a14,0x174f9b6,0x028c5e6,0x048b516,0x0170ffa,
- 0x17c53b3,0x1da8596,0x033464f,0x155d377,0x0eebc01,0x08d0b4d,
- 0x1789b82,0x1362143,0x01c57e4 } },
- /* 29 */
- { { 0x1210716,0x1f33a90,0x1000b2a,0x060fc04,0x01a296a,0x01bcadc,
- 0x1047632,0x0d5295f,0x0dd9efa,0x079019a,0x15a1bda,0x13d6cef,
- 0x155be2f,0x1fae713,0x04fc9de,0x0f8b8d4,0x041b975,0x07bec91,
- 0x1d3d2e3,0x07a5e98,0x013270c },
- { 0x1209aa4,0x0304e46,0x10dbe72,0x05b656a,0x06f413a,0x091a2ea,
- 0x0b468a6,0x09f2d6e,0x19487c3,0x0379575,0x028dd46,0x02ed688,
- 0x0e4fa72,0x1ed29ac,0x10824d9,0x1662074,0x1e3ff25,0x0788f56,
- 0x017582e,0x0e02a6a,0x01a99a5 } },
- /* 30 */
- { { 0x07495bb,0x089c9b7,0x0746b85,0x109210f,0x0bd2fd2,0x1ebb7e7,
- 0x0ac2ca7,0x0393846,0x1c60e72,0x0d06a4d,0x08278a8,0x1706a2f,
- 0x189f582,0x0ec5d6f,0x0de027a,0x1176958,0x09e0ad4,0x1a5526f,
- 0x0db3121,0x0826259,0x0027fd0 },
- { 0x0d4fb6d,0x0817775,0x12fb015,0x1a14c05,0x160c25e,0x1fa503b,
- 0x1a106f5,0x028b174,0x054edce,0x145b019,0x1d85330,0x1c72072,
- 0x13b9d41,0x0c0f76c,0x086dc74,0x0961684,0x1c2332d,0x0e80871,
- 0x0ac3906,0x0b144fb,0x0096dfe } },
- /* 31 */
- { { 0x1ebd24e,0x17e6b3e,0x01d5335,0x0135c56,0x1e3fca6,0x0be1365,
- 0x108bbc8,0x07f4fb1,0x0b9620e,0x01681f0,0x07e1f75,0x042d8ff,
- 0x0e634bf,0x04b97ff,0x0c7b14e,0x07cee45,0x1c1d60d,0x141d4ab,
- 0x1da94df,0x1cbf0c1,0x0162edf },
- { 0x0ea20b8,0x02a0078,0x0401028,0x1c3af2d,0x0872ac7,0x0d86561,
- 0x097243b,0x14eeecb,0x0b62939,0x0fadc98,0x12dc227,0x0edd5e5,
- 0x12f78a6,0x097f5e0,0x01ccafd,0x015a606,0x0deba19,0x09d3320,
- 0x0f9f8d0,0x15c2bf2,0x00d536e } },
- /* 32 */
- { { 0x1c88f3c,0x08cfb50,0x1129b18,0x185d8d2,0x124e5fe,0x017f954,
- 0x0b1815d,0x0f89915,0x0ddb22c,0x056ef0f,0x1496ed8,0x0719f4b,
- 0x0097289,0x1608bef,0x16b13df,0x05383f4,0x0b74829,0x0a0f9ad,
- 0x0bf657d,0x09d1f21,0x0180d1c },
- { 0x1cd8358,0x0739ed3,0x0480bf1,0x0fe5439,0x19361a5,0x0a69441,
- 0x1c4c2b6,0x1c5ede5,0x02b6a78,0x1bf1233,0x098b378,0x1f16f38,
- 0x190babf,0x10dacbd,0x0b807bd,0x09cc8d9,0x1f0a60d,0x0ce0f19,
- 0x1407e11,0x084501b,0x000e52a } },
- /* 33 */
- { { 0x1013755,0x1205207,0x03a5cb5,0x0ff7070,0x0b6dce7,0x1b25988,
- 0x139e5fa,0x06c4f13,0x193ca5a,0x1382585,0x17ff263,0x01feb17,
- 0x1218c36,0x191861b,0x0c7cc8e,0x10ba2a7,0x0885a73,0x1eb59c8,
- 0x1ae4efd,0x0261eaa,0x004a071 },
- { 0x0ef3f88,0x104b5ff,0x0514a68,0x1370567,0x02eba86,0x1332539,
- 0x0612a1c,0x084ffc4,0x1858ff9,0x06e05d0,0x03276a8,0x1d6ae92,
- 0x0833799,0x00ac467,0x0d5bd8a,0x19dc43a,0x07fa7b2,0x0beecde,
- 0x0f3ebba,0x0349d14,0x00d21e6 } },
- /* 34 */
- { { 0x1068656,0x0db14f4,0x137fb17,0x193fdbc,0x023bd70,0x0a2aa33,
- 0x156f7f3,0x0838f15,0x06291a7,0x1cc0ee9,0x19a23bd,0x1b24ec3,
- 0x0f3ac53,0x0adc939,0x05a24a9,0x0dfd8d5,0x1b80654,0x1210bf3,
- 0x0e78bd5,0x1807975,0x015e793 },
- { 0x0ff39be,0x0caa1b7,0x1da023f,0x1db7fe9,0x1a1af07,0x120b0b2,
- 0x1eaf6c0,0x05307a8,0x1d47980,0x1e2e97e,0x0b9becd,0x12f0c16,
- 0x189d86d,0x0746dcc,0x18ca13b,0x17377c7,0x0b5d868,0x1cf824f,
- 0x16b462c,0x1d14f13,0x018e3b3 } },
- /* 35 */
- { { 0x11e61f0,0x1362b72,0x1d5d5c0,0x0660fe4,0x1ddbcaa,0x1757a0e,
- 0x09baec6,0x1752540,0x0e2d7f5,0x19f49be,0x1ab6468,0x003d78b,
- 0x1d1f7cc,0x1723403,0x0ad9974,0x12a3321,0x1555341,0x0e15227,
- 0x0599012,0x18394cf,0x00aa099 },
- { 0x197e387,0x0d484c7,0x15a6d58,0x108bc3b,0x1605177,0x18eb55f,
- 0x144adff,0x1123ff4,0x0d09a9c,0x16d2ad2,0x00b8ad0,0x18e3a45,
- 0x0d5e5a7,0x13a0c2d,0x096880f,0x15dffbf,0x09dea0b,0x10cd89b,
- 0x1b30285,0x1df2283,0x01a3a5e } },
- /* 36 */
- { { 0x0573b81,0x106853d,0x13bcabc,0x10cc329,0x1eac1ca,0x188e1a3,
- 0x0b6342d,0x085de1a,0x0ba099d,0x17500b6,0x1ea329a,0x1a50a0c,
- 0x0fa6609,0x1d09a8f,0x14b1801,0x04c68d4,0x018b11c,0x06d5c2c,
- 0x0c700cf,0x1f48bb7,0x0121f17 },
- { 0x03279d6,0x05c3d7e,0x07867ee,0x178403e,0x030e76a,0x1610eef,
- 0x1aa0e01,0x09e055e,0x1c63f82,0x17ebf15,0x14694fa,0x1c4c8d7,
- 0x047b074,0x1109c8b,0x1bd24c6,0x1b37f9a,0x139c172,0x0d5967e,
- 0x16d673c,0x07d6969,0x010a62f } },
- /* 37 */
- { { 0x0689a1b,0x16f1b70,0x19cb900,0x1afb95f,0x1dccc9f,0x0e85fdc,
- 0x0b5f895,0x1b3c9bd,0x04ada04,0x1f743f7,0x0b9dd35,0x073d7fa,
- 0x1b5a850,0x1b8595c,0x0b1995d,0x0777450,0x026ba10,0x0d3d654,
- 0x1f3541c,0x0051758,0x011aac7 },
- { 0x00c8f04,0x0e9ce34,0x0d78b98,0x1969167,0x0f09c4c,0x1a279e1,
- 0x026f655,0x126262c,0x0aaccb5,0x0b9725a,0x1ec825b,0x0194b5b,
- 0x0fdb706,0x0fe9f66,0x1f6790c,0x054e78c,0x06fe175,0x00a43d1,
- 0x134215f,0x0a6cc6c,0x01e33d9 } },
- /* 38 */
- { { 0x0ec9e7f,0x02835a6,0x063f999,0x0861557,0x044564b,0x1fd1425,
- 0x1407c5c,0x0e4bc36,0x015c974,0x1dbdebf,0x1b00cf9,0x0f5105b,
- 0x02d6cc6,0x0531dbb,0x18ba4d0,0x05f9a3f,0x01b3f8e,0x11d0427,
- 0x0b9b9d4,0x1c9b513,0x00fdccc },
- { 0x12fd820,0x1fc7760,0x1ccc1e5,0x152db48,0x125f892,0x0cbdfa1,
- 0x0907556,0x19eb2fa,0x002b753,0x1779ad6,0x1f3ae8e,0x12bbece,
- 0x0c8a73f,0x08ddd63,0x0a24adf,0x0f160b6,0x183cc52,0x1483a8a,
- 0x11fd17d,0x1daa7f4,0x001c2f5 } },
- /* 39 */
- { { 0x140b79c,0x00b2f55,0x06a0e45,0x104b691,0x1fb6eed,0x16083fd,
- 0x1adf629,0x117b426,0x18e01f2,0x018edc5,0x1e641f5,0x01bb49a,
- 0x0584e5d,0x1238f34,0x0a451ca,0x0dff0d3,0x1699837,0x0ac6834,
- 0x118c47f,0x0d36e98,0x0006ce3 },
- { 0x0dd1452,0x1b9e88d,0x08a9b01,0x0bdb1d3,0x0e4e9c9,0x0ad2061,
- 0x038cb28,0x11fd1ff,0x0af62f1,0x1e5be9b,0x05212cf,0x0ddddd9,
- 0x1b2ca33,0x1d90202,0x15b9ea4,0x106a549,0x031956d,0x1b6c868,
- 0x07280f9,0x0eac07b,0x00e5dd3 } },
- /* 40 */
- { { 0x1481bf7,0x194bec5,0x00f3317,0x0854267,0x06a2a3e,0x005cb60,
- 0x14a3371,0x0793c28,0x11189da,0x115f9af,0x15fe9e6,0x1312d9a,
- 0x0bb8adb,0x09abe99,0x0924d72,0x0df5b83,0x180c2d7,0x0a8fd92,
- 0x13c8f78,0x043d684,0x01ba987 },
- { 0x0a4b397,0x16d57a9,0x1952300,0x181a169,0x03c5f4c,0x1f3ce6e,
- 0x136cded,0x16c537c,0x0b33970,0x1a19b76,0x0231ffc,0x16f9250,
- 0x11ed3dc,0x011446d,0x0a43bfc,0x1ab35d8,0x151e96e,0x19523ce,
- 0x1b63e97,0x1db0e0e,0x00929d7 } },
- /* 41 */
- { { 0x060043c,0x0d785f3,0x1d3763b,0x1602dc0,0x04aa2cc,0x061d9ec,
- 0x1a39f8b,0x1893a46,0x05c269f,0x1da8098,0x0cf8d91,0x1dc27bc,
- 0x04d0194,0x1c4e528,0x0cd86e5,0x1623bb6,0x033984d,0x0466a8c,
- 0x03b24bc,0x1003d99,0x00c6d5b },
- { 0x1ab9887,0x08e0aa3,0x0044cfe,0x14d6b56,0x0f285e2,0x1fe40c1,
- 0x139684c,0x05936e6,0x038d869,0x021ad3a,0x00ba057,0x08f8865,
- 0x0a3c92b,0x0e3de6d,0x048c7d6,0x1190c32,0x1c34d15,0x11d7212,
- 0x1688f32,0x0d1fd78,0x00117f5 } },
- /* 42 */
- { { 0x15caa87,0x1eceadf,0x1276332,0x1ed1bb1,0x17bfc60,0x0a6f6f0,
- 0x136ef1f,0x17ec7d6,0x18270b5,0x1b72ca2,0x063f9ef,0x0f4b981,
- 0x1588713,0x02ebdc7,0x17ada1c,0x14a6794,0x0ee4b25,0x025bef7,
- 0x09c029b,0x08b8649,0x00ef8e0 },
- { 0x0cf52bc,0x00e4938,0x0a60583,0x152198c,0x0bf3f63,0x18147da,
- 0x10872fc,0x1e2bffe,0x1523bef,0x140816b,0x1384142,0x1347173,
- 0x1eff330,0x03310d8,0x0769340,0x0f00f1d,0x09fcc0a,0x14bbafc,
- 0x005e184,0x0890ca0,0x00eb590 } },
- /* 43 */
- { { 0x1bd33ec,0x1327ef5,0x15e6299,0x019cb5a,0x0cf9a66,0x1dab768,
- 0x1b01543,0x0ddd9a0,0x11d5aaa,0x0652fd6,0x09fc1ed,0x1cb7291,
- 0x1a36dae,0x17f0e08,0x18de21f,0x0a897a5,0x0c491d2,0x120fb0d,
- 0x0fff63a,0x1ee0e25,0x00be49d },
- { 0x1acdb56,0x178fab2,0x0f79838,0x08bcbcb,0x12f13c8,0x1d02097,
- 0x14d5385,0x1df72ff,0x1d9c93b,0x11433e7,0x055f922,0x02d64b5,
- 0x1f9ca9d,0x050c31a,0x157066d,0x15ce23e,0x0f58d26,0x0cd9c34,
- 0x1251507,0x0900829,0x0000ac4 } },
- /* 44 */
- { { 0x0ad38db,0x1e7c4ea,0x1445b06,0x027ae28,0x1180f38,0x18121d0,
- 0x09d672d,0x0d8b698,0x1163a71,0x0eb26b1,0x122f6d7,0x1fd426c,
- 0x09bbd2e,0x126f4cb,0x1c61fe7,0x1188b48,0x112e2de,0x1b2ef34,
- 0x0f6b429,0x0be5389,0x0048e07 },
- { 0x04dd88d,0x1aa3a2f,0x0bf000c,0x1100aef,0x1828363,0x19447b8,
- 0x1700489,0x1bdc966,0x1e68989,0x0047ec8,0x1dc6eb4,0x062b9a7,
- 0x0242142,0x1f26d0f,0x0c08ffc,0x05762b9,0x035b566,0x0bf35ce,
- 0x1ec13f9,0x1e82caf,0x0072143 } },
- /* 45 */
- { { 0x0f40f2c,0x1823613,0x0c76c1a,0x18d9af8,0x1d5d246,0x09d4dbd,
- 0x189c065,0x0df554a,0x08f0043,0x16494dc,0x0198356,0x125843a,
- 0x0619373,0x0deb6df,0x1e7b456,0x087f3a4,0x15ad17c,0x09bbe26,
- 0x03f3409,0x1db4a17,0x0179800 },
- { 0x0132f31,0x0ee059b,0x0e8ee23,0x0255bce,0x0f8f4f0,0x1ef15cb,
- 0x07b0c80,0x066710b,0x0231b65,0x0d81c0a,0x024f2bb,0x1a41428,
- 0x19ad08c,0x0e15f17,0x1e1b511,0x1813f73,0x132f6eb,0x0fe9eca,
- 0x0bbd1e3,0x16b1323,0x013d757 } },
- /* 46 */
- { { 0x00f894b,0x168802c,0x11bdf66,0x15b24bc,0x1612488,0x0d3432d,
- 0x1f850b9,0x0268a92,0x117f9a8,0x0370829,0x0cd5072,0x0415f14,
- 0x18d8aa8,0x1d336ab,0x1e41981,0x11c474c,0x0ae5f75,0x023efb0,
- 0x1fe2ad7,0x1a99214,0x0107cad },
- { 0x164ad0e,0x18227b3,0x06ccd5a,0x024a031,0x169fe0e,0x0a6db57,
- 0x129897c,0x0a85bd5,0x11bd77d,0x0f93bcf,0x0a2573a,0x03e4b9f,
- 0x0397991,0x1b78cd6,0x1a533b6,0x08963a9,0x01701af,0x0e1a99a,
- 0x031c9fd,0x087ffea,0x003bcac } },
- /* 47 */
- { { 0x1c1d4cf,0x14a8e41,0x0d3c5d0,0x01648b8,0x003791d,0x16e638f,
- 0x03bda70,0x0cfd51f,0x12a3107,0x152bd14,0x0522f4b,0x0d77625,
- 0x03255b4,0x07f575c,0x1707824,0x17eb255,0x18c449a,0x0d06968,
- 0x12a29a2,0x193feb8,0x00199e8 },
- { 0x128171a,0x1dce6f5,0x01ef27d,0x07aaed3,0x0fd7840,0x1fc1267,
- 0x1cefc8b,0x18ab169,0x1bf333c,0x104d9c9,0x13adcbb,0x0745603,
- 0x0debff8,0x11014ce,0x0cd3114,0x1eea2b7,0x0a066eb,0x1d1e1f4,
- 0x074173c,0x1c0f769,0x01a65de } },
- /* 48 */
- { { 0x114257b,0x0ac6b58,0x18c026a,0x03a92eb,0x129afd4,0x173d88b,
- 0x1e6d4ea,0x1060e50,0x1edd1ac,0x1c8d849,0x19e5d41,0x0fa23d6,
- 0x0acfefc,0x1133ada,0x152f4df,0x0a2fe1c,0x17e8d69,0x1c4d316,
- 0x0084268,0x100bb04,0x006b96f },
- { 0x1b5f9f4,0x0ea8bab,0x1345205,0x0c80b68,0x05c9e43,0x0380b07,
- 0x1778392,0x1f06885,0x11ef6b3,0x09ff7ca,0x05febe5,0x19ebee9,
- 0x17919e4,0x00b7785,0x18f3134,0x1ddda49,0x0872512,0x1fe2e55,
- 0x0ef45c0,0x1480534,0x01b6f1b } },
- /* 49 */
- { { 0x09252ac,0x1421aa9,0x0360a99,0x00e9cf6,0x1da626c,0x1f43559,
- 0x0330782,0x0a6aa10,0x14ed5dc,0x1a529fb,0x107f414,0x028019a,
- 0x1ca9eff,0x0b3a448,0x1f25171,0x16b5a1c,0x095ec53,0x06f525c,
- 0x1454262,0x0cf7de2,0x01ffefc },
- { 0x06033fd,0x0e08498,0x1766623,0x13e6d0e,0x1b28797,0x019ae28,
- 0x0bc9b8f,0x1ac9a73,0x1124e29,0x0392cfe,0x16f7f29,0x0ae1883,
- 0x155d60c,0x06606c4,0x0892d84,0x1ff0c0c,0x0e5eea8,0x1d020ea,
- 0x19361c1,0x01c2b95,0x01fd292 } },
- /* 50 */
- { { 0x167da85,0x0af8666,0x08559b4,0x08b58a9,0x0e98b6f,0x1638e1d,
- 0x18087c6,0x0485e0b,0x0475592,0x1f59113,0x015b707,0x0ac2cdd,
- 0x072a2f1,0x17da5d2,0x1ac5159,0x12416cb,0x1d2a29d,0x19a3445,
- 0x07532e6,0x19d0ddf,0x0061943 },
- { 0x0c91174,0x0b10c55,0x08d2d1a,0x1883bb2,0x05b519e,0x03b1d24,
- 0x0b7ca7c,0x0676fdf,0x1712c8b,0x028bf93,0x0e18c26,0x1d8760a,
- 0x04a02e7,0x0ff9f1f,0x0f116ec,0x0c90c8d,0x16f2949,0x1a35744,
- 0x0f4ae4f,0x162c93d,0x01462ae } },
- /* 51 */
- { { 0x0e4d3c3,0x07a0ff4,0x076c7cd,0x1eb76fd,0x080d87f,0x085abce,
- 0x1b02b64,0x15de042,0x1b87349,0x1125bb0,0x09b300a,0x0a50561,
- 0x17054bc,0x17968ca,0x131c0a6,0x0d9ba76,0x0e2adbe,0x00725c8,
- 0x181828d,0x0e9f024,0x00cf8e7 },
- { 0x0229950,0x1cede17,0x0dc0f1f,0x0db3f05,0x0b11f84,0x0602f9d,
- 0x1668fc4,0x19456f5,0x10f1820,0x01f56a7,0x1eccc88,0x1791997,
- 0x1151dbc,0x0333837,0x1672bc0,0x13abc77,0x0250605,0x12d1cdf,
- 0x12bf993,0x070f91b,0x014c984 } },
- /* 52 */
- { { 0x0011531,0x13abfc7,0x15f1c22,0x0587b9a,0x1f45b17,0x0ccf14b,
- 0x127f70b,0x02b51d5,0x1b93b64,0x0a7740f,0x023a1a7,0x16a94a9,
- 0x10a5833,0x05dbd5b,0x155870c,0x1e753bb,0x184b3bd,0x1daded1,
- 0x177ccca,0x13f1c03,0x0124f90 },
- { 0x141e782,0x0554255,0x0e1f16e,0x0d0a3bb,0x1de2012,0x0415e90,
- 0x0a9f665,0x077e937,0x1f4b641,0x0cb1ef5,0x0788901,0x1f76f9a,
- 0x0eed369,0x0dd6b07,0x1d25774,0x061dbb9,0x093892e,0x0f5a3ab,
- 0x1c2884b,0x0237b15,0x010baaf } },
- /* 53 */
- { { 0x0ec64e2,0x100ba0b,0x1af9c51,0x1efaf8d,0x1fd14ac,0x05b8bb5,
- 0x0128d9a,0x0383c6a,0x1741b04,0x171f9f9,0x0d9ec1c,0x0a945a7,
- 0x0d651fa,0x12bec94,0x0fb728f,0x1e832c4,0x08b72c8,0x194dba7,
- 0x09eaebb,0x13968e6,0x00383d9 },
- { 0x0342a3f,0x0e859ed,0x0552023,0x05bde95,0x1200246,0x1ad4300,
- 0x190bbaa,0x0da3638,0x106e54b,0x10f1502,0x1b3c697,0x021e218,
- 0x109ba17,0x07c81e6,0x13f0d98,0x0cdea66,0x0011341,0x1cb4f00,
- 0x15710d4,0x04c0e82,0x00fafaa } },
- /* 54 */
- { { 0x12de285,0x0687338,0x1717217,0x010d3eb,0x0d2ff8b,0x0769c4e,
- 0x0ae4b7d,0x1086e54,0x055b99c,0x1a92698,0x0800cd8,0x0b45c0f,
- 0x1346fef,0x0b704a4,0x0b20b6b,0x12a5614,0x02172a8,0x159b133,
- 0x1c85fad,0x1963115,0x002c9af },
- { 0x064c5b5,0x0ea3b4d,0x1f874ee,0x1c89899,0x00d8d5d,0x036dffd,
- 0x163bc47,0x1daac10,0x141c14a,0x10ecbc7,0x1fa1533,0x1ce46bd,
- 0x1d251f9,0x023a2ba,0x1430530,0x13807f3,0x18ebda8,0x0069641,
- 0x1b32770,0x1e08166,0x016fa25 } },
- /* 55 */
- { { 0x0ad682d,0x0cef54e,0x0e46c8f,0x068c6d2,0x07acb1b,0x07926bc,
- 0x0662170,0x19d3eb8,0x1d41883,0x1fb17e3,0x15791b7,0x13bea6a,
- 0x05d1ab2,0x048e6d0,0x06c72ca,0x067daad,0x1c452c6,0x06d8a6d,
- 0x08d150a,0x1770d85,0x01941ac },
- { 0x0db8127,0x1386412,0x1d6f61a,0x1e836f9,0x04a6563,0x046cda4,
- 0x16afae4,0x0151b09,0x1899c26,0x1755731,0x0da55ea,0x1656888,
- 0x0d13ed6,0x0854964,0x1253e67,0x1972e77,0x02bd04b,0x1cbc797,
- 0x05a9597,0x0711dee,0x007456a } },
- /* 56 */
- { { 0x0fc1f77,0x16ff24b,0x15a9820,0x1e268f5,0x104c435,0x15f22bd,
- 0x0537097,0x155e84d,0x1b6f764,0x050b834,0x00f6859,0x07aa09b,
- 0x10e0387,0x1064119,0x0e76d4b,0x1367d61,0x14ed423,0x14c4359,
- 0x0620536,0x10fe54b,0x016a765 },
- { 0x1c71a5d,0x07c7475,0x08cda46,0x050a80a,0x09141a4,0x0165e62,
- 0x0273306,0x14fac7e,0x1e09057,0x17f2ce9,0x0763ad2,0x161bc47,
- 0x12e633d,0x1eca4a5,0x12160b7,0x1fac375,0x0414704,0x0c5c8ad,
- 0x13abbf6,0x0cd53bf,0x010ee08 } },
- /* 57 */
- { { 0x0e07a4d,0x0623829,0x1740ad4,0x11cbae8,0x1f6d38b,0x1789133,
- 0x111f386,0x1ef6829,0x139c505,0x1f25a25,0x1ce6f80,0x0f2b0de,
- 0x1c59f3d,0x13e178d,0x066f29f,0x1f5a994,0x01ec063,0x18e28e0,
- 0x1d0a2be,0x126f4af,0x0080da3 },
- { 0x02369fa,0x0654e88,0x18d7a76,0x16e0d81,0x0009bff,0x1aaec07,
- 0x0669e5a,0x0985c14,0x0ac0d09,0x107216f,0x1061eb6,0x058af0f,
- 0x166c1be,0x0e7d025,0x12b8b32,0x0e680da,0x0607657,0x0ad8675,
- 0x1f258a1,0x04a48b8,0x00d82d5 } },
- /* 58 */
- { { 0x093de69,0x191c657,0x1a6db72,0x0677fb5,0x0963c83,0x1bcc1b2,
- 0x07d37a2,0x15c6790,0x0ae8bf8,0x09d1122,0x1aeb338,0x0f0c987,
- 0x160bc6e,0x0aad2d6,0x0de94f1,0x128b350,0x135bc7e,0x0c3aec6,
- 0x07d1bf3,0x00aa69f,0x001fb37 },
- { 0x1b974a1,0x093863f,0x1205e3a,0x01d3da4,0x03448fa,0x1ffdea1,
- 0x1b0f592,0x078282c,0x1d79f4b,0x02d5221,0x1cca828,0x09e2773,
- 0x1ed855a,0x164811a,0x1af3e36,0x0569097,0x1878db5,0x0b2c24c,
- 0x1234274,0x1ab3e3c,0x0183aa4 } },
- /* 59 */
- { { 0x1ffad9f,0x02ebaed,0x03f3b96,0x09e833b,0x04df617,0x0349a2b,
- 0x0fd679b,0x018dee7,0x183d59b,0x003c9e8,0x122542e,0x1f87253,
- 0x0b6baf4,0x14cb15d,0x1116a54,0x024e77a,0x145eaa9,0x1a95b0c,
- 0x1471e16,0x19bffe7,0x01be4fc },
- { 0x0b2857f,0x1c26cbe,0x0fd0170,0x100d6f5,0x0cf8305,0x1673592,
- 0x1745d0e,0x16dea51,0x0bc43d6,0x03dc7d1,0x1592e4b,0x117e29c,
- 0x1a8f0e2,0x095cf80,0x1a6f1cf,0x107cc36,0x1403dd3,0x1d5c5f5,
- 0x1e4651a,0x1d418b2,0x00aeacc } },
- /* 60 */
- { { 0x163c2de,0x05d7700,0x029269a,0x17d64ed,0x042d0b2,0x0d73b3e,
- 0x1c493ff,0x086ad0d,0x10aaca9,0x136d2ea,0x02473e4,0x099dc02,
- 0x0d699c3,0x09925f6,0x0951501,0x141527a,0x0f14193,0x08db5ac,
- 0x1847327,0x0924bda,0x014ff14 },
- { 0x1ed9259,0x0d30660,0x09fdfd8,0x065e3ab,0x1be37aa,0x177a188,
- 0x1c4f41e,0x1740708,0x14e6fa7,0x0f99ea4,0x0dcc326,0x182d17a,
- 0x1c43928,0x0dcaabe,0x13e333d,0x17dcae7,0x060d1a2,0x005e36a,
- 0x0ec5584,0x1a32870,0x014527c } },
- /* 61 */
- { { 0x027af4e,0x1289a9a,0x0df52f9,0x02621b2,0x0e6c0bb,0x1338e19,
- 0x09dab2a,0x0ed7b1d,0x0d3a9c3,0x0bd9fea,0x1c26aa7,0x10c68e2,
- 0x00124ce,0x00c028e,0x1739074,0x1dc3844,0x04ff9e8,0x02a4494,
- 0x0d713b2,0x105392a,0x013d22d },
- { 0x1b15e02,0x0f6ced0,0x01a1ac0,0x18603cb,0x1d092ba,0x1209ad8,
- 0x0860d5d,0x1497f4f,0x16f7159,0x0772cdb,0x0434370,0x00a2301,
- 0x169171a,0x1c0290c,0x054c6ee,0x0f208b8,0x0fc2092,0x0ba0498,
- 0x18cdda1,0x169198e,0x0008963 } },
- /* 62 */
- { { 0x0aaaed5,0x05b107a,0x1ba03fa,0x1bfd0e3,0x1068de7,0x1fe5a58,
- 0x00c3ffa,0x0b65644,0x1c3a215,0x06fdf73,0x06e0175,0x15184ed,
- 0x10a7a26,0x169cf57,0x1f79dc1,0x1e0646e,0x047f615,0x0f8d492,
- 0x0b66dcc,0x1035088,0x012aa1b },
- { 0x1152e8f,0x133e858,0x0530a67,0x0f256bc,0x0e773d9,0x05abd11,
- 0x041cfc7,0x145c1b0,0x0bf1da4,0x1d7854e,0x0d12680,0x0c1d845,
- 0x1d169b1,0x0e96be8,0x0b06b23,0x11dc970,0x0a6bfc9,0x0ba8456,
- 0x0f2fa85,0x124881c,0x0150549 } },
- /* 63 */
- { { 0x13a4602,0x0250550,0x1839c00,0x07a1a58,0x105c71a,0x0bcde2a,
- 0x0918e9b,0x1e949fc,0x0d54d9d,0x03c759d,0x0f1ee3a,0x120ee7a,
- 0x057ecca,0x122767d,0x0eec9e0,0x1a2f2b6,0x01fb124,0x045187b,
- 0x1d8cabc,0x1ca0029,0x01155b7 },
- { 0x0f0021a,0x017664f,0x07518b1,0x0ff0ad9,0x18017fd,0x123c5e2,
- 0x10ee0b9,0x1b621c4,0x11505a4,0x183a334,0x1fba96b,0x143899a,
- 0x0ad9bb0,0x0a95768,0x0e8e68b,0x1e13bd1,0x09ab549,0x003a3a2,
- 0x195fe99,0x11ef7b3,0x013fd5c } },
- /* 64 */
- { { 0x053c22b,0x0673dad,0x11a86f6,0x1af9568,0x18733fc,0x1659ca3,
- 0x0938922,0x01f8899,0x0a38c79,0x0c4458f,0x0d08dea,0x0dd62b8,
- 0x0336afb,0x1db8103,0x04ee2a3,0x011f572,0x0c59175,0x19a5bbe,
- 0x0791cca,0x03af4ff,0x0050a93 },
- { 0x0d21d18,0x121482b,0x0286a42,0x0eab682,0x0266630,0x053582c,
- 0x12a2e25,0x0b968d0,0x1828cf7,0x10d6f31,0x1c0a8e2,0x10b424e,
- 0x094fb2f,0x16fbdb8,0x1fdf416,0x03b6d07,0x092a68d,0x00e9fad,
- 0x024f357,0x19c3b78,0x00f5243 } },
- /* 65 */
- { { 0x17d7891,0x0c1e1e9,0x1b2a3f0,0x13fb0cb,0x17b5014,0x10c2208,
- 0x10f5a3c,0x0b01edc,0x15a07f6,0x1a8f612,0x00c80ab,0x0d975a6,
- 0x158fe5a,0x0833b77,0x179a3cc,0x000192b,0x11fca4e,0x03a8471,
- 0x1dcd495,0x1cb52ae,0x0159783 },
- { 0x0537ad9,0x0dab897,0x13def07,0x1a6b7d3,0x1e87112,0x1fcde5a,
- 0x0ad2355,0x18f76a4,0x0a8b3cb,0x17fbc48,0x136d707,0x1c23cbd,
- 0x0d4f306,0x19c3f3f,0x16a0e48,0x03c7a61,0x0f47232,0x026c8fe,
- 0x104a99f,0x0f76c5c,0x009f848 } },
- /* 66 */
- { { 0x0b8e08e,0x0fc07c6,0x1b5a1bd,0x02492df,0x1cfd2c4,0x1bee6fb,
- 0x0dd0d82,0x0be00c3,0x157f4d0,0x0dd7fef,0x0187c93,0x18548b0,
- 0x04b1993,0x0ef4ca6,0x1b2a342,0x1c0c4d8,0x04d2747,0x077b869,
- 0x066572f,0x0ba9c77,0x00ffd4e },
- { 0x0f40077,0x0f122e3,0x1418c5c,0x0a0e47c,0x1592e04,0x15fec40,
- 0x1bdf9a9,0x1c06b90,0x16d9d9c,0x104ace8,0x15dc32e,0x1fd07d6,
- 0x1d2e7f8,0x0206b1e,0x1ac2207,0x08832b1,0x1daeb9e,0x0ab199d,
- 0x0bf47d3,0x072fbe7,0x0034fb0 } },
- /* 67 */
- { { 0x158815c,0x0702f59,0x1f65ee1,0x09c8210,0x1abcb2d,0x182ebd1,
- 0x162241f,0x0390f4e,0x17a9d48,0x083bc6a,0x1932f4d,0x1ff085a,
- 0x1e9d34c,0x067944f,0x167356b,0x058dc10,0x191dd2b,0x141b96a,
- 0x02d02d8,0x1a905c3,0x006bc06 },
- { 0x04ed375,0x14ad06d,0x0bab441,0x10531b5,0x11baf58,0x1b84962,
- 0x086d3d2,0x06b6051,0x07a335b,0x15c3ed7,0x1fbf622,0x06c40ac,
- 0x14a7359,0x199061b,0x127f040,0x11660f4,0x0c4a355,0x1b9bd65,
- 0x103f3a6,0x0d2d469,0x001ed30 } },
- /* 68 */
- { { 0x13902fe,0x085585e,0x0ecf655,0x170d53a,0x1bba4b4,0x0e561bc,
- 0x182a65d,0x1b874b3,0x1333605,0x02f4398,0x10b1601,0x118435f,
- 0x11f2c59,0x177ce5f,0x1fe35bf,0x0788503,0x1d09bf8,0x0c15f6a,
- 0x0a04c75,0x1b3ab6a,0x01579d1 },
- { 0x119258e,0x0d182aa,0x0aa1a1f,0x1204fbc,0x13f539f,0x11186b3,
- 0x05d1f5a,0x108d3f5,0x15f5d16,0x18d7591,0x1907d6a,0x128ebef,
- 0x135bbfe,0x0b53ff5,0x151aaec,0x0a30f7a,0x0e8e16d,0x0957dea,
- 0x13254f7,0x0f7c277,0x0160743 } },
- /* 69 */
- { { 0x09755a3,0x0b2d4f7,0x0ac557c,0x1570593,0x0c8d5a1,0x15cbf30,
- 0x1916aad,0x0e2cb43,0x0ab05e2,0x00266d8,0x020c3cc,0x16a4db6,
- 0x0b9e0c3,0x1ad65ef,0x187b069,0x1093155,0x084761e,0x1209ea2,
- 0x06e718b,0x1c13776,0x01e9589 },
- { 0x072258d,0x09040ce,0x0f519d4,0x08b82b2,0x01dcd73,0x008fedb,
- 0x1e9ee47,0x11cd8c4,0x1885790,0x0e9f4df,0x0f1a3b4,0x0dfca61,
- 0x1f9aac0,0x15ada27,0x1705aed,0x1dbaa24,0x1b6db90,0x01c4305,
- 0x0efb6d7,0x1d1611f,0x01aa96f } },
- /* 70 */
- { { 0x057c0f8,0x12eec79,0x0364c8e,0x05ba742,0x0884dc9,0x1c6701a,
- 0x1e73aee,0x15207e6,0x1a47262,0x10bd6a9,0x01b1b58,0x002ea5c,
- 0x0da1df2,0x0192146,0x0dc8f83,0x18c59eb,0x0892c30,0x00f2e9c,
- 0x1dfe0b3,0x121e3e8,0x01fdd9a },
- { 0x163ab59,0x093dd0b,0x0fa60c3,0x1ce46f0,0x0f27d93,0x0cb4556,
- 0x0099251,0x1ab02ab,0x01700d5,0x1928d19,0x11b67d8,0x1ce6062,
- 0x12cf6bb,0x132df87,0x173d157,0x047f6d9,0x0ce6323,0x0405500,
- 0x05a91d1,0x13cc59b,0x01496e4 } },
- /* 71 */
- { { 0x0574c09,0x185bf20,0x1a5afbf,0x067fd01,0x176f264,0x11bec8d,
- 0x14d4bac,0x0041677,0x17edc31,0x006315b,0x08db70f,0x1296849,
- 0x1ef9893,0x1e3621a,0x1a99309,0x1a0edd3,0x1c4e388,0x196fe10,
- 0x139a792,0x10a5ed4,0x0139cc3 },
- { 0x1096b91,0x051ffdd,0x10f948e,0x0ae7b1a,0x0e72c9e,0x0bbaac7,
- 0x16c4631,0x169822d,0x0dc47d4,0x07644e9,0x06557d5,0x1a6a85c,
- 0x1c2006d,0x1a1ba3a,0x12bb5a9,0x1208200,0x12a2bee,0x0e0eee1,
- 0x164ccb2,0x082f45d,0x01fb597 } },
- /* 72 */
- { { 0x19bae66,0x18cc0c2,0x106cf03,0x0308baf,0x0b48e9b,0x151e0f5,
- 0x0700d14,0x0738d9d,0x0ff8103,0x1c25006,0x035bf88,0x1c22bf3,
- 0x1bcd7ed,0x1c506ea,0x08038f4,0x0380def,0x08a3c7e,0x1ab6eca,
- 0x194e987,0x034fa31,0x00d09d2 },
- { 0x00eb3fb,0x1edd7c4,0x1f27e73,0x0ebd07e,0x04cfd29,0x053a5a3,
- 0x1f5be8a,0x006c374,0x1dfb13e,0x01006af,0x0984a2e,0x1e96465,
- 0x0e03bc8,0x00d46c3,0x1ee4b0a,0x0dd4fa3,0x1ae706d,0x13433af,
- 0x1eac630,0x10c115d,0x011d9b0 } },
- /* 73 */
- { { 0x1d2f539,0x1b0a35d,0x0e885f3,0x00edc4d,0x16052fc,0x1f2533c,
- 0x0746352,0x1506d04,0x09f3f39,0x1c11a11,0x1e1cea3,0x0d72867,
- 0x0868b84,0x18b7a2b,0x074fcd9,0x0eea0f4,0x0282fd4,0x16fb01f,
- 0x05d7889,0x16058ad,0x000377c },
- { 0x001dd59,0x0d6e9c6,0x0debc9d,0x1d73834,0x1c213a9,0x1e2a01c,
- 0x1441137,0x10cd215,0x007ee0d,0x0177103,0x1f10388,0x1d2acc3,
- 0x16896ed,0x085817a,0x135ce63,0x03448d6,0x191e5af,0x0e65cb4,
- 0x04fdc49,0x05035f8,0x009fd5c } },
- /* 74 */
- { { 0x1073a5a,0x062a5eb,0x11f7216,0x190c3d5,0x07c81a5,0x10100d4,
- 0x128e79c,0x19ca3f0,0x040e003,0x0954fc7,0x06677a5,0x0956b1e,
- 0x0b76bdc,0x0ab6601,0x1c48c8b,0x0c5e639,0x06383f1,0x0db31a7,
- 0x1e5a784,0x002fdd1,0x016984c },
- { 0x089f1fa,0x019b12e,0x01e3c7d,0x016d2f6,0x0a02a63,0x02dbfa2,
- 0x079712c,0x1986662,0x14fede4,0x1e65728,0x096a929,0x10e8960,
- 0x0d0d26e,0x1c26dbd,0x16ddeef,0x183fcfa,0x0a8f571,0x01cf78d,
- 0x0633348,0x1752508,0x018d65e } },
- /* 75 */
- { { 0x0bb2537,0x03355c5,0x05be8de,0x16cb661,0x14ac4cb,0x0145698,
- 0x09fb4a9,0x12d04ff,0x010e9e1,0x0e8cfb1,0x006d3a5,0x0f41130,
- 0x0331eb9,0x15745c1,0x19de98a,0x12c8555,0x02a5f5c,0x04b49eb,
- 0x18da2e1,0x17fd2e7,0x00adff5 },
- { 0x12b0dee,0x1d710a4,0x0b3a8fb,0x1d2c058,0x0143e9e,0x1dccf29,
- 0x1f265bc,0x0b2426c,0x0e93b8f,0x0bc5958,0x1304fb7,0x187020c,
- 0x1a8d541,0x1ab9c73,0x0e5c36b,0x16349cd,0x0168373,0x1d7b766,
- 0x12b8823,0x147e9ee,0x0180dbf } },
- /* 76 */
- { { 0x07a6aa0,0x0310d48,0x07dac09,0x1080f0f,0x0f56cb6,0x14549a7,
- 0x02da205,0x0908987,0x19b9a90,0x06b1c69,0x107c81c,0x154104a,
- 0x106968c,0x0fe445a,0x165c14c,0x0af0818,0x0d5af63,0x1aab26f,
- 0x1352533,0x11318f8,0x0097e7e },
- { 0x16ebb2f,0x04c6cb5,0x049b877,0x18f553c,0x092a17f,0x1516341,
- 0x03f6fe8,0x0376c1e,0x0b2e185,0x0319386,0x0933fa7,0x04cb039,
- 0x15898db,0x188cace,0x02098e2,0x11a3328,0x08ea54b,0x0722798,
- 0x1398c25,0x133d708,0x00d6963 } },
- /* 77 */
- { { 0x03769ee,0x079b15c,0x12cfe80,0x187df89,0x12d040a,0x15eb43b,
- 0x0e2255e,0x0518726,0x1940a71,0x1132212,0x10a8c58,0x191fd84,
- 0x11909c4,0x12d0d2a,0x1923c79,0x042e5a3,0x0f1049c,0x0345eb8,
- 0x026dff5,0x125a56e,0x0041c86 },
- { 0x1816784,0x04550ef,0x173938e,0x0a037ce,0x0a58c8a,0x133c092,
- 0x17fec0a,0x1c13693,0x0eda721,0x1994cf0,0x0997b29,0x03ebccf,
- 0x168a0bd,0x02b638d,0x07a47a2,0x15461b0,0x0f4c005,0x11bd771,
- 0x1656efc,0x000ea00,0x0073d94 } },
- /* 78 */
- { { 0x10c0ef3,0x1562500,0x0682a44,0x109d036,0x0e654bd,0x1a9a848,
- 0x18f713c,0x1351e0a,0x1b47d18,0x06e20f9,0x0302704,0x1a0de47,
- 0x07122ed,0x020d67b,0x1305abf,0x10a4044,0x1348375,0x18e65c9,
- 0x09d6b9b,0x16be524,0x01271a4 },
- { 0x0e688b5,0x1ea399e,0x1a2de4b,0x0fb9538,0x14566d3,0x0b88e80,
- 0x0c9b950,0x151f9d2,0x03cc341,0x1dd0a77,0x0b047f8,0x0998424,
- 0x156b8ab,0x1ae9bcd,0x1e9d8ef,0x05f2381,0x0aef152,0x0caf169,
- 0x073e569,0x04367a6,0x00acd4e } },
- /* 79 */
- { { 0x18e061a,0x1d3bc8e,0x08c1004,0x0159909,0x02707e7,0x17b1b53,
- 0x0099bac,0x13ad581,0x177b25c,0x08bf510,0x1cd73fa,0x177ae1f,
- 0x1eddb78,0x020c4c5,0x0236cac,0x1c88aa0,0x0fcce0a,0x187ac52,
- 0x095f439,0x12472e4,0x0043ed0 },
- { 0x0e129e6,0x0bbd9f1,0x135cb2b,0x0e1e37c,0x1b8c4a8,0x02b199f,
- 0x037fc80,0x0875dca,0x12a6915,0x0132c60,0x189902f,0x199571f,
- 0x0f95dc0,0x0cb2d05,0x13ad610,0x1b33cd2,0x053edd1,0x1be9dd5,
- 0x087b721,0x0276411,0x00832df } },
- /* 80 */
- { { 0x181c3f2,0x09123e8,0x08fffab,0x1de66f6,0x115d35b,0x0483394,
- 0x1f2e9d2,0x143b699,0x1fda7a3,0x07b86c7,0x1d5a1b9,0x0832f24,
- 0x1e226b6,0x17f8fbc,0x010218d,0x149d1d0,0x139cf5f,0x04c7425,
- 0x02827d8,0x1417d3b,0x00da57a },
- { 0x0fcea66,0x0767aa7,0x1ebb503,0x195f8ed,0x18df2ae,0x0ac2d44,
- 0x0692324,0x14ac7e3,0x113f00a,0x088ded3,0x172e7ec,0x1f56896,
- 0x116687a,0x1293106,0x157ec49,0x06b578d,0x11bbacb,0x157ca9f,
- 0x1e53134,0x0126e1f,0x00ed997 } },
- /* 81 */
- { { 0x0b54c89,0x1ab7034,0x108ab27,0x1b9ce6f,0x08ecc17,0x044da98,
- 0x1a0feac,0x036411d,0x1543fbd,0x079d094,0x175c1ac,0x19f1089,
- 0x0d1b204,0x0f61720,0x05d7227,0x1229501,0x1ae9399,0x1845808,
- 0x119d37d,0x1742e0e,0x00176b4 },
- { 0x1dfc175,0x0b754c7,0x0c31c48,0x06fc1eb,0x17b7fc6,0x199d1a3,
- 0x0a17f3a,0x16f11a0,0x10223ea,0x13cc0a7,0x1b648ad,0x0416a38,
- 0x1d90787,0x0e09fa8,0x1675692,0x0c16ab0,0x10bfaed,0x1734fc2,
- 0x14332ac,0x135088d,0x005c249 } },
- /* 82 */
- { { 0x1e7bcf1,0x0c0fdb9,0x1ef9075,0x19ba782,0x16dde61,0x0ccfec8,
- 0x05fb3e8,0x12f8c53,0x1c159db,0x13ac439,0x0ca0c06,0x112cc82,
- 0x184ed77,0x14a1548,0x1cb3a24,0x149772c,0x187816b,0x1f9f722,
- 0x195375f,0x0f42919,0x01234fb },
- { 0x009be8c,0x0c057f8,0x0e87c17,0x0ef1be3,0x02e938d,0x16f3103,
- 0x0ba10c4,0x1734fc4,0x16070c4,0x0694f3f,0x1768dd2,0x07d7436,
- 0x135cd9c,0x1238ba2,0x146f4be,0x13cce3c,0x0b056ab,0x0ca04c5,
- 0x07df1a8,0x1095789,0x0049bb5 } },
- /* 83 */
- { { 0x0a470f7,0x12a980f,0x18c2a7c,0x11d24a9,0x001bf80,0x1001c6d,
- 0x1a7a9c6,0x10e130a,0x15913ca,0x0959770,0x007f6c3,0x0097705,
- 0x0aae170,0x08c72e1,0x171bac0,0x08757b6,0x04c1fa9,0x0d2b563,
- 0x0a4b540,0x1ec8ee3,0x00531aa },
- { 0x0345730,0x0f7a483,0x1f0a59e,0x1d08de6,0x146aaa4,0x1e1d55c,
- 0x09ac069,0x09df02e,0x08166df,0x1c046d1,0x1370fb2,0x1f849c0,
- 0x14e9fb3,0x1b760cd,0x02d876d,0x1a27d3c,0x05eeed6,0x0373fb3,
- 0x1a9d4e1,0x1b180f0,0x00e570e } },
- /* 84 */
- { { 0x08ce13f,0x0b72c08,0x004d991,0x1a1c72f,0x15bfc58,0x1ca4f4d,
- 0x0a12fa8,0x0fa096d,0x075af66,0x14db35e,0x0559afa,0x0db9512,
- 0x1a7cb4d,0x1fb0aca,0x0f3b3c2,0x04a4036,0x13d002e,0x1218963,
- 0x04d697e,0x0ed130c,0x014b81d },
- { 0x01078ec,0x1de12c2,0x1535011,0x0c2f388,0x15aa9c9,0x08fc7e3,
- 0x0182521,0x03ed42c,0x0ce3409,0x0c6a71f,0x15040a6,0x0e0911c,
- 0x1e9a9f6,0x0ed4562,0x0a03e21,0x046197e,0x0a08fec,0x0e32656,
- 0x0252ddd,0x10c960a,0x002b0ac } },
- /* 85 */
- { { 0x15daf7f,0x0371cc7,0x1419ad8,0x122124e,0x0838548,0x02c5392,
- 0x1717023,0x1c7444a,0x0c90f3e,0x19b17e8,0x057c08b,0x15e810f,
- 0x0ac9633,0x0212fad,0x1c42f44,0x1b7f6e2,0x005ec06,0x0e100bf,
- 0x06e2ef3,0x0fb9058,0x01c8d9c },
- { 0x0b8bed9,0x00fef8c,0x0495f6d,0x11c7446,0x0948330,0x08e25df,
- 0x0779dca,0x15f79f2,0x141448a,0x185cb95,0x16918a6,0x0c67889,
- 0x0295dfc,0x00dfa85,0x0e7118c,0x0626321,0x177869e,0x08c5b37,
- 0x086eab6,0x09c5f42,0x00f5a8a } },
- /* 86 */
- { { 0x00251ea,0x0a884e5,0x06c2329,0x164f4d9,0x12aeed8,0x107a947,
- 0x02fad58,0x0ad2035,0x0ae13fc,0x14210f4,0x04f01e6,0x03890b3,
- 0x171349f,0x068d586,0x1820d64,0x1b21253,0x09baeb5,0x1cb7149,
- 0x166699b,0x05e3f1e,0x00ce96c },
- { 0x0be8bd7,0x025a889,0x066f92f,0x1e78cfd,0x14846a0,0x1d1c327,
- 0x11f4d34,0x103b139,0x073f439,0x1b23889,0x13959c7,0x06484db,
- 0x0bc32bc,0x181584b,0x04d3aff,0x1056fee,0x00b0d06,0x0ab0278,
- 0x0f3a2d6,0x07afd5c,0x011cfd2 } },
- /* 87 */
- { { 0x07689a6,0x1236651,0x1cafe25,0x06aac82,0x16a7dc4,0x1e5fe66,
- 0x0923ad5,0x1ca617b,0x15b1adf,0x188fffd,0x162fd26,0x01b6e23,
- 0x1b9f2d8,0x1b872d2,0x1e7f7c2,0x1143bd0,0x1836bd1,0x04ba9a0,
- 0x12ff541,0x0a4d7b1,0x0114c8c },
- { 0x17388bd,0x1392df7,0x1a9f57f,0x1fcfff5,0x11c3dbd,0x16f1567,
- 0x16e25f9,0x1f6f072,0x09ebf1b,0x0d3964d,0x01451a0,0x0e0ed2f,
- 0x0f65265,0x1a93385,0x097b367,0x0fa9072,0x1d283d5,0x121bde6,
- 0x003b2c0,0x0e654f9,0x01ceb5d } },
- /* 88 */
- { { 0x1d376d7,0x0fe6767,0x01369fe,0x1d4cd61,0x0b4eab3,0x1c8dec3,
- 0x0342356,0x1b0d592,0x08aa304,0x11eadbf,0x19a93ea,0x0856ff0,
- 0x0127f3d,0x1dc09d7,0x1467ea2,0x1240d2b,0x0d7e34a,0x0e9c3cc,
- 0x0cb0737,0x1814d34,0x0073df7 },
- { 0x0315b16,0x000dd9c,0x03e6f8b,0x133c319,0x1daa7c8,0x1b5c298,
- 0x0fed022,0x10347a8,0x068092a,0x0acf246,0x1eab52c,0x1b3d06d,
- 0x1077e93,0x1234cb9,0x1b58d86,0x1c8eda9,0x1f66297,0x12b4e59,
- 0x1e047e9,0x1b0307c,0x0185b69 } },
- /* 89 */
- { { 0x19cb764,0x13f59d5,0x15b463c,0x031d783,0x1bbefc2,0x1cd53cd,
- 0x0376c11,0x1ea8eec,0x009e542,0x068b692,0x066e5ad,0x11a378d,
- 0x0ae35c3,0x0646c64,0x0cab896,0x148ba27,0x15267a3,0x042bce0,
- 0x1155301,0x16e6aed,0x00d9773 },
- { 0x018c299,0x0523981,0x08ce588,0x0733ef1,0x09be29b,0x07a0a7b,
- 0x0802521,0x1a88d09,0x19a2ca4,0x163a49b,0x0deacec,0x0e7cd1b,
- 0x1f09c07,0x09ae1ab,0x007c166,0x1c7e4c3,0x03d8b7d,0x0049898,
- 0x03edb82,0x1ff9a1c,0x0060f3e } },
- /* 90 */
- { { 0x05d6530,0x00a5f59,0x103dc8f,0x13352fa,0x1e015b3,0x1bfb112,
- 0x0f12fef,0x1e24138,0x014b4f0,0x1ec62ce,0x1a3b3e0,0x1fbc7ef,
- 0x0fcf002,0x0f58f78,0x14d4f24,0x018c06b,0x0a5201f,0x01ca621,
- 0x0fa3b8d,0x025156f,0x01b5787 },
- { 0x10110cd,0x1be9d5b,0x06d6824,0x188ef22,0x00fa4ef,0x1d260cf,
- 0x0bd6f14,0x1e58d59,0x138d509,0x0980879,0x0b071af,0x1057ca9,
- 0x1f3ee2a,0x127951d,0x1a99f0f,0x18f7263,0x06ef089,0x1bd2653,
- 0x1288d8b,0x14589e6,0x00b05bd } },
- /* 91 */
- { { 0x1f575cd,0x05038e8,0x060ad09,0x034a46e,0x15693b0,0x164ea00,
- 0x0d80a68,0x0c02826,0x19c914a,0x0621a45,0x0cc7054,0x0e7a12b,
- 0x0290245,0x117ea4b,0x05d7f48,0x164eedf,0x086e210,0x1d0b824,
- 0x16ea4de,0x137026d,0x01f6ac2 },
- { 0x15da491,0x0f7aabb,0x160827b,0x1c56d55,0x05953f9,0x1a06ad9,
- 0x084186e,0x1b0cd2d,0x14d5127,0x1e22988,0x0b418b3,0x195303d,
- 0x032f21d,0x179db89,0x0f93c1e,0x1e41a7e,0x0b89646,0x1896683,
- 0x0443d6e,0x06c6d2d,0x015e241 } },
- /* 92 */
- { { 0x0cfc44e,0x027e81f,0x0f54321,0x10a0876,0x0095f2c,0x1e82cd2,
- 0x19f6f26,0x1bf34bf,0x0f65bec,0x1c9947d,0x0587348,0x08e34cf,
- 0x1de3102,0x1ddaefe,0x078e6fe,0x18b75d5,0x0d0133d,0x0c0115b,
- 0x1c4b0de,0x0f5536b,0x0141bed },
- { 0x194d941,0x1802cfe,0x006025b,0x00fa9fe,0x1c6e9f0,0x0f82f1f,
- 0x1d661de,0x133cc75,0x100483c,0x0207859,0x0661c13,0x1ddee54,
- 0x1104d2f,0x0325253,0x1dced6d,0x0fe3db6,0x10f4936,0x1005b3b,
- 0x0a7ef4a,0x1c06025,0x01694f7 } },
- /* 93 */
- { { 0x09095fd,0x0eeb9c5,0x15e837d,0x03a79d0,0x04b7a02,0x16e3b3e,
- 0x1e5af97,0x0112154,0x1180a08,0x124bf7f,0x042aad5,0x1c3ecde,
- 0x06b9856,0x1cc3cbb,0x0a62090,0x00c0262,0x0f73ba8,0x0b0ba46,
- 0x1576a4a,0x120ed8a,0x001207d },
- { 0x044394d,0x04d008e,0x19142c1,0x0e19c93,0x15f25ef,0x14a132f,
- 0x027c2c5,0x1f03c74,0x0109b33,0x02decff,0x04cb90b,0x087f461,
- 0x1207f2a,0x0367c57,0x1aaff2b,0x0ce44e6,0x004f336,0x056fbfd,
- 0x0a749ac,0x1d25f7f,0x00e02f1 } },
- /* 94 */
- { { 0x1be4d4a,0x0725331,0x1246549,0x1acde79,0x1fa57be,0x1d3e668,
- 0x04fe9f9,0x1a7baf9,0x088c5d1,0x07467b5,0x147c79c,0x12f47e4,
- 0x15b2579,0x11aaa67,0x17b163b,0x0e21214,0x0d7065a,0x1346934,
- 0x014227a,0x07a9a41,0x004c7c2 },
- { 0x152d132,0x12badde,0x13158eb,0x0e71903,0x0fb8daa,0x131dcc8,
- 0x1b94793,0x10e12d4,0x0b239d3,0x0eb59b3,0x127fb54,0x10e94ba,
- 0x1aed5f8,0x01d4603,0x1424765,0x0d5c404,0x05ae468,0x10807c2,
- 0x1ad3bd6,0x0b3ae8f,0x01c21af } },
- /* 95 */
- { { 0x1441308,0x1e00f6e,0x02417de,0x090c611,0x0dc3494,0x0b08e68,
- 0x029d1d6,0x0cc55e7,0x14c23ce,0x0d38930,0x0bfb484,0x0f6bf17,
- 0x1937f31,0x0649f03,0x1eee7fd,0x0a59e9d,0x0dd8ecc,0x1440787,
- 0x172760a,0x19ba59b,0x0028480 },
- { 0x1f807ac,0x0e506e1,0x1527a3c,0x057a0e0,0x0a3e4fc,0x1c5db63,
- 0x0285247,0x19b5a7a,0x13d6dfa,0x1f70e7e,0x11bfef8,0x0372bf6,
- 0x1cee46b,0x1eeae7d,0x01eceb1,0x1d16ea4,0x0d9b1b8,0x16ac060,
- 0x1ef7446,0x0cd3e98,0x008452c } },
- /* 96 */
- { { 0x0ace6d5,0x1a3a3e0,0x1eb690a,0x177ce50,0x15acb64,0x1e130a6,
- 0x1226626,0x03de660,0x0ff05c7,0x0bff41b,0x0b11420,0x048da6b,
- 0x1c772eb,0x1bad4e1,0x17f0858,0x1adfafe,0x01acbc0,0x1fdb7cf,
- 0x083a5cc,0x07862ae,0x009a764 },
- { 0x1845ccf,0x10b5a79,0x16f52c8,0x0121780,0x1c174e8,0x02481bc,
- 0x031d358,0x00cf4aa,0x16358c8,0x0b91050,0x1dedb6f,0x188354c,
- 0x0e838f9,0x1371704,0x0ccb065,0x0db4a6e,0x15e496f,0x0d81943,
- 0x10c18c3,0x04e99f3,0x000c52b } },
- /* 97 */
- { { 0x0a58beb,0x173c147,0x0921bb0,0x1a6ccbf,0x0b404c1,0x1a07f81,
- 0x17eb482,0x14aa8da,0x029d3e6,0x1aefbdb,0x006647e,0x08dacd9,
- 0x1ef1868,0x17167f1,0x1a42f79,0x1a2d77c,0x1a01410,0x14bd75c,
- 0x0b323a4,0x102a917,0x00cb59d },
- { 0x0f66a23,0x0e9d6dd,0x0207641,0x0e81bf6,0x0333738,0x007a196,
- 0x0d7792c,0x07cdaaa,0x007d3a0,0x0bff474,0x0f2a038,0x1fee0cd,
- 0x1529544,0x1d6ffd2,0x10ae5b2,0x0dd48c1,0x19445a2,0x04f80c6,
- 0x128d3ff,0x0702ce4,0x011ed54 } },
- /* 98 */
- { { 0x17f8a61,0x039fdde,0x02ed8aa,0x0377cb0,0x1e18cd7,0x1fb4c02,
- 0x07acd99,0x181fab9,0x1571d3d,0x1c6a7b0,0x1e6f22a,0x042af07,
- 0x14e2e45,0x121cc58,0x10ddd2c,0x0236a6d,0x16374d8,0x196da51,
- 0x17af8f0,0x1e252e5,0x01389f7 },
- { 0x18fefb2,0x1f90e3c,0x09caee5,0x0a20f75,0x1c76fcb,0x0ddab44,
- 0x1dd83eb,0x18a25f7,0x1d33ea6,0x13245f3,0x04d2946,0x132646c,
- 0x1b412a2,0x04c2c49,0x0f605a6,0x15b4894,0x18f3e66,0x1b0a24a,
- 0x1a1ed15,0x1f8f36e,0x0140b4d } },
- /* 99 */
- { { 0x0be5bb9,0x0a2b83d,0x06fa0ec,0x11ca3b0,0x0e0cbfd,0x013d7fd,
- 0x17d2726,0x0a841b5,0x0a687b5,0x1d392a4,0x105ccf0,0x07f7dd6,
- 0x0308026,0x09c13e3,0x053f70f,0x16e1ce0,0x184b5e3,0x03e80c7,
- 0x0f3dc5a,0x107c01f,0x00151d4 },
- { 0x1578aa3,0x11e3e35,0x16b8553,0x0ba6087,0x111ce9b,0x004080a,
- 0x07a6ed8,0x0deabf1,0x0f405ac,0x1618889,0x02b1ed3,0x09b0401,
- 0x067e66a,0x12e297d,0x10034e4,0x185d6e7,0x1988aca,0x1f70dcc,
- 0x02d5d14,0x063b2ac,0x008fdfa } },
- /* 100 */
- { { 0x11cf8d8,0x0507012,0x0f4b31d,0x1a083e5,0x14d8949,0x15e7296,
- 0x12924cf,0x15c16e6,0x15c5bcd,0x0d62fa8,0x002e4f8,0x1f982c4,
- 0x0ed3ecd,0x13c9b9b,0x01a899a,0x0d2804a,0x08bea6e,0x0ac2d0e,
- 0x0643e4d,0x19baa72,0x000e081 },
- { 0x1e28412,0x1ccab29,0x192c157,0x05b64e2,0x0d1526f,0x19d6e38,
- 0x097ac77,0x1bb9aac,0x0dd35de,0x16229e5,0x03ff8b4,0x1093507,
- 0x09ed442,0x0e0672c,0x08304dd,0x16c135a,0x081bd99,0x196afdd,
- 0x08bbec1,0x083b98c,0x01ad5be } },
- /* 101 */
- { { 0x1850756,0x17b33c7,0x165d58e,0x1ca5e76,0x06d37aa,0x14217ac,
- 0x0294de5,0x12e21a7,0x1f743f9,0x0d57ccf,0x06a2eb3,0x0bcb27e,
- 0x192fa75,0x004fbe6,0x1c13855,0x0ca1635,0x00ad6d0,0x131dfcd,
- 0x16aff66,0x039d5aa,0x000e67b },
- { 0x1f43178,0x054705a,0x0cccd98,0x1b3986b,0x16bd412,0x07b4042,
- 0x1e98e20,0x0e27af7,0x02e622c,0x19b96b3,0x009115f,0x17cedff,
- 0x11ad7b7,0x06d8272,0x0af7a02,0x0b91a1e,0x1fe4bd1,0x170f3c0,
- 0x03940bc,0x0eb7f77,0x01941f4 } },
- /* 102 */
- { { 0x03543ec,0x015fceb,0x1cf9e52,0x19422fd,0x185cb67,0x066631c,
- 0x018e058,0x03d158a,0x1729bdc,0x0b65f6a,0x1a1b7d5,0x12fb444,
- 0x1cd62ed,0x040f5bb,0x0932d7f,0x05db362,0x16672fa,0x126bda7,
- 0x00cd6e5,0x05354ef,0x017260b },
- { 0x03df7c6,0x1e3db52,0x01b086f,0x077840e,0x05acac2,0x0ecac04,
- 0x0def0d1,0x179d6de,0x0a32a08,0x0c79069,0x14f17a7,0x09eda32,
- 0x10f0892,0x027b406,0x0975f1b,0x12258fa,0x0372de9,0x0327351,
- 0x0b39913,0x180d88a,0x00ebda1 } },
- /* 103 */
- { { 0x11dd110,0x1be2e20,0x1128999,0x1459323,0x0d6787a,0x0b336b0,
- 0x1a90691,0x02aa77c,0x0c15f9f,0x1f38b55,0x131ec9c,0x0c7e1c1,
- 0x10a93b8,0x1531255,0x015c45c,0x184c148,0x16e1a39,0x072f3b2,
- 0x1bdbc4c,0x1af16a5,0x0046af8 },
- { 0x0f38dff,0x10a58b8,0x0415e58,0x1024742,0x1e35d82,0x1f6c091,
- 0x1135255,0x0c208d4,0x00da601,0x0c7d4dd,0x01104d8,0x054aa9f,
- 0x0be7cdd,0x0cf54ad,0x10958f8,0x06169e3,0x014cb2a,0x0e222cf,
- 0x07fe6aa,0x115bacc,0x0183c74 } },
- /* 104 */
- { { 0x1e58caf,0x00f9cce,0x0990ca6,0x1b0ea7d,0x05bb80f,0x08ca430,
- 0x07c90b4,0x015907f,0x003eeb0,0x0486783,0x0f5e73d,0x04a2f8e,
- 0x1b4037f,0x1926a30,0x10827f5,0x0419f08,0x0d22724,0x13581fb,
- 0x0d0e3e8,0x17a53d6,0x01526f4 },
- { 0x189e51c,0x081a561,0x063a593,0x12db6fb,0x0cda55e,0x09e2c1d,
- 0x05f7ba4,0x081655d,0x1feb034,0x1c983bd,0x1878a41,0x06f13a8,
- 0x1eaa16e,0x021dfc5,0x099d4cc,0x1187f61,0x042ba7d,0x04eba4d,
- 0x0ee4977,0x03cdacd,0x00ec7c4 } },
- /* 105 */
- { { 0x1da8398,0x19a2ee2,0x10c0ba6,0x1f76718,0x1c66841,0x1dda3d5,
- 0x11589f0,0x1bb9c75,0x1738d2c,0x1df5895,0x0c46163,0x15aed0e,
- 0x14d4bc2,0x1dea7a7,0x0876c72,0x0361d2a,0x0aefe4e,0x1153486,
- 0x0ffaf8f,0x042bd6f,0x0194375 },
- { 0x0dfd661,0x11a7897,0x07d132c,0x1ddaa58,0x0149984,0x1c7cc60,
- 0x1c98363,0x12065a4,0x07be385,0x13b7272,0x02d9cbf,0x0e7b2bd,
- 0x0254358,0x1958074,0x1b0e5ff,0x03d7122,0x105bad6,0x11dcdfb,
- 0x184c6ef,0x1203055,0x00007ee } },
- /* 106 */
- { { 0x1fbcb5c,0x1f54f49,0x0a6f4db,0x073f50a,0x182be58,0x108dd01,
- 0x0c497f5,0x06e1648,0x1cd8a26,0x0cd71bf,0x151c129,0x0c1c7b1,
- 0x19ab78c,0x02620db,0x0b090f5,0x1398a37,0x1eaeda4,0x1e2000f,
- 0x0f71fa7,0x1d48950,0x00f6988 },
- { 0x077f79e,0x0655278,0x0435364,0x03b3c4b,0x14d1760,0x0da5bbf,
- 0x0eecf48,0x16c23bd,0x09037e1,0x18d9fb0,0x0fb3c00,0x1b0426b,
- 0x1af113e,0x19481ee,0x1004de7,0x1252ded,0x1caa6f1,0x09b5ef3,
- 0x16eeb61,0x076d093,0x006c57d } },
- /* 107 */
- { { 0x0bfccb0,0x1f71c4d,0x198e58f,0x0972ced,0x0c6e2a2,0x1d3693b,
- 0x03c0a12,0x1a3f0ed,0x0465853,0x1c5d1dd,0x0ae6db0,0x06da371,
- 0x116e3ab,0x03d0399,0x1f25d09,0x07e6403,0x1182523,0x17eea0b,
- 0x118779e,0x19f5035,0x00214da },
- { 0x0a3198c,0x14f9bf5,0x0754d96,0x0bf9173,0x0be8a34,0x1af65e6,
- 0x1c4ab53,0x029484f,0x00c2375,0x020ffb0,0x09ec17a,0x18b4514,
- 0x135d9e8,0x1142cff,0x0ddd111,0x1bc6e5a,0x0ffea8b,0x00e0230,
- 0x073d6fe,0x1c93425,0x01810a0 } },
- /* 108 */
- { { 0x1843c3e,0x101d7a2,0x0b9da20,0x07557d7,0x0601e30,0x06fb15a,
- 0x023cd89,0x15072f6,0x0d21e5a,0x1439a45,0x10ac395,0x18e7344,
- 0x0d2cf12,0x1953b63,0x123b404,0x0a34590,0x1c2f527,0x0db9550,
- 0x0b00b41,0x052d872,0x00f3b63 },
- { 0x0f3d1f0,0x1a156e3,0x0e53392,0x065ea65,0x0f0dcc5,0x021ece1,
- 0x0ccd60d,0x196af02,0x0dc8dd9,0x0808c77,0x1c64bed,0x034bdd0,
- 0x023039e,0x0aba0ce,0x1dc99f5,0x0d61932,0x04c30f9,0x123177d,
- 0x134f0d6,0x1f6f2c7,0x01f7454 } },
- /* 109 */
- { { 0x1153926,0x140ca4e,0x152043c,0x03056ae,0x02e28c9,0x0f4a64a,
- 0x0ecc142,0x0ae9684,0x0de9d6b,0x0d66295,0x128c531,0x1873167,
- 0x05aa746,0x031eade,0x13a8c1f,0x193121e,0x1a2e1cc,0x0212aa9,
- 0x1db6465,0x03317fe,0x008e271 },
- { 0x08e672b,0x007231e,0x109f1e4,0x1a7e5bf,0x103675c,0x10b1e4b,
- 0x147debc,0x160e092,0x07aceaa,0x06b4c84,0x148da5d,0x0352fd1,
- 0x15482f2,0x009ee08,0x1ef0772,0x19a27b9,0x08004f6,0x106715e,
- 0x0afebfc,0x08cc590,0x003f2a5 } },
- /* 110 */
- { { 0x188a8bc,0x1a0f30a,0x0b2c373,0x1c4218a,0x0f48cd0,0x073d22b,
- 0x18af5d6,0x0ae670a,0x148b9b9,0x1006aa5,0x026e785,0x10174d7,
- 0x0f461df,0x04c6641,0x1f53c5c,0x0e28fef,0x1cd1497,0x08b3f80,
- 0x045b17e,0x070a22c,0x0048b13 },
- { 0x12617f0,0x1b199ae,0x181b7ad,0x04dd970,0x1f9a577,0x08fe749,
- 0x00cb46e,0x12f5278,0x16c84b9,0x1d21c45,0x1296fbd,0x044b047,
- 0x0bbfe80,0x1ad197b,0x06700a0,0x0b8b0de,0x1ade3cb,0x0f9366a,
- 0x1430776,0x1bb8eed,0x01e77f5 } },
- /* 111 */
- { { 0x0e764c9,0x1f76437,0x0b30f27,0x0d60f90,0x11bec83,0x02d8a16,
- 0x0cb9a80,0x1d4d7e3,0x129e8a5,0x077a8d1,0x189071c,0x131c7ff,
- 0x08517d2,0x194b361,0x0e278a1,0x198ed76,0x0a92c7a,0x09d16d4,
- 0x0ca886d,0x19224ce,0x004a902 },
- { 0x17ce110,0x08dce47,0x1bc65b1,0x0f5d606,0x1cc33a8,0x152cf16,
- 0x1426029,0x00104d2,0x1e78db5,0x1579353,0x0ec0c33,0x070992b,
- 0x0282f3c,0x126217a,0x15ba7dc,0x09414db,0x02970ac,0x03b46ef,
- 0x0f48bbf,0x1b9c960,0x016f4ae } },
- /* 112 */
- { { 0x1ed03c0,0x1819576,0x15341df,0x04b11bb,0x0684a05,0x02df079,
- 0x0f13e6a,0x176da13,0x1e0b9b6,0x0ed063f,0x0d621ef,0x18fde5f,
- 0x1e19689,0x161e673,0x0a5a583,0x055cbf1,0x1d5768d,0x15821ec,
- 0x0c84866,0x101037b,0x006829c },
- { 0x059f006,0x0397d6f,0x1d69afe,0x0d972fd,0x02b9ffc,0x173f7c6,
- 0x0576d62,0x03e6e32,0x1f4ccaa,0x1711e50,0x09f3130,0x0c1d138,
- 0x061af8c,0x0435ee6,0x1975f9f,0x1bc87dd,0x07f9bd8,0x1c912da,
- 0x0c93c22,0x0fe8c69,0x00b453e } },
- /* 113 */
- { { 0x1048bda,0x04b6871,0x1939531,0x128787b,0x02b6749,0x16a84f7,
- 0x127dd30,0x1135840,0x0543c50,0x00fb48f,0x08d96ec,0x014620b,
- 0x09cd996,0x1c58b82,0x164fff9,0x128ce69,0x1b3f82c,0x0814fcc,
- 0x05869d5,0x18bd440,0x0091785 },
- { 0x13dbdb6,0x0fcbc4a,0x067ed15,0x132fd94,0x0a9e84d,0x0a6bad7,
- 0x140a4db,0x1f48e77,0x0c15276,0x0e0be54,0x1d8d5aa,0x02668f8,
- 0x129cf66,0x01cb9c6,0x1a0d82c,0x06c1294,0x0a86973,0x0e9f218,
- 0x0ac9fc8,0x0a65bdc,0x01b40ae } },
- /* 114 */
- { { 0x164cb8b,0x0874128,0x19f5a04,0x1e4aa54,0x0979af4,0x0c2a93b,
- 0x1b43a34,0x189c21a,0x1fb64ea,0x1b62bc3,0x09164b3,0x0c77588,
- 0x1084081,0x1e706c0,0x03ffcdf,0x182b8bb,0x049da84,0x0c59427,
- 0x0998fb2,0x00aace6,0x0010ed8 },
- { 0x1f3ee9e,0x1a01828,0x1c7841b,0x136715b,0x0e8e3ee,0x1eb2249,
- 0x1e9ba84,0x163a790,0x180e1ab,0x1da4fa2,0x15ca609,0x02f217f,
- 0x1fc283d,0x17e3d1a,0x1943e96,0x15a9f1f,0x145ade3,0x13b9ed2,
- 0x068877c,0x1f55c9b,0x01f878b } },
- /* 115 */
- { { 0x1ad5678,0x06c7455,0x096eb98,0x1dcc018,0x0afa72c,0x1447108,
- 0x182d130,0x13f73a9,0x0d254cf,0x0223fbb,0x18ae959,0x17892b3,
- 0x0c1fb36,0x14b0899,0x0f1135c,0x01e3272,0x01ffc14,0x06bd444,
- 0x1425992,0x10c2511,0x009127a },
- { 0x09e690c,0x16010c5,0x0856d4d,0x03d569f,0x05dcc52,0x0772a64,
- 0x1108ec0,0x090135e,0x1af3a8e,0x1bc9a92,0x0c7616c,0x06116ee,
- 0x15e1f36,0x0a0e7da,0x0d875e0,0x08a536a,0x09eeffc,0x07520f9,
- 0x1df498d,0x0eab633,0x00e8cf5 } },
- /* 116 */
- { { 0x012b398,0x0dc06e9,0x0dcc07b,0x03aa7ba,0x1039618,0x097d4ae,
- 0x1811e29,0x0da1c10,0x0a7825e,0x08f3219,0x1b393eb,0x178a661,
- 0x0fe0185,0x183c49b,0x03dcc4e,0x0dd46a1,0x0fd9e7f,0x00ee4c1,
- 0x1555ad8,0x074c05a,0x00e8dbf },
- { 0x19e05bc,0x1191a13,0x0f4f0dd,0x19e888a,0x1f5f40e,0x1183c9b,
- 0x17d35fe,0x0446218,0x0108d7e,0x07fd69b,0x062ef17,0x1de7855,
- 0x00f2f01,0x0bea3fc,0x0ac5c67,0x05c3861,0x118a9b2,0x03de4fc,
- 0x00d37e5,0x1b8a55d,0x01f9f53 } },
- /* 117 */
- { { 0x183f89b,0x15a4f60,0x1b53c99,0x04beb00,0x13fb5f0,0x1618406,
- 0x10ad653,0x02fa614,0x0371cd9,0x1b58ca0,0x1f89b52,0x15576fe,
- 0x04f7541,0x16adbdb,0x149a7ac,0x06d8bca,0x1c17f80,0x0870d42,
- 0x097c99d,0x1e1e45b,0x01cea0f },
- { 0x08e11f8,0x1eab51d,0x0d5180a,0x03ebf35,0x0986402,0x06496b9,
- 0x0b16833,0x0178ce8,0x0523f65,0x122b4f3,0x0afed35,0x1037eff,
- 0x0bc8e46,0x01e4f36,0x09d651f,0x1fe4168,0x0d538f5,0x1159ca9,
- 0x1c12ba8,0x1f1c703,0x01b0818 } },
- /* 118 */
- { { 0x10d90f0,0x0dffd72,0x1370ef9,0x17ea023,0x0cb3b11,0x08efd62,
- 0x09c469a,0x0e7c219,0x14ea1a7,0x176108e,0x1bbad98,0x1d77cb0,
- 0x1d5a979,0x106178f,0x1c5aac6,0x17fd49b,0x17ec57b,0x17f4f1f,
- 0x0b949bd,0x0b2c1cb,0x015e1b0 },
- { 0x030e62e,0x10252c3,0x06dc723,0x1cc88fc,0x1d00310,0x1a223d1,
- 0x1ad850e,0x1479e3c,0x17462e7,0x155dc28,0x09c9364,0x1410000,
- 0x1f8309e,0x12294b6,0x00175c3,0x1b0243b,0x1b33d4e,0x1079c24,
- 0x00d3513,0x17ff78d,0x00962d6 } },
- /* 119 */
- { { 0x0e07711,0x1f2c6a4,0x0ecb44f,0x11a4e14,0x10f8364,0x0ff8263,
- 0x024b633,0x0282a2f,0x051411f,0x0ddb2bc,0x1e29545,0x1b207c9,
- 0x0f6c31c,0x02099b1,0x1e1c548,0x0da9ae7,0x1eeeca0,0x197f012,
- 0x1538c5f,0x0dc82f2,0x00ad32a },
- { 0x1d147df,0x0631fb4,0x0dedf8e,0x1ce217e,0x169bb06,0x0a8a6f5,
- 0x1afbca3,0x1b3729b,0x18d11c3,0x19183fd,0x1718112,0x1bf2070,
- 0x033b369,0x13c0074,0x1a8bd27,0x03838d1,0x0587d50,0x0781459,
- 0x13bde06,0x0f0442b,0x0055970 } },
- /* 120 */
- { { 0x0c1d751,0x1a8edaa,0x1448430,0x03741f2,0x0144530,0x0e45f6c,
- 0x0cd3eff,0x0154efd,0x0cf2368,0x0c6c09c,0x1ca1812,0x0949c09,
- 0x1a928c1,0x0b52db6,0x064b6e8,0x122072c,0x15b5f9a,0x124ef54,
- 0x05c9040,0x1a8af00,0x008580d },
- { 0x009221c,0x1928007,0x015ba41,0x03e43bc,0x02e05b2,0x1304a83,
- 0x0be8783,0x0528919,0x16f7751,0x0bfdcbd,0x0d2b299,0x037be3e,
- 0x165d299,0x04ff8ae,0x1b356b1,0x1d8f34c,0x097d049,0x06e0eb4,
- 0x1caebaa,0x1f9509c,0x0067388 } },
- /* 121 */
- { { 0x0ef1dd3,0x05a4ed3,0x15d9948,0x1c774d9,0x191a045,0x1eafa41,
- 0x0602bcc,0x0953909,0x0ef0747,0x09e7ad9,0x1ec7ab9,0x1d34f17,
- 0x1aa35b2,0x16d4837,0x0a5ff5b,0x059e9d9,0x1891b9f,0x0f8d49b,
- 0x0aca162,0x0a66d27,0x010d667 },
- { 0x1691faf,0x0824b39,0x18616d4,0x13aafd8,0x1c73d3a,0x054292e,
- 0x086ee4c,0x0d2fc52,0x040b05b,0x0a7ab8f,0x0fb7282,0x002e827,
- 0x185e96a,0x068d35c,0x1f53dca,0x1d16f3c,0x1da3ead,0x0aa8a1f,
- 0x05b9153,0x170889a,0x00fb859 } },
- /* 122 */
- { { 0x0667aaf,0x1041f3e,0x12e9f08,0x1295239,0x13545cb,0x1074a51,
- 0x064c632,0x18f943d,0x1e4eaa0,0x1d7ff91,0x15a1130,0x086c85e,
- 0x0ba21ac,0x106a968,0x11a2a2d,0x003a9f9,0x05b6a93,0x0a00d2c,
- 0x01eaf38,0x1eec592,0x00a3547 },
- { 0x1e260ce,0x09f69fd,0x07e98f7,0x1b01b80,0x0717752,0x0ed1f21,
- 0x0dd75bc,0x01dabf5,0x05261f1,0x18b4325,0x135aed7,0x1ec7a41,
- 0x16be7b1,0x110d632,0x18e3040,0x1231d3a,0x0f6673b,0x0189bdc,
- 0x0b68bee,0x1688709,0x017423e } },
- /* 123 */
- { { 0x01fbcf4,0x113e215,0x17b8653,0x16bf59a,0x0c0d285,0x0f3303a,
- 0x1af7645,0x134eb85,0x0ef0a6a,0x134b288,0x13d1607,0x1f420cf,
- 0x1a13c5a,0x1df70fd,0x1804f05,0x0f3ce57,0x0d6dad2,0x0c2d203,
- 0x050b3d6,0x052a3aa,0x0031004 },
- { 0x02bbc45,0x1af60d1,0x1361a9c,0x14feade,0x0ee5391,0x1000ef2,
- 0x1e7408d,0x04a60b5,0x1aa2f8d,0x0590c28,0x16de2aa,0x0db030f,
- 0x030e2c3,0x10d4446,0x13020fe,0x0fab79f,0x17fbd3e,0x1dc8ed5,
- 0x13f7408,0x10a8c1e,0x00f462d } },
- /* 124 */
- { { 0x172d703,0x05d0124,0x080fd5a,0x1a72131,0x1c44ca1,0x14642af,
- 0x1950ab8,0x06dd371,0x05b1b45,0x1ea79b0,0x1df9213,0x00f698f,
- 0x1d2e08b,0x1118411,0x0bcee60,0x1fa2608,0x1131889,0x0e4ffe9,
- 0x1b1a0d6,0x1e0ca58,0x01bb56a },
- { 0x0e0f16a,0x182f103,0x1297b6f,0x15ae8c8,0x1c1ac2f,0x09638d7,
- 0x02a603e,0x143cb34,0x136c800,0x1d71beb,0x05e3704,0x1f8c46c,
- 0x105f20e,0x15a3778,0x0e962e0,0x013c888,0x1cf4425,0x064a8be,
- 0x103b66c,0x17682ac,0x01667d0 } },
- /* 125 */
- { { 0x122842d,0x185309e,0x1380ea8,0x0b6789d,0x0c6e00f,0x1c15bcc,
- 0x13e1db7,0x18b0ec9,0x178d208,0x1496c36,0x02152b6,0x0723cf1,
- 0x140a52d,0x12cd84c,0x06c9bee,0x1f93493,0x1ad04c5,0x02ee099,
- 0x138fc4d,0x0124d26,0x01dda5c },
- { 0x0d6d673,0x0e5617d,0x0ff9bc3,0x0a01e76,0x0d8fdf0,0x0bab74b,
- 0x065058c,0x1c7d9ce,0x10a4d80,0x0c87a49,0x04c004e,0x126c63a,
- 0x18f2aca,0x1aac0b1,0x04659b1,0x0acf3dd,0x174e6dd,0x136f87a,
- 0x135c736,0x0490d19,0x0111be1 } },
- /* 126 */
- { { 0x15cc1b4,0x0639323,0x1e33d91,0x1256e72,0x115fc2f,0x1ebf5bc,
- 0x19b4438,0x1c0cb4f,0x0f40c38,0x1a2710d,0x1493f2e,0x0573c35,
- 0x0598866,0x01ab037,0x02e9377,0x127ee4e,0x02c1a4f,0x1e1c1a5,
- 0x0d8a935,0x0193446,0x002193d },
- { 0x169fd7f,0x1bdc67b,0x0ee78b2,0x0f13442,0x1815da9,0x0887f78,
- 0x03159ae,0x070f69f,0x1269314,0x0445984,0x0cdf008,0x037b24b,
- 0x05477b7,0x1353207,0x126a484,0x18ddf40,0x1bdfd21,0x169eef8,
- 0x0ca95ac,0x1f3afa4,0x00649b5 } },
- /* 127 */
- { { 0x19a9c35,0x056fc33,0x1e5b590,0x0796e9a,0x0dad98e,0x074ed7e,
- 0x03aed7e,0x0788c97,0x0ad4a07,0x19c30a7,0x17955d1,0x01dc5db,
- 0x19bd86c,0x0bb6705,0x0cc5ce1,0x1f72cee,0x1274095,0x0cdae99,
- 0x1826bab,0x015d67d,0x013672f },
- { 0x0e54ba5,0x063b6b2,0x14868e2,0x03b88e9,0x03fe7af,0x13b840b,
- 0x1a746ca,0x15aff47,0x0de1240,0x023da4f,0x00c0e81,0x16cd8e4,
- 0x13d9f64,0x135e810,0x11e00a7,0x07d4b63,0x0700aa0,0x18e578e,
- 0x0ee174a,0x0301d67,0x0103179 } },
- /* 128 */
- { { 0x12ed12f,0x1a7cfd7,0x162ab6f,0x09e701f,0x0e1d19e,0x0f40d76,
- 0x0f6d68e,0x17812af,0x1626ef6,0x0c19990,0x16ca37e,0x0bd419e,
- 0x14110ae,0x101c966,0x0565140,0x0f0ab56,0x0876bc6,0x133e24c,
- 0x0ff5871,0x1cb2714,0x004ace7 },
- { 0x0c7dea9,0x0dcf794,0x0611671,0x1414d4e,0x102f95b,0x013b4e6,
- 0x1095e08,0x12c069b,0x094dd68,0x09d8584,0x1aa5688,0x16ff6bb,
- 0x0903730,0x10be544,0x090fb41,0x140a5fc,0x117fb1b,0x10b67a6,
- 0x09be5b6,0x123ad64,0x01c0d86 } },
- /* 129 */
- { { 0x18015c2,0x16f9fdf,0x0b62a8b,0x1b892a0,0x07f8236,0x1218abf,
- 0x1db829a,0x019d121,0x1a2d04b,0x0c77992,0x076eacc,0x0d1b501,
- 0x019cc06,0x0d33e51,0x09a4deb,0x17893ba,0x12c83fe,0x04793e0,
- 0x126e611,0x07b65e7,0x002987b },
- { 0x12e3dc7,0x1d7687e,0x1554df9,0x16e82bf,0x098e8bd,0x122f92a,
- 0x1b26962,0x1a1f81a,0x0209c85,0x1eadd5d,0x0787ba0,0x1b8daaf,
- 0x0d31ec8,0x12815ff,0x132b42e,0x17de23e,0x0ce1f41,0x0e21973,
- 0x0fff299,0x015f557,0x01913b1 } },
- /* 130 */
- { { 0x1053af7,0x1bef829,0x13d2f67,0x0b65143,0x0030476,0x14821c3,
- 0x1e3f1f3,0x1ba882e,0x0ac8c5d,0x1df69b7,0x07b1863,0x0277f6b,
- 0x0f27b13,0x10d8df6,0x0995bfe,0x0e7533a,0x1459459,0x099a709,
- 0x0d8ad65,0x0311198,0x018c326 },
- { 0x07f6ff8,0x1d20a55,0x11ebd04,0x107f56f,0x092aeb8,0x0183dd0,
- 0x021adf3,0x01df43b,0x1234610,0x040e092,0x10324f7,0x04e6042,
- 0x1593d4d,0x1308241,0x1b5f8f3,0x12be743,0x0cfdf17,0x1715c8f,
- 0x1a7b505,0x1b82346,0x0191160 } },
- /* 131 */
- { { 0x157d7cc,0x17a3745,0x0e1a69c,0x0a97e04,0x1140b0e,0x19d48e9,
- 0x0e5b816,0x1c110d8,0x1a4ec26,0x1cd59d4,0x1d63a46,0x15d78a1,
- 0x10742fe,0x0af1357,0x04b1821,0x1b3ee2b,0x076bb1c,0x0ca1e6a,
- 0x1fc0b22,0x12ffa98,0x017c3ed },
- { 0x0d54964,0x01281f3,0x03014ec,0x058d463,0x19bd116,0x0146116,
- 0x1b3d273,0x08031fe,0x0035346,0x02e3c20,0x1019a29,0x06bd699,
- 0x038ea33,0x1a16df0,0x15c9fe3,0x1879af5,0x111fdf6,0x158abf4,
- 0x1264b5d,0x112993d,0x01b3a7f } },
- /* 132 */
- { { 0x109ea77,0x171cbd7,0x1716479,0x12ebb84,0x06a760b,0x050cbd9,
- 0x03022e5,0x0331808,0x0b68ce6,0x00dd654,0x08d5901,0x1a2ab7a,
- 0x1fa19a0,0x0cbbd99,0x1296e53,0x1a0530d,0x1f8e5fb,0x0f98fc3,
- 0x06407e6,0x18ab4d6,0x00b8f76 },
- { 0x046ec9f,0x1fc619c,0x09185d6,0x193bd59,0x1462205,0x0846f87,
- 0x17b028c,0x0512596,0x1cfaed9,0x1ced941,0x127eca1,0x0008ca0,
- 0x11477dc,0x0b77281,0x1492eb2,0x19c8a91,0x11656ad,0x1d3edb5,
- 0x0c71a13,0x019b575,0x00fc011 } },
- /* 133 */
- { { 0x1308bf2,0x1b36c26,0x0010546,0x1facc70,0x19013c9,0x1c1dfcc,
- 0x17e4bf4,0x1f8d125,0x03ffc8e,0x0877ec2,0x1a8a1e8,0x02d8627,
- 0x00527e3,0x1d06fba,0x1db8f34,0x1a5431d,0x030f6eb,0x165cb72,
- 0x1c3b933,0x17d9e54,0x018cc1e },
- { 0x070404c,0x0a56b8d,0x08c2034,0x01f39c5,0x0ad21dd,0x11f0393,
- 0x0f378ea,0x1217299,0x16363a6,0x15acb08,0x078ad02,0x1e8b8d6,
- 0x1be70bf,0x1367762,0x05b742d,0x0af8025,0x0747477,0x06a6595,
- 0x15f647a,0x11194c7,0x00aa089 } },
- /* 134 */
- { { 0x0db0396,0x0e7e57c,0x09daa8b,0x0f6845b,0x08ae8f3,0x042b927,
- 0x00d2659,0x07eca5f,0x07bf149,0x123e1e2,0x11e93bd,0x168d604,
- 0x0e8b600,0x1d75ed4,0x1cf90e5,0x11be157,0x11fa795,0x1170e91,
- 0x0206eac,0x0d2563f,0x00ef38e },
- { 0x0cf3047,0x00b4493,0x01607cf,0x08b2a73,0x1ad14f9,0x1f905b6,
- 0x17470a4,0x02ffbd0,0x0f57abb,0x152a1b7,0x1378e0b,0x1ff82f2,
- 0x0f0d1a8,0x15ff669,0x0942388,0x0c08537,0x07fdb78,0x0088785,
- 0x1378c7e,0x1cdec8f,0x01962ad } },
- /* 135 */
- { { 0x0c78898,0x1529bff,0x1dff265,0x05bc1f4,0x0b39de7,0x0658478,
- 0x1dab34d,0x0a7eda0,0x0da78d3,0x06c5dc1,0x04b306b,0x09a7407,
- 0x1d5fe80,0x12c0aa4,0x1eb7b7b,0x18db356,0x1a0c067,0x1c41c80,
- 0x1b64fcd,0x0bff449,0x0191585 },
- { 0x19ebef3,0x1871b5f,0x05dca55,0x0bbe966,0x021046a,0x00b5ae7,
- 0x06a569a,0x023f371,0x1288d0e,0x0f9c940,0x04566ab,0x17ca72f,
- 0x12d6baa,0x0e47d5d,0x06bfb81,0x15e2082,0x1afe5c7,0x1f8c961,
- 0x1f738de,0x05d039a,0x00f7aa7 } },
- /* 136 */
- { { 0x0c386ee,0x11e078b,0x00e483e,0x13a9813,0x133b046,0x15189b5,
- 0x15c8a1d,0x00cf3c1,0x03c406c,0x01e0549,0x0f89f4d,0x1c7c9bd,
- 0x0aef220,0x0cb7807,0x15ec784,0x1b9fe13,0x1d824a9,0x0a507ae,
- 0x0707421,0x105d8b3,0x01e2535 },
- { 0x138c7ed,0x1793128,0x0237323,0x08ca8ff,0x1ec4319,0x054a446,
- 0x14eb774,0x1b856dc,0x08257eb,0x1cf8f7d,0x032627a,0x0dd63e1,
- 0x08c583c,0x000b1bb,0x1cda445,0x01c7be2,0x18bdbc2,0x131417f,
- 0x12f5453,0x10200b3,0x00d526b } },
- /* 137 */
- { { 0x0025949,0x0a917d0,0x0514912,0x1e177b1,0x126d888,0x1b90b7d,
- 0x0bd7f98,0x1ec6688,0x0472827,0x0761db2,0x109a076,0x034733f,
- 0x0d91d8a,0x1463b88,0x08cbab5,0x04ec4da,0x02fe51b,0x1c72dff,
- 0x14427e9,0x1e9fdbf,0x00040f9 },
- { 0x14a05e0,0x17528b5,0x03ac654,0x1de438f,0x0b0d48e,0x0befede,
- 0x1986466,0x1fac9a6,0x08b4c21,0x088d902,0x08c0e83,0x136d7d2,
- 0x09a6f56,0x1c62f40,0x03d8259,0x0bb1c57,0x1ab3680,0x139135a,
- 0x0cd2728,0x1fe301b,0x01bdd6c } },
- /* 138 */
- { { 0x03cc612,0x1c2bb4a,0x071e927,0x1d06566,0x0914319,0x056f5ee,
- 0x18a5f33,0x043244b,0x0b06198,0x08c7da1,0x0731f12,0x01084b6,
- 0x10accb3,0x132372f,0x074cd1e,0x07c44ea,0x0ae590e,0x0757da5,
- 0x1128002,0x08c0705,0x0151821 },
- { 0x196a461,0x040eddf,0x0e90f09,0x136a547,0x11c122e,0x06d845a,
- 0x0163919,0x03a4385,0x06d6a08,0x080a5bc,0x0f3bdec,0x1da9ea6,
- 0x1c167d3,0x00aa2fb,0x1ecca52,0x0f73ed9,0x11c449b,0x0f52369,
- 0x18870a6,0x1aec272,0x0081cfa } },
- /* 139 */
- { { 0x18a7f0e,0x0b193a3,0x0177bde,0x05bc2ee,0x114183e,0x108bf44,
- 0x09b7d5c,0x19fa494,0x1b7cd52,0x06d8d84,0x0f0580f,0x13f75b0,
- 0x099e42b,0x184f7c6,0x1c74ba9,0x0999ad2,0x05b8ee5,0x00c4a7e,
- 0x129483f,0x0f69ca6,0x00fcf75 },
- { 0x0b62347,0x08c6643,0x04a1695,0x04f7855,0x0c51c9d,0x13393ff,
- 0x0ac14a5,0x0de5dd4,0x00ae43e,0x045471d,0x0819aef,0x16bc0b9,
- 0x0d80535,0x0419cc3,0x1ff36c6,0x099bb23,0x1ba3237,0x197a52d,
- 0x1480890,0x0c74921,0x0124087 } },
- /* 140 */
- { { 0x0fac14d,0x05cb927,0x14f3926,0x1b4f353,0x16f4bf8,0x103e14d,
- 0x036f75b,0x0701e3d,0x1717715,0x161867e,0x00c98fe,0x1a44e36,
- 0x154c91e,0x0cda2af,0x04e0cd4,0x1257f7f,0x1891270,0x0bb52f3,
- 0x1204ef6,0x0ce9c36,0x0128a97 },
- { 0x03e5924,0x11e20ac,0x1418a6d,0x031e2e3,0x01f9aff,0x113d143,
- 0x0cf36ac,0x0e0568b,0x08a11ab,0x1ceaeed,0x0da5c64,0x0f61d1b,
- 0x052bfb4,0x0760840,0x08de77c,0x03002ac,0x08124ce,0x157ad32,
- 0x13e52ae,0x1188686,0x01508d9 } },
- /* 141 */
- { { 0x1ffc80f,0x0ff39e7,0x0fdb7aa,0x17a868e,0x023e2e9,0x09bdd3f,
- 0x0fb4f27,0x0ae4ff6,0x07a3fc3,0x19bb369,0x1280f5c,0x19e71c0,
- 0x03d0db4,0x15df07a,0x1805d48,0x0de9f19,0x119da98,0x1ec3f5b,
- 0x1f9ac0d,0x16a15c5,0x01536d1 },
- { 0x040bab1,0x1aef7ed,0x098cdc7,0x1f3657b,0x07d6a8a,0x0565438,
- 0x1722435,0x156bd14,0x1643ff8,0x0b9787f,0x03b0bd3,0x01b297f,
- 0x029c4c1,0x075c9f1,0x0c3aae8,0x1fa026d,0x08f1d2d,0x15e2587,
- 0x14d2820,0x0a5cb53,0x01429f2 } },
- /* 142 */
- { { 0x10e7020,0x1ea60be,0x05a12bf,0x156a904,0x1b169aa,0x079a47c,
- 0x05c2162,0x177b7c0,0x1885986,0x175fb7f,0x070e076,0x0fea2bf,
- 0x1bb3398,0x0254a53,0x1157cb0,0x0d092fc,0x042a0ed,0x01cd20a,
- 0x1bdde63,0x15a94c3,0x01541c1 },
- { 0x12709c4,0x1db1403,0x17f9d91,0x171021c,0x1330d68,0x1707b1d,
- 0x021d3a4,0x175a37b,0x1f8bea9,0x02727dc,0x0260685,0x1831063,
- 0x07c15af,0x1b46350,0x071720a,0x016cdc3,0x1a236e0,0x042c62b,
- 0x1f2debb,0x0aa2200,0x00119b2 } },
- /* 143 */
- { { 0x087027d,0x07693e4,0x0a18487,0x0a57f56,0x0050f33,0x0a88f13,
- 0x0f07067,0x1eadc6e,0x17f4c69,0x16a61d4,0x09aed00,0x0d5e4a4,
- 0x10e6f35,0x01f3d61,0x040470e,0x1fbf677,0x03d33d8,0x1a1d861,
- 0x1cba8d8,0x0721ef5,0x000ba8c },
- { 0x0851bac,0x061eb3f,0x13f310c,0x134bea8,0x0991c38,0x1dd030c,
- 0x0f1919f,0x1e800d7,0x097cbdb,0x04e8127,0x12b6b75,0x0fbaee6,
- 0x0a4539b,0x1465b69,0x0ea3e7c,0x1675b21,0x0304de4,0x03d490c,
- 0x1ee5a4a,0x0e65df4,0x006ab28 } },
- /* 144 */
- { { 0x0ed5986,0x15a9691,0x1819c76,0x14b0a67,0x1eee627,0x0aaff1e,
- 0x18deb3c,0x065d1fd,0x17ae8b1,0x0b0a486,0x022e533,0x030a694,
- 0x102706e,0x1ce0ae1,0x17ff54b,0x15a8d50,0x0f351a5,0x1ead112,
- 0x135c02e,0x036daaa,0x01e644d },
- { 0x02e4e9c,0x1834343,0x1f925a0,0x1890ec7,0x1e5cd76,0x01ce557,
- 0x059e702,0x05ac061,0x18d83d6,0x07265f5,0x112b8b0,0x0a9c237,
- 0x02911e2,0x127e503,0x0835f21,0x0e08b2d,0x1d5e9a2,0x07abc2e,
- 0x0f8104b,0x0cefa1e,0x01be2f4 } },
- /* 145 */
- { { 0x101a6dc,0x0096ed5,0x0da5300,0x035c35b,0x191bd6c,0x18283c9,
- 0x16bb2e6,0x03e75cf,0x062a106,0x138a7cf,0x14dadf0,0x1dcf52c,
- 0x0b71978,0x0f0bb2a,0x1046f41,0x07ba9dd,0x0e0efab,0x0e388b3,
- 0x1fb6fd8,0x154ae50,0x01d70f7 },
- { 0x1eb5932,0x137bea8,0x12909ba,0x14bf105,0x154ea0a,0x1cfbee1,
- 0x1825ddc,0x0682eb6,0x09be579,0x19a8c95,0x117b334,0x0846f0a,
- 0x1d9801f,0x1db21e4,0x0e38959,0x157d865,0x1d723e3,0x0dca08e,
- 0x1c71942,0x1bd4d19,0x00ee656 } },
- /* 146 */
- { { 0x0890deb,0x070a050,0x12f534e,0x1b79d70,0x1f7bd87,0x020ef65,
- 0x1fdcae8,0x1d2a3e1,0x0a6820b,0x1f76385,0x018a62b,0x0147189,
- 0x0475519,0x1380876,0x16e9563,0x0f363d9,0x1b88c78,0x0676c8e,
- 0x1d78857,0x1c7c99d,0x014c08d },
- { 0x0266da2,0x09a768b,0x0026705,0x16f6992,0x1ce322e,0x093b444,
- 0x12bbda6,0x09a6fbd,0x105c284,0x09284bf,0x1466ad9,0x1c26358,
- 0x06d23b7,0x12d1e64,0x0baedc9,0x08aead0,0x1b9628c,0x186298e,
- 0x0e014dc,0x01d170e,0x00be2e0 } },
- /* 147 */
- { { 0x1ed32e9,0x1e4002b,0x065ce01,0x1ef8049,0x027e40c,0x1aa4182,
- 0x1aaeeae,0x1e8b0a0,0x1ce820b,0x124bbb7,0x10fa055,0x0527658,
- 0x08b5353,0x07f7b32,0x07a0d4f,0x1b94ace,0x13f903b,0x09390be,
- 0x004ff5e,0x1382135,0x01dc40a },
- { 0x1b21a38,0x153619e,0x1f91afa,0x03ae7de,0x0ae222e,0x0ea83fe,
- 0x0139ef4,0x1563fed,0x0587a77,0x0dd6332,0x12935bd,0x1ec418c,
- 0x0a58c74,0x153e1bc,0x0a0df65,0x1c81299,0x1313e42,0x1fa1efa,
- 0x0d27853,0x14868ff,0x013f8a9 } },
- /* 148 */
- { { 0x12f8923,0x1a76fcc,0x07ce16a,0x00dfa41,0x024aa5e,0x09a0777,
- 0x06e1c6c,0x0804f7d,0x191e0bb,0x0abe88f,0x1318b0a,0x15a5e7a,
- 0x0f425af,0x03ffbd5,0x08c4a1b,0x197d25a,0x12b0114,0x0cb2095,
- 0x0f88d4a,0x0d44638,0x019f670 },
- { 0x05c02af,0x1dde911,0x06341ac,0x0c7f47d,0x13ebc16,0x07a4172,
- 0x0add6e1,0x1bf4dbe,0x12bfc55,0x095a290,0x09cf6a4,0x1a80a25,
- 0x0430bdb,0x1ea9f55,0x03d0f64,0x1faa758,0x1e40c27,0x07e1ac7,
- 0x065092d,0x03077d2,0x00a32cb } },
- /* 149 */
- { { 0x1a6a746,0x186169f,0x12a38e6,0x043ab44,0x084a792,0x06f95af,
- 0x02451e3,0x166e14b,0x130666c,0x144033e,0x1c741a2,0x013deda,
- 0x04b09a7,0x0032e8c,0x001e8f8,0x12890a0,0x14bb8dc,0x0382357,
- 0x19524eb,0x1462538,0x01fd2b6 },
- { 0x05f2771,0x0eadef2,0x16574f5,0x15e865d,0x0542b08,0x19535dc,
- 0x103efc8,0x1645d9a,0x1e8becc,0x1e5b0a1,0x1891fc3,0x02757f1,
- 0x1bcecc5,0x06d181c,0x1755bde,0x141bf2a,0x01956c2,0x148abe3,
- 0x00c7f8a,0x06b97e6,0x018ca6d } },
- /* 150 */
- { { 0x00c4923,0x0058ddf,0x01ef760,0x00d2052,0x046ae74,0x1de8638,
- 0x0cdfe55,0x1704731,0x19655f8,0x1470d4e,0x1d0542a,0x0ff4a01,
- 0x0ecd292,0x10173d7,0x1aa71b4,0x0d25d04,0x0b39f29,0x05a67ac,
- 0x1d055df,0x070d197,0x011f309 },
- { 0x13ed442,0x1af3d19,0x1deeb72,0x1f20dfd,0x0e5c8e2,0x0c79145,
- 0x0048cf6,0x0b85b36,0x07ffe12,0x119796d,0x0c60d51,0x0e63744,
- 0x1259487,0x0969628,0x12ab96c,0x1b38941,0x0589857,0x15f8073,
- 0x13c803d,0x02010ca,0x0172c5d } },
- /* 151 */
- { { 0x1c283e0,0x0a02317,0x0039625,0x08fdc11,0x1763398,0x1e8b117,
- 0x0d03adf,0x1dbf5e3,0x0f598c5,0x07a8a8f,0x0366efb,0x05eefc0,
- 0x146b4d9,0x14621fe,0x10f8ece,0x1a3a4ea,0x12c6511,0x19cca70,
- 0x1c16db4,0x08343b5,0x00c6dd8 },
- { 0x1b991ad,0x10bf011,0x14508f6,0x06e3f74,0x0ab2b21,0x0e0c3cd,
- 0x1b16837,0x1b9682f,0x15f63ac,0x19de456,0x09f5405,0x04203c5,
- 0x082fcf5,0x1083680,0x0dcff41,0x0259ec6,0x1de7db0,0x18f4108,
- 0x1d9517b,0x0ecdb2a,0x018ca07 } },
- /* 152 */
- { { 0x180dfaf,0x1a3dcd7,0x1fce390,0x1f388cc,0x080b631,0x0de11c5,
- 0x16c99b7,0x140dfe3,0x1aa8718,0x0b0f1b2,0x070d7d8,0x19215e6,
- 0x08e7f7a,0x1e34237,0x0e0c747,0x0eb6980,0x1106841,0x10f334e,
- 0x0d2dcc6,0x13ac412,0x00c76da },
- { 0x1e4e78b,0x1acbdd1,0x1e6a607,0x18aa133,0x0c14ded,0x0446309,
- 0x0e6564c,0x0b17e6e,0x19b2074,0x02b4183,0x1da401f,0x188f444,
- 0x13c4440,0x1bf36d7,0x17c8f23,0x122076d,0x0254292,0x1a7b316,
- 0x0cede58,0x14db631,0x00f9f4e } },
- /* 153 */
- { { 0x0d36049,0x0f5c467,0x07e319a,0x03e8373,0x07a4ffe,0x1970844,
- 0x1d58da9,0x114d216,0x065a0bb,0x1eeb546,0x10a5559,0x18b12dc,
- 0x0d42cf8,0x0d55ffd,0x01ad7cc,0x04d48a5,0x0f28f6f,0x18fbefd,
- 0x186b940,0x13c1581,0x0120c5d },
- { 0x0c10da7,0x171ffd6,0x1b96bef,0x1328928,0x07e2d5f,0x01107fb,
- 0x1fa18f1,0x05d1d82,0x0bd6f63,0x137ba0a,0x127bd3f,0x181f87f,
- 0x104a9e3,0x01dfdc3,0x1fcf2e8,0x0685a4b,0x000bb03,0x10c7e9b,
- 0x014334b,0x07cea60,0x01ac1e6 } },
- /* 154 */
- { { 0x13d6a02,0x1e83e47,0x0347760,0x18fde9a,0x11fc143,0x03d7b0b,
- 0x12fc353,0x1e19532,0x0827c5c,0x0549f4c,0x05e20b2,0x18f656d,
- 0x1a4a102,0x052af45,0x0f21f56,0x0c9e0c6,0x02fcc2d,0x00d7441,
- 0x01b407f,0x136a7f3,0x01c12ce },
- { 0x1dc1b79,0x11cfeca,0x05aa165,0x087e9cc,0x0728f75,0x117dcf9,
- 0x0f133b7,0x13cdce0,0x0d50fae,0x017bb40,0x14c3b41,0x187785a,
- 0x0c0546b,0x06eacc5,0x09001af,0x0922001,0x0c9e129,0x09f9943,
- 0x1afe58a,0x1044ab6,0x0146777 } },
- /* 155 */
- { { 0x10c98fe,0x0a10f71,0x1c16be0,0x01f859a,0x1eb0feb,0x0fb5696,
- 0x1329853,0x1d13658,0x09ba314,0x1c09a6f,0x12c5b74,0x1d709e0,
- 0x08a443d,0x183fc65,0x155bb83,0x0722ff8,0x1bb3a4f,0x09e0e41,
- 0x06b7350,0x0fba496,0x0199839 },
- { 0x14781e6,0x0f0bf6f,0x0407280,0x128de3f,0x12d7c31,0x18486d1,
- 0x0984ed4,0x00f444f,0x0a7c8c6,0x04ad8ee,0x1a5c249,0x17ddbb8,
- 0x181cf2f,0x02b0404,0x0f60aed,0x069ae3a,0x1a30851,0x0e7e6ee,
- 0x19e6310,0x02e36b2,0x00d23dd } },
- /* 156 */
- { { 0x0dd7e96,0x007c26a,0x10325e9,0x150813f,0x1114c8e,0x0889c9b,
- 0x0a79aa7,0x1ad8ade,0x18fd8c6,0x1b03310,0x1a79f0e,0x150c004,
- 0x1fad3ba,0x02c94ea,0x04f1ac0,0x06cb628,0x040222e,0x060d6bf,
- 0x1e62abb,0x04c4348,0x01d36a8 },
- { 0x1003c81,0x022e260,0x180abab,0x15e87b0,0x1ef9ef5,0x1bba34c,
- 0x17d7983,0x0b06d4c,0x1bf5d28,0x18973d5,0x0b3bc7c,0x1903909,
- 0x122f53e,0x0e9245a,0x18cb28a,0x0b8c0c7,0x1c581e6,0x1ff4d53,
- 0x0a1065c,0x10d934a,0x0017e36 } },
- /* 157 */
- { { 0x090de99,0x17f32cf,0x0d8c2cb,0x195a0b5,0x1e4485b,0x0724495,
- 0x1a94b85,0x10f8914,0x0226286,0x16c2a18,0x0f6d50a,0x1d2abd6,
- 0x01261f0,0x0a2f2c2,0x1a0618f,0x0ae7291,0x00f8ed7,0x067f0e7,
- 0x1612b79,0x1e3feaf,0x003fbd6 },
- { 0x1bf968c,0x188eee8,0x11cb50d,0x1a91bf4,0x1558d7c,0x12d2b36,
- 0x0488f90,0x08293e1,0x05c26d0,0x07c199c,0x105d0c3,0x03e2f85,
- 0x19be7b8,0x08a1ece,0x0f70cf9,0x07f5dc7,0x03594fd,0x179c2d6,
- 0x1f46046,0x039e853,0x0113755 } },
- /* 158 */
- { { 0x0193bb2,0x07aad90,0x01c924a,0x00e6217,0x16e579d,0x02e93b4,
- 0x18c274d,0x114bdc0,0x0a87186,0x121f219,0x0e1a0e6,0x07c2220,
- 0x0828c11,0x1199788,0x01bb3ce,0x1976905,0x0370385,0x199a455,
- 0x1c5636b,0x1ff955d,0x00c6698 },
- { 0x0908745,0x062a57b,0x0fee811,0x08d466a,0x06b336e,0x10f410d,
- 0x0a14b55,0x0fed298,0x0363491,0x194bcb8,0x184c546,0x077303e,
- 0x0f6e102,0x17a352f,0x05f70af,0x09efed0,0x0af8e11,0x1c9ef50,
- 0x15cb16f,0x1e79abd,0x0136c3c } },
- /* 159 */
- { { 0x1080de4,0x1ccd5bd,0x0e5aee1,0x1bad3b0,0x1b8f781,0x17c7b19,
- 0x0aaaa61,0x194ed68,0x0a54bc5,0x0ba601c,0x0beee57,0x0c0b538,
- 0x1076fcb,0x000bc49,0x146d102,0x0de1b08,0x0389d28,0x1a07806,
- 0x1150c98,0x11d2a41,0x014c303 },
- { 0x177aad9,0x1e1c0b4,0x0f8f252,0x05ae10f,0x0dbfd08,0x0ff6845,
- 0x008321d,0x1f80da1,0x0345656,0x0e7426a,0x1b753b8,0x11c01fa,
- 0x0071c4d,0x152fd5a,0x0ce2c89,0x1d6de46,0x0c10bae,0x06a3bf5,
- 0x1e0309b,0x161176b,0x0078e4d } },
- /* 160 */
- { { 0x078342a,0x0e89508,0x0190044,0x1cab342,0x0534725,0x09ffee8,
- 0x075643f,0x03fd48b,0x106f0ac,0x1b4a54f,0x06f1a73,0x15b67c3,
- 0x00f6d24,0x1ceee68,0x18e3d7a,0x1ba9c79,0x166b632,0x09c2007,
- 0x0578715,0x11fbf7c,0x0085cab },
- { 0x109422f,0x01fb5c6,0x10ec2a5,0x0c1f311,0x17d2975,0x19726c8,
- 0x107e8bb,0x07eab48,0x135f7c1,0x1a1a91d,0x0b4ffd9,0x080fdb5,
- 0x0d274d3,0x09a3921,0x10450d6,0x0c2bab2,0x1013bb8,0x08e5939,
- 0x15de533,0x06e0097,0x007da04 } },
- /* 161 */
- { { 0x1712c44,0x1ccd316,0x15de092,0x114d2c4,0x148368f,0x0f11438,
- 0x010cb59,0x1f11dad,0x06f5bc5,0x0014183,0x0d1e745,0x02429d8,
- 0x10e6cf3,0x09936db,0x16dbd12,0x126d72d,0x098ca32,0x1e52d60,
- 0x1fa886b,0x04918e5,0x004d69e },
- { 0x11269fb,0x0484953,0x0d802aa,0x1030ca1,0x0f6bdba,0x1aaed91,
- 0x10a8e7e,0x1a03b39,0x16311e9,0x1e7586f,0x10b0743,0x0f39215,
- 0x0a6faeb,0x058f9b9,0x04ec88b,0x0832647,0x1dfbc8c,0x0315379,
- 0x1fa399d,0x1461645,0x00019de } },
- /* 162 */
- { { 0x0b3118b,0x144d609,0x0959f7d,0x1ad96dd,0x106ee39,0x1e6cbc6,
- 0x08b0861,0x10f9f98,0x18d537d,0x0c2db40,0x15b6cae,0x02a5d3e,
- 0x1575845,0x0f04c60,0x00e61c5,0x059a41f,0x1c83b21,0x1df4b52,
- 0x06b0711,0x140671b,0x01fb3dd },
- { 0x1a0a9b8,0x1bff067,0x1dd7c1a,0x0fc45b9,0x1478bac,0x1443e44,
- 0x178104d,0x179e702,0x0914c54,0x0c08eef,0x07a993b,0x02c01ea,
- 0x17c8c24,0x064382b,0x045360d,0x17968c7,0x152a8ab,0x1769272,
- 0x1913d4b,0x1d73d04,0x00019e5 } },
- /* 163 */
- { { 0x0d52313,0x0d02733,0x0af47d9,0x0a9a7ee,0x1d69454,0x1bd708f,
- 0x176be9a,0x08e5781,0x0571ab2,0x10fbcec,0x0a35a24,0x12cd5cb,
- 0x13d4c5f,0x1762e70,0x185dc5a,0x17a73fb,0x1a4b764,0x1b87376,
- 0x04359e0,0x12810b3,0x01efffe },
- { 0x08f92e8,0x10713ec,0x08f3cfe,0x1b38ee2,0x021ef0f,0x13a6dd5,
- 0x05d3224,0x0c4c4b3,0x1b9ba27,0x067d252,0x0f2bdb5,0x13a48dd,
- 0x1010c90,0x07c7143,0x05e8436,0x1dd4406,0x1e1453a,0x1d83b8e,
- 0x031ac28,0x188f22d,0x00eadf0 } },
- /* 164 */
- { { 0x0854477,0x00f2426,0x11f046f,0x090c71c,0x0bec25b,0x0e2a6c9,
- 0x180ae1a,0x1a487a9,0x0be1e7e,0x18c6f19,0x18312b8,0x1d60d68,
- 0x1ef5471,0x1521357,0x0b9efce,0x05b8271,0x0ddd845,0x091d713,
- 0x1e0b7a7,0x1f83aaa,0x01649d3 },
- { 0x0de1979,0x0571885,0x1ca361f,0x1a76978,0x0847041,0x01e4df5,
- 0x0f1015b,0x0ce7124,0x0d74ae4,0x17f0c15,0x1926b8d,0x0de9d97,
- 0x1592bff,0x0e20fcf,0x0036e03,0x00e2acd,0x06fe463,0x19add60,
- 0x1b41cc1,0x11698fa,0x00c06d6 } },
- /* 165 */
- { { 0x14dfcf2,0x115f3c2,0x0f436f8,0x1f4d5c7,0x0e21a7d,0x10f6237,
- 0x0eb4694,0x099e8c6,0x041a948,0x14a293d,0x048fcfb,0x1736554,
- 0x121145e,0x0571e54,0x0d2a0ab,0x1b24aac,0x0a0fc85,0x070bb56,
- 0x0420b63,0x19eff83,0x0078504 },
- { 0x199793c,0x073e21b,0x1ed75d3,0x116aa33,0x14ddd61,0x1fcc043,
- 0x17e4e57,0x1cc59ed,0x1b8bf61,0x07522e8,0x13d53c0,0x0c27b9f,
- 0x1026863,0x01801ad,0x108edd8,0x15396ce,0x1344028,0x14fde3a,
- 0x14681df,0x059c6e0,0x00f47b5 } },
- /* 166 */
- { { 0x0bec962,0x1ec56cb,0x01ebafd,0x0c2fc02,0x11cc81f,0x07082c6,
- 0x1142485,0x13ec988,0x142394c,0x014c621,0x18144db,0x0a5a34c,
- 0x03d9100,0x086fc12,0x190dd52,0x1bd4986,0x01efe5c,0x09189df,
- 0x09fedec,0x14c1efa,0x0076249 },
- { 0x0f593a0,0x1ac1c0e,0x1679d25,0x1706c98,0x0c9ceef,0x0e4cc88,
- 0x04ccf81,0x1c65eb4,0x1421808,0x0752f0f,0x1a3d3cc,0x149e9eb,
- 0x0756fb3,0x1b6065a,0x0b9b8ba,0x198d459,0x1fd08bd,0x1b05983,
- 0x1fe3045,0x0f20381,0x001aee1 } },
- /* 167 */
- { { 0x1aa9e14,0x019b5c4,0x003f012,0x03ecece,0x0663427,0x15b4c03,
- 0x010ce41,0x0469b54,0x1ebb7ab,0x0123f70,0x06814cc,0x154fd6b,
- 0x15969b4,0x00007a6,0x03be096,0x0d6b7af,0x0eb4602,0x072ed9c,
- 0x15a15b1,0x087cbaf,0x003b06a },
- { 0x12a0ee7,0x1741c76,0x004ea82,0x11e2dd1,0x04bbe52,0x13209b8,
- 0x17d713a,0x0cf156d,0x006e298,0x1f4065b,0x07b4ad6,0x16e5e8b,
- 0x1af19b1,0x0bb0a90,0x0733934,0x0de76f5,0x194aa51,0x09cd7fc,
- 0x0d05a49,0x125d0d6,0x000797d } },
- /* 168 */
- { { 0x0f3a8ca,0x176f0ad,0x07b096b,0x054b86a,0x1392478,0x1f60401,
- 0x08fefe4,0x16883cf,0x0e6f425,0x027c9e2,0x1d8026c,0x05d903c,
- 0x06e4ec1,0x08c07fe,0x1cd9b51,0x1de74f2,0x1b50e0a,0x0e949e5,
- 0x035c764,0x12d288d,0x0061a14 },
- { 0x15a67a1,0x02a0e33,0x041bd4b,0x011ebfd,0x07d38d3,0x1f4c473,
- 0x0f333da,0x10c54e1,0x0185898,0x101f65f,0x1c116eb,0x0c2ce0c,
- 0x16ecd02,0x086546c,0x0b37664,0x0e6ba3f,0x08230c0,0x03d5085,
- 0x0ca3c87,0x0fcaa86,0x00152a2 } },
- /* 169 */
- { { 0x0057e27,0x104f073,0x1368f75,0x0f8f48a,0x07e8b6a,0x196eadc,
- 0x045147c,0x1c5feb3,0x0d0ef51,0x11cbd44,0x19d51ba,0x0d424aa,
- 0x00c4986,0x19145a4,0x11722c4,0x132f5d4,0x077dd01,0x11edf07,
- 0x14619f4,0x1d451f8,0x01f80e2 },
- { 0x1d0820b,0x0a096b4,0x08618a5,0x0e3d4cb,0x0317312,0x031c068,
- 0x00887ac,0x00d84f9,0x075fe97,0x1fea77e,0x074941f,0x14aeb4e,
- 0x037b396,0x03e5baa,0x1200147,0x17dc6c3,0x0d7ad4d,0x0f03eda,
- 0x0c64b51,0x0903e93,0x01431c7 } },
- /* 170 */
- { { 0x0e1cc4d,0x1968204,0x07b97aa,0x075a5b8,0x093758d,0x0e39c9f,
- 0x1f7f972,0x10619d6,0x1d33796,0x186c354,0x1e1b5d4,0x0795c49,
- 0x0bef528,0x1858dd8,0x1746993,0x09c7956,0x01f54db,0x0cb555e,
- 0x0f00316,0x1b0f987,0x01443e3 },
- { 0x160e7b0,0x141098e,0x0063942,0x16ba67a,0x1c9b629,0x0299c6f,
- 0x1b90bf4,0x1d58a95,0x0e821c6,0x13c7960,0x10272c1,0x0ebe0d5,
- 0x16e5c9d,0x0980c6f,0x0d5d44d,0x18ccf06,0x1ac0bf8,0x0c0e537,
- 0x142b8b7,0x10041d3,0x00e17fc } },
- /* 171 */
- { { 0x1aaa5eb,0x0a3a08d,0x00da2b7,0x12f37b0,0x02cbb75,0x1ff6910,
- 0x0310337,0x083b0d0,0x04e0911,0x011d478,0x122e1c7,0x03da40e,
- 0x0965d14,0x12cf494,0x1a855d5,0x1b7fcb0,0x1cd5006,0x03e346b,
- 0x095a69d,0x15a1be4,0x0148da0 },
- { 0x19069d7,0x062edbf,0x069323f,0x0ab80a6,0x0487d24,0x116d9d1,
- 0x12267a6,0x0418b56,0x0b4fe97,0x15fea9c,0x1cd7914,0x1949a4f,
- 0x1373a04,0x1716d64,0x0ef1527,0x1cfc4f9,0x09dff3e,0x0014391,
- 0x036a4d8,0x130f1a5,0x00d0317 } },
- /* 172 */
- { { 0x166c047,0x1f4dd9d,0x187626d,0x12c0547,0x02e6586,0x0dce001,
- 0x08a5f23,0x14689f0,0x1d08a74,0x13b5651,0x0e63783,0x0e3bf9a,
- 0x0afbf1a,0x0190733,0x0edbaaa,0x13f8a5f,0x0bc179c,0x0541687,
- 0x19eacad,0x019ede9,0x000f4e0 },
- { 0x090c439,0x0074d24,0x1ac9093,0x17786b4,0x17564a2,0x1ba4be9,
- 0x11e7766,0x0852b48,0x1612de9,0x0ff9f86,0x1400ce8,0x0ff9cc1,
- 0x1a35862,0x09120be,0x176a301,0x1070b02,0x0d4ef6b,0x1283082,
- 0x05ba5aa,0x0e51a5e,0x0120800 } },
- /* 173 */
- { { 0x1039042,0x191b955,0x13b65db,0x193f410,0x10e6978,0x1f60a18,
- 0x174bd62,0x187a07f,0x1fe2045,0x1006080,0x16a4a0c,0x1ef5614,
- 0x18e6868,0x130fd7f,0x1257477,0x044ca4d,0x127b7b1,0x1d0f100,
- 0x0a97b45,0x07baf18,0x00898e6 },
- { 0x0bba4ee,0x099ed11,0x15d2ed9,0x0fe92d4,0x1eff639,0x19535c9,
- 0x0a7dc53,0x07e8126,0x11dfdd7,0x041245e,0x1286c68,0x1e5cd37,
- 0x0762f33,0x1d17019,0x05df992,0x1ee8334,0x19375dd,0x05e2874,
- 0x095af47,0x152f3e9,0x0095b87 } },
- /* 174 */
- { { 0x1c1f177,0x19b54b3,0x0f27a0d,0x10c0026,0x1b6d350,0x164d2d8,
- 0x0ee49ba,0x0392849,0x0c27ef3,0x14e00d3,0x0d21c1e,0x174a245,
- 0x05ad93b,0x0e8d64c,0x0e538aa,0x02eb73d,0x006d53f,0x0288e01,
- 0x040b645,0x1d64a4a,0x00b1d13 },
- { 0x15a1171,0x1edf5b3,0x0ac73f9,0x182d81a,0x1228295,0x1e44655,
- 0x16d6815,0x19f1b64,0x0d300e9,0x1f54f4b,0x154badc,0x06fe4d2,
- 0x1fb0e00,0x0f07cc6,0x0740d72,0x0901fd5,0x1b8d290,0x0c30724,
- 0x00dacc6,0x1d2a258,0x0037a35 } },
- /* 175 */
- { { 0x100df48,0x194f747,0x0c13159,0x0c23590,0x189ca7b,0x1d4091d,
- 0x15fe62c,0x1d492f4,0x1c21ca3,0x0218d8c,0x0cf39f8,0x1bd7c57,
- 0x1945a73,0x16e3bc0,0x01b30ae,0x07be25f,0x1e4e5eb,0x02ff802,
- 0x149f73c,0x0bbaf5b,0x005ef95 },
- { 0x0ee402f,0x117fd00,0x0d33830,0x1476617,0x1b335e2,0x1e5880a,
- 0x1474190,0x110a84a,0x13cd196,0x10c1fa2,0x1952d31,0x1e45e17,
- 0x04c6664,0x061066f,0x1d33fb9,0x188eb4b,0x12f80a4,0x0ee554b,
- 0x04447b6,0x15e400b,0x019cde4 } },
- /* 176 */
- { { 0x171f428,0x085e46b,0x0e0a7a7,0x13c8794,0x1ac1ecd,0x09d6781,
- 0x19203ae,0x07f1abd,0x1065a2a,0x11197c0,0x0e29cc5,0x1f545e1,
- 0x021fc04,0x012a3a5,0x037df9c,0x0bede95,0x1f23bb1,0x128d627,
- 0x0254394,0x0436e7c,0x006b66e },
- { 0x1a41dee,0x0c24033,0x0cfd672,0x1cf67c5,0x0cfa95a,0x0a2a709,
- 0x00e1a24,0x148a9b3,0x1eefca6,0x06eedef,0x072dd7c,0x164823d,
- 0x035f691,0x1f79046,0x0e79d9b,0x079ed53,0x00018b3,0x0f46f88,
- 0x0705d2a,0x0ab593a,0x01c4b8a } },
- /* 177 */
- { { 0x04cccb8,0x1ac312e,0x0fbea67,0x125de9a,0x10bf520,0x17e43c3,
- 0x195da27,0x0dc51e9,0x0da1420,0x11b37cb,0x0841f68,0x1400f8a,
- 0x1090331,0x0a50787,0x03533ab,0x08f608f,0x0e2472a,0x0d944cf,
- 0x1081d52,0x0ca69cc,0x0110ae9 },
- { 0x0ed05b0,0x0eb2ae6,0x150cb30,0x1202eb2,0x0bac3f0,0x0bbe6bd,
- 0x1c29239,0x0db75d6,0x140e98d,0x0580449,0x1493c61,0x0ca6c07,
- 0x1d26983,0x12b90b9,0x051620c,0x083bcdc,0x1266111,0x00e9a45,
- 0x1e89fcd,0x04afb9d,0x006be52 } },
- /* 178 */
- { { 0x147e655,0x1c799e4,0x1e56499,0x1411246,0x1f0fb76,0x011ce8f,
- 0x19d15e4,0x19d65bf,0x03cdbb7,0x1043a49,0x1b5073a,0x1b720be,
- 0x0821326,0x1cee2ac,0x06ba6b9,0x02e04b6,0x00ce9c3,0x070a29a,
- 0x0b0e2a7,0x0058534,0x00c3075 },
- { 0x156ace2,0x12788e0,0x14a4304,0x0ef3fe4,0x0c170fe,0x08b8d91,
- 0x06a05b8,0x12ec1bf,0x155de27,0x0cde541,0x131e768,0x0fd4f8d,
- 0x101ad92,0x0eb0fbb,0x1640448,0x00d7650,0x026261c,0x1ff4064,
- 0x08990ae,0x01a6715,0x015e405 } },
- /* 179 */
- { { 0x0ad87bc,0x0bc14f5,0x12f724e,0x0f03d09,0x00ac936,0x0f27ef7,
- 0x10935ab,0x0ad6af3,0x1690d7f,0x05cd5d2,0x1ec2e54,0x13a7a29,
- 0x16f09b2,0x12d073d,0x1a13c8c,0x09fe7a0,0x1d3606f,0x1828a74,
- 0x02b5cce,0x17ba4dd,0x0077e63 },
- { 0x0d25c6d,0x0837670,0x173c2bf,0x1401745,0x1d90021,0x0dd9cc6,
- 0x15dc231,0x1f83604,0x0198ff8,0x1bf836c,0x0b35a01,0x1fe36fc,
- 0x1287d50,0x131d1ab,0x1d7815c,0x0b535de,0x092fa92,0x0df92bc,
- 0x0e743a5,0x1a7be0e,0x0111847 } },
- /* 180 */
- { { 0x0c82924,0x1ce63ff,0x15a54aa,0x134e441,0x1c76dd6,0x1778710,
- 0x09f7a81,0x0094c6a,0x0271839,0x19f28e1,0x001f22a,0x0bd4e2d,
- 0x06f4db3,0x1a47892,0x0fb7829,0x0c12b1e,0x0444115,0x178a49b,
- 0x1d2ce37,0x0b07a30,0x00f75f6 },
- { 0x1927eb7,0x0c4f085,0x049e8e4,0x1385c5e,0x087c635,0x14b37a5,
- 0x108cdff,0x10a16e5,0x0105e55,0x015c1c1,0x10e7e44,0x000dcb1,
- 0x0963fee,0x0c8da99,0x014bb8e,0x1f2f67e,0x14ccbaf,0x03fadc2,
- 0x1e01418,0x1cbed8b,0x016a935 } },
- /* 181 */
- { { 0x1d88d38,0x101aaef,0x1d03c66,0x078a93b,0x155cd8e,0x080370a,
- 0x0a78c13,0x1cc644e,0x0fd0b0c,0x0b5b836,0x0ab4c7c,0x18126be,
- 0x1ff156d,0x1bd1efc,0x031484f,0x0bf6b66,0x092a55e,0x14f94e6,
- 0x0e16368,0x19fba85,0x0144a0e },
- { 0x0658a92,0x08aefa9,0x185ad70,0x0f88502,0x1ce3ed1,0x0c9548d,
- 0x17dc1ff,0x12d4ab2,0x19cd5d8,0x11e45fe,0x11cac59,0x087eb52,
- 0x1d07763,0x1819f0d,0x19132a2,0x005f629,0x1861e5c,0x113d0e4,
- 0x113fecc,0x01e5899,0x01b5ece } },
- /* 182 */
- { { 0x1211943,0x13dd598,0x09705c4,0x0cad086,0x04a8cac,0x0afe1f2,
- 0x02e2361,0x14ba5fc,0x0ce91ee,0x1d5d586,0x11f4491,0x1b88f1d,
- 0x1a5d23d,0x066cff7,0x061b79c,0x0aecd47,0x0678265,0x11963dc,
- 0x1abb1fe,0x080317d,0x00873e5 },
- { 0x18d17c1,0x1437959,0x103725b,0x18e3f40,0x1cbfbd0,0x024ce5c,
- 0x0ade7e2,0x017c223,0x0f71ec8,0x0a3e2e7,0x025a487,0x17828d9,
- 0x11acaa3,0x1e98b19,0x0487038,0x0ecb6bf,0x01ee768,0x018fd04,
- 0x07bfc9c,0x15fabe8,0x00fed5d } },
- /* 183 */
- { { 0x0da1348,0x085cea6,0x04ea2bc,0x044b860,0x10769fd,0x0be115d,
- 0x096c625,0x1888a15,0x1f5acf1,0x057eb63,0x1e00a57,0x02813fd,
- 0x1dcf71a,0x17044fa,0x080a7d7,0x05751c2,0x0fb0fbd,0x04ba954,
- 0x1dc32d6,0x044ebed,0x009061e },
- { 0x1bda16a,0x125628f,0x0a8adc2,0x13e3bf4,0x19910e7,0x0a2fb7b,
- 0x184cb66,0x1df7459,0x0eb4ba4,0x086acd7,0x0b54f51,0x136697e,
- 0x086a8e0,0x131063d,0x0040813,0x18de8ec,0x03d0a53,0x131fc4a,
- 0x1fabd5a,0x123a330,0x013214c } },
- /* 184 */
- { { 0x10d66c3,0x1d89024,0x0813953,0x1141b90,0x0aed732,0x1a14a6f,
- 0x130e012,0x0cf7402,0x131ddc4,0x197d155,0x0bb444f,0x0bd5068,
- 0x0e70ff5,0x1181a70,0x0369cbc,0x1c78363,0x1bebd8a,0x156e186,
- 0x1a51680,0x17bede7,0x009c179 },
- { 0x084c26f,0x09477ba,0x0ec51b2,0x03de55b,0x006b7db,0x0c6ed39,
- 0x1d520fd,0x16c110f,0x04bc7ed,0x0f27106,0x12bf73f,0x043b2eb,
- 0x00484d1,0x035f761,0x0d659c2,0x1b6cf8b,0x088a6d6,0x05abcd5,
- 0x0461d22,0x0db0fc8,0x001522c } },
- /* 185 */
- { { 0x071d4ae,0x083abe2,0x09d82a2,0x0a8743b,0x1ef4b1a,0x1380d0f,
- 0x0c609aa,0x1277125,0x059c65f,0x1a6a729,0x077cd6f,0x1253af1,
- 0x12923af,0x05bce1f,0x12d1b18,0x1e26079,0x0e7cf4c,0x04aac16,
- 0x15fc3b1,0x0103684,0x011c7da },
- { 0x0eef274,0x03572cd,0x020fe4b,0x1e286f8,0x06c5bf4,0x1e4357f,
- 0x0c08f84,0x0c154e9,0x02a2253,0x10ed673,0x027e974,0x057044b,
- 0x0fb3d57,0x0fd3a58,0x128e45b,0x123527a,0x0dcb128,0x0f3b66c,
- 0x07d33ef,0x12347eb,0x019aa03 } },
- /* 186 */
- { { 0x03fc3f1,0x1d34f10,0x08a4152,0x16c420d,0x09168cc,0x0afd4f8,
- 0x01502ab,0x0df6103,0x0bff7ed,0x05c7907,0x052bf7b,0x0c317df,
- 0x1b2c80a,0x1855e8e,0x1763282,0x014f9c4,0x041028e,0x13af33d,
- 0x1ba56e6,0x0cc5bba,0x01b2dd7 },
- { 0x089d7ee,0x1f93cf9,0x01721f7,0x13dd444,0x0d755d5,0x056d632,
- 0x1f55306,0x0335d61,0x17ec010,0x1462367,0x15c290e,0x1cfd691,
- 0x186fc90,0x0859cf7,0x1714f04,0x0b4412c,0x1cc3854,0x122abbb,
- 0x1f7408f,0x0861eea,0x016ea33 } },
- /* 187 */
- { { 0x1f53d2c,0x19ca487,0x06e7ea7,0x0d60069,0x0dc9159,0x0cbcb3c,
- 0x1405356,0x115e214,0x1a8a6b7,0x0eb96d5,0x05ec413,0x0a8116a,
- 0x00ef5de,0x1369cdf,0x0ae42f2,0x0fee028,0x1e9eda1,0x0657551,
- 0x1acc446,0x0d13ac0,0x016da01 },
- { 0x06afff7,0x052b1fa,0x17cfa9b,0x14694bc,0x1945c7b,0x0cc7ec1,
- 0x19322aa,0x0bd83ff,0x0b63f53,0x15300a3,0x1427950,0x1111a3e,
- 0x1b50816,0x0fc6686,0x04636aa,0x0cee5a3,0x0bb78a3,0x13282f3,
- 0x131b719,0x0075033,0x01ef4ab } },
- /* 188 */
- { { 0x176d986,0x04e8a69,0x16c0182,0x0f45b86,0x10f4e07,0x1f96436,
- 0x1c2694f,0x1903822,0x1123c3f,0x17a5d22,0x15bf0bf,0x0b4e36c,
- 0x1b852cd,0x0ff7d45,0x1f1d224,0x016ef6a,0x03e4811,0x0c7829c,
- 0x0b1684a,0x0ba75aa,0x004c4b5 },
- { 0x1827633,0x067f9f9,0x1a59444,0x0bc015f,0x086784d,0x16997d0,
- 0x1e208fa,0x10d9670,0x02b91cd,0x0e7a68b,0x0d8e28f,0x14b1cde,
- 0x02078b6,0x145bfea,0x1e4844b,0x107ce66,0x04dee56,0x1b4b202,
- 0x038a10c,0x08421e5,0x01223b8 } },
- /* 189 */
- { { 0x1ebeb27,0x054d4e1,0x03e1b0a,0x0a7deb2,0x17bcdcb,0x173f9be,
- 0x0b84536,0x193d114,0x0726ea7,0x19a9172,0x104e200,0x070d182,
- 0x1599d50,0x10b10ab,0x0c6bb29,0x0c9b0b3,0x1ebfcc5,0x138cfe7,
- 0x0bae38d,0x0ef5e23,0x00433a5 },
- { 0x1eba922,0x1367037,0x1a4f0fc,0x1c8eb4a,0x1f6c83e,0x1f9bc72,
- 0x19d00a2,0x1e2fef2,0x0bdc3f6,0x152f1b4,0x1642bb4,0x14154dd,
- 0x153d034,0x0523e5e,0x070e931,0x0579076,0x06e4dce,0x1d27855,
- 0x132803a,0x0f5e86e,0x01c097c } },
- /* 190 */
- { { 0x1c28de7,0x1b8bc3c,0x0c3000d,0x1557386,0x017aa2a,0x1e30f5b,
- 0x060999a,0x0088610,0x14d78b5,0x05adae7,0x03f1cb8,0x0a5b30e,
- 0x05d76a7,0x0a05bde,0x11a27d7,0x1a07476,0x06787f2,0x0d4bfec,
- 0x158182a,0x0f6bddf,0x01c06ab },
- { 0x1b71704,0x156d8ff,0x0ec7a67,0x16721fc,0x036e58b,0x078cd52,
- 0x0e0b2ad,0x1b9dd95,0x0e0f3d9,0x12496fd,0x02b44b6,0x097adc4,
- 0x022a0f5,0x1edde93,0x027e83d,0x1d6a95f,0x01ae8d2,0x06e6285,
- 0x1df41d6,0x13f02dd,0x00b7979 } },
- /* 191 */
- { { 0x04f98cc,0x0323108,0x1aba7b1,0x04e55db,0x0511592,0x110c37a,
- 0x0f741f9,0x16cf5d2,0x08d6d69,0x0be7013,0x0ea3cf4,0x0c11fa8,
- 0x17b5347,0x1e055bc,0x1fc704d,0x1323bd0,0x1a8139f,0x11dfacb,
- 0x151f835,0x0750b7c,0x008de29 },
- { 0x0f668b1,0x156e9c7,0x1d90260,0x1ac2392,0x054e6b2,0x0ea131e,
- 0x1ac4870,0x0e679ce,0x0eff64e,0x09a5947,0x0584a8c,0x135850e,
- 0x14af71a,0x1d049ac,0x1222bca,0x011d063,0x112ba91,0x105b248,
- 0x13d0df6,0x178b8ab,0x01138fe } },
- /* 192 */
- { { 0x0a2daa2,0x052c4e2,0x0231fa7,0x18801ec,0x18ea703,0x0ba8818,
- 0x1416354,0x052df19,0x04abb6f,0x1249a39,0x05aad09,0x07c3285,
- 0x1d0be55,0x1628b2b,0x1e4e63e,0x01d5135,0x0ec4f88,0x0f1196f,
- 0x1ec786c,0x02ec3cc,0x01372f8 },
- { 0x020f662,0x0a5e39d,0x1409440,0x1893db2,0x1fb7e77,0x15cb290,
- 0x025bed8,0x0fd13ea,0x1a2e8d3,0x132ce33,0x105c38e,0x144cb00,
- 0x140f2b2,0x0f6a851,0x1d3f39a,0x1801e2c,0x17efdc3,0x1d55229,
- 0x13a6764,0x077fb49,0x0198f3c } },
- /* 193 */
- { { 0x1614189,0x0fae6c0,0x07deeac,0x0a4964b,0x07d56c4,0x1da0af6,
- 0x092c917,0x1f38f75,0x07af6be,0x015e46e,0x123a08c,0x01c0e96,
- 0x1f91b77,0x0db68d8,0x04cdb82,0x0192e94,0x157e668,0x0942e09,
- 0x1f32d89,0x1970278,0x012d59b },
- { 0x0019927,0x0c1da3e,0x156f76b,0x0ec61bf,0x010f266,0x102e91f,
- 0x1b168c7,0x0c02bb7,0x0456ac4,0x15372fd,0x12b208a,0x0a52487,
- 0x0946956,0x06e464f,0x07271fd,0x080cb8d,0x009e24a,0x1d6d93f,
- 0x1904c06,0x0f469d5,0x01ccdfa } },
- /* 194 */
- { { 0x1cb1a7d,0x14326ac,0x03b85da,0x06d5df7,0x0d864ca,0x11586c2,
- 0x0eb2c70,0x03a1dd0,0x1d980df,0x1405375,0x133b65f,0x1988ff2,
- 0x15f582a,0x1d39608,0x073448c,0x0f76f45,0x0a8c710,0x0670951,
- 0x1b6028c,0x1394ac9,0x0150022 },
- { 0x11c180b,0x05d6a97,0x08425dd,0x11ae935,0x108be99,0x0de8dd6,
- 0x122ad5b,0x1352f18,0x00afbea,0x169f1f2,0x1717f1b,0x12f62a7,
- 0x108a8be,0x0df49f6,0x11fc256,0x0477b5b,0x1082cee,0x1469214,
- 0x109ca77,0x0a478db,0x0016417 } },
- /* 195 */
- { { 0x014a31e,0x16678b6,0x10b5d3b,0x0965bc7,0x088e253,0x1621e1a,
- 0x0d665f3,0x06df376,0x1916ac9,0x10822ce,0x1910010,0x18053ef,
- 0x0371d15,0x022a9ac,0x071f049,0x148cf19,0x08dec94,0x0e64baa,
- 0x059eeb6,0x0cf0306,0x014e4ca },
- { 0x10312bf,0x1782ac6,0x19980ce,0x0aa82c3,0x1d1bf4f,0x00bc0ed,
- 0x1169fe9,0x1aa4b32,0x000eef1,0x1a4a6d4,0x0ee340c,0x1d80f38,
- 0x096c505,0x0e4fb73,0x0b86b78,0x01554e1,0x0c17683,0x0014478,
- 0x18a8183,0x19fc774,0x000c7f4 } },
- /* 196 */
- { { 0x17d6006,0x1a23e82,0x02c0362,0x0dfae39,0x18b976e,0x07a07a9,
- 0x180a6af,0x106bcef,0x0f103a7,0x1df71c3,0x1cb12c4,0x1840bc8,
- 0x1420a6a,0x18fe58c,0x0c117d8,0x17e9287,0x19fc00a,0x0f2ee0e,
- 0x1555ade,0x0178e14,0x01b528c },
- { 0x08640b8,0x083f745,0x004aea7,0x07a1c68,0x0561102,0x1257449,
- 0x1956ef8,0x19b8f9c,0x0fa579d,0x1ac7292,0x0eff978,0x0e2a6ef,
- 0x0457ce2,0x1e04a3f,0x19471b0,0x0f04cc8,0x150f4a9,0x12fdec6,
- 0x0b87056,0x1ba51fc,0x008d6fc } },
- /* 197 */
- { { 0x07202c8,0x0517b2e,0x0362d59,0x04b4a96,0x1d63405,0x1a7dfab,
- 0x159c850,0x1470829,0x01d9830,0x08a10af,0x03ef860,0x11aabde,
- 0x1fc7a75,0x137abfc,0x01773e3,0x0d3a6ae,0x056d922,0x1aeea4d,
- 0x16d27e5,0x02baf57,0x00f18f0 },
- { 0x0799ce6,0x188885a,0x1f6c1c4,0x1259796,0x15bbfb9,0x1d10f11,
- 0x0327fde,0x1fd83e0,0x1b18f49,0x04eb489,0x1e566c0,0x12a3579,
- 0x0e8da61,0x06a10a3,0x1a1c84c,0x047e21c,0x017ae5f,0x1aac194,
- 0x0b9ce1a,0x0b76d13,0x0143c9b } },
- /* 198 */
- { { 0x0c74424,0x1946da4,0x0bad08c,0x03a3396,0x12616e1,0x0b710b9,
- 0x064a903,0x0a5ca68,0x00cbdc7,0x0c1d4a6,0x0eec077,0x00a1ae6,
- 0x005c623,0x0dbd229,0x0358c69,0x023919a,0x0259a40,0x0e66e05,
- 0x11b9f35,0x022598c,0x01e622f },
- { 0x01e4c4b,0x1714d1f,0x12291f5,0x113f62a,0x15f8253,0x09f18ce,
- 0x016d53f,0x0ccfc6e,0x00a08b9,0x02672cd,0x0fa36e3,0x13cfb19,
- 0x15bca74,0x17761eb,0x1125baa,0x0627b98,0x03a8a1a,0x00bee39,
- 0x13ae4d8,0x1feef51,0x01a5250 } },
- /* 199 */
- { { 0x029bd79,0x103937f,0x0cd2956,0x009f321,0x0574a81,0x0ab4c1b,
- 0x051b6ab,0x1ded20d,0x150d41f,0x12c055c,0x1dfd143,0x0a28dcd,
- 0x0abc75b,0x1879b8c,0x03325ef,0x0810ea1,0x0a4a563,0x028dd16,
- 0x1936244,0x0720efc,0x017275c },
- { 0x17ca6bd,0x06657fb,0x17d7cdf,0x037b631,0x00a0df4,0x0f00fbf,
- 0x13fe006,0x0573e8d,0x0aa65d7,0x1279ea2,0x198fa6f,0x1158dc6,
- 0x0d7822d,0x1f7cedb,0x0dfe488,0x15354be,0x19dabe4,0x13f8569,
- 0x1a7322e,0x0af8e1e,0x0098a0a } },
- /* 200 */
- { { 0x0fd5286,0x0867a00,0x00f3671,0x0ae5496,0x1ea5b9d,0x0d739f0,
- 0x03e7814,0x049ebcc,0x0951b38,0x14da8a1,0x13599ff,0x05a13f6,
- 0x16b034b,0x16e2842,0x14dea03,0x0045c96,0x0128cb0,0x134f708,
- 0x09522bb,0x173cb8d,0x00ed7c8 },
- { 0x133619b,0x003de6c,0x1865d18,0x1c573bf,0x0ce7668,0x1715170,
- 0x1574f31,0x05f53dd,0x17eebf3,0x0d0a7af,0x113d90d,0x131acf9,
- 0x0c75cb8,0x1c2860b,0x08617f1,0x1392d96,0x07645f7,0x004c3a5,
- 0x1f6d1d1,0x11f15c4,0x0139746 } },
- /* 201 */
- { { 0x08684f6,0x13456e4,0x16ff177,0x16c334f,0x1c1edaa,0x1d0c7ab,
- 0x05cd6c9,0x1d64b1a,0x18ecd89,0x13f3db2,0x07dfaac,0x138db0f,
- 0x1b3d888,0x13eadf7,0x1f725b5,0x1ae7951,0x0ae37ba,0x1e426c3,
- 0x1a395b5,0x1232ed9,0x01a4c7e },
- { 0x119ffa6,0x0d2a031,0x0131400,0x18269d8,0x0cae64e,0x0092160,
- 0x0a5b355,0x1dc3ed3,0x0bf2cae,0x0d12cf7,0x1ba0167,0x0f18517,
- 0x0488e79,0x1c74487,0x1212fae,0x0ffb3d2,0x0d0fb22,0x0072923,
- 0x09758c6,0x054a94c,0x01b78be } },
- /* 202 */
- { { 0x072f13a,0x1aaa57a,0x0472888,0x0eae67d,0x1ac993b,0x00b4517,
- 0x1a7c25b,0x06a4d5f,0x14b1275,0x07f3b0e,0x01c329f,0x10e7cee,
- 0x1684301,0x03f3e6f,0x0daaab7,0x05da8cd,0x1eaa156,0x06d16ea,
- 0x07ebe36,0x145c007,0x0016a81 },
- { 0x03de3bf,0x03ace27,0x022aa20,0x02a5e61,0x0c1e2e1,0x1f5d2d8,
- 0x1b66aa9,0x195965b,0x19f9c11,0x032eaa9,0x1170653,0x1b0f61b,
- 0x010ab9b,0x051fa5b,0x0be325b,0x0bf3fa6,0x1cc28cb,0x1a4c217,
- 0x0438877,0x1c4f997,0x00f431a } },
- /* 203 */
- { { 0x00ccd0a,0x10506b5,0x1554eca,0x04b3276,0x03eeec8,0x1339535,
- 0x01bf677,0x19f6269,0x00da05d,0x0ce28a4,0x061d363,0x089ace7,
- 0x09c4aa4,0x114d1ae,0x13cd6cb,0x0fd5bb3,0x15f8917,0x0eb5ecd,
- 0x0811c28,0x01eb3a5,0x01d69af },
- { 0x07535fd,0x02263dd,0x1ce6cbe,0x1b5085f,0x05bd4c3,0x08cba5a,
- 0x127b7a5,0x1d8bfc2,0x1fd4453,0x0c174cb,0x0df039a,0x00bbcd8,
- 0x0aa63f7,0x0961f7b,0x0c3daa7,0x151ac13,0x1861776,0x05f6e9a,
- 0x17846de,0x1148d5d,0x0176404 } },
- /* 204 */
- { { 0x1a251d1,0x03772a8,0x17f691f,0x041a4f3,0x1ef4bf1,0x08c5145,
- 0x14e33b1,0x0dc985a,0x13880be,0x195bc43,0x06c82c6,0x1f1c37d,
- 0x1ec69cc,0x1bcb50c,0x077fab8,0x17bd5c8,0x1c9fb50,0x012b3b7,
- 0x0f86030,0x02b40a0,0x016a8b8 },
- { 0x1f5ef65,0x042fb29,0x0414b28,0x12ef64a,0x01dfbbf,0x1a37f33,
- 0x01f8e8c,0x1df11d5,0x01b95f7,0x0eefef7,0x17abb09,0x1cd2b6c,
- 0x1b22074,0x0617011,0x01a6855,0x0776a23,0x17742e8,0x0c300da,
- 0x0a1df9f,0x08ca59f,0x0015146 } },
- /* 205 */
- { { 0x1fa58f1,0x029e42b,0x19c0942,0x1099498,0x158a4e6,0x00fa06d,
- 0x1b4286e,0x17a0f72,0x0558e8c,0x0328f08,0x0e233e9,0x08dc85c,
- 0x081a640,0x0221b04,0x0c354e5,0x11fa0a3,0x1b3e26b,0x1615f9a,
- 0x1c0b3f3,0x0f0e12a,0x00fd4ae },
- { 0x153d498,0x0de14ef,0x1890f1e,0x1c226fe,0x0cf31c4,0x11e76fa,
- 0x015b05e,0x0bb276d,0x06cd911,0x030898e,0x03376c9,0x08a7245,
- 0x11ab30a,0x069015f,0x1dd5eda,0x10c25d2,0x07ce610,0x053336f,
- 0x1d809ad,0x01fcca9,0x0051c20 } },
- /* 206 */
- { { 0x1a2b4b5,0x1081e58,0x05a3aa5,0x1d08781,0x18dccbf,0x17fdadc,
- 0x01cb661,0x184d46e,0x0169d3a,0x1d03d79,0x0dc7c4b,0x1734ee2,
- 0x0f8bb85,0x13e14cf,0x18434d3,0x05df9d5,0x069e237,0x09ea5ee,
- 0x17615bc,0x1beebb1,0x0039378 },
- { 0x07ff5d9,0x0817fef,0x0728c7a,0x0464b41,0x0e9a85d,0x0c97e68,
- 0x04e9bd0,0x167ae37,0x115b076,0x0952b9b,0x047473d,0x150cdce,
- 0x19d726a,0x1614940,0x186c77c,0x0bbcc16,0x15cc801,0x191272b,
- 0x02de791,0x1127c23,0x01dc68e } },
- /* 207 */
- { { 0x1feda73,0x127fcb7,0x0062de4,0x0d41b44,0x0709f40,0x0ac26ff,
- 0x083abe2,0x0806d1c,0x08355a0,0x04a8897,0x1df5f00,0x0a51fae,
- 0x08259d4,0x15fc796,0x1125594,0x0623761,0x12844c5,0x0bfb18c,
- 0x119b675,0x1a1c9f0,0x00d5698 },
- { 0x15d204d,0x0b27d00,0x114f843,0x14dba21,0x1b626bf,0x14c64a3,
- 0x0398e9d,0x0ac10ff,0x105337a,0x12d32a3,0x11e0bd4,0x0489beb,
- 0x1f558e2,0x02afdd7,0x0a87906,0x0706091,0x18e47ee,0x1a47910,
- 0x0e118f4,0x0472b22,0x004df25 } },
- /* 208 */
- { { 0x0695310,0x07eb4ec,0x03a9dbd,0x1efd0ed,0x028eb09,0x0a99547,
- 0x0604b83,0x0f20738,0x0c572ac,0x0d33ba2,0x158a4f7,0x01c0f0b,
- 0x121f980,0x1ed3b5d,0x1f8a968,0x0e42e57,0x190a2bc,0x13768ad,
- 0x05e22a3,0x1cc37fa,0x004cd80 },
- { 0x0730056,0x001b80b,0x150ee7d,0x1fb9da7,0x06f45fe,0x1283a12,
- 0x1d8f06a,0x0e615fa,0x0ff92ae,0x0f2e329,0x0818fc8,0x061a376,
- 0x006ef08,0x096912a,0x0c1bb30,0x0003830,0x13a1f15,0x0276ecd,
- 0x0331509,0x164b718,0x01f4e4e } },
- /* 209 */
- { { 0x1db5c18,0x0d38a50,0x1d33b58,0x1cecee0,0x1454e61,0x1b42ef4,
- 0x1ef95ef,0x1cbd2e1,0x1d2145b,0x10d8629,0x0697c88,0x1037dc9,
- 0x03b9318,0x0a588e8,0x0e46be8,0x0426e01,0x0493ec2,0x1e3577f,
- 0x098802b,0x0a9d28a,0x013c505 },
- { 0x164c92e,0x022f3b9,0x03a350b,0x0ae6a43,0x0050026,0x09f9e2f,
- 0x1680a13,0x0d7a503,0x0dbf764,0x097c212,0x1cc13cc,0x1e5490b,
- 0x13e1a88,0x0893d28,0x0fd58c4,0x1c178b0,0x0c71a60,0x076bca8,
- 0x0dedc29,0x0abc209,0x00c6928 } },
- /* 210 */
- { { 0x04614e7,0x10c2e32,0x1092341,0x1c8e934,0x0e906ca,0x03f2941,
- 0x04ba896,0x19ab0a8,0x0d12857,0x1b1cc85,0x164ed4d,0x1ee174a,
- 0x06770c7,0x0eae952,0x13db713,0x1437585,0x0563b69,0x12b26d2,
- 0x01e2576,0x1efc283,0x01c8639 },
- { 0x0589620,0x0b5817c,0x0150172,0x0683c88,0x0fe468a,0x15684e1,
- 0x1684425,0x1dd7e45,0x09c652a,0x039e14c,0x186e3ef,0x1f16a8f,
- 0x13cdef9,0x0bbedfb,0x1cde16a,0x0aa5ae0,0x1aa7e13,0x1854950,
- 0x08e4f4f,0x0c22807,0x015b227 } },
- /* 211 */
- { { 0x1bfaf32,0x0d3d80f,0x1486269,0x017ccc3,0x1c5a62d,0x11da26a,
- 0x03d7bd7,0x0c48f2e,0x1f43bbf,0x15000f6,0x0b9680f,0x050a4c1,
- 0x0ca8e74,0x134be31,0x0267af4,0x0ec87d7,0x1e6751a,0x11b5001,
- 0x081c969,0x0f18a37,0x00eaef1 },
- { 0x1d51f28,0x1c74fcd,0x0112ab3,0x1750e24,0x19febbd,0x1e41b29,
- 0x0b4e96f,0x11f0f01,0x110e6f0,0x0451a66,0x06ac390,0x1421048,
- 0x018104c,0x0c53315,0x0f9c73a,0x091ad08,0x1142320,0x1cee742,
- 0x13cf461,0x14477c3,0x01fa5cb } },
- /* 212 */
- { { 0x173a15c,0x064e914,0x07ccbfa,0x1ba852f,0x06fec8d,0x157d9f3,
- 0x128e42d,0x044735e,0x0ab65ef,0x1d8f21b,0x17f36c2,0x003ccd8,
- 0x0b8f262,0x0d7a438,0x1ffa28d,0x09c4879,0x06f2bb4,0x132d714,
- 0x07745c8,0x1c5074a,0x0114da2 },
- { 0x1e3d708,0x04d2b60,0x1e992a7,0x1e3961d,0x0fe62d3,0x143aa02,
- 0x0a6125f,0x1f5e0e0,0x13cea46,0x1c5beb5,0x01898c4,0x069d071,
- 0x0907806,0x18e1848,0x1a10a01,0x10c8e4f,0x1d7e583,0x1f857bc,
- 0x08da899,0x10cb056,0x0104c1b } },
- /* 213 */
- { { 0x126c894,0x184f6d2,0x148ccbf,0x002958f,0x15abf12,0x0c949a4,
- 0x13734f3,0x0ad6df2,0x092e6b5,0x1d57589,0x1b0c6ff,0x0dd4206,
- 0x0e19379,0x183ff99,0x148df9d,0x0cf7153,0x10d829d,0x1eb2d2d,
- 0x0ca4922,0x1b6aadb,0x01b348e },
- { 0x0d46575,0x0fcd96f,0x0b3dbba,0x15ff4d3,0x096ca08,0x169be8a,
- 0x0ce87c5,0x003ab5d,0x1789e5d,0x1283ed8,0x1f31152,0x1c53904,
- 0x1705e2c,0x14b2733,0x0db9294,0x08de453,0x0ba4c0e,0x082b1d8,
- 0x0f11921,0x1848909,0x00a3e75 } },
- /* 214 */
- { { 0x0f6615d,0x1a3b7e9,0x06a43f2,0x11b31b5,0x0b7f9b7,0x1ef883a,
- 0x17c734a,0x063c5fb,0x09b956f,0x1ed1843,0x1bab7ca,0x05ef6b2,
- 0x18f3cca,0x1aad929,0x1027e2c,0x08db723,0x0f3c6c8,0x12379fb,
- 0x085190b,0x12731c5,0x01ff9bb },
- { 0x17bd645,0x06a7ad0,0x1549446,0x17b7ada,0x17033ea,0x0684aba,
- 0x01bf1cd,0x06a00fd,0x15f53c4,0x065032f,0x1f74666,0x137ffa4,
- 0x0a9949d,0x14a968e,0x1138c11,0x02039bb,0x0fb81ac,0x1c2655a,
- 0x095ac01,0x00f3f29,0x000346d } },
- /* 215 */
- { { 0x0bfdedd,0x1c727d3,0x1be657a,0x1cf4e98,0x193a285,0x04d1294,
- 0x15344f4,0x0cf17ab,0x019a5f7,0x15085f3,0x0ecd03a,0x107c19d,
- 0x03d3db0,0x0edfbd4,0x0ce9e2c,0x047c38c,0x03ec30f,0x093325e,
- 0x1e820de,0x01f1e20,0x01c9663 },
- { 0x0f86a80,0x065a5ef,0x06aeefd,0x107f04b,0x1fa4ec7,0x0a99640,
- 0x1d81182,0x125497e,0x08b909e,0x0ddbd66,0x010581c,0x062e2f1,
- 0x08ca1d7,0x050d5c9,0x1fc52fb,0x0ab4afe,0x16e5f84,0x0dff500,
- 0x1c87a26,0x18ed737,0x002d7b8 } },
- /* 216 */
- { { 0x19f8e7d,0x102b1a5,0x02a11a1,0x0ec7f8b,0x001176b,0x176b451,
- 0x169f8bf,0x121cf4b,0x0651831,0x033bb1f,0x1deb5b3,0x0205d26,
- 0x017d7d0,0x1b81919,0x1f11c81,0x16a0b99,0x031534b,0x0ab9f70,
- 0x1c689da,0x03df181,0x00f31bf },
- { 0x0935667,0x1ae2586,0x0e2d8d7,0x120c1a5,0x14152c3,0x01d2ba3,
- 0x0b0b8df,0x19bdff5,0x00b72e0,0x0afe626,0x18091ff,0x1373e9e,
- 0x13b743f,0x1cf0b79,0x10b8d51,0x1df380b,0x0473074,0x1d111a6,
- 0x056ab38,0x05e4f29,0x0124409 } },
- /* 217 */
- { { 0x10f9170,0x0bc28d9,0x16c56ff,0x126ff9c,0x115aa1e,0x021bdcb,
- 0x157824a,0x0e79ffa,0x1c32f12,0x056692c,0x1878d22,0x19e4917,
- 0x0b5a145,0x1d2de31,0x0d02181,0x0de8c74,0x1151815,0x1b14b75,
- 0x1dd3870,0x1f5a324,0x01e7397 },
- { 0x08225b5,0x1ccfa4e,0x1134d8b,0x128d6ef,0x13efce4,0x00f48d9,
- 0x1d4c215,0x1268a3b,0x038f3d6,0x1e96c9a,0x1ed5382,0x05adce4,
- 0x000b5de,0x1b116ca,0x164a709,0x1529685,0x12356f6,0x09b5673,
- 0x132bc81,0x0319abf,0x004464a } },
- /* 218 */
- { { 0x1a95d63,0x10555d5,0x11b636f,0x02f6966,0x12780c6,0x06c0a14,
- 0x1e18c38,0x098c861,0x0b56ef0,0x1adf015,0x18d8ce1,0x172af0b,
- 0x04c28fe,0x009649f,0x1005e57,0x10547aa,0x1c1e36f,0x144ffa8,
- 0x03babf5,0x11912a2,0x016b3c4 },
- { 0x0f064be,0x03f5d6a,0x0a65e4a,0x0aa9d7b,0x1a77d55,0x1b93f50,
- 0x17bc988,0x18c8ce8,0x189f366,0x088fac8,0x15baf6a,0x0b9b8b3,
- 0x137e543,0x1a92690,0x0136ba9,0x1671a75,0x11c4395,0x0e3d8ee,
- 0x0a08f12,0x07ce083,0x001cca1 } },
- /* 219 */
- { { 0x14d64b0,0x0c30643,0x18318e6,0x042ca79,0x1375b09,0x108cc31,
- 0x00003aa,0x0ba2ce0,0x1621cd1,0x1633c84,0x1c37358,0x1bacefa,
- 0x0dbe1d7,0x182dea6,0x1c3c9c0,0x11e61df,0x021362f,0x003b763,
- 0x19116de,0x00902cf,0x01d8812 },
- { 0x01f9758,0x04d070b,0x138a05d,0x1d4789f,0x060915f,0x0eec57f,
- 0x1390644,0x013ea6f,0x079a51a,0x11b5456,0x173e3bf,0x0968594,
- 0x1567fb5,0x12482bf,0x172b81f,0x096c837,0x0c5a424,0x1db8ff8,
- 0x0d81960,0x0b4a6c9,0x0106481 } },
- /* 220 */
- { { 0x139cc39,0x14e1f77,0x1b45e31,0x09f4c6a,0x1830456,0x17dcc84,
- 0x0d50904,0x14b7a78,0x179dbb2,0x0ea98e9,0x1d78f68,0x0311cfc,
- 0x114865f,0x0580a3d,0x0b13888,0x135605b,0x1ca33d2,0x1facf28,
- 0x1ec1d3b,0x09effc6,0x00f1c96 },
- { 0x0301262,0x0605307,0x08b5c20,0x00a7214,0x1a45806,0x054814c,
- 0x1fe6b32,0x185b4ce,0x114c0f1,0x1d7482b,0x1b67df7,0x1e2cdcc,
- 0x043665f,0x03c2349,0x19b7631,0x060f990,0x18fc4cc,0x062d7f4,
- 0x02fd439,0x0774c7c,0x003960e } },
- /* 221 */
- { { 0x19ecdb3,0x0289b4a,0x06f869e,0x0ff3d2b,0x089af61,0x106e441,
- 0x0cae337,0x02aa28b,0x07c079e,0x1483858,0x089057f,0x09a6a1c,
- 0x02f77f0,0x1ac6b6a,0x0adcdc8,0x0c53567,0x1b9ba7b,0x08a7ea0,
- 0x1003f49,0x05b01ce,0x01937b3 },
- { 0x147886f,0x006a6b8,0x072b976,0x02aed90,0x008ced6,0x138bddf,
- 0x01a4990,0x043c29d,0x0abb4bd,0x0e6f8cc,0x00c22e7,0x0c8cca6,
- 0x07658be,0x0cce8ce,0x1c64b6b,0x1624df7,0x1b3304a,0x0aad1e8,
- 0x089378c,0x1e97cbf,0x000e943 } },
- /* 222 */
- { { 0x1e9ea48,0x1202c3f,0x121b150,0x0ac36ae,0x0f24f82,0x18cba05,
- 0x104f1e1,0x09b3a58,0x170eb87,0x1d4df3c,0x0e8ea89,0x11c16c5,
- 0x0c43fef,0x160df85,0x08fca18,0x061c214,0x0f34af1,0x1a8e13b,
- 0x19573af,0x1a3d355,0x0185f6c },
- { 0x0369093,0x17d3fa0,0x1828937,0x0cb0b03,0x11f1d9d,0x0976cf0,
- 0x0fccf94,0x12d3201,0x1ed1208,0x1c5422c,0x0f0e66f,0x0abd16e,
- 0x1e83245,0x07b7aa7,0x08c15a6,0x046aaa9,0x1a53c25,0x0954eb6,
- 0x0824ecc,0x0df2085,0x016ae6a } },
- /* 223 */
- { { 0x12cdd35,0x091e48a,0x1bc6cb8,0x110c805,0x0e6e43a,0x072dead,
- 0x1c37ee7,0x0291257,0x0758049,0x0565c25,0x0bbb0ad,0x0bffea0,
- 0x0e8c7f5,0x1519f7a,0x029ee4e,0x0400339,0x157fd9d,0x1835881,
- 0x0e8ef3a,0x033fe01,0x00273e3 },
- { 0x1e360a3,0x017bbd5,0x129860b,0x095bfdf,0x17ef5c8,0x05b7e62,
- 0x0329994,0x005349e,0x0aaf0b2,0x1a7c72b,0x1bc558f,0x1141449,
- 0x135c850,0x0f522f8,0x1d8bf64,0x0db7db1,0x1a02803,0x1f96491,
- 0x093440e,0x1949803,0x018a4a9 } },
- /* 224 */
- { { 0x048e339,0x1dbcc2a,0x05d8a8f,0x1e31473,0x1e8770c,0x148b866,
- 0x15d35e9,0x15822c0,0x12b6067,0x1d82e2c,0x04e2ad2,0x1b61090,
- 0x14de0d2,0x0484f3c,0x076ae49,0x02bee29,0x0b67903,0x041d19b,
- 0x0cd6896,0x00e9b34,0x013ccd9 },
- { 0x01b784d,0x0e2f056,0x0b87a0e,0x0ddca4f,0x0b65c8c,0x0447605,
- 0x1851a87,0x0b1a790,0x046c1bf,0x100fbc8,0x0940a88,0x0c4e7fb,
- 0x0571cec,0x112dc83,0x0fe23ac,0x1bf9bfe,0x098c556,0x0360f86,
- 0x013e973,0x0445549,0x00acaa3 } },
- /* 225 */
- { { 0x1b4dfd6,0x1a5e1e4,0x0a4c5f9,0x07f1cec,0x05ba805,0x061a901,
- 0x1701676,0x168060f,0x0b85a20,0x0481b66,0x1c4d647,0x1e14470,
- 0x0ef2c63,0x054afda,0x0676763,0x18d8c35,0x1399850,0x01ebe27,
- 0x00a659a,0x12d392d,0x0169162 },
- { 0x163ee53,0x1e133e5,0x0d4df44,0x02ebd58,0x07b12e6,0x0d5fe53,
- 0x0684464,0x13f666d,0x1ee1af6,0x168324e,0x10479d6,0x1e0023b,
- 0x054d7a6,0x0dcfcbb,0x1c0c2e3,0x0266501,0x1a3f0ab,0x1510000,
- 0x0763318,0x1931a47,0x0194e17 } },
- /* 226 */
- { { 0x18fe898,0x0c05a0e,0x14d1c83,0x0e64308,0x0d7a28b,0x190ba04,
- 0x10e1413,0x15fe3e7,0x1166aa6,0x09c0e6a,0x1838d57,0x010998a,
- 0x0d9cde6,0x0f30f16,0x0107c29,0x12a3596,0x0f5d9b4,0x031088b,
- 0x1b8ab0b,0x1c2da6f,0x00c4509 },
- { 0x06fd79e,0x1106216,0x0c3ae0a,0x1c75ef1,0x15b7ee4,0x0c0ce54,
- 0x18f06eb,0x0d27b36,0x0985525,0x06b3a6f,0x06743c4,0x0965f38,
- 0x0917de6,0x03e2f35,0x0feaebd,0x1b6df40,0x0ad2ce2,0x142c5e2,
- 0x1f27463,0x0470143,0x00c976c } },
- /* 227 */
- { { 0x064f114,0x18f7c58,0x1d32445,0x0a9e5e1,0x03cb156,0x19315bc,
- 0x161515e,0x0d860a4,0x10f3493,0x1463380,0x107fb51,0x05fd334,
- 0x09ef26d,0x13fbfb5,0x168899e,0x1f837ed,0x0dba01b,0x012b1dc,
- 0x0d03b50,0x06d90b8,0x000e14b },
- { 0x1db67e6,0x1f13212,0x017d795,0x12fe5d2,0x05df4e8,0x1621344,
- 0x1945009,0x126f065,0x03e8750,0x095f131,0x0e1a44c,0x17b078a,
- 0x1d856b5,0x0ab9a7c,0x072b956,0x090c2b6,0x1e2d5aa,0x02d03df,
- 0x1a2aed6,0x192de19,0x01d07a4 } },
- /* 228 */
- { { 0x03aa2e9,0x0a682a9,0x0181efd,0x19da7a1,0x08841e0,0x0dfdb4e,
- 0x1db89fe,0x10aad07,0x0162bdf,0x0583fa2,0x0373277,0x10720f6,
- 0x0e62d17,0x12bd29b,0x12ee2ad,0x0fa7945,0x0d27cf4,0x04c5cd0,
- 0x1ba98dc,0x0a9ad0b,0x01f2ff1 },
- { 0x0b232ac,0x1bb452b,0x0aad5a2,0x0c7e54a,0x0e8d6e3,0x1bfe302,
- 0x1e85a20,0x12375d0,0x1d10a76,0x1e2c541,0x157efba,0x15e1f28,
- 0x0ead5e4,0x1eb2a71,0x0835b0d,0x104aa34,0x0b9da7c,0x0c6207e,
- 0x0366e4c,0x1679aec,0x00b26d7 } },
- /* 229 */
- { { 0x12eaf45,0x0861f5d,0x04bdec2,0x18c5ff7,0x0d24d91,0x1b791ef,
- 0x0fa929c,0x1c77e54,0x16ff0fd,0x0dccf5e,0x040bd6d,0x0abb942,
- 0x08bca2b,0x03f0195,0x080f360,0x02f51ec,0x048a8bf,0x0aa085a,
- 0x077156c,0x0cc14fc,0x0109b86 },
- { 0x0a2fbd8,0x058ed01,0x0296c52,0x167645d,0x1ed85e8,0x095a84f,
- 0x083921c,0x02c26f1,0x0c6a3e5,0x02b00a4,0x0ed40da,0x04382c6,
- 0x1171009,0x12a8938,0x049450c,0x0208f27,0x1d207d3,0x1bda498,
- 0x150b82e,0x1ce4570,0x00ea623 } },
- /* 230 */
- { { 0x0972688,0x011e992,0x1d88212,0x04007ea,0x18b83c1,0x06a2942,
- 0x19a41b4,0x0fc329a,0x02c6f74,0x010cac2,0x1b626a1,0x05d2028,
- 0x02c8f8a,0x1a28dde,0x1b0779d,0x109f453,0x0b8f7f2,0x1fb115b,
- 0x0dc7913,0x03b7d2f,0x006083f },
- { 0x19dd56b,0x04999cc,0x17a6659,0x152f48f,0x0cfac0b,0x147d901,
- 0x162baef,0x194ccc1,0x0f61d7b,0x1e14eec,0x1705351,0x0a3b0b5,
- 0x1c6f5fb,0x07cfea0,0x16b1e21,0x07cd9cc,0x1d4ff51,0x10e734e,
- 0x1f9674f,0x1cb23df,0x00231ac } },
- /* 231 */
- { { 0x1fda771,0x1d21c54,0x0038b99,0x190cc62,0x026f652,0x19f91db,
- 0x0792384,0x03fbf63,0x0035d2d,0x0cfc479,0x0fa1e16,0x02251a2,
- 0x071723a,0x1da8e70,0x02a8a4b,0x1750512,0x10ebbd9,0x072f9d3,
- 0x1d1452d,0x104ce66,0x0155dde },
- { 0x0f59a95,0x15bbf6b,0x108022c,0x0604040,0x13f853e,0x163bcbc,
- 0x0ab07ae,0x0eca44a,0x1b56b66,0x166e5cc,0x0a9401b,0x13f32e4,
- 0x104abdb,0x02715d6,0x0843cfc,0x1ba9a4c,0x0ff3034,0x08652d0,
- 0x0b02e03,0x1b0101b,0x0041333 } },
- /* 232 */
- { { 0x1a85a06,0x083849a,0x0d13a14,0x0c85de3,0x0e166e7,0x1d9d36a,
- 0x02dc681,0x0d50952,0x030329e,0x16eb600,0x1549675,0x14ca7aa,
- 0x1e20c4b,0x17c5682,0x0ec9abd,0x1999bdc,0x1412ab4,0x01071ea,
- 0x0501909,0x1312695,0x01bd797 },
- { 0x00c7ff0,0x0e8c247,0x0d03ca8,0x192a876,0x1ae85ef,0x0e98c5d,
- 0x0c6bbd4,0x14dd2c8,0x075878f,0x0e9f6a7,0x057d4b9,0x13b7851,
- 0x1c4d2a2,0x0f88833,0x1c9e1dc,0x09dca75,0x1649e7f,0x13666f4,
- 0x15b5d36,0x111b434,0x0192351 } },
- /* 233 */
- { { 0x1d310ed,0x1909001,0x0c46c20,0x1930f60,0x120ee8c,0x02ac546,
- 0x0749a13,0x1913ca9,0x0b7167e,0x112f9e7,0x156ed57,0x09e897e,
- 0x17acf11,0x030e480,0x07b71dc,0x0878103,0x0e6deb3,0x0bacd22,
- 0x1326d7b,0x1f3efc0,0x007858d },
- { 0x1f13222,0x03f5d9d,0x08453e9,0x1bd40fb,0x1e451dc,0x0c12178,
- 0x1eb0f03,0x03c37d3,0x136eb87,0x192bea6,0x0c64364,0x0eb57d4,
- 0x13f49e7,0x075f159,0x1b4647d,0x0012c80,0x13c0c11,0x033d562,
- 0x0e06b1e,0x0b9f17a,0x01f4521 } },
- /* 234 */
- { { 0x0493b79,0x145477d,0x0ab0e1f,0x169d638,0x120e270,0x1911905,
- 0x0fe827f,0x07b3e72,0x0a91c39,0x170dd57,0x0a36597,0x0c34271,
- 0x04deda9,0x0bdea87,0x0ac8e32,0x191c0d3,0x08a2363,0x17fb46a,
- 0x1931305,0x1c01cb9,0x0158af8 },
- { 0x1c509a1,0x0e78367,0x01d5b33,0x1f84d98,0x00f411e,0x0e2bf83,
- 0x17f5936,0x158da19,0x132e99c,0x0a8a429,0x1a5442a,0x167b171,
- 0x1d58f9a,0x1886e1f,0x1a61c26,0x06a134f,0x03d75ef,0x1c1c842,
- 0x0a4c4b1,0x1993a0b,0x01b628c } },
- /* 235 */
- { { 0x141463f,0x1a78071,0x1e80764,0x1c2a1b4,0x14c8a6c,0x04aa9f8,
- 0x183f104,0x123b690,0x0a93f4a,0x11def2d,0x16019f0,0x0f0e59a,
- 0x009f47c,0x0219ee4,0x0cc0152,0x054fa3a,0x1f975a3,0x08605f3,
- 0x031d76a,0x0eefab1,0x012e08b },
- { 0x1a10d37,0x0940bb0,0x16977f0,0x02b8a1e,0x0d7b618,0x03be307,
- 0x0576de5,0x016515f,0x133c531,0x05515bb,0x06099e8,0x1570a62,
- 0x1f905fa,0x15a0cac,0x03a6059,0x0ef09e8,0x05216b3,0x04e65a1,
- 0x0619ab3,0x0baef8d,0x00c5683 } },
- /* 236 */
- { { 0x1450a66,0x18a6595,0x1053a75,0x18fb7fb,0x1318885,0x1350600,
- 0x03616d1,0x14ccab5,0x15bdfc1,0x1510f4c,0x1e4b440,0x1931cce,
- 0x177a0d7,0x1aa853c,0x006ed5e,0x1a66e54,0x0335d74,0x0a16231,
- 0x036b525,0x09c3811,0x008b7be },
- { 0x1812273,0x1d81fca,0x15fc61c,0x05dc7ee,0x0e26ed3,0x1310bd1,
- 0x03ab9b6,0x09e58e2,0x0261d9f,0x1a85aba,0x0768b66,0x1f536f8,
- 0x0743971,0x02542ef,0x113ee1f,0x026f645,0x051ec22,0x17b961a,
- 0x1ee8649,0x0acd18e,0x0173134 } },
- /* 237 */
- { { 0x03ba183,0x1463d45,0x1e9cf8f,0x17fc713,0x0e8cebb,0x0dd307a,
- 0x11a1c3e,0x1071d48,0x1cb601a,0x08bb71a,0x14b6d15,0x184c25c,
- 0x11f90bd,0x07b895f,0x1e79166,0x0a99b2b,0x00fbea0,0x1cde990,
- 0x157f502,0x0337edb,0x017a2cf },
- { 0x0736feb,0x1b65133,0x18bdc73,0x13bcf9f,0x1de86f4,0x1482b1d,
- 0x0f3a3f0,0x09f8c15,0x0726b6e,0x17451e7,0x048d6ea,0x088a7e5,
- 0x1ed2382,0x1287fd2,0x0d55fd5,0x1ee8949,0x054113e,0x150a29f,
- 0x1909b74,0x0ed4a67,0x01b07c6 } },
- /* 238 */
- { { 0x1d96872,0x101f91a,0x032bd79,0x187f4b7,0x0b1a23c,0x046e2fd,
- 0x01c6fa6,0x17aa8b3,0x1d430c0,0x1974244,0x16730f8,0x13c0ec9,
- 0x0d7ec26,0x1960620,0x08e084b,0x10769ee,0x183887b,0x096ca30,
- 0x1c62904,0x1f4ce25,0x0010281 },
- { 0x0858b37,0x00247b2,0x176600a,0x1e6afbc,0x00e149a,0x0f5d8c7,
- 0x01e4586,0x1416443,0x19f2b0b,0x0810059,0x072eb88,0x15cc207,
- 0x1d5a87e,0x1cabce8,0x1f7376c,0x0a2bc9d,0x0aa2788,0x10d9c47,
- 0x0061e2a,0x0a58799,0x002c1a5 } },
- /* 239 */
- { { 0x0a723dc,0x1fa8007,0x08c5eb1,0x088562a,0x0a5f04f,0x042e430,
- 0x05116fa,0x004c7a9,0x1ff1197,0x0fccc9f,0x1633a98,0x08b9898,
- 0x16c3fba,0x1ce6b01,0x145479a,0x04777cd,0x11557b9,0x13ad1d5,
- 0x1acbf51,0x00f8a59,0x01474ec },
- { 0x188239d,0x11e9976,0x1a5311a,0x0d06b5c,0x0d1b8ae,0x1759738,
- 0x18c967f,0x16be9fb,0x043bc0b,0x11dfb8e,0x0a9c148,0x016f1ec,
- 0x053cd22,0x0ff3ccd,0x092183a,0x0ff2644,0x10324ab,0x1ec2ac3,
- 0x1652562,0x1ee6616,0x010f8e0 } },
- /* 240 */
- { { 0x067d520,0x0e3dd9e,0x07b2bcd,0x1647f95,0x18f4958,0x1d54046,
- 0x1c6522e,0x15c0ef1,0x02135e8,0x0c61867,0x03bfdd0,0x1353911,
- 0x0bcdd8d,0x1b98a25,0x01d77c3,0x14a68e4,0x0954506,0x0daa4e4,
- 0x1eedff1,0x0712f2b,0x011c4ef },
- { 0x1f5e698,0x164d621,0x18e8ff8,0x19c714b,0x0e77fcb,0x04e170e,
- 0x12438c2,0x002da0b,0x1ac1d58,0x13a79ff,0x0e74a96,0x0440703,
- 0x0baeeda,0x1af9cb0,0x162c50f,0x1577db2,0x0510db7,0x032ffe8,
- 0x0816dc6,0x0fcd00f,0x00ce8e9 } },
- /* 241 */
- { { 0x0e86a83,0x0f30dc6,0x0580894,0x1f7efce,0x0604159,0x1819bbc,
- 0x1f75d23,0x085f824,0x1450522,0x1e5961b,0x1a826e1,0x01e9269,
- 0x01bd495,0x0233ca2,0x11b100f,0x082d4a2,0x11023ba,0x0f456a3,
- 0x1d8e3ac,0x1034c15,0x01b389b },
- { 0x0150c69,0x0c9a774,0x12f39a6,0x11c4f82,0x14f7590,0x00ca7fb,
- 0x0a245a8,0x0ecbb81,0x01bd51b,0x07a4e99,0x1e58c0e,0x00bc30e,
- 0x086bc33,0x1e9da53,0x0bcfeff,0x1e313fc,0x177d7ca,0x18a04d9,
- 0x0e3c426,0x1d42773,0x01b3029 } },
- /* 242 */
- { { 0x1a2fd88,0x09c6912,0x180fbde,0x199d740,0x090f2f7,0x136ffa4,
- 0x072035e,0x10c987c,0x02883f9,0x063c79b,0x194c140,0x0b25331,
- 0x13ed92b,0x192eee3,0x02a3c6c,0x0e11403,0x187d5d3,0x1b6ffec,
- 0x147ca2e,0x06aa9e1,0x0059dcd },
- { 0x1a74e7d,0x1720e91,0x17d85f1,0x1cbb665,0x14b61eb,0x1ffd05c,
- 0x1fe9e79,0x01a785f,0x12ebb7a,0x19b315b,0x17e70d1,0x0bdc035,
- 0x04a8641,0x0a33c93,0x00b0c99,0x138ae2a,0x1492fa0,0x10b4889,
- 0x11d2421,0x1e69544,0x0195897 } },
- /* 243 */
- { { 0x1adc253,0x0e9acd5,0x0579211,0x198f2f9,0x0054b92,0x10c1097,
- 0x0d6f668,0x04e4553,0x0a52b88,0x1dc052f,0x0719da6,0x0f1c5cc,
- 0x13ea38e,0x04587c5,0x09d2c68,0x10a99f6,0x0e3db9d,0x1db5521,
- 0x1804b5c,0x044a46a,0x01638ba },
- { 0x1c8c576,0x00737ba,0x1749f3b,0x19c978f,0x0bb20e7,0x0c03935,
- 0x08321a7,0x16e12b1,0x08a023e,0x0846335,0x042c56a,0x01d4ec2,
- 0x06ca9f5,0x0c37b0d,0x0326650,0x0d3b0cd,0x0ed2a0a,0x1ceef91,
- 0x0fe2843,0x1c312f7,0x01e0bfe } },
- /* 244 */
- { { 0x0319e4f,0x0340c24,0x1e809b6,0x0ab4b0d,0x0be6f6b,0x189932b,
- 0x1621899,0x1f57deb,0x198529c,0x0129562,0x0a73eeb,0x0be2c56,
- 0x0de7cc4,0x11531ac,0x0141826,0x158e1dc,0x0a42940,0x07be5ce,
- 0x0216c7c,0x0955d95,0x01adfb4 },
- { 0x198678e,0x1d49b73,0x10e19ad,0x0732a80,0x0a01e10,0x14305be,
- 0x078de05,0x0afe492,0x1b745d8,0x17fea41,0x017b5bb,0x0c5148e,
- 0x175dbb3,0x1952e87,0x15a3526,0x1fdc6af,0x09a2389,0x168d429,
- 0x09ff5a1,0x184a923,0x01addbb } },
- /* 245 */
- { { 0x09686a3,0x05d104b,0x0fd7843,0x0bc780a,0x108b1c5,0x1a38811,
- 0x0c4d09b,0x0702e25,0x1490330,0x1c8b2d8,0x0549ec7,0x002e5a0,
- 0x0245b72,0x154d1a7,0x13d991e,0x06b90df,0x194b0be,0x128faa5,
- 0x08578e0,0x16454ab,0x00e3fcc },
- { 0x14dc0be,0x0f2762d,0x1712a9c,0x11b639a,0x1b13624,0x170803d,
- 0x1fd0c11,0x147e6d7,0x1da9c99,0x134036b,0x06f1416,0x0ddd069,
- 0x109cbfc,0x109f042,0x01c79cf,0x091824d,0x02767f4,0x0af3551,
- 0x169eebe,0x0ef0f85,0x01b9ba7 } },
- /* 246 */
- { { 0x1a73375,0x12c7762,0x10e06af,0x1af5158,0x175df69,0x0541ad0,
- 0x0542b3b,0x01e59e6,0x1f507d3,0x03d8304,0x0c1092e,0x14578c1,
- 0x0c9ae53,0x0087c87,0x0c78609,0x1137692,0x10fadd6,0x122963e,
- 0x1d8c6a3,0x0a69228,0x0013ab4 },
- { 0x084f3af,0x0ec2b46,0x0cfabcb,0x043755c,0x029dc09,0x0b58384,
- 0x0aa162e,0x02c8ca8,0x0e8a825,0x11306a0,0x14c8ad0,0x1b58b86,
- 0x12b9e5e,0x1cf6d06,0x09e5580,0x1721579,0x1c6b962,0x1435e83,
- 0x07b14c0,0x05b58f6,0x010a2e2 } },
- /* 247 */
- { { 0x19d8f0a,0x1e04e91,0x0085997,0x1957142,0x12b2e03,0x19a3bdc,
- 0x05da005,0x009c86d,0x18e3616,0x19c76cf,0x0186faa,0x123b3d6,
- 0x1079b00,0x1f422b3,0x1089950,0x145c19a,0x0c72fe1,0x1d07bbf,
- 0x18280c3,0x0842c4e,0x00931d2 },
- { 0x0646bc3,0x1c1a67c,0x1be7ea7,0x04815d2,0x1df94a5,0x08bbe8b,
- 0x0e240de,0x19b2038,0x0ffeb66,0x0fe8322,0x0491967,0x05d8ef7,
- 0x0f81aec,0x06cc0ea,0x1cedfcb,0x161265b,0x169f377,0x1e4de1f,
- 0x1616762,0x1e69e7b,0x0125dae } },
- /* 248 */
- { { 0x0c123bc,0x0228dd1,0x0952b02,0x101031f,0x11e83a6,0x0abdc56,
- 0x15c0a62,0x02cadba,0x0f0f12f,0x03f971a,0x1e85373,0x1866153,
- 0x0c1f6a9,0x197f3c1,0x1268aee,0x0a9bbdf,0x097709f,0x1e98ce3,
- 0x1918294,0x047197a,0x01dc0b8 },
- { 0x0dfb6f6,0x09480a2,0x149bd92,0x08dc803,0x070d7cb,0x09bd6c1,
- 0x0903921,0x1b234e1,0x170d8db,0x06b30da,0x03562e1,0x0475e2e,
- 0x12ca272,0x11a270e,0x0d33c51,0x1c3f5dd,0x095ab9d,0x1912afe,
- 0x0f717a9,0x1c2215b,0x01f8cd6 } },
- /* 249 */
- { { 0x0b8a0a7,0x1e35cbc,0x17a8a95,0x0dd067d,0x04b4aeb,0x089ff39,
- 0x05f052f,0x1c93c8c,0x0fc2e8e,0x00c3444,0x11fbbf1,0x1493f62,
- 0x1b8d398,0x1733167,0x1c647c4,0x145d9d3,0x089958b,0x0b0c391,
- 0x02e3543,0x1a1e360,0x002dbd6 },
- { 0x0c93cc9,0x07eff12,0x039e257,0x0173ce3,0x09ed778,0x1d7bf59,
- 0x0e960e2,0x0d20391,0x04ddcbf,0x1129c3f,0x035aec0,0x017f430,
- 0x0264b25,0x04a3e3e,0x1a39523,0x1e79ada,0x0329923,0x14153db,
- 0x1440f34,0x006c265,0x000fb8f } },
- /* 250 */
- { { 0x0d9d494,0x059f846,0x07ce066,0x1329e9f,0x1b2065b,0x19c7d4c,
- 0x08880f1,0x196ecc9,0x0d8d229,0x0cfa60a,0x1152cc6,0x0b898a3,
- 0x12ddad7,0x0909d19,0x0cb382f,0x0f65f34,0x085888c,0x179d108,
- 0x0c7fc82,0x1f46c4b,0x00d16de },
- { 0x1a296eb,0x002a40c,0x0c4d138,0x0ba3522,0x1d94ff1,0x1522a78,
- 0x0b4affa,0x0ffafbd,0x14d40bd,0x132d401,0x0692beb,0x08fc300,
- 0x17604f1,0x12f06f3,0x0c123e6,0x0594130,0x0a5ff57,0x1d1d8ce,
- 0x0087445,0x0fb74e3,0x00e0a23 } },
- /* 251 */
- { { 0x1630ee8,0x15fc248,0x0c07b6e,0x040bd6a,0x1e6589c,0x08fa3de,
- 0x0acb681,0x1033efa,0x0212bbe,0x1554fcb,0x048492b,0x1abd285,
- 0x1bdced3,0x1a21af2,0x07d6e27,0x1ecded2,0x0339411,0x10cb026,
- 0x0d5bc36,0x1813948,0x00e6b7f },
- { 0x14f811c,0x07209fb,0x176c4a5,0x03bf1b1,0x1a42d83,0x1a0c648,
- 0x1c85e58,0x1d84fea,0x088ebcd,0x1ef290c,0x016f257,0x00ddd46,
- 0x01fdd5e,0x163345b,0x0798222,0x030c3da,0x016eb81,0x0199d78,
- 0x17773af,0x16325a2,0x01c95ec } },
- /* 252 */
- { { 0x0bde442,0x19bd1f0,0x1cfa49e,0x10cdef4,0x00543fe,0x0886177,
- 0x074823b,0x065a61b,0x1a6617a,0x1bce1a0,0x173e2eb,0x10e1a3a,
- 0x0be7367,0x11d5e7c,0x14373a7,0x0bcf605,0x0dd772b,0x0ff11e9,
- 0x1ff1c31,0x19dd403,0x010b29f },
- { 0x0d803ff,0x05726b1,0x1aa4c6f,0x1fb7860,0x13ee913,0x0083314,
- 0x19eaf63,0x0b15e3b,0x0e7a6d6,0x042bc15,0x1d381b5,0x125c205,
- 0x0691265,0x09b7d7f,0x08c49fc,0x0242723,0x0408837,0x0235c9a,
- 0x0c7858d,0x1687014,0x00ba53b } },
- /* 253 */
- { { 0x05636b0,0x08bfe65,0x171d8b9,0x02d5742,0x0296e02,0x173d96a,
- 0x1f5f084,0x108b551,0x15717ad,0x08be736,0x0bcd5e5,0x10b7316,
- 0x1ce762b,0x0facd83,0x1e65ad7,0x1ede085,0x0bbf37e,0x0f9b995,
- 0x150ad22,0x028bd48,0x015da5d },
- { 0x07f6e3f,0x1e2af55,0x16f079d,0x0f54940,0x1f4d99a,0x0141139,
- 0x1f5dd16,0x1f74ada,0x177b748,0x1844afd,0x07d7476,0x199c0c5,
- 0x1b1c484,0x1acc01f,0x0c72428,0x171a1eb,0x1291720,0x121d627,
- 0x0ab04fc,0x017fd0e,0x00e98c1 } },
- /* 254 */
- { { 0x06c4fd6,0x023c2e0,0x0e76747,0x0ba4b85,0x1f4b902,0x0c17925,
- 0x17ac752,0x0560826,0x0ba4fef,0x159f6e1,0x181eace,0x073f31b,
- 0x1d55a52,0x04b7a5b,0x1f126ac,0x1902bab,0x1603844,0x1e28514,
- 0x159daca,0x0291a02,0x0047db1 },
- { 0x0f3bad9,0x1ce6288,0x0753127,0x1804520,0x090888f,0x1da26fa,
- 0x157af11,0x0d122f4,0x0f39f2b,0x05975e3,0x0658a88,0x075e09d,
- 0x170c58e,0x0b9eead,0x0adf06d,0x1eed8a5,0x1d6a329,0x195aa56,
- 0x0bd328e,0x15a3d70,0x010859d } },
- /* 255 */
- { { 0x182d1ad,0x0209450,0x111598b,0x1c4122d,0x1751796,0x140b23b,
- 0x109cae9,0x1834ee0,0x0b92c85,0x164587d,0x0cb81fe,0x05bf5df,
- 0x0d207ab,0x1c30d99,0x0d4c281,0x1a28b8e,0x16588ae,0x0b1edf6,
- 0x094e927,0x179b941,0x00bd547 },
- { 0x1056b51,0x09c17c3,0x044a9f0,0x16261f3,0x03d91ed,0x002da16,
- 0x1791b4e,0x12bef8f,0x1fd31a9,0x0b080f5,0x1ee2a91,0x05699a7,
- 0x0e1efd2,0x0f58bde,0x0e477de,0x01865fc,0x0c6616c,0x05a6a60,
- 0x046fbbd,0x00477ce,0x011219f } },
- };
- /* Multiply the base point of P521 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Stripe implementation.
- * Pre-generated: 2^0, 2^65, ...
- * Pre-generated: products of all combinations of above.
- * 8 doubles and adds (with qz=1)
- *
- * r Resulting point.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_521_ecc_mulmod_base_21(sp_point_521* r, const sp_digit* k,
- int map, int ct, void* heap)
- {
- return sp_521_ecc_mulmod_stripe_21(r, &p521_base, p521_table,
- k, map, ct, heap);
- }
- #endif
- /* Multiply the base point of P521 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_base_521(const mp_int* km, ecc_point* r, int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_521* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_521 point[1];
- sp_digit k[21];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_521*)XMALLOC(sizeof(sp_point_521), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_521_from_mp(k, 21, km);
- err = sp_521_ecc_mulmod_base_21(point, k, map, 1, heap);
- }
- if (err == MP_OKAY) {
- err = sp_521_point_to_ecc_point_21(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Multiply the base point of P521 by the scalar, add point a and return
- * the result. If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * am Point to add to scalar multiply result.
- * inMont Point to add is in montgomery form.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_base_add_521(const mp_int* km, const ecc_point* am,
- int inMont, ecc_point* r, int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_521* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_521 point[2];
- sp_digit k[21 + 21 * 2 * 6];
- #endif
- sp_point_521* addP = NULL;
- sp_digit* tmp = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(
- sizeof(sp_digit) * (21 + 21 * 2 * 6),
- heap, DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- addP = point + 1;
- tmp = k + 21;
- sp_521_from_mp(k, 21, km);
- sp_521_point_from_ecc_point_21(addP, am);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_521_mod_mul_norm_21(addP->x, addP->x, p521_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_521_mod_mul_norm_21(addP->y, addP->y, p521_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_521_mod_mul_norm_21(addP->z, addP->z, p521_mod);
- }
- if (err == MP_OKAY) {
- err = sp_521_ecc_mulmod_base_21(point, k, 0, 0, heap);
- }
- if (err == MP_OKAY) {
- sp_521_proj_point_add_21(point, point, addP, tmp);
- if (map) {
- sp_521_map_21(point, point, tmp);
- }
- err = sp_521_point_to_ecc_point_21(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \
- defined(HAVE_ECC_VERIFY)
- #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN | HAVE_ECC_SIGN | HAVE_ECC_VERIFY */
- /* Add 1 to a. (a = a + 1)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_521_add_one_21(sp_digit* a)
- {
- a[0]++;
- sp_521_norm_21(a);
- }
- /* Read big endian unsigned byte array into r.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a Byte array.
- * n Number of bytes in array to read.
- */
- static void sp_521_from_bin(sp_digit* r, int size, const byte* a, int n)
- {
- int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = n-1; i >= 0; i--) {
- r[j] |= (((sp_digit)a[i]) << s);
- if (s >= 17U) {
- r[j] &= 0x1ffffff;
- s = 25U - s;
- if (j + 1 >= size) {
- break;
- }
- r[++j] = (sp_digit)a[i] >> s;
- s = 8U - s;
- }
- else {
- s += 8U;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- }
- /* Generates a scalar that is in the range 1..order-1.
- *
- * rng Random number generator.
- * k Scalar value.
- * returns RNG failures, MEMORY_E when memory allocation fails and
- * MP_OKAY on success.
- */
- static int sp_521_ecc_gen_k_21(WC_RNG* rng, sp_digit* k)
- {
- int err;
- byte buf[66];
- do {
- err = wc_RNG_GenerateBlock(rng, buf, sizeof(buf));
- if (err == 0) {
- buf[0] &= 0x1;
- sp_521_from_bin(k, 21, buf, (int)sizeof(buf));
- if (sp_521_cmp_21(k, p521_order2) <= 0) {
- sp_521_add_one_21(k);
- break;
- }
- }
- }
- while (err == 0);
- return err;
- }
- /* Makes a random EC key pair.
- *
- * rng Random number generator.
- * priv Generated private value.
- * pub Generated public point.
- * heap Heap to use for allocation.
- * returns ECC_INF_E when the point does not have the correct order, RNG
- * failures, MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_make_key_521(WC_RNG* rng, mp_int* priv, ecc_point* pub, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_521* point = NULL;
- sp_digit* k = NULL;
- #else
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- sp_point_521 point[2];
- #else
- sp_point_521 point[1];
- #endif
- sp_digit k[21];
- #endif
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- sp_point_521* infinity = NULL;
- #endif
- int err = MP_OKAY;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- point = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, heap, DYNAMIC_TYPE_ECC);
- #else
- point = (sp_point_521*)XMALLOC(sizeof(sp_point_521), heap, DYNAMIC_TYPE_ECC);
- #endif
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- infinity = point + 1;
- #endif
- err = sp_521_ecc_gen_k_21(rng, k);
- }
- if (err == MP_OKAY) {
- err = sp_521_ecc_mulmod_base_21(point, k, 1, 1, NULL);
- }
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- if (err == MP_OKAY) {
- err = sp_521_ecc_mulmod_21(infinity, point, p521_order, 1, 1, NULL);
- }
- if (err == MP_OKAY) {
- if (sp_521_iszero_21(point->x) || sp_521_iszero_21(point->y)) {
- err = ECC_INF_E;
- }
- }
- #endif
- if (err == MP_OKAY) {
- err = sp_521_to_mp(k, priv);
- }
- if (err == MP_OKAY) {
- err = sp_521_point_to_ecc_point_21(point, pub);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL) {
- /* point is not sensitive, so no need to zeroize */
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- }
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_ecc_key_gen_521_ctx {
- int state;
- sp_521_ecc_mulmod_21_ctx mulmod_ctx;
- sp_digit k[21];
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- sp_point_521 point[2];
- #else
- sp_point_521 point[1];
- #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
- } sp_ecc_key_gen_521_ctx;
- int sp_ecc_make_key_521_nb(sp_ecc_ctx_t* sp_ctx, WC_RNG* rng, mp_int* priv,
- ecc_point* pub, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_ecc_key_gen_521_ctx* ctx = (sp_ecc_key_gen_521_ctx*)sp_ctx->data;
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- sp_point_521* infinity = ctx->point + 1;
- #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
- typedef char ctx_size_test[sizeof(sp_ecc_key_gen_521_ctx)
- >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0:
- err = sp_521_ecc_gen_k_21(rng, ctx->k);
- if (err == MP_OKAY) {
- err = FP_WOULDBLOCK;
- ctx->state = 1;
- }
- break;
- case 1:
- err = sp_521_ecc_mulmod_base_21_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
- ctx->point, ctx->k, 1, 1, heap);
- if (err == MP_OKAY) {
- err = FP_WOULDBLOCK;
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
- ctx->state = 2;
- #else
- ctx->state = 3;
- #endif
- }
- break;
- #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN
- case 2:
- err = sp_521_ecc_mulmod_21_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
- infinity, ctx->point, p521_order, 1, 1);
- if (err == MP_OKAY) {
- if (sp_521_iszero_21(ctx->point->x) ||
- sp_521_iszero_21(ctx->point->y)) {
- err = ECC_INF_E;
- }
- else {
- err = FP_WOULDBLOCK;
- ctx->state = 3;
- }
- }
- break;
- #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN */
- case 3:
- err = sp_521_to_mp(ctx->k, priv);
- if (err == MP_OKAY) {
- err = sp_521_point_to_ecc_point_21(ctx->point, pub);
- }
- break;
- }
- if (err != FP_WOULDBLOCK) {
- XMEMSET(ctx, 0, sizeof(sp_ecc_key_gen_521_ctx));
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #ifdef HAVE_ECC_DHE
- /* Write r as big endian to byte array.
- * Fixed length number of bytes written: 66
- *
- * r A single precision integer.
- * a Byte array.
- */
- static void sp_521_to_bin_21(sp_digit* r, byte* a)
- {
- int i;
- int j;
- int s = 0;
- int b;
- for (i=0; i<20; i++) {
- r[i+1] += r[i] >> 25;
- r[i] &= 0x1ffffff;
- }
- j = 528 / 8 - 1;
- a[j] = 0;
- for (i=0; i<21 && j>=0; i++) {
- b = 0;
- /* lint allow cast of mismatch sp_digit and int */
- a[j--] |= (byte)(r[i] << s); /*lint !e9033*/
- b += 8 - s;
- if (j < 0) {
- break;
- }
- while (b < 25) {
- a[j--] = (byte)(r[i] >> b);
- b += 8;
- if (j < 0) {
- break;
- }
- }
- s = 8 - (b - 25);
- if (j >= 0) {
- a[j] = 0;
- }
- if (s != 0) {
- j++;
- }
- }
- }
- /* Multiply the point by the scalar and serialize the X ordinate.
- * The number is 0 padded to maximum size on output.
- *
- * priv Scalar to multiply the point by.
- * pub Point to multiply.
- * out Buffer to hold X ordinate.
- * outLen On entry, size of the buffer in bytes.
- * On exit, length of data in buffer in bytes.
- * heap Heap to use for allocation.
- * returns BUFFER_E if the buffer is to small for output size,
- * MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_secret_gen_521(const mp_int* priv, const ecc_point* pub, byte* out,
- word32* outLen, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_521* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_521 point[1];
- sp_digit k[21];
- #endif
- int err = MP_OKAY;
- if (*outLen < 65U) {
- err = BUFFER_E;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- point = (sp_point_521*)XMALLOC(sizeof(sp_point_521), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_521_from_mp(k, 21, priv);
- sp_521_point_from_ecc_point_21(point, pub);
- err = sp_521_ecc_mulmod_21(point, point, k, 1, 1, heap);
- }
- if (err == MP_OKAY) {
- sp_521_to_bin_21(point->x, out);
- *outLen = 66;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_ecc_sec_gen_521_ctx {
- int state;
- union {
- sp_521_ecc_mulmod_21_ctx mulmod_ctx;
- };
- sp_digit k[21];
- sp_point_521 point;
- } sp_ecc_sec_gen_521_ctx;
- int sp_ecc_secret_gen_521_nb(sp_ecc_ctx_t* sp_ctx, const mp_int* priv,
- const ecc_point* pub, byte* out, word32* outLen, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_ecc_sec_gen_521_ctx* ctx = (sp_ecc_sec_gen_521_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_ecc_sec_gen_521_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- if (*outLen < 32U) {
- err = BUFFER_E;
- }
- switch (ctx->state) {
- case 0:
- sp_521_from_mp(ctx->k, 21, priv);
- sp_521_point_from_ecc_point_21(&ctx->point, pub);
- ctx->state = 1;
- break;
- case 1:
- err = sp_521_ecc_mulmod_21_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
- &ctx->point, &ctx->point, ctx->k, 1, 1, heap);
- if (err == MP_OKAY) {
- sp_521_to_bin_21(ctx->point.x, out);
- *outLen = 66;
- }
- break;
- }
- if (err == MP_OKAY && ctx->state != 1) {
- err = FP_WOULDBLOCK;
- }
- if (err != FP_WOULDBLOCK) {
- XMEMSET(ctx, 0, sizeof(sp_ecc_sec_gen_521_ctx));
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #endif /* HAVE_ECC_DHE */
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- SP_NOINLINE static void sp_521_rshift_21(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- #ifdef WOLFSSL_SP_SMALL
- for (i=0; i<20; i++) {
- r[i] = ((a[i] >> n) | (a[i + 1] << (25 - n))) & 0x1ffffff;
- }
- #else
- for (i=0; i<16; i += 8) {
- r[i+0] = (a[i+0] >> n) | ((a[i+1] << (25 - n)) & 0x1ffffff);
- r[i+1] = (a[i+1] >> n) | ((a[i+2] << (25 - n)) & 0x1ffffff);
- r[i+2] = (a[i+2] >> n) | ((a[i+3] << (25 - n)) & 0x1ffffff);
- r[i+3] = (a[i+3] >> n) | ((a[i+4] << (25 - n)) & 0x1ffffff);
- r[i+4] = (a[i+4] >> n) | ((a[i+5] << (25 - n)) & 0x1ffffff);
- r[i+5] = (a[i+5] >> n) | ((a[i+6] << (25 - n)) & 0x1ffffff);
- r[i+6] = (a[i+6] >> n) | ((a[i+7] << (25 - n)) & 0x1ffffff);
- r[i+7] = (a[i+7] >> n) | ((a[i+8] << (25 - n)) & 0x1ffffff);
- }
- r[16] = (a[16] >> n) | ((a[17] << (25 - n)) & 0x1ffffff);
- r[17] = (a[17] >> n) | ((a[18] << (25 - n)) & 0x1ffffff);
- r[18] = (a[18] >> n) | ((a[19] << (25 - n)) & 0x1ffffff);
- r[19] = (a[19] >> n) | ((a[20] << (25 - n)) & 0x1ffffff);
- #endif /* WOLFSSL_SP_SMALL */
- r[20] = a[20] >> n;
- }
- #endif
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_521_mul_d_21(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 21; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- }
- r[21] = (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t = 0;
- sp_digit t2;
- sp_int64 p[4];
- int i;
- for (i = 0; i < 20; i += 4) {
- p[0] = tb * a[i + 0];
- p[1] = tb * a[i + 1];
- p[2] = tb * a[i + 2];
- p[3] = tb * a[i + 3];
- t += p[0];
- t2 = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[i + 0] = (sp_digit)t2;
- t += p[1];
- t2 = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[i + 1] = (sp_digit)t2;
- t += p[2];
- t2 = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[i + 2] = (sp_digit)t2;
- t += p[3];
- t2 = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[i + 3] = (sp_digit)t2;
- }
- t += tb * a[20];
- r[20] = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[21] = (sp_digit)(t & 0x1ffffff);
- #endif /* WOLFSSL_SP_SMALL */
- }
- SP_NOINLINE static void sp_521_lshift_42(sp_digit* r, const sp_digit* a,
- byte n)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- r[42] = a[41] >> (25 - n);
- for (i=41; i>0; i--) {
- r[i] = ((a[i] << n) | (a[i-1] >> (25 - n))) & 0x1ffffff;
- }
- #else
- sp_int_digit s;
- sp_int_digit t;
- s = (sp_int_digit)a[41];
- r[42] = s >> (25U - n);
- s = (sp_int_digit)(a[41]); t = (sp_int_digit)(a[40]);
- r[41] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[40]); t = (sp_int_digit)(a[39]);
- r[40] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[39]); t = (sp_int_digit)(a[38]);
- r[39] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[38]); t = (sp_int_digit)(a[37]);
- r[38] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[37]); t = (sp_int_digit)(a[36]);
- r[37] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[36]); t = (sp_int_digit)(a[35]);
- r[36] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[35]); t = (sp_int_digit)(a[34]);
- r[35] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[34]); t = (sp_int_digit)(a[33]);
- r[34] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[33]); t = (sp_int_digit)(a[32]);
- r[33] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[32]); t = (sp_int_digit)(a[31]);
- r[32] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[31]); t = (sp_int_digit)(a[30]);
- r[31] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[30]); t = (sp_int_digit)(a[29]);
- r[30] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[29]); t = (sp_int_digit)(a[28]);
- r[29] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[28]); t = (sp_int_digit)(a[27]);
- r[28] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[27]); t = (sp_int_digit)(a[26]);
- r[27] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[26]); t = (sp_int_digit)(a[25]);
- r[26] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[25]); t = (sp_int_digit)(a[24]);
- r[25] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[24]); t = (sp_int_digit)(a[23]);
- r[24] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[23]); t = (sp_int_digit)(a[22]);
- r[23] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[22]); t = (sp_int_digit)(a[21]);
- r[22] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[21]); t = (sp_int_digit)(a[20]);
- r[21] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[20]); t = (sp_int_digit)(a[19]);
- r[20] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[19]); t = (sp_int_digit)(a[18]);
- r[19] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[18]); t = (sp_int_digit)(a[17]);
- r[18] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[17]); t = (sp_int_digit)(a[16]);
- r[17] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[16]); t = (sp_int_digit)(a[15]);
- r[16] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[15]); t = (sp_int_digit)(a[14]);
- r[15] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[14]); t = (sp_int_digit)(a[13]);
- r[14] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[13]); t = (sp_int_digit)(a[12]);
- r[13] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[12]); t = (sp_int_digit)(a[11]);
- r[12] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[11]); t = (sp_int_digit)(a[10]);
- r[11] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[10]); t = (sp_int_digit)(a[9]);
- r[10] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[9]); t = (sp_int_digit)(a[8]);
- r[9] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[8]); t = (sp_int_digit)(a[7]);
- r[8] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[7]); t = (sp_int_digit)(a[6]);
- r[7] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[6]); t = (sp_int_digit)(a[5]);
- r[6] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[5]); t = (sp_int_digit)(a[4]);
- r[5] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[4]); t = (sp_int_digit)(a[3]);
- r[4] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[3]); t = (sp_int_digit)(a[2]);
- r[3] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[2]); t = (sp_int_digit)(a[1]);
- r[2] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- s = (sp_int_digit)(a[1]); t = (sp_int_digit)(a[0]);
- r[1] = ((s << n) | (t >> (25U - n))) & 0x1ffffff;
- #endif /* WOLFSSL_SP_SMALL */
- r[0] = (a[0] << n) & 0x1ffffff;
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Simplified based on top word of divisor being (1 << 25) - 1
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_521_div_21(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- sp_digit r1;
- sp_digit mask;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 21 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 21 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 42 + 1;
- sd = t2 + 21 + 1;
- sp_521_mul_d_21(sd, d, (sp_digit)1 << 4);
- sp_521_lshift_42(t1, a, 4);
- t1[21 + 21] += t1[21 + 21 - 1] >> 25;
- t1[21 + 21 - 1] &= 0x1ffffff;
- for (i=20; i>=0; i--) {
- r1 = t1[21 + i];
- sp_521_mul_d_21(t2, sd, r1);
- (void)sp_521_sub_21(&t1[i], &t1[i], t2);
- t1[21 + i] -= t2[21];
- sp_521_norm_21(&t1[i + 1]);
- mask = ~((t1[21 + i] - 1) >> 31);
- sp_521_cond_sub_21(t1 + i, t1 + i, sd, mask);
- sp_521_norm_21(&t1[i + 1]);
- }
- sp_521_norm_21(t1);
- sp_521_rshift_21(r, t1, 4);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_521_mod_21(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_521_div_21(a, m, NULL, r);
- }
- #endif
- #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY)
- /* Multiply two number mod the order of P521 curve. (r = a * b mod order)
- *
- * r Result of the multiplication.
- * a First operand of the multiplication.
- * b Second operand of the multiplication.
- */
- static void sp_521_mont_mul_order_21(sp_digit* r, const sp_digit* a, const sp_digit* b)
- {
- sp_521_mul_21(r, a, b);
- sp_521_mont_reduce_order_21(r, p521_order, p521_mp_order);
- }
- #if defined(HAVE_ECC_SIGN) || (defined(HAVE_ECC_VERIFY) && defined(WOLFSSL_SP_SMALL))
- #ifdef WOLFSSL_SP_SMALL
- /* Order-2 for the P521 curve. */
- static const uint32_t p521_order_minus_2[17] = {
- 0x91386407U,0xbb6fb71eU,0x899c47aeU,0x3bb5c9b8U,0xf709a5d0U,0x7fcc0148U,
- 0xbf2f966bU,0x51868783U,0xfffffffaU,0xffffffffU,0xffffffffU,0xffffffffU,
- 0xffffffffU,0xffffffffU,0xffffffffU,0xffffffffU,0x000001ffU
- };
- #else
- /* The low half of the order-2 of the P521 curve. */
- static const uint32_t p521_order_low[9] = {
- 0x91386407U,0xbb6fb71eU,0x899c47aeU,0x3bb5c9b8U,0xf709a5d0U,0x7fcc0148U,
- 0xbf2f966bU,0x51868783U,0xfffffffaU
- };
- #endif /* WOLFSSL_SP_SMALL */
- /* Square number mod the order of P521 curve. (r = a * a mod order)
- *
- * r Result of the squaring.
- * a Number to square.
- */
- static void sp_521_mont_sqr_order_21(sp_digit* r, const sp_digit* a)
- {
- sp_521_sqr_21(r, a);
- sp_521_mont_reduce_order_21(r, p521_order, p521_mp_order);
- }
- #ifndef WOLFSSL_SP_SMALL
- /* Square number mod the order of P521 curve a number of times.
- * (r = a ^ n mod order)
- *
- * r Result of the squaring.
- * a Number to square.
- */
- static void sp_521_mont_sqr_n_order_21(sp_digit* r, const sp_digit* a, int n)
- {
- int i;
- sp_521_mont_sqr_order_21(r, a);
- for (i=1; i<n; i++) {
- sp_521_mont_sqr_order_21(r, r);
- }
- }
- #endif /* !WOLFSSL_SP_SMALL */
- /* Invert the number, in Montgomery form, modulo the order of the P521 curve.
- * (r = 1 / a mod order)
- *
- * r Inverse result.
- * a Number to invert.
- * td Temporary data.
- */
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_521_mont_inv_order_21_ctx {
- int state;
- int i;
- } sp_521_mont_inv_order_21_ctx;
- static int sp_521_mont_inv_order_21_nb(sp_ecc_ctx_t* sp_ctx, sp_digit* r, const sp_digit* a,
- sp_digit* t)
- {
- int err = FP_WOULDBLOCK;
- sp_521_mont_inv_order_21_ctx* ctx = (sp_521_mont_inv_order_21_ctx*)sp_ctx;
- typedef char ctx_size_test[sizeof(sp_521_mont_inv_order_21_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0:
- XMEMCPY(t, a, sizeof(sp_digit) * 21);
- ctx->i = 519;
- ctx->state = 1;
- break;
- case 1:
- sp_521_mont_sqr_order_21(t, t);
- ctx->state = 2;
- break;
- case 2:
- if ((p521_order_minus_2[ctx->i / 32] & ((sp_int_digit)1 << (ctx->i % 32))) != 0) {
- sp_521_mont_mul_order_21(t, t, a);
- }
- ctx->i--;
- ctx->state = (ctx->i == 0) ? 3 : 1;
- break;
- case 3:
- XMEMCPY(r, t, sizeof(sp_digit) * 21U);
- err = MP_OKAY;
- break;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- static void sp_521_mont_inv_order_21(sp_digit* r, const sp_digit* a,
- sp_digit* td)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_digit* t = td;
- int i;
- XMEMCPY(t, a, sizeof(sp_digit) * 21);
- for (i=519; i>=0; i--) {
- sp_521_mont_sqr_order_21(t, t);
- if ((p521_order_minus_2[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
- sp_521_mont_mul_order_21(t, t, a);
- }
- }
- XMEMCPY(r, t, sizeof(sp_digit) * 21U);
- #else
- sp_digit* t = td;
- sp_digit* t2 = td + 2 * 21;
- sp_digit* t3 = td + 4 * 21;
- int i;
- /* t = a^2 */
- sp_521_mont_sqr_order_21(t, a);
- /* t = a^3 = t * a */
- sp_521_mont_mul_order_21(t, t, a);
- /* t= a^c = t ^ 2 ^ 2 */
- sp_521_mont_sqr_n_order_21(t2, t, 2);
- /* t = a^f = t2 * t */
- sp_521_mont_mul_order_21(t, t2, t);
- /* t3 = a^1e */
- sp_521_mont_sqr_order_21(t3, t);
- /* t3 = a^1f = t3 * a */
- sp_521_mont_mul_order_21(t3, t3, a);
- /* t2= a^f0 = t ^ 2 ^ 4 */
- sp_521_mont_sqr_n_order_21(t2, t, 4);
- /* t = a^ff = t2 * t */
- sp_521_mont_mul_order_21(t, t2, t);
- /* t2= a^ff00 = t ^ 2 ^ 8 */
- sp_521_mont_sqr_n_order_21(t2, t, 8);
- /* t3= a^ffff = t2 * t */
- sp_521_mont_mul_order_21(t, t2, t);
- /* t2= a^ffff0000 = t ^ 2 ^ 16 */
- sp_521_mont_sqr_n_order_21(t2, t, 16);
- /* t = a^ffffffff = t2 * t */
- sp_521_mont_mul_order_21(t, t2, t);
- /* t2= a^ffffffff00000000 = t ^ 2 ^ 32 */
- sp_521_mont_sqr_n_order_21(t2, t, 32);
- /* t = a^ffffffffffffffff = t2 * t */
- sp_521_mont_mul_order_21(t, t2, t);
- /* t2= a^ffffffffffffffff0000000000000000 = t ^ 2 ^ 64 */
- sp_521_mont_sqr_n_order_21(t2, t, 64);
- /* t = a^ffffffffffffffffffffffffffffffff = t2 * t */
- sp_521_mont_mul_order_21(t, t2, t);
- /* t2= a^ffffffffffffffffffffffffffffffff00000000000000000000000000000000 = t ^ 2 ^ 128 */
- sp_521_mont_sqr_n_order_21(t2, t, 128);
- /* t = a^ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff = t2 * t */
- sp_521_mont_mul_order_21(t, t2, t);
- /* t2 = a^1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0 */
- sp_521_mont_sqr_n_order_21(t2, t, 5);
- /* t2 = a^1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff = t * t3 */
- sp_521_mont_mul_order_21(t2, t2, t3);
- for (i=259; i>=1; i--) {
- sp_521_mont_sqr_order_21(t2, t2);
- if ((p521_order_low[i / 32] & ((sp_int_digit)1 << (i % 32))) != 0) {
- sp_521_mont_mul_order_21(t2, t2, a);
- }
- }
- sp_521_mont_sqr_order_21(t2, t2);
- sp_521_mont_mul_order_21(r, t2, a);
- #endif /* WOLFSSL_SP_SMALL */
- }
- #endif /* HAVE_ECC_SIGN || (HAVE_ECC_VERIFY && WOLFSSL_SP_SMALL) */
- #endif /* HAVE_ECC_SIGN | HAVE_ECC_VERIFY */
- #ifdef HAVE_ECC_SIGN
- #ifndef SP_ECC_MAX_SIG_GEN
- #define SP_ECC_MAX_SIG_GEN 64
- #endif
- /* Calculate second signature value S from R, k and private value.
- *
- * s = (r * x + e) / k
- *
- * s Signature value.
- * r First signature value.
- * k Ephemeral private key.
- * x Private key as a number.
- * e Hash of message as a number.
- * tmp Temporary storage for intermediate numbers.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_521_calc_s_21(sp_digit* s, const sp_digit* r, sp_digit* k,
- sp_digit* x, const sp_digit* e, sp_digit* tmp)
- {
- int err;
- sp_digit carry;
- sp_int32 c;
- sp_digit* kInv = k;
- /* Conv k to Montgomery form (mod order) */
- sp_521_mul_21(k, k, p521_norm_order);
- err = sp_521_mod_21(k, k, p521_order);
- if (err == MP_OKAY) {
- sp_521_norm_21(k);
- /* kInv = 1/k mod order */
- sp_521_mont_inv_order_21(kInv, k, tmp);
- sp_521_norm_21(kInv);
- /* s = r * x + e */
- sp_521_mul_21(x, x, r);
- err = sp_521_mod_21(x, x, p521_order);
- }
- if (err == MP_OKAY) {
- sp_521_norm_21(x);
- carry = sp_521_add_21(s, e, x);
- sp_521_cond_sub_21(s, s, p521_order, 0 - carry);
- sp_521_norm_21(s);
- c = sp_521_cmp_21(s, p521_order);
- sp_521_cond_sub_21(s, s, p521_order,
- (sp_digit)0 - (sp_digit)(c >= 0));
- sp_521_norm_21(s);
- /* s = s * k^-1 mod order */
- sp_521_mont_mul_order_21(s, s, kInv);
- sp_521_norm_21(s);
- }
- return err;
- }
- /* Sign the hash using the private key.
- * e = [hash, 521 bits] from binary
- * r = (k.G)->x mod order
- * s = (r * x + e) / k mod order
- * The hash is truncated to the first 521 bits.
- *
- * hash Hash to sign.
- * hashLen Length of the hash data.
- * rng Random number generator.
- * priv Private part of key - scalar.
- * rm First part of result as an mp_int.
- * sm Sirst part of result as an mp_int.
- * heap Heap to use for allocation.
- * returns RNG failures, MEMORY_E when memory allocation fails and
- * MP_OKAY on success.
- */
- int sp_ecc_sign_521(const byte* hash, word32 hashLen, WC_RNG* rng,
- const mp_int* priv, mp_int* rm, mp_int* sm, mp_int* km, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* e = NULL;
- sp_point_521* point = NULL;
- #else
- sp_digit e[7 * 2 * 21];
- sp_point_521 point[1];
- #endif
- sp_digit* x = NULL;
- sp_digit* k = NULL;
- sp_digit* r = NULL;
- sp_digit* tmp = NULL;
- sp_digit* s = NULL;
- sp_int32 c;
- int err = MP_OKAY;
- int i;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- point = (sp_point_521*)XMALLOC(sizeof(sp_point_521), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- e = (sp_digit*)XMALLOC(sizeof(sp_digit) * 7 * 2 * 21, heap,
- DYNAMIC_TYPE_ECC);
- if (e == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- x = e + 2 * 21;
- k = e + 4 * 21;
- r = e + 6 * 21;
- tmp = e + 8 * 21;
- s = e;
- if (hashLen > 66U) {
- hashLen = 66U;
- }
- }
- for (i = SP_ECC_MAX_SIG_GEN; err == MP_OKAY && i > 0; i--) {
- /* New random point. */
- if (km == NULL || mp_iszero(km)) {
- err = sp_521_ecc_gen_k_21(rng, k);
- }
- else {
- sp_521_from_mp(k, 21, km);
- mp_zero(km);
- }
- if (err == MP_OKAY) {
- err = sp_521_ecc_mulmod_base_21(point, k, 1, 1, heap);
- }
- if (err == MP_OKAY) {
- /* r = point->x mod order */
- XMEMCPY(r, point->x, sizeof(sp_digit) * 21U);
- sp_521_norm_21(r);
- c = sp_521_cmp_21(r, p521_order);
- sp_521_cond_sub_21(r, r, p521_order,
- (sp_digit)0 - (sp_digit)(c >= 0));
- sp_521_norm_21(r);
- if (!sp_521_iszero_21(r)) {
- /* x is modified in calculation of s. */
- sp_521_from_mp(x, 21, priv);
- /* s ptr == e ptr, e is modified in calculation of s. */
- sp_521_from_bin(e, 21, hash, (int)hashLen);
- /* Take 521 leftmost bits of hash. */
- if (hashLen == 66U) {
- sp_521_rshift_21(e, e, 7);
- e[20] |= ((sp_digit)hash[0]) << 13;
- }
- err = sp_521_calc_s_21(s, r, k, x, e, tmp);
- /* Check that signature is usable. */
- if ((err == MP_OKAY) && (!sp_521_iszero_21(s))) {
- break;
- }
- }
- }
- #ifdef WOLFSSL_ECDSA_SET_K_ONE_LOOP
- i = 1;
- #endif
- }
- if (i == 0) {
- err = RNG_FAILURE_E;
- }
- if (err == MP_OKAY) {
- err = sp_521_to_mp(r, rm);
- }
- if (err == MP_OKAY) {
- err = sp_521_to_mp(s, sm);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (e != NULL)
- #endif
- {
- ForceZero(e, sizeof(sp_digit) * 7 * 2 * 21);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(e, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (point != NULL)
- #endif
- {
- ForceZero(point, sizeof(sp_point_521));
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_ecc_sign_521_ctx {
- int state;
- union {
- sp_521_ecc_mulmod_21_ctx mulmod_ctx;
- sp_521_mont_inv_order_21_ctx mont_inv_order_ctx;
- };
- sp_digit e[2*21];
- sp_digit x[2*21];
- sp_digit k[2*21];
- sp_digit r[2*21];
- sp_digit tmp[3 * 2*21];
- sp_point_521 point;
- sp_digit* s;
- sp_digit* kInv;
- int i;
- } sp_ecc_sign_521_ctx;
- int sp_ecc_sign_521_nb(sp_ecc_ctx_t* sp_ctx, const byte* hash, word32 hashLen, WC_RNG* rng,
- mp_int* priv, mp_int* rm, mp_int* sm, mp_int* km, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_ecc_sign_521_ctx* ctx = (sp_ecc_sign_521_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_ecc_sign_521_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0: /* INIT */
- ctx->s = ctx->e;
- ctx->kInv = ctx->k;
- ctx->i = SP_ECC_MAX_SIG_GEN;
- ctx->state = 1;
- break;
- case 1: /* GEN */
- /* New random point. */
- if (km == NULL || mp_iszero(km)) {
- err = sp_521_ecc_gen_k_21(rng, ctx->k);
- }
- else {
- sp_521_from_mp(ctx->k, 21, km);
- mp_zero(km);
- }
- XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
- ctx->state = 2;
- break;
- case 2: /* MULMOD */
- err = sp_521_ecc_mulmod_21_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx,
- &ctx->point, &p521_base, ctx->k, 1, 1, heap);
- if (err == MP_OKAY) {
- ctx->state = 3;
- }
- break;
- case 3: /* MODORDER */
- {
- sp_int32 c;
- /* r = point->x mod order */
- XMEMCPY(ctx->r, ctx->point.x, sizeof(sp_digit) * 21U);
- sp_521_norm_21(ctx->r);
- c = sp_521_cmp_21(ctx->r, p521_order);
- sp_521_cond_sub_21(ctx->r, ctx->r, p521_order,
- (sp_digit)0 - (sp_digit)(c >= 0));
- sp_521_norm_21(ctx->r);
- if (hashLen > 66U) {
- hashLen = 66U;
- }
- sp_521_from_mp(ctx->x, 21, priv);
- sp_521_from_bin(ctx->e, 21, hash, (int)hashLen);
- if (hashLen == 66U) {
- sp_521_rshift_21(ctx->e, ctx->e, 7);
- ctx->e[20] |= ((sp_digit)hash[0]) << 13;
- }
- ctx->state = 4;
- break;
- }
- case 4: /* KMODORDER */
- /* Conv k to Montgomery form (mod order) */
- sp_521_mul_21(ctx->k, ctx->k, p521_norm_order);
- err = sp_521_mod_21(ctx->k, ctx->k, p521_order);
- if (err == MP_OKAY) {
- sp_521_norm_21(ctx->k);
- XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
- ctx->state = 5;
- }
- break;
- case 5: /* KINV */
- /* kInv = 1/k mod order */
- err = sp_521_mont_inv_order_21_nb((sp_ecc_ctx_t*)&ctx->mont_inv_order_ctx, ctx->kInv, ctx->k, ctx->tmp);
- if (err == MP_OKAY) {
- XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
- ctx->state = 6;
- }
- break;
- case 6: /* KINVNORM */
- sp_521_norm_21(ctx->kInv);
- ctx->state = 7;
- break;
- case 7: /* R */
- /* s = r * x + e */
- sp_521_mul_21(ctx->x, ctx->x, ctx->r);
- ctx->state = 8;
- break;
- case 8: /* S1 */
- err = sp_521_mod_21(ctx->x, ctx->x, p521_order);
- if (err == MP_OKAY)
- ctx->state = 9;
- break;
- case 9: /* S2 */
- {
- sp_digit carry;
- sp_int32 c;
- sp_521_norm_21(ctx->x);
- carry = sp_521_add_21(ctx->s, ctx->e, ctx->x);
- sp_521_cond_sub_21(ctx->s, ctx->s,
- p521_order, 0 - carry);
- sp_521_norm_21(ctx->s);
- c = sp_521_cmp_21(ctx->s, p521_order);
- sp_521_cond_sub_21(ctx->s, ctx->s, p521_order,
- (sp_digit)0 - (sp_digit)(c >= 0));
- sp_521_norm_21(ctx->s);
- /* s = s * k^-1 mod order */
- sp_521_mont_mul_order_21(ctx->s, ctx->s, ctx->kInv);
- sp_521_norm_21(ctx->s);
- /* Check that signature is usable. */
- if (sp_521_iszero_21(ctx->s) == 0) {
- ctx->state = 10;
- break;
- }
- #ifdef WOLFSSL_ECDSA_SET_K_ONE_LOOP
- ctx->i = 1;
- #endif
- /* not usable gen, try again */
- ctx->i--;
- if (ctx->i == 0) {
- err = RNG_FAILURE_E;
- }
- ctx->state = 1;
- break;
- }
- case 10: /* RES */
- err = sp_521_to_mp(ctx->r, rm);
- if (err == MP_OKAY) {
- err = sp_521_to_mp(ctx->s, sm);
- }
- break;
- }
- if (err == MP_OKAY && ctx->state != 10) {
- err = FP_WOULDBLOCK;
- }
- if (err != FP_WOULDBLOCK) {
- XMEMSET(ctx->e, 0, sizeof(sp_digit) * 2U * 21U);
- XMEMSET(ctx->x, 0, sizeof(sp_digit) * 2U * 21U);
- XMEMSET(ctx->k, 0, sizeof(sp_digit) * 2U * 21U);
- XMEMSET(ctx->r, 0, sizeof(sp_digit) * 2U * 21U);
- XMEMSET(ctx->tmp, 0, sizeof(sp_digit) * 3U * 2U * 21U);
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #endif /* HAVE_ECC_SIGN */
- #ifndef WOLFSSL_SP_SMALL
- static const char sp_521_tab32_21[32] = {
- 1, 10, 2, 11, 14, 22, 3, 30,
- 12, 15, 17, 19, 23, 26, 4, 31,
- 9, 13, 21, 29, 16, 18, 25, 8,
- 20, 28, 24, 7, 27, 6, 5, 32};
- static int sp_521_num_bits_25_21(sp_digit v)
- {
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- return sp_521_tab32_21[(uint32_t)(v*0x07C4ACDD) >> 27];
- }
- static int sp_521_num_bits_21(const sp_digit* a)
- {
- int i;
- int r = 0;
- for (i = 20; i >= 0; i--) {
- if (a[i] != 0) {
- r = sp_521_num_bits_25_21(a[i]);
- r += i * 25;
- break;
- }
- }
- return r;
- }
- /* Non-constant time modular inversion.
- *
- * @param [out] r Resulting number.
- * @param [in] a Number to invert.
- * @param [in] m Modulus.
- * @return MP_OKAY on success.
- * @return MEMEORY_E when dynamic memory allocation fails.
- */
- static int sp_521_mod_inv_21(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* u = NULL;
- #else
- sp_digit u[21 * 4];
- #endif
- sp_digit* v = NULL;
- sp_digit* b = NULL;
- sp_digit* d = NULL;
- int ut;
- int vt;
- #ifdef WOLFSSL_SP_SMALL_STACK
- u = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21 * 4, NULL,
- DYNAMIC_TYPE_ECC);
- if (u == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- v = u + 21;
- b = u + 2 * 21;
- d = u + 3 * 21;
- XMEMCPY(u, m, sizeof(sp_digit) * 21);
- XMEMCPY(v, a, sizeof(sp_digit) * 21);
- ut = sp_521_num_bits_21(u);
- vt = sp_521_num_bits_21(v);
- XMEMSET(b, 0, sizeof(sp_digit) * 21);
- if ((v[0] & 1) == 0) {
- sp_521_rshift1_21(v, v);
- XMEMCPY(d, m, sizeof(sp_digit) * 21);
- d[0]++;
- sp_521_rshift1_21(d, d);
- vt--;
- while ((v[0] & 1) == 0) {
- sp_521_rshift1_21(v, v);
- if (d[0] & 1)
- sp_521_add_21(d, d, m);
- sp_521_rshift1_21(d, d);
- vt--;
- }
- }
- else {
- XMEMSET(d+1, 0, sizeof(sp_digit) * (21 - 1));
- d[0] = 1;
- }
- while (ut > 1 && vt > 1) {
- if ((ut > vt) || ((ut == vt) &&
- (sp_521_cmp_21(u, v) >= 0))) {
- sp_521_sub_21(u, u, v);
- sp_521_norm_21(u);
- sp_521_sub_21(b, b, d);
- sp_521_norm_21(b);
- if (b[20] < 0)
- sp_521_add_21(b, b, m);
- sp_521_norm_21(b);
- ut = sp_521_num_bits_21(u);
- do {
- sp_521_rshift1_21(u, u);
- if (b[0] & 1)
- sp_521_add_21(b, b, m);
- sp_521_rshift1_21(b, b);
- ut--;
- }
- while (ut > 0 && (u[0] & 1) == 0);
- }
- else {
- sp_521_sub_21(v, v, u);
- sp_521_norm_21(v);
- sp_521_sub_21(d, d, b);
- sp_521_norm_21(d);
- if (d[20] < 0)
- sp_521_add_21(d, d, m);
- sp_521_norm_21(d);
- vt = sp_521_num_bits_21(v);
- do {
- sp_521_rshift1_21(v, v);
- if (d[0] & 1)
- sp_521_add_21(d, d, m);
- sp_521_rshift1_21(d, d);
- vt--;
- }
- while (vt > 0 && (v[0] & 1) == 0);
- }
- }
- if (ut == 1)
- XMEMCPY(r, b, sizeof(sp_digit) * 21);
- else
- XMEMCPY(r, d, sizeof(sp_digit) * 21);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (u != NULL)
- XFREE(u, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif /* WOLFSSL_SP_SMALL */
- /* Add point p1 into point p2. Handles p1 == p2 and result at infinity.
- *
- * p1 First point to add and holds result.
- * p2 Second point to add.
- * tmp Temporary storage for intermediate numbers.
- */
- static void sp_521_add_points_21(sp_point_521* p1, const sp_point_521* p2,
- sp_digit* tmp)
- {
- sp_521_proj_point_add_21(p1, p1, p2, tmp);
- if (sp_521_iszero_21(p1->z)) {
- if (sp_521_iszero_21(p1->x) && sp_521_iszero_21(p1->y)) {
- sp_521_proj_point_dbl_21(p1, p2, tmp);
- }
- else {
- /* Y ordinate is not used from here - don't set. */
- p1->x[0] = 0;
- p1->x[1] = 0;
- p1->x[2] = 0;
- p1->x[3] = 0;
- p1->x[4] = 0;
- p1->x[5] = 0;
- p1->x[6] = 0;
- p1->x[7] = 0;
- p1->x[8] = 0;
- p1->x[9] = 0;
- p1->x[10] = 0;
- p1->x[11] = 0;
- p1->x[12] = 0;
- p1->x[13] = 0;
- p1->x[14] = 0;
- p1->x[15] = 0;
- p1->x[16] = 0;
- p1->x[17] = 0;
- p1->x[18] = 0;
- p1->x[19] = 0;
- p1->x[20] = 0;
- XMEMCPY(p1->z, p521_norm_mod, sizeof(p521_norm_mod));
- }
- }
- }
- /* Calculate the verification point: [e/s]G + [r/s]Q
- *
- * p1 Calculated point.
- * p2 Public point and temporary.
- * s Second part of signature as a number.
- * u1 Temporary number.
- * u2 Temporary number.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_521_calc_vfy_point_21(sp_point_521* p1, sp_point_521* p2,
- sp_digit* s, sp_digit* u1, sp_digit* u2, sp_digit* tmp, void* heap)
- {
- int err;
- #ifndef WOLFSSL_SP_SMALL
- err = sp_521_mod_inv_21(s, s, p521_order);
- if (err == MP_OKAY)
- #endif /* !WOLFSSL_SP_SMALL */
- {
- sp_521_mul_21(s, s, p521_norm_order);
- err = sp_521_mod_21(s, s, p521_order);
- }
- if (err == MP_OKAY) {
- sp_521_norm_21(s);
- #ifdef WOLFSSL_SP_SMALL
- {
- sp_521_mont_inv_order_21(s, s, tmp);
- sp_521_mont_mul_order_21(u1, u1, s);
- sp_521_mont_mul_order_21(u2, u2, s);
- }
- #else
- {
- sp_521_mont_mul_order_21(u1, u1, s);
- sp_521_mont_mul_order_21(u2, u2, s);
- }
- #endif /* WOLFSSL_SP_SMALL */
- {
- err = sp_521_ecc_mulmod_base_21(p1, u1, 0, 0, heap);
- }
- }
- if ((err == MP_OKAY) && sp_521_iszero_21(p1->z)) {
- p1->infinity = 1;
- }
- if (err == MP_OKAY) {
- err = sp_521_ecc_mulmod_21(p2, p2, u2, 0, 0, heap);
- }
- if ((err == MP_OKAY) && sp_521_iszero_21(p2->z)) {
- p2->infinity = 1;
- }
- if (err == MP_OKAY) {
- sp_521_add_points_21(p1, p2, tmp);
- }
- return err;
- }
- #ifdef HAVE_ECC_VERIFY
- /* Verify the signature values with the hash and public key.
- * e = Truncate(hash, 521)
- * u1 = e/s mod order
- * u2 = r/s mod order
- * r == (u1.G + u2.Q)->x mod order
- * Optimization: Leave point in projective form.
- * (x, y, 1) == (x' / z'*z', y' / z'*z'*z', z' / z')
- * (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x'
- * The hash is truncated to the first 521 bits.
- *
- * hash Hash to sign.
- * hashLen Length of the hash data.
- * rng Random number generator.
- * priv Private part of key - scalar.
- * rm First part of result as an mp_int.
- * sm Sirst part of result as an mp_int.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_verify_521(const byte* hash, word32 hashLen, const mp_int* pX,
- const mp_int* pY, const mp_int* pZ, const mp_int* rm, const mp_int* sm,
- int* res, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* u1 = NULL;
- sp_point_521* p1 = NULL;
- #else
- sp_digit u1[18 * 21];
- sp_point_521 p1[2];
- #endif
- sp_digit* u2 = NULL;
- sp_digit* s = NULL;
- sp_digit* tmp = NULL;
- sp_point_521* p2 = NULL;
- sp_digit carry;
- sp_int32 c = 0;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- p1 = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (p1 == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- u1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 18 * 21, heap,
- DYNAMIC_TYPE_ECC);
- if (u1 == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- u2 = u1 + 2 * 21;
- s = u1 + 4 * 21;
- tmp = u1 + 6 * 21;
- p2 = p1 + 1;
- if (hashLen > 66U) {
- hashLen = 66U;
- }
- sp_521_from_bin(u1, 21, hash, (int)hashLen);
- sp_521_from_mp(u2, 21, rm);
- sp_521_from_mp(s, 21, sm);
- sp_521_from_mp(p2->x, 21, pX);
- sp_521_from_mp(p2->y, 21, pY);
- sp_521_from_mp(p2->z, 21, pZ);
- if (hashLen == 66U) {
- sp_521_rshift_21(u1, u1, 7);
- u1[20] |= ((sp_digit)hash[0]) << 13;
- }
- err = sp_521_calc_vfy_point_21(p1, p2, s, u1, u2, tmp, heap);
- }
- if (err == MP_OKAY) {
- /* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
- /* Reload r and convert to Montgomery form. */
- sp_521_from_mp(u2, 21, rm);
- err = sp_521_mod_mul_norm_21(u2, u2, p521_mod);
- }
- if (err == MP_OKAY) {
- /* u1 = r.z'.z' mod prime */
- sp_521_mont_sqr_21(p1->z, p1->z, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(u1, u2, p1->z, p521_mod, p521_mp_mod);
- *res = (int)(sp_521_cmp_21(p1->x, u1) == 0);
- if (*res == 0) {
- /* Reload r and add order. */
- sp_521_from_mp(u2, 21, rm);
- carry = sp_521_add_21(u2, u2, p521_order);
- /* Carry means result is greater than mod and is not valid. */
- if (carry == 0) {
- sp_521_norm_21(u2);
- /* Compare with mod and if greater or equal then not valid. */
- c = sp_521_cmp_21(u2, p521_mod);
- }
- }
- if ((*res == 0) && (c < 0)) {
- /* Convert to Montogomery form */
- err = sp_521_mod_mul_norm_21(u2, u2, p521_mod);
- if (err == MP_OKAY) {
- /* u1 = (r + 1*order).z'.z' mod prime */
- {
- sp_521_mont_mul_21(u1, u2, p1->z, p521_mod, p521_mp_mod);
- }
- *res = (sp_521_cmp_21(p1->x, u1) == 0);
- }
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (u1 != NULL)
- XFREE(u1, heap, DYNAMIC_TYPE_ECC);
- if (p1 != NULL)
- XFREE(p1, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_ecc_verify_521_ctx {
- int state;
- union {
- sp_521_ecc_mulmod_21_ctx mulmod_ctx;
- sp_521_mont_inv_order_21_ctx mont_inv_order_ctx;
- sp_521_proj_point_dbl_21_ctx dbl_ctx;
- sp_521_proj_point_add_21_ctx add_ctx;
- };
- sp_digit u1[2*21];
- sp_digit u2[2*21];
- sp_digit s[2*21];
- sp_digit tmp[2*21 * 6];
- sp_point_521 p1;
- sp_point_521 p2;
- } sp_ecc_verify_521_ctx;
- int sp_ecc_verify_521_nb(sp_ecc_ctx_t* sp_ctx, const byte* hash,
- word32 hashLen, const mp_int* pX, const mp_int* pY, const mp_int* pZ,
- const mp_int* rm, const mp_int* sm, int* res, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_ecc_verify_521_ctx* ctx = (sp_ecc_verify_521_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_ecc_verify_521_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0: /* INIT */
- if (hashLen > 66U) {
- hashLen = 66U;
- }
- sp_521_from_bin(ctx->u1, 21, hash, (int)hashLen);
- sp_521_from_mp(ctx->u2, 21, rm);
- sp_521_from_mp(ctx->s, 21, sm);
- sp_521_from_mp(ctx->p2.x, 21, pX);
- sp_521_from_mp(ctx->p2.y, 21, pY);
- sp_521_from_mp(ctx->p2.z, 21, pZ);
- if (hashLen == 66U) {
- sp_521_rshift_21(ctx->u1, ctx->u1, 7);
- ctx->u1[20] |= ((sp_digit)hash[0]) << 13;
- }
- ctx->state = 1;
- break;
- case 1: /* NORMS0 */
- sp_521_mul_21(ctx->s, ctx->s, p521_norm_order);
- err = sp_521_mod_21(ctx->s, ctx->s, p521_order);
- if (err == MP_OKAY)
- ctx->state = 2;
- break;
- case 2: /* NORMS1 */
- sp_521_norm_21(ctx->s);
- XMEMSET(&ctx->mont_inv_order_ctx, 0, sizeof(ctx->mont_inv_order_ctx));
- ctx->state = 3;
- break;
- case 3: /* NORMS2 */
- err = sp_521_mont_inv_order_21_nb((sp_ecc_ctx_t*)&ctx->mont_inv_order_ctx, ctx->s, ctx->s, ctx->tmp);
- if (err == MP_OKAY) {
- ctx->state = 4;
- }
- break;
- case 4: /* NORMS3 */
- sp_521_mont_mul_order_21(ctx->u1, ctx->u1, ctx->s);
- ctx->state = 5;
- break;
- case 5: /* NORMS4 */
- sp_521_mont_mul_order_21(ctx->u2, ctx->u2, ctx->s);
- XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
- ctx->state = 6;
- break;
- case 6: /* MULBASE */
- err = sp_521_ecc_mulmod_21_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx, &ctx->p1, &p521_base, ctx->u1, 0, 0, heap);
- if (err == MP_OKAY) {
- if (sp_521_iszero_21(ctx->p1.z)) {
- ctx->p1.infinity = 1;
- }
- XMEMSET(&ctx->mulmod_ctx, 0, sizeof(ctx->mulmod_ctx));
- ctx->state = 7;
- }
- break;
- case 7: /* MULMOD */
- err = sp_521_ecc_mulmod_21_nb((sp_ecc_ctx_t*)&ctx->mulmod_ctx, &ctx->p2, &ctx->p2, ctx->u2, 0, 0, heap);
- if (err == MP_OKAY) {
- if (sp_521_iszero_21(ctx->p2.z)) {
- ctx->p2.infinity = 1;
- }
- XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
- ctx->state = 8;
- }
- break;
- case 8: /* ADD */
- err = sp_521_proj_point_add_21_nb((sp_ecc_ctx_t*)&ctx->add_ctx, &ctx->p1, &ctx->p1, &ctx->p2, ctx->tmp);
- if (err == MP_OKAY)
- ctx->state = 9;
- break;
- case 9: /* MONT */
- /* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */
- /* Reload r and convert to Montgomery form. */
- sp_521_from_mp(ctx->u2, 21, rm);
- err = sp_521_mod_mul_norm_21(ctx->u2, ctx->u2, p521_mod);
- if (err == MP_OKAY)
- ctx->state = 10;
- break;
- case 10: /* SQR */
- /* u1 = r.z'.z' mod prime */
- sp_521_mont_sqr_21(ctx->p1.z, ctx->p1.z, p521_mod, p521_mp_mod);
- ctx->state = 11;
- break;
- case 11: /* MUL */
- sp_521_mont_mul_21(ctx->u1, ctx->u2, ctx->p1.z, p521_mod, p521_mp_mod);
- ctx->state = 12;
- break;
- case 12: /* RES */
- {
- sp_int32 c = 0;
- err = MP_OKAY; /* math okay, now check result */
- *res = (int)(sp_521_cmp_21(ctx->p1.x, ctx->u1) == 0);
- if (*res == 0) {
- sp_digit carry;
- /* Reload r and add order. */
- sp_521_from_mp(ctx->u2, 21, rm);
- carry = sp_521_add_21(ctx->u2, ctx->u2, p521_order);
- /* Carry means result is greater than mod and is not valid. */
- if (carry == 0) {
- sp_521_norm_21(ctx->u2);
- /* Compare with mod and if greater or equal then not valid. */
- c = sp_521_cmp_21(ctx->u2, p521_mod);
- }
- }
- if ((*res == 0) && (c < 0)) {
- /* Convert to Montogomery form */
- err = sp_521_mod_mul_norm_21(ctx->u2, ctx->u2, p521_mod);
- if (err == MP_OKAY) {
- /* u1 = (r + 1*order).z'.z' mod prime */
- sp_521_mont_mul_21(ctx->u1, ctx->u2, ctx->p1.z, p521_mod,
- p521_mp_mod);
- *res = (int)(sp_521_cmp_21(ctx->p1.x, ctx->u1) == 0);
- }
- }
- break;
- }
- } /* switch */
- if (err == MP_OKAY && ctx->state != 12) {
- err = FP_WOULDBLOCK;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #endif /* HAVE_ECC_VERIFY */
- #ifdef HAVE_ECC_CHECK_KEY
- /* Check that the x and y ordinates are a valid point on the curve.
- *
- * point EC point.
- * heap Heap to use if dynamically allocating.
- * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
- * not on the curve and MP_OKAY otherwise.
- */
- static int sp_521_ecc_is_point_21(const sp_point_521* point,
- void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[21 * 4];
- #endif
- sp_digit* t2 = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21 * 4, heap, DYNAMIC_TYPE_ECC);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)heap;
- if (err == MP_OKAY) {
- t2 = t1 + 2 * 21;
- /* y^2 - x^3 - a.x = b */
- sp_521_sqr_21(t1, point->y);
- (void)sp_521_mod_21(t1, t1, p521_mod);
- sp_521_sqr_21(t2, point->x);
- (void)sp_521_mod_21(t2, t2, p521_mod);
- sp_521_mul_21(t2, t2, point->x);
- (void)sp_521_mod_21(t2, t2, p521_mod);
- sp_521_mont_sub_21(t1, t1, t2, p521_mod);
- /* y^2 - x^3 + 3.x = b, when a = -3 */
- sp_521_mont_add_21(t1, t1, point->x, p521_mod);
- sp_521_mont_add_21(t1, t1, point->x, p521_mod);
- sp_521_mont_add_21(t1, t1, point->x, p521_mod);
- if (sp_521_cmp_21(t1, p521_b) != 0) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Check that the x and y ordinates are a valid point on the curve.
- *
- * pX X ordinate of EC point.
- * pY Y ordinate of EC point.
- * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
- * not on the curve and MP_OKAY otherwise.
- */
- int sp_ecc_is_point_521(const mp_int* pX, const mp_int* pY)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_521* pub = NULL;
- #else
- sp_point_521 pub[1];
- #endif
- const byte one[1] = { 1 };
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- pub = (sp_point_521*)XMALLOC(sizeof(sp_point_521), NULL,
- DYNAMIC_TYPE_ECC);
- if (pub == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- sp_521_from_mp(pub->x, 21, pX);
- sp_521_from_mp(pub->y, 21, pY);
- sp_521_from_bin(pub->z, 21, one, (int)sizeof(one));
- err = sp_521_ecc_is_point_21(pub, NULL);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (pub != NULL)
- XFREE(pub, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Check that the private scalar generates the EC point (px, py), the point is
- * on the curve and the point has the correct order.
- *
- * pX X ordinate of EC point.
- * pY Y ordinate of EC point.
- * privm Private scalar that generates EC point.
- * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
- * not on the curve, ECC_INF_E if the point does not have the correct order,
- * ECC_PRIV_KEY_E when the private scalar doesn't generate the EC point and
- * MP_OKAY otherwise.
- */
- int sp_ecc_check_key_521(const mp_int* pX, const mp_int* pY,
- const mp_int* privm, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* priv = NULL;
- sp_point_521* pub = NULL;
- #else
- sp_digit priv[21];
- sp_point_521 pub[2];
- #endif
- sp_point_521* p = NULL;
- const byte one[1] = { 1 };
- int err = MP_OKAY;
- /* Quick check the lengs of public key ordinates and private key are in
- * range. Proper check later.
- */
- if (((mp_count_bits(pX) > 521) ||
- (mp_count_bits(pY) > 521) ||
- ((privm != NULL) && (mp_count_bits(privm) > 521)))) {
- err = ECC_OUT_OF_RANGE_E;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- pub = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (pub == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY && privm) {
- priv = (sp_digit*)XMALLOC(sizeof(sp_digit) * 21, heap,
- DYNAMIC_TYPE_ECC);
- if (priv == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = pub + 1;
- sp_521_from_mp(pub->x, 21, pX);
- sp_521_from_mp(pub->y, 21, pY);
- sp_521_from_bin(pub->z, 21, one, (int)sizeof(one));
- if (privm)
- sp_521_from_mp(priv, 21, privm);
- /* Check point at infinitiy. */
- if ((sp_521_iszero_21(pub->x) != 0) &&
- (sp_521_iszero_21(pub->y) != 0)) {
- err = ECC_INF_E;
- }
- }
- /* Check range of X and Y */
- if ((err == MP_OKAY) &&
- ((sp_521_cmp_21(pub->x, p521_mod) >= 0) ||
- (sp_521_cmp_21(pub->y, p521_mod) >= 0))) {
- err = ECC_OUT_OF_RANGE_E;
- }
- if (err == MP_OKAY) {
- /* Check point is on curve */
- err = sp_521_ecc_is_point_21(pub, heap);
- }
- if (err == MP_OKAY) {
- /* Point * order = infinity */
- err = sp_521_ecc_mulmod_21(p, pub, p521_order, 1, 1, heap);
- }
- /* Check result is infinity */
- if ((err == MP_OKAY) && ((sp_521_iszero_21(p->x) == 0) ||
- (sp_521_iszero_21(p->y) == 0))) {
- err = ECC_INF_E;
- }
- if (privm) {
- if (err == MP_OKAY) {
- /* Base * private = point */
- err = sp_521_ecc_mulmod_base_21(p, priv, 1, 1, heap);
- }
- /* Check result is public key */
- if ((err == MP_OKAY) &&
- ((sp_521_cmp_21(p->x, pub->x) != 0) ||
- (sp_521_cmp_21(p->y, pub->y) != 0))) {
- err = ECC_PRIV_KEY_E;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (pub != NULL)
- XFREE(pub, heap, DYNAMIC_TYPE_ECC);
- if (priv != NULL)
- XFREE(priv, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif
- #ifdef WOLFSSL_PUBLIC_ECC_ADD_DBL
- /* Add two projective EC points together.
- * (pX, pY, pZ) + (qX, qY, qZ) = (rX, rY, rZ)
- *
- * pX First EC point's X ordinate.
- * pY First EC point's Y ordinate.
- * pZ First EC point's Z ordinate.
- * qX Second EC point's X ordinate.
- * qY Second EC point's Y ordinate.
- * qZ Second EC point's Z ordinate.
- * rX Resultant EC point's X ordinate.
- * rY Resultant EC point's Y ordinate.
- * rZ Resultant EC point's Z ordinate.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- int sp_ecc_proj_add_point_521(mp_int* pX, mp_int* pY, mp_int* pZ,
- mp_int* qX, mp_int* qY, mp_int* qZ,
- mp_int* rX, mp_int* rY, mp_int* rZ)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* tmp = NULL;
- sp_point_521* p = NULL;
- #else
- sp_digit tmp[2 * 21 * 6];
- sp_point_521 p[2];
- #endif
- sp_point_521* q = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- p = (sp_point_521*)XMALLOC(sizeof(sp_point_521) * 2, NULL,
- DYNAMIC_TYPE_ECC);
- if (p == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 6, NULL,
- DYNAMIC_TYPE_ECC);
- if (tmp == NULL) {
- err = MEMORY_E;
- }
- }
- #endif
- if (err == MP_OKAY) {
- q = p + 1;
- sp_521_from_mp(p->x, 21, pX);
- sp_521_from_mp(p->y, 21, pY);
- sp_521_from_mp(p->z, 21, pZ);
- sp_521_from_mp(q->x, 21, qX);
- sp_521_from_mp(q->y, 21, qY);
- sp_521_from_mp(q->z, 21, qZ);
- p->infinity = sp_521_iszero_21(p->x) &
- sp_521_iszero_21(p->y);
- q->infinity = sp_521_iszero_21(q->x) &
- sp_521_iszero_21(q->y);
- sp_521_proj_point_add_21(p, p, q, tmp);
- }
- if (err == MP_OKAY) {
- err = sp_521_to_mp(p->x, rX);
- }
- if (err == MP_OKAY) {
- err = sp_521_to_mp(p->y, rY);
- }
- if (err == MP_OKAY) {
- err = sp_521_to_mp(p->z, rZ);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (tmp != NULL)
- XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
- if (p != NULL)
- XFREE(p, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Double a projective EC point.
- * (pX, pY, pZ) + (pX, pY, pZ) = (rX, rY, rZ)
- *
- * pX EC point's X ordinate.
- * pY EC point's Y ordinate.
- * pZ EC point's Z ordinate.
- * rX Resultant EC point's X ordinate.
- * rY Resultant EC point's Y ordinate.
- * rZ Resultant EC point's Z ordinate.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- int sp_ecc_proj_dbl_point_521(mp_int* pX, mp_int* pY, mp_int* pZ,
- mp_int* rX, mp_int* rY, mp_int* rZ)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* tmp = NULL;
- sp_point_521* p = NULL;
- #else
- sp_digit tmp[2 * 21 * 2];
- sp_point_521 p[1];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- p = (sp_point_521*)XMALLOC(sizeof(sp_point_521), NULL,
- DYNAMIC_TYPE_ECC);
- if (p == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 2, NULL,
- DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_521_from_mp(p->x, 21, pX);
- sp_521_from_mp(p->y, 21, pY);
- sp_521_from_mp(p->z, 21, pZ);
- p->infinity = sp_521_iszero_21(p->x) &
- sp_521_iszero_21(p->y);
- sp_521_proj_point_dbl_21(p, p, tmp);
- }
- if (err == MP_OKAY) {
- err = sp_521_to_mp(p->x, rX);
- }
- if (err == MP_OKAY) {
- err = sp_521_to_mp(p->y, rY);
- }
- if (err == MP_OKAY) {
- err = sp_521_to_mp(p->z, rZ);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (tmp != NULL)
- XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
- if (p != NULL)
- XFREE(p, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Map a projective EC point to affine in place.
- * pZ will be one.
- *
- * pX EC point's X ordinate.
- * pY EC point's Y ordinate.
- * pZ EC point's Z ordinate.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- int sp_ecc_map_521(mp_int* pX, mp_int* pY, mp_int* pZ)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* tmp = NULL;
- sp_point_521* p = NULL;
- #else
- sp_digit tmp[2 * 21 * 5];
- sp_point_521 p[1];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- p = (sp_point_521*)XMALLOC(sizeof(sp_point_521), NULL,
- DYNAMIC_TYPE_ECC);
- if (p == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21 * 5, NULL,
- DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_521_from_mp(p->x, 21, pX);
- sp_521_from_mp(p->y, 21, pY);
- sp_521_from_mp(p->z, 21, pZ);
- p->infinity = sp_521_iszero_21(p->x) &
- sp_521_iszero_21(p->y);
- sp_521_map_21(p, p, tmp);
- }
- if (err == MP_OKAY) {
- err = sp_521_to_mp(p->x, pX);
- }
- if (err == MP_OKAY) {
- err = sp_521_to_mp(p->y, pY);
- }
- if (err == MP_OKAY) {
- err = sp_521_to_mp(p->z, pZ);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (tmp != NULL)
- XFREE(tmp, NULL, DYNAMIC_TYPE_ECC);
- if (p != NULL)
- XFREE(p, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif /* WOLFSSL_PUBLIC_ECC_ADD_DBL */
- #ifdef HAVE_COMP_KEY
- /* Square root power for the P521 curve. */
- static const uint32_t p521_sqrt_power[17] = {
- 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
- 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
- 0x00000000,0x00000000,0x00000080
- };
- /* Find the square root of a number mod the prime of the curve.
- *
- * y The number to operate on and the result.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- static int sp_521_mont_sqrt_21(sp_digit* y)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t = NULL;
- #else
- sp_digit t[2 * 21];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 21, NULL, DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- {
- int i;
- XMEMCPY(t, y, sizeof(sp_digit) * 21);
- for (i=518; i>=0; i--) {
- sp_521_mont_sqr_21(t, t, p521_mod, p521_mp_mod);
- if (p521_sqrt_power[i / 32] & ((sp_digit)1 << (i % 32)))
- sp_521_mont_mul_21(t, t, y, p521_mod, p521_mp_mod);
- }
- XMEMCPY(y, t, sizeof(sp_digit) * 21);
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Uncompress the point given the X ordinate.
- *
- * xm X ordinate.
- * odd Whether the Y ordinate is odd.
- * ym Calculated Y ordinate.
- * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise.
- */
- int sp_ecc_uncompress_521(mp_int* xm, int odd, mp_int* ym)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* x = NULL;
- #else
- sp_digit x[4 * 21];
- #endif
- sp_digit* y = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- x = (sp_digit*)XMALLOC(sizeof(sp_digit) * 4 * 21, NULL, DYNAMIC_TYPE_ECC);
- if (x == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- y = x + 2 * 21;
- sp_521_from_mp(x, 21, xm);
- err = sp_521_mod_mul_norm_21(x, x, p521_mod);
- }
- if (err == MP_OKAY) {
- /* y = x^3 */
- {
- sp_521_mont_sqr_21(y, x, p521_mod, p521_mp_mod);
- sp_521_mont_mul_21(y, y, x, p521_mod, p521_mp_mod);
- }
- /* y = x^3 - 3x */
- sp_521_mont_sub_21(y, y, x, p521_mod);
- sp_521_mont_sub_21(y, y, x, p521_mod);
- sp_521_mont_sub_21(y, y, x, p521_mod);
- /* y = x^3 - 3x + b */
- err = sp_521_mod_mul_norm_21(x, p521_b, p521_mod);
- }
- if (err == MP_OKAY) {
- sp_521_mont_add_21(y, y, x, p521_mod);
- /* y = sqrt(x^3 - 3x + b) */
- err = sp_521_mont_sqrt_21(y);
- }
- if (err == MP_OKAY) {
- XMEMSET(y + 21, 0, 21U * sizeof(sp_digit));
- sp_521_mont_reduce_21(y, p521_mod, p521_mp_mod);
- if ((((word32)y[0] ^ (word32)odd) & 1U) != 0U) {
- sp_521_mont_sub_21(y, p521_mod, y, p521_mod);
- }
- err = sp_521_to_mp(y, ym);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (x != NULL)
- XFREE(x, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif
- #endif /* WOLFSSL_SP_521 */
- #ifdef WOLFCRYPT_HAVE_SAKKE
- #ifdef WOLFSSL_SP_1024
- /* Point structure to use. */
- typedef struct sp_point_1024 {
- /* X ordinate of point. */
- sp_digit x[2 * 42];
- /* Y ordinate of point. */
- sp_digit y[2 * 42];
- /* Z ordinate of point. */
- sp_digit z[2 * 42];
- /* Indicates point is at infinity. */
- int infinity;
- } sp_point_1024;
- #ifndef WOLFSSL_SP_SMALL
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_1024_mul_7(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_int64 t0 = ((sp_int64)a[ 0]) * b[ 0];
- sp_int64 t1 = ((sp_int64)a[ 0]) * b[ 1]
- + ((sp_int64)a[ 1]) * b[ 0];
- sp_int64 t2 = ((sp_int64)a[ 0]) * b[ 2]
- + ((sp_int64)a[ 1]) * b[ 1]
- + ((sp_int64)a[ 2]) * b[ 0];
- sp_int64 t3 = ((sp_int64)a[ 0]) * b[ 3]
- + ((sp_int64)a[ 1]) * b[ 2]
- + ((sp_int64)a[ 2]) * b[ 1]
- + ((sp_int64)a[ 3]) * b[ 0];
- sp_int64 t4 = ((sp_int64)a[ 0]) * b[ 4]
- + ((sp_int64)a[ 1]) * b[ 3]
- + ((sp_int64)a[ 2]) * b[ 2]
- + ((sp_int64)a[ 3]) * b[ 1]
- + ((sp_int64)a[ 4]) * b[ 0];
- sp_int64 t5 = ((sp_int64)a[ 0]) * b[ 5]
- + ((sp_int64)a[ 1]) * b[ 4]
- + ((sp_int64)a[ 2]) * b[ 3]
- + ((sp_int64)a[ 3]) * b[ 2]
- + ((sp_int64)a[ 4]) * b[ 1]
- + ((sp_int64)a[ 5]) * b[ 0];
- sp_int64 t6 = ((sp_int64)a[ 0]) * b[ 6]
- + ((sp_int64)a[ 1]) * b[ 5]
- + ((sp_int64)a[ 2]) * b[ 4]
- + ((sp_int64)a[ 3]) * b[ 3]
- + ((sp_int64)a[ 4]) * b[ 2]
- + ((sp_int64)a[ 5]) * b[ 1]
- + ((sp_int64)a[ 6]) * b[ 0];
- sp_int64 t7 = ((sp_int64)a[ 1]) * b[ 6]
- + ((sp_int64)a[ 2]) * b[ 5]
- + ((sp_int64)a[ 3]) * b[ 4]
- + ((sp_int64)a[ 4]) * b[ 3]
- + ((sp_int64)a[ 5]) * b[ 2]
- + ((sp_int64)a[ 6]) * b[ 1];
- sp_int64 t8 = ((sp_int64)a[ 2]) * b[ 6]
- + ((sp_int64)a[ 3]) * b[ 5]
- + ((sp_int64)a[ 4]) * b[ 4]
- + ((sp_int64)a[ 5]) * b[ 3]
- + ((sp_int64)a[ 6]) * b[ 2];
- sp_int64 t9 = ((sp_int64)a[ 3]) * b[ 6]
- + ((sp_int64)a[ 4]) * b[ 5]
- + ((sp_int64)a[ 5]) * b[ 4]
- + ((sp_int64)a[ 6]) * b[ 3];
- sp_int64 t10 = ((sp_int64)a[ 4]) * b[ 6]
- + ((sp_int64)a[ 5]) * b[ 5]
- + ((sp_int64)a[ 6]) * b[ 4];
- sp_int64 t11 = ((sp_int64)a[ 5]) * b[ 6]
- + ((sp_int64)a[ 6]) * b[ 5];
- sp_int64 t12 = ((sp_int64)a[ 6]) * b[ 6];
- t1 += t0 >> 25; r[ 0] = t0 & 0x1ffffff;
- t2 += t1 >> 25; r[ 1] = t1 & 0x1ffffff;
- t3 += t2 >> 25; r[ 2] = t2 & 0x1ffffff;
- t4 += t3 >> 25; r[ 3] = t3 & 0x1ffffff;
- t5 += t4 >> 25; r[ 4] = t4 & 0x1ffffff;
- t6 += t5 >> 25; r[ 5] = t5 & 0x1ffffff;
- t7 += t6 >> 25; r[ 6] = t6 & 0x1ffffff;
- t8 += t7 >> 25; r[ 7] = t7 & 0x1ffffff;
- t9 += t8 >> 25; r[ 8] = t8 & 0x1ffffff;
- t10 += t9 >> 25; r[ 9] = t9 & 0x1ffffff;
- t11 += t10 >> 25; r[10] = t10 & 0x1ffffff;
- t12 += t11 >> 25; r[11] = t11 & 0x1ffffff;
- r[13] = (sp_digit)(t12 >> 25);
- r[12] = t12 & 0x1ffffff;
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_1024_sqr_7(sp_digit* r, const sp_digit* a)
- {
- sp_int64 t0 = ((sp_int64)a[ 0]) * a[ 0];
- sp_int64 t1 = (((sp_int64)a[ 0]) * a[ 1]) * 2;
- sp_int64 t2 = (((sp_int64)a[ 0]) * a[ 2]) * 2
- + ((sp_int64)a[ 1]) * a[ 1];
- sp_int64 t3 = (((sp_int64)a[ 0]) * a[ 3]
- + ((sp_int64)a[ 1]) * a[ 2]) * 2;
- sp_int64 t4 = (((sp_int64)a[ 0]) * a[ 4]
- + ((sp_int64)a[ 1]) * a[ 3]) * 2
- + ((sp_int64)a[ 2]) * a[ 2];
- sp_int64 t5 = (((sp_int64)a[ 0]) * a[ 5]
- + ((sp_int64)a[ 1]) * a[ 4]
- + ((sp_int64)a[ 2]) * a[ 3]) * 2;
- sp_int64 t6 = (((sp_int64)a[ 0]) * a[ 6]
- + ((sp_int64)a[ 1]) * a[ 5]
- + ((sp_int64)a[ 2]) * a[ 4]) * 2
- + ((sp_int64)a[ 3]) * a[ 3];
- sp_int64 t7 = (((sp_int64)a[ 1]) * a[ 6]
- + ((sp_int64)a[ 2]) * a[ 5]
- + ((sp_int64)a[ 3]) * a[ 4]) * 2;
- sp_int64 t8 = (((sp_int64)a[ 2]) * a[ 6]
- + ((sp_int64)a[ 3]) * a[ 5]) * 2
- + ((sp_int64)a[ 4]) * a[ 4];
- sp_int64 t9 = (((sp_int64)a[ 3]) * a[ 6]
- + ((sp_int64)a[ 4]) * a[ 5]) * 2;
- sp_int64 t10 = (((sp_int64)a[ 4]) * a[ 6]) * 2
- + ((sp_int64)a[ 5]) * a[ 5];
- sp_int64 t11 = (((sp_int64)a[ 5]) * a[ 6]) * 2;
- sp_int64 t12 = ((sp_int64)a[ 6]) * a[ 6];
- t1 += t0 >> 25; r[ 0] = t0 & 0x1ffffff;
- t2 += t1 >> 25; r[ 1] = t1 & 0x1ffffff;
- t3 += t2 >> 25; r[ 2] = t2 & 0x1ffffff;
- t4 += t3 >> 25; r[ 3] = t3 & 0x1ffffff;
- t5 += t4 >> 25; r[ 4] = t4 & 0x1ffffff;
- t6 += t5 >> 25; r[ 5] = t5 & 0x1ffffff;
- t7 += t6 >> 25; r[ 6] = t6 & 0x1ffffff;
- t8 += t7 >> 25; r[ 7] = t7 & 0x1ffffff;
- t9 += t8 >> 25; r[ 8] = t8 & 0x1ffffff;
- t10 += t9 >> 25; r[ 9] = t9 & 0x1ffffff;
- t11 += t10 >> 25; r[10] = t10 & 0x1ffffff;
- t12 += t11 >> 25; r[11] = t11 & 0x1ffffff;
- r[13] = (sp_digit)(t12 >> 25);
- r[12] = t12 & 0x1ffffff;
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_1024_add_7(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- r[ 0] = a[ 0] + b[ 0];
- r[ 1] = a[ 1] + b[ 1];
- r[ 2] = a[ 2] + b[ 2];
- r[ 3] = a[ 3] + b[ 3];
- r[ 4] = a[ 4] + b[ 4];
- r[ 5] = a[ 5] + b[ 5];
- r[ 6] = a[ 6] + b[ 6];
- return 0;
- }
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_1024_sub_14(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- r[ 0] = a[ 0] - b[ 0];
- r[ 1] = a[ 1] - b[ 1];
- r[ 2] = a[ 2] - b[ 2];
- r[ 3] = a[ 3] - b[ 3];
- r[ 4] = a[ 4] - b[ 4];
- r[ 5] = a[ 5] - b[ 5];
- r[ 6] = a[ 6] - b[ 6];
- r[ 7] = a[ 7] - b[ 7];
- r[ 8] = a[ 8] - b[ 8];
- r[ 9] = a[ 9] - b[ 9];
- r[10] = a[10] - b[10];
- r[11] = a[11] - b[11];
- r[12] = a[12] - b[12];
- r[13] = a[13] - b[13];
- return 0;
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_1024_add_14(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- r[ 0] = a[ 0] + b[ 0];
- r[ 1] = a[ 1] + b[ 1];
- r[ 2] = a[ 2] + b[ 2];
- r[ 3] = a[ 3] + b[ 3];
- r[ 4] = a[ 4] + b[ 4];
- r[ 5] = a[ 5] + b[ 5];
- r[ 6] = a[ 6] + b[ 6];
- r[ 7] = a[ 7] + b[ 7];
- r[ 8] = a[ 8] + b[ 8];
- r[ 9] = a[ 9] + b[ 9];
- r[10] = a[10] + b[10];
- r[11] = a[11] + b[11];
- r[12] = a[12] + b[12];
- r[13] = a[13] + b[13];
- return 0;
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_1024_mul_21(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_digit p0[14];
- sp_digit p1[14];
- sp_digit p2[14];
- sp_digit p3[14];
- sp_digit p4[14];
- sp_digit p5[14];
- sp_digit t0[14];
- sp_digit t1[14];
- sp_digit t2[14];
- sp_digit a0[7];
- sp_digit a1[7];
- sp_digit a2[7];
- sp_digit b0[7];
- sp_digit b1[7];
- sp_digit b2[7];
- (void)sp_1024_add_7(a0, a, &a[7]);
- (void)sp_1024_add_7(b0, b, &b[7]);
- (void)sp_1024_add_7(a1, &a[7], &a[14]);
- (void)sp_1024_add_7(b1, &b[7], &b[14]);
- (void)sp_1024_add_7(a2, a0, &a[14]);
- (void)sp_1024_add_7(b2, b0, &b[14]);
- sp_1024_mul_7(p0, a, b);
- sp_1024_mul_7(p2, &a[7], &b[7]);
- sp_1024_mul_7(p4, &a[14], &b[14]);
- sp_1024_mul_7(p1, a0, b0);
- sp_1024_mul_7(p3, a1, b1);
- sp_1024_mul_7(p5, a2, b2);
- XMEMSET(r, 0, sizeof(*r)*2U*21U);
- (void)sp_1024_sub_14(t0, p3, p2);
- (void)sp_1024_sub_14(t1, p1, p2);
- (void)sp_1024_sub_14(t2, p5, t0);
- (void)sp_1024_sub_14(t2, t2, t1);
- (void)sp_1024_sub_14(t0, t0, p4);
- (void)sp_1024_sub_14(t1, t1, p0);
- (void)sp_1024_add_14(r, r, p0);
- (void)sp_1024_add_14(&r[7], &r[7], t1);
- (void)sp_1024_add_14(&r[14], &r[14], t2);
- (void)sp_1024_add_14(&r[21], &r[21], t0);
- (void)sp_1024_add_14(&r[28], &r[28], p4);
- }
- /* Square a into r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_1024_sqr_21(sp_digit* r, const sp_digit* a)
- {
- sp_digit p0[14];
- sp_digit p1[14];
- sp_digit p2[14];
- sp_digit p3[14];
- sp_digit p4[14];
- sp_digit p5[14];
- sp_digit t0[14];
- sp_digit t1[14];
- sp_digit t2[14];
- sp_digit a0[7];
- sp_digit a1[7];
- sp_digit a2[7];
- (void)sp_1024_add_7(a0, a, &a[7]);
- (void)sp_1024_add_7(a1, &a[7], &a[14]);
- (void)sp_1024_add_7(a2, a0, &a[14]);
- sp_1024_sqr_7(p0, a);
- sp_1024_sqr_7(p2, &a[7]);
- sp_1024_sqr_7(p4, &a[14]);
- sp_1024_sqr_7(p1, a0);
- sp_1024_sqr_7(p3, a1);
- sp_1024_sqr_7(p5, a2);
- XMEMSET(r, 0, sizeof(*r)*2U*21U);
- (void)sp_1024_sub_14(t0, p3, p2);
- (void)sp_1024_sub_14(t1, p1, p2);
- (void)sp_1024_sub_14(t2, p5, t0);
- (void)sp_1024_sub_14(t2, t2, t1);
- (void)sp_1024_sub_14(t0, t0, p4);
- (void)sp_1024_sub_14(t1, t1, p0);
- (void)sp_1024_add_14(r, r, p0);
- (void)sp_1024_add_14(&r[7], &r[7], t1);
- (void)sp_1024_add_14(&r[14], &r[14], t2);
- (void)sp_1024_add_14(&r[21], &r[21], t0);
- (void)sp_1024_add_14(&r[28], &r[28], p4);
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_1024_add_21(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 16; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- r[16] = a[16] + b[16];
- r[17] = a[17] + b[17];
- r[18] = a[18] + b[18];
- r[19] = a[19] + b[19];
- r[20] = a[20] + b[20];
- return 0;
- }
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_1024_add_42(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 40; i += 8) {
- r[i + 0] = a[i + 0] + b[i + 0];
- r[i + 1] = a[i + 1] + b[i + 1];
- r[i + 2] = a[i + 2] + b[i + 2];
- r[i + 3] = a[i + 3] + b[i + 3];
- r[i + 4] = a[i + 4] + b[i + 4];
- r[i + 5] = a[i + 5] + b[i + 5];
- r[i + 6] = a[i + 6] + b[i + 6];
- r[i + 7] = a[i + 7] + b[i + 7];
- }
- r[40] = a[40] + b[40];
- r[41] = a[41] + b[41];
- return 0;
- }
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_1024_sub_42(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 40; i += 8) {
- r[i + 0] = a[i + 0] - b[i + 0];
- r[i + 1] = a[i + 1] - b[i + 1];
- r[i + 2] = a[i + 2] - b[i + 2];
- r[i + 3] = a[i + 3] - b[i + 3];
- r[i + 4] = a[i + 4] - b[i + 4];
- r[i + 5] = a[i + 5] - b[i + 5];
- r[i + 6] = a[i + 6] - b[i + 6];
- r[i + 7] = a[i + 7] - b[i + 7];
- }
- r[40] = a[40] - b[40];
- r[41] = a[41] - b[41];
- return 0;
- }
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_1024_mul_42(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- sp_digit* z0 = r;
- sp_digit z1[42];
- sp_digit* a1 = z1;
- sp_digit b1[21];
- sp_digit* z2 = r + 42;
- (void)sp_1024_add_21(a1, a, &a[21]);
- (void)sp_1024_add_21(b1, b, &b[21]);
- sp_1024_mul_21(z2, &a[21], &b[21]);
- sp_1024_mul_21(z0, a, b);
- sp_1024_mul_21(z1, a1, b1);
- (void)sp_1024_sub_42(z1, z1, z2);
- (void)sp_1024_sub_42(z1, z1, z0);
- (void)sp_1024_add_42(r + 21, r + 21, z1);
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_1024_sqr_42(sp_digit* r, const sp_digit* a)
- {
- sp_digit* z0 = r;
- sp_digit z1[42];
- sp_digit* a1 = z1;
- sp_digit* z2 = r + 42;
- (void)sp_1024_add_21(a1, a, &a[21]);
- sp_1024_sqr_21(z2, &a[21]);
- sp_1024_sqr_21(z0, a);
- sp_1024_sqr_21(z1, a1);
- (void)sp_1024_sub_42(z1, z1, z2);
- (void)sp_1024_sub_42(z1, z1, z0);
- (void)sp_1024_add_42(r + 21, r + 21, z1);
- }
- #else
- /* Multiply a and b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static void sp_1024_mul_42(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 lo;
- c = ((sp_uint64)a[41]) * b[41];
- r[83] = (sp_digit)(c >> 25);
- c &= 0x1ffffff;
- for (k = 81; k >= 0; k--) {
- if (k >= 42) {
- i = k - 41;
- imax = 41;
- }
- else {
- i = 0;
- imax = k;
- }
- lo = 0;
- for (; i <= imax; i++) {
- lo += ((sp_uint64)a[i]) * b[k - i];
- }
- c += lo >> 25;
- r[k + 2] += (sp_digit)(c >> 25);
- r[k + 1] = (sp_digit)(c & 0x1ffffff);
- c = lo & 0x1ffffff;
- }
- r[0] = (sp_digit)c;
- }
- /* Square a and put result in r. (r = a * a)
- *
- * r A single precision integer.
- * a A single precision integer.
- */
- SP_NOINLINE static void sp_1024_sqr_42(sp_digit* r, const sp_digit* a)
- {
- int i;
- int imax;
- int k;
- sp_uint64 c;
- sp_uint64 t;
- c = ((sp_uint64)a[41]) * a[41];
- r[83] = (sp_digit)(c >> 25);
- c = (c & 0x1ffffff) << 25;
- for (k = 81; k >= 0; k--) {
- i = (k + 1) / 2;
- if ((k & 1) == 0) {
- c += ((sp_uint64)a[i]) * a[i];
- i++;
- }
- if (k < 41) {
- imax = k;
- }
- else {
- imax = 41;
- }
- t = 0;
- for (; i <= imax; i++) {
- t += ((sp_uint64)a[i]) * a[k - i];
- }
- c += t * 2;
- r[k + 2] += (sp_digit) (c >> 50);
- r[k + 1] = (sp_digit)((c >> 25) & 0x1ffffff);
- c = (c & 0x1ffffff) << 25;
- }
- r[0] = (sp_digit)(c >> 25);
- }
- #endif /* !WOLFSSL_SP_SMALL */
- /* The modulus (prime) of the curve P1024. */
- static const sp_digit p1024_mod[42] = {
- 0x0a85feb,0x0c03d7f,0x1a1d99b,0x0158f59,0x00c5df1,0x02bed84,0x1a08e26,
- 0x03ff9c7,0x156971f,0x1ca6b57,0x1026aa7,0x18a4387,0x02a7cf3,0x18c2954,
- 0x0bfd2a0,0x039c36d,0x1cd6568,0x0289562,0x09ad335,0x18c90e6,0x06d0e26,
- 0x1a53335,0x0d5b49f,0x1911432,0x1b39ff7,0x05873c8,0x14c6967,0x050e61a,
- 0x1c0f1b2,0x1593f17,0x0bbd02a,0x167c034,0x09ae358,0x04130df,0x138672d,
- 0x1482d81,0x1ad0657,0x0308cc6,0x0ff6997,0x03e14ac,0x0997abb,0x0000000
- };
- /* The Montgomery normalizer for modulus of the curve P1024. */
- static const sp_digit p1024_norm_mod[42] = {
- 0x157a015,0x13fc280,0x05e2664,0x1ea70a6,0x1f3a20e,0x1d4127b,0x05f71d9,
- 0x1c00638,0x0a968e0,0x03594a8,0x0fd9558,0x075bc78,0x1d5830c,0x073d6ab,
- 0x1402d5f,0x1c63c92,0x0329a97,0x1d76a9d,0x1652cca,0x0736f19,0x192f1d9,
- 0x05accca,0x12a4b60,0x06eebcd,0x04c6008,0x1a78c37,0x0b39698,0x1af19e5,
- 0x03f0e4d,0x0a6c0e8,0x1442fd5,0x0983fcb,0x1651ca7,0x1becf20,0x0c798d2,
- 0x0b7d27e,0x052f9a8,0x1cf7339,0x1009668,0x1c1eb53,0x0668544,0x0000000
- };
- /* The Montgomery multiplier for modulus of the curve P1024. */
- static sp_digit p1024_mp_mod = 0x8f2f3d;
- #if defined(WOLFSSL_SP_SMALL) || defined(HAVE_ECC_CHECK_KEY)
- /* The order of the curve P1024. */
- static const sp_digit p1024_order[42] = {
- 0x1aa17fb,0x1b00f5f,0x0e87666,0x08563d6,0x003177c,0x10afb61,0x1e82389,
- 0x18ffe71,0x1d5a5c7,0x1f29ad5,0x1c09aa9,0x1e290e1,0x00a9f3c,0x0630a55,
- 0x0aff4a8,0x00e70db,0x173595a,0x08a2558,0x126b4cd,0x1632439,0x09b4389,
- 0x1e94ccd,0x1356d27,0x1e4450c,0x06ce7fd,0x1961cf2,0x1531a59,0x1143986,
- 0x1f03c6c,0x1564fc5,0x02ef40a,0x059f00d,0x1a6b8d6,0x0904c37,0x0ce19cb,
- 0x1d20b60,0x16b4195,0x18c2331,0x03fda65,0x18f852b,0x0265eae,0x0000000
- };
- #endif
- /* The base point of curve P1024. */
- static const sp_point_1024 p1024_base = {
- /* X ordinate */
- {
- 0x0e63895,0x0e455f5,0x05e6203,0x092cfc1,0x00ec46c,0x1fb9f64,0x18e96d8,
- 0x10fdd22,0x080728d,0x0e7da66,0x1a44375,0x029b74c,0x14a7c15,0x1d306f3,
- 0x00b0ce5,0x1e5c34e,0x0548b72,0x199be43,0x1756f32,0x015eecb,0x0890976,
- 0x13a0367,0x1c62f67,0x13bf4aa,0x1f22cdb,0x10821ea,0x00c2c27,0x1621b72,
- 0x0e2308a,0x1b607b6,0x0fed7b6,0x16dfef9,0x0b2f204,0x034e34c,0x1f582bb,
- 0x1456345,0x1ed9b52,0x1cc8029,0x0a6b429,0x1dc6658,0x053fc09,0x0000000,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0
- },
- /* Y ordinate */
- {
- 0x1ef16d7,0x19feb8d,0x1379d55,0x00d4cfb,0x0db9b57,0x1da31b5,0x0b56b56,
- 0x153017b,0x1e9cb99,0x1a8ad6b,0x1357c84,0x0f3f8b4,0x09492d9,0x0b2554c,
- 0x1bc7a00,0x05fc158,0x0b5b765,0x0656b4b,0x1551f1b,0x15c22f5,0x12b970d,
- 0x0654f01,0x105b3fc,0x028165c,0x18ccf9a,0x0fb35ac,0x17c3795,0x0fefebc,
- 0x0ec2b9e,0x14fa32a,0x1e3d7a9,0x03c2822,0x1778d82,0x0834b1e,0x00580a6,
- 0x0ba7d04,0x1634a13,0x18f8299,0x027c7e7,0x00c7ec0,0x00a8249,0x0000000,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0
- },
- /* Z ordinate */
- {
- 0x0000001,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- 0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0, (sp_digit)0,
- (sp_digit)0, (sp_digit)0
- },
- /* infinity */
- 0
- };
- /* Normalize the values in each word to 25 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_1024_norm_41(sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 40; i++) {
- a[i+1] += a[i] >> 25;
- a[i] &= 0x1ffffff;
- }
- #else
- int i;
- for (i = 0; i < 40; i += 8) {
- a[i+1] += a[i+0] >> 25; a[i+0] &= 0x1ffffff;
- a[i+2] += a[i+1] >> 25; a[i+1] &= 0x1ffffff;
- a[i+3] += a[i+2] >> 25; a[i+2] &= 0x1ffffff;
- a[i+4] += a[i+3] >> 25; a[i+3] &= 0x1ffffff;
- a[i+5] += a[i+4] >> 25; a[i+4] &= 0x1ffffff;
- a[i+6] += a[i+5] >> 25; a[i+5] &= 0x1ffffff;
- a[i+7] += a[i+6] >> 25; a[i+6] &= 0x1ffffff;
- a[i+8] += a[i+7] >> 25; a[i+7] &= 0x1ffffff;
- }
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_1024_mul_d_42(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 42; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- }
- r[42] = (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t = 0;
- sp_digit t2;
- sp_int64 p[4];
- int i;
- for (i = 0; i < 40; i += 4) {
- p[0] = tb * a[i + 0];
- p[1] = tb * a[i + 1];
- p[2] = tb * a[i + 2];
- p[3] = tb * a[i + 3];
- t += p[0];
- t2 = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[i + 0] = (sp_digit)t2;
- t += p[1];
- t2 = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[i + 1] = (sp_digit)t2;
- t += p[2];
- t2 = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[i + 2] = (sp_digit)t2;
- t += p[3];
- t2 = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[i + 3] = (sp_digit)t2;
- }
- t += tb * a[40];
- r[40] = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- t += tb * a[41];
- r[41] = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[42] = (sp_digit)(t & 0x1ffffff);
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Multiply a by scalar b into r. (r = a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_1024_mul_d_84(sp_digit* r, const sp_digit* a,
- sp_digit b)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t = 0;
- int i;
- for (i = 0; i < 84; i++) {
- t += tb * a[i];
- r[i] = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- }
- r[84] = (sp_digit)t;
- #else
- sp_int64 tb = b;
- sp_int64 t = 0;
- sp_digit t2;
- sp_int64 p[4];
- int i;
- for (i = 0; i < 84; i += 4) {
- p[0] = tb * a[i + 0];
- p[1] = tb * a[i + 1];
- p[2] = tb * a[i + 2];
- p[3] = tb * a[i + 3];
- t += p[0];
- t2 = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[i + 0] = (sp_digit)t2;
- t += p[1];
- t2 = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[i + 1] = (sp_digit)t2;
- t += p[2];
- t2 = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[i + 2] = (sp_digit)t2;
- t += p[3];
- t2 = (sp_digit)(t & 0x1ffffff);
- t >>= 25;
- r[i + 3] = (sp_digit)t2;
- }
- r[84] = (sp_digit)(t & 0x1ffffff);
- #endif /* WOLFSSL_SP_SMALL */
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_1024_cond_add_42(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 42; i++) {
- r[i] = a[i] + (b[i] & m);
- }
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifndef WOLFSSL_SP_SMALL
- /* Conditionally add a and b using the mask m.
- * m is -1 to add and 0 when not.
- *
- * r A single precision number representing conditional add result.
- * a A single precision number to add with.
- * b A single precision number to add.
- * m Mask value to apply.
- */
- static void sp_1024_cond_add_42(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- int i;
- for (i = 0; i < 40; i += 8) {
- r[i + 0] = a[i + 0] + (b[i + 0] & m);
- r[i + 1] = a[i + 1] + (b[i + 1] & m);
- r[i + 2] = a[i + 2] + (b[i + 2] & m);
- r[i + 3] = a[i + 3] + (b[i + 3] & m);
- r[i + 4] = a[i + 4] + (b[i + 4] & m);
- r[i + 5] = a[i + 5] + (b[i + 5] & m);
- r[i + 6] = a[i + 6] + (b[i + 6] & m);
- r[i + 7] = a[i + 7] + (b[i + 7] & m);
- }
- r[40] = a[40] + (b[40] & m);
- r[41] = a[41] + (b[41] & m);
- }
- #endif /* !WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /* Sub b from a into r. (r = a - b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_1024_sub_42(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 42; i++) {
- r[i] = a[i] - b[i];
- }
- return 0;
- }
- #endif
- #ifdef WOLFSSL_SP_SMALL
- /* Add b to a into r. (r = a + b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A single precision integer.
- */
- SP_NOINLINE static int sp_1024_add_42(sp_digit* r, const sp_digit* a,
- const sp_digit* b)
- {
- int i;
- for (i = 0; i < 42; i++) {
- r[i] = a[i] + b[i];
- }
- return 0;
- }
- #endif /* WOLFSSL_SP_SMALL */
- SP_NOINLINE static void sp_1024_rshift_42(sp_digit* r, const sp_digit* a,
- byte n)
- {
- int i;
- #ifdef WOLFSSL_SP_SMALL
- for (i=0; i<41; i++) {
- r[i] = ((a[i] >> n) | (a[i + 1] << (25 - n))) & 0x1ffffff;
- }
- #else
- for (i=0; i<40; i += 8) {
- r[i+0] = (a[i+0] >> n) | ((a[i+1] << (25 - n)) & 0x1ffffff);
- r[i+1] = (a[i+1] >> n) | ((a[i+2] << (25 - n)) & 0x1ffffff);
- r[i+2] = (a[i+2] >> n) | ((a[i+3] << (25 - n)) & 0x1ffffff);
- r[i+3] = (a[i+3] >> n) | ((a[i+4] << (25 - n)) & 0x1ffffff);
- r[i+4] = (a[i+4] >> n) | ((a[i+5] << (25 - n)) & 0x1ffffff);
- r[i+5] = (a[i+5] >> n) | ((a[i+6] << (25 - n)) & 0x1ffffff);
- r[i+6] = (a[i+6] >> n) | ((a[i+7] << (25 - n)) & 0x1ffffff);
- r[i+7] = (a[i+7] >> n) | ((a[i+8] << (25 - n)) & 0x1ffffff);
- }
- r[40] = (a[40] >> n) | ((a[41] << (25 - n)) & 0x1ffffff);
- #endif /* WOLFSSL_SP_SMALL */
- r[41] = a[41] >> n;
- }
- static WC_INLINE sp_digit sp_1024_div_word_42(sp_digit d1, sp_digit d0,
- sp_digit div)
- {
- #ifdef SP_USE_DIVTI3
- sp_int64 d = ((sp_int64)d1 << 25) + d0;
- return d / div;
- #elif defined(__x86_64__) || defined(__i386__)
- sp_int64 d = ((sp_int64)d1 << 25) + d0;
- sp_uint32 lo = (sp_uint32)d;
- sp_digit hi = (sp_digit)(d >> 32);
- __asm__ __volatile__ (
- "idiv %2"
- : "+a" (lo)
- : "d" (hi), "r" (div)
- : "cc"
- );
- return (sp_digit)lo;
- #elif !defined(__aarch64__) && !defined(SP_DIV_WORD_USE_DIV)
- sp_int64 d = ((sp_int64)d1 << 25) + d0;
- sp_digit dv = (div >> 1) + 1;
- sp_digit t1 = (sp_digit)(d >> 25);
- sp_digit t0 = (sp_digit)(d & 0x1ffffff);
- sp_digit t2;
- sp_digit sign;
- sp_digit r;
- int i;
- sp_int64 m;
- r = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- t1 -= dv & (0 - r);
- for (i = 23; i >= 1; i--) {
- t1 += t1 + (((sp_uint32)t0 >> 24) & 1);
- t0 <<= 1;
- t2 = (sp_digit)(((sp_uint32)(dv - t1)) >> 31);
- r += r + t2;
- t1 -= dv & (0 - t2);
- t1 += t2;
- }
- r += r + 1;
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 25);
- m = d - ((sp_int64)r * div);
- r += (sp_digit)(m >> 50) - (sp_digit)(d >> 50);
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- m = d - ((sp_int64)r * div);
- sign = (sp_digit)(0 - ((sp_uint32)m >> 31)) * 2 + 1;
- m *= sign;
- t2 = (sp_digit)(((sp_uint32)(div - m)) >> 31);
- r += sign * t2;
- return r;
- #else
- sp_int64 d = ((sp_int64)d1 << 25) + d0;
- sp_digit r = 0;
- sp_digit t;
- sp_digit dv = (div >> 10) + 1;
- t = (sp_digit)(d >> 20);
- t = (t / dv) << 10;
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)(d >> 5);
- t = t / (dv << 5);
- r += t;
- d -= (sp_int64)t * div;
- t = (sp_digit)d;
- t = t / div;
- r += t;
- d -= (sp_int64)t * div;
- return r;
- #endif
- }
- static WC_INLINE sp_digit sp_1024_word_div_word_42(sp_digit d, sp_digit div)
- {
- #if defined(__x86_64__) || defined(__i386__) || defined(__aarch64__) || \
- defined(SP_DIV_WORD_USE_DIV)
- return d / div;
- #else
- return (sp_digit)((sp_uint32)(div - d) >> 31);
- #endif
- }
- /* Divide d in a and put remainder into r (m*d + r = a)
- * m is not calculated as it is not needed at this time.
- *
- * Full implementation.
- *
- * a Number to be divided.
- * d Number to divide with.
- * m Multiplier result.
- * r Remainder from the division.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_1024_div_42(const sp_digit* a, const sp_digit* d,
- const sp_digit* m, sp_digit* r)
- {
- int i;
- #ifndef WOLFSSL_SP_DIV_32
- #endif
- sp_digit dv;
- sp_digit r1;
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[4 * 42 + 3];
- #endif
- sp_digit* t2 = NULL;
- sp_digit* sd = NULL;
- int err = MP_OKAY;
- (void)m;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * (4 * 42 + 3), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)m;
- if (err == MP_OKAY) {
- t2 = t1 + 84 + 1;
- sd = t2 + 42 + 1;
- sp_1024_mul_d_42(sd, d, (sp_digit)1 << 1);
- sp_1024_mul_d_84(t1, a, (sp_digit)1 << 1);
- dv = sd[40];
- t1[41 + 41] += t1[41 + 41 - 1] >> 25;
- t1[41 + 41 - 1] &= 0x1ffffff;
- for (i=41; i>=0; i--) {
- r1 = sp_1024_div_word_42(t1[41 + i], t1[41 + i - 1], dv);
- sp_1024_mul_d_42(t2, sd, r1);
- (void)sp_1024_sub_42(&t1[i], &t1[i], t2);
- sp_1024_norm_41(&t1[i]);
- t1[41 + i] += t1[41 + i - 1] >> 25;
- t1[41 + i - 1] &= 0x1ffffff;
- r1 = sp_1024_div_word_42(-t1[41 + i], -t1[41 + i - 1], dv);
- r1 -= t1[41 + i];
- sp_1024_mul_d_42(t2, sd, r1);
- (void)sp_1024_add_42(&t1[i], &t1[i], t2);
- t1[41 + i] += t1[41 + i - 1] >> 25;
- t1[41 + i - 1] &= 0x1ffffff;
- }
- t1[41 - 1] += t1[41 - 2] >> 25;
- t1[41 - 2] &= 0x1ffffff;
- r1 = sp_1024_word_div_word_42(t1[41 - 1], dv);
- sp_1024_mul_d_42(t2, sd, r1);
- sp_1024_sub_42(t1, t1, t2);
- XMEMCPY(r, t1, sizeof(*r) * 84U);
- for (i=0; i<40; i++) {
- r[i+1] += r[i] >> 25;
- r[i] &= 0x1ffffff;
- }
- sp_1024_cond_add_42(r, r, sd, r[40] >> 31);
- sp_1024_norm_41(r);
- sp_1024_rshift_42(r, r, 1);
- r[41] = 0;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- #endif
- return err;
- }
- /* Reduce a modulo m into r. (r = a mod m)
- *
- * r A single precision number that is the reduced result.
- * a A single precision number that is to be reduced.
- * m A single precision number that is the modulus to reduce with.
- * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise.
- */
- static int sp_1024_mod_42(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- return sp_1024_div_42(a, m, NULL, r);
- }
- /* Multiply a number by Montgomery normalizer mod modulus (prime).
- *
- * r The resulting Montgomery form number.
- * a The number to convert.
- * m The modulus (prime).
- * returns MEMORY_E when memory allocation fails and MP_OKAY otherwise.
- */
- static int sp_1024_mod_mul_norm_42(sp_digit* r, const sp_digit* a,
- const sp_digit* m)
- {
- sp_1024_mul_42(r, a, p1024_norm_mod);
- return sp_1024_mod_42(r, r, m);
- }
- #ifdef WOLFCRYPT_HAVE_SAKKE
- /* Create a new point.
- *
- * heap [in] Buffer to allocate dynamic memory from.
- * sp [in] Data for point - only if not allocating.
- * p [out] New point.
- * returns MEMORY_E when dynamic memory allocation fails and 0 otherwise.
- */
- static int sp_1024_point_new_ex_42(void* heap, sp_point_1024* sp,
- sp_point_1024** p)
- {
- int ret = MP_OKAY;
- (void)heap;
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- (void)sp;
- *p = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024), heap, DYNAMIC_TYPE_ECC);
- #else
- *p = sp;
- #endif
- if (*p == NULL) {
- ret = MEMORY_E;
- }
- return ret;
- }
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- /* Allocate memory for point and return error. */
- #define sp_1024_point_new_42(heap, sp, p) sp_1024_point_new_ex_42((heap), NULL, &(p))
- #else
- /* Set pointer to data and return no error. */
- #define sp_1024_point_new_42(heap, sp, p) sp_1024_point_new_ex_42((heap), &(sp), &(p))
- #endif
- #endif /* WOLFCRYPT_HAVE_SAKKE */
- #ifdef WOLFCRYPT_HAVE_SAKKE
- /* Free the point.
- *
- * p [in,out] Point to free.
- * clear [in] Indicates whether to zeroize point.
- * heap [in] Buffer from which dynamic memory was allocate from.
- */
- static void sp_1024_point_free_42(sp_point_1024* p, int clear, void* heap)
- {
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- /* If valid pointer then clear point data if requested and free data. */
- if (p != NULL) {
- if (clear != 0) {
- XMEMSET(p, 0, sizeof(*p));
- }
- XFREE(p, heap, DYNAMIC_TYPE_ECC);
- }
- #else
- /* Clear point data if requested. */
- if ((p != NULL) && (clear != 0)) {
- XMEMSET(p, 0, sizeof(*p));
- }
- #endif
- (void)heap;
- }
- #endif /* WOLFCRYPT_HAVE_SAKKE */
- /* Convert an mp_int to an array of sp_digit.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a A multi-precision integer.
- */
- static void sp_1024_from_mp(sp_digit* r, int size, const mp_int* a)
- {
- #if DIGIT_BIT == 25
- int i;
- sp_digit j = (sp_digit)0 - (sp_digit)a->used;
- int o = 0;
- for (i = 0; i < size; i++) {
- sp_digit mask = (sp_digit)0 - (j >> 24);
- r[i] = a->dp[o] & mask;
- j++;
- o += (int)(j >> 24);
- }
- #elif DIGIT_BIT > 25
- unsigned int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i] << s);
- r[j] &= 0x1ffffff;
- s = 25U - s;
- if (j + 1 >= size) {
- break;
- }
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- while ((s + 25U) <= (word32)DIGIT_BIT) {
- s += 25U;
- r[j] &= 0x1ffffff;
- if (j + 1 >= size) {
- break;
- }
- if (s < (word32)DIGIT_BIT) {
- /* lint allow cast of mismatch word32 and mp_digit */
- r[++j] = (sp_digit)(a->dp[i] >> s); /*lint !e9033*/
- }
- else {
- r[++j] = (sp_digit)0;
- }
- }
- s = (word32)DIGIT_BIT - s;
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #else
- unsigned int i;
- int j = 0;
- int s = 0;
- r[0] = 0;
- for (i = 0; i < (unsigned int)a->used && j < size; i++) {
- r[j] |= ((sp_digit)a->dp[i]) << s;
- if (s + DIGIT_BIT >= 25) {
- r[j] &= 0x1ffffff;
- if (j + 1 >= size) {
- break;
- }
- s = 25 - s;
- if (s == DIGIT_BIT) {
- r[++j] = 0;
- s = 0;
- }
- else {
- r[++j] = a->dp[i] >> s;
- s = DIGIT_BIT - s;
- }
- }
- else {
- s += DIGIT_BIT;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- #endif
- }
- /* Convert a point of type ecc_point to type sp_point_1024.
- *
- * p Point of type sp_point_1024 (result).
- * pm Point of type ecc_point.
- */
- static void sp_1024_point_from_ecc_point_42(sp_point_1024* p,
- const ecc_point* pm)
- {
- XMEMSET(p->x, 0, sizeof(p->x));
- XMEMSET(p->y, 0, sizeof(p->y));
- XMEMSET(p->z, 0, sizeof(p->z));
- sp_1024_from_mp(p->x, 42, pm->x);
- sp_1024_from_mp(p->y, 42, pm->y);
- sp_1024_from_mp(p->z, 42, pm->z);
- p->infinity = 0;
- }
- /* Convert an array of sp_digit to an mp_int.
- *
- * a A single precision integer.
- * r A multi-precision integer.
- */
- static int sp_1024_to_mp(const sp_digit* a, mp_int* r)
- {
- int err;
- err = mp_grow(r, (1024 + DIGIT_BIT - 1) / DIGIT_BIT);
- if (err == MP_OKAY) { /*lint !e774 case where err is always MP_OKAY*/
- #if DIGIT_BIT == 25
- XMEMCPY(r->dp, a, sizeof(sp_digit) * 41);
- r->used = 41;
- mp_clamp(r);
- #elif DIGIT_BIT < 25
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 41; i++) {
- r->dp[j] |= (mp_digit)(a[i] << s);
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- s = DIGIT_BIT - s;
- r->dp[++j] = (mp_digit)(a[i] >> s);
- while (s + DIGIT_BIT <= 25) {
- s += DIGIT_BIT;
- r->dp[j++] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- if (s == SP_WORD_SIZE) {
- r->dp[j] = 0;
- }
- else {
- r->dp[j] = (mp_digit)(a[i] >> s);
- }
- }
- s = 25 - s;
- }
- r->used = (1024 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #else
- int i;
- int j = 0;
- int s = 0;
- r->dp[0] = 0;
- for (i = 0; i < 41; i++) {
- r->dp[j] |= ((mp_digit)a[i]) << s;
- if (s + 25 >= DIGIT_BIT) {
- #if DIGIT_BIT != 32 && DIGIT_BIT != 64
- r->dp[j] &= ((sp_digit)1 << DIGIT_BIT) - 1;
- #endif
- s = DIGIT_BIT - s;
- r->dp[++j] = a[i] >> s;
- s = 25 - s;
- }
- else {
- s += 25;
- }
- }
- r->used = (1024 + DIGIT_BIT - 1) / DIGIT_BIT;
- mp_clamp(r);
- #endif
- }
- return err;
- }
- /* Convert a point of type sp_point_1024 to type ecc_point.
- *
- * p Point of type sp_point_1024.
- * pm Point of type ecc_point (result).
- * returns MEMORY_E when allocation of memory in ecc_point fails otherwise
- * MP_OKAY.
- */
- static int sp_1024_point_to_ecc_point_42(const sp_point_1024* p, ecc_point* pm)
- {
- int err;
- err = sp_1024_to_mp(p->x, pm->x);
- if (err == MP_OKAY) {
- err = sp_1024_to_mp(p->y, pm->y);
- }
- if (err == MP_OKAY) {
- err = sp_1024_to_mp(p->z, pm->z);
- }
- return err;
- }
- /* Compare a with b in constant time.
- *
- * a A single precision integer.
- * b A single precision integer.
- * return -ve, 0 or +ve if a is less than, equal to or greater than b
- * respectively.
- */
- static sp_digit sp_1024_cmp_42(const sp_digit* a, const sp_digit* b)
- {
- sp_digit r = 0;
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i=41; i>=0; i--) {
- r |= (a[i] - b[i]) & ~(((sp_digit)0 - r) >> 24);
- }
- #else
- int i;
- r |= (a[41] - b[41]) & (0 - (sp_digit)1);
- r |= (a[40] - b[40]) & ~(((sp_digit)0 - r) >> 24);
- for (i = 32; i >= 0; i -= 8) {
- r |= (a[i + 7] - b[i + 7]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 6] - b[i + 6]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 5] - b[i + 5]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 4] - b[i + 4]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 3] - b[i + 3]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 2] - b[i + 2]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 1] - b[i + 1]) & ~(((sp_digit)0 - r) >> 24);
- r |= (a[i + 0] - b[i + 0]) & ~(((sp_digit)0 - r) >> 24);
- }
- #endif /* WOLFSSL_SP_SMALL */
- return r;
- }
- /* Conditionally subtract b from a using the mask m.
- * m is -1 to subtract and 0 when not.
- *
- * r A single precision number representing condition subtract result.
- * a A single precision number to subtract from.
- * b A single precision number to subtract.
- * m Mask value to apply.
- */
- static void sp_1024_cond_sub_42(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit m)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 42; i++) {
- r[i] = a[i] - (b[i] & m);
- }
- #else
- int i;
- for (i = 0; i < 40; i += 8) {
- r[i + 0] = a[i + 0] - (b[i + 0] & m);
- r[i + 1] = a[i + 1] - (b[i + 1] & m);
- r[i + 2] = a[i + 2] - (b[i + 2] & m);
- r[i + 3] = a[i + 3] - (b[i + 3] & m);
- r[i + 4] = a[i + 4] - (b[i + 4] & m);
- r[i + 5] = a[i + 5] - (b[i + 5] & m);
- r[i + 6] = a[i + 6] - (b[i + 6] & m);
- r[i + 7] = a[i + 7] - (b[i + 7] & m);
- }
- r[40] = a[40] - (b[40] & m);
- r[41] = a[41] - (b[41] & m);
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Mul a by scalar b and add into r. (r += a * b)
- *
- * r A single precision integer.
- * a A single precision integer.
- * b A scalar.
- */
- SP_NOINLINE static void sp_1024_mul_add_42(sp_digit* r, const sp_digit* a,
- const sp_digit b)
- {
- #ifdef WOLFSSL_SP_SMALL
- sp_int64 tb = b;
- sp_int64 t[4];
- int i;
- t[0] = 0;
- for (i = 0; i < 40; i += 4) {
- t[0] += (tb * a[i+0]) + r[i+0];
- t[1] = (tb * a[i+1]) + r[i+1];
- t[2] = (tb * a[i+2]) + r[i+2];
- t[3] = (tb * a[i+3]) + r[i+3];
- r[i+0] = t[0] & 0x1ffffff;
- t[1] += t[0] >> 25;
- r[i+1] = t[1] & 0x1ffffff;
- t[2] += t[1] >> 25;
- r[i+2] = t[2] & 0x1ffffff;
- t[3] += t[2] >> 25;
- r[i+3] = t[3] & 0x1ffffff;
- t[0] = t[3] >> 25;
- }
- t[0] += (tb * a[40]) + r[40];
- t[1] = (tb * a[41]) + r[41];
- r[40] = t[0] & 0x1ffffff;
- t[1] += t[0] >> 25;
- r[41] = t[1] & 0x1ffffff;
- r[42] += (sp_digit)(t[1] >> 25);
- #else
- sp_int64 tb = b;
- sp_int64 t[8];
- int i;
- t[0] = tb * a[0]; r[0] += (sp_digit)(t[0] & 0x1ffffff);
- for (i = 0; i < 40; i += 8) {
- t[1] = tb * a[i+1];
- r[i+1] += (sp_digit)((t[0] >> 25) + (t[1] & 0x1ffffff));
- t[2] = tb * a[i+2];
- r[i+2] += (sp_digit)((t[1] >> 25) + (t[2] & 0x1ffffff));
- t[3] = tb * a[i+3];
- r[i+3] += (sp_digit)((t[2] >> 25) + (t[3] & 0x1ffffff));
- t[4] = tb * a[i+4];
- r[i+4] += (sp_digit)((t[3] >> 25) + (t[4] & 0x1ffffff));
- t[5] = tb * a[i+5];
- r[i+5] += (sp_digit)((t[4] >> 25) + (t[5] & 0x1ffffff));
- t[6] = tb * a[i+6];
- r[i+6] += (sp_digit)((t[5] >> 25) + (t[6] & 0x1ffffff));
- t[7] = tb * a[i+7];
- r[i+7] += (sp_digit)((t[6] >> 25) + (t[7] & 0x1ffffff));
- t[0] = tb * a[i+8];
- r[i+8] += (sp_digit)((t[7] >> 25) + (t[0] & 0x1ffffff));
- }
- t[1] = tb * a[41];
- r[41] += (sp_digit)((t[0] >> 25) + (t[1] & 0x1ffffff));
- r[42] += (sp_digit)(t[1] >> 25);
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Normalize the values in each word to 25 bits.
- *
- * a Array of sp_digit to normalize.
- */
- static void sp_1024_norm_42(sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 41; i++) {
- a[i+1] += a[i] >> 25;
- a[i] &= 0x1ffffff;
- }
- #else
- int i;
- for (i = 0; i < 40; i += 8) {
- a[i+1] += a[i+0] >> 25; a[i+0] &= 0x1ffffff;
- a[i+2] += a[i+1] >> 25; a[i+1] &= 0x1ffffff;
- a[i+3] += a[i+2] >> 25; a[i+2] &= 0x1ffffff;
- a[i+4] += a[i+3] >> 25; a[i+3] &= 0x1ffffff;
- a[i+5] += a[i+4] >> 25; a[i+4] &= 0x1ffffff;
- a[i+6] += a[i+5] >> 25; a[i+5] &= 0x1ffffff;
- a[i+7] += a[i+6] >> 25; a[i+6] &= 0x1ffffff;
- a[i+8] += a[i+7] >> 25; a[i+7] &= 0x1ffffff;
- }
- a[41] += a[40] >> 25; a[40] &= 0x1ffffff;
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Shift the result in the high 1024 bits down to the bottom.
- *
- * r A single precision number.
- * a A single precision number.
- */
- static void sp_1024_mont_shift_42(sp_digit* r, const sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- sp_uint32 n;
- n = a[40] >> 24;
- for (i = 0; i < 40; i++) {
- n += (sp_uint32)a[41 + i] << 1;
- r[i] = n & 0x1ffffff;
- n >>= 25;
- }
- n += (sp_uint32)a[81] << 1;
- r[40] = n;
- #else
- sp_uint32 n;
- int i;
- n = (sp_uint32)a[40];
- n = n >> 24U;
- for (i = 0; i < 40; i += 8) {
- n += (sp_uint32)a[i+41] << 1U; r[i+0] = n & 0x1ffffff; n >>= 25U;
- n += (sp_uint32)a[i+42] << 1U; r[i+1] = n & 0x1ffffff; n >>= 25U;
- n += (sp_uint32)a[i+43] << 1U; r[i+2] = n & 0x1ffffff; n >>= 25U;
- n += (sp_uint32)a[i+44] << 1U; r[i+3] = n & 0x1ffffff; n >>= 25U;
- n += (sp_uint32)a[i+45] << 1U; r[i+4] = n & 0x1ffffff; n >>= 25U;
- n += (sp_uint32)a[i+46] << 1U; r[i+5] = n & 0x1ffffff; n >>= 25U;
- n += (sp_uint32)a[i+47] << 1U; r[i+6] = n & 0x1ffffff; n >>= 25U;
- n += (sp_uint32)a[i+48] << 1U; r[i+7] = n & 0x1ffffff; n >>= 25U;
- }
- n += (sp_uint32)a[81] << 1U; r[40] = n;
- #endif /* WOLFSSL_SP_SMALL */
- XMEMSET(&r[41], 0, sizeof(*r) * 41U);
- }
- /* Reduce the number back to 1024 bits using Montgomery reduction.
- *
- * a A single precision number to reduce in place.
- * m The single precision number representing the modulus.
- * mp The digit representing the negative inverse of m mod 2^n.
- */
- static void sp_1024_mont_reduce_42(sp_digit* a, const sp_digit* m, sp_digit mp)
- {
- int i;
- sp_digit mu;
- sp_digit over;
- sp_1024_norm_42(a + 41);
- if (mp != 1) {
- for (i=0; i<40; i++) {
- mu = (a[i] * mp) & 0x1ffffff;
- sp_1024_mul_add_42(a+i, m, mu);
- a[i+1] += a[i] >> 25;
- }
- mu = (a[i] * mp) & 0xffffffL;
- sp_1024_mul_add_42(a+i, m, mu);
- a[i+1] += a[i] >> 25;
- a[i] &= 0x1ffffff;
- }
- else {
- for (i=0; i<40; i++) {
- mu = a[i] & 0x1ffffff;
- sp_1024_mul_add_42(a+i, m, mu);
- a[i+1] += a[i] >> 25;
- }
- mu = a[i] & 0xffffffL;
- sp_1024_mul_add_42(a+i, m, mu);
- a[i+1] += a[i] >> 25;
- a[i] &= 0x1ffffff;
- }
- sp_1024_norm_42(a + 41);
- sp_1024_mont_shift_42(a, a);
- over = a[40] - m[40];
- sp_1024_cond_sub_42(a, a, m, ~((over - 1) >> 31));
- sp_1024_norm_42(a);
- }
- /* Multiply two Montgomery form numbers mod the modulus (prime).
- * (r = a * b mod m)
- *
- * r Result of multiplication.
- * a First number to multiply in Montgomery form.
- * b Second number to multiply in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_1024_mont_mul_42(sp_digit* r, const sp_digit* a,
- const sp_digit* b, const sp_digit* m, sp_digit mp)
- {
- sp_1024_mul_42(r, a, b);
- sp_1024_mont_reduce_42(r, m, mp);
- }
- /* Square the Montgomery form number. (r = a * a mod m)
- *
- * r Result of squaring.
- * a Number to square in Montgomery form.
- * m Modulus (prime).
- * mp Montgomery multiplier.
- */
- SP_NOINLINE static void sp_1024_mont_sqr_42(sp_digit* r, const sp_digit* a,
- const sp_digit* m, sp_digit mp)
- {
- sp_1024_sqr_42(r, a);
- sp_1024_mont_reduce_42(r, m, mp);
- }
- /* Mod-2 for the P1024 curve. */
- static const uint8_t p1024_mod_minus_2[] = {
- 6,0x06, 7,0x0f, 7,0x0b, 6,0x0c, 7,0x1e, 9,0x09, 7,0x0c, 7,0x1f,
- 6,0x16, 6,0x06, 7,0x0e, 8,0x10, 6,0x03, 8,0x11, 6,0x0d, 7,0x14,
- 9,0x12, 6,0x0f, 7,0x04, 9,0x0d, 6,0x00, 7,0x13, 6,0x01, 6,0x07,
- 8,0x0d, 8,0x00, 6,0x06, 9,0x17, 6,0x14, 6,0x15, 6,0x11, 6,0x0b,
- 9,0x0c, 6,0x1e, 13,0x14, 7,0x0e, 6,0x1d, 12,0x0a, 6,0x0b, 8,0x07,
- 6,0x18, 6,0x0f, 6,0x10, 8,0x1c, 7,0x16, 7,0x02, 6,0x01, 6,0x13,
- 10,0x15, 7,0x06, 8,0x14, 6,0x0c, 6,0x19, 7,0x10, 6,0x19, 6,0x19,
- 9,0x16, 7,0x19, 6,0x1f, 6,0x17, 6,0x12, 8,0x02, 6,0x01, 6,0x04,
- 6,0x15, 7,0x16, 6,0x04, 6,0x1f, 6,0x09, 7,0x06, 7,0x13, 7,0x09,
- 6,0x0d, 10,0x18, 6,0x06, 6,0x11, 6,0x04, 6,0x01, 6,0x13, 8,0x06,
- 6,0x0d, 8,0x13, 7,0x08, 6,0x08, 6,0x05, 7,0x0c, 7,0x0e, 7,0x15,
- 6,0x05, 7,0x14, 10,0x19, 6,0x10, 6,0x16, 6,0x15, 7,0x1f, 6,0x14,
- 6,0x0a, 10,0x11, 6,0x01, 7,0x05, 7,0x08, 8,0x0a, 7,0x1e, 7,0x1c,
- 6,0x1c, 7,0x09, 10,0x18, 7,0x1c, 10,0x06, 6,0x0a, 6,0x07, 6,0x19,
- 7,0x06, 6,0x0d, 7,0x0f, 7,0x0b, 7,0x05, 6,0x11, 6,0x1c, 7,0x1f,
- 6,0x1e, 7,0x18, 6,0x1e, 6,0x00, 6,0x03, 6,0x02, 7,0x10, 6,0x0b,
- 6,0x1b, 7,0x10, 6,0x00, 8,0x11, 7,0x1b, 6,0x18, 6,0x01, 7,0x0c,
- 7,0x1d, 7,0x13, 6,0x08, 7,0x1b, 8,0x13, 7,0x16, 13,0x1d, 7,0x1f,
- 6,0x0a, 6,0x01, 7,0x1f, 6,0x14, 1,0x01
- };
- /* Invert the number, in Montgomery form, modulo the modulus (prime) of the
- * P1024 curve. (r = 1 / a mod m)
- *
- * r Inverse result.
- * a Number to invert.
- * td Temporary data.
- */
- static void sp_1024_mont_inv_42(sp_digit* r, const sp_digit* a,
- sp_digit* td)
- {
- sp_digit* t = &td[32 * 2 * 42];
- int i;
- int j;
- sp_digit* table[32];
- for (i = 0; i < 32; i++) {
- table[i] = &td[2 * 42 * i];
- }
- XMEMCPY(table[0], a, sizeof(sp_digit) * 42);
- for (i = 1; i < 6; i++) {
- sp_1024_mont_sqr_42(table[0], table[0], p1024_mod, p1024_mp_mod);
- }
- for (i = 1; i < 32; i++) {
- sp_1024_mont_mul_42(table[i], table[i-1], a, p1024_mod, p1024_mp_mod);
- }
- XMEMCPY(t, table[p1024_mod_minus_2[1]], sizeof(sp_digit) * 42);
- for (i = 2; i < (int)sizeof(p1024_mod_minus_2) - 2; i += 2) {
- for (j = 0; j < p1024_mod_minus_2[i]; j++) {
- sp_1024_mont_sqr_42(t, t, p1024_mod, p1024_mp_mod);
- }
- sp_1024_mont_mul_42(t, t, table[p1024_mod_minus_2[i+1]], p1024_mod,
- p1024_mp_mod);
- }
- sp_1024_mont_sqr_42(t, t, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(r, t, a, p1024_mod, p1024_mp_mod);
- }
- /* Map the Montgomery form projective coordinate point to an affine point.
- *
- * r Resulting affine coordinate point.
- * p Montgomery form projective coordinate point.
- * t Temporary ordinate data.
- */
- static void sp_1024_map_42(sp_point_1024* r, const sp_point_1024* p,
- sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2*42;
- sp_int32 n;
- sp_1024_mont_inv_42(t1, p->z, t + 2*42);
- sp_1024_mont_sqr_42(t2, t1, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t1, t2, t1, p1024_mod, p1024_mp_mod);
- /* x /= z^2 */
- sp_1024_mont_mul_42(r->x, p->x, t2, p1024_mod, p1024_mp_mod);
- XMEMSET(r->x + 42, 0, sizeof(sp_digit) * 42U);
- sp_1024_mont_reduce_42(r->x, p1024_mod, p1024_mp_mod);
- /* Reduce x to less than modulus */
- n = sp_1024_cmp_42(r->x, p1024_mod);
- sp_1024_cond_sub_42(r->x, r->x, p1024_mod, ~(n >> 24));
- sp_1024_norm_42(r->x);
- /* y /= z^3 */
- sp_1024_mont_mul_42(r->y, p->y, t1, p1024_mod, p1024_mp_mod);
- XMEMSET(r->y + 42, 0, sizeof(sp_digit) * 42U);
- sp_1024_mont_reduce_42(r->y, p1024_mod, p1024_mp_mod);
- /* Reduce y to less than modulus */
- n = sp_1024_cmp_42(r->y, p1024_mod);
- sp_1024_cond_sub_42(r->y, r->y, p1024_mod, ~(n >> 24));
- sp_1024_norm_42(r->y);
- XMEMSET(r->z, 0, sizeof(r->z) / 2);
- r->z[0] = 1;
- }
- /* Add two Montgomery form numbers (r = a + b % m).
- *
- * r Result of addition.
- * a First number to add in Montgomery form.
- * b Second number to add in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_1024_mont_add_42(sp_digit* r, const sp_digit* a, const sp_digit* b,
- const sp_digit* m)
- {
- sp_digit over;
- (void)sp_1024_add_42(r, a, b);
- sp_1024_norm_42(r);
- over = r[40] - m[40];
- sp_1024_cond_sub_42(r, r, m, ~((over - 1) >> 31));
- sp_1024_norm_42(r);
- }
- /* Double a Montgomery form number (r = a + a % m).
- *
- * r Result of doubling.
- * a Number to double in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_1024_mont_dbl_42(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- sp_digit over;
- (void)sp_1024_add_42(r, a, a);
- sp_1024_norm_42(r);
- over = r[40] - m[40];
- sp_1024_cond_sub_42(r, r, m, ~((over - 1) >> 31));
- sp_1024_norm_42(r);
- }
- /* Triple a Montgomery form number (r = a + a + a % m).
- *
- * r Result of Tripling.
- * a Number to triple in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_1024_mont_tpl_42(sp_digit* r, const sp_digit* a, const sp_digit* m)
- {
- sp_digit over;
- (void)sp_1024_add_42(r, a, a);
- sp_1024_norm_42(r);
- over = r[40] - m[40];
- sp_1024_cond_sub_42(r, r, m, ~((over - 1) >> 31));
- sp_1024_norm_42(r);
- (void)sp_1024_add_42(r, r, a);
- sp_1024_norm_42(r);
- over = r[40] - m[40];
- sp_1024_cond_sub_42(r, r, m, ~((over - 1) >> 31));
- sp_1024_norm_42(r);
- }
- /* Subtract two Montgomery form numbers (r = a - b % m).
- *
- * r Result of subtration.
- * a Number to subtract from in Montgomery form.
- * b Number to subtract with in Montgomery form.
- * m Modulus (prime).
- */
- static void sp_1024_mont_sub_42(sp_digit* r, const sp_digit* a, const sp_digit* b,
- const sp_digit* m)
- {
- (void)sp_1024_sub_42(r, a, b);
- sp_1024_norm_42(r);
- sp_1024_cond_add_42(r, r, m, r[41] >> 7);
- sp_1024_norm_42(r);
- }
- /* Shift number left one bit.
- * Bottom bit is lost.
- *
- * r Result of shift.
- * a Number to shift.
- */
- SP_NOINLINE static void sp_1024_rshift1_42(sp_digit* r, const sp_digit* a)
- {
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i=0; i<41; i++) {
- r[i] = (a[i] >> 1) + ((a[i + 1] << 24) & 0x1ffffff);
- }
- #else
- r[0] = (a[0] >> 1) + ((a[1] << 24) & 0x1ffffff);
- r[1] = (a[1] >> 1) + ((a[2] << 24) & 0x1ffffff);
- r[2] = (a[2] >> 1) + ((a[3] << 24) & 0x1ffffff);
- r[3] = (a[3] >> 1) + ((a[4] << 24) & 0x1ffffff);
- r[4] = (a[4] >> 1) + ((a[5] << 24) & 0x1ffffff);
- r[5] = (a[5] >> 1) + ((a[6] << 24) & 0x1ffffff);
- r[6] = (a[6] >> 1) + ((a[7] << 24) & 0x1ffffff);
- r[7] = (a[7] >> 1) + ((a[8] << 24) & 0x1ffffff);
- r[8] = (a[8] >> 1) + ((a[9] << 24) & 0x1ffffff);
- r[9] = (a[9] >> 1) + ((a[10] << 24) & 0x1ffffff);
- r[10] = (a[10] >> 1) + ((a[11] << 24) & 0x1ffffff);
- r[11] = (a[11] >> 1) + ((a[12] << 24) & 0x1ffffff);
- r[12] = (a[12] >> 1) + ((a[13] << 24) & 0x1ffffff);
- r[13] = (a[13] >> 1) + ((a[14] << 24) & 0x1ffffff);
- r[14] = (a[14] >> 1) + ((a[15] << 24) & 0x1ffffff);
- r[15] = (a[15] >> 1) + ((a[16] << 24) & 0x1ffffff);
- r[16] = (a[16] >> 1) + ((a[17] << 24) & 0x1ffffff);
- r[17] = (a[17] >> 1) + ((a[18] << 24) & 0x1ffffff);
- r[18] = (a[18] >> 1) + ((a[19] << 24) & 0x1ffffff);
- r[19] = (a[19] >> 1) + ((a[20] << 24) & 0x1ffffff);
- r[20] = (a[20] >> 1) + ((a[21] << 24) & 0x1ffffff);
- r[21] = (a[21] >> 1) + ((a[22] << 24) & 0x1ffffff);
- r[22] = (a[22] >> 1) + ((a[23] << 24) & 0x1ffffff);
- r[23] = (a[23] >> 1) + ((a[24] << 24) & 0x1ffffff);
- r[24] = (a[24] >> 1) + ((a[25] << 24) & 0x1ffffff);
- r[25] = (a[25] >> 1) + ((a[26] << 24) & 0x1ffffff);
- r[26] = (a[26] >> 1) + ((a[27] << 24) & 0x1ffffff);
- r[27] = (a[27] >> 1) + ((a[28] << 24) & 0x1ffffff);
- r[28] = (a[28] >> 1) + ((a[29] << 24) & 0x1ffffff);
- r[29] = (a[29] >> 1) + ((a[30] << 24) & 0x1ffffff);
- r[30] = (a[30] >> 1) + ((a[31] << 24) & 0x1ffffff);
- r[31] = (a[31] >> 1) + ((a[32] << 24) & 0x1ffffff);
- r[32] = (a[32] >> 1) + ((a[33] << 24) & 0x1ffffff);
- r[33] = (a[33] >> 1) + ((a[34] << 24) & 0x1ffffff);
- r[34] = (a[34] >> 1) + ((a[35] << 24) & 0x1ffffff);
- r[35] = (a[35] >> 1) + ((a[36] << 24) & 0x1ffffff);
- r[36] = (a[36] >> 1) + ((a[37] << 24) & 0x1ffffff);
- r[37] = (a[37] >> 1) + ((a[38] << 24) & 0x1ffffff);
- r[38] = (a[38] >> 1) + ((a[39] << 24) & 0x1ffffff);
- r[39] = (a[39] >> 1) + ((a[40] << 24) & 0x1ffffff);
- r[40] = (a[40] >> 1) + ((a[41] << 24) & 0x1ffffff);
- #endif
- r[41] = a[41] >> 1;
- }
- /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m)
- *
- * r Result of division by 2.
- * a Number to divide.
- * m Modulus (prime).
- */
- static void sp_1024_mont_div2_42(sp_digit* r, const sp_digit* a,
- const sp_digit* m)
- {
- sp_1024_cond_add_42(r, a, m, 0 - (a[0] & 1));
- sp_1024_norm_42(r);
- sp_1024_rshift1_42(r, r);
- }
- /* Double the Montgomery form projective point p.
- *
- * r Result of doubling point.
- * p Point to double.
- * t Temporary ordinate data.
- */
- static void sp_1024_proj_point_dbl_42(sp_point_1024* r, const sp_point_1024* p,
- sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2*42;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- x = r->x;
- y = r->y;
- z = r->z;
- /* Put infinity into result. */
- if (r != p) {
- r->infinity = p->infinity;
- }
- /* T1 = Z * Z */
- sp_1024_mont_sqr_42(t1, p->z, p1024_mod, p1024_mp_mod);
- /* Z = Y * Z */
- sp_1024_mont_mul_42(z, p->y, p->z, p1024_mod, p1024_mp_mod);
- /* Z = 2Z */
- sp_1024_mont_dbl_42(z, z, p1024_mod);
- /* T2 = X - T1 */
- sp_1024_mont_sub_42(t2, p->x, t1, p1024_mod);
- /* T1 = X + T1 */
- sp_1024_mont_add_42(t1, p->x, t1, p1024_mod);
- /* T2 = T1 * T2 */
- sp_1024_mont_mul_42(t2, t1, t2, p1024_mod, p1024_mp_mod);
- /* T1 = 3T2 */
- sp_1024_mont_tpl_42(t1, t2, p1024_mod);
- /* Y = 2Y */
- sp_1024_mont_dbl_42(y, p->y, p1024_mod);
- /* Y = Y * Y */
- sp_1024_mont_sqr_42(y, y, p1024_mod, p1024_mp_mod);
- /* T2 = Y * Y */
- sp_1024_mont_sqr_42(t2, y, p1024_mod, p1024_mp_mod);
- /* T2 = T2/2 */
- sp_1024_mont_div2_42(t2, t2, p1024_mod);
- /* Y = Y * X */
- sp_1024_mont_mul_42(y, y, p->x, p1024_mod, p1024_mp_mod);
- /* X = T1 * T1 */
- sp_1024_mont_sqr_42(x, t1, p1024_mod, p1024_mp_mod);
- /* X = X - Y */
- sp_1024_mont_sub_42(x, x, y, p1024_mod);
- /* X = X - Y */
- sp_1024_mont_sub_42(x, x, y, p1024_mod);
- /* Y = Y - X */
- sp_1024_mont_sub_42(y, y, x, p1024_mod);
- /* Y = Y * T1 */
- sp_1024_mont_mul_42(y, y, t1, p1024_mod, p1024_mp_mod);
- /* Y = Y - T2 */
- sp_1024_mont_sub_42(y, y, t2, p1024_mod);
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_1024_proj_point_dbl_42_ctx {
- int state;
- sp_digit* t1;
- sp_digit* t2;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- } sp_1024_proj_point_dbl_42_ctx;
- /* Double the Montgomery form projective point p.
- *
- * r Result of doubling point.
- * p Point to double.
- * t Temporary ordinate data.
- */
- static int sp_1024_proj_point_dbl_42_nb(sp_ecc_ctx_t* sp_ctx, sp_point_1024* r,
- const sp_point_1024* p, sp_digit* t)
- {
- int err = FP_WOULDBLOCK;
- sp_1024_proj_point_dbl_42_ctx* ctx = (sp_1024_proj_point_dbl_42_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_1024_proj_point_dbl_42_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0:
- ctx->t1 = t;
- ctx->t2 = t + 2*42;
- ctx->x = r->x;
- ctx->y = r->y;
- ctx->z = r->z;
- /* Put infinity into result. */
- if (r != p) {
- r->infinity = p->infinity;
- }
- ctx->state = 1;
- break;
- case 1:
- /* T1 = Z * Z */
- sp_1024_mont_sqr_42(ctx->t1, p->z, p1024_mod, p1024_mp_mod);
- ctx->state = 2;
- break;
- case 2:
- /* Z = Y * Z */
- sp_1024_mont_mul_42(ctx->z, p->y, p->z, p1024_mod, p1024_mp_mod);
- ctx->state = 3;
- break;
- case 3:
- /* Z = 2Z */
- sp_1024_mont_dbl_42(ctx->z, ctx->z, p1024_mod);
- ctx->state = 4;
- break;
- case 4:
- /* T2 = X - T1 */
- sp_1024_mont_sub_42(ctx->t2, p->x, ctx->t1, p1024_mod);
- ctx->state = 5;
- break;
- case 5:
- /* T1 = X + T1 */
- sp_1024_mont_add_42(ctx->t1, p->x, ctx->t1, p1024_mod);
- ctx->state = 6;
- break;
- case 6:
- /* T2 = T1 * T2 */
- sp_1024_mont_mul_42(ctx->t2, ctx->t1, ctx->t2, p1024_mod, p1024_mp_mod);
- ctx->state = 7;
- break;
- case 7:
- /* T1 = 3T2 */
- sp_1024_mont_tpl_42(ctx->t1, ctx->t2, p1024_mod);
- ctx->state = 8;
- break;
- case 8:
- /* Y = 2Y */
- sp_1024_mont_dbl_42(ctx->y, p->y, p1024_mod);
- ctx->state = 9;
- break;
- case 9:
- /* Y = Y * Y */
- sp_1024_mont_sqr_42(ctx->y, ctx->y, p1024_mod, p1024_mp_mod);
- ctx->state = 10;
- break;
- case 10:
- /* T2 = Y * Y */
- sp_1024_mont_sqr_42(ctx->t2, ctx->y, p1024_mod, p1024_mp_mod);
- ctx->state = 11;
- break;
- case 11:
- /* T2 = T2/2 */
- sp_1024_mont_div2_42(ctx->t2, ctx->t2, p1024_mod);
- ctx->state = 12;
- break;
- case 12:
- /* Y = Y * X */
- sp_1024_mont_mul_42(ctx->y, ctx->y, p->x, p1024_mod, p1024_mp_mod);
- ctx->state = 13;
- break;
- case 13:
- /* X = T1 * T1 */
- sp_1024_mont_sqr_42(ctx->x, ctx->t1, p1024_mod, p1024_mp_mod);
- ctx->state = 14;
- break;
- case 14:
- /* X = X - Y */
- sp_1024_mont_sub_42(ctx->x, ctx->x, ctx->y, p1024_mod);
- ctx->state = 15;
- break;
- case 15:
- /* X = X - Y */
- sp_1024_mont_sub_42(ctx->x, ctx->x, ctx->y, p1024_mod);
- ctx->state = 16;
- break;
- case 16:
- /* Y = Y - X */
- sp_1024_mont_sub_42(ctx->y, ctx->y, ctx->x, p1024_mod);
- ctx->state = 17;
- break;
- case 17:
- /* Y = Y * T1 */
- sp_1024_mont_mul_42(ctx->y, ctx->y, ctx->t1, p1024_mod, p1024_mp_mod);
- ctx->state = 18;
- break;
- case 18:
- /* Y = Y - T2 */
- sp_1024_mont_sub_42(ctx->y, ctx->y, ctx->t2, p1024_mod);
- ctx->state = 19;
- /* fall-through */
- case 19:
- err = MP_OKAY;
- break;
- }
- if (err == MP_OKAY && ctx->state != 19) {
- err = FP_WOULDBLOCK;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- /* Compare two numbers to determine if they are equal.
- * Constant time implementation.
- *
- * a First number to compare.
- * b Second number to compare.
- * returns 1 when equal and 0 otherwise.
- */
- static int sp_1024_cmp_equal_42(const sp_digit* a, const sp_digit* b)
- {
- return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2]) |
- (a[3] ^ b[3]) | (a[4] ^ b[4]) | (a[5] ^ b[5]) |
- (a[6] ^ b[6]) | (a[7] ^ b[7]) | (a[8] ^ b[8]) |
- (a[9] ^ b[9]) | (a[10] ^ b[10]) | (a[11] ^ b[11]) |
- (a[12] ^ b[12]) | (a[13] ^ b[13]) | (a[14] ^ b[14]) |
- (a[15] ^ b[15]) | (a[16] ^ b[16]) | (a[17] ^ b[17]) |
- (a[18] ^ b[18]) | (a[19] ^ b[19]) | (a[20] ^ b[20]) |
- (a[21] ^ b[21]) | (a[22] ^ b[22]) | (a[23] ^ b[23]) |
- (a[24] ^ b[24]) | (a[25] ^ b[25]) | (a[26] ^ b[26]) |
- (a[27] ^ b[27]) | (a[28] ^ b[28]) | (a[29] ^ b[29]) |
- (a[30] ^ b[30]) | (a[31] ^ b[31]) | (a[32] ^ b[32]) |
- (a[33] ^ b[33]) | (a[34] ^ b[34]) | (a[35] ^ b[35]) |
- (a[36] ^ b[36]) | (a[37] ^ b[37]) | (a[38] ^ b[38]) |
- (a[39] ^ b[39]) | (a[40] ^ b[40]) | (a[41] ^ b[41])) == 0;
- }
- /* Returns 1 if the number of zero.
- * Implementation is constant time.
- *
- * a Number to check.
- * returns 1 if the number is zero and 0 otherwise.
- */
- static int sp_1024_iszero_42(const sp_digit* a)
- {
- return (a[0] | a[1] | a[2] | a[3] | a[4] | a[5] | a[6] | a[7] |
- a[8] | a[9] | a[10] | a[11] | a[12] | a[13] | a[14] | a[15] |
- a[16] | a[17] | a[18] | a[19] | a[20] | a[21] | a[22] | a[23] |
- a[24] | a[25] | a[26] | a[27] | a[28] | a[29] | a[30] | a[31] |
- a[32] | a[33] | a[34] | a[35] | a[36] | a[37] | a[38] | a[39] |
- a[40] | a[41]) == 0;
- }
- /* Add two Montgomery form projective points.
- *
- * r Result of addition.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static void sp_1024_proj_point_add_42(sp_point_1024* r,
- const sp_point_1024* p, const sp_point_1024* q, sp_digit* t)
- {
- sp_digit* t6 = t;
- sp_digit* t1 = t + 2*42;
- sp_digit* t2 = t + 4*42;
- sp_digit* t3 = t + 6*42;
- sp_digit* t4 = t + 8*42;
- sp_digit* t5 = t + 10*42;
- /* U1 = X1*Z2^2 */
- sp_1024_mont_sqr_42(t1, q->z, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t3, t1, q->z, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t1, t1, p->x, p1024_mod, p1024_mp_mod);
- /* U2 = X2*Z1^2 */
- sp_1024_mont_sqr_42(t2, p->z, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t4, t2, p->z, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t2, t2, q->x, p1024_mod, p1024_mp_mod);
- /* S1 = Y1*Z2^3 */
- sp_1024_mont_mul_42(t3, t3, p->y, p1024_mod, p1024_mp_mod);
- /* S2 = Y2*Z1^3 */
- sp_1024_mont_mul_42(t4, t4, q->y, p1024_mod, p1024_mp_mod);
- /* Check double */
- if ((~p->infinity) & (~q->infinity) &
- sp_1024_cmp_equal_42(t2, t1) &
- sp_1024_cmp_equal_42(t4, t3)) {
- sp_1024_proj_point_dbl_42(r, p, t);
- }
- else {
- sp_digit* x = t6;
- sp_digit* y = t1;
- sp_digit* z = t2;
- /* H = U2 - U1 */
- sp_1024_mont_sub_42(t2, t2, t1, p1024_mod);
- /* R = S2 - S1 */
- sp_1024_mont_sub_42(t4, t4, t3, p1024_mod);
- /* X3 = R^2 - H^3 - 2*U1*H^2 */
- sp_1024_mont_sqr_42(t5, t2, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(y, t1, t5, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t5, t5, t2, p1024_mod, p1024_mp_mod);
- /* Z3 = H*Z1*Z2 */
- sp_1024_mont_mul_42(z, p->z, t2, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(z, z, q->z, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sqr_42(x, t4, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sub_42(x, x, t5, p1024_mod);
- sp_1024_mont_mul_42(t5, t5, t3, p1024_mod, p1024_mp_mod);
- sp_1024_mont_dbl_42(t3, y, p1024_mod);
- sp_1024_mont_sub_42(x, x, t3, p1024_mod);
- /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
- sp_1024_mont_sub_42(y, y, x, p1024_mod);
- sp_1024_mont_mul_42(y, y, t4, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sub_42(y, y, t5, p1024_mod);
- {
- int i;
- sp_digit maskp = 0 - (q->infinity & (!p->infinity));
- sp_digit maskq = 0 - (p->infinity & (!q->infinity));
- sp_digit maskt = ~(maskp | maskq);
- sp_digit inf = (sp_digit)(p->infinity & q->infinity);
- for (i = 0; i < 42; i++) {
- r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
- (x[i] & maskt);
- }
- for (i = 0; i < 42; i++) {
- r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
- (y[i] & maskt);
- }
- for (i = 0; i < 42; i++) {
- r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
- (z[i] & maskt);
- }
- r->z[0] |= inf;
- r->infinity = (word32)inf;
- }
- }
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_1024_proj_point_add_42_ctx {
- int state;
- sp_1024_proj_point_dbl_42_ctx dbl_ctx;
- const sp_point_1024* ap[2];
- sp_point_1024* rp[2];
- sp_digit* t1;
- sp_digit* t2;
- sp_digit* t3;
- sp_digit* t4;
- sp_digit* t5;
- sp_digit* t6;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- } sp_1024_proj_point_add_42_ctx;
- /* Add two Montgomery form projective points.
- *
- * r Result of addition.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static int sp_1024_proj_point_add_42_nb(sp_ecc_ctx_t* sp_ctx, sp_point_1024* r,
- const sp_point_1024* p, const sp_point_1024* q, sp_digit* t)
- {
- int err = FP_WOULDBLOCK;
- sp_1024_proj_point_add_42_ctx* ctx = (sp_1024_proj_point_add_42_ctx*)sp_ctx->data;
- /* Ensure only the first point is the same as the result. */
- if (q == r) {
- const sp_point_1024* a = p;
- p = q;
- q = a;
- }
- typedef char ctx_size_test[sizeof(sp_1024_proj_point_add_42_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- switch (ctx->state) {
- case 0: /* INIT */
- ctx->t6 = t;
- ctx->t1 = t + 2*42;
- ctx->t2 = t + 4*42;
- ctx->t3 = t + 6*42;
- ctx->t4 = t + 8*42;
- ctx->t5 = t + 10*42;
- ctx->x = ctx->t6;
- ctx->y = ctx->t1;
- ctx->z = ctx->t2;
- ctx->state = 1;
- break;
- case 1:
- /* U1 = X1*Z2^2 */
- sp_1024_mont_sqr_42(ctx->t1, q->z, p1024_mod, p1024_mp_mod);
- ctx->state = 2;
- break;
- case 2:
- sp_1024_mont_mul_42(ctx->t3, ctx->t1, q->z, p1024_mod, p1024_mp_mod);
- ctx->state = 3;
- break;
- case 3:
- sp_1024_mont_mul_42(ctx->t1, ctx->t1, p->x, p1024_mod, p1024_mp_mod);
- ctx->state = 4;
- break;
- case 4:
- /* U2 = X2*Z1^2 */
- sp_1024_mont_sqr_42(ctx->t2, p->z, p1024_mod, p1024_mp_mod);
- ctx->state = 5;
- break;
- case 5:
- sp_1024_mont_mul_42(ctx->t4, ctx->t2, p->z, p1024_mod, p1024_mp_mod);
- ctx->state = 6;
- break;
- case 6:
- sp_1024_mont_mul_42(ctx->t2, ctx->t2, q->x, p1024_mod, p1024_mp_mod);
- ctx->state = 7;
- break;
- case 7:
- /* S1 = Y1*Z2^3 */
- sp_1024_mont_mul_42(ctx->t3, ctx->t3, p->y, p1024_mod, p1024_mp_mod);
- ctx->state = 8;
- break;
- case 8:
- /* S2 = Y2*Z1^3 */
- sp_1024_mont_mul_42(ctx->t4, ctx->t4, q->y, p1024_mod, p1024_mp_mod);
- ctx->state = 9;
- break;
- case 9:
- /* Check double */
- if ((~p->infinity) & (~q->infinity) &
- sp_1024_cmp_equal_42(ctx->t2, ctx->t1) &
- sp_1024_cmp_equal_42(ctx->t4, ctx->t3)) {
- XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
- sp_1024_proj_point_dbl_42(r, p, t);
- ctx->state = 25;
- }
- else {
- ctx->state = 10;
- }
- break;
- case 10:
- /* H = U2 - U1 */
- sp_1024_mont_sub_42(ctx->t2, ctx->t2, ctx->t1, p1024_mod);
- ctx->state = 11;
- break;
- case 11:
- /* R = S2 - S1 */
- sp_1024_mont_sub_42(ctx->t4, ctx->t4, ctx->t3, p1024_mod);
- ctx->state = 12;
- break;
- case 12:
- /* X3 = R^2 - H^3 - 2*U1*H^2 */
- sp_1024_mont_sqr_42(ctx->t5, ctx->t2, p1024_mod, p1024_mp_mod);
- ctx->state = 13;
- break;
- case 13:
- sp_1024_mont_mul_42(ctx->y, ctx->t1, ctx->t5, p1024_mod, p1024_mp_mod);
- ctx->state = 14;
- break;
- case 14:
- sp_1024_mont_mul_42(ctx->t5, ctx->t5, ctx->t2, p1024_mod, p1024_mp_mod);
- ctx->state = 15;
- break;
- case 15:
- /* Z3 = H*Z1*Z2 */
- sp_1024_mont_mul_42(ctx->z, p->z, ctx->t2, p1024_mod, p1024_mp_mod);
- ctx->state = 16;
- break;
- case 16:
- sp_1024_mont_mul_42(ctx->z, ctx->z, q->z, p1024_mod, p1024_mp_mod);
- ctx->state = 17;
- break;
- case 17:
- sp_1024_mont_sqr_42(ctx->x, ctx->t4, p1024_mod, p1024_mp_mod);
- ctx->state = 18;
- break;
- case 18:
- sp_1024_mont_sub_42(ctx->x, ctx->x, ctx->t5, p1024_mod);
- ctx->state = 19;
- break;
- case 19:
- sp_1024_mont_mul_42(ctx->t5, ctx->t5, ctx->t3, p1024_mod, p1024_mp_mod);
- ctx->state = 20;
- break;
- case 20:
- sp_1024_mont_dbl_42(ctx->t3, ctx->y, p1024_mod);
- sp_1024_mont_sub_42(ctx->x, ctx->x, ctx->t3, p1024_mod);
- ctx->state = 21;
- break;
- case 21:
- /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
- sp_1024_mont_sub_42(ctx->y, ctx->y, ctx->x, p1024_mod);
- ctx->state = 22;
- break;
- case 22:
- sp_1024_mont_mul_42(ctx->y, ctx->y, ctx->t4, p1024_mod, p1024_mp_mod);
- ctx->state = 23;
- break;
- case 23:
- sp_1024_mont_sub_42(ctx->y, ctx->y, ctx->t5, p1024_mod);
- ctx->state = 24;
- break;
- case 24:
- {
- {
- int i;
- sp_digit maskp = 0 - (q->infinity & (!p->infinity));
- sp_digit maskq = 0 - (p->infinity & (!q->infinity));
- sp_digit maskt = ~(maskp | maskq);
- sp_digit inf = (sp_digit)(p->infinity & q->infinity);
- for (i = 0; i < 42; i++) {
- r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
- (ctx->x[i] & maskt);
- }
- for (i = 0; i < 42; i++) {
- r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
- (ctx->y[i] & maskt);
- }
- for (i = 0; i < 42; i++) {
- r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
- (ctx->z[i] & maskt);
- }
- r->z[0] |= inf;
- r->infinity = (word32)inf;
- }
- ctx->state = 25;
- break;
- }
- case 25:
- err = MP_OKAY;
- break;
- }
- if (err == MP_OKAY && ctx->state != 25) {
- err = FP_WOULDBLOCK;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #ifdef WOLFSSL_SP_SMALL
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Small implementation using add and double that is cache attack resistant but
- * allocates memory rather than use large stacks.
- * 1024 adds and doubles.
- *
- * r Resulting point.
- * g Point to multiply.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_1024_ecc_mulmod_42(sp_point_1024* r, const sp_point_1024* g,
- const sp_digit* k, int map, int ct, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_1024* t = NULL;
- sp_digit* tmp = NULL;
- #else
- sp_point_1024 t[3];
- sp_digit tmp[2 * 42 * 37];
- #endif
- sp_digit n;
- int i;
- int c;
- int y;
- int err = MP_OKAY;
- /* Implementation is constant time. */
- (void)ct;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024) * 3, heap,
- DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 42 * 37, heap,
- DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- XMEMSET(t, 0, sizeof(sp_point_1024) * 3);
- /* t[0] = {0, 0, 1} * norm */
- t[0].infinity = 1;
- /* t[1] = {g->x, g->y, g->z} * norm */
- err = sp_1024_mod_mul_norm_42(t[1].x, g->x, p1024_mod);
- }
- if (err == MP_OKAY)
- err = sp_1024_mod_mul_norm_42(t[1].y, g->y, p1024_mod);
- if (err == MP_OKAY)
- err = sp_1024_mod_mul_norm_42(t[1].z, g->z, p1024_mod);
- if (err == MP_OKAY) {
- i = 40;
- c = 24;
- n = k[i--] << (25 - c);
- for (; ; c--) {
- if (c == 0) {
- if (i == -1)
- break;
- n = k[i--];
- c = 25;
- }
- y = (n >> 24) & 1;
- n <<= 1;
- sp_1024_proj_point_add_42(&t[y^1], &t[0], &t[1], tmp);
- XMEMCPY(&t[2], (void*)(((size_t)&t[0] & addr_mask[y^1]) +
- ((size_t)&t[1] & addr_mask[y])),
- sizeof(sp_point_1024));
- sp_1024_proj_point_dbl_42(&t[2], &t[2], tmp);
- XMEMCPY((void*)(((size_t)&t[0] & addr_mask[y^1]) +
- ((size_t)&t[1] & addr_mask[y])), &t[2],
- sizeof(sp_point_1024));
- }
- if (map != 0) {
- sp_1024_map_42(r, &t[0], tmp);
- }
- else {
- XMEMCPY(r, &t[0], sizeof(sp_point_1024));
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (tmp != NULL)
- #endif
- {
- ForceZero(tmp, sizeof(sp_digit) * 2 * 42 * 37);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- #endif
- {
- ForceZero(t, sizeof(sp_point_1024) * 3);
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- #endif
- }
- return err;
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- typedef struct sp_1024_ecc_mulmod_42_ctx {
- int state;
- union {
- sp_1024_proj_point_dbl_42_ctx dbl_ctx;
- sp_1024_proj_point_add_42_ctx add_ctx;
- };
- sp_point_1024 t[3];
- sp_digit tmp[2 * 42 * 37];
- sp_digit n;
- int i;
- int c;
- int y;
- } sp_1024_ecc_mulmod_42_ctx;
- static int sp_1024_ecc_mulmod_42_nb(sp_ecc_ctx_t* sp_ctx, sp_point_1024* r,
- const sp_point_1024* g, const sp_digit* k, int map, int ct, void* heap)
- {
- int err = FP_WOULDBLOCK;
- sp_1024_ecc_mulmod_42_ctx* ctx = (sp_1024_ecc_mulmod_42_ctx*)sp_ctx->data;
- typedef char ctx_size_test[sizeof(sp_1024_ecc_mulmod_42_ctx) >= sizeof(*sp_ctx) ? -1 : 1];
- (void)sizeof(ctx_size_test);
- /* Implementation is constant time. */
- (void)ct;
- switch (ctx->state) {
- case 0: /* INIT */
- XMEMSET(ctx->t, 0, sizeof(sp_point_1024) * 3);
- ctx->i = 40;
- ctx->c = 24;
- ctx->n = k[ctx->i--] << (25 - ctx->c);
- /* t[0] = {0, 0, 1} * norm */
- ctx->t[0].infinity = 1;
- ctx->state = 1;
- break;
- case 1: /* T1X */
- /* t[1] = {g->x, g->y, g->z} * norm */
- err = sp_1024_mod_mul_norm_42(ctx->t[1].x, g->x, p1024_mod);
- ctx->state = 2;
- break;
- case 2: /* T1Y */
- err = sp_1024_mod_mul_norm_42(ctx->t[1].y, g->y, p1024_mod);
- ctx->state = 3;
- break;
- case 3: /* T1Z */
- err = sp_1024_mod_mul_norm_42(ctx->t[1].z, g->z, p1024_mod);
- ctx->state = 4;
- break;
- case 4: /* ADDPREP */
- if (ctx->c == 0) {
- if (ctx->i == -1) {
- ctx->state = 7;
- break;
- }
- ctx->n = k[ctx->i--];
- ctx->c = 25;
- }
- ctx->y = (ctx->n >> 24) & 1;
- ctx->n <<= 1;
- XMEMSET(&ctx->add_ctx, 0, sizeof(ctx->add_ctx));
- ctx->state = 5;
- break;
- case 5: /* ADD */
- err = sp_1024_proj_point_add_42_nb((sp_ecc_ctx_t*)&ctx->add_ctx,
- &ctx->t[ctx->y^1], &ctx->t[0], &ctx->t[1], ctx->tmp);
- if (err == MP_OKAY) {
- XMEMCPY(&ctx->t[2], (void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
- ((size_t)&ctx->t[1] & addr_mask[ctx->y])),
- sizeof(sp_point_1024));
- XMEMSET(&ctx->dbl_ctx, 0, sizeof(ctx->dbl_ctx));
- ctx->state = 6;
- }
- break;
- case 6: /* DBL */
- err = sp_1024_proj_point_dbl_42_nb((sp_ecc_ctx_t*)&ctx->dbl_ctx, &ctx->t[2],
- &ctx->t[2], ctx->tmp);
- if (err == MP_OKAY) {
- XMEMCPY((void*)(((size_t)&ctx->t[0] & addr_mask[ctx->y^1]) +
- ((size_t)&ctx->t[1] & addr_mask[ctx->y])), &ctx->t[2],
- sizeof(sp_point_1024));
- ctx->state = 4;
- ctx->c--;
- }
- break;
- case 7: /* MAP */
- if (map != 0) {
- sp_1024_map_42(r, &ctx->t[0], ctx->tmp);
- }
- else {
- XMEMCPY(r, &ctx->t[0], sizeof(sp_point_1024));
- }
- err = MP_OKAY;
- break;
- }
- if (err == MP_OKAY && ctx->state != 7) {
- err = FP_WOULDBLOCK;
- }
- if (err != FP_WOULDBLOCK) {
- ForceZero(ctx->tmp, sizeof(ctx->tmp));
- ForceZero(ctx->t, sizeof(ctx->t));
- }
- (void)heap;
- return err;
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #else
- /* A table entry for pre-computed points. */
- typedef struct sp_table_entry_1024 {
- sp_digit x[42];
- sp_digit y[42];
- } sp_table_entry_1024;
- /* Conditionally copy a into r using the mask m.
- * m is -1 to copy and 0 when not.
- *
- * r A single precision number to copy over.
- * a A single precision number to copy.
- * m Mask value to apply.
- */
- static void sp_1024_cond_copy_42(sp_digit* r, const sp_digit* a, const sp_digit m)
- {
- sp_digit t[42];
- #ifdef WOLFSSL_SP_SMALL
- int i;
- for (i = 0; i < 42; i++) {
- t[i] = r[i] ^ a[i];
- }
- for (i = 0; i < 42; i++) {
- r[i] ^= t[i] & m;
- }
- #else
- t[ 0] = r[ 0] ^ a[ 0];
- t[ 1] = r[ 1] ^ a[ 1];
- t[ 2] = r[ 2] ^ a[ 2];
- t[ 3] = r[ 3] ^ a[ 3];
- t[ 4] = r[ 4] ^ a[ 4];
- t[ 5] = r[ 5] ^ a[ 5];
- t[ 6] = r[ 6] ^ a[ 6];
- t[ 7] = r[ 7] ^ a[ 7];
- t[ 8] = r[ 8] ^ a[ 8];
- t[ 9] = r[ 9] ^ a[ 9];
- t[10] = r[10] ^ a[10];
- t[11] = r[11] ^ a[11];
- t[12] = r[12] ^ a[12];
- t[13] = r[13] ^ a[13];
- t[14] = r[14] ^ a[14];
- t[15] = r[15] ^ a[15];
- t[16] = r[16] ^ a[16];
- t[17] = r[17] ^ a[17];
- t[18] = r[18] ^ a[18];
- t[19] = r[19] ^ a[19];
- t[20] = r[20] ^ a[20];
- t[21] = r[21] ^ a[21];
- t[22] = r[22] ^ a[22];
- t[23] = r[23] ^ a[23];
- t[24] = r[24] ^ a[24];
- t[25] = r[25] ^ a[25];
- t[26] = r[26] ^ a[26];
- t[27] = r[27] ^ a[27];
- t[28] = r[28] ^ a[28];
- t[29] = r[29] ^ a[29];
- t[30] = r[30] ^ a[30];
- t[31] = r[31] ^ a[31];
- t[32] = r[32] ^ a[32];
- t[33] = r[33] ^ a[33];
- t[34] = r[34] ^ a[34];
- t[35] = r[35] ^ a[35];
- t[36] = r[36] ^ a[36];
- t[37] = r[37] ^ a[37];
- t[38] = r[38] ^ a[38];
- t[39] = r[39] ^ a[39];
- t[40] = r[40] ^ a[40];
- t[41] = r[41] ^ a[41];
- r[ 0] ^= t[ 0] & m;
- r[ 1] ^= t[ 1] & m;
- r[ 2] ^= t[ 2] & m;
- r[ 3] ^= t[ 3] & m;
- r[ 4] ^= t[ 4] & m;
- r[ 5] ^= t[ 5] & m;
- r[ 6] ^= t[ 6] & m;
- r[ 7] ^= t[ 7] & m;
- r[ 8] ^= t[ 8] & m;
- r[ 9] ^= t[ 9] & m;
- r[10] ^= t[10] & m;
- r[11] ^= t[11] & m;
- r[12] ^= t[12] & m;
- r[13] ^= t[13] & m;
- r[14] ^= t[14] & m;
- r[15] ^= t[15] & m;
- r[16] ^= t[16] & m;
- r[17] ^= t[17] & m;
- r[18] ^= t[18] & m;
- r[19] ^= t[19] & m;
- r[20] ^= t[20] & m;
- r[21] ^= t[21] & m;
- r[22] ^= t[22] & m;
- r[23] ^= t[23] & m;
- r[24] ^= t[24] & m;
- r[25] ^= t[25] & m;
- r[26] ^= t[26] & m;
- r[27] ^= t[27] & m;
- r[28] ^= t[28] & m;
- r[29] ^= t[29] & m;
- r[30] ^= t[30] & m;
- r[31] ^= t[31] & m;
- r[32] ^= t[32] & m;
- r[33] ^= t[33] & m;
- r[34] ^= t[34] & m;
- r[35] ^= t[35] & m;
- r[36] ^= t[36] & m;
- r[37] ^= t[37] & m;
- r[38] ^= t[38] & m;
- r[39] ^= t[39] & m;
- r[40] ^= t[40] & m;
- r[41] ^= t[41] & m;
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Double the Montgomery form projective point p a number of times.
- *
- * r Result of repeated doubling of point.
- * p Point to double.
- * n Number of times to double
- * t Temporary ordinate data.
- */
- static void sp_1024_proj_point_dbl_n_42(sp_point_1024* p, int i,
- sp_digit* t)
- {
- sp_digit* w = t;
- sp_digit* a = t + 2*42;
- sp_digit* b = t + 4*42;
- sp_digit* t1 = t + 6*42;
- sp_digit* t2 = t + 8*42;
- sp_digit* x;
- sp_digit* y;
- sp_digit* z;
- volatile int n = i;
- x = p->x;
- y = p->y;
- z = p->z;
- /* Y = 2*Y */
- sp_1024_mont_dbl_42(y, y, p1024_mod);
- /* W = Z^4 */
- sp_1024_mont_sqr_42(w, z, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sqr_42(w, w, p1024_mod, p1024_mp_mod);
- #ifndef WOLFSSL_SP_SMALL
- while (--n > 0)
- #else
- while (--n >= 0)
- #endif
- {
- /* A = 3*(X^2 - W) */
- sp_1024_mont_sqr_42(t1, x, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sub_42(t1, t1, w, p1024_mod);
- sp_1024_mont_tpl_42(a, t1, p1024_mod);
- /* B = X*Y^2 */
- sp_1024_mont_sqr_42(t1, y, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(b, t1, x, p1024_mod, p1024_mp_mod);
- /* X = A^2 - 2B */
- sp_1024_mont_sqr_42(x, a, p1024_mod, p1024_mp_mod);
- sp_1024_mont_dbl_42(t2, b, p1024_mod);
- sp_1024_mont_sub_42(x, x, t2, p1024_mod);
- /* B = 2.(B - X) */
- sp_1024_mont_sub_42(t2, b, x, p1024_mod);
- sp_1024_mont_dbl_42(b, t2, p1024_mod);
- /* Z = Z*Y */
- sp_1024_mont_mul_42(z, z, y, p1024_mod, p1024_mp_mod);
- /* t1 = Y^4 */
- sp_1024_mont_sqr_42(t1, t1, p1024_mod, p1024_mp_mod);
- #ifdef WOLFSSL_SP_SMALL
- if (n != 0)
- #endif
- {
- /* W = W*Y^4 */
- sp_1024_mont_mul_42(w, w, t1, p1024_mod, p1024_mp_mod);
- }
- /* y = 2*A*(B - X) - Y^4 */
- sp_1024_mont_mul_42(y, b, a, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sub_42(y, y, t1, p1024_mod);
- }
- #ifndef WOLFSSL_SP_SMALL
- /* A = 3*(X^2 - W) */
- sp_1024_mont_sqr_42(t1, x, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sub_42(t1, t1, w, p1024_mod);
- sp_1024_mont_tpl_42(a, t1, p1024_mod);
- /* B = X*Y^2 */
- sp_1024_mont_sqr_42(t1, y, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(b, t1, x, p1024_mod, p1024_mp_mod);
- /* X = A^2 - 2B */
- sp_1024_mont_sqr_42(x, a, p1024_mod, p1024_mp_mod);
- sp_1024_mont_dbl_42(t2, b, p1024_mod);
- sp_1024_mont_sub_42(x, x, t2, p1024_mod);
- /* B = 2.(B - X) */
- sp_1024_mont_sub_42(t2, b, x, p1024_mod);
- sp_1024_mont_dbl_42(b, t2, p1024_mod);
- /* Z = Z*Y */
- sp_1024_mont_mul_42(z, z, y, p1024_mod, p1024_mp_mod);
- /* t1 = Y^4 */
- sp_1024_mont_sqr_42(t1, t1, p1024_mod, p1024_mp_mod);
- /* y = 2*A*(B - X) - Y^4 */
- sp_1024_mont_mul_42(y, b, a, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sub_42(y, y, t1, p1024_mod);
- #endif /* WOLFSSL_SP_SMALL */
- /* Y = Y/2 */
- sp_1024_mont_div2_42(y, y, p1024_mod);
- }
- /* Double the Montgomery form projective point p a number of times.
- *
- * r Result of repeated doubling of point.
- * p Point to double.
- * n Number of times to double
- * t Temporary ordinate data.
- */
- static void sp_1024_proj_point_dbl_n_store_42(sp_point_1024* r,
- const sp_point_1024* p, int n, int m, sp_digit* t)
- {
- sp_digit* w = t;
- sp_digit* a = t + 2*42;
- sp_digit* b = t + 4*42;
- sp_digit* t1 = t + 6*42;
- sp_digit* t2 = t + 8*42;
- sp_digit* x = r[2*m].x;
- sp_digit* y = r[(1<<n)*m].y;
- sp_digit* z = r[2*m].z;
- int i;
- int j;
- for (i=0; i<42; i++) {
- x[i] = p->x[i];
- }
- for (i=0; i<42; i++) {
- y[i] = p->y[i];
- }
- for (i=0; i<42; i++) {
- z[i] = p->z[i];
- }
- /* Y = 2*Y */
- sp_1024_mont_dbl_42(y, y, p1024_mod);
- /* W = Z^4 */
- sp_1024_mont_sqr_42(w, z, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sqr_42(w, w, p1024_mod, p1024_mp_mod);
- j = m;
- for (i=1; i<=n; i++) {
- j *= 2;
- /* A = 3*(X^2 - W) */
- sp_1024_mont_sqr_42(t1, x, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sub_42(t1, t1, w, p1024_mod);
- sp_1024_mont_tpl_42(a, t1, p1024_mod);
- /* B = X*Y^2 */
- sp_1024_mont_sqr_42(t1, y, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(b, t1, x, p1024_mod, p1024_mp_mod);
- x = r[j].x;
- /* X = A^2 - 2B */
- sp_1024_mont_sqr_42(x, a, p1024_mod, p1024_mp_mod);
- sp_1024_mont_dbl_42(t2, b, p1024_mod);
- sp_1024_mont_sub_42(x, x, t2, p1024_mod);
- /* B = 2.(B - X) */
- sp_1024_mont_sub_42(t2, b, x, p1024_mod);
- sp_1024_mont_dbl_42(b, t2, p1024_mod);
- /* Z = Z*Y */
- sp_1024_mont_mul_42(r[j].z, z, y, p1024_mod, p1024_mp_mod);
- z = r[j].z;
- /* t1 = Y^4 */
- sp_1024_mont_sqr_42(t1, t1, p1024_mod, p1024_mp_mod);
- if (i != n) {
- /* W = W*Y^4 */
- sp_1024_mont_mul_42(w, w, t1, p1024_mod, p1024_mp_mod);
- }
- /* y = 2*A*(B - X) - Y^4 */
- sp_1024_mont_mul_42(y, b, a, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sub_42(y, y, t1, p1024_mod);
- /* Y = Y/2 */
- sp_1024_mont_div2_42(r[j].y, y, p1024_mod);
- r[j].infinity = 0;
- }
- }
- /* Add two Montgomery form projective points.
- *
- * ra Result of addition.
- * rs Result of subtraction.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static void sp_1024_proj_point_add_sub_42(sp_point_1024* ra,
- sp_point_1024* rs, const sp_point_1024* p, const sp_point_1024* q,
- sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2*42;
- sp_digit* t3 = t + 4*42;
- sp_digit* t4 = t + 6*42;
- sp_digit* t5 = t + 8*42;
- sp_digit* t6 = t + 10*42;
- sp_digit* xa = ra->x;
- sp_digit* ya = ra->y;
- sp_digit* za = ra->z;
- sp_digit* xs = rs->x;
- sp_digit* ys = rs->y;
- sp_digit* zs = rs->z;
- XMEMCPY(xa, p->x, sizeof(p->x) / 2);
- XMEMCPY(ya, p->y, sizeof(p->y) / 2);
- XMEMCPY(za, p->z, sizeof(p->z) / 2);
- ra->infinity = 0;
- rs->infinity = 0;
- /* U1 = X1*Z2^2 */
- sp_1024_mont_sqr_42(t1, q->z, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t3, t1, q->z, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t1, t1, xa, p1024_mod, p1024_mp_mod);
- /* U2 = X2*Z1^2 */
- sp_1024_mont_sqr_42(t2, za, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t4, t2, za, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t2, t2, q->x, p1024_mod, p1024_mp_mod);
- /* S1 = Y1*Z2^3 */
- sp_1024_mont_mul_42(t3, t3, ya, p1024_mod, p1024_mp_mod);
- /* S2 = Y2*Z1^3 */
- sp_1024_mont_mul_42(t4, t4, q->y, p1024_mod, p1024_mp_mod);
- /* H = U2 - U1 */
- sp_1024_mont_sub_42(t2, t2, t1, p1024_mod);
- /* RS = S2 + S1 */
- sp_1024_mont_add_42(t6, t4, t3, p1024_mod);
- /* R = S2 - S1 */
- sp_1024_mont_sub_42(t4, t4, t3, p1024_mod);
- /* Z3 = H*Z1*Z2 */
- /* ZS = H*Z1*Z2 */
- sp_1024_mont_mul_42(za, za, q->z, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(za, za, t2, p1024_mod, p1024_mp_mod);
- XMEMCPY(zs, za, sizeof(p->z)/2);
- /* X3 = R^2 - H^3 - 2*U1*H^2 */
- /* XS = RS^2 - H^3 - 2*U1*H^2 */
- sp_1024_mont_sqr_42(xa, t4, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sqr_42(xs, t6, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sqr_42(t5, t2, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(ya, t1, t5, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t5, t5, t2, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sub_42(xa, xa, t5, p1024_mod);
- sp_1024_mont_sub_42(xs, xs, t5, p1024_mod);
- sp_1024_mont_dbl_42(t1, ya, p1024_mod);
- sp_1024_mont_sub_42(xa, xa, t1, p1024_mod);
- sp_1024_mont_sub_42(xs, xs, t1, p1024_mod);
- /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
- /* YS = -RS*(U1*H^2 - XS) - S1*H^3 */
- sp_1024_mont_sub_42(ys, ya, xs, p1024_mod);
- sp_1024_mont_sub_42(ya, ya, xa, p1024_mod);
- sp_1024_mont_mul_42(ya, ya, t4, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sub_42(t6, p1024_mod, t6, p1024_mod);
- sp_1024_mont_mul_42(ys, ys, t6, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t5, t5, t3, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sub_42(ya, ya, t5, p1024_mod);
- sp_1024_mont_sub_42(ys, ys, t5, p1024_mod);
- }
- /* Structure used to describe recoding of scalar multiplication. */
- typedef struct ecc_recode_1024 {
- /* Index into pre-computation table. */
- uint8_t i;
- /* Use the negative of the point. */
- uint8_t neg;
- } ecc_recode_1024;
- /* The index into pre-computation table to use. */
- static const uint8_t recode_index_42_7[130] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
- 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
- 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
- 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49,
- 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33,
- 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
- 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
- 0, 1,
- };
- /* Whether to negate y-ordinate. */
- static const uint8_t recode_neg_42_7[130] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 0, 0,
- };
- /* Recode the scalar for multiplication using pre-computed values and
- * subtraction.
- *
- * k Scalar to multiply by.
- * v Vector of operations to perform.
- */
- static void sp_1024_ecc_recode_7_42(const sp_digit* k, ecc_recode_1024* v)
- {
- int i;
- int j;
- uint8_t y;
- int carry = 0;
- int o;
- sp_digit n;
- j = 0;
- n = k[j];
- o = 0;
- for (i=0; i<147; i++) {
- y = (int8_t)n;
- if (o + 7 < 25) {
- y &= 0x7f;
- n >>= 7;
- o += 7;
- }
- else if (o + 7 == 25) {
- n >>= 7;
- if (++j < 42)
- n = k[j];
- o = 0;
- }
- else if (++j < 42) {
- n = k[j];
- y |= (uint8_t)((n << (25 - o)) & 0x7f);
- o -= 18;
- n >>= o;
- }
- y += (uint8_t)carry;
- v[i].i = recode_index_42_7[y];
- v[i].neg = recode_neg_42_7[y];
- carry = (y >> 7) + v[i].neg;
- }
- }
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Window technique of 7 bits. (Add-Sub variation.)
- * Calculate 0..64 times the point. Use function that adds and
- * subtracts the same two points.
- * Recode to add or subtract one of the computed points.
- * Double to push up.
- * NOT a sliding window.
- *
- * r Resulting point.
- * g Point to multiply.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_1024_ecc_mulmod_win_add_sub_42(sp_point_1024* r, const sp_point_1024* g,
- const sp_digit* k, int map, int ct, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_1024* t = NULL;
- sp_digit* tmp = NULL;
- #else
- sp_point_1024 t[65+2];
- sp_digit tmp[2 * 42 * 37];
- #endif
- sp_point_1024* rt = NULL;
- sp_point_1024* p = NULL;
- sp_digit* negy;
- int i;
- ecc_recode_1024 v[147];
- int err = MP_OKAY;
- /* Constant time used for cache attack resistance implementation. */
- (void)ct;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024) *
- (65+2), heap, DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 42 * 37,
- heap, DYNAMIC_TYPE_ECC);
- if (tmp == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- rt = t + 65;
- p = t + 65+1;
- /* t[0] = {0, 0, 1} * norm */
- XMEMSET(&t[0], 0, sizeof(t[0]));
- t[0].infinity = 1;
- /* t[1] = {g->x, g->y, g->z} * norm */
- err = sp_1024_mod_mul_norm_42(t[1].x, g->x, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(t[1].y, g->y, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(t[1].z, g->z, p1024_mod);
- }
- if (err == MP_OKAY) {
- t[1].infinity = 0;
- /* t[2] ... t[64] */
- sp_1024_proj_point_dbl_n_store_42(t, &t[ 1], 6, 1, tmp);
- sp_1024_proj_point_add_42(&t[ 3], &t[ 2], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[ 6], &t[ 3], tmp);
- sp_1024_proj_point_add_sub_42(&t[ 7], &t[ 5], &t[ 6], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[10], &t[ 5], tmp);
- sp_1024_proj_point_add_sub_42(&t[11], &t[ 9], &t[10], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[12], &t[ 6], tmp);
- sp_1024_proj_point_dbl_42(&t[14], &t[ 7], tmp);
- sp_1024_proj_point_add_sub_42(&t[15], &t[13], &t[14], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[18], &t[ 9], tmp);
- sp_1024_proj_point_add_sub_42(&t[19], &t[17], &t[18], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[20], &t[10], tmp);
- sp_1024_proj_point_dbl_42(&t[22], &t[11], tmp);
- sp_1024_proj_point_add_sub_42(&t[23], &t[21], &t[22], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[24], &t[12], tmp);
- sp_1024_proj_point_dbl_42(&t[26], &t[13], tmp);
- sp_1024_proj_point_add_sub_42(&t[27], &t[25], &t[26], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[28], &t[14], tmp);
- sp_1024_proj_point_dbl_42(&t[30], &t[15], tmp);
- sp_1024_proj_point_add_sub_42(&t[31], &t[29], &t[30], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[34], &t[17], tmp);
- sp_1024_proj_point_add_sub_42(&t[35], &t[33], &t[34], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[36], &t[18], tmp);
- sp_1024_proj_point_dbl_42(&t[38], &t[19], tmp);
- sp_1024_proj_point_add_sub_42(&t[39], &t[37], &t[38], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[40], &t[20], tmp);
- sp_1024_proj_point_dbl_42(&t[42], &t[21], tmp);
- sp_1024_proj_point_add_sub_42(&t[43], &t[41], &t[42], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[44], &t[22], tmp);
- sp_1024_proj_point_dbl_42(&t[46], &t[23], tmp);
- sp_1024_proj_point_add_sub_42(&t[47], &t[45], &t[46], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[48], &t[24], tmp);
- sp_1024_proj_point_dbl_42(&t[50], &t[25], tmp);
- sp_1024_proj_point_add_sub_42(&t[51], &t[49], &t[50], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[52], &t[26], tmp);
- sp_1024_proj_point_dbl_42(&t[54], &t[27], tmp);
- sp_1024_proj_point_add_sub_42(&t[55], &t[53], &t[54], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[56], &t[28], tmp);
- sp_1024_proj_point_dbl_42(&t[58], &t[29], tmp);
- sp_1024_proj_point_add_sub_42(&t[59], &t[57], &t[58], &t[ 1], tmp);
- sp_1024_proj_point_dbl_42(&t[60], &t[30], tmp);
- sp_1024_proj_point_dbl_42(&t[62], &t[31], tmp);
- sp_1024_proj_point_add_sub_42(&t[63], &t[61], &t[62], &t[ 1], tmp);
- negy = t[0].y;
- sp_1024_ecc_recode_7_42(k, v);
- i = 146;
- XMEMCPY(rt, &t[v[i].i], sizeof(sp_point_1024));
- for (--i; i>=0; i--) {
- sp_1024_proj_point_dbl_n_42(rt, 7, tmp);
- XMEMCPY(p, &t[v[i].i], sizeof(sp_point_1024));
- sp_1024_mont_sub_42(negy, p1024_mod, p->y, p1024_mod);
- sp_1024_norm_42(negy);
- sp_1024_cond_copy_42(p->y, negy, (sp_digit)0 - v[i].neg);
- sp_1024_proj_point_add_42(rt, rt, p, tmp);
- }
- if (map != 0) {
- sp_1024_map_42(r, rt, tmp);
- }
- else {
- XMEMCPY(r, rt, sizeof(sp_point_1024));
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- if (tmp != NULL)
- XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef FP_ECC
- #endif /* FP_ECC */
- /* Add two Montgomery form projective points. The second point has a q value of
- * one.
- * Only the first point can be the same pointer as the result point.
- *
- * r Result of addition.
- * p First point to add.
- * q Second point to add.
- * t Temporary ordinate data.
- */
- static void sp_1024_proj_point_add_qz1_42(sp_point_1024* r,
- const sp_point_1024* p, const sp_point_1024* q, sp_digit* t)
- {
- sp_digit* t2 = t;
- sp_digit* t3 = t + 2*42;
- sp_digit* t6 = t + 4*42;
- sp_digit* t1 = t + 6*42;
- sp_digit* t4 = t + 8*42;
- sp_digit* t5 = t + 10*42;
- /* Calculate values to subtract from P->x and P->y. */
- /* U2 = X2*Z1^2 */
- sp_1024_mont_sqr_42(t2, p->z, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t4, t2, p->z, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t2, t2, q->x, p1024_mod, p1024_mp_mod);
- /* S2 = Y2*Z1^3 */
- sp_1024_mont_mul_42(t4, t4, q->y, p1024_mod, p1024_mp_mod);
- if ((~p->infinity) & (~q->infinity) &
- sp_1024_cmp_equal_42(p->x, t2) &
- sp_1024_cmp_equal_42(p->y, t4)) {
- sp_1024_proj_point_dbl_42(r, p, t);
- }
- else {
- sp_digit* x = t2;
- sp_digit* y = t3;
- sp_digit* z = t6;
- /* H = U2 - X1 */
- sp_1024_mont_sub_42(t2, t2, p->x, p1024_mod);
- /* R = S2 - Y1 */
- sp_1024_mont_sub_42(t4, t4, p->y, p1024_mod);
- /* Z3 = H*Z1 */
- sp_1024_mont_mul_42(z, p->z, t2, p1024_mod, p1024_mp_mod);
- /* X3 = R^2 - H^3 - 2*X1*H^2 */
- sp_1024_mont_sqr_42(t1, t2, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t3, p->x, t1, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t1, t1, t2, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sqr_42(t2, t4, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sub_42(t2, t2, t1, p1024_mod);
- sp_1024_mont_dbl_42(t5, t3, p1024_mod);
- sp_1024_mont_sub_42(x, t2, t5, p1024_mod);
- /* Y3 = R*(X1*H^2 - X3) - Y1*H^3 */
- sp_1024_mont_sub_42(t3, t3, x, p1024_mod);
- sp_1024_mont_mul_42(t3, t3, t4, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t1, t1, p->y, p1024_mod, p1024_mp_mod);
- sp_1024_mont_sub_42(y, t3, t1, p1024_mod);
- {
- int i;
- sp_digit maskp = 0 - (q->infinity & (!p->infinity));
- sp_digit maskq = 0 - (p->infinity & (!q->infinity));
- sp_digit maskt = ~(maskp | maskq);
- sp_digit inf = (sp_digit)(p->infinity & q->infinity);
- for (i = 0; i < 42; i++) {
- r->x[i] = (p->x[i] & maskp) | (q->x[i] & maskq) |
- (x[i] & maskt);
- }
- for (i = 0; i < 42; i++) {
- r->y[i] = (p->y[i] & maskp) | (q->y[i] & maskq) |
- (y[i] & maskt);
- }
- for (i = 0; i < 42; i++) {
- r->z[i] = (p->z[i] & maskp) | (q->z[i] & maskq) |
- (z[i] & maskt);
- }
- r->z[0] |= inf;
- r->infinity = (word32)inf;
- }
- }
- }
- #if defined(FP_ECC) || !defined(WOLFSSL_SP_SMALL)
- /* Convert the projective point to affine.
- * Ordinates are in Montgomery form.
- *
- * a Point to convert.
- * t Temporary data.
- */
- static void sp_1024_proj_to_affine_42(sp_point_1024* a, sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2 * 42;
- sp_digit* tmp = t + 4 * 42;
- sp_1024_mont_inv_42(t1, a->z, tmp);
- sp_1024_mont_sqr_42(t2, t1, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t1, t2, t1, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(a->x, a->x, t2, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(a->y, a->y, t1, p1024_mod, p1024_mp_mod);
- XMEMCPY(a->z, p1024_norm_mod, sizeof(p1024_norm_mod));
- }
- /* Generate the pre-computed table of points for the base point.
- *
- * width = 8
- * 256 entries
- * 128 bits between
- *
- * a The base point.
- * table Place to store generated point data.
- * tmp Temporary data.
- * heap Heap to use for allocation.
- */
- static int sp_1024_gen_stripe_table_42(const sp_point_1024* a,
- sp_table_entry_1024* table, sp_digit* tmp, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_1024* t = NULL;
- #else
- sp_point_1024 t[3];
- #endif
- sp_point_1024* s1 = NULL;
- sp_point_1024* s2 = NULL;
- int i;
- int j;
- int err = MP_OKAY;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024) * 3, heap,
- DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- s1 = t + 1;
- s2 = t + 2;
- err = sp_1024_mod_mul_norm_42(t->x, a->x, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(t->y, a->y, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(t->z, a->z, p1024_mod);
- }
- if (err == MP_OKAY) {
- t->infinity = 0;
- sp_1024_proj_to_affine_42(t, tmp);
- XMEMCPY(s1->z, p1024_norm_mod, sizeof(p1024_norm_mod));
- s1->infinity = 0;
- XMEMCPY(s2->z, p1024_norm_mod, sizeof(p1024_norm_mod));
- s2->infinity = 0;
- /* table[0] = {0, 0, infinity} */
- XMEMSET(&table[0], 0, sizeof(sp_table_entry_1024));
- /* table[1] = Affine version of 'a' in Montgomery form */
- XMEMCPY(table[1].x, t->x, sizeof(table->x));
- XMEMCPY(table[1].y, t->y, sizeof(table->y));
- for (i=1; i<8; i++) {
- sp_1024_proj_point_dbl_n_42(t, 128, tmp);
- sp_1024_proj_to_affine_42(t, tmp);
- XMEMCPY(table[1<<i].x, t->x, sizeof(table->x));
- XMEMCPY(table[1<<i].y, t->y, sizeof(table->y));
- }
- for (i=1; i<8; i++) {
- XMEMCPY(s1->x, table[1<<i].x, sizeof(table->x));
- XMEMCPY(s1->y, table[1<<i].y, sizeof(table->y));
- for (j=(1<<i)+1; j<(1<<(i+1)); j++) {
- XMEMCPY(s2->x, table[j-(1<<i)].x, sizeof(table->x));
- XMEMCPY(s2->y, table[j-(1<<i)].y, sizeof(table->y));
- sp_1024_proj_point_add_qz1_42(t, s1, s2, tmp);
- sp_1024_proj_to_affine_42(t, tmp);
- XMEMCPY(table[j].x, t->x, sizeof(table->x));
- XMEMCPY(table[j].y, t->y, sizeof(table->y));
- }
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif /* FP_ECC | !WOLFSSL_SP_SMALL */
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Stripe implementation.
- * Pre-generated: 2^0, 2^128, ...
- * Pre-generated: products of all combinations of above.
- * 8 doubles and adds (with qz=1)
- *
- * r Resulting point.
- * k Scalar to multiply by.
- * table Pre-computed table.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_1024_ecc_mulmod_stripe_42(sp_point_1024* r, const sp_point_1024* g,
- const sp_table_entry_1024* table, const sp_digit* k, int map,
- int ct, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_1024* rt = NULL;
- sp_digit* t = NULL;
- #else
- sp_point_1024 rt[2];
- sp_digit t[2 * 42 * 37];
- #endif
- sp_point_1024* p = NULL;
- int i;
- int j;
- int y;
- int x;
- int err = MP_OKAY;
- (void)g;
- /* Constant time used for cache attack resistance implementation. */
- (void)ct;
- (void)heap;
- #ifdef WOLFSSL_SP_SMALL_STACK
- rt = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (rt == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 42 * 37, heap,
- DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = rt + 1;
- XMEMCPY(p->z, p1024_norm_mod, sizeof(p1024_norm_mod));
- XMEMCPY(rt->z, p1024_norm_mod, sizeof(p1024_norm_mod));
- y = 0;
- x = 127;
- for (j=0; j<8; j++) {
- y |= (int)(((k[x / 25] >> (x % 25)) & 1) << j);
- x += 128;
- }
- XMEMCPY(rt->x, table[y].x, sizeof(table[y].x));
- XMEMCPY(rt->y, table[y].y, sizeof(table[y].y));
- rt->infinity = !y;
- for (i=126; i>=0; i--) {
- y = 0;
- x = i;
- for (j=0; j<8; j++) {
- y |= (int)(((k[x / 25] >> (x % 25)) & 1) << j);
- x += 128;
- }
- sp_1024_proj_point_dbl_42(rt, rt, t);
- XMEMCPY(p->x, table[y].x, sizeof(table[y].x));
- XMEMCPY(p->y, table[y].y, sizeof(table[y].y));
- p->infinity = !y;
- sp_1024_proj_point_add_qz1_42(rt, rt, p, t);
- }
- if (map != 0) {
- sp_1024_map_42(r, rt, t);
- }
- else {
- XMEMCPY(r, rt, sizeof(sp_point_1024));
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- if (rt != NULL)
- XFREE(rt, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef FP_ECC
- #ifndef FP_ENTRIES
- #define FP_ENTRIES 16
- #endif
- /* Cache entry - holds precomputation tables for a point. */
- typedef struct sp_cache_1024_t {
- /* X ordinate of point that table was generated from. */
- sp_digit x[42];
- /* Y ordinate of point that table was generated from. */
- sp_digit y[42];
- /* Precomputation table for point. */
- sp_table_entry_1024 table[256];
- /* Count of entries in table. */
- uint32_t cnt;
- /* Point and table set in entry. */
- int set;
- } sp_cache_1024_t;
- /* Cache of tables. */
- static THREAD_LS_T sp_cache_1024_t sp_cache_1024[FP_ENTRIES];
- /* Index of last entry in cache. */
- static THREAD_LS_T int sp_cache_1024_last = -1;
- /* Cache has been initialized. */
- static THREAD_LS_T int sp_cache_1024_inited = 0;
- #ifndef HAVE_THREAD_LS
- static volatile int initCacheMutex_1024 = 0;
- static wolfSSL_Mutex sp_cache_1024_lock;
- #endif
- /* Get the cache entry for the point.
- *
- * g [in] Point scalar multiplying.
- * cache [out] Cache table to use.
- */
- static void sp_ecc_get_cache_1024(const sp_point_1024* g, sp_cache_1024_t** cache)
- {
- int i;
- int j;
- uint32_t least;
- if (sp_cache_1024_inited == 0) {
- for (i=0; i<FP_ENTRIES; i++) {
- sp_cache_1024[i].set = 0;
- }
- sp_cache_1024_inited = 1;
- }
- /* Compare point with those in cache. */
- for (i=0; i<FP_ENTRIES; i++) {
- if (!sp_cache_1024[i].set)
- continue;
- if (sp_1024_cmp_equal_42(g->x, sp_cache_1024[i].x) &
- sp_1024_cmp_equal_42(g->y, sp_cache_1024[i].y)) {
- sp_cache_1024[i].cnt++;
- break;
- }
- }
- /* No match. */
- if (i == FP_ENTRIES) {
- /* Find empty entry. */
- i = (sp_cache_1024_last + 1) % FP_ENTRIES;
- for (; i != sp_cache_1024_last; i=(i+1)%FP_ENTRIES) {
- if (!sp_cache_1024[i].set) {
- break;
- }
- }
- /* Evict least used. */
- if (i == sp_cache_1024_last) {
- least = sp_cache_1024[0].cnt;
- for (j=1; j<FP_ENTRIES; j++) {
- if (sp_cache_1024[j].cnt < least) {
- i = j;
- least = sp_cache_1024[i].cnt;
- }
- }
- }
- XMEMCPY(sp_cache_1024[i].x, g->x, sizeof(sp_cache_1024[i].x));
- XMEMCPY(sp_cache_1024[i].y, g->y, sizeof(sp_cache_1024[i].y));
- sp_cache_1024[i].set = 1;
- sp_cache_1024[i].cnt = 1;
- }
- *cache = &sp_cache_1024[i];
- sp_cache_1024_last = i;
- }
- #endif /* FP_ECC */
- /* Multiply the base point of P1024 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * r Resulting point.
- * g Point to multiply.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_1024_ecc_mulmod_42(sp_point_1024* r, const sp_point_1024* g,
- const sp_digit* k, int map, int ct, void* heap)
- {
- #ifndef FP_ECC
- return sp_1024_ecc_mulmod_win_add_sub_42(r, g, k, map, ct, heap);
- #else
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* tmp;
- #else
- sp_digit tmp[2 * 42 * 38];
- #endif
- sp_cache_1024_t* cache;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 42 * 38, heap, DYNAMIC_TYPE_ECC);
- if (tmp == NULL) {
- err = MEMORY_E;
- }
- #endif
- #ifndef HAVE_THREAD_LS
- if (err == MP_OKAY) {
- if (initCacheMutex_1024 == 0) {
- wc_InitMutex(&sp_cache_1024_lock);
- initCacheMutex_1024 = 1;
- }
- if (wc_LockMutex(&sp_cache_1024_lock) != 0) {
- err = BAD_MUTEX_E;
- }
- }
- #endif /* HAVE_THREAD_LS */
- if (err == MP_OKAY) {
- sp_ecc_get_cache_1024(g, &cache);
- if (cache->cnt == 2)
- sp_1024_gen_stripe_table_42(g, cache->table, tmp, heap);
- #ifndef HAVE_THREAD_LS
- wc_UnLockMutex(&sp_cache_1024_lock);
- #endif /* HAVE_THREAD_LS */
- if (cache->cnt < 2) {
- err = sp_1024_ecc_mulmod_win_add_sub_42(r, g, k, map, ct, heap);
- }
- else {
- err = sp_1024_ecc_mulmod_stripe_42(r, g, cache->table, k,
- map, ct, heap);
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- XFREE(tmp, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- #endif
- }
- #endif
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * p Point to multiply.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_1024(const mp_int* km, const ecc_point* gm, ecc_point* r,
- int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_1024* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_1024 point[1];
- sp_digit k[42];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 42, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_1024_from_mp(k, 42, km);
- sp_1024_point_from_ecc_point_42(point, gm);
- err = sp_1024_ecc_mulmod_42(point, point, k, map, 1, heap);
- }
- if (err == MP_OKAY) {
- err = sp_1024_point_to_ecc_point_42(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Multiply the base point of P1024 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * r Resulting point.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_1024_ecc_mulmod_base_42(sp_point_1024* r, const sp_digit* k,
- int map, int ct, void* heap)
- {
- /* No pre-computed values. */
- return sp_1024_ecc_mulmod_42(r, &p1024_base, k, map, ct, heap);
- }
- #ifdef WOLFSSL_SP_NONBLOCK
- static int sp_1024_ecc_mulmod_base_42_nb(sp_ecc_ctx_t* sp_ctx, sp_point_1024* r,
- const sp_digit* k, int map, int ct, void* heap)
- {
- /* No pre-computed values. */
- return sp_1024_ecc_mulmod_42_nb(sp_ctx, r, &p1024_base, k, map, ct, heap);
- }
- #endif /* WOLFSSL_SP_NONBLOCK */
- #else
- /* Striping precomputation table.
- * 8 points combined into a table of 256 points.
- * Distance of 128 between points.
- */
- static const sp_table_entry_1024 p1024_table[256] = {
- /* 0 */
- { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00 },
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
- 0x00, 0x00, 0x00, 0x00, 0x00 } },
- /* 1 */
- { { 0x0162bc2,0x03f6370,0x0a26fe7,0x0621512,0x1decc6e,0x04cec0e,
- 0x077c279,0x030bab3,0x06d3582,0x14b7514,0x17e36e6,0x0fa6e18,
- 0x0601aec,0x067ae83,0x0b92656,0x1aff1ce,0x17d3e91,0x1617394,
- 0x0a7cbd6,0x03b725b,0x19ed862,0x13ad2b3,0x12c9b21,0x0ad5582,
- 0x185df2c,0x1cc9199,0x131a84f,0x111ce9a,0x08ec11b,0x18b9ffd,
- 0x1bc4852,0x03e7f3f,0x0386a27,0x1da2750,0x0d3b039,0x0d7b363,
- 0x0ecd349,0x12946e7,0x1e02ebf,0x0d43893,0x08dfff9 },
- { 0x03c0c83,0x03a9d60,0x15d6d29,0x11579b9,0x08e69d1,0x1adb24b,
- 0x06e23dd,0x0a5c707,0x0bf58f3,0x01fca4d,0x0f05720,0x0cf37a1,
- 0x025f702,0x07f94c6,0x0fd745a,0x12edd0b,0x198c6c7,0x01fb75e,
- 0x178f86d,0x0315e88,0x0093206,0x072a732,0x19f5566,0x09fdb3c,
- 0x1283b50,0x08bd823,0x15c361d,0x0a1957f,0x1addbe4,0x145f9fa,
- 0x1291f58,0x0f19699,0x037ef30,0x0248400,0x14f1ac7,0x0e9c291,
- 0x0fcfd83,0x0b6994a,0x007cf89,0x0f7bc78,0x02aa120 } },
- /* 2 */
- { { 0x1900955,0x1b6d700,0x15b6a56,0x039d68c,0x05dc9cc,0x17f4add,
- 0x0241f9c,0x068a18f,0x1a040c3,0x0d72a23,0x0ba9ba8,0x06e0f2a,
- 0x0591191,0x1684b98,0x1fdcd0d,0x1a21ea9,0x074bda4,0x0526d80,
- 0x059101c,0x060de32,0x122cfd5,0x19c5922,0x052e7f9,0x093eec4,
- 0x0dad678,0x1720a34,0x02c3734,0x0f65343,0x1ad4928,0x18d0af0,
- 0x06ab75f,0x1b77454,0x0c63a81,0x119bccd,0x116e048,0x10026f3,
- 0x10e53bc,0x0159785,0x0ed87d0,0x0fe17e2,0x08c3eb2 },
- { 0x113696f,0x169f0f2,0x1fea692,0x1831903,0x0350ba5,0x019e898,
- 0x104d8f0,0x1783c5f,0x117a531,0x1ed3738,0x1584354,0x092035d,
- 0x0742ec6,0x14cffab,0x0fa37df,0x1a255a6,0x13e3dee,0x1f2556b,
- 0x003d37a,0x0768ca3,0x10b4d98,0x14a8179,0x064d949,0x1231aff,
- 0x199aba8,0x1cd3f13,0x19c03f1,0x1ffd096,0x1fd8c20,0x006b205,
- 0x0f5ed10,0x0ba4c83,0x1a21d21,0x110e5e1,0x110b0c9,0x06f3072,
- 0x11401e8,0x132805d,0x10c42b3,0x07c4a38,0x07bf416 } },
- /* 3 */
- { { 0x1fd589e,0x1a7c471,0x080c705,0x01bf2e9,0x1b50179,0x182a4fe,
- 0x08f8cf9,0x069a12c,0x115924f,0x0848f7f,0x196b163,0x195bf36,
- 0x0feef79,0x1fb4e16,0x1310988,0x10579a5,0x03252cd,0x0c0bec8,
- 0x17c7777,0x09e9b34,0x16bdacf,0x1aa808d,0x1418498,0x1a28193,
- 0x0490d2e,0x1694fba,0x1136da1,0x08125d1,0x0b0fcc6,0x178b3bb,
- 0x0d8897b,0x1be2d5d,0x08c01e9,0x1ec1507,0x1d0612e,0x0ec506c,
- 0x0956e33,0x1aba714,0x1fc1dd5,0x18ce0b4,0x09871ed },
- { 0x16535f7,0x1bb6abb,0x0ee2f42,0x044c6b6,0x1214d60,0x10b7b22,
- 0x16b6674,0x0eb8184,0x15515bf,0x0a6f9d3,0x1c59d7f,0x0b78bd3,
- 0x0724a62,0x003439f,0x0d7bedd,0x0b89478,0x033bb2e,0x177ae4d,
- 0x01ac662,0x0366bd0,0x10eda97,0x12d1e34,0x07d7032,0x03c4683,
- 0x1dd898e,0x0f2546a,0x1a556b6,0x19d9799,0x0d34164,0x0203924,
- 0x1b8bb3d,0x08b815e,0x0bb3811,0x007ff8d,0x1a0871e,0x0e7e97d,
- 0x0272ed5,0x06fbb46,0x0deb745,0x0146e2c,0x0397ed1 } },
- /* 4 */
- { { 0x15c2a27,0x105d93a,0x11133cf,0x12b2b0b,0x138e42f,0x142f306,
- 0x0f83c64,0x01e8d62,0x076273d,0x1f66860,0x115a6b0,0x010a327,
- 0x0a7800f,0x01a8c0c,0x139d2ad,0x06c77e0,0x0388496,0x1492c55,
- 0x032253f,0x0cc2f97,0x09a0845,0x15157cb,0x02f18aa,0x08cd1b3,
- 0x0280b5a,0x07d3361,0x1aa64bd,0x193beb1,0x001e99b,0x1bec9fa,
- 0x03976c2,0x1898718,0x0614fe1,0x0fb59f0,0x1470b33,0x11aa622,
- 0x0143b61,0x1abaf67,0x0629071,0x10bbf27,0x0402479 },
- { 0x1055746,0x128bc47,0x1b83ee8,0x001563c,0x05ba004,0x14934be,
- 0x053eeb0,0x081c363,0x15b4f47,0x18a908c,0x1ee951d,0x03a1376,
- 0x0425009,0x1cd09cd,0x19d2186,0x154fcf4,0x1b3f353,0x15d4209,
- 0x110f3bb,0x0ee3244,0x1bd0afe,0x1b1c23d,0x0511a34,0x149285a,
- 0x19ff63d,0x02b30fb,0x075096d,0x0ac7438,0x1f46301,0x07e6baf,
- 0x124f09c,0x1d65005,0x0072090,0x0380221,0x172f217,0x08d1e19,
- 0x1a032e7,0x01b97df,0x0760329,0x1cd916f,0x01a6fd1 } },
- /* 5 */
- { { 0x15116a3,0x1480d46,0x11fe59e,0x0965ebe,0x0b84439,0x15d79d8,
- 0x1514983,0x019c735,0x160ccfc,0x10df30b,0x1d4fc87,0x07a5987,
- 0x16ac07e,0x0f688dd,0x00e3838,0x16185bb,0x1071c15,0x022a3a9,
- 0x083f96e,0x1a8e912,0x096d70d,0x16f238c,0x06882f8,0x04ed8f8,
- 0x1ad8a59,0x1039e1f,0x0f221bb,0x04d4398,0x031ac40,0x179bb74,
- 0x1967f6d,0x158a03a,0x0a35d1a,0x142ba13,0x0415036,0x0a15d31,
- 0x0bd734e,0x0ef0525,0x11d4197,0x1b82ac2,0x029b7d4 },
- { 0x1f4e20b,0x1e165e5,0x131512c,0x1eb1988,0x1c3f548,0x06560f8,
- 0x06d516c,0x0427301,0x100f806,0x007815a,0x0417803,0x11200cd,
- 0x0ce612b,0x01a80c4,0x0563b5e,0x0ed651e,0x0583f55,0x0600ee2,
- 0x11524b8,0x0064e54,0x0443298,0x1d07fc9,0x1de9588,0x1a1b882,
- 0x02b0029,0x03d6895,0x049e03a,0x0824a8b,0x13f272b,0x1c8186a,
- 0x0347af3,0x048603d,0x0e6ea40,0x083cc5d,0x1cbe8df,0x183cbe7,
- 0x02b4126,0x0161881,0x125fa4d,0x004a704,0x05d0928 } },
- /* 6 */
- { { 0x12f780d,0x115bf7f,0x0c7560e,0x01afaed,0x14d2682,0x1ba5761,
- 0x0a11e1b,0x1d7c786,0x010823f,0x1ea1109,0x19efd03,0x02fdf6b,
- 0x0d227e4,0x12b47c6,0x03526da,0x177d8a2,0x1d61781,0x1a9de73,
- 0x1cdc62d,0x1c7e445,0x0c1f9cf,0x0fecef3,0x1fd13a2,0x15936aa,
- 0x0553f3f,0x05e78e6,0x1b9bcc0,0x1a5a108,0x0ae6b19,0x01514f8,
- 0x1825db2,0x0497177,0x03dbf5e,0x12d53f3,0x1d165ce,0x0e9958f,
- 0x04dd33c,0x15b11bc,0x1b9771b,0x068285f,0x00a26e4 },
- { 0x0aa9a08,0x099cfd6,0x1386020,0x0aa48dd,0x00f3110,0x1c9ba3a,
- 0x005c184,0x1c31259,0x1242f02,0x0c6a081,0x17a62a3,0x1a4076b,
- 0x12482bf,0x0d5df4a,0x1be51ad,0x1049313,0x0b93769,0x15c690c,
- 0x1985f1e,0x0d1d12c,0x0b91d52,0x08c5be9,0x058b9d5,0x11acf87,
- 0x07973fe,0x028962e,0x08ac05f,0x05c62a1,0x0294694,0x0f5e60d,
- 0x00dbd39,0x0a638e1,0x19910ce,0x1cf2851,0x1ad2dde,0x015e9ed,
- 0x1a120ad,0x05d8bae,0x0dbb1a3,0x0c3724c,0x019497c } },
- /* 7 */
- { { 0x17659a8,0x0586320,0x03fda48,0x0f25965,0x077ab9c,0x03bcbfe,
- 0x1c602da,0x0c6ab6c,0x1e77593,0x057ac60,0x06c6193,0x1b6caac,
- 0x065155b,0x1c07a4a,0x1938d55,0x116405c,0x1b7229a,0x0758564,
- 0x15c6f58,0x129af04,0x18f9885,0x1cf1fd3,0x1773024,0x185a6f2,
- 0x148302a,0x0223dc5,0x02e43c5,0x00bf7ec,0x04b3c15,0x07409e7,
- 0x062b184,0x1ab36b8,0x1a4f27a,0x101111c,0x05cdf3a,0x16bf467,
- 0x0dff1c7,0x1c3985c,0x1de9b95,0x116a2f7,0x096b91b },
- { 0x0ac087c,0x0c8fa4d,0x0a3706a,0x1cd9fb6,0x0e62f74,0x1b006b6,
- 0x1fe697d,0x19211ad,0x0f917f9,0x1c0e682,0x14b6ff5,0x0bec7bc,
- 0x007796f,0x176b90c,0x16d9380,0x026fbcf,0x0f66fa4,0x107843b,
- 0x1287dc5,0x03dcc87,0x18a3327,0x0c3e255,0x12e6c81,0x090208f,
- 0x1710739,0x01be5d0,0x1566317,0x1f34321,0x00e125d,0x1395379,
- 0x0b432db,0x1e9e520,0x1142204,0x16e7dd1,0x12e5f38,0x0285a51,
- 0x03d3c35,0x130dc55,0x092777c,0x02b9ff8,0x073f3d3 } },
- /* 8 */
- { { 0x0fd3673,0x142adf3,0x0ded761,0x1f3a429,0x109b70a,0x0236699,
- 0x0be4373,0x1bd1a66,0x1595510,0x0a9e00a,0x0494739,0x012c718,
- 0x095746a,0x02e60de,0x1f3a96e,0x1751f9a,0x068002e,0x027fd0a,
- 0x0bf35df,0x0796e04,0x05e310a,0x1de2750,0x0da6677,0x1f4eadd,
- 0x1a0d04e,0x1ec19ba,0x1b73b57,0x1b204f3,0x1fd56e4,0x1201928,
- 0x1c52064,0x105498b,0x07633a4,0x0082df4,0x04c06cd,0x1062e1a,
- 0x1247e57,0x0cc587b,0x087ea4e,0x0c886d7,0x088934f },
- { 0x113eabc,0x1a1d823,0x145fc27,0x03599b8,0x0ca7dd9,0x09e53e2,
- 0x098efbc,0x0964fb5,0x0258818,0x1972d3d,0x1709a62,0x0c25b2b,
- 0x0c0a8cb,0x10f978a,0x1a5d68b,0x126b868,0x0ede172,0x18f94dc,
- 0x102f078,0x17fadda,0x03dac3c,0x1f89931,0x14fd1ac,0x016ed03,
- 0x1be6dfb,0x1a2608a,0x155b690,0x1c63868,0x043d985,0x1f8c547,
- 0x1aa9f18,0x097bb69,0x1cb2083,0x07ac62a,0x10e1295,0x1362d41,
- 0x06fd69d,0x1566512,0x12385d3,0x1762a6a,0x00d1898 } },
- /* 9 */
- { { 0x15ef043,0x19a30f1,0x15913a9,0x12692d6,0x107b67d,0x1c1d1e0,
- 0x05cef43,0x06bac58,0x051d29c,0x16a581c,0x070693e,0x1054e36,
- 0x1e3f428,0x0a5a1dc,0x0af3d99,0x1ea86ba,0x1aa2abd,0x0e3bd8a,
- 0x0af8f70,0x071501b,0x073b5cb,0x175240b,0x057f682,0x1721d7c,
- 0x16b4de7,0x1ec434c,0x14af23c,0x09f0fc4,0x04e4248,0x01eb1be,
- 0x162b7b4,0x1af4f5f,0x1ede666,0x05c9d72,0x168a873,0x0301bb2,
- 0x06fba39,0x0e7e92a,0x0b98295,0x1b88df0,0x02bdab1 },
- { 0x06fed61,0x0f115fd,0x0539e93,0x0b991bb,0x0a458aa,0x09117ae,
- 0x0b7c41c,0x0ee7c6e,0x1e5aff3,0x1525a27,0x0e39b41,0x174e94e,
- 0x16bc2d0,0x0f98f89,0x11c3875,0x1522234,0x13ae102,0x0bbffc9,
- 0x0431e21,0x1014a06,0x05ac8b3,0x143c1fe,0x07cf008,0x0e4ba0d,
- 0x0892544,0x110f633,0x196b210,0x0f1e1c2,0x1a6e8a8,0x18d7e7e,
- 0x0ea68eb,0x0f19a55,0x183ed37,0x0875700,0x158209b,0x0a659b7,
- 0x0bee641,0x11a330e,0x00482cc,0x1257382,0x0353eb8 } },
- /* 10 */
- { { 0x0b5521e,0x0e56b08,0x0bc323f,0x00a5ce0,0x1a11b44,0x1ed24e0,
- 0x1a0363f,0x15ac604,0x0cbf36b,0x0dcb2a5,0x028b5f3,0x1c22982,
- 0x007b58c,0x131873f,0x1747df7,0x150263c,0x17d6760,0x1c65f1e,
- 0x12035df,0x0b0cd6c,0x0219eb3,0x19bf81b,0x161ca33,0x1514eae,
- 0x065ed42,0x0386eac,0x1641a8a,0x107e3e3,0x1f906b2,0x1fd2528,
- 0x0a1e788,0x0a87641,0x0ac6e83,0x13baa79,0x0de6e07,0x1c9e16c,
- 0x040016e,0x1de06a4,0x0d9f55f,0x0e3cc43,0x08da207 },
- { 0x0ce65ec,0x0a80276,0x0178f21,0x1f6e903,0x16d10d1,0x1cbd693,
- 0x1ef29e1,0x15ac97c,0x077e54a,0x1a226d8,0x17c3fd0,0x01937c1,
- 0x0417b6b,0x02a8435,0x11095b0,0x1ab471f,0x03bfd74,0x07ca962,
- 0x0713b6e,0x1c00b40,0x0328501,0x1e252bf,0x1545cb7,0x0baddc7,
- 0x0ce4e53,0x08c6da0,0x1031942,0x15de3cb,0x1561fcb,0x02f3c2b,
- 0x11ba145,0x0694449,0x068536a,0x0705172,0x089c3b0,0x18d351c,
- 0x042b03f,0x1a91239,0x0f57ecf,0x1c5877d,0x0862f55 } },
- /* 11 */
- { { 0x06049fe,0x11c8791,0x07ecb5a,0x11b9779,0x0c92a57,0x11a7dbe,
- 0x1b2925d,0x1274a5f,0x03dea58,0x19a065b,0x07a458a,0x0714549,
- 0x13a39f3,0x0a4f20f,0x0cb7cf6,0x0fc804d,0x0db065a,0x1638e3e,
- 0x1a0a068,0x1709408,0x0eca4a9,0x01b98f7,0x18fbad4,0x1976e4a,
- 0x0913476,0x1c67368,0x06e5299,0x19f2f35,0x0fd9f10,0x061dc04,
- 0x0e6d136,0x1c15f8b,0x00da613,0x0df34f3,0x1f78fa9,0x1ea5b9c,
- 0x1c1ee74,0x0eb4326,0x01e40e9,0x1227790,0x071ab28 },
- { 0x15b60ad,0x0c7e21d,0x06133d8,0x0094186,0x0afb5e3,0x0019810,
- 0x00732f1,0x0cda447,0x1db1c0c,0x1e7c4a9,0x04aa34c,0x1c9b4c2,
- 0x069c994,0x08cb3d4,0x0ab8b0f,0x19a53af,0x0935b7a,0x1e146aa,
- 0x12695fe,0x0b7a26d,0x07f9807,0x1f4e421,0x12700dc,0x0644beb,
- 0x0a18d19,0x0c6165e,0x0d10b00,0x06eefa2,0x13a7277,0x16a3fdd,
- 0x063af97,0x032c5b8,0x0437d49,0x0440338,0x1824b70,0x19e7383,
- 0x15fff35,0x14e37b8,0x029940f,0x16cbc6c,0x08d087b } },
- /* 12 */
- { { 0x1dc1844,0x091811f,0x115af88,0x1e20bd5,0x0eca27e,0x1451a43,
- 0x0981bc5,0x1964307,0x1e1d7a4,0x0afc03e,0x1750f8a,0x0c64fde,
- 0x077246a,0x03b812e,0x050c817,0x09c7d5c,0x1caf348,0x0a5efe3,
- 0x1d4b01d,0x07312bb,0x0ac0ec9,0x1b6bd4e,0x00b9957,0x15dbb61,
- 0x1fe208b,0x198cc2e,0x1149f79,0x13902fc,0x1de1ea7,0x07de189,
- 0x0ecc338,0x1989ed9,0x1f95b89,0x19066ce,0x1c7bd6e,0x03e55db,
- 0x1a8cfb0,0x0f05448,0x0dfb3f0,0x094c7db,0x0225ed3 },
- { 0x0bb1a85,0x18aa6dd,0x1968f84,0x0e3cd4a,0x13d8dae,0x058807e,
- 0x1f55aad,0x035a642,0x0ebc78e,0x026c9a7,0x1cf4df5,0x043691c,
- 0x0b02153,0x100f21e,0x1242fe8,0x0120b77,0x1d02750,0x09e11f8,
- 0x019a468,0x1ca0019,0x041c2a2,0x093032c,0x022caeb,0x004d6c0,
- 0x01caf30,0x1308aea,0x1149db3,0x0e2585e,0x132ffb1,0x01f38ac,
- 0x1c80713,0x0d4e995,0x094e13d,0x09bd23c,0x177c301,0x1c05ade,
- 0x02b1c97,0x1dbb016,0x1f1eea3,0x1cba110,0x0612b60 } },
- /* 13 */
- { { 0x0245d6b,0x04ae7dd,0x1fdbbf5,0x0f459c7,0x1cf0cbb,0x1aff772,
- 0x0ab037f,0x14649b4,0x0cf28c6,0x0648a7c,0x0295ae4,0x0a1a861,
- 0x1472fdb,0x09eb901,0x16fdde4,0x193d207,0x091822a,0x0e7d2f6,
- 0x0ba8fa0,0x1ce7907,0x11390dd,0x1133144,0x1516ea5,0x0d597a6,
- 0x1648bca,0x01d5297,0x1a6281a,0x1ede4ed,0x18ed52f,0x09d651b,
- 0x16494db,0x110b583,0x13c2c54,0x042539a,0x0b6802f,0x0f95fea,
- 0x1768416,0x18fc0e1,0x061b8e5,0x1c3a5af,0x00f7334 },
- { 0x196067e,0x1ae41b2,0x001abee,0x1271833,0x13e54e1,0x0586e61,
- 0x1659ce7,0x1f3050b,0x1424035,0x1a9fa1e,0x1e4254a,0x03f1bfd,
- 0x1a38c53,0x0d87ab8,0x1efa393,0x14f0f21,0x0d2a39c,0x04d060f,
- 0x01bc988,0x1983acc,0x0b4a2fe,0x18b95be,0x0772242,0x176f0d1,
- 0x0a6fbcc,0x124e19e,0x0bf9cfb,0x0362210,0x166c48d,0x1e8bfe5,
- 0x1cd642d,0x10dc28a,0x156b0a6,0x156c2c9,0x0b1014f,0x16ebad0,
- 0x054d30f,0x172afd6,0x1a526ca,0x0e5f15d,0x067636a } },
- /* 14 */
- { { 0x11d6bea,0x031de5c,0x0e598e0,0x1d247d9,0x0e263a2,0x13d6535,
- 0x0264b18,0x0fd3af6,0x077af9e,0x176800d,0x0bfaef1,0x199e495,
- 0x109214a,0x1c02ad4,0x1592e59,0x0933b46,0x11ce027,0x0804ccd,
- 0x11a81a9,0x0749c3c,0x0fe7e41,0x1b1728f,0x081744f,0x150877d,
- 0x07d349b,0x0cf1af4,0x14c60c5,0x14c6704,0x0019230,0x145d2a3,
- 0x1c9808f,0x16ffa39,0x1107721,0x17ea9cd,0x10aff7c,0x108d6aa,
- 0x1c18af3,0x0a7a7c0,0x02596cc,0x0ecc159,0x0086f98 },
- { 0x0bb9850,0x00caa46,0x1231d9c,0x01441a5,0x0210b73,0x1ab3863,
- 0x1415d4c,0x1d48109,0x10324ba,0x166e2ca,0x1ba6d0f,0x0be58ed,
- 0x04607fc,0x0207fd3,0x04f403d,0x08c79e7,0x1962dc1,0x1f0088b,
- 0x11dc979,0x1704a33,0x1186f00,0x1b2de8e,0x0d7981c,0x1ee5558,
- 0x0554c2c,0x0bef9ec,0x1bbe8d2,0x09ba1fb,0x06ad11b,0x13467b2,
- 0x0b75c48,0x13ef71d,0x1c20afb,0x16ff283,0x0753f01,0x14c612d,
- 0x1245549,0x1bef8e3,0x1a041da,0x007cc35,0x0681f94 } },
- /* 15 */
- { { 0x1a0623b,0x0a8b1e4,0x0351f2b,0x0ecff57,0x1bf8295,0x17be3e6,
- 0x0c3b206,0x1845995,0x0e966d5,0x14f1c64,0x1390711,0x1aa5e1a,
- 0x1c34430,0x12959ac,0x181d68a,0x0024e84,0x1e333bd,0x09216e9,
- 0x1fb48d0,0x07ec6b3,0x0ffacda,0x186bea9,0x137ccdc,0x08187de,
- 0x156f076,0x0be2fff,0x106ef79,0x0f07843,0x0bb3364,0x051575c,
- 0x01761e1,0x1d5a108,0x0c7c533,0x115ea0f,0x108fe6d,0x1e96fe2,
- 0x1075d4a,0x018a2e3,0x1642955,0x09574c0,0x00c9de9 },
- { 0x1d5682b,0x1939aca,0x1bb63b5,0x065d84e,0x111c428,0x1b50693,
- 0x0bb562c,0x11fa3e9,0x08498a8,0x155a062,0x03d1458,0x18c4890,
- 0x0258c8f,0x1bce7ff,0x123292e,0x06b3b17,0x03c701a,0x0c855ac,
- 0x1f57457,0x0634e67,0x133caee,0x1de4891,0x00a9565,0x187c784,
- 0x1cae4b6,0x044080c,0x10a64e0,0x0a26085,0x1c8199e,0x141efa3,
- 0x0483800,0x1e5401d,0x0d68e58,0x0d71dc8,0x1d069dd,0x04d3c5b,
- 0x071c30b,0x097652c,0x18e5ae3,0x01d763b,0x0733dca } },
- /* 16 */
- { { 0x159213a,0x04ae825,0x003bd6d,0x131ae04,0x0a67203,0x13b8e0e,
- 0x02698ad,0x1969796,0x02b9eb0,0x156f76a,0x0e88489,0x0ea919b,
- 0x11eb544,0x1844486,0x06aff37,0x08d681c,0x163698e,0x029284c,
- 0x0ba704e,0x1fe1610,0x1a71e1b,0x06a884c,0x0862793,0x172398f,
- 0x0c9bcc9,0x05f11b0,0x104dfb1,0x17a9afb,0x119f6e9,0x1290e8a,
- 0x00f40d5,0x19f064a,0x15f6d78,0x1515a5f,0x00c637b,0x19c8602,
- 0x0f4c319,0x09924a7,0x09f5f0c,0x08e1e3f,0x02ab3bd },
- { 0x02c9fbb,0x1db4049,0x1b455d4,0x101e2d8,0x069e7dc,0x00b77e4,
- 0x144d6eb,0x1370688,0x0846d1d,0x19351da,0x18b0850,0x1dc765a,
- 0x15b517f,0x0594956,0x016be88,0x15826d2,0x11a2cad,0x0952b89,
- 0x0f6f2a3,0x009b1fd,0x1fb2cd9,0x179f9b2,0x17fb6a1,0x0fd5439,
- 0x1b208dc,0x1e0384b,0x129179d,0x1346b50,0x1d118e8,0x031667a,
- 0x1a105e8,0x03edd33,0x00c04a8,0x1043e9e,0x12c2e9e,0x05888e0,
- 0x1ea22ad,0x0513e89,0x148a5be,0x02c984f,0x093a4b4 } },
- /* 17 */
- { { 0x11efb7a,0x18de08f,0x1037509,0x0c67f99,0x0e4e68e,0x0fa8545,
- 0x123c6c4,0x1133b37,0x1af0760,0x0181cc7,0x14380d5,0x05f6887,
- 0x0145e24,0x1b71ea6,0x1b09467,0x15a12e7,0x190ba9b,0x1d5b87b,
- 0x06b7443,0x0255abf,0x02b4de6,0x070a74a,0x0e0df95,0x1716d15,
- 0x056d3dd,0x0040bad,0x106b0a9,0x10b6467,0x080f94e,0x1618786,
- 0x1e7e3fd,0x1131b69,0x17f3fb7,0x1ee6ea5,0x113d169,0x0b458c0,
- 0x1e3d389,0x15d97b7,0x1dd8fce,0x1ae65dc,0x0342ce0 },
- { 0x1491b1f,0x109ca67,0x0e57ac9,0x0e3213c,0x1caaeed,0x126df56,
- 0x0156a7f,0x09bb988,0x1493d60,0x1d3308e,0x17afbc5,0x147439c,
- 0x15ba445,0x11cc4e5,0x0b8a163,0x1080dd0,0x08283f5,0x0dcb7a1,
- 0x055b3d5,0x0ef7334,0x0a0e998,0x13270b3,0x0be41a9,0x12eda27,
- 0x1d353b2,0x100e750,0x1cdb186,0x1f82de4,0x155d86e,0x0219d87,
- 0x0076c13,0x11d6698,0x0b4b269,0x101401e,0x1de0ab9,0x0a71a0f,
- 0x03be3ec,0x161de5a,0x1f4810e,0x1e7c2ad,0x0455f4a } },
- /* 18 */
- { { 0x14ec21c,0x1f9313a,0x08e3015,0x13c7437,0x1eacd4c,0x160ff49,
- 0x0434445,0x16c7404,0x0eacc8a,0x075274a,0x1ccb2b9,0x1935d4d,
- 0x0e31c00,0x035cbae,0x0d88e76,0x143d2b9,0x18ca14e,0x1b2a6ae,
- 0x019ff22,0x1a63e8a,0x1ecb230,0x05b1aaf,0x122ee43,0x02e5d1c,
- 0x01ecedc,0x19bbc7c,0x032c019,0x1107015,0x02d0122,0x1700f0b,
- 0x17066c0,0x18b5e28,0x0087a06,0x0e1aa07,0x02dedcb,0x0de09b9,
- 0x0de3c06,0x07790a4,0x07edfdc,0x0862601,0x04f1482 },
- { 0x02055e2,0x027e737,0x019d780,0x150d864,0x09e247e,0x0ed5514,
- 0x0f6557e,0x0769d79,0x1ceb7f6,0x0af9097,0x1e12834,0x183f0c6,
- 0x115ecc5,0x1abb012,0x0ce002d,0x052a8a7,0x1c38a6a,0x0f5c980,
- 0x04f3746,0x0d74314,0x0d240f1,0x08c43e1,0x00c4f49,0x12827ed,
- 0x035859a,0x1e2fcc9,0x1bf8ff5,0x04680bc,0x00ee054,0x159a0b7,
- 0x0c19e2b,0x07f5b55,0x13be7bb,0x022388f,0x08b20a2,0x0cf203f,
- 0x0d662ff,0x086d982,0x05c2f25,0x1a87802,0x074d5d2 } },
- /* 19 */
- { { 0x15bfe11,0x016e015,0x079e8c0,0x1aa5a64,0x0733410,0x1cdd448,
- 0x03d9659,0x0dc2b24,0x0685b23,0x112460a,0x1d81003,0x0b2868d,
- 0x108cfab,0x00638bf,0x15ebedd,0x08aed3e,0x08c6604,0x186dd59,
- 0x1370c91,0x0132d13,0x0d050fa,0x1161187,0x10780ab,0x0b7dee8,
- 0x01554e4,0x1b786cb,0x0b3935e,0x0d11530,0x02d22e9,0x1d63af3,
- 0x0a3eb7b,0x17a5974,0x11512a6,0x03a4fd7,0x198af9f,0x16f10d1,
- 0x0e9f5a6,0x0246c0d,0x1e8a620,0x0858b0a,0x06b1a54 },
- { 0x1242066,0x15cd6a1,0x0aba7d6,0x0a59994,0x0afef1b,0x076e270,
- 0x0fb1e62,0x1ab6368,0x10341b0,0x0860078,0x0aacdc3,0x11ef6a1,
- 0x194d68b,0x19d3254,0x03939bf,0x0d09d35,0x0fb7f1a,0x00cc19c,
- 0x14683d7,0x01ce906,0x05158bc,0x06ed622,0x0b2b3cb,0x13feed6,
- 0x139995e,0x02ae0a6,0x1c58e4c,0x0940367,0x0d83765,0x1752c44,
- 0x0c5ab0f,0x0e464ef,0x04d9a9a,0x0dddfdc,0x1a47847,0x1132264,
- 0x0bb6717,0x1b8bd75,0x12b2165,0x04d1762,0x04c2135 } },
- /* 20 */
- { { 0x1532833,0x1f0534a,0x019cb9b,0x1dac4da,0x0bca228,0x0f39ded,
- 0x1cf6592,0x018455d,0x0f03c4c,0x041d43d,0x1a6d148,0x0eba6a2,
- 0x09e954e,0x1a28354,0x1d427b9,0x19f20ae,0x16e2aea,0x0a4e593,
- 0x09027e4,0x0ebaeff,0x16b9082,0x1ef85de,0x187adbc,0x0264e08,
- 0x002cbe4,0x058ca41,0x06c7126,0x0be7f84,0x1fee593,0x05d41b0,
- 0x1cddb1a,0x0a1c0a3,0x18cbbd9,0x1382150,0x01e4c63,0x1647095,
- 0x00dd1e8,0x155f56c,0x10cd0a4,0x052b86f,0x065713c },
- { 0x0b77b9a,0x05474e7,0x11a7733,0x0e476d2,0x0f97e72,0x0eb5941,
- 0x0fb9a80,0x1fd8ed5,0x15abecd,0x092901e,0x0435c0e,0x0104525,
- 0x1889448,0x1818a21,0x04c5092,0x08f87f3,0x1f17cd4,0x182104e,
- 0x0157209,0x1e40b39,0x00697c6,0x112b607,0x165f5e1,0x05b2989,
- 0x1b6fe41,0x0eead4e,0x0665310,0x134c8b2,0x1e21a31,0x0550e44,
- 0x03848d2,0x18d407e,0x0904b50,0x17f566b,0x055a985,0x16ab82a,
- 0x1cc7693,0x1b68dab,0x0f0e138,0x0d8775c,0x06b0e99 } },
- /* 21 */
- { { 0x0eced00,0x04fd5e6,0x0998c9e,0x15cb6f5,0x1237e71,0x0f5e6f9,
- 0x189a4b7,0x11f0f65,0x0b61dad,0x1922890,0x1e00f2d,0x1c91a6b,
- 0x0de11e5,0x0c72878,0x137d75e,0x15725f6,0x0b4bcd2,0x0b07734,
- 0x138cd8f,0x165eb83,0x064798a,0x0d3e6a1,0x056e8e7,0x1e9f67e,
- 0x172eb83,0x06d8d32,0x0395bc2,0x1eefbd1,0x0562c20,0x1b0f0b9,
- 0x1d05d0d,0x114b1e1,0x0349ff8,0x0eb715f,0x1c6e134,0x09c09b4,
- 0x1e9ff3b,0x0781a14,0x08fe0da,0x00acf04,0x04022a2 },
- { 0x1847375,0x1de82c1,0x0bc149e,0x047e8a3,0x1ae56b6,0x163f8c1,
- 0x1c9352c,0x11ac331,0x14525b9,0x1191fad,0x0212d7b,0x07341c1,
- 0x16a9d8d,0x1d8963b,0x0175fdb,0x182a9a0,0x03e708b,0x06b8e24,
- 0x109506f,0x0dfa50e,0x1ddb8ca,0x06fc1cb,0x02bcf73,0x199e486,
- 0x131253e,0x1c6dc06,0x0163606,0x0e87421,0x191f68c,0x1590b89,
- 0x1fcfd23,0x06776ca,0x13aff88,0x03f18a4,0x15981f9,0x0c3a2bd,
- 0x008279f,0x0acd88f,0x0a55840,0x196494d,0x0312179 } },
- /* 22 */
- { { 0x1615ac2,0x061e503,0x1606a53,0x082435a,0x05865e6,0x0c35bcc,
- 0x185be9e,0x03b5c8e,0x19d5e0f,0x0ad2075,0x115fa8e,0x04c87b2,
- 0x19a9143,0x1d1432e,0x19b5a8f,0x15d191b,0x1961014,0x183b8ed,
- 0x1daa1f2,0x0f99cd2,0x0f6077a,0x108a1d0,0x09f790b,0x127b269,
- 0x1cc09d9,0x01ef101,0x0e63b13,0x04030d2,0x05df4b9,0x036c1d1,
- 0x1af5dd5,0x0c5605a,0x0d9eb47,0x138c485,0x0823416,0x17f555e,
- 0x031221b,0x1c0c0fa,0x047a948,0x0f0e66a,0x0417d6c },
- { 0x091e9a8,0x0c0db87,0x1accf2f,0x1186e1a,0x1334041,0x1511b9b,
- 0x0c42a3a,0x0ad04bb,0x06c7d67,0x19584f2,0x0cf7b63,0x1d37298,
- 0x1be288e,0x0b4af1f,0x0109aec,0x1d1119b,0x086dce9,0x1530bb6,
- 0x05978d8,0x191244c,0x1b093f4,0x0fb031f,0x1453904,0x1f3c098,
- 0x1ac20c8,0x0b0b483,0x137f4ab,0x1dee8d3,0x12199ac,0x1d72422,
- 0x18ae8c2,0x0255868,0x0681293,0x0a41698,0x01cf24b,0x0a0237d,
- 0x0833099,0x065fc4f,0x0282bfd,0x0a5a28e,0x002189d } },
- /* 23 */
- { { 0x0599c69,0x00ceec9,0x0b29cf9,0x16ffd86,0x1b94221,0x1dfdfea,
- 0x06f4826,0x0b7657f,0x063ed89,0x0f54bd2,0x01bde58,0x08d67e9,
- 0x1966091,0x1e8a0d1,0x071e817,0x0826b7a,0x0cf83d6,0x1e3cf64,
- 0x020d41e,0x1fa85f3,0x10277f8,0x1b8bd9e,0x0bf2d4e,0x194b443,
- 0x18dcd67,0x1c34332,0x1334525,0x0d4d815,0x195067a,0x0b871a5,
- 0x0305bcf,0x1be892b,0x11208e3,0x001091b,0x139bb0a,0x03a5bac,
- 0x10782c7,0x1962559,0x1dbe8ce,0x17aa422,0x07bbf8a },
- { 0x18b981a,0x12557d3,0x00a2fa7,0x0c609d9,0x188b4e3,0x0cef51b,
- 0x13ce4e5,0x18e188b,0x1240b39,0x054dee9,0x00edf5c,0x0fba507,
- 0x06499cd,0x183d081,0x1a42cb8,0x1e36660,0x198ee92,0x011316a,
- 0x11c9692,0x1aefbd6,0x0a0ec62,0x1e3de1d,0x085bc96,0x0bdeff5,
- 0x18b65d1,0x147b16e,0x142e5b5,0x12f2443,0x0f1906d,0x02e1d00,
- 0x102e4a2,0x1d6e98e,0x0476b9b,0x1b1117d,0x0ed71d5,0x1e42fbb,
- 0x1788504,0x1c16182,0x1c5af09,0x0d9f024,0x0860d09 } },
- /* 24 */
- { { 0x179bbf9,0x019bea6,0x1e03faf,0x10d3ee9,0x1d53eab,0x0826a9a,
- 0x08254cc,0x12ffe6d,0x0196f8b,0x15c106d,0x19a424a,0x1a3eeb9,
- 0x14961d3,0x02341ba,0x05fb010,0x1973763,0x1bf93a6,0x1d34670,
- 0x17c0868,0x08adff8,0x1fdb503,0x18c4a07,0x0d428b6,0x0008413,
- 0x10f8fef,0x03abbe2,0x1c12596,0x0c6ba2e,0x18770ad,0x136cc5d,
- 0x0f9c95d,0x140f1ca,0x019b028,0x041bc47,0x132be7f,0x006c9a9,
- 0x10dd39a,0x1efa08f,0x1e48068,0x084075b,0x07e80e4 },
- { 0x19a1ddf,0x1c52ba9,0x15892d7,0x1ddc90c,0x1248e7a,0x1010f0e,
- 0x1247605,0x18838f6,0x1fd36d2,0x13dc38d,0x100364b,0x0a0815d,
- 0x13da38b,0x10c9f8d,0x009d849,0x0f1ade5,0x086fb1f,0x1b4e1ff,
- 0x009eb0c,0x116f0dd,0x08f756c,0x039a43e,0x05a1fdb,0x1bdcb78,
- 0x1221719,0x00c55c7,0x1ffce65,0x09d08e7,0x027c800,0x000a548,
- 0x0a3ce13,0x1543a5c,0x167be9a,0x0f778cc,0x1b4f819,0x190d2d0,
- 0x07bd837,0x1e35846,0x1618dcd,0x1a33d17,0x05dcab5 } },
- /* 25 */
- { { 0x07d772b,0x0141d4d,0x166c1e1,0x0bca812,0x0b49e52,0x00a55ab,
- 0x0c02219,0x152a8d7,0x09d74b2,0x02240b1,0x0c2c6f5,0x015a407,
- 0x0b26789,0x0469fc3,0x1ea0af3,0x1078e3c,0x1b5d85a,0x189a95f,
- 0x0b41f33,0x1e2dc7f,0x043ff29,0x1c20f06,0x100a98e,0x06f3fdf,
- 0x122c56b,0x1934827,0x0ec4913,0x13b14ca,0x08bdea1,0x1b6f9d1,
- 0x13998d6,0x1eda8ab,0x0b68851,0x19b9a8c,0x006273f,0x16e9585,
- 0x0b2cbda,0x007cefc,0x15262b5,0x13d5b93,0x008cc2d },
- { 0x170c84b,0x1343360,0x1210b9a,0x16b4934,0x1b989e8,0x0644c95,
- 0x0038341,0x046f61c,0x061b3a4,0x0d69a3c,0x0062655,0x08a161a,
- 0x133c952,0x1188065,0x0488557,0x0eda1c7,0x16ef032,0x18c932d,
- 0x1b50ad4,0x10b2b4e,0x13b60fe,0x107e31a,0x02a5b7b,0x0df127c,
- 0x00dc824,0x05d3b0f,0x1bc29d3,0x1d92057,0x1fad9b4,0x03421fe,
- 0x1d58402,0x09fb6d2,0x16a60e4,0x1ac852e,0x0b21fbd,0x0e7ea75,
- 0x12870a3,0x0f35f00,0x156c34a,0x182ab54,0x0991fad } },
- /* 26 */
- { { 0x0844ffe,0x02587da,0x01c60af,0x08c1f17,0x1392271,0x11f8f9b,
- 0x0038933,0x1d91580,0x0163519,0x06aa45a,0x022d7fc,0x0857105,
- 0x107aaf8,0x15ee4d3,0x02c3130,0x1facf3d,0x1524ba5,0x1d036a8,
- 0x04f37b0,0x035f41f,0x18f0d0b,0x1d6fc4f,0x0a02556,0x1465924,
- 0x1e92dee,0x1f24365,0x04ff816,0x195c7f3,0x0919aa0,0x184afd3,
- 0x02fc981,0x0dc1e37,0x154741e,0x07cc407,0x1dd0c3b,0x0e55da3,
- 0x134991d,0x0b7bb5b,0x03fa64a,0x0504b3e,0x066cf8d },
- { 0x06f5868,0x0c82d91,0x1a7a6c0,0x182d213,0x0102e88,0x1bf5aa6,
- 0x0245928,0x04657a1,0x0c98163,0x19129f4,0x0b14f3d,0x1d3b0d7,
- 0x1737f84,0x17f5557,0x0d49152,0x008dc5c,0x1772ca0,0x133e437,
- 0x198cdcb,0x19ca1cc,0x0a0486b,0x105b4a8,0x1da8ea5,0x0357527,
- 0x194d7fc,0x13730fc,0x0f04c9b,0x12af825,0x16b0051,0x07f2172,
- 0x0326d96,0x10b24e8,0x0d297fc,0x19352ce,0x1a6c5df,0x16eca99,
- 0x079d2eb,0x134cedd,0x19122aa,0x0b41d96,0x05fca0c } },
- /* 27 */
- { { 0x09a6663,0x112f9ab,0x129f89b,0x0fcd549,0x09597ee,0x0c5c060,
- 0x1369a34,0x0604b49,0x1229267,0x083015a,0x01c8251,0x0ca00e7,
- 0x139af5f,0x13399d2,0x1bb6cd0,0x052a3fd,0x1688657,0x107ae73,
- 0x0e62ba6,0x146c170,0x16c3872,0x0015987,0x180d1ea,0x02c42b0,
- 0x13b231a,0x0f66908,0x0bb9b1b,0x1fb39f2,0x1cf9e66,0x12d42e5,
- 0x01217c2,0x05747fd,0x1a5a6e4,0x06b93eb,0x1c8147b,0x0155fcc,
- 0x02081a1,0x0e35d95,0x0c2d382,0x1e172e7,0x0657acb },
- { 0x074c8d4,0x02337e1,0x1344c4c,0x0c61532,0x0276517,0x1ca1afa,
- 0x16329c1,0x00c42e4,0x0eb897a,0x0428203,0x1b84c11,0x1ddcac3,
- 0x1bf38df,0x150bbc5,0x1d3eb3e,0x173d223,0x017b9ab,0x13b2e33,
- 0x03c424c,0x0a9337b,0x1159b13,0x1bd39dc,0x103ad8c,0x0fd16d5,
- 0x1ccf16f,0x1a9f960,0x0861f7b,0x1665807,0x0b9c625,0x0ea4c18,
- 0x0e226b4,0x05e21ca,0x135eae3,0x1aade0b,0x070a757,0x1b6397b,
- 0x0539db0,0x014623f,0x0ceed09,0x02590a5,0x03d2da4 } },
- /* 28 */
- { { 0x11f2865,0x015b743,0x035a5dc,0x1e28524,0x16cb639,0x1ac308a,
- 0x08a8116,0x024650a,0x1f3b138,0x1ca1d68,0x081ba3c,0x0014e24,
- 0x0ae6c22,0x11a6acf,0x024396a,0x1eeb385,0x140f6b7,0x1d5a97e,
- 0x002fd59,0x0591bc3,0x0396f52,0x1956677,0x0607a5e,0x1d4b976,
- 0x15819c4,0x1f7f01b,0x02ad474,0x1b330bd,0x150fd80,0x0b655e5,
- 0x03789b2,0x12fc390,0x19d6b13,0x11abefd,0x0053de5,0x16b0563,
- 0x07f4c7f,0x13c1108,0x1f98626,0x05b806a,0x002aeef },
- { 0x07ec9be,0x1c93796,0x0804ae9,0x1ce4b16,0x092f307,0x1d35a51,
- 0x0a8431b,0x156e9cc,0x1e2bcc5,0x06042a4,0x0301ce0,0x1b70f77,
- 0x0db4160,0x194f8ca,0x1bc14a4,0x09539ab,0x0146dda,0x0875c6d,
- 0x17a88f4,0x1a87a42,0x1fae0b5,0x017e1a5,0x1b3afbc,0x10eaf4e,
- 0x164d084,0x051d669,0x00b4d33,0x028026d,0x0d95e2c,0x13a10e9,
- 0x0a02729,0x0f0dd54,0x1fd1d6e,0x12ff661,0x0db68a5,0x073d622,
- 0x0077920,0x038dd56,0x0bac122,0x002962b,0x06b446c } },
- /* 29 */
- { { 0x1e8fe80,0x0f59712,0x085f206,0x0d30471,0x0b5f790,0x120c249,
- 0x1a65a07,0x08bade3,0x098ea6d,0x056c56b,0x00b9016,0x15a97fa,
- 0x0d5bae5,0x140920b,0x1b70c9e,0x0f94202,0x185a334,0x0c598d4,
- 0x0a994e4,0x1b4c210,0x15fb0b4,0x16da461,0x072e46c,0x155f188,
- 0x0817cd2,0x0e04f4b,0x0f37f73,0x14c6090,0x1692541,0x09b0895,
- 0x05dc156,0x1f14541,0x1dcd712,0x02940af,0x08e8d73,0x0ab356c,
- 0x132b609,0x0475f04,0x014bcc3,0x097611c,0x0861342 },
- { 0x0231d8a,0x01031d9,0x199ca24,0x13b34c2,0x10f6232,0x0d4f93d,
- 0x03f9c1c,0x0fd55f4,0x0603f04,0x1e6c4b0,0x0a870da,0x14edfb2,
- 0x16118cc,0x18ea41d,0x05398ad,0x0a4c468,0x0ddba70,0x15091e6,
- 0x166d716,0x0ec86ff,0x0fa31a5,0x0126468,0x094c06f,0x0484f9b,
- 0x0ad4410,0x0014b78,0x034ea9b,0x1cdf6bc,0x0a39960,0x0440039,
- 0x0b73631,0x1081a7f,0x1afca12,0x0eaa0a6,0x08f77a4,0x1a53e99,
- 0x0441734,0x1be2cc4,0x195f000,0x133399f,0x086333a } },
- /* 30 */
- { { 0x0f53b40,0x1d3a8f6,0x150b484,0x045ef14,0x0ff2c6f,0x1d72b6e,
- 0x1c38bc4,0x11c1eb3,0x10e6174,0x0fc665f,0x1105164,0x1973ae5,
- 0x170aade,0x064e6e5,0x0bb6149,0x1f8e0d6,0x12c1eaf,0x147005b,
- 0x09ca040,0x04850b5,0x0afa89b,0x105b3ce,0x0a9fa9f,0x014dedf,
- 0x18c264f,0x1cbae95,0x0c3a010,0x1daf62e,0x1730497,0x15a2e42,
- 0x0f96a4f,0x0130dd2,0x12bf5d4,0x06057e4,0x0a71a88,0x1ea4d6b,
- 0x199dc3a,0x0fa3e4d,0x0b3242b,0x1c57440,0x012b25f },
- { 0x1eea395,0x06bc519,0x117026e,0x11ec67f,0x07a9361,0x076777e,
- 0x058a49c,0x018fd04,0x0c628ed,0x123bcdc,0x1a24e54,0x194343a,
- 0x1091db5,0x0c376e4,0x09b8639,0x1e77f0c,0x08bfeb3,0x07f011f,
- 0x09405c7,0x13fbc20,0x12de627,0x0e2af0b,0x194bb1f,0x1a9948b,
- 0x08695c6,0x078a22f,0x02f6f04,0x05bc70f,0x03835e4,0x06f437e,
- 0x148ac45,0x0fc216c,0x1aba456,0x13c7f4f,0x00a8e43,0x148223b,
- 0x0edf0ac,0x15b0e15,0x12dd15d,0x152e959,0x0216279 } },
- /* 31 */
- { { 0x047f747,0x06d5fa0,0x087b053,0x1b8262b,0x03ca233,0x12e8538,
- 0x12f4d03,0x0d2b3cf,0x1bb4138,0x1e86274,0x07ef607,0x11621e0,
- 0x1d189d0,0x13b5c11,0x112710a,0x00142a0,0x0a1398b,0x040e112,
- 0x1a05e79,0x109c9f1,0x01e9080,0x0a34c72,0x1f62be6,0x0217e5d,
- 0x0e37c56,0x0878f18,0x1e9f49e,0x1cd4087,0x1953884,0x1306598,
- 0x1f6765b,0x006f33b,0x15f986d,0x1c817f3,0x1c47e3f,0x1c76951,
- 0x1588416,0x0a29bc3,0x14d7bea,0x07f304e,0x020683e },
- { 0x0378878,0x0171368,0x1e1f2d6,0x074f28a,0x1e214c2,0x134459c,
- 0x002fe3d,0x0e027a0,0x1405152,0x0a46a7a,0x047d75d,0x02ba802,
- 0x027113c,0x145ffc8,0x1d6949a,0x08b9877,0x0109b49,0x0ded358,
- 0x10bce81,0x198e9d7,0x1fa183d,0x0221f7e,0x0abbd8a,0x0b8b7e8,
- 0x00ee956,0x01d6973,0x1564bc9,0x1e1f421,0x03bf514,0x05990de,
- 0x1d1ab96,0x0c0aed4,0x13b0868,0x1840d40,0x0fe135c,0x1217804,
- 0x12dcee5,0x081d501,0x11e567f,0x1ea4fad,0x05e416b } },
- /* 32 */
- { { 0x06cc23c,0x09bb001,0x016090c,0x1d6b652,0x1819aae,0x09770bf,
- 0x1cbe317,0x0055244,0x1ee5cc4,0x02473e5,0x1bc1f60,0x0ddcefb,
- 0x1edbc7d,0x1b57c10,0x15a4913,0x17712c3,0x0ed996c,0x02fbcb3,
- 0x1a85569,0x162fd52,0x0d56f81,0x1801f9f,0x0cb67bd,0x1054b65,
- 0x05906e8,0x0c02f37,0x0aba51c,0x0df420e,0x0c76f48,0x1e28b2c,
- 0x080d367,0x19606b5,0x1603dc0,0x13240cf,0x1fadd6f,0x1f6f673,
- 0x0f04a9e,0x03aaa56,0x1f78f2a,0x1d90f69,0x04ff682 },
- { 0x0a10ad5,0x0b13fe8,0x1d14c49,0x052d1cd,0x1fd45c7,0x1508b1b,
- 0x0f5ae01,0x1c65303,0x1de5033,0x096f0e6,0x1e2622e,0x08bd7e9,
- 0x1c3b44b,0x0d73f0e,0x06e625b,0x1b0f194,0x05a0778,0x1a90b37,
- 0x1445a11,0x08e57d4,0x144582d,0x157944a,0x1ef74e0,0x0dd8993,
- 0x116025d,0x1811176,0x12d954a,0x0c29d63,0x06210f3,0x0fb9d0f,
- 0x09d8f17,0x00434e9,0x1160285,0x05ea6f4,0x1003197,0x1348994,
- 0x0f15e29,0x058c3f0,0x141f123,0x11c6804,0x051eb81 } },
- /* 33 */
- { { 0x12100ab,0x0e8bc5c,0x00e47f0,0x012c0b7,0x1f2e3d6,0x0f2ce86,
- 0x10956dc,0x008254f,0x114fcbe,0x1c5b33a,0x141abcf,0x126ab3f,
- 0x070e8a3,0x0901068,0x0c99408,0x0f7caac,0x0d1528e,0x0334b7e,
- 0x11edd95,0x10a2961,0x05b5658,0x062c895,0x033603e,0x04996fe,
- 0x1ef04f3,0x0bac5d7,0x1f1b68f,0x16a7dd9,0x11df2f6,0x046c18e,
- 0x1b7b7bd,0x0e70256,0x136b965,0x13018f9,0x192bb98,0x17905d5,
- 0x1244f09,0x055e996,0x191fcc0,0x0aa63b2,0x08b0af9 },
- { 0x0603544,0x00c0517,0x167addc,0x0644359,0x0b573ac,0x0038191,
- 0x1d99589,0x07a742f,0x1b89abc,0x09f3a56,0x0c896ab,0x1c75af2,
- 0x0b8a3d2,0x17812b2,0x1eee813,0x1a56a8a,0x12ffc2d,0x0443ab2,
- 0x19c50fa,0x00ba2bc,0x0d70d29,0x0101724,0x1b6212d,0x0c6d4ae,
- 0x19219c7,0x06f837c,0x04d78de,0x11b8684,0x064a02a,0x0b9e886,
- 0x19a5707,0x1982af4,0x16a4ece,0x051aa66,0x0722389,0x1b75b98,
- 0x1839329,0x1278d94,0x02b4200,0x0929b49,0x05363e5 } },
- /* 34 */
- { { 0x03fc641,0x091dbf1,0x018c7d5,0x1f0ccce,0x1e54e72,0x004e97f,
- 0x057d638,0x1c25294,0x18c57f5,0x101ccbf,0x159373c,0x049962d,
- 0x1ba2297,0x05d517f,0x1ef93f5,0x11dacd2,0x0460a6e,0x11fa83f,
- 0x014214d,0x1c74baf,0x02080af,0x0ecaa04,0x1bbbdb3,0x18846f9,
- 0x1d889f2,0x129b80f,0x0970e14,0x12db107,0x0212f14,0x13f6b95,
- 0x1378971,0x03fef1f,0x1416783,0x1a0a325,0x001305b,0x0fd32ce,
- 0x045b069,0x02e1d0e,0x0c30fe9,0x0307f7a,0x0633340 },
- { 0x0fbbbce,0x0d06651,0x1d10e72,0x1954196,0x076f6e5,0x1c7671c,
- 0x00438d0,0x10539cc,0x013802d,0x1568a47,0x11686c2,0x18c139a,
- 0x009c3e5,0x1de7e0f,0x172e165,0x09ba10e,0x190d858,0x1d8cffb,
- 0x0070a8a,0x11703db,0x07e3259,0x17815f0,0x0462f7c,0x0ecb9d2,
- 0x1c8eeb9,0x0d703a7,0x02c93e5,0x04bd3b1,0x18f09d1,0x166e064,
- 0x09ceec4,0x1416e96,0x06aee07,0x03be725,0x0be7020,0x1e8e47a,
- 0x1ea8026,0x0a23eb5,0x02dce56,0x0b82c50,0x093a707 } },
- /* 35 */
- { { 0x15b27f9,0x1f7f138,0x048c9ae,0x0454501,0x0935a5e,0x0c51355,
- 0x08ebff5,0x128bbbe,0x07c1386,0x0641f0b,0x08854d5,0x1793125,
- 0x1544799,0x0dc684f,0x1b91c42,0x1d4d09c,0x016d588,0x1631d7b,
- 0x00eac6d,0x12ce0d1,0x13365e8,0x101e904,0x0f04e4e,0x1847bb4,
- 0x1292192,0x121e817,0x0b73dba,0x16e196f,0x1559e1a,0x07543c8,
- 0x02c490d,0x0dae1fe,0x00680db,0x15d2282,0x1948a0c,0x1e3421f,
- 0x05f0cb8,0x0fce047,0x107f75a,0x1588962,0x01a7422 },
- { 0x140b675,0x0ee974f,0x1ce70ea,0x07f98e3,0x0a7c660,0x0471a11,
- 0x0698465,0x1083127,0x0ed0ab4,0x19db0ac,0x0729ae3,0x1b2fdc6,
- 0x03a3aa7,0x1bd46db,0x07a197b,0x0c5c978,0x0092c7c,0x198afc6,
- 0x1d71b43,0x00f11f3,0x1ec5a26,0x14a5b79,0x0c60cc4,0x169b093,
- 0x1bcd636,0x14db9d6,0x02f1a66,0x0dc2912,0x1175e76,0x086c150,
- 0x13efcde,0x1f8a794,0x143605a,0x1b048bf,0x111e1ff,0x0caefed,
- 0x000c82b,0x1e3aa93,0x1667209,0x0613a4a,0x00944d6 } },
- /* 36 */
- { { 0x0ab9620,0x15b1f73,0x00233f7,0x1af0d9b,0x1ff4fa6,0x119059e,
- 0x1760915,0x02a28bd,0x0c49439,0x172fc31,0x0cfe1ca,0x10276e7,
- 0x099508e,0x1297cbd,0x16017cf,0x136c477,0x028c982,0x07b8dae,
- 0x1b833bf,0x098e1d0,0x136eb39,0x1491ded,0x14d3ec6,0x1c4fcb4,
- 0x15862db,0x0b4eb27,0x0e0ead8,0x15c47be,0x0828cbb,0x18d893e,
- 0x02b75b7,0x07460f5,0x101899f,0x0efb30c,0x1966047,0x0e6d990,
- 0x19943b7,0x05bbba3,0x195da8f,0x106dfb0,0x07d89f3 },
- { 0x1f92b2b,0x1212164,0x0af7e15,0x0b88dc6,0x100c6a7,0x0cd2e2b,
- 0x1a2ddfe,0x0d127ce,0x0031495,0x177f42c,0x199c26d,0x1433859,
- 0x13bbfe8,0x1737624,0x068ec6f,0x1851ae4,0x0a9c371,0x0937777,
- 0x145df87,0x1022bc2,0x05a5d79,0x0758345,0x15efcef,0x1a56965,
- 0x1a22046,0x0fe6fc6,0x0d66fa7,0x1be132b,0x040b793,0x0bde3bb,
- 0x11725a2,0x0b457a7,0x00cf4c2,0x1f3a267,0x15ba26b,0x162de8b,
- 0x1a8509b,0x1f9d659,0x09b9ad4,0x03ec7e5,0x0449af8 } },
- /* 37 */
- { { 0x16d9377,0x0789950,0x1e7b0bf,0x06fc345,0x1ab377b,0x08cd72c,
- 0x084ba1b,0x162e5c3,0x0d013bb,0x1589733,0x1d9aeb4,0x00ab96b,
- 0x100972e,0x1ccf55a,0x0778700,0x0bd85a2,0x0fdc65f,0x1e0f98a,
- 0x0a7fd64,0x0230831,0x06e6fc3,0x1670292,0x17dcf07,0x04a0adb,
- 0x1136316,0x10ce146,0x1dbec97,0x0153b7a,0x1cd2d73,0x0922422,
- 0x0b4127b,0x1a6dd0a,0x179b83f,0x04541e3,0x1f1fda3,0x070b46b,
- 0x095e803,0x0df8f0e,0x06bd4a6,0x1864112,0x00e8617 },
- { 0x1c81b5c,0x1030133,0x1cf14dc,0x1bce6f0,0x0fa89dc,0x0a27e81,
- 0x0c2c2a0,0x10654e8,0x126208c,0x00362d3,0x0903d4c,0x0cc1b1d,
- 0x044e066,0x04b209d,0x14097e6,0x0293f3b,0x0cc46b9,0x15ef9c0,
- 0x0849730,0x0acc321,0x1c37801,0x1ba93c9,0x0135a8e,0x0f4c5e4,
- 0x013746b,0x0bc5b00,0x0161756,0x139fc4d,0x15fe66a,0x065c41c,
- 0x1db72b4,0x08d64c3,0x0b468fc,0x0c90c5d,0x17be767,0x05941de,
- 0x1e45240,0x03ea542,0x1da1f14,0x1e264d9,0x06f4404 } },
- /* 38 */
- { { 0x1ebd3ff,0x0c905a7,0x0eea8f8,0x11fbfa5,0x0a6234d,0x0d4c14e,
- 0x0bcab86,0x0416fa3,0x0c6f5bc,0x1ef0b08,0x0e72a48,0x17e7b54,
- 0x0be204d,0x16c6385,0x0b7a6e1,0x06e1654,0x0377c9d,0x1139706,
- 0x1595443,0x02980dc,0x16b0809,0x142be5d,0x0d8479e,0x04cd4dd,
- 0x1c6efd8,0x00e03b7,0x18c2560,0x1f5869d,0x024063d,0x00515cf,
- 0x115a7fd,0x0f0f54b,0x1ba31a9,0x1866953,0x1f7ccf1,0x081c9a3,
- 0x0895f07,0x1f18993,0x1c78a40,0x1f0ff6c,0x0905771 },
- { 0x0062bee,0x0dd06d2,0x07e5466,0x1929afb,0x18e7238,0x0491600,
- 0x0a6f078,0x0bfea7e,0x1b12d85,0x14d9540,0x0328a77,0x1ddadad,
- 0x1f649f3,0x028604b,0x0b7f0d3,0x13140c9,0x0b99db3,0x040cb25,
- 0x0961c89,0x0b388ef,0x103a00d,0x0b3a62c,0x027fa8e,0x0087ba0,
- 0x1d8ee15,0x0103557,0x197c7b3,0x0ae434d,0x19b7b4c,0x124186d,
- 0x0aadb5a,0x0cd91aa,0x0ffc617,0x0151383,0x075ab32,0x107bc48,
- 0x07f2f7a,0x02f8291,0x17b3018,0x076c809,0x06a2295 } },
- /* 39 */
- { { 0x0fce389,0x096c7ba,0x1592491,0x0055f4a,0x059634c,0x16bc128,
- 0x132efc3,0x01b26ef,0x137718e,0x0fa022d,0x1a69362,0x1cfb3f4,
- 0x1a11074,0x194ad85,0x1c2ec1d,0x1dbccba,0x0adf107,0x1d916aa,
- 0x068a71e,0x1347b14,0x03ab5c3,0x016bcaf,0x0dc8db0,0x0b132a2,
- 0x02d002b,0x1717b94,0x195e42f,0x1c44cb7,0x065ea25,0x1508d47,
- 0x0f64783,0x0c0039d,0x071a708,0x02a0107,0x1d68b07,0x022d201,
- 0x157f698,0x196ae01,0x0d09f0e,0x140c33c,0x0528c9e },
- { 0x126c577,0x0435a2f,0x15147b7,0x1128717,0x1807470,0x12c153f,
- 0x0404de4,0x13e5bfc,0x0de1e56,0x0475650,0x168d5b8,0x1df534a,
- 0x165f952,0x124bb10,0x1602d4f,0x0e3e549,0x055cd5d,0x0695b2c,
- 0x1b3a8fc,0x0e097ec,0x03ca246,0x0fa4919,0x064fd90,0x1b6264a,
- 0x1855c9a,0x1295340,0x18b4675,0x0daa459,0x02ed7b8,0x0f882dc,
- 0x0a54d82,0x11c2a1a,0x10f0094,0x1f4489d,0x0fec2c4,0x12475b1,
- 0x1794b44,0x18aab67,0x13d5f2e,0x126e717,0x0200f90 } },
- /* 40 */
- { { 0x188387f,0x117e2c1,0x0f17e6c,0x0051d10,0x0f26f17,0x1bcb9e6,
- 0x0ae4346,0x0e288f9,0x0f6ec91,0x0aea751,0x136f023,0x0931861,
- 0x0b2e16f,0x04311e1,0x04a4431,0x18a8bb9,0x1b030db,0x0758a48,
- 0x137886c,0x1bd65c2,0x10f4631,0x1317f41,0x0128841,0x1383e7e,
- 0x0979c37,0x1cad263,0x03ec1a9,0x14e656d,0x19dfa98,0x193d0b0,
- 0x06ce910,0x11b7c59,0x1a307d3,0x04ff548,0x03480e6,0x1f27379,
- 0x0f4a331,0x155d790,0x15770f6,0x131ba1e,0x05c307e },
- { 0x1b233da,0x070621a,0x0616ef1,0x0a45edf,0x03d2908,0x1812347,
- 0x0b486a2,0x1cf33ba,0x1a96916,0x1c7a074,0x0f33b65,0x10d8c29,
- 0x0c0327d,0x19483b1,0x1a5540a,0x1e5db2b,0x197a879,0x187fe90,
- 0x0382f4c,0x0ca26ea,0x04c4c43,0x050413e,0x09b0c52,0x19f8164,
- 0x012a83f,0x0c4e3cc,0x18c64a1,0x07b1a2f,0x10f42dc,0x167f441,
- 0x0fe2d5c,0x0960ff0,0x0d9ff92,0x08a47be,0x0540294,0x1866395,
- 0x0c59f9a,0x029cb42,0x11e1743,0x1f58286,0x01df16d } },
- /* 41 */
- { { 0x0bcacc3,0x1da5634,0x033f31e,0x1e861eb,0x06ded34,0x10c2ad0,
- 0x07d3f51,0x1798b3f,0x045c9f0,0x0a48cca,0x17224bd,0x1d8c86e,
- 0x1adc5f7,0x1e42cc1,0x01c23c4,0x1a10e37,0x0c482fc,0x1d9952e,
- 0x15ad303,0x19b86a5,0x1b2defd,0x0245637,0x12ec93c,0x120c8e2,
- 0x0d4f533,0x1622cc1,0x1ee0e8e,0x0c5d6a5,0x17a2231,0x0f94119,
- 0x14dc4c3,0x19787b7,0x0e7b802,0x1d6076e,0x0564919,0x1d1672b,
- 0x1b56717,0x09e9740,0x0985c87,0x0a08ca2,0x0729a7f },
- { 0x020f90a,0x168d542,0x01561d3,0x1c1fc99,0x0368e19,0x1f3a57b,
- 0x12aaac2,0x1536c5a,0x08ca60c,0x17e6240,0x16a19dd,0x0b4aec8,
- 0x0cf310b,0x0ed8d92,0x06eb26f,0x0b68826,0x11d2dea,0x177bbeb,
- 0x0bf3193,0x0da420e,0x17f0470,0x08b39eb,0x0a6e49a,0x13c0cc6,
- 0x00bf3e8,0x0a01170,0x0dd01df,0x0e5a19a,0x1232e24,0x0206c14,
- 0x0ccf884,0x071b90a,0x1916dfb,0x07b3397,0x166c52e,0x1a91776,
- 0x144be19,0x0f4fa56,0x0757067,0x092465b,0x07f6d36 } },
- /* 42 */
- { { 0x0794819,0x0326f37,0x1684ef4,0x1df05d7,0x1a6b694,0x0f14022,
- 0x1ff82e4,0x1a43e02,0x107a43c,0x08698f9,0x10cfa46,0x044cc60,
- 0x146c26f,0x055fee5,0x1222a9c,0x0238174,0x085a464,0x020c6c8,
- 0x1fed620,0x069fcd7,0x18491b9,0x1bf1007,0x1d74788,0x0a827b6,
- 0x0d63fa5,0x1bbef82,0x1788ecf,0x042ddae,0x11bd30e,0x136587c,
- 0x0268161,0x0ee538a,0x0c395d9,0x1596bc2,0x062114a,0x0dd92fc,
- 0x0093d68,0x1be0fc8,0x021b232,0x12ac51e,0x02d0323 },
- { 0x044b4c5,0x04a03a5,0x1262a07,0x1398e05,0x1984687,0x186e4bd,
- 0x08a1f3a,0x04396a0,0x06e3aa3,0x0180893,0x095b08c,0x0ec7c98,
- 0x05c0ac8,0x12ada42,0x00d3483,0x1e6b6ca,0x040f240,0x0554b50,
- 0x13dfbb7,0x1a4da6f,0x0656046,0x109dc08,0x18a96a3,0x1ae1856,
- 0x04b9783,0x147c302,0x0167936,0x1f75ff1,0x17f5d12,0x080d2a2,
- 0x15e4a76,0x16a636e,0x09e1eb2,0x14b9ce9,0x0f72793,0x12429b5,
- 0x0eaa9bd,0x0b927e2,0x0ee6d6f,0x1663df3,0x0734c12 } },
- /* 43 */
- { { 0x0f9b086,0x11e1749,0x151263f,0x1d67fa8,0x0641b93,0x01632e2,
- 0x0822d70,0x0848f9c,0x1c4f032,0x1296e50,0x14a7da2,0x0fb2cf3,
- 0x14b5ec1,0x0a037af,0x14bfb42,0x1502223,0x1dc0d9b,0x19307b1,
- 0x151ca8f,0x160ade2,0x10e6de2,0x0f80394,0x06c5c36,0x16b91f2,
- 0x03e8db6,0x1f75171,0x073cd30,0x08b4507,0x173ee23,0x0a308dc,
- 0x1166f71,0x17649a3,0x1bda6c2,0x0a0d0b2,0x0e8cf18,0x032faa5,
- 0x1d2eb20,0x1d8b094,0x1927d1e,0x10e43f7,0x07c558a },
- { 0x1350fec,0x02d291f,0x1302e52,0x0ad471a,0x016678c,0x0d53268,
- 0x11a8835,0x1c91de6,0x0d96da2,0x02ed501,0x11ecf2e,0x09d49ec,
- 0x0c845ec,0x06af4a3,0x1469b28,0x1e95781,0x1c14fa9,0x1a0ec68,
- 0x122c4c0,0x0e598b3,0x1bfb439,0x06a1a7f,0x19f87d2,0x13a4630,
- 0x0e93a81,0x11f9a86,0x01b77bc,0x13ea612,0x0cf12c4,0x167c900,
- 0x1f0f0b9,0x0c80865,0x0691cc1,0x0b5a921,0x12d1c92,0x1d7ffee,
- 0x020a97b,0x093e4f8,0x10d2111,0x194f678,0x034cd7d } },
- /* 44 */
- { { 0x1e7fe87,0x0bb0d2c,0x15cbc0c,0x14008f9,0x11eae31,0x1187b15,
- 0x0b9a3eb,0x0864f20,0x1b71db1,0x1337a46,0x00e3d29,0x0cf01c0,
- 0x0d75ee6,0x015eebb,0x116b19c,0x19ab876,0x028a0d6,0x08697dc,
- 0x16316c4,0x1cfe3b3,0x1e9627c,0x120905a,0x0507f83,0x04cf86e,
- 0x1b984b9,0x166cad0,0x07580c4,0x040dcb1,0x1493565,0x1a176d2,
- 0x0b0619c,0x00e18e9,0x14520b9,0x1d8599b,0x0ed6555,0x084e079,
- 0x06ed8c1,0x10face5,0x0e21fd8,0x18557ef,0x07ceb1c },
- { 0x17fd65b,0x1d2dded,0x15f0191,0x006d928,0x18d45cc,0x0938c56,
- 0x0676e78,0x1638db5,0x0e93a7f,0x08eddfa,0x159a87b,0x12b97a2,
- 0x194512c,0x0de0648,0x186e803,0x0a4d290,0x0989e7f,0x11e3661,
- 0x0506aab,0x12c2a01,0x18e3671,0x07e4629,0x0ff3d74,0x0b4aa3f,
- 0x09929a2,0x19356b7,0x145f283,0x00e2130,0x09ef7e9,0x1c757d4,
- 0x125d0ed,0x0e3568a,0x1d5ea31,0x0e1b69c,0x0fcf9b4,0x1ae885e,
- 0x059d568,0x1341f00,0x1b57096,0x13244f9,0x01f629a } },
- /* 45 */
- { { 0x05a1c3e,0x0eed672,0x117e249,0x0a83eea,0x12d2936,0x13fc143,
- 0x0bf2cdf,0x1a48ac4,0x13e4c79,0x011a289,0x19175a2,0x1f09384,
- 0x195dffa,0x0ca4015,0x1e3d376,0x13f4060,0x1f09d33,0x02b3493,
- 0x1f64773,0x00143d3,0x0bd79a5,0x0005585,0x1380206,0x129cbbf,
- 0x135a381,0x0446cb8,0x1e62b7c,0x1d0ec60,0x05a2a79,0x00dc4d2,
- 0x064eebc,0x0f11687,0x1ed6154,0x14cbeb7,0x1c8b9de,0x1b301ca,
- 0x0a378ee,0x0487fd1,0x0168aab,0x14517b0,0x04a75fd },
- { 0x1e74cbc,0x147ddaa,0x1c97426,0x1df5631,0x137738c,0x12761d3,
- 0x0eb5a5d,0x0621f84,0x1e7e0ad,0x0d3e9ad,0x07326f1,0x0d1dc90,
- 0x14e75e0,0x1ea5761,0x10baa64,0x0c789e1,0x1e80d4a,0x0789927,
- 0x06c164b,0x16f82d3,0x146b5db,0x06d3f07,0x110b59d,0x001f5d4,
- 0x166c7a3,0x041ad2e,0x04ccceb,0x107b904,0x008496e,0x0097462,
- 0x105c3be,0x133debf,0x0e1dcb6,0x074314b,0x1c6c5cd,0x10dc56e,
- 0x183507d,0x114e6e2,0x05e6811,0x15c47b0,0x05819f9 } },
- /* 46 */
- { { 0x0a78811,0x14890b5,0x1f0f665,0x084207c,0x164ee8f,0x1cf34c7,
- 0x041c08a,0x1bdbbe0,0x04f582c,0x1000fcf,0x1eb06b9,0x115e5d9,
- 0x0924a60,0x031c980,0x1d31e10,0x05222dd,0x0e6ebf7,0x0293175,
- 0x113b968,0x1a15eb1,0x1bc7ddb,0x08766c3,0x01d6bfe,0x049e229,
- 0x1b34c6f,0x0b917ee,0x07a197c,0x1020850,0x0c1b9a4,0x1213443,
- 0x07e55a4,0x13de846,0x15f3208,0x1f41737,0x0b3f429,0x115eb0f,
- 0x1ac395c,0x0b8c8bc,0x09d4359,0x07826c9,0x0745960 },
- { 0x01ae519,0x03adffa,0x0944709,0x0295f1e,0x14401fb,0x1d961e9,
- 0x1f34abb,0x010e1bb,0x151cdaf,0x1969c2d,0x02ec666,0x04ad041,
- 0x168531c,0x0619f9f,0x12277d9,0x02ed22d,0x0992457,0x1611e7d,
- 0x1b4042e,0x136a3d0,0x0313233,0x069131c,0x0236c3a,0x1fdbd6e,
- 0x1e17900,0x178fbb4,0x0e8da1f,0x1fb2db9,0x0764753,0x1591c8a,
- 0x1773411,0x0188b91,0x1ff2064,0x01ebc79,0x1ef6e0d,0x01dfa2c,
- 0x0b77ee9,0x1e65b6a,0x1ed1524,0x027679e,0x0330255 } },
- /* 47 */
- { { 0x1eaaca1,0x002349a,0x0408dbc,0x0b12232,0x0c384b7,0x094aa60,
- 0x159979b,0x1af966e,0x1b1e9d6,0x1c8ccdc,0x109d5f2,0x0693853,
- 0x1075852,0x1c739c6,0x12f46ea,0x1484f13,0x0905923,0x0cdc6df,
- 0x03f8622,0x0ef27c3,0x0083a23,0x0bd3a17,0x0909c5d,0x1d7ac27,
- 0x179d24e,0x1bbc624,0x1353cb3,0x0064a0a,0x0705de4,0x1048cac,
- 0x0ea8ee2,0x067b333,0x1191bd9,0x1f70f0d,0x0e90ec3,0x0975fdf,
- 0x1facdf1,0x1d68c21,0x15872ce,0x160870e,0x09328ad },
- { 0x106b872,0x027407c,0x1996afa,0x00f04c4,0x105523a,0x0c667bb,
- 0x1a9f8ce,0x047b138,0x1f55b53,0x1d5aa8e,0x137aa0b,0x1d940aa,
- 0x0da0578,0x1baac4e,0x09948f4,0x1aea1de,0x042864a,0x16c7eb1,
- 0x1e3f87f,0x04ff8a2,0x142293f,0x184efc3,0x1ecf9bc,0x0a1a0a8,
- 0x0e49e37,0x0509431,0x097700e,0x1b218d6,0x1b682b7,0x1711426,
- 0x02b0686,0x1310326,0x1f3dab7,0x1f05223,0x154aebc,0x0a61cd7,
- 0x162d25c,0x00012df,0x1579c1a,0x19f5ba1,0x00aa1f3 } },
- /* 48 */
- { { 0x0a10453,0x110c811,0x042ea60,0x1854074,0x1d1eb91,0x12379de,
- 0x1765659,0x18d5f76,0x0f38b6f,0x0c6f1a2,0x1f28769,0x07cb719,
- 0x04ce47c,0x07b86d0,0x16385b4,0x05dadf9,0x09bda26,0x156221a,
- 0x15b8be3,0x01b0f78,0x0e58932,0x040c89c,0x0738fa8,0x1646d81,
- 0x02dffa2,0x186d2c3,0x1239fbe,0x161f34b,0x0c78eb6,0x01958b5,
- 0x0bd2d4d,0x0e136a3,0x1f43105,0x0cb1437,0x1be23d4,0x1a11c46,
- 0x0ed403a,0x09f8bb7,0x151787e,0x1c12c6c,0x0559337 },
- { 0x0fd807a,0x0fb9c6c,0x0888c37,0x1b56262,0x14e0ec9,0x0d7de1f,
- 0x1d36d89,0x12a2945,0x09f12f8,0x0db8302,0x0113f75,0x1847586,
- 0x0fb46f3,0x1aa00a4,0x08cb47f,0x1caa836,0x0f539b4,0x0b0da2c,
- 0x175c2dd,0x0964941,0x01d9f69,0x0c944ac,0x03f190a,0x0bfc45a,
- 0x149beee,0x1b1e02e,0x1da862f,0x15e688f,0x1929d67,0x0ee13f8,
- 0x033a5a8,0x182aa3d,0x0fe6028,0x0a7d135,0x0bccad7,0x084fb59,
- 0x145c2cb,0x0b18de2,0x0534d28,0x1f36192,0x0930070 } },
- /* 49 */
- { { 0x1a9bc05,0x1962f34,0x0dcf4bc,0x0cb1389,0x0a5c19c,0x132fce0,
- 0x0797a51,0x07212b9,0x1bcfb4c,0x1587949,0x0df0c62,0x10ee3bb,
- 0x08b9070,0x1359c02,0x13a5961,0x1b37b12,0x0cf606b,0x0f8cd48,
- 0x1bf4b5a,0x1ab1bf6,0x0a69cc1,0x07230ec,0x021b731,0x19c9063,
- 0x1c277f9,0x141622a,0x19d97e2,0x0934b32,0x1adc8d7,0x134661d,
- 0x0acbff1,0x122259b,0x0018396,0x1e3e59c,0x170ec90,0x09530f2,
- 0x010a222,0x1af9880,0x178521d,0x082b0f6,0x0043a21 },
- { 0x0873752,0x14ede1d,0x1fb9eef,0x085e885,0x0e1493f,0x0610c0f,
- 0x08b2306,0x1cf3039,0x0e29769,0x0671848,0x1a317c0,0x1591bce,
- 0x1eb4626,0x1a6bb3b,0x1a73918,0x129cc67,0x0ade0fa,0x1fc4e16,
- 0x07d6d6f,0x0b98228,0x012c04f,0x1b11146,0x09597dc,0x00b99ca,
- 0x1706a0c,0x027f8df,0x1ef921f,0x1a0ffff,0x19f1a45,0x1e04d24,
- 0x000fb10,0x131b290,0x14e79bb,0x1897c27,0x08581cf,0x1b1466b,
- 0x0f970d6,0x1af57b8,0x02ba12e,0x0f7e49a,0x018d074 } },
- /* 50 */
- { { 0x0601faf,0x1e3be42,0x1dc9634,0x055e383,0x09465be,0x0b6c036,
- 0x19e6344,0x079fec4,0x0d5b0d9,0x0cb6063,0x19c8e8e,0x1aeabd8,
- 0x092fa1a,0x01dd29a,0x1aa0510,0x09b152c,0x0222ac3,0x0ee264a,
- 0x159d619,0x08e3bdd,0x128fddf,0x0bca9ea,0x162b296,0x1d7ecfb,
- 0x063b524,0x069d972,0x05f896d,0x0b0490e,0x159daa2,0x16dd218,
- 0x1008f16,0x1066aea,0x058f9c6,0x058d32a,0x169fe4e,0x039ed0b,
- 0x0efed23,0x0d27ed6,0x1796660,0x1da1176,0x0711093 },
- { 0x01f161a,0x11fe320,0x1a1c4aa,0x012e98b,0x1735856,0x1aefc17,
- 0x14bec5e,0x1329544,0x1a48e62,0x05c1583,0x1611f6c,0x02ae53b,
- 0x0600234,0x0294e2d,0x1953401,0x1ea71e3,0x19e6d98,0x1e60e29,
- 0x034eaf2,0x0c56a65,0x10cd361,0x1c15427,0x1d68de4,0x1dce908,
- 0x1a81b4d,0x18dfb8b,0x0d308ef,0x0d9e6bf,0x1e8b3e1,0x014fbc3,
- 0x0c1ff47,0x0b36f35,0x1da7e68,0x16305db,0x028217d,0x0a0e420,
- 0x07ed48b,0x0200acf,0x05f50c6,0x1b49b39,0x017898b } },
- /* 51 */
- { { 0x01b8cf8,0x041ec57,0x015b361,0x05d3451,0x123d4b4,0x0525e11,
- 0x1613c81,0x1f4ec66,0x0ca7a69,0x1059114,0x1eeac93,0x1517eea,
- 0x0a8afbd,0x1662fce,0x0c90221,0x12b870b,0x013d41a,0x1a3fda4,
- 0x0aaaf9a,0x178a798,0x199d3f1,0x1f8d68a,0x1c8b368,0x03d5363,
- 0x0c081c3,0x1608d97,0x0c05852,0x091e609,0x0fa7ab0,0x0774e35,
- 0x0f738c7,0x08281b8,0x1af7633,0x055dd2a,0x0cdf73a,0x1d096f5,
- 0x07cf3ef,0x0f3b246,0x1aac943,0x19e2a6a,0x073a88d },
- { 0x0e83b39,0x1414403,0x0df4fe1,0x073e880,0x077a441,0x0de420a,
- 0x02c3c5f,0x093f20b,0x154d175,0x0db27a7,0x01fff8b,0x14d5e46,
- 0x01a23ce,0x0789313,0x0fbf555,0x0fe4c72,0x18a10f3,0x097a732,
- 0x13b878d,0x06f9c7e,0x1e8ba44,0x13d49e6,0x193bd0a,0x1355202,
- 0x1c9f493,0x06a0ef5,0x08f5ed7,0x08447ad,0x0a3acc4,0x1508fc4,
- 0x0b5e269,0x058c114,0x0fb9df8,0x0b6032b,0x038eefd,0x01cf3b7,
- 0x068fa30,0x02b5793,0x1a879cf,0x02f5c72,0x052f32b } },
- /* 52 */
- { { 0x114f71a,0x09260f3,0x14655bd,0x0535bb0,0x01be126,0x056df1e,
- 0x0276197,0x0935b23,0x05a0fb6,0x045fae4,0x064b676,0x152443a,
- 0x0f9efa6,0x17b925b,0x1fa0e25,0x02339c7,0x024b250,0x0761fd7,
- 0x0b834f0,0x15f3ec5,0x024d4b6,0x05eb0cb,0x03f3ae8,0x1b6dc75,
- 0x1092b2f,0x094bee1,0x18c98f3,0x123b46e,0x1c43bdc,0x1b0f7ca,
- 0x164c301,0x19bd689,0x1136400,0x0698ec4,0x1a110f0,0x1ffafb9,
- 0x1871899,0x1f61d8c,0x16305e3,0x051dfbe,0x079e14d },
- { 0x1b40c55,0x1111acd,0x090b8e0,0x1a1da0f,0x0a27202,0x1c60fa0,
- 0x106a520,0x11c91cd,0x1d864a7,0x1af9253,0x115724a,0x081418d,
- 0x087e7f1,0x07096a8,0x0b0412b,0x03c21cc,0x07ec11b,0x0cd850d,
- 0x1eecf75,0x144ebf5,0x0b30fd8,0x1f4d1db,0x17fcd53,0x0c05403,
- 0x05d9e46,0x0fbad08,0x164eed9,0x1a6e369,0x02fdeb3,0x1f8587c,
- 0x1176972,0x1bc8d0a,0x001229b,0x0a8bf23,0x02e71cf,0x04a0bc2,
- 0x072ff49,0x07d2a0b,0x1b389df,0x11532ac,0x00d8ec2 } },
- /* 53 */
- { { 0x1eee995,0x07b9f65,0x0030053,0x19a923d,0x12eb88b,0x15d2ea5,
- 0x1b2b766,0x09ac2b4,0x19304c8,0x1bea319,0x00f268b,0x03a5156,
- 0x14ba050,0x08dd5dc,0x1dc8f7a,0x0aee591,0x1775040,0x06442fc,
- 0x1ff2c25,0x03a5678,0x071ab5e,0x0aefcb6,0x187b9e6,0x0c8933c,
- 0x0daab34,0x0995c64,0x157d81e,0x1684bbb,0x043587d,0x0e50d89,
- 0x101c094,0x13f8e86,0x0d7d3be,0x1564493,0x0c43240,0x1f182f2,
- 0x0559a74,0x09160aa,0x12bf1c9,0x04f86e6,0x086001e },
- { 0x1693947,0x005d2f3,0x18ac4ec,0x1c02580,0x0478641,0x0a48543,
- 0x0e383a1,0x0bdc348,0x1d9574d,0x0b9eddf,0x0ee9854,0x171937a,
- 0x159532e,0x0f9f503,0x106f2e1,0x125723e,0x0478cbb,0x0560e61,
- 0x1be406d,0x08c91c3,0x12ee0f3,0x0f6959d,0x1764a74,0x1aeb7f9,
- 0x11eabc3,0x0692387,0x1c4e73d,0x19b78de,0x0249535,0x02a6f82,
- 0x00f3619,0x08ff967,0x0079812,0x1c9860f,0x06d05f7,0x0173e41,
- 0x114ebc0,0x12fe188,0x11b0508,0x19668f2,0x0020591 } },
- /* 54 */
- { { 0x15e0af4,0x01b9093,0x092f8c0,0x1fcf149,0x121141e,0x1aba42b,
- 0x1f3db45,0x13cccd9,0x1168e65,0x1d0eb9b,0x010bb97,0x1ca81c5,
- 0x16263e3,0x0a45eaf,0x1b30f52,0x020955b,0x03d246b,0x000cef0,
- 0x0d0f606,0x13d207e,0x0d31f8a,0x052d860,0x12d5ee9,0x1c4ecbf,
- 0x0c50651,0x1b3c123,0x1d9466f,0x018aea3,0x119a018,0x0100790,
- 0x1d17c17,0x0f043a9,0x06487b8,0x01d033f,0x12a8987,0x044c5f2,
- 0x1214605,0x07f244b,0x017bd5b,0x0bf43be,0x0511998 },
- { 0x18586c0,0x0a4bed8,0x0989606,0x0d8ddd5,0x004415d,0x06d1458,
- 0x11ada5f,0x128f8d4,0x07c1945,0x10a4d94,0x0e941a6,0x13f49da,
- 0x14b5636,0x01e4a65,0x04aa999,0x1ddc4e1,0x13aa9e9,0x0aade73,
- 0x1e24d42,0x1650e0e,0x132634b,0x180375a,0x02be57e,0x071e90b,
- 0x1032396,0x1fc43e6,0x016e9d6,0x126ec4d,0x02d5812,0x179ecea,
- 0x137ccb5,0x0cb8dac,0x0cad574,0x0f6a0d2,0x03eecb3,0x0f30bea,
- 0x1006a06,0x1a67074,0x1fe6b3c,0x0cab14a,0x059eaf2 } },
- /* 55 */
- { { 0x0c3876f,0x03f7db7,0x1921ed0,0x07e1e90,0x180c612,0x04981cb,
- 0x15bfefe,0x1605576,0x045a91a,0x0c97550,0x046e0a5,0x09aef10,
- 0x09ce5b8,0x0fcf9fe,0x09c68d0,0x1c2770d,0x186f0e7,0x060bfee,
- 0x1568220,0x1b052ec,0x066688e,0x1a40eaf,0x1d75b71,0x02e2f2e,
- 0x09df61d,0x10ff7fe,0x178fde7,0x0d5a991,0x06192e3,0x18be902,
- 0x18b6c54,0x04e9fb4,0x0c9fa7a,0x0cc8a3c,0x093e0b7,0x1809d92,
- 0x1a64971,0x0e8f1c1,0x0efec16,0x1d44c41,0x03b4450 },
- { 0x176dcdb,0x1d4aae3,0x091cf6d,0x1903917,0x15c4a57,0x0bb07d9,
- 0x1400d41,0x0a75c50,0x1b3aec3,0x1f40348,0x05ef978,0x0b7c8e2,
- 0x0138033,0x02b667b,0x111f8e8,0x0f22dc3,0x1eb3397,0x0929e7e,
- 0x172dfb8,0x19bf75e,0x17043de,0x07be7a5,0x1cf25e5,0x1f028c5,
- 0x1680c9f,0x14f9200,0x06f8f6a,0x1c881c2,0x191d8a4,0x01bbb4f,
- 0x1771741,0x196bd38,0x106c7a8,0x1e926a0,0x0684ced,0x0432321,
- 0x1764b4a,0x09e41c1,0x0d853a2,0x0198853,0x04a7fe3 } },
- /* 56 */
- { { 0x055c7c5,0x19d3812,0x1d539e3,0x10e02ae,0x1b7636e,0x1193162,
- 0x11491d8,0x18fe658,0x01bc780,0x04c588f,0x1b61dcb,0x1d5922b,
- 0x14d48ea,0x0cc932f,0x0134f00,0x0401f76,0x19bcfa5,0x035a958,
- 0x0fa8ffa,0x1413032,0x0059c46,0x1edd3ac,0x160b1cc,0x12d5599,
- 0x0bbd618,0x0a8e992,0x133a3b3,0x181345f,0x1c44b3a,0x0c7e817,
- 0x12d4a64,0x15542f0,0x0c45e4a,0x1042e78,0x0d03f88,0x026ac4c,
- 0x050c7d6,0x05db3b6,0x1ac8d4f,0x146ca24,0x083fa1e },
- { 0x0ccc646,0x0436d08,0x07a582b,0x1ef608a,0x0ce0637,0x0443081,
- 0x1d8c228,0x1057779,0x1203499,0x1e0c80c,0x0f36808,0x0739f81,
- 0x1d707fc,0x0dea7eb,0x1347c54,0x07776fe,0x0744471,0x06b5327,
- 0x16b2798,0x1b8ced8,0x116957b,0x019bdb0,0x115b14c,0x1e8143a,
- 0x11396dc,0x163e9a2,0x15265f4,0x07dbd84,0x04a739f,0x14d2616,
- 0x1894d2b,0x0d4d5a5,0x001397e,0x0afc08a,0x15348fa,0x1e40ed3,
- 0x1e98fab,0x1003e36,0x147833b,0x0f32638,0x0614097 } },
- /* 57 */
- { { 0x1156623,0x1996d8a,0x1f08f76,0x1956f4c,0x08137fb,0x0cf1e13,
- 0x07d41bc,0x0c24c02,0x089924c,0x010c581,0x013070d,0x161f8d0,
- 0x07492a0,0x17d5735,0x16f9c1a,0x17cc3ac,0x03e0d01,0x09d89e9,
- 0x01fd31a,0x08b68ff,0x1aa3445,0x11026e0,0x15088db,0x0a2c3d9,
- 0x1261d3c,0x003b09a,0x0ef622f,0x1d68d4c,0x19d7201,0x0c1b0ac,
- 0x1cde31b,0x0d375e1,0x0955fe1,0x194107b,0x0f585c1,0x148cfdd,
- 0x1e3a340,0x0dc5151,0x17e20bc,0x0ec5a16,0x0636dac },
- { 0x0c80af3,0x006dcda,0x0aae50a,0x029c712,0x1a189cd,0x03beee4,
- 0x00b8345,0x09e4dce,0x068f9f1,0x08d771c,0x0a82cba,0x0c75017,
- 0x092864f,0x05b8a51,0x1607dce,0x0f96d59,0x070c5fe,0x09870dc,
- 0x0420dff,0x1d43876,0x089f883,0x09b5902,0x0b689e5,0x145b4be,
- 0x12a6858,0x10a1d75,0x080ea3e,0x046617e,0x10b1c4e,0x045aee3,
- 0x1d2d712,0x0532cf1,0x078c4d9,0x1b3ae05,0x0260977,0x104677a,
- 0x1b67d36,0x1ae03b3,0x1bcfcde,0x1fc9a17,0x02f6dbd } },
- /* 58 */
- { { 0x04da7c7,0x0397e97,0x04c8be1,0x035ccef,0x108cfc9,0x0134713,
- 0x1c228f7,0x0486c95,0x0799a24,0x1886ff0,0x162ffc3,0x1ab0e3a,
- 0x06ef912,0x0c44b17,0x1cd77f2,0x1d414d7,0x1a95f47,0x0945cb7,
- 0x0b4c230,0x14f3d55,0x1bba734,0x1bcfa1b,0x055cc0c,0x1ea9eeb,
- 0x0bd8e6c,0x1760016,0x1f9d8cb,0x0ec0db9,0x1931044,0x0f65a98,
- 0x075012d,0x0159ee5,0x0e0897c,0x0f8ef05,0x0e18ef7,0x1112c51,
- 0x187d744,0x168aa77,0x1753bb3,0x12e8b1a,0x05cb6e1 },
- { 0x08c75ed,0x178cb80,0x0be2633,0x1deddd5,0x1cf49d3,0x1af4b6b,
- 0x0780861,0x1143adf,0x0dd9b0d,0x076167f,0x1db6abf,0x19fd72a,
- 0x1838a61,0x1b53edd,0x000fce4,0x029e820,0x06823b8,0x1d9be1c,
- 0x0038c54,0x0cdb977,0x07a89fb,0x1d02cc2,0x079f8ba,0x14e4ee1,
- 0x063fd35,0x1685276,0x07f2783,0x023e7b2,0x15baa43,0x004a6a8,
- 0x18cf077,0x14119a9,0x1a06ebc,0x0f7553a,0x08e0bb5,0x1f56c2e,
- 0x01f52c1,0x015dd87,0x15b94ba,0x060a2eb,0x02149d6 } },
- /* 59 */
- { { 0x19311f6,0x14737af,0x1e17b86,0x1f75783,0x097e3c9,0x0a104d6,
- 0x114bad2,0x1c29f4f,0x019774f,0x0617a8e,0x16113c1,0x02450aa,
- 0x135cefd,0x1ac39d5,0x0e18a8e,0x033f96a,0x1d6cbed,0x13b477e,
- 0x19611a6,0x0248f3d,0x009ccdc,0x189ec06,0x0448df8,0x0898518,
- 0x0a290c0,0x143eeba,0x0af51f8,0x1dcca2f,0x0ffeef9,0x0914568,
- 0x07f0908,0x1031a50,0x073088f,0x006f0a1,0x12f10fb,0x07d78e8,
- 0x1415bd7,0x137667d,0x109b16c,0x0a1960f,0x014e2f3 },
- { 0x016946b,0x0950821,0x04b5523,0x0ef497b,0x0e801f0,0x14a8b03,
- 0x1428d0d,0x192b32d,0x163a197,0x18dae17,0x1ddf243,0x189e0c3,
- 0x0279da3,0x09ffbd9,0x07358d2,0x0247e38,0x050a234,0x02f30db,
- 0x0a100cf,0x16698be,0x0214826,0x146179a,0x1c62e43,0x100dd8a,
- 0x15620ae,0x0da52f9,0x178c92a,0x05f5c68,0x13cb51a,0x1caf45a,
- 0x1e2302e,0x1f32cae,0x14f6ac2,0x0f79964,0x01f5ae7,0x0e0fd8c,
- 0x10ed8f2,0x1f8edd6,0x0793d8e,0x005b96c,0x058537e } },
- /* 60 */
- { { 0x0f80ba2,0x0583232,0x116c7d9,0x0e0ab34,0x08e055e,0x1a5b1a7,
- 0x0acd3c7,0x105864c,0x1de8c84,0x1a7beaf,0x11e02bb,0x1d41861,
- 0x139d55d,0x07d0f34,0x102bee7,0x186962e,0x0667460,0x1167f35,
- 0x061f07b,0x12b2822,0x0d94f66,0x1bafcba,0x04e0bc9,0x08a93d6,
- 0x0ace400,0x0810e50,0x1eeaf7b,0x1048967,0x1653eaf,0x0683271,
- 0x00f0dbd,0x18ab8bf,0x0b9f0dc,0x1e74875,0x13beb3a,0x0bb2773,
- 0x1906142,0x12c7390,0x05c3459,0x0bf05af,0x0485783 },
- { 0x0576210,0x092de69,0x110f735,0x0faa36a,0x1f378aa,0x0c1cca4,
- 0x0fc5c6f,0x043fd2f,0x1f38ac6,0x18687b1,0x1023324,0x182f030,
- 0x16af8f2,0x1307a9f,0x04b21f8,0x0ebc84d,0x007db0a,0x187722a,
- 0x1f6c6cd,0x08f5cbf,0x044b0ec,0x0e3d535,0x1da44a7,0x0816eba,
- 0x132b22e,0x1bbdb7c,0x0257bce,0x00cec9a,0x1c63e8e,0x03fab45,
- 0x100a3f5,0x1380029,0x1810494,0x0aec768,0x0ff75e6,0x1f21c5a,
- 0x0c2a85a,0x1cd02eb,0x0c4a3ac,0x17b443e,0x06c0277 } },
- /* 61 */
- { { 0x109e7ef,0x1b8435a,0x1e47906,0x167aff3,0x0842ec7,0x135c45c,
- 0x17e5154,0x1579a50,0x0051dd0,0x1227032,0x1c73adb,0x1820ee9,
- 0x1b90198,0x091f330,0x12afa60,0x08fb2dd,0x13632f6,0x1224088,
- 0x1b14abb,0x10568a4,0x09d51dd,0x1fc9cee,0x1594241,0x1a8ab7f,
- 0x0eef2fc,0x0be5eaf,0x1634b97,0x102b49b,0x1c9f2a7,0x1649445,
- 0x0896b53,0x0af4766,0x0f10d0b,0x0e5ede3,0x079c82e,0x11d1a18,
- 0x1b774ee,0x05838d4,0x13e3d68,0x135e45f,0x03067bc },
- { 0x1ca9326,0x0c4f95b,0x1d8f839,0x1b62449,0x17a106f,0x1d2bde8,
- 0x11485d1,0x05d646a,0x162b088,0x10a4c16,0x07ff3c9,0x0a88872,
- 0x0d7f3af,0x1427220,0x0a8cdee,0x160e235,0x1b0941b,0x014751b,
- 0x1929fd5,0x0fb9685,0x15fba95,0x160d356,0x19ead98,0x186d441,
- 0x1e381f7,0x1b5e89a,0x126ea82,0x05cf301,0x04671f4,0x01864a7,
- 0x18d08dc,0x1161245,0x0cc63ff,0x12c4f92,0x09e5116,0x19a21aa,
- 0x0870ff6,0x0ce98b5,0x10656ee,0x195532d,0x0390c83 } },
- /* 62 */
- { { 0x1c4a73f,0x1fd417f,0x0c0d434,0x0a77aa6,0x0665d63,0x05dbbe9,
- 0x1be2899,0x1090140,0x022d73d,0x0e02537,0x0ee2aa0,0x1fea064,
- 0x1a2409c,0x062626a,0x173885e,0x1383263,0x00e0c0f,0x01ba554,
- 0x0061aee,0x0b470e0,0x087f0b2,0x085578a,0x142dde8,0x0931bc3,
- 0x19ad5ab,0x08b0af9,0x186a830,0x05c65b4,0x025ce89,0x1edecb7,
- 0x1448a38,0x0bd0c8d,0x17c88dc,0x18e345a,0x059099e,0x0ace562,
- 0x000bdec,0x06c03fb,0x15ce974,0x0fa447c,0x03ea400 },
- { 0x195d0a3,0x0f5e852,0x0ed35db,0x175fe16,0x06bd76c,0x0dedcbd,
- 0x0553e6c,0x0e37e58,0x04c714c,0x158cd5a,0x0bd98d8,0x0772443,
- 0x16c9bf3,0x064a0f7,0x161f126,0x01eda47,0x0c3d79f,0x092ac02,
- 0x09eb2f0,0x14200a5,0x08af6f1,0x0caa829,0x176ade7,0x1a2c426,
- 0x1a6f0c8,0x014febb,0x1779784,0x00a116d,0x1da12b4,0x00797ca,
- 0x087656b,0x0eb1517,0x060af71,0x0647dc4,0x120dc58,0x0816329,
- 0x0e004d3,0x0736406,0x0aa8290,0x02ed629,0x009f82a } },
- /* 63 */
- { { 0x01366dc,0x1f2c461,0x0be582a,0x1f5eebb,0x129c0a4,0x1c9f6a3,
- 0x07f66b2,0x0e0e0a0,0x087a16d,0x0bf3a27,0x1cd86ee,0x14f531c,
- 0x13a42e0,0x145aa67,0x136bfc8,0x120f035,0x0bbb7bd,0x1f843e6,
- 0x18c9439,0x1e7306c,0x1c09da6,0x175d783,0x19b5a4f,0x175e2ae,
- 0x0f4c38c,0x0e83cdd,0x1f7f2a6,0x15309c0,0x0d8dab5,0x1923f93,
- 0x1e6ad34,0x0fd746d,0x10be701,0x0e90b26,0x19943a3,0x066f773,
- 0x131c4f0,0x1527122,0x16169ca,0x1096ea7,0x077d1e9 },
- { 0x0e62367,0x1991cec,0x13c764d,0x1773041,0x1361848,0x0e4be21,
- 0x18d116a,0x1f8018f,0x014f960,0x10764d7,0x11d2d66,0x019ee80,
- 0x15cf41f,0x167032e,0x1bb7a3f,0x10c214b,0x04e9e80,0x0d8ef2d,
- 0x1833dd7,0x0895c95,0x0d0b17c,0x11b58a4,0x0be958c,0x13fe5b8,
- 0x0740fd2,0x097327d,0x0a232c8,0x0c0bd71,0x063016c,0x18d6b54,
- 0x05fcb1d,0x0c0f698,0x16112e7,0x04bc2b6,0x101d035,0x0bfd21d,
- 0x0256e0e,0x0df0c5f,0x0b6c166,0x1d994a9,0x04e6eab } },
- /* 64 */
- { { 0x199cfe6,0x191e9fd,0x05e2540,0x0d92668,0x1b09bc2,0x1efdb7b,
- 0x07905f2,0x0c0c822,0x089a757,0x08a0ba2,0x0672c24,0x1bf2212,
- 0x0f4c633,0x1cb5fe9,0x17f1f1c,0x0c5b6e2,0x1128cab,0x04650ca,
- 0x16e06ab,0x0e48e69,0x054a306,0x15da626,0x199e891,0x0452c8d,
- 0x0a0fabf,0x0b86bbf,0x07e96d7,0x17da2be,0x1192f35,0x16d2e17,
- 0x0b695a1,0x0fecd21,0x0cac72a,0x085beef,0x0a8b2a9,0x1e1895e,
- 0x0049ad2,0x0318e0b,0x1c15bd1,0x12c09d9,0x0325d27 },
- { 0x048c144,0x0fdaaa4,0x1ccbb84,0x0b6d4f5,0x0e06292,0x0f07cd2,
- 0x1a384da,0x03c24b6,0x0ca53b2,0x0cded73,0x03a86eb,0x00b85d3,
- 0x15f50d6,0x0f97d1c,0x0e7854e,0x065eb7b,0x12de915,0x1a2b871,
- 0x1a89435,0x0d315c8,0x1145810,0x1656cec,0x1ff6551,0x1d2f4bc,
- 0x0772111,0x174d5fb,0x14927e0,0x1453efa,0x11df63c,0x1cd4cc2,
- 0x196a714,0x0e3a1c7,0x184d54b,0x095ab7e,0x1670107,0x15a3c08,
- 0x1d80096,0x19f5b77,0x1e74f3a,0x08dc654,0x019d485 } },
- /* 65 */
- { { 0x140f5e5,0x0f747da,0x145ff86,0x1e09cd1,0x06d2a52,0x1ee438c,
- 0x036c2b6,0x191a464,0x0d03a7f,0x01d6ad4,0x12e45aa,0x078e117,
- 0x0054bf8,0x1728f42,0x084cfa8,0x1bbbe12,0x024cb52,0x1de71c2,
- 0x0418d60,0x0f7c806,0x1176d5c,0x0fa2c71,0x107aee7,0x09b577f,
- 0x19639bc,0x0d457d8,0x13015c9,0x0c6a1fc,0x01cd243,0x031a427,
- 0x17ab128,0x1828b71,0x1f73154,0x0191bd6,0x167acd2,0x00154db,
- 0x0bff272,0x1a2e1ee,0x14ec28c,0x0d969c8,0x01b3ace },
- { 0x0a8bdc5,0x1f2f4c8,0x02240d0,0x1ac60d4,0x0203bf9,0x0429075,
- 0x068d639,0x00d3091,0x0de7d1d,0x08bef5f,0x0574fef,0x0daebef,
- 0x1f8fafa,0x1c3d851,0x13ad8c0,0x1d5f549,0x132ffdd,0x1700b35,
- 0x19d9380,0x1c40a8f,0x1304a2f,0x127438f,0x156ae60,0x05d88bc,
- 0x136bb95,0x065515e,0x12a4348,0x1698290,0x1cfb537,0x19c3bad,
- 0x1954c67,0x0d30589,0x0238a4a,0x1490e9a,0x071e840,0x1d4576c,
- 0x1b3ab17,0x030db26,0x0285078,0x07c325e,0x0538ec3 } },
- /* 66 */
- { { 0x19b56cf,0x04b7f50,0x0b3464d,0x08f7733,0x063d77f,0x085440b,
- 0x0bea15f,0x1fb1e09,0x0082835,0x0769ed1,0x0b3b1f3,0x15dabb0,
- 0x057e21f,0x1c004e4,0x05d6e67,0x1460edc,0x11b2d05,0x16ce371,
- 0x0521f60,0x091a950,0x0655969,0x196a37b,0x01baf4f,0x0799893,
- 0x11aa877,0x0534342,0x0a2c590,0x1c441e4,0x020b753,0x11d420d,
- 0x1be7c1b,0x1215814,0x0fffe5e,0x159fd96,0x076a3af,0x13eb536,
- 0x0e08e2c,0x03eccbb,0x1d00496,0x13007d3,0x06fd602 },
- { 0x0b7516a,0x04fc6c7,0x02ad51c,0x097b8b3,0x03058a7,0x1400e74,
- 0x176621f,0x12da469,0x0d17b8a,0x087cec8,0x03daaff,0x093edd2,
- 0x1baa1e5,0x0d3f6aa,0x05bfe01,0x0983249,0x17a6c25,0x086cfb2,
- 0x025895d,0x1d49397,0x07de3cd,0x1816ff9,0x0da168f,0x1178097,
- 0x0e7fddb,0x1581e28,0x1e61c8d,0x009fe1f,0x0d50559,0x0c7edd8,
- 0x141250a,0x1c297d1,0x0b3386d,0x0986b1a,0x1a71f0f,0x12f5a69,
- 0x0159fdd,0x15995ef,0x197007c,0x0798ec3,0x084cfa2 } },
- /* 67 */
- { { 0x199b964,0x008f5c5,0x111c4ef,0x14b1c5f,0x0e280c0,0x04d2a5c,
- 0x0f12753,0x1f50e1f,0x0bf6e20,0x1d19a51,0x0233e8d,0x1a1baf9,
- 0x1aee583,0x17a578e,0x180a6a3,0x1f14c0b,0x0340c2e,0x136aaf1,
- 0x027a6d8,0x0dfbfc4,0x080f61b,0x135dc70,0x0ec76b4,0x125f834,
- 0x1c16293,0x1a72d6d,0x182ab8f,0x05581fc,0x1f4d5b0,0x000d615,
- 0x14a3666,0x18505fd,0x133f93f,0x0d99f91,0x0432d4b,0x0e2db96,
- 0x055752e,0x1c87c26,0x0363827,0x0a39094,0x0287d4c },
- { 0x09867da,0x0c10087,0x13697e9,0x06350e9,0x014589b,0x0f71173,
- 0x09f17ef,0x15000bc,0x1e612bd,0x1abff7a,0x18d7e78,0x1dbe5a6,
- 0x064e0db,0x17892d4,0x0f9c391,0x145cac5,0x0840d94,0x0d04dcc,
- 0x02d7974,0x13342a5,0x08b57eb,0x173a881,0x086e505,0x0da5988,
- 0x17fd7e0,0x0228d89,0x1ffa826,0x1f43ea2,0x0ecbd76,0x14b37fe,
- 0x0f8ee87,0x1065e8a,0x0c89a4a,0x147d0ea,0x0abfb29,0x060f63c,
- 0x0bd395a,0x1da229a,0x0784f43,0x1b9b1df,0x00132a3 } },
- /* 68 */
- { { 0x16374c2,0x03bc2ab,0x010394f,0x0308e4e,0x060526d,0x0650227,
- 0x1b7208a,0x027140c,0x0f1ce13,0x1f0e0d9,0x0c31747,0x10659bd,
- 0x0f2aeec,0x0e5fc13,0x1659a66,0x14b134e,0x081de77,0x0668c47,
- 0x0634495,0x1c1fc02,0x186ae5c,0x0203c85,0x0850aa6,0x158519d,
- 0x1043f39,0x0027147,0x021f796,0x1ddf052,0x19a8c54,0x0d997b1,
- 0x13e0f0c,0x0b10ef2,0x10454a7,0x0d9c8eb,0x154062c,0x0b94c6b,
- 0x11d9c79,0x1f503b1,0x0a8973b,0x0ed6df1,0x013cbee },
- { 0x13f34f3,0x15f07c6,0x1f8de72,0x1946c2f,0x1da9c31,0x0a1350d,
- 0x1b88f76,0x00964db,0x1f29c91,0x0eecb13,0x1b34efa,0x02d3c58,
- 0x16033eb,0x1e5d10c,0x1cfd24b,0x1907914,0x00bb858,0x1c971bf,
- 0x0ecfeed,0x05594c4,0x00a2e4f,0x0f325f0,0x00407ec,0x11ec891,
- 0x1826a94,0x073c8d3,0x1241c98,0x0280cf6,0x0bb8354,0x1528718,
- 0x1bbddd2,0x1933380,0x122ca80,0x04288fc,0x16e42e8,0x00d70c6,
- 0x05fa04f,0x09b5ae1,0x0259efe,0x1b5c05d,0x04e0a1a } },
- /* 69 */
- { { 0x1a29c4d,0x1333845,0x0250032,0x1c45310,0x008240c,0x0ed3a96,
- 0x1299c5b,0x068438b,0x1abbbfa,0x04e0722,0x0a2dc9a,0x0bfa7da,
- 0x141d754,0x0be2b55,0x0884663,0x13acabe,0x1743875,0x0a59ec7,
- 0x1f942e2,0x121bf71,0x1a16934,0x0bf4075,0x0d907d7,0x1596a6f,
- 0x1a5eb79,0x12f3d86,0x1c30757,0x16d6292,0x1a429aa,0x1346d2e,
- 0x0948ce3,0x05eda5e,0x010c437,0x079d3f0,0x1b4994c,0x1844de2,
- 0x0bef08b,0x187bdb6,0x12667be,0x1b33f33,0x0733e30 },
- { 0x02a38f9,0x10ac152,0x1403b3f,0x1c8e616,0x0ec2d58,0x0bb5965,
- 0x1ca9f7a,0x1765dc5,0x1a969c1,0x029ceda,0x136d2bc,0x02d1f9d,
- 0x0231954,0x13d4748,0x1dcd22b,0x0a83fe5,0x1cc3121,0x10eac6b,
- 0x080ab94,0x0b6eb84,0x15a75d2,0x0d7a041,0x17aa659,0x1369c8d,
- 0x16a4152,0x0cd9ff5,0x1ef49eb,0x192ff6d,0x1f900b5,0x0a60130,
- 0x07b61d5,0x009ab63,0x03031d9,0x0cdce5a,0x06e32c8,0x1e67abd,
- 0x1ee00bc,0x01ea491,0x17031e9,0x0736f34,0x056facb } },
- /* 70 */
- { { 0x1018bfa,0x0b2d151,0x0610064,0x093ff5b,0x100c6b2,0x1a0d4d8,
- 0x0c7d954,0x19377e3,0x125dc4c,0x15e8ecb,0x1ff9839,0x1daa57f,
- 0x0b52850,0x1f2a84d,0x1a64b31,0x0b3e249,0x02e4ceb,0x07fb628,
- 0x0a9f452,0x166ae63,0x0a462f0,0x0ef3f1d,0x1a43077,0x0285101,
- 0x09f45d1,0x0eadd76,0x1996f97,0x0eb9fa4,0x0bce134,0x18a70ff,
- 0x0c20eae,0x101285a,0x0ba4829,0x1416435,0x0d74a5f,0x1a3c364,
- 0x10d8218,0x18e6df2,0x1b2eedd,0x0cdb29a,0x0885992 },
- { 0x15ccaf2,0x039480a,0x1cf8221,0x0ef8b6e,0x0679ebc,0x0e8476c,
- 0x0b746cb,0x1b75116,0x087d475,0x1050c07,0x1340aa5,0x0d6ecd2,
- 0x1680fdb,0x1f9fcf4,0x01d6324,0x06d887d,0x0fa4ad8,0x0ded1fb,
- 0x0bece1f,0x018b026,0x000f940,0x0112a81,0x0969e15,0x0dd9e30,
- 0x1c35177,0x0cd154b,0x1959b6d,0x07d7e8d,0x145eda0,0x1140132,
- 0x1111d0e,0x19ee956,0x1169d84,0x19fb4f6,0x0c76232,0x0d75572,
- 0x1825719,0x1749966,0x05c65c2,0x14d4181,0x0797224 } },
- /* 71 */
- { { 0x01f3567,0x091fc22,0x1c758ca,0x105c497,0x011c316,0x138fffe,
- 0x1c9aedd,0x044972e,0x17a5e1a,0x00ba353,0x16d05d8,0x1d4075b,
- 0x0653ddd,0x1facdc2,0x019e8f1,0x0ffeeaf,0x18756cd,0x0580954,
- 0x066ea6a,0x0bfd93e,0x07481bd,0x117c183,0x1d40de6,0x1180ba2,
- 0x1445dab,0x0153bb1,0x0de40fd,0x1afe883,0x03e46d5,0x13a6d48,
- 0x1070045,0x15ba24d,0x11d3c4d,0x0ada00d,0x0ab1851,0x1d44ea5,
- 0x155c356,0x1215342,0x014b136,0x02bb041,0x03ff09c },
- { 0x1cb7784,0x10de77c,0x0c15302,0x184845e,0x0ec539b,0x00a553d,
- 0x1e7f431,0x188be81,0x0ffd42b,0x1d518b6,0x1638574,0x09865e6,
- 0x0242f5a,0x0b713b4,0x0f7367b,0x1d9dc01,0x09ff8a5,0x0834fbc,
- 0x17853d7,0x10031c0,0x0741807,0x09c5a06,0x0aecf92,0x02fee5a,
- 0x08c1d79,0x0862ede,0x13315c5,0x01dd4cc,0x1a8920e,0x062d61f,
- 0x192897b,0x038f2e2,0x021b0f5,0x168b59e,0x0bc98d2,0x151e134,
- 0x18391d9,0x1987e2a,0x0b93239,0x00a9fbf,0x047ef18 } },
- /* 72 */
- { { 0x1a285e4,0x0f9e89e,0x0fd2659,0x147403c,0x1a7d4db,0x10a5685,
- 0x104e984,0x0928e70,0x1223975,0x1dbea9a,0x0c2e4b4,0x1b9eb4e,
- 0x1da53db,0x19968b2,0x0c364ac,0x0fde862,0x14182f9,0x1225142,
- 0x137386d,0x0444388,0x0ec9bf6,0x0c3f150,0x0ee84e1,0x1f5b331,
- 0x12c8dcb,0x02599f9,0x1ed7fb5,0x013cbe7,0x0217bb4,0x0632e33,
- 0x0a570ca,0x1f9bee3,0x00db69f,0x103c458,0x0886e24,0x1744785,
- 0x1ae6464,0x1594731,0x02187e2,0x13971bc,0x01a6b6e },
- { 0x0af77aa,0x1615b03,0x0196bdb,0x1b510fe,0x0e60f5c,0x04c62b1,
- 0x050027d,0x0970fa4,0x1fcbaaf,0x1acadac,0x0ae1576,0x05424e3,
- 0x0c0fb59,0x0a1a4d8,0x1384397,0x1193941,0x1d8887d,0x1ceb0c3,
- 0x152f5b6,0x1d2bf22,0x099903e,0x09ae836,0x03f94c8,0x0d4c9a1,
- 0x1bc30fb,0x1b07a53,0x159a932,0x1a455e1,0x17367c3,0x1677ae9,
- 0x1545a54,0x132fb1c,0x10ea734,0x1996837,0x1c3dcc5,0x05688f8,
- 0x09cb394,0x15981a5,0x03f4002,0x10050a2,0x079dd01 } },
- /* 73 */
- { { 0x0c7424e,0x0019d1d,0x1340138,0x10c1fb4,0x1b06b68,0x1bb97de,
- 0x05d9af2,0x14846d5,0x1f297cd,0x0a54715,0x04f1b8a,0x170bb60,
- 0x0d4b0aa,0x0391d1d,0x0abb262,0x094d67a,0x0cd13c8,0x1065719,
- 0x03b05a7,0x111ebce,0x0262218,0x1ea1544,0x1ce58ce,0x0c1b370,
- 0x0792e7b,0x1f0b456,0x0841da7,0x13e56e4,0x0bed348,0x07f3692,
- 0x0aa3cff,0x147d649,0x15efb88,0x03835e9,0x08fd213,0x1bbbd9f,
- 0x129ece0,0x008cd4c,0x150d9f3,0x08b1a80,0x087e5ad },
- { 0x11000a7,0x0d54ebe,0x00ceea6,0x195d047,0x0b94aff,0x1c1ee2c,
- 0x058a37e,0x11b9045,0x1845a41,0x1acff08,0x05c150b,0x01f0ba8,
- 0x01a8b97,0x195b8ac,0x0630995,0x1ba2f12,0x17dc0d1,0x07277a3,
- 0x0beb5f0,0x1699e67,0x0a5bb50,0x1c80c38,0x086eba9,0x07450d0,
- 0x087f9bb,0x0e6e3b8,0x1849296,0x10aea63,0x1432397,0x0137abf,
- 0x12bb5d3,0x002c992,0x1f5ae25,0x05fba6a,0x1f8bc25,0x04cc116,
- 0x1dceea3,0x06dadd7,0x10117d3,0x0333219,0x00b7125 } },
- /* 74 */
- { { 0x0d5c64d,0x08650c4,0x14d168a,0x134e924,0x0596d74,0x0074928,
- 0x034f4a8,0x0d74096,0x0caf7b6,0x0166816,0x17b60c2,0x0185d9b,
- 0x0e912b5,0x1f98b23,0x0f3a77b,0x1ff2b02,0x0c7c75f,0x0b15738,
- 0x18a9185,0x10a5c0f,0x0fd16f6,0x0801c02,0x0c83f5f,0x031d1b2,
- 0x0a4dd82,0x0ebd8d1,0x0ebf191,0x12314df,0x19fdbe4,0x07d0f46,
- 0x1bbec20,0x088e16d,0x1d4d08a,0x1a77b99,0x01ddb65,0x05a5744,
- 0x09dae5d,0x05cad3b,0x165b63b,0x074fad2,0x07a3f42 },
- { 0x0929387,0x096534d,0x1ffcd8b,0x0396383,0x0bdb758,0x08db65d,
- 0x1b27df9,0x03fb125,0x03a4e13,0x146c319,0x01d587b,0x07e2b7b,
- 0x124680e,0x0a73f39,0x0965f87,0x1fdfdc7,0x17c5581,0x19e6395,
- 0x0a32b82,0x0eff159,0x14aff3e,0x0e2f17e,0x1f31f5f,0x06ab6f3,
- 0x0455221,0x0bbee9d,0x0a8b01c,0x08d649e,0x09621f5,0x0996834,
- 0x0f9056d,0x07ef02c,0x1e9af51,0x1f69095,0x0e6ccf5,0x064fac7,
- 0x1680294,0x00cf794,0x1ebd2ac,0x0aa2c47,0x02da5fc } },
- /* 75 */
- { { 0x0a5c600,0x14e79e4,0x19f1890,0x047fc67,0x07a80c2,0x0beee5d,
- 0x09d0029,0x0e93ffb,0x1925b0c,0x0d70ab6,0x003ac34,0x07f2d62,
- 0x01097a4,0x17ca1e4,0x07a5173,0x19e482d,0x0e51128,0x1d0fb9a,
- 0x067c04c,0x10f8948,0x0024043,0x0580822,0x1001e1a,0x06b39e5,
- 0x16abf90,0x071f2a0,0x191e355,0x138edfd,0x02173ef,0x0ed3215,
- 0x1059886,0x13fc602,0x1e03156,0x1923f30,0x138e4fb,0x0541feb,
- 0x072b659,0x0bc95d0,0x1534e04,0x032e190,0x0855f02 },
- { 0x07314c4,0x1fdb642,0x05a987e,0x0bd68b7,0x1790615,0x1157d64,
- 0x18519ae,0x102e205,0x1ab9497,0x0a8fcba,0x0313fbb,0x162f822,
- 0x079d2f5,0x17fabb3,0x12339c2,0x089cef5,0x0216eb2,0x1f39b35,
- 0x1471971,0x1779d8a,0x19dedd1,0x0570d42,0x0d49418,0x14fa5cf,
- 0x081748b,0x0623d02,0x06ae3aa,0x03458a8,0x1ff078e,0x1261b7e,
- 0x011b9e0,0x0290e96,0x1b49fc7,0x0fb99bc,0x0dfc1ac,0x1e455c6,
- 0x0f8fe6c,0x1a90c93,0x01e5c70,0x19ea4ba,0x0292236 } },
- /* 76 */
- { { 0x18b29dc,0x06c053e,0x122b36e,0x0811d4c,0x117a202,0x095f48e,
- 0x0b17aba,0x178fb62,0x0fda72f,0x19a3e8c,0x1831bc7,0x16813ce,
- 0x1111374,0x0c71c6c,0x187a3c7,0x183e8e6,0x09d739a,0x13b8a5f,
- 0x137d713,0x12e0396,0x0ae1c1f,0x0c37b96,0x1644e3b,0x1a30189,
- 0x1e1f76a,0x1ce0e3f,0x1a78b6f,0x11830b7,0x10c44df,0x1934be3,
- 0x17e0d76,0x161a2b6,0x197cfea,0x12a2f7c,0x1169879,0x1ca2028,
- 0x05184e5,0x1834421,0x19ea85a,0x0b2ea43,0x07cfac3 },
- { 0x00bc53a,0x010b39e,0x0d9e046,0x06fcea2,0x04b5ede,0x12bd0c4,
- 0x157f68d,0x1307944,0x0ba1fdd,0x0b55dfa,0x09df602,0x0d3f8bb,
- 0x059ce83,0x1559a16,0x1ee6b9e,0x0b3e3e4,0x1d69720,0x083648d,
- 0x053b3fa,0x1b56612,0x1f12ee0,0x1dc9fa9,0x0ed91fe,0x14afc1d,
- 0x18a7aff,0x1039861,0x1e7cab5,0x02fa0dd,0x19dcc95,0x06c3ddc,
- 0x08525ca,0x088c101,0x0034af1,0x0e0bed8,0x10fc4ae,0x0199021,
- 0x172a22a,0x12f8a7b,0x00af5c8,0x0fe3bbf,0x06ce3dc } },
- /* 77 */
- { { 0x0397830,0x06c1ad2,0x0c1b01f,0x19e8e66,0x0dd9290,0x0c4f462,
- 0x14ea0a6,0x0a5ba6b,0x1563d81,0x0c812ac,0x17986de,0x1223d0f,
- 0x1cf278d,0x081271a,0x1cd031c,0x01cb338,0x0614a0d,0x096a222,
- 0x0c989a8,0x0ec11fe,0x1aa963e,0x14e264d,0x189e8df,0x1fffa4a,
- 0x0dc5176,0x0e6862b,0x033bca8,0x16dbdf9,0x0559d9c,0x06ab77e,
- 0x04b2f30,0x008396d,0x05f3fc5,0x10f04f2,0x08e7945,0x199a0b8,
- 0x1c3b559,0x198f74a,0x085b4a9,0x04547a1,0x0851511 },
- { 0x0ff19e2,0x0819ac3,0x180de0b,0x143b450,0x02c60da,0x1e3f76e,
- 0x033f955,0x16165cf,0x01bc4e8,0x07b7cc2,0x0d719ea,0x16967be,
- 0x0acc1f9,0x03b2231,0x184d80d,0x1c1612d,0x1977c7a,0x15fc885,
- 0x050d655,0x0fe60aa,0x0ae527c,0x0e7b18f,0x10536c5,0x0d36699,
- 0x161427e,0x1f9528e,0x057f04b,0x1d9050a,0x087162d,0x1709fdc,
- 0x0f7f33a,0x1bc2911,0x0332ac1,0x1f3a66d,0x1388bb8,0x194406e,
- 0x10ae069,0x1f50d0f,0x1b01165,0x1e4ef7b,0x08b1159 } },
- /* 78 */
- { { 0x1961d30,0x18d2217,0x123d2bd,0x10f58e4,0x1df968a,0x148366d,
- 0x1e1f2c6,0x04ba65b,0x004abf9,0x0608713,0x0135300,0x0eb373e,
- 0x1ab8711,0x09cb82e,0x1553982,0x0109201,0x033c9f8,0x0fbac3a,
- 0x09e88dd,0x1575bcd,0x17ac2e9,0x1c4a560,0x159db51,0x005b338,
- 0x0525bc2,0x19ea650,0x16afeb9,0x0b71795,0x05991b9,0x169c1a0,
- 0x10c8dc7,0x08b1533,0x169e47a,0x0643315,0x0c60ade,0x18f9581,
- 0x00232c7,0x1553cdf,0x1d165b3,0x066b11e,0x00bd864 },
- { 0x0734189,0x0d45a3f,0x085f7a8,0x119fcbf,0x12c5ac8,0x01bb322,
- 0x1353845,0x0a08894,0x0af9e97,0x1291184,0x11acef0,0x0187a61,
- 0x1778b1d,0x0636fa3,0x16b97c1,0x11bae5d,0x19a2ee8,0x029898e,
- 0x1324f8d,0x0701dd5,0x0e8ec4e,0x16546d8,0x15266c6,0x0ba93af,
- 0x08c167f,0x06bbb9a,0x1c555b3,0x12cc64a,0x11d13dc,0x0746130,
- 0x1319738,0x16b45fb,0x095fe66,0x07d5096,0x00ca196,0x104cd31,
- 0x11c32c9,0x03e8fa1,0x0641f6a,0x131f9b2,0x0466505 } },
- /* 79 */
- { { 0x14a5efa,0x009e635,0x099531b,0x163a0f6,0x0481989,0x0e34e06,
- 0x19b3a2f,0x1a82172,0x02c2531,0x0a67d51,0x028403d,0x101195a,
- 0x09cb5f1,0x172ed22,0x0d494e3,0x107997d,0x085bedd,0x0531200,
- 0x189571e,0x05b59fa,0x058fe79,0x0310310,0x020dc64,0x02cb183,
- 0x15e83ed,0x0a14b30,0x1df4a35,0x16a9364,0x175df34,0x13edc1d,
- 0x10babc4,0x02ff772,0x160df6d,0x1e49827,0x076fdbd,0x1fa10c6,
- 0x0018789,0x01c7cc3,0x0a0305f,0x0957352,0x00c4357 },
- { 0x120cad0,0x199260e,0x0229dba,0x1318c22,0x10decb0,0x0369b6c,
- 0x14e71bc,0x12f4dd3,0x0bc0da1,0x06cbc5d,0x0b1739b,0x0380a0f,
- 0x155948b,0x02a4bf5,0x151c593,0x029c657,0x00f4d59,0x0154e26,
- 0x1d67c0f,0x18a08d4,0x047e772,0x0534d64,0x19f5cca,0x0916661,
- 0x17d0c30,0x167546a,0x0103dee,0x0c0069c,0x1f1790e,0x08c9d42,
- 0x0da08f6,0x0b90b2e,0x0e9b66c,0x1081153,0x11e99e7,0x0845945,
- 0x09023fa,0x13d0ce0,0x156e403,0x1e24e4d,0x0324999 } },
- /* 80 */
- { { 0x0834915,0x1576b3e,0x193599f,0x1578bd6,0x1f77aa6,0x0b1008c,
- 0x0f2d897,0x184e53d,0x0699fd9,0x1771279,0x153db02,0x10e8571,
- 0x16e1eb5,0x0a64bb6,0x049c430,0x1d4cafe,0x135f6d9,0x0489c81,
- 0x1ad4019,0x16e0920,0x0e4f668,0x07043b7,0x1965a68,0x13b26c0,
- 0x1bf3f2f,0x1e77c80,0x06d2678,0x16350ca,0x1bcaaaf,0x09fdf96,
- 0x0da02e5,0x12e760d,0x12cc566,0x1b63218,0x070cebc,0x0a6a69b,
- 0x10ffd81,0x031d290,0x0ae4791,0x097e318,0x057ea2b },
- { 0x0a0f2f2,0x0f0b145,0x12a803d,0x0a1c8d7,0x0c7e75c,0x116216c,
- 0x11e6a92,0x0052f56,0x014baa2,0x0798475,0x0f30bad,0x1a28d28,
- 0x04a901b,0x176ac40,0x0497fbb,0x01ef976,0x0f99d18,0x0328164,
- 0x1603187,0x0a72322,0x1ee3e53,0x1493880,0x1f89e01,0x14e4e2e,
- 0x040a1fa,0x0a9bd05,0x0931d6c,0x05db9c0,0x0f1c223,0x1305a9c,
- 0x0bb688d,0x17c60fa,0x1511e98,0x1705a26,0x19026eb,0x0e484ed,
- 0x1ff1f30,0x061c93b,0x0d7269e,0x08dd4f2,0x060480b } },
- /* 81 */
- { { 0x072ece3,0x03eb31c,0x03e0c42,0x1b2ab6e,0x1f29be7,0x1caddc2,
- 0x13f1e73,0x0436a16,0x1dbffa6,0x171dac6,0x0ae976e,0x0501c04,
- 0x1c0e61d,0x00c0a24,0x0b9445d,0x0a90af1,0x040cf55,0x1058994,
- 0x03382c3,0x1da36d7,0x1e3d800,0x0abc6ae,0x0d77ff7,0x14ad68e,
- 0x0237469,0x173fbf2,0x0636442,0x0bc646d,0x13c7c7d,0x0950318,
- 0x196dbfd,0x1525bd3,0x02fe20d,0x0885dad,0x1f4f448,0x0683668,
- 0x00c16f2,0x082f6da,0x0233316,0x1a7351f,0x00774a0 },
- { 0x1b6c106,0x0c0d5f1,0x02dceb8,0x1f1bc2a,0x0ebe163,0x1aa41b2,
- 0x0e0bdbc,0x02d9eeb,0x13ac7ac,0x1069031,0x1c8abea,0x0cd0522,
- 0x135c680,0x08aa2aa,0x0507984,0x1c7eee7,0x038bf5d,0x10b893f,
- 0x0bed076,0x1fbe063,0x066332c,0x08c3de4,0x11a24f2,0x0593933,
- 0x06744a6,0x0a3ba82,0x1658b06,0x0d0cdc5,0x0cdf4c9,0x046f9bc,
- 0x0c9227b,0x0680ff4,0x060709b,0x148689d,0x0565544,0x07a6fa4,
- 0x1ab9227,0x11e981d,0x0052e58,0x0a84864,0x0081519 } },
- /* 82 */
- { { 0x17b2108,0x1b6c4fd,0x06abe48,0x195aebf,0x1ecc83c,0x10ed089,
- 0x0ac56d3,0x0c5ef8e,0x10315c3,0x0957577,0x0bf8fd5,0x01dbe4e,
- 0x0811e14,0x03c21f7,0x15e6fda,0x164b733,0x0fd1d9b,0x06735aa,
- 0x0c6eb5d,0x161c42b,0x090db20,0x07adc26,0x1528085,0x14d9d92,
- 0x1bf52fc,0x1b7a2cd,0x167937d,0x06c7891,0x0cf17ee,0x1c276b2,
- 0x120c117,0x1ec55b4,0x002a167,0x06500c2,0x0fcda9d,0x1a593c3,
- 0x1691c42,0x07cea0f,0x0e1d3a3,0x0f18589,0x05abf21 },
- { 0x1b3bccd,0x1cb35f9,0x12a91dd,0x017c7c1,0x0047e0f,0x1ea8218,
- 0x00ece31,0x1f99707,0x1946fd5,0x1bf1dd7,0x103a1f9,0x0f0bd3d,
- 0x0579baa,0x0450c69,0x0f155f3,0x1f9fdb0,0x1af25be,0x0cdcb72,
- 0x031c6d8,0x0ba2bd3,0x0da14f0,0x0d3bf31,0x0207e64,0x1547042,
- 0x0c781cb,0x1fd8e37,0x1795366,0x0a45ecb,0x0d14307,0x0ab9a27,
- 0x16bd741,0x12b95fb,0x035b31f,0x07adf98,0x1d0d8de,0x128fccf,
- 0x1270b9d,0x0fbe56a,0x1a9200a,0x10e9b22,0x015ad15 } },
- /* 83 */
- { { 0x0588ae4,0x1176755,0x08c8037,0x1146e34,0x152ebc5,0x1182222,
- 0x0a4d1c4,0x05ba01d,0x1e4b183,0x1dfd33e,0x07a10eb,0x06836d1,
- 0x0829216,0x10fa717,0x05aeef5,0x13b8a3f,0x08404c2,0x0caa103,
- 0x08c5ff4,0x1c704e8,0x1162c7f,0x0331a41,0x18282bb,0x000309f,
- 0x194d107,0x0c2fe15,0x0ff87ef,0x0e4332e,0x0743520,0x1558fd8,
- 0x049922d,0x188dca7,0x1bbdaad,0x12b7f91,0x147c03e,0x0c1b71b,
- 0x066725f,0x040af5c,0x0658c41,0x194a5d0,0x03f9c4c },
- { 0x0ce637e,0x1594b99,0x1377fcd,0x1beba4b,0x01a15f2,0x0156cbc,
- 0x014b62c,0x1d2343a,0x0cfbab3,0x12f9dde,0x1badd4b,0x17aec29,
- 0x1a60d2c,0x06ad3c9,0x124610f,0x04289a8,0x175cdba,0x1112167,
- 0x02e65d9,0x0e0bcf1,0x0132a20,0x00763bf,0x19384b3,0x035360a,
- 0x14df6b6,0x1ad58e0,0x11d2096,0x1fb2fe0,0x0312238,0x04109ed,
- 0x0365581,0x09a618e,0x0486727,0x17734ef,0x1c54704,0x1b79571,
- 0x068d893,0x031c5a3,0x15d2d77,0x1ac447e,0x06479da } },
- /* 84 */
- { { 0x05f2b26,0x02279d8,0x1db15a4,0x150173e,0x135a294,0x087b575,
- 0x1f8a10a,0x0ef1073,0x1026a58,0x10e7d91,0x1fe70dd,0x0d6c5cb,
- 0x1676892,0x0588e2b,0x19b3480,0x07dfd75,0x15672a0,0x16e42bb,
- 0x06eb58e,0x1c0e95c,0x199c0ca,0x10eb84e,0x0ff9246,0x003b382,
- 0x1ded665,0x1fbbb62,0x070cabb,0x1b4dd94,0x1683e81,0x0eaae2b,
- 0x11d4212,0x1bf31b0,0x0392e9c,0x0d2b24f,0x00bd936,0x05f5af3,
- 0x037b98b,0x01dedbd,0x0125fdf,0x129e10c,0x01fe09f },
- { 0x048cc63,0x1f5573b,0x1c51269,0x02cf9f4,0x13ea251,0x1fa2ac8,
- 0x048f194,0x10df917,0x181a16e,0x0abb0cd,0x1919d36,0x0096790,
- 0x1a0c7e8,0x0b0b2cc,0x0204d28,0x04651f9,0x1690a65,0x11b3754,
- 0x0f240a7,0x0652c09,0x0d2b415,0x0a57155,0x1be7866,0x0217deb,
- 0x08c527f,0x0304f15,0x1b19efe,0x07b96b0,0x0cc25d7,0x01fd422,
- 0x14fd869,0x0e9d66c,0x14e7eea,0x007816b,0x1c1b749,0x09e66ac,
- 0x1d83bcb,0x03b4a67,0x149abbb,0x10db6c4,0x04de957 } },
- /* 85 */
- { { 0x1eac2f7,0x1e98a9e,0x0a39219,0x156c3b3,0x0084778,0x1bd96ad,
- 0x1be582a,0x0f3e76e,0x0cfdf4f,0x059802b,0x0e3d2c0,0x1c2a635,
- 0x01d0701,0x0e3bce8,0x1e52356,0x0a6e20f,0x0bc8267,0x03e4ca7,
- 0x02eb530,0x09a9dc9,0x1058110,0x1adfe4e,0x1e63382,0x13f5016,
- 0x0898d30,0x157e3e5,0x16b2ccf,0x0489e44,0x0f31750,0x06fe2d9,
- 0x0d3547a,0x149af7c,0x049ba6b,0x015a19f,0x131ef68,0x142ec1e,
- 0x0435275,0x11b53f2,0x06030df,0x117cc6d,0x01c9441 },
- { 0x1dc1414,0x1098984,0x14dd0e8,0x1887926,0x060765f,0x0fbce70,
- 0x081eb7d,0x194dfe6,0x085d4cf,0x18c58fd,0x0656adb,0x0e5cc7d,
- 0x02f5c42,0x1415980,0x0682792,0x0fe2c24,0x11b9714,0x1415b2e,
- 0x029ff89,0x0784184,0x0726499,0x0c7338b,0x067272e,0x1688141,
- 0x0d673fe,0x1e2ad01,0x04946d2,0x1e7f53c,0x1338ea3,0x023a502,
- 0x12dd76f,0x0f613ed,0x0b4044b,0x1a3049e,0x0862010,0x04cecfb,
- 0x098ceac,0x028a110,0x0d6ea5e,0x1656aa4,0x0611bfb } },
- /* 86 */
- { { 0x00ad2a1,0x152af78,0x035ef6e,0x1c29452,0x09efa85,0x158b4a1,
- 0x11da3a4,0x0607694,0x111ec81,0x1888de6,0x149ec99,0x0e05117,
- 0x060e425,0x0cd01e0,0x033ca8f,0x11095e5,0x12df318,0x05dbe46,
- 0x0eabac8,0x1428c5c,0x1d77e2e,0x0221dc2,0x0cd4d60,0x09dd37a,
- 0x0448255,0x0c7c0f7,0x1b9aa86,0x165ddd3,0x0c5944e,0x1402613,
- 0x1f1e96a,0x105562c,0x0ef2da5,0x110d2d0,0x11d80bf,0x1cb4556,
- 0x1370298,0x0e59dc1,0x0aa345a,0x0881d67,0x086e6c5 },
- { 0x1793d9b,0x0199085,0x1b3bb78,0x023bb6b,0x179fade,0x0985b27,
- 0x16a49a2,0x165ee7f,0x1fe4fd1,0x1556cbe,0x1372201,0x163b254,
- 0x15073a5,0x1e4bb6b,0x1e32f62,0x04d8115,0x1b163ce,0x1305a55,
- 0x12c7ec1,0x060153b,0x13d39c8,0x066d4ad,0x0cd6965,0x0fd590e,
- 0x1d7d4b3,0x1558fcb,0x0883bbe,0x07a5d74,0x0828c8a,0x048379f,
- 0x004c963,0x10b56ef,0x032616f,0x05b0be4,0x064a30a,0x1ae4b2e,
- 0x1233b82,0x18cb5e1,0x049b735,0x17233f4,0x083867e } },
- /* 87 */
- { { 0x0474edb,0x1f39f11,0x06b9dd3,0x083509c,0x0a76639,0x16eb719,
- 0x0a6b671,0x0ba4e06,0x114f8bf,0x062520a,0x19ee400,0x146fa44,
- 0x0e3ce2e,0x08e927d,0x1d4c054,0x036f024,0x054263a,0x13e0a6c,
- 0x0b82c81,0x1080363,0x09fc20c,0x0d840fa,0x1cca804,0x138dbf1,
- 0x123fb95,0x0830f40,0x1200387,0x0651b8f,0x059a9aa,0x11bc121,
- 0x0dd61da,0x16fded8,0x1ada8b5,0x0a64f91,0x0dbaa4f,0x1e047ed,
- 0x1fb6389,0x1aa0a6f,0x0ce7a27,0x145cc51,0x04b26bb },
- { 0x1318454,0x18e5a2e,0x12db4c2,0x1fae86d,0x123b749,0x053a308,
- 0x11c995a,0x03c6221,0x11c84fd,0x02ef091,0x00f5572,0x0dcc108,
- 0x18a5f8d,0x0d8fd5f,0x16db84e,0x1b9c072,0x0c33cfe,0x07f36b4,
- 0x12e4444,0x00703f2,0x0eb71d9,0x0096e63,0x1c2a3aa,0x1219457,
- 0x004137e,0x02d2cf4,0x1f22897,0x1d6bf80,0x04663cb,0x129d2ec,
- 0x1f00270,0x12216d4,0x0b15073,0x07c6a80,0x0931042,0x0b0c0fb,
- 0x0b901e6,0x01ece1e,0x057180b,0x18a592c,0x04d697b } },
- /* 88 */
- { { 0x1a8fb40,0x18f7877,0x0273836,0x16b7473,0x09021c5,0x0e8cef9,
- 0x1ec5602,0x1c351ad,0x14c1219,0x1bc3db9,0x1c1789a,0x02d029d,
- 0x026417e,0x07cbcb7,0x04d0b6e,0x0843689,0x05ebf84,0x117c3c5,
- 0x052914d,0x122dafd,0x1693e71,0x11d708c,0x06062ee,0x0d1009d,
- 0x14be957,0x1c57633,0x13e1093,0x144c0e9,0x0ce6ab0,0x1dcea33,
- 0x02f6f24,0x192400f,0x1f15a98,0x078d1d9,0x1434e1c,0x0f3a21f,
- 0x04e785a,0x0920ecf,0x1360298,0x143cd91,0x076ca87 },
- { 0x02e48b7,0x1fdab70,0x07190d5,0x079813d,0x1bd14b1,0x034e787,
- 0x090d490,0x153b6be,0x02c3b01,0x03c0b2e,0x15b6b7e,0x0f89cd2,
- 0x08e549e,0x1deb05b,0x1fa54e2,0x18ca7e5,0x16b059d,0x1ca97c2,
- 0x0ddffa6,0x0c044b6,0x08c4d3f,0x145ff48,0x1a831cc,0x11ebe5a,
- 0x0a2d3bc,0x0286735,0x0c91094,0x0e42688,0x1b3ce5f,0x13351e9,
- 0x0485f84,0x182ceea,0x1b5e43f,0x1c4a53a,0x0188dfe,0x0a2b24e,
- 0x0be3e37,0x1303a99,0x0def854,0x18cdb47,0x027e7f2 } },
- /* 89 */
- { { 0x0a15883,0x1b2d6f3,0x0ccd8e3,0x18cd5fb,0x14a7e68,0x1896f2e,
- 0x0daaf4f,0x020c40f,0x037b878,0x037fca8,0x13db4c7,0x1964c95,
- 0x02c0d44,0x195f3c6,0x0eb1807,0x1301c2c,0x05a1636,0x18e31e6,
- 0x1724d26,0x059fd12,0x12203e9,0x0c20f63,0x1dce383,0x0bf52c2,
- 0x1d7642d,0x074b0b4,0x070f80a,0x154eed8,0x0d54092,0x0b2358b,
- 0x1664f71,0x0e0dbe9,0x0b27fb5,0x035cbd0,0x05c33a7,0x013d322,
- 0x13c85f4,0x07215f2,0x194a3aa,0x06f0648,0x002e964 },
- { 0x078ea1f,0x0056ed7,0x1a5a455,0x1af6ce1,0x11a1b74,0x0034132,
- 0x19107dc,0x18ff326,0x07d7520,0x1cbeb75,0x184b863,0x1404d39,
- 0x020faa6,0x1c9041a,0x042b2a1,0x0886c4b,0x0637561,0x1bd241c,
- 0x0e05023,0x0c293de,0x140607c,0x026bc29,0x1ccefd6,0x1776dee,
- 0x1b0109a,0x04d43b0,0x1fd4a28,0x09d6493,0x00ae3ce,0x0f6c170,
- 0x1e821e0,0x042f1df,0x04c1b25,0x09d3f43,0x0a8a754,0x1f983cc,
- 0x1919062,0x1c5ca70,0x149f7b6,0x1b49e2c,0x0739f53 } },
- /* 90 */
- { { 0x04adc5f,0x1a54449,0x15b5e97,0x0d5031e,0x15646c1,0x0afcaa4,
- 0x044a5de,0x0001d89,0x1d19c54,0x1a43a9e,0x044ad0a,0x06d640b,
- 0x0616fa2,0x143d24a,0x0f597cf,0x1a0ccd6,0x001045f,0x0538ba5,
- 0x0a97850,0x0a06262,0x0623b63,0x0254b5c,0x09e712d,0x16007ab,
- 0x19d659a,0x18d3d19,0x18e09bc,0x0e5e618,0x1090cdc,0x1c8637b,
- 0x092d39c,0x120dd7c,0x1ac6c36,0x0282d2c,0x01b6ee9,0x14734fe,
- 0x058c413,0x0cc8f0e,0x03a120e,0x1ff441c,0x0020c23 },
- { 0x1c74661,0x1256d57,0x0194483,0x064eff8,0x17bbcf6,0x0e73cc9,
- 0x073dadb,0x1428209,0x17b161b,0x1c6b5a9,0x043ec96,0x086352c,
- 0x0922218,0x0feef3b,0x07b2747,0x00c61bd,0x04d42d8,0x1e995fd,
- 0x09137d2,0x0ae054c,0x0dfb388,0x16a2ac9,0x137b747,0x09c0371,
- 0x1f45bfb,0x0d8070e,0x0a1b885,0x1e97bda,0x137e6a8,0x0a43b54,
- 0x08e024d,0x10261ee,0x15278ba,0x010fc20,0x1a48e2a,0x158db88,
- 0x1d8b4f8,0x03d88cf,0x073bc88,0x0a7f24d,0x076e7bf } },
- /* 91 */
- { { 0x1ebd187,0x1421413,0x16ed7c4,0x176cb55,0x0d3320a,0x12c34ac,
- 0x1d969c8,0x1576084,0x18f0986,0x11f99fc,0x1fd40f6,0x0f4f5d7,
- 0x0541180,0x012fb8d,0x11ddb2a,0x1e4964b,0x1edff7d,0x0606f3d,
- 0x197c7ed,0x161e842,0x1ae3da8,0x1bb98f9,0x17cffdc,0x07c14a4,
- 0x1d7e719,0x1232668,0x0edacee,0x1bf0954,0x1f37828,0x1c4bd50,
- 0x11eea12,0x1cee675,0x07960cc,0x00d10b7,0x1aad426,0x1a9a8da,
- 0x1cbb80e,0x009612b,0x1bc247b,0x04e572d,0x079e7ad },
- { 0x130caae,0x0b86e47,0x1bd0f36,0x0214dd7,0x05cabcf,0x0a30b6c,
- 0x018fb1c,0x130c783,0x1519e3a,0x0286d85,0x0c4f587,0x12c6c99,
- 0x09f39b8,0x112a3db,0x19f607c,0x16199be,0x1b9d67d,0x1b8abd5,
- 0x025246d,0x144b751,0x00dcccc,0x1e3d13f,0x1da2481,0x1a86503,
- 0x08fbe0f,0x0049a57,0x0d5c83b,0x0bb23ee,0x1d7beda,0x0c84e6f,
- 0x0cacbd8,0x094073c,0x0c10232,0x0c7ee0f,0x197b6c3,0x1ba787a,
- 0x0fe5005,0x048b642,0x1aa50cb,0x1589817,0x07f8c37 } },
- /* 92 */
- { { 0x1ac05e5,0x00f2a21,0x0094cfb,0x099b1a7,0x1a4a4da,0x1fcf15e,
- 0x0302e22,0x1b90db1,0x0b53811,0x06b8ee8,0x0eae90d,0x01a5478,
- 0x1e65504,0x1b0b08d,0x1102526,0x09f4057,0x06e279a,0x18e16a1,
- 0x0c196b0,0x14b5447,0x0890535,0x17e2975,0x16aa28c,0x1bb5a45,
- 0x1eca79f,0x137ad2e,0x14aacec,0x023e0bf,0x1cd81e9,0x13edf9b,
- 0x03176b3,0x121a2d7,0x00e44e7,0x0c4a707,0x0bb793d,0x1e2bcd1,
- 0x1c92a74,0x1024ccf,0x1f0bebf,0x1552e1c,0x01d7703 },
- { 0x10062a9,0x0640e9f,0x02eaa29,0x11b2d44,0x031eb2b,0x05e880f,
- 0x0637e19,0x028cdbb,0x04413b6,0x102fac9,0x1557e2e,0x141bd34,
- 0x1151a67,0x1725a96,0x10bc25c,0x1564759,0x0ec7184,0x1d5aed5,
- 0x11fda46,0x11687cf,0x07f4ce0,0x05bb621,0x148394c,0x047d7b8,
- 0x12069e4,0x0673e9a,0x00d37c5,0x16bc73d,0x0305ac6,0x194aa23,
- 0x104f72f,0x1fc699b,0x02cb2e1,0x1ad7db4,0x1744447,0x13a9588,
- 0x07f296f,0x17b1e6a,0x021c717,0x1d92784,0x00a2c40 } },
- /* 93 */
- { { 0x15747db,0x01c27d7,0x01ac26f,0x0d80d57,0x1bad608,0x1e0aa39,
- 0x020ba79,0x17f480d,0x155977a,0x0a99368,0x077ac0b,0x140bb50,
- 0x11063a9,0x0925b08,0x01b929d,0x1d72135,0x07a4ab2,0x10a017c,
- 0x171802e,0x0e43a9a,0x1dbf7d0,0x14f944f,0x068bf66,0x1bcde0e,
- 0x0e66dec,0x139faee,0x1f6ae7e,0x042e24e,0x074bab6,0x024fb62,
- 0x0cdb4b7,0x0eddda0,0x0017e1f,0x012e9ee,0x170136a,0x0772e2e,
- 0x14b05e4,0x14bf1ea,0x121f9b0,0x08cad93,0x02efb45 },
- { 0x121c064,0x0958045,0x0a7a91c,0x0494e0c,0x1186fe4,0x1a7857e,
- 0x0cd026d,0x052c86b,0x17ec9e6,0x0b2d521,0x183421a,0x0ce7898,
- 0x0adda14,0x1f982bd,0x19599c2,0x0dec016,0x0403ce8,0x13f82f4,
- 0x1100685,0x00e7520,0x007ec05,0x1c14a73,0x05ac798,0x19ee08c,
- 0x0325269,0x09d103c,0x0fa339f,0x1282283,0x17053d2,0x0c69bab,
- 0x0374e2b,0x1954cc6,0x1a68fb3,0x021a86d,0x1fc7a54,0x17d97d5,
- 0x1d2d760,0x08b36a8,0x047927d,0x19c8c51,0x0337532 } },
- /* 94 */
- { { 0x000bb9b,0x08c299d,0x1a14fc4,0x1c8becc,0x0d2ffba,0x1771269,
- 0x06a1752,0x0dd35c2,0x1034185,0x05d0f0d,0x04d27c6,0x02f04e6,
- 0x15a9ac8,0x0a2b8ad,0x0f7f529,0x1a5d582,0x03c5daa,0x1d2fba1,
- 0x0d6dda9,0x090772a,0x1e9b30a,0x127fc39,0x04ba6b6,0x07420ab,
- 0x02d8472,0x0700ab3,0x0e3b6b1,0x126a92f,0x18fa70b,0x020d1ce,
- 0x07d86d9,0x081a2b1,0x141d756,0x02f850a,0x08dfc28,0x10c5328,
- 0x0bb2890,0x05801a3,0x0cafff6,0x0bba99a,0x0192a2b },
- { 0x05ced07,0x1b3141b,0x147d8d5,0x160bbc3,0x029f32f,0x0053d50,
- 0x0e6f2fd,0x08eda2f,0x09bb50a,0x18d9504,0x0989e06,0x1776f2b,
- 0x1b9389a,0x19a7e0c,0x13fd83e,0x10e72a5,0x092387d,0x179d5ca,
- 0x0483335,0x00a7ccd,0x14f0a8f,0x05b1d4d,0x0fbcb75,0x1d04252,
- 0x0ede151,0x1d0cd58,0x0c20e2f,0x1f74181,0x1c11bea,0x13d64ff,
- 0x1e0af56,0x12b9810,0x18bfd95,0x1786302,0x028fe30,0x14d0da9,
- 0x1d9b31b,0x1d5d578,0x109a30c,0x1127781,0x0632e22 } },
- /* 95 */
- { { 0x1a1ccca,0x08e900a,0x0f0c721,0x18fca45,0x0efe290,0x155829a,
- 0x0755463,0x02e16e8,0x1bc85e2,0x132b0cb,0x1e2ca6b,0x083c039,
- 0x18ae131,0x134a423,0x0b2d64d,0x1b15c5c,0x10fc31b,0x075abdd,
- 0x09939e2,0x1debad8,0x0d86dec,0x064e5cb,0x1bea15b,0x12307b4,
- 0x1681327,0x0b516d8,0x00e0f5e,0x007e704,0x0c6fedf,0x0b7f8e8,
- 0x06d6291,0x114d57b,0x1589805,0x0b78c92,0x0b160fe,0x0e673ea,
- 0x1a7e9ea,0x16f6c7e,0x135173d,0x182ba39,0x068c3d9 },
- { 0x0b392b7,0x13132f3,0x14259f8,0x1eeebb2,0x0ec1d9b,0x128a7be,
- 0x0f3535d,0x039c2d5,0x00de72e,0x037acd9,0x1ec0cf6,0x079a35b,
- 0x0ca66e4,0x02f22be,0x0d10d00,0x1b545b6,0x1165681,0x0db3d3c,
- 0x00451cc,0x1cf757e,0x0961c32,0x1769d8f,0x019bf85,0x07a4dcc,
- 0x0298ef6,0x0b6c927,0x01506b7,0x17d41bb,0x02f9719,0x006fccc,
- 0x0b3be54,0x18be0ed,0x0876e63,0x09cb5ae,0x0b96c8f,0x14abc25,
- 0x0ec6747,0x17dd9b1,0x01a9427,0x1dc4665,0x08f2055 } },
- /* 96 */
- { { 0x02c1af0,0x15cf1dc,0x0991292,0x0fe595c,0x1c65e9e,0x0c3ea37,
- 0x0b02980,0x0c69fd5,0x1e393b3,0x1e9f99a,0x0eb3389,0x1801033,
- 0x119c9f7,0x1c55330,0x1d062d6,0x15d2a7e,0x157372a,0x0ffd4a2,
- 0x16ce162,0x1af0091,0x1c1c937,0x0fb78fd,0x144321b,0x1e1419d,
- 0x0bd89a2,0x0f5a457,0x08d9d0e,0x1cbabf4,0x17d2d8a,0x15059f8,
- 0x05040e9,0x0823b31,0x033f68a,0x1b3d179,0x02cc862,0x0cffd9d,
- 0x0319bf0,0x112a079,0x0c8b810,0x192681a,0x01292c8 },
- { 0x186463d,0x1aac381,0x05ffd7a,0x0406e3b,0x14bbc2b,0x00ce2d6,
- 0x115c42e,0x082366c,0x0cf04ad,0x05da16b,0x0e7b043,0x18eccd2,
- 0x075d819,0x100c23f,0x116b04e,0x065c90e,0x1021c72,0x027b825,
- 0x12c15e0,0x1cb1415,0x02952c9,0x19dab0f,0x0548ee2,0x1f3746b,
- 0x0df0079,0x11419c2,0x087aaa5,0x10463f8,0x0a2b907,0x02a7c57,
- 0x18e8bab,0x061a384,0x075ed77,0x1c80040,0x1b57ecc,0x1559689,
- 0x1011293,0x0a35617,0x05d9249,0x057d704,0x07c7876 } },
- /* 97 */
- { { 0x07902b6,0x1eb7d83,0x0602e3d,0x07a2e6b,0x12823a4,0x1a0eeed,
- 0x1ec4965,0x0b80c59,0x14033f9,0x11c8d83,0x026e31b,0x0146d0b,
- 0x123831d,0x0911487,0x11d3525,0x03e75c6,0x0d6222e,0x0a6d58a,
- 0x0fc234e,0x01f9bca,0x08f58f0,0x17383f9,0x156645e,0x11cc0f8,
- 0x0a0ba06,0x0120b35,0x1f5f87e,0x004e27c,0x0a328f6,0x0aa026b,
- 0x0a9f095,0x131219a,0x12e3264,0x0590506,0x0513b28,0x19e440f,
- 0x12f4e09,0x0c6e03a,0x1a07572,0x009b09b,0x0694035 },
- { 0x1407206,0x1d9b372,0x0a33e2d,0x1e1b11f,0x1ecf54c,0x1397378,
- 0x19523dc,0x0d0dfdf,0x081ab44,0x12989b9,0x1d10235,0x1e1c9c8,
- 0x1f52cb5,0x124839b,0x109ace9,0x1a0e33c,0x19b4980,0x192bb60,
- 0x1c9cb2b,0x068c501,0x11c991f,0x07a3479,0x1e39829,0x1089b12,
- 0x0a32990,0x015c3bb,0x12e5456,0x14aae01,0x11adbf8,0x19b28a5,
- 0x1beac6b,0x1f7a687,0x0ebff92,0x00f9a11,0x0c06df6,0x0265f3f,
- 0x1a6b30e,0x0287035,0x0551ab6,0x04f78bf,0x06da9e0 } },
- /* 98 */
- { { 0x09490ce,0x172612e,0x0e0487b,0x061bed0,0x096ec4a,0x149b475,
- 0x01f8292,0x1e7cd8c,0x04bc262,0x0582495,0x10d3ff6,0x04208c1,
- 0x0d0846a,0x146f99e,0x1fde990,0x0ec25ef,0x0442182,0x08862a8,
- 0x126f340,0x0bf9d22,0x13dc9d2,0x06e7e30,0x1c95847,0x1ea39ca,
- 0x17e8897,0x05a8acf,0x053a302,0x1f477e6,0x07538f3,0x108abaf,
- 0x083a855,0x1239080,0x1e0a951,0x1568568,0x02eb3c0,0x1e1a44d,
- 0x058b8e5,0x0635620,0x1644a81,0x17366a2,0x0773b40 },
- { 0x031cfd2,0x1966e1b,0x1ef003f,0x0700ee6,0x14c4c2d,0x0529380,
- 0x185a8ce,0x1bdac00,0x1b32cab,0x0719836,0x0c5f2b4,0x11d54e1,
- 0x0e33673,0x1cf9a9f,0x1d2aa35,0x075a7e5,0x0d9576f,0x03897b5,
- 0x06caf38,0x0f30a51,0x0a30e42,0x06ed496,0x01763e5,0x0925bb2,
- 0x1d475d8,0x05ecc48,0x0934579,0x1c0d4b9,0x0eabbd3,0x0a7592a,
- 0x0f11c97,0x181daa2,0x1394ace,0x1573618,0x0166efe,0x0efc1f3,
- 0x033fd13,0x092aa34,0x13dd770,0x10b8ad8,0x012b463 } },
- /* 99 */
- { { 0x12951de,0x0df5ec9,0x1252043,0x04b54d3,0x16959d4,0x197846c,
- 0x07013b2,0x058bf89,0x02250b8,0x03a7866,0x113876b,0x134a75d,
- 0x0d96a43,0x0824cd6,0x0f2ae6a,0x1675f86,0x06654d9,0x197e66f,
- 0x018eba2,0x1e50b87,0x1f88f4a,0x1f237f5,0x08dccdc,0x1356fda,
- 0x1672c3c,0x1063a8e,0x03f8480,0x038a226,0x13e56ec,0x0017a97,
- 0x006b609,0x1494c95,0x089ab7a,0x0b1f91a,0x198767c,0x0e143f6,
- 0x0e55331,0x034df08,0x1505c5f,0x0bcfb11,0x061c193 },
- { 0x092ae43,0x116cd9a,0x0168b9c,0x0a0a71e,0x1ef89d9,0x0555b18,
- 0x1962080,0x02f5cef,0x0eba4b1,0x0396090,0x1872e0a,0x0590748,
- 0x065c243,0x05c9c79,0x16cd0d3,0x0fb8062,0x0c58c4c,0x082df95,
- 0x05acde3,0x0a03bab,0x0c30d2e,0x0fe5c48,0x0a141b2,0x06c3e19,
- 0x0f4617c,0x1d71e85,0x0168d72,0x03ef6e3,0x1c01382,0x1af8f9f,
- 0x17ef440,0x116491d,0x0628af5,0x0e5703a,0x0741232,0x071ac84,
- 0x0ca1877,0x11ed1c9,0x16e51d7,0x1e4e3a7,0x027ad0d } },
- /* 100 */
- { { 0x05b5aed,0x1ed3c98,0x1a9e78e,0x08b331a,0x0c67d4a,0x1f5b801,
- 0x1874c3d,0x08990ab,0x0147d1c,0x0c53f4f,0x1503b70,0x0c31912,
- 0x003ea99,0x1f35fe9,0x0ef8829,0x0886f4a,0x064ecc1,0x164a43f,
- 0x13be171,0x0f240e6,0x0bd5729,0x18eaf0f,0x1e83539,0x091ad6d,
- 0x0b1e64d,0x06a7ed1,0x159b880,0x10543c0,0x1366a17,0x186d2d2,
- 0x0e0a8f1,0x0348e6e,0x03fbd2b,0x010747f,0x1019ff8,0x0bafdf1,
- 0x0acfb66,0x1437ef7,0x150bfb1,0x04edba2,0x05d9b5e },
- { 0x13e472e,0x1e2d2e5,0x0178d8d,0x0e61428,0x0153d92,0x04c2ac1,
- 0x04b96d1,0x0a20133,0x1f39a08,0x0780666,0x1b15806,0x18236b8,
- 0x0e26237,0x09a1aa0,0x03b5020,0x0630883,0x1f07e7f,0x1ff7be5,
- 0x1d215da,0x1246cd7,0x091aecd,0x0d5e4a6,0x06dd6f8,0x02c44ec,
- 0x178de4a,0x05c470b,0x0f171af,0x0a5cafa,0x171858c,0x0163ad5,
- 0x1e5730e,0x07edc73,0x12c2c28,0x19afe70,0x1bcb589,0x0c98fc1,
- 0x035a599,0x18ef58c,0x11d9b81,0x19b9771,0x024f891 } },
- /* 101 */
- { { 0x178c1e2,0x1b05fb3,0x197093b,0x1a01ab7,0x1f49c03,0x00d04ff,
- 0x061b8bc,0x0b1d823,0x0ae096e,0x0d39452,0x1e61316,0x1db6e0e,
- 0x05aabbc,0x038652d,0x11cef4a,0x01c7bf6,0x0614de3,0x1464946,
- 0x1d9eaf2,0x1cff349,0x09cf3fa,0x15f610d,0x00f0acb,0x1b36bbd,
- 0x10d629c,0x06fd7d3,0x07182c6,0x1bd5d4b,0x09b54ca,0x1bdf202,
- 0x18f57fb,0x0dba621,0x0eebc76,0x190e67e,0x1f8e3d8,0x0aee91d,
- 0x18ee8af,0x0e19588,0x1d84bfa,0x19fa85b,0x0863ac3 },
- { 0x05a2fe2,0x17e53dc,0x171828d,0x11dc853,0x13e70d0,0x0e1ca27,
- 0x0882450,0x0151937,0x067272a,0x0354083,0x02f418c,0x0aabf2d,
- 0x1de69a1,0x0a9e301,0x1bdf91c,0x1c9f570,0x14aef56,0x04b8330,
- 0x01e02d3,0x186d713,0x1263c0d,0x111d0e9,0x10d95ff,0x0aa4592,
- 0x17a8643,0x13c80fc,0x1bb7fbd,0x12312fe,0x0a17a0d,0x18ea36d,
- 0x0f7aef8,0x10b599f,0x1179100,0x1e0ef37,0x18ca3e7,0x19c1b4d,
- 0x01e7142,0x0ea9edf,0x1c96872,0x03d170c,0x03e3f1b } },
- /* 102 */
- { { 0x17fbf05,0x10ae03d,0x020adfa,0x0c3e347,0x192f11b,0x0e68de4,
- 0x1656b47,0x11793bb,0x0ad0f7e,0x0fadbfd,0x1eade4c,0x0bd7f94,
- 0x062936e,0x0cd2adf,0x1d05f70,0x1caa861,0x04343cd,0x18fb7a7,
- 0x0bc112f,0x1ebccb0,0x0408971,0x1221446,0x1cf0ee3,0x00feaea,
- 0x0c59fb8,0x07830d5,0x16062d6,0x0c9dc5b,0x03b0d3a,0x05304bd,
- 0x161bde8,0x0072960,0x185ecc8,0x1a8bec5,0x11d2fec,0x0d340b2,
- 0x079c3f0,0x16acbbd,0x0009626,0x1b0e015,0x081208e },
- { 0x0c4ce37,0x1a84c8a,0x0298424,0x0743549,0x134bb84,0x06ac747,
- 0x1c09160,0x1750c00,0x1b375b8,0x0da1624,0x0f7a0db,0x0a49da7,
- 0x16ac365,0x124919d,0x08786d1,0x128deaa,0x1d564dd,0x15e3e62,
- 0x1ed6dab,0x09606b7,0x01a39c1,0x0c00a36,0x1fc8ae8,0x04429ea,
- 0x0fbbc87,0x1b205b1,0x1ed2485,0x159fafe,0x0d6df13,0x06d0e5a,
- 0x0457fc4,0x0c4c015,0x00e2620,0x08b3fb3,0x0a76076,0x12f58fb,
- 0x16e7a19,0x0713065,0x0cf09ba,0x17101bd,0x044383f } },
- /* 103 */
- { { 0x04f9af6,0x1f80ef2,0x0873841,0x1b1963f,0x16381a4,0x1eea499,
- 0x18fb3ed,0x13fccb7,0x026a883,0x05c21ad,0x1e27634,0x122a7d8,
- 0x1fee60f,0x15e62f0,0x17fa940,0x15039c4,0x0c57e44,0x0023be0,
- 0x0c2e96e,0x1d3f064,0x0dd9349,0x17ef0c0,0x1750bcc,0x147a239,
- 0x19eaf64,0x01d4581,0x1afadc2,0x01df109,0x0742cb8,0x1062789,
- 0x188a239,0x0e41404,0x0156cc5,0x1dbbfa2,0x1799c94,0x139aa8f,
- 0x06013a5,0x14d3765,0x0111660,0x11e1aa9,0x08aee70 },
- { 0x0c54409,0x116ce19,0x0b1063c,0x0cebd75,0x09ebfa4,0x1424c0d,
- 0x1a4a218,0x01921c5,0x16b3a8e,0x0100fb7,0x1d907b4,0x02d97ae,
- 0x15c9730,0x180b82b,0x09bcbc1,0x19c03f2,0x08ffec0,0x024c202,
- 0x0c674c1,0x12c423e,0x08c4bf6,0x02648d4,0x1d2d721,0x0061504,
- 0x0fbcee0,0x090a620,0x1793db5,0x1dacea4,0x167d1eb,0x03e614e,
- 0x0dabdf9,0x1843a6a,0x0307db8,0x14a02fd,0x11aaeec,0x1ead6d8,
- 0x033e805,0x0cd3f18,0x09683c1,0x1fcc12d,0x0970f61 } },
- /* 104 */
- { { 0x1ec8e4a,0x09e918d,0x0d306f1,0x086b4c0,0x0809ac1,0x0f2326c,
- 0x0076942,0x06a9dc1,0x18a4882,0x0b570fe,0x0192d92,0x10c664b,
- 0x1fa1ae9,0x1a66834,0x1284fa5,0x14d6975,0x058b1d8,0x01b9c66,
- 0x1dae769,0x0e3eb1c,0x16fb5fa,0x0463f58,0x12466fa,0x09c853b,
- 0x0f13fad,0x0f6fae4,0x049267e,0x0b076ce,0x0d8bd74,0x008ad08,
- 0x1faf388,0x0af2176,0x06d7605,0x1bc6efb,0x1b7920a,0x15262d5,
- 0x15f855f,0x0c7d96b,0x1329f83,0x128b4fb,0x0404b5b },
- { 0x17a15c7,0x1341528,0x080be7b,0x19df100,0x0ae4cfb,0x0351aa5,
- 0x104e544,0x1cf9dc5,0x0170feb,0x0f300c9,0x03152d7,0x13fae7a,
- 0x17589e3,0x0648495,0x171c4d6,0x1fcbe32,0x13f0a7b,0x0e5bf6a,
- 0x187325e,0x124855e,0x17d92bd,0x1629caf,0x034bbc5,0x1665e13,
- 0x0c1ca70,0x0e086a5,0x154b461,0x0b0ea4d,0x0d6195a,0x18254a1,
- 0x0b0a4ca,0x14a0161,0x025a979,0x1e9187f,0x12b958b,0x18bf43e,
- 0x00da253,0x1aad791,0x1800983,0x16b0628,0x07faa11 } },
- /* 105 */
- { { 0x0402149,0x1278637,0x0466c2e,0x1b2c798,0x1584cc1,0x093a3b1,
- 0x1706a99,0x1e4ee81,0x1c95715,0x1bbffba,0x07ec38f,0x095a7f1,
- 0x1fb2f23,0x17cdf1f,0x05640cb,0x0fd04aa,0x01d0423,0x1fe4fd9,
- 0x054fb64,0x1dfe714,0x1d13eb2,0x1008020,0x02754eb,0x037b051,
- 0x0545b7f,0x152e797,0x190e54f,0x1a944f9,0x1e75c8d,0x12ea6c2,
- 0x10c034b,0x04837c3,0x193ed62,0x10196f5,0x097c090,0x023ca7e,
- 0x03a4e70,0x0abb1b6,0x1fafee6,0x0a5db31,0x014b63a },
- { 0x1c43336,0x05aa9b8,0x092dd84,0x0c47490,0x19dfd4a,0x03028d8,
- 0x08b800a,0x1b6f72f,0x08f5f1e,0x155ddce,0x1f6ab61,0x1aef36c,
- 0x1b67a57,0x06affd7,0x13941b7,0x078c715,0x19589ac,0x042ed4f,
- 0x168f454,0x197550e,0x0ed2081,0x07f49a3,0x00cd4f6,0x1f3405a,
- 0x161f1a1,0x038d955,0x1ce9967,0x0196126,0x1df8a1b,0x1185a7a,
- 0x076df83,0x1d6fab4,0x1c4c741,0x12e783b,0x1271ca3,0x191e08d,
- 0x17c171a,0x0e85e3f,0x09954cb,0x0e706da,0x0024858 } },
- /* 106 */
- { { 0x1a4cd8d,0x06e91ba,0x09e3350,0x072f797,0x132ca43,0x06b0fa8,
- 0x1361096,0x0d0618b,0x1da1e8e,0x13f602c,0x1750282,0x02e23ac,
- 0x1607a8f,0x1a1a86b,0x079957b,0x15c850d,0x0f05983,0x05cc673,
- 0x162faf4,0x02723b3,0x1d497b6,0x12d8dd2,0x0e94a78,0x0d659ec,
- 0x132e91f,0x114a37b,0x08fe8ed,0x1acdd8d,0x0f0ed2b,0x087661f,
- 0x1d8e5e5,0x0be1168,0x09008cb,0x1071777,0x1096596,0x0ffad7c,
- 0x1177bc8,0x16a89e0,0x0b6b9e3,0x1bffca2,0x06798ce },
- { 0x197c5c6,0x1fc7e8d,0x0cfd278,0x1cf1876,0x19fbab3,0x1acadd1,
- 0x1104903,0x0ec884e,0x15d7d43,0x1a112dc,0x111ddc5,0x1f98f38,
- 0x05880b3,0x194b592,0x0eb2a0c,0x1c309b8,0x1f71734,0x12ac89e,
- 0x124d11c,0x1647a73,0x0a11a4d,0x19e8a10,0x13aecdc,0x0c117b9,
- 0x00cf9f3,0x09fdce9,0x18c33f8,0x0c3159e,0x10874ca,0x1598af9,
- 0x095d7c1,0x13e000b,0x06efe7f,0x1e4eda8,0x1e3006f,0x03155d4,
- 0x178e7c4,0x0bc92af,0x18e57e4,0x1a4a5d2,0x03ea7ae } },
- /* 107 */
- { { 0x106ae25,0x0bf022d,0x03be618,0x1b96aea,0x1cac148,0x0615d15,
- 0x0bc3981,0x0eb23d4,0x176b789,0x060cfb5,0x1686040,0x0da0ca3,
- 0x1b79b9b,0x04a2b82,0x0896faf,0x0b7e3e6,0x1f35c00,0x0985a1a,
- 0x109361b,0x1689057,0x1777440,0x0b6b1b9,0x0ae3c26,0x08969b8,
- 0x16c561c,0x0ccb2fe,0x18c241a,0x1280bdc,0x0a1ec1e,0x0492045,
- 0x05467fc,0x07a5e51,0x0f3246a,0x033cbf7,0x1d96f1d,0x1c02d86,
- 0x10705f7,0x092b4fe,0x001118b,0x1380a4a,0x06a8ad3 },
- { 0x0be7282,0x18106a3,0x1c4b917,0x1a42701,0x1405afe,0x0d35684,
- 0x096f757,0x03c99b9,0x07f8be6,0x16b78c2,0x0e05e30,0x12a6b2d,
- 0x1420132,0x1d46fca,0x0ec79ed,0x0569b1a,0x1bb3957,0x13abe30,
- 0x0330ed5,0x136af70,0x1fecd74,0x099bd9f,0x05643fe,0x0bb929b,
- 0x1b65314,0x0b99cdd,0x188cd79,0x01838c0,0x03feba7,0x196bfbb,
- 0x0ca70b9,0x198c36e,0x168e424,0x1f96523,0x1e9aa9c,0x1aeefa5,
- 0x05cb58c,0x126dd56,0x186ab7b,0x0f339f5,0x01a1811 } },
- /* 108 */
- { { 0x1575ed0,0x1fb17bb,0x066dbdb,0x12fa3b5,0x18f14fa,0x17ebfb0,
- 0x0bbeda7,0x0665ce5,0x1ddc286,0x02d5a65,0x1160d31,0x1a90b0d,
- 0x18b0e20,0x1cbbaee,0x05c0468,0x08931a7,0x008f413,0x0009864,
- 0x14457b6,0x011d75e,0x1ed92d4,0x0e01306,0x1141a81,0x1957223,
- 0x1736219,0x1434f2d,0x1ba1a4e,0x19ea118,0x1736174,0x122fe63,
- 0x08d39c4,0x12bb139,0x171aa1f,0x1de4c17,0x11a981e,0x049774f,
- 0x012b7fd,0x128af39,0x1d6a3ce,0x0eb2461,0x07d2ddc },
- { 0x0d2cae8,0x0c0b6a7,0x0ddcf41,0x1b73800,0x0cf6bc7,0x15846a2,
- 0x0639991,0x101847d,0x14b9c01,0x0f73630,0x05e707e,0x1427df2,
- 0x0ae11c9,0x076cb44,0x0d851fa,0x0e14f4b,0x048d066,0x0bd7f5b,
- 0x1da149d,0x0066782,0x08f2d67,0x14bafcf,0x0a27765,0x14d15bd,
- 0x1228d37,0x0c35dab,0x191532c,0x0340bab,0x1dd5502,0x0ac7831,
- 0x1cd2040,0x0996d95,0x0dd4f08,0x055f3c9,0x0149e15,0x0ce189b,
- 0x0e729d7,0x0cb4ee3,0x102ea11,0x0f5637e,0x05a52f8 } },
- /* 109 */
- { { 0x1ecacbd,0x0cf4884,0x17abb40,0x1af7137,0x0544023,0x039b8f3,
- 0x07c2d5c,0x02ef98a,0x016c8e2,0x0419582,0x166ad45,0x0d05024,
- 0x14b1aa6,0x11f1b0e,0x0403e48,0x0b854dc,0x0e9e3a9,0x172c9f7,
- 0x1b04389,0x16d77a2,0x013f699,0x19ca39d,0x0b521e1,0x0e930f9,
- 0x14dc5b2,0x174f8e0,0x1495678,0x0fb800e,0x147ad25,0x024ee1e,
- 0x04e1126,0x1baa4ef,0x1df278a,0x0adccc1,0x1b23bbf,0x00ee1c7,
- 0x16bd02a,0x12c2233,0x17ff8ab,0x0c87ce0,0x017f027 },
- { 0x1abea1f,0x0008694,0x1133769,0x0a480f5,0x036b969,0x1990c5b,
- 0x004a410,0x0952d4c,0x1163d53,0x110fe1d,0x081597c,0x0b7d998,
- 0x1705ba1,0x0b142ab,0x0e39536,0x009a624,0x0578788,0x00d8a21,
- 0x026a7f9,0x17e6095,0x02b196f,0x1625f32,0x1229fc1,0x05610bd,
- 0x020e86e,0x08eee8d,0x0bfd296,0x1efe4f8,0x0343b88,0x03a9d25,
- 0x13705ec,0x1762e7a,0x04b1e88,0x03ddf34,0x0910f70,0x0e7599d,
- 0x0c441d7,0x0ae446a,0x055fb6c,0x134a7cb,0x00ef030 } },
- /* 110 */
- { { 0x08e5b60,0x12b90fd,0x0ec93f0,0x1ad2381,0x046938a,0x0511243,
- 0x12dd82c,0x0efc8da,0x07de168,0x11fcd61,0x0718c21,0x0dde4e4,
- 0x02503bb,0x05b3fd8,0x106677c,0x17a73f1,0x172e07a,0x13c60f6,
- 0x0cbc376,0x1bd6f76,0x09f3cf9,0x18361e4,0x0bfdc9b,0x0e444b5,
- 0x08b2d19,0x1ae5b80,0x1d3c517,0x1eb4c22,0x1c4f378,0x17c622b,
- 0x1913839,0x0388a78,0x1bdaa44,0x0964045,0x09b69ba,0x02af7c6,
- 0x1d77356,0x1e1feca,0x0dcaaa6,0x18d766f,0x03d3b6c },
- { 0x122c880,0x189664b,0x0225b9b,0x0e50d6d,0x1a1b6ae,0x17d7f61,
- 0x1026eb4,0x1df7439,0x043bb8b,0x0b256bd,0x0fd30eb,0x14012f8,
- 0x1ba5af6,0x01a9d48,0x1f2c367,0x17ed655,0x0ab69cc,0x06509fe,
- 0x0aaf064,0x142723e,0x07e5699,0x0111d12,0x0b6f555,0x0911b34,
- 0x0180f95,0x01e7103,0x1c49133,0x153cf7f,0x13a365b,0x1d5f43e,
- 0x188a4a5,0x1f4994b,0x054fa38,0x10db620,0x08f59ef,0x096720c,
- 0x18f41a4,0x133e2bb,0x1139c7e,0x0878f6a,0x02e946e } },
- /* 111 */
- { { 0x00934ae,0x07eefe3,0x1b44a60,0x1e2c840,0x0c3e7ef,0x176bad1,
- 0x1fe5905,0x1b9eebc,0x15cd0b2,0x1630679,0x0b61efe,0x1d9c3f5,
- 0x1dddc4b,0x0c24f2e,0x0fea1f2,0x1e35cea,0x0a32c1b,0x1e2ea8b,
- 0x11ccad2,0x1b7d502,0x096b565,0x1d67243,0x001faf8,0x172ed28,
- 0x074d6cd,0x1df2065,0x0197939,0x1eb9a4e,0x0c4ebc3,0x1e009d5,
- 0x085d211,0x087ad87,0x162e034,0x103b533,0x125519e,0x1ad21b1,
- 0x1eda677,0x06bc6b0,0x16309da,0x0aa0303,0x00997ce },
- { 0x05a0b81,0x1ba364b,0x17ea4a5,0x0dcbc25,0x08b58be,0x0fa1bfa,
- 0x0cf11c5,0x0b2aae7,0x1b565c4,0x012f483,0x09e5f39,0x0a242b0,
- 0x0f4f43f,0x0752a3a,0x16be9be,0x00959cb,0x1be13de,0x19575c7,
- 0x0281f20,0x1f2be1d,0x09feed7,0x1733160,0x0f804a9,0x0859e2e,
- 0x0e9b8c7,0x022dfcb,0x0b8a287,0x1d4aeb3,0x14e2f38,0x00da2e7,
- 0x0651d65,0x1f20340,0x1d3c02d,0x0b5973e,0x1ba9c24,0x11cf49b,
- 0x0fa9b98,0x19395a9,0x1ff9942,0x13fa122,0x096f9f0 } },
- /* 112 */
- { { 0x0310a96,0x0556216,0x1cd1e3a,0x07ef454,0x12a9830,0x0b11039,
- 0x0a0f48e,0x10188d9,0x0d95412,0x0898f37,0x0fa446b,0x18bc595,
- 0x085791f,0x020db63,0x12ddfae,0x110f0a1,0x1ea3d3c,0x157fc9e,
- 0x0401ef3,0x083e3be,0x11fd065,0x012ae6f,0x13b9ca7,0x07c72e4,
- 0x1131732,0x060f07b,0x06b5342,0x05bcf48,0x1e22bfa,0x155fd1a,
- 0x096a644,0x1136066,0x050122b,0x0a6a750,0x07d0194,0x17173ca,
- 0x19d3e0a,0x1e3d56b,0x1fa9508,0x04c8171,0x071998e },
- { 0x0b6ed78,0x007e6e7,0x1459005,0x0e30a68,0x053cf37,0x0b06e63,
- 0x0d96ba3,0x1f008a1,0x09dac55,0x1360d3b,0x15a1b33,0x125b5c0,
- 0x028a96a,0x093892b,0x1911d88,0x1284a5f,0x150a4f3,0x13a3de5,
- 0x114c7f0,0x18dfe5f,0x1ff0f0e,0x03887f4,0x125f0d1,0x0f259ff,
- 0x087839c,0x00cfda4,0x0009bec,0x0a58a49,0x04c2905,0x114e6c0,
- 0x1cd0006,0x06b9194,0x02b5ad8,0x0efd03a,0x1c5dbb9,0x0386f03,
- 0x1dfa4ab,0x15c2f81,0x0cab329,0x034161a,0x0838994 } },
- /* 113 */
- { { 0x0067dff,0x031516f,0x058b03c,0x0179700,0x14f3269,0x03d15ee,
- 0x064341c,0x123319b,0x0fae4a3,0x17e31dc,0x0b60516,0x16f7665,
- 0x11684f1,0x18ccefd,0x08b738b,0x0b09161,0x17f48f2,0x1113070,
- 0x0b57a18,0x07b6018,0x1171739,0x0a19c67,0x07a23e1,0x159ea45,
- 0x1942902,0x19e8033,0x01a0d6b,0x122af97,0x02614c1,0x17c95c5,
- 0x1b0bea9,0x0269d88,0x0ff95f5,0x1409a82,0x09bbede,0x099e00c,
- 0x137a470,0x059e82d,0x1b09515,0x0624d29,0x01fbfda },
- { 0x0f69c77,0x1db2be4,0x03ebf7a,0x1747bf1,0x12a8278,0x1dbc5a4,
- 0x155c707,0x0668c76,0x011c71a,0x103350d,0x0562c34,0x0286113,
- 0x0610c88,0x07ceb3d,0x1d71f83,0x0f71f72,0x0087303,0x0ed52e9,
- 0x02fd618,0x0a00ba8,0x09a95ee,0x13bedd3,0x0c039b3,0x0c598e8,
- 0x03cb3c9,0x02ac49e,0x0533e10,0x15930c5,0x1c9d700,0x1b1d112,
- 0x1a029fb,0x1723c8f,0x0184869,0x1c25f7f,0x17ae30b,0x1e373af,
- 0x00e278b,0x1c448ae,0x1c6799d,0x195884d,0x04f9488 } },
- /* 114 */
- { { 0x151b8ce,0x0fe6a6e,0x1a01843,0x106c461,0x0857927,0x0ccab10,
- 0x1fc70d9,0x0efdb8f,0x1e2cae8,0x02f56a5,0x19d8224,0x0bb3cf2,
- 0x0ca1c32,0x1e9c493,0x0e7b776,0x0149c7c,0x0685f6f,0x06d4964,
- 0x11e83e9,0x1f0015e,0x0aabe16,0x0df2fb0,0x142d36d,0x070a7a6,
- 0x1412f98,0x04e1b32,0x026de5e,0x096c44a,0x0e72b26,0x002c270,
- 0x0efa958,0x1caab85,0x1bd4901,0x09708d5,0x069c5ca,0x1e6f083,
- 0x0174218,0x05ad557,0x1ae49b8,0x1091ef2,0x0688e06 },
- { 0x13b8f64,0x17b2098,0x118b37f,0x172858e,0x0ef11b7,0x06c55ed,
- 0x1eddd70,0x1520cf9,0x0af4041,0x04752f8,0x14843d8,0x1b04d26,
- 0x0823d5b,0x13c8bd0,0x0e413f0,0x05a42b5,0x1fe45d2,0x1c2edd8,
- 0x14d8567,0x0bca129,0x18f2c3d,0x070e9cd,0x0baed4a,0x0959de1,
- 0x0a828f4,0x12a6eae,0x1c8315e,0x084135b,0x195f442,0x1a19bc7,
- 0x0dd5d0a,0x15266fa,0x11fa7d9,0x07edbe8,0x1027193,0x19acd41,
- 0x1bb817e,0x12adc7c,0x049955b,0x1c7c988,0x01723c7 } },
- /* 115 */
- { { 0x08b43f3,0x0436c6e,0x19a2699,0x024c813,0x1c3e0e6,0x1a3001f,
- 0x110df66,0x0f63113,0x16284ec,0x142819a,0x16eba8e,0x0b88d53,
- 0x1c5a366,0x14bc499,0x1da5077,0x02920f7,0x1106934,0x08f6ad2,
- 0x12e000b,0x14f6f51,0x0a59664,0x1230768,0x180fddb,0x09d7e4e,
- 0x06ba31f,0x13fe1f0,0x07cb0e2,0x12d9da8,0x1db08a2,0x07bce78,
- 0x0d8ab06,0x19bcf47,0x119e882,0x1458364,0x14a76fd,0x0a2bcef,
- 0x0e947cb,0x0bc5d52,0x064e886,0x056ec61,0x084bf54 },
- { 0x164f21e,0x166d4f1,0x15fb077,0x0a025ca,0x0d6cf34,0x07c8708,
- 0x1a12162,0x1717448,0x1e3b104,0x1b6ed25,0x1bd5ea7,0x068dc75,
- 0x096bf7a,0x14193f5,0x00a67fb,0x1cd8e42,0x087da95,0x0d54cfa,
- 0x0b37d91,0x1f027da,0x14b824f,0x0945ea0,0x1476ecb,0x1f434c3,
- 0x101afca,0x0d20328,0x0a737af,0x1b3e973,0x1039e47,0x19caf20,
- 0x10abd06,0x18a15be,0x1e9e6ba,0x14f24f1,0x0eb8d07,0x069e426,
- 0x0b157f2,0x146079e,0x0054d25,0x0f7b40d,0x0383f82 } },
- /* 116 */
- { { 0x183ff4c,0x03510b2,0x079cbb1,0x1295ae1,0x0e645a2,0x0650952,
- 0x1a73f01,0x1cbb8cd,0x09160a7,0x178947a,0x11d8ba0,0x0f62ad3,
- 0x07bfb22,0x0176dc7,0x031e58f,0x1ed11f0,0x00649a0,0x053ed7f,
- 0x1452e33,0x082ea85,0x00beb7e,0x09c36f2,0x0e83171,0x16f2662,
- 0x052861d,0x18df868,0x07eff81,0x12059cd,0x0e9903b,0x14ab108,
- 0x0e18791,0x1ee07d7,0x0ef874e,0x1bc5b7d,0x11fb757,0x15ecd12,
- 0x1af5ea3,0x1432a3a,0x11895bf,0x02a87f2,0x03b121f },
- { 0x19275e9,0x17423b2,0x19416c9,0x1ada1f9,0x07581cf,0x11f8f7a,
- 0x12ff62a,0x01cabeb,0x1e484e6,0x13df18a,0x1a63907,0x041ffd2,
- 0x04d8f1a,0x1d5823c,0x151b6a5,0x1b67c4b,0x175834c,0x0d2936d,
- 0x1422802,0x0811b31,0x08161fd,0x102dae5,0x1f0012c,0x1c977d1,
- 0x03bb365,0x177ad9f,0x15d66ed,0x0a19824,0x1ac737f,0x140be17,
- 0x06bc17e,0x1a4e72a,0x0e102d2,0x199b3cf,0x102ffb2,0x1e551ca,
- 0x0a6a515,0x1a237d9,0x0320d9c,0x1a26e52,0x05505e1 } },
- /* 117 */
- { { 0x15e68a6,0x00a50e8,0x179430c,0x0cc9ba6,0x0f9f0b2,0x16b3fcb,
- 0x1d0b40e,0x1083186,0x0d2c144,0x040c607,0x068f2dd,0x02d21a8,
- 0x1ec5181,0x024f9f4,0x12320ff,0x1270ccb,0x0612c27,0x04d9306,
- 0x1b413a7,0x10df5d9,0x0758f60,0x15febe2,0x09ecb33,0x052ffb1,
- 0x0313390,0x164259e,0x0025c06,0x1504c9d,0x0b3762c,0x1543a84,
- 0x1fa7e5d,0x130751b,0x1582714,0x0cc74ae,0x19a7675,0x106a1a4,
- 0x0f6fd34,0x05c4e58,0x0c5f217,0x1a94ae8,0x0617d80 },
- { 0x0022b67,0x1933f38,0x052933b,0x0a6ed17,0x00536bb,0x1c22314,
- 0x0959b49,0x03262a7,0x0382439,0x082a6a2,0x1e31292,0x02e4bbe,
- 0x1a8d11e,0x0ad0f1a,0x094a9c7,0x1c63b36,0x0808171,0x103c336,
- 0x0ce2803,0x0a03b63,0x02360a8,0x1c673b8,0x0bb64ca,0x1b5efa0,
- 0x176098e,0x174d16b,0x0ee4c01,0x15dcbb5,0x1eb0363,0x04625df,
- 0x02febff,0x09c4367,0x17b9678,0x0703483,0x167f72a,0x02923f8,
- 0x0e93847,0x1127aa8,0x1e02cfd,0x010f9a2,0x05156f5 } },
- /* 118 */
- { { 0x006e8d0,0x1a71101,0x1cc9608,0x08fe2b5,0x15f6f5d,0x1c4a87f,
- 0x1ca2758,0x1e95f56,0x17d4495,0x1762684,0x0a02a59,0x18bad1b,
- 0x0bad890,0x127c51b,0x0a82481,0x0b8bfc9,0x17e0f4d,0x0bccf12,
- 0x112578c,0x0cef5c4,0x035244c,0x19d2dc7,0x1c80e1e,0x1450f72,
- 0x190f475,0x17bb81b,0x170f07c,0x0912b98,0x07fa415,0x07cda0d,
- 0x02ee1a0,0x1601601,0x0d47458,0x039e5fe,0x00e2e99,0x1429399,
- 0x0c9be19,0x16afbd5,0x196e9e3,0x139666e,0x0525459 },
- { 0x01b54c4,0x1cb3cd1,0x167421c,0x156c92f,0x029ece2,0x0443200,
- 0x06a4b21,0x1b3e29e,0x1e9fa79,0x1246e7f,0x08236eb,0x03848d8,
- 0x1e14b91,0x0d71fb4,0x0c3efcb,0x17070b5,0x07ed1ed,0x18c0564,
- 0x02161ae,0x1fae303,0x0bd0146,0x0a2a33e,0x0843ad9,0x0cf9fdc,
- 0x1940816,0x1305511,0x0adcf46,0x1624b83,0x1c1cbed,0x0980440,
- 0x0cb79a1,0x06f8604,0x034c713,0x0468c7f,0x1c39bcf,0x078d8c0,
- 0x14af4e8,0x11b2dd5,0x0ad141f,0x1dbb9f0,0x022f0a7 } },
- /* 119 */
- { { 0x07f1b7f,0x13c8ff5,0x0753898,0x1bb9fe1,0x1c3d8c5,0x03ee2c4,
- 0x0a70ce7,0x1810d85,0x14276e8,0x0d6a00b,0x1875593,0x1eb3d3f,
- 0x090a918,0x1554086,0x15e59c0,0x19b8971,0x0364aa5,0x175bd44,
- 0x1ebe9cb,0x184777c,0x0908fc4,0x0f25643,0x136ed72,0x018fcde,
- 0x190136a,0x0691bf1,0x0527086,0x0abae00,0x1324a28,0x1e33ca5,
- 0x1c791d6,0x0c50f40,0x18a8dc6,0x0191e64,0x066d7ed,0x1272b45,
- 0x0c0389e,0x0361f70,0x1311b86,0x0de2ce6,0x079f81e },
- { 0x04f3c4e,0x160f99b,0x052e0fc,0x0a26cfc,0x136b2ac,0x19f21ea,
- 0x173f164,0x1fc894d,0x110d961,0x072ca3a,0x1caab8d,0x1d9cfc7,
- 0x0508234,0x1ef53f9,0x04b802a,0x1424997,0x0f0a791,0x10f7dd2,
- 0x064b54e,0x10dfa42,0x0af6c20,0x1e5a8e4,0x1fb0343,0x01e36bf,
- 0x1b2cadc,0x10ca468,0x1e04b6f,0x00f4711,0x1bdd45b,0x1d356f6,
- 0x069021c,0x1ae04b1,0x02a1268,0x13db25e,0x0ea05f8,0x0b77edc,
- 0x0d386e8,0x172b31b,0x10001cf,0x06f3bcf,0x0442ecd } },
- /* 120 */
- { { 0x02f90a6,0x08d7345,0x0332d33,0x1adeb5a,0x1277d41,0x0ea5c77,
- 0x0a31100,0x062d470,0x0d83766,0x00bd09a,0x04492fa,0x0b1bebc,
- 0x04142b7,0x1eb5caf,0x1ef1a77,0x13c7c4b,0x15fd74a,0x151864f,
- 0x02598f3,0x01e2c7b,0x186d5ac,0x1b86731,0x0caa7bb,0x1daaa88,
- 0x10ea5d8,0x13d3d34,0x0262250,0x1bc47fe,0x0ced585,0x1b52f55,
- 0x195d6b4,0x1a7c308,0x114a6c1,0x09c881a,0x0b0dfc2,0x107b22c,
- 0x033d56e,0x0856ecf,0x1a47970,0x0e60d54,0x085176b },
- { 0x0a21e38,0x0887d14,0x14e28c8,0x1aaee7a,0x17b6379,0x0106e24,
- 0x1eefcb4,0x19ba6d2,0x1961833,0x08bbac9,0x0a14596,0x0bf5cbf,
- 0x126d704,0x1c355ae,0x043ca69,0x0b6e067,0x030dc4f,0x15605ed,
- 0x1318571,0x004815b,0x0d91cca,0x01628a3,0x0387c5c,0x059df0f,
- 0x072d0a7,0x1d0e75a,0x002d9a6,0x09080e1,0x01aa0a8,0x07cebf3,
- 0x02de6c2,0x08cd2ac,0x08160be,0x15b8f1c,0x10b6523,0x184726b,
- 0x1431590,0x1ec1e04,0x1a2cf5f,0x176dcae,0x08ab154 } },
- /* 121 */
- { { 0x13c4a96,0x030019a,0x00d4a1a,0x1120b9b,0x0e5c60e,0x137c662,
- 0x04d923d,0x13d7ab2,0x09faccf,0x15c05cc,0x18e796d,0x1f5dc64,
- 0x0bbc1c1,0x13c556f,0x18e5b48,0x0405a5e,0x0d01898,0x08053cb,
- 0x091d20d,0x16a91e7,0x0e3e18a,0x01d98d8,0x0b3415b,0x0c8a25b,
- 0x068dd01,0x1de0add,0x052c0fc,0x00706db,0x1206c52,0x0535ec7,
- 0x0db593b,0x13e2ef3,0x11a361e,0x19a5449,0x03f14aa,0x05b04d2,
- 0x12922e2,0x15dc704,0x00aa4d0,0x109c016,0x01bfcdd },
- { 0x1a365d9,0x1cd21ba,0x0c0cc42,0x1c11b1f,0x14ade15,0x016fc1e,
- 0x14f5f5d,0x085392e,0x0de3187,0x1b984ea,0x02b3833,0x042466c,
- 0x031228e,0x1bb34b2,0x10f48e3,0x0b4a620,0x1edf90f,0x1fe156d,
- 0x0d7e4e5,0x0c996ef,0x101041d,0x0562236,0x14802cc,0x02e41fc,
- 0x0642d23,0x03ae1e4,0x16e6a88,0x1980245,0x1eae47f,0x1d89020,
- 0x09215b8,0x0d190ed,0x1864455,0x10358a2,0x01088cd,0x1e3438f,
- 0x027757b,0x1b368f9,0x153c66d,0x077ef73,0x025b78a } },
- /* 122 */
- { { 0x16707ce,0x1ab8c0a,0x042a420,0x108629f,0x1bdc239,0x12bedec,
- 0x0216a2f,0x17002f9,0x1ad63a4,0x05dd112,0x0b3ff75,0x170c2b5,
- 0x025ce71,0x194aa39,0x09991d5,0x1a7babe,0x1f74f0a,0x1854078,
- 0x10d4bb5,0x0a7147f,0x06ca010,0x02a101e,0x1e29901,0x018e769,
- 0x07a8833,0x00d9596,0x180b72b,0x06867dc,0x0b17c7b,0x0ce7f69,
- 0x11cb812,0x17ac653,0x18681a4,0x16e1bcf,0x0518dbe,0x16712f3,
- 0x12b7895,0x0b28644,0x073c371,0x0e0cb4a,0x070ab95 },
- { 0x1585d93,0x1c7623d,0x193919d,0x014c67f,0x0a6d361,0x10188d6,
- 0x055393a,0x05e43b4,0x1bd6400,0x1910c85,0x12dea6b,0x158fb23,
- 0x179e633,0x17341be,0x04f0c7f,0x1dd15da,0x1d71616,0x16d2503,
- 0x0bf3585,0x144e647,0x1694d78,0x12dd0a6,0x1019a5b,0x1eb0841,
- 0x154d74d,0x1e4b99b,0x189de38,0x10bca09,0x15a5c2e,0x15062ad,
- 0x170c156,0x1147596,0x13df538,0x0476d18,0x12d4a82,0x1cb12d5,
- 0x04c85dd,0x0421504,0x19afbf2,0x0f2a3bb,0x05fec9f } },
- /* 123 */
- { { 0x0519f99,0x0163e7f,0x0d4d7af,0x01ca820,0x0396bd8,0x1cc479f,
- 0x0500a28,0x1435bdb,0x1d601bd,0x001db9a,0x1992b07,0x006c299,
- 0x10fd302,0x0092014,0x0dfafa4,0x012fab0,0x1a3a554,0x0e55750,
- 0x02e204e,0x0e7a4b6,0x10b9dce,0x15f6584,0x0d7b504,0x07b5678,
- 0x09ff7d6,0x038cc81,0x0418b6c,0x0aa86fb,0x04c11d5,0x17ab215,
- 0x0249df4,0x049f922,0x17fa645,0x092a6a3,0x06dc9e6,0x18f625d,
- 0x184c618,0x0957116,0x14655eb,0x0c79d1d,0x00a8d56 },
- { 0x021fde1,0x028b185,0x01250eb,0x0cd207b,0x0fcf5dd,0x0eb140e,
- 0x067b97f,0x068da49,0x077a49a,0x0f6e378,0x1701bd3,0x058050e,
- 0x0646bda,0x1a3dc02,0x18383d8,0x106dfa1,0x09b5e67,0x1082c0b,
- 0x1a2a010,0x032255b,0x1d32c96,0x05549d9,0x17cffa8,0x0aed78b,
- 0x18edb0c,0x123cf89,0x1b634df,0x12e35ad,0x05e7cb7,0x0b9ce67,
- 0x103aae1,0x03a4056,0x0a4b434,0x0fe9344,0x155f8e8,0x02bb084,
- 0x13a86f9,0x17d5ead,0x18a7e1c,0x126d548,0x095b934 } },
- /* 124 */
- { { 0x1f951de,0x05380cc,0x0d16666,0x0de0b1b,0x0fade59,0x081ee9c,
- 0x0707bcf,0x1a69a8f,0x133b141,0x14946ae,0x1a2901b,0x100159f,
- 0x1d9a465,0x00e77d1,0x022b4bf,0x0e4dda2,0x121e013,0x1b25cb4,
- 0x1a0eee7,0x0d4d6d1,0x0544b9b,0x0e09217,0x0a7c79b,0x0cb2cd6,
- 0x0f6762f,0x1a0e9fc,0x1978416,0x069ba12,0x011e1ca,0x09cd0b0,
- 0x06f53a4,0x04a2aa8,0x0a4dc68,0x10b36f7,0x02b3208,0x08df006,
- 0x11d1612,0x03d70e9,0x1e9f6f7,0x0a2c435,0x02e25ef },
- { 0x18e7357,0x1e7c7ee,0x16e094c,0x11d59db,0x133ba21,0x0269561,
- 0x18c741e,0x1c4d1c7,0x0f2804a,0x0493f9b,0x1eb5f87,0x1a44efc,
- 0x0001433,0x0c3fbc5,0x10073c1,0x04f5c16,0x036aa00,0x0cefe78,
- 0x16691ad,0x08d9163,0x0d32c9e,0x030f944,0x0a9b792,0x114087b,
- 0x0da2f1b,0x1ab6eab,0x17cb42e,0x08c461c,0x1efb563,0x1b720ce,
- 0x1d067c2,0x043a590,0x1ec37cd,0x122d9aa,0x0e5edc3,0x047b7e0,
- 0x0c7ce85,0x031546d,0x1cf5bc2,0x14fc283,0x087979e } },
- /* 125 */
- { { 0x11c747f,0x13d9fbf,0x0da66df,0x1b8dcc6,0x151a4c1,0x196dd00,
- 0x1fdc2cd,0x1fc84e7,0x0d3ee54,0x136911a,0x12b83f2,0x1c19a67,
- 0x0c12fc8,0x0eeb788,0x0ca14e1,0x139f24e,0x1bdf01a,0x0e4379f,
- 0x0db2ba4,0x04ceffc,0x0a44532,0x1997f7f,0x0e69c00,0x115e42e,
- 0x0a328ce,0x0fa164e,0x1bda9cc,0x004acee,0x096813c,0x19efb35,
- 0x0a31a1e,0x11b65db,0x14aab12,0x07f5e8c,0x116bbb1,0x05bc61b,
- 0x179241b,0x0911b54,0x1305b01,0x005847a,0x03ec988 },
- { 0x072f74d,0x13b0620,0x01643e7,0x1d56b28,0x078eb0d,0x1804e17,
- 0x1a90326,0x1cbb67b,0x038b59a,0x1f43af8,0x16a8191,0x086c569,
- 0x08f40eb,0x04879bc,0x1a93e48,0x15f1734,0x1afedbf,0x177f5f4,
- 0x019f895,0x1f2d4b3,0x0aebf87,0x11bad5b,0x079bfb4,0x1b62796,
- 0x0782a3f,0x1108bf9,0x19c3e89,0x02058e3,0x0c0dbe5,0x03767ea,
- 0x05d74ac,0x06068e5,0x17cc268,0x1f3c029,0x18acad9,0x051b7eb,
- 0x1a25da3,0x119f9d5,0x12450bd,0x1d1df5d,0x03e9315 } },
- /* 126 */
- { { 0x19a9ea9,0x0e7d291,0x098a495,0x0017c67,0x00f3c69,0x1b215e9,
- 0x1ad2e72,0x030eb3d,0x000bae7,0x18b62a3,0x043e10c,0x0dabe68,
- 0x16874a7,0x087894d,0x0ed40ba,0x03e3824,0x1a81285,0x056e47c,
- 0x0d89023,0x16ec943,0x177bf57,0x0f8d403,0x045bb00,0x01bb8b8,
- 0x0cef21f,0x0d3ba37,0x13969a9,0x1893a8f,0x0955ba3,0x0df3837,
- 0x0c07857,0x168baf3,0x09c0c79,0x08843b1,0x0c21de3,0x0e224f0,
- 0x0c6a22d,0x0c2ee3c,0x09e4489,0x01a14d0,0x02ed02a },
- { 0x1aa2682,0x01a0b26,0x18954c1,0x16026b2,0x0e26d32,0x03384b8,
- 0x00d2af6,0x05c8939,0x1ee77ae,0x0d0ce95,0x1b05a44,0x053475e,
- 0x1439bd5,0x0e6b082,0x1329701,0x01fc26d,0x19bdc6c,0x0b1b852,
- 0x04f544d,0x041a4f7,0x051aca4,0x02aaa62,0x161cc35,0x19bd7e5,
- 0x058c996,0x102f5e9,0x02943e6,0x1963732,0x0f01510,0x04bd3d8,
- 0x185a6a3,0x023a42f,0x0c36d34,0x1baf416,0x0229d4b,0x03e22ed,
- 0x009b2a6,0x1809ca5,0x15f7476,0x08953df,0x0146278 } },
- /* 127 */
- { { 0x12803cf,0x11d7691,0x1cd1af2,0x17352df,0x01e4398,0x15bc45e,
- 0x1d5fdd2,0x09b95ec,0x07e68c0,0x1d29f00,0x1f34830,0x1832b96,
- 0x0a5f969,0x0e0345e,0x02d969b,0x06065e5,0x1d31d86,0x071e500,
- 0x1e02385,0x0677030,0x18be9b7,0x0cf7f30,0x0d75c13,0x03728db,
- 0x13542b0,0x0df93b7,0x1befb77,0x00afc33,0x1275cee,0x1795c81,
- 0x119f460,0x1101ef7,0x0dc5f77,0x1b60a1e,0x14fde11,0x05ade07,
- 0x09ba507,0x0faaabd,0x058a00d,0x16d6805,0x07acb57 },
- { 0x0e6b07c,0x09ab4a2,0x1177490,0x13c38e6,0x051c4cc,0x19dcfda,
- 0x1136389,0x1f880e8,0x1b88e34,0x124b03c,0x09ddb7f,0x099fe2a,
- 0x1c77d18,0x03a114c,0x040cee7,0x0512eda,0x08477bf,0x014d053,
- 0x1a3c108,0x1fbe21d,0x16d659f,0x16225da,0x1385c51,0x135d0aa,
- 0x106c2fb,0x06ac18e,0x0f64f9f,0x059705b,0x16b607b,0x0e231e4,
- 0x0a20ce0,0x0ea93c5,0x0aed251,0x110ea03,0x0471dd2,0x1bdf2f1,
- 0x0675fbd,0x0c03e3c,0x145b2ba,0x172c6c6,0x06a5a05 } },
- /* 128 */
- { { 0x08f4f33,0x18f5335,0x1d2a4b9,0x0c9bd51,0x12fc6fc,0x144230f,
- 0x094b3fb,0x011a6ac,0x008954d,0x0d8541f,0x0add996,0x18468d1,
- 0x045bd68,0x0807c68,0x0a04d5e,0x0cf5c80,0x1c052b8,0x08c0e0c,
- 0x01d9310,0x14a2d23,0x1d24986,0x1709aba,0x12c077e,0x06cef6f,
- 0x09ae559,0x18c8b93,0x151b726,0x0da2e04,0x0097c8f,0x024ce20,
- 0x1ee379a,0x04b3880,0x0df0032,0x14ec5bb,0x0b645f4,0x0c81235,
- 0x0a7ab5f,0x1a3690a,0x192329f,0x168e1d9,0x0688054 },
- { 0x1a5b86c,0x0b45528,0x091fc34,0x112aeee,0x0437e4d,0x1901949,
- 0x101dbc5,0x09d5d08,0x19647a5,0x13d643e,0x1588b02,0x1496080,
- 0x0f1e597,0x1853cf9,0x1bf971b,0x02adbdb,0x0c24d55,0x1579f78,
- 0x1c11f3d,0x1f609dd,0x0137917,0x0faa5b1,0x0de49e6,0x097c170,
- 0x0a32f31,0x18643af,0x0c3119a,0x02af8cb,0x018978e,0x08673f1,
- 0x0bf4a32,0x19bcb0f,0x10fc3ba,0x1bdf6dc,0x1c722e1,0x1bba65a,
- 0x0a8e10c,0x0191006,0x1b94ced,0x033b29e,0x00021f4 } },
- /* 129 */
- { { 0x1519d26,0x0891621,0x0114864,0x1a814a3,0x1dafac1,0x05dc4fd,
- 0x1c7a552,0x1f398de,0x016844b,0x1799bae,0x1a35567,0x1ef22f1,
- 0x05e7789,0x0fc5f0e,0x1d666d8,0x1bc8009,0x19a2cbb,0x0c04464,
- 0x04c81b2,0x1344c11,0x0851893,0x1ffe698,0x086b92f,0x11fd5fd,
- 0x0b3fee0,0x15e3326,0x07fc52a,0x03e7013,0x041ef96,0x0a66154,
- 0x0d8360e,0x02fe03b,0x1fad8ad,0x1dbb9ba,0x15d9b7a,0x04df868,
- 0x0425251,0x18b582d,0x1b67c79,0x10053c3,0x0798558 },
- { 0x1106473,0x19d554a,0x08128b2,0x02b4c3b,0x15fafa4,0x0ab1e04,
- 0x04d894e,0x10ffa79,0x195312b,0x1524048,0x0171dae,0x0b057f1,
- 0x156c7e7,0x11863c6,0x1db6ad8,0x0881ae1,0x11c7747,0x1467182,
- 0x1f6d861,0x1d7a29f,0x00966db,0x1d0c872,0x0c38107,0x1cc5c55,
- 0x0c4666e,0x1eb5d08,0x09d3ccc,0x07aafc5,0x1b9b669,0x16e27f3,
- 0x1f401aa,0x00da506,0x0f72f6c,0x1a0f57d,0x179a441,0x0e63198,
- 0x0569247,0x081304b,0x0c23671,0x1863a1f,0x095d823 } },
- /* 130 */
- { { 0x00528a5,0x15ec30a,0x0f21abb,0x14a72f3,0x1268c2b,0x00a255f,
- 0x06e293b,0x1db6379,0x182a7d7,0x17d5d86,0x0463607,0x01a29c0,
- 0x0ef12c7,0x10e0aac,0x181c5a2,0x1ce7c62,0x0b7e4b7,0x099f214,
- 0x0ebb277,0x0ecc6f0,0x035c631,0x1f70956,0x145cbfe,0x02f6548,
- 0x10bfbbc,0x0951bef,0x01d07e0,0x0425f0e,0x088f9c4,0x05edf14,
- 0x174f73b,0x0ead94a,0x1dc15aa,0x14720d4,0x03b2e40,0x07e6323,
- 0x0aeadb0,0x0f0142b,0x13d51fb,0x1aaf0ca,0x00e2708 },
- { 0x1e20f88,0x06629e6,0x00e489c,0x18beb62,0x1338272,0x058edfc,
- 0x1867977,0x182a085,0x1b72d74,0x19ef10c,0x0aa9552,0x1516555,
- 0x0616c49,0x1dd435d,0x0110f96,0x02d2a01,0x17220cf,0x0f735e6,
- 0x026af44,0x1f58d75,0x039d59f,0x1df88ab,0x0a0c485,0x09974a4,
- 0x08af2f3,0x0837269,0x1c1c9ea,0x04fe07c,0x017766f,0x03cfb48,
- 0x0f9a10b,0x0f50224,0x13469bd,0x0b9dc65,0x0d1a90a,0x1a9181e,
- 0x03990db,0x0bc2531,0x059e3f1,0x077f653,0x00d3dab } },
- /* 131 */
- { { 0x029c3cc,0x1bb7367,0x0f1a3e0,0x19e02d9,0x0b0507e,0x1ca670e,
- 0x1e65978,0x083bd7f,0x173c50d,0x07e2937,0x1b38f49,0x14a85a2,
- 0x014edd5,0x08e098a,0x0def766,0x10c0d76,0x0f2e33a,0x071a217,
- 0x018a76a,0x12066f8,0x13312ae,0x122c955,0x15febb1,0x0570af6,
- 0x18997d8,0x0bb0d49,0x068cdcc,0x1ad9197,0x06751fa,0x0ef1484,
- 0x05a0965,0x03182e3,0x01e97fb,0x0b9abd4,0x084efda,0x13c9e91,
- 0x1cb89f6,0x1c3e172,0x0d09a84,0x1d6b0e9,0x0530b4e },
- { 0x0b7b5ae,0x13ad0dd,0x0fd3a7c,0x1a074af,0x1b69dc4,0x0e282dd,
- 0x1712a91,0x00592e9,0x1416ac4,0x131b4f9,0x061771c,0x1cf15db,
- 0x01735e4,0x06ea235,0x12361e7,0x160540a,0x0699e16,0x1426758,
- 0x026c469,0x1edf48f,0x0784f73,0x0fd9527,0x1aa8310,0x1536d2e,
- 0x1690293,0x15958fb,0x03c0ea2,0x02999c0,0x0d66c18,0x12adc22,
- 0x005932c,0x0612a44,0x194e7d6,0x19138db,0x1390f68,0x13c0a5a,
- 0x08b6a4d,0x1c59738,0x15dfd49,0x0a5018c,0x0909425 } },
- /* 132 */
- { { 0x15b4c2f,0x0d0a686,0x127349a,0x16b914c,0x0b8fc59,0x11bea51,
- 0x12ceac3,0x0fd2b7d,0x0911103,0x0d0d3b4,0x0d4c8bf,0x00b529c,
- 0x1c5810e,0x10bc7d7,0x137304a,0x19cc544,0x1b28e3d,0x02e1631,
- 0x114b111,0x187e2f2,0x1161995,0x01a16a2,0x0d4cc3b,0x1df0252,
- 0x1a60ab4,0x009d012,0x0a2eba7,0x0a9264a,0x03caf88,0x1303717,
- 0x11c9746,0x06c937e,0x04091ab,0x162f8ea,0x1efdc13,0x078fa15,
- 0x1d8b333,0x1e8eb15,0x05bd49e,0x0239fcc,0x0505701 },
- { 0x134356b,0x025677a,0x1ef3402,0x0a96961,0x1df1de0,0x1026e0c,
- 0x1f8173b,0x1c20435,0x0361b78,0x05ef344,0x034e2d9,0x198fdef,
- 0x0ea324f,0x15852f2,0x0cdcb3b,0x0332dfd,0x0b36581,0x177827e,
- 0x1ac2ad3,0x1cbaa0b,0x186e7dc,0x0411c62,0x078a6d6,0x1b0006e,
- 0x03197bc,0x0e7ef2f,0x05201ae,0x17ebc8a,0x0e67ab8,0x0b45e8c,
- 0x0b50cc2,0x1f3ec7f,0x0a7d04e,0x0c5da13,0x048ed70,0x19438fe,
- 0x05dce22,0x0dc2411,0x19e7d21,0x0dfaa81,0x08ff0b3 } },
- /* 133 */
- { { 0x1f42cff,0x1717a1f,0x05f267c,0x1a386a6,0x03c19f9,0x10daa2d,
- 0x04e4aae,0x065b6e9,0x14afa9a,0x0119582,0x1350da1,0x1a8dafb,
- 0x150b855,0x02e7cc8,0x10d7881,0x1443115,0x0c7f001,0x0ebe791,
- 0x15020c1,0x1a6b5dd,0x0fcd057,0x0caa9e6,0x0969294,0x1c57272,
- 0x0579393,0x013af2b,0x00d08bb,0x0406656,0x053958a,0x002f1d6,
- 0x18e6c24,0x0f3d362,0x08051a3,0x10c6b31,0x1027f19,0x1f6941b,
- 0x0748e7a,0x0742bfb,0x158fa78,0x1dd8aef,0x071b28e },
- { 0x1726bf8,0x15866cc,0x1cf1250,0x1238411,0x1290a3b,0x0cc7550,
- 0x0439ec1,0x051fae5,0x1a25a91,0x153bc8f,0x1f5f6b1,0x1649806,
- 0x1b2d33d,0x187141b,0x07bfac1,0x1c54184,0x16ee3da,0x1dfb86c,
- 0x141d809,0x1b03230,0x17e343e,0x1426a56,0x12bac2a,0x18b6e98,
- 0x1101fe8,0x1eede3a,0x1ab49ba,0x17f654d,0x18aa4ed,0x103435b,
- 0x122ea04,0x1c22b30,0x14aa8f2,0x12e2764,0x076cfae,0x141a21b,
- 0x0318295,0x1ff623b,0x0496b39,0x034661b,0x0729471 } },
- /* 134 */
- { { 0x0bbd495,0x02c8219,0x1cfff39,0x037ca92,0x130f4dd,0x0e1fa71,
- 0x1b87576,0x00800d7,0x059ba72,0x077303c,0x0b1da10,0x1a7e858,
- 0x1ec194f,0x14ff445,0x19dac4b,0x0042141,0x1dbec2b,0x18be6ee,
- 0x02047b1,0x1a86d60,0x09e4689,0x1b9425f,0x09a9ae8,0x0fa8229,
- 0x195b200,0x1a255e1,0x0c3c479,0x119bf3e,0x196402f,0x1f64749,
- 0x01717fa,0x1dd68c5,0x0751743,0x0689bc5,0x1e0b1b8,0x07337f0,
- 0x1eb292e,0x12f0b85,0x1f57ce5,0x1b0b003,0x0001c39 },
- { 0x04a0912,0x02e5ced,0x1293d20,0x1488217,0x127cb76,0x18eb2de,
- 0x12e3bb1,0x135de7b,0x1481684,0x007dd95,0x0918d5e,0x004d516,
- 0x08ef6a7,0x0962273,0x1897220,0x0e9502a,0x12c4d7a,0x0312611,
- 0x0c58c79,0x0ee06e9,0x1c2e81a,0x18edc8b,0x01393df,0x0c3db2a,
- 0x065fd1f,0x11e8e82,0x072f79b,0x0209009,0x131fcfb,0x1060eb8,
- 0x0558df3,0x115b48e,0x0e4dbc2,0x0cb9311,0x1172b3a,0x01eea61,
- 0x0e28745,0x0b06e67,0x0bc4e80,0x0e17723,0x09132e6 } },
- /* 135 */
- { { 0x196099d,0x1f7f13c,0x0232015,0x1740dcc,0x172344d,0x0ac2c45,
- 0x01d0342,0x1d3d695,0x079e5ae,0x09ed783,0x08beb79,0x1535211,
- 0x0ac9560,0x083f383,0x12f84c4,0x048d4fe,0x19b2830,0x136af9e,
- 0x1f328f9,0x11d1b44,0x1292a5f,0x1326147,0x1ad4772,0x03bfaf1,
- 0x0310ef3,0x1f2a67d,0x08b281c,0x05c18f8,0x0da6839,0x0b4a520,
- 0x1f040bc,0x0ea1a71,0x0bb07cc,0x1701a8b,0x0f8aeb6,0x1ae07d0,
- 0x14d3c9d,0x09e0335,0x03b47aa,0x1caf328,0x07d0b03 },
- { 0x1d94c63,0x1f51826,0x0ce97f9,0x0ae7161,0x17ef01c,0x0735a5a,
- 0x09e3285,0x0ed2a69,0x0a53532,0x1b1166f,0x0b40181,0x140ef84,
- 0x09af696,0x1ea3590,0x0f06219,0x05694e6,0x0bb626c,0x04b2a66,
- 0x013cf13,0x11a7435,0x0b74a09,0x1696b9a,0x0d65be7,0x0aa3920,
- 0x1021a5d,0x11fefe9,0x1c7b144,0x0574fa5,0x01aa39e,0x1492d96,
- 0x09fe5c9,0x1f1d652,0x0e75d0e,0x09537e9,0x04b8646,0x1df574e,
- 0x1b83e50,0x035a1d4,0x1798298,0x05fb56b,0x031b178 } },
- /* 136 */
- { { 0x034db92,0x0dd22a0,0x11361e3,0x031e69b,0x0397790,0x1aa619d,
- 0x13cbb7d,0x1111a00,0x0cd563a,0x152caa5,0x1feb47a,0x191376b,
- 0x18a29d6,0x186c5ed,0x0b7d956,0x1b68f51,0x02d8cdb,0x1fbfdc2,
- 0x034c816,0x1c74070,0x1ca9b72,0x193e563,0x10cd6c2,0x14a8ebb,
- 0x00bcbd8,0x12fffe3,0x07ae934,0x06deee3,0x10fca67,0x0e1c062,
- 0x000f640,0x1018032,0x1dacf7b,0x0fc268f,0x163d5a0,0x02eb9ec,
- 0x1cefbbc,0x13f31a2,0x1b47d5e,0x1ca7c0f,0x06fc0fb },
- { 0x01b0e5f,0x088b5dc,0x0ee125b,0x0a5590a,0x182dd2a,0x19c3f86,
- 0x08b50c9,0x0b26afc,0x0ba912c,0x1199542,0x177304f,0x0c8693a,
- 0x138b71c,0x01c6c2e,0x060bba5,0x19a9c19,0x13cbf7f,0x1c85caa,
- 0x03fb578,0x0737787,0x09032cb,0x0e2d621,0x08b19f2,0x00fb4ab,
- 0x01217bf,0x07775f9,0x1682e79,0x0b580b5,0x09e0c65,0x0961477,
- 0x0fc42ec,0x09176dc,0x0f3aee5,0x03748ae,0x1a722c1,0x1e95ce4,
- 0x0a0e553,0x1330095,0x03f232c,0x1435299,0x0701935 } },
- /* 137 */
- { { 0x0626dea,0x06a0ed2,0x0e7f796,0x142b720,0x05ef66c,0x12732d9,
- 0x04290c5,0x19f3350,0x1748cfc,0x1f36d56,0x10bea67,0x0d7a5e2,
- 0x167ab9a,0x0ea38bc,0x12e85a1,0x1473749,0x1366bc3,0x1096985,
- 0x0fd141d,0x0d4bb91,0x0c0e1f4,0x148a10d,0x0e1a394,0x1774389,
- 0x0620659,0x1c83d34,0x1b69a62,0x1696aa5,0x0537072,0x0e6a72a,
- 0x17d40e7,0x13d202c,0x0a07a9e,0x02efe21,0x1fcf5f5,0x015071f,
- 0x1b5ceb3,0x0c8f2d1,0x0980106,0x1912d39,0x06c961e },
- { 0x0e7eb46,0x1ee0de2,0x0d21c0e,0x0eb2d8f,0x16bac55,0x17eba6e,
- 0x05f359a,0x1e69f32,0x1656ce6,0x11aa882,0x05c5d55,0x0a18649,
- 0x0d3d1fb,0x11f7fd9,0x099e0f9,0x1457bfb,0x1f3eefa,0x1debcf8,
- 0x1ebe7bd,0x1f7ca82,0x17a4a4e,0x112d2ad,0x1b3bd91,0x0e26608,
- 0x132381a,0x0d188b7,0x1ee5589,0x165454f,0x027e96d,0x121d058,
- 0x0f1a82a,0x0906567,0x18fe5d2,0x1d56022,0x037d6b7,0x14a4683,
- 0x049e7f9,0x0d44e5e,0x12d4f01,0x1b0d3c4,0x0830883 } },
- /* 138 */
- { { 0x0557389,0x18e3101,0x02f2566,0x0f5bdf8,0x1fe5ce9,0x1879c1a,
- 0x0f9fe0c,0x03d1277,0x116cfb8,0x1f06357,0x10a3f49,0x0cb7a08,
- 0x026f64e,0x1bcf30c,0x17a4916,0x02394a7,0x1c1487e,0x1845189,
- 0x116f3a4,0x1d87728,0x149e65c,0x0a6b3f6,0x0cef00c,0x0f046a4,
- 0x16b2430,0x0e934f9,0x1e4eb4c,0x0f1cbb5,0x00890cd,0x15b863c,
- 0x1a7c9a0,0x13c8bdf,0x015c34f,0x1d7f538,0x0e939b2,0x1826ba9,
- 0x1e3fcc6,0x11bc523,0x03e310e,0x0ff2cc7,0x02376f9 },
- { 0x0575b99,0x10f6057,0x037029b,0x1f0372e,0x1e14cb4,0x139ca3b,
- 0x0e0934e,0x13be014,0x1fb235a,0x1a5ce40,0x18a5102,0x02beb7e,
- 0x1a8d151,0x0f0b2eb,0x14d6d0c,0x07c779f,0x0a2b2ee,0x1ae897f,
- 0x1460b9e,0x13094de,0x108e629,0x19e1b2e,0x1390f8b,0x1e6dce4,
- 0x0709130,0x000cc99,0x03f4d15,0x1316940,0x196dce6,0x1e875d7,
- 0x1508f13,0x046ceaa,0x00ba0ae,0x12bc253,0x10b6c0c,0x02a37b5,
- 0x015464a,0x1a0c851,0x00a5a2a,0x0c2d7e2,0x08c4616 } },
- /* 139 */
- { { 0x11f36a5,0x0512c16,0x1cb7bff,0x051298b,0x0eded2b,0x076c278,
- 0x136e10f,0x1366b4b,0x0db0e3b,0x087c4c1,0x068448a,0x15e00e3,
- 0x16cce0e,0x1cd1b16,0x1995f90,0x0fc8fa1,0x15d6269,0x02a8b52,
- 0x198d945,0x1c3eef1,0x09bc269,0x05ea813,0x178f7b7,0x038af8a,
- 0x0230044,0x1c6f676,0x131c155,0x1707e63,0x089eabd,0x1db98f2,
- 0x0d06f7b,0x072bf9b,0x0b678cf,0x0d80090,0x0473fe7,0x112119f,
- 0x15f52cc,0x15e37a2,0x0458b2f,0x045698c,0x0155ea6 },
- { 0x16fa42e,0x1178fc3,0x1b9e52f,0x12ff5bd,0x0b5e874,0x0432d7d,
- 0x1c3d4e3,0x160d25c,0x0df8059,0x174cdc2,0x09eb245,0x00dd16b,
- 0x0b0ceb6,0x16a31e9,0x148cd5c,0x013419d,0x0232a9a,0x1968793,
- 0x0187ef7,0x1333187,0x110b252,0x13e0df1,0x1c46222,0x1155bc6,
- 0x029c50d,0x19ecd89,0x00ec4d4,0x179f36f,0x029708d,0x037c7f8,
- 0x020f29d,0x1b507df,0x1a013a1,0x1422252,0x14612ac,0x151d209,
- 0x1cbd4ab,0x14259ed,0x1630cbf,0x0484b20,0x08f570f } },
- /* 140 */
- { { 0x0a9c508,0x1364516,0x1e037ad,0x04d3ad6,0x0dc5bec,0x156b001,
- 0x0499a23,0x0282dac,0x149d726,0x0c20dcb,0x1cb9bd8,0x1cd99c8,
- 0x1641e40,0x0fd3d43,0x0890990,0x12f415b,0x133cc39,0x022dcfe,
- 0x105773d,0x1d1f52f,0x029db25,0x190974b,0x004933a,0x167b2ac,
- 0x072c67d,0x0221d46,0x0df069e,0x1c5bda5,0x1027ff8,0x04e336e,
- 0x11a52ac,0x0fcf457,0x09a057d,0x063b1fc,0x089b3dc,0x055b17e,
- 0x08a2621,0x193473e,0x1307532,0x10f6588,0x03d171e },
- { 0x0e49820,0x160b746,0x1724e0a,0x0581889,0x04ee45e,0x142c621,
- 0x1e449cf,0x1f21d8c,0x046327c,0x0c6592e,0x16707e4,0x0ed78c2,
- 0x1343e38,0x1baa2e5,0x0db8380,0x068fd6d,0x1ab5d12,0x0b25c1c,
- 0x0c03550,0x0124e94,0x116972e,0x13440e0,0x09aaca3,0x0eb5086,
- 0x00fffeb,0x06fa52c,0x08d6448,0x14b0059,0x09f4a30,0x0168190,
- 0x001ffba,0x11cd527,0x118016b,0x108e55a,0x11c30bb,0x0f7338d,
- 0x0b9d4ec,0x082d78d,0x0401058,0x1f0699b,0x0234e98 } },
- /* 141 */
- { { 0x0db9cda,0x1a9040a,0x1243fd0,0x0f2d5bd,0x19cfdc4,0x02c5b6c,
- 0x0a9bebd,0x0630875,0x1743eaa,0x18fba0a,0x0d7604f,0x125cc2e,
- 0x15915e1,0x0562cae,0x10688b4,0x1791a68,0x167c044,0x13825df,
- 0x188e88d,0x0c08e37,0x15572f9,0x040ae8e,0x130c98e,0x163bb29,
- 0x0230b76,0x133ca08,0x1c30722,0x05ca873,0x1c910df,0x00d6419,
- 0x17d5ac5,0x10cb709,0x07c999f,0x015bda3,0x07e887c,0x003604a,
- 0x1621695,0x0da9304,0x07a4f79,0x1c79c74,0x06a2130 },
- { 0x13ca1a7,0x1b3d025,0x1a03486,0x0601819,0x0f42ed5,0x16783d5,
- 0x14da24c,0x0b44599,0x15c25c3,0x1291d40,0x013418d,0x12b11ba,
- 0x1becdd3,0x197c9d1,0x168d40a,0x16a60e7,0x03cd5e5,0x1a62f06,
- 0x0c9a1dd,0x1ea90c2,0x0292ef9,0x1e0f3a1,0x1b61ffb,0x09cbdbd,
- 0x0c29ea2,0x18d36cd,0x00ce127,0x115793e,0x1239050,0x1149207,
- 0x14ec26c,0x0ff2686,0x191072c,0x15aa833,0x0e079ab,0x002054c,
- 0x16feb87,0x103a04c,0x0a0c0fb,0x155389a,0x034f06f } },
- /* 142 */
- { { 0x148f005,0x0e3cf91,0x02c61a7,0x03be924,0x1b5c5d7,0x1732524,
- 0x15f29b7,0x169fa36,0x0e82a4f,0x0dbfb9a,0x1e0d988,0x106972a,
- 0x16637cb,0x1e943ec,0x0d0406d,0x1d95792,0x0ac0392,0x18ac87c,
- 0x1dd7d38,0x1b86e6f,0x0c62280,0x07b530d,0x02cdbd4,0x0aad1b5,
- 0x18304a6,0x1853a7a,0x0764c21,0x01af255,0x0895cc8,0x18c97e4,
- 0x07db45e,0x0922927,0x18392fa,0x0adcf24,0x09f7507,0x0b5e6c0,
- 0x1caa82b,0x16bcf12,0x1746914,0x163e822,0x0764d47 },
- { 0x0ee8b9c,0x11181d1,0x152177c,0x070bbf9,0x1b9f72d,0x009d1b8,
- 0x0e60c42,0x1ead685,0x13de741,0x146291d,0x0eed6f8,0x04b5e60,
- 0x0f08576,0x164dfcd,0x1bca66a,0x0b66924,0x0080d44,0x110df56,
- 0x1ae8b03,0x047405a,0x08646a5,0x18bfe71,0x18c0a86,0x00183d5,
- 0x0a235e3,0x188a28b,0x09ed2a4,0x0a86e6d,0x0c89f74,0x1cf4606,
- 0x17b4f02,0x081db11,0x081904f,0x1fe3802,0x0d58f2d,0x109e4d3,
- 0x121b973,0x10ea9d1,0x0e04026,0x1864614,0x01c0dd9 } },
- /* 143 */
- { { 0x06a7d9a,0x10fb3e2,0x0733fea,0x097dbf2,0x0474333,0x1217973,
- 0x0e9d11e,0x1528b06,0x1241ffa,0x1cc0028,0x1bf9ad9,0x150866b,
- 0x0370979,0x1845920,0x0184fd7,0x023b8be,0x1cd64f2,0x035d917,
- 0x015cb3f,0x1165474,0x014ae1b,0x00bca85,0x06783ad,0x16d9a98,
- 0x0bb293e,0x0fff31a,0x151c289,0x0340964,0x115a0a3,0x1d64d1e,
- 0x1a6907d,0x17e5fdb,0x1ed85ec,0x0a50077,0x1d7e06e,0x183eb03,
- 0x1ef4a15,0x1ccb584,0x106f2a8,0x07360c0,0x052d8be },
- { 0x1631a2f,0x09b7b7e,0x0372f45,0x0166a35,0x11fae7f,0x0931094,
- 0x0431e6c,0x06ba34b,0x12bd0f4,0x16a43af,0x03a9c14,0x0da7256,
- 0x1e9aedb,0x1c1d5c4,0x142af72,0x0325817,0x06289fe,0x1413d08,
- 0x00a82f6,0x0d52c02,0x0814656,0x1be701b,0x16820c0,0x0c7280b,
- 0x0d79f58,0x0fc985f,0x1b6f2a3,0x0e40336,0x1aa3f59,0x094377e,
- 0x04a2480,0x0a46d71,0x137b996,0x01739d9,0x0e38a3f,0x0623a7c,
- 0x080e8da,0x1c3fa0c,0x09175c1,0x0cfb5c9,0x06cff63 } },
- /* 144 */
- { { 0x09a8bb4,0x08219fc,0x1dc6f4f,0x0727731,0x02144c3,0x038516a,
- 0x05b200d,0x13d056c,0x1e5da08,0x07e63ab,0x17f69a6,0x09def7e,
- 0x0c54235,0x0f5e9a6,0x017094e,0x1ba1a31,0x085bec5,0x1171059,
- 0x00a86f2,0x1777c2f,0x0ef0e71,0x184dc2a,0x05677b4,0x12ff4d5,
- 0x0997989,0x0228b92,0x03607cf,0x019f1f5,0x0111525,0x1a8bb06,
- 0x1aaa68e,0x1d9f08b,0x1b0ef7d,0x1688de4,0x188ee7f,0x0192673,
- 0x0825608,0x1f4e2e1,0x1079f24,0x02ec27d,0x01d2c82 },
- { 0x07cfc93,0x09a3ecc,0x0041ce0,0x17e30ff,0x047603b,0x0865188,
- 0x0f27449,0x1e67f4d,0x0bb055b,0x00048f0,0x0be1f12,0x1e34747,
- 0x0bbdf95,0x0a02a05,0x1a1ddc0,0x008b7c4,0x130d7fe,0x0ccc6fb,
- 0x1c8ef0b,0x1026bf6,0x0c46b39,0x060af5f,0x0b08c3e,0x0aac381,
- 0x018305f,0x03ff047,0x1369829,0x181f7e9,0x0d4bfc7,0x0e1270b,
- 0x0481ba5,0x0e8c2fd,0x0163495,0x061073a,0x01a52b8,0x0c72e33,
- 0x0131e2b,0x1349891,0x1dc8bf8,0x06c14a6,0x025486e } },
- /* 145 */
- { { 0x1572806,0x1cae529,0x0385861,0x12cad2d,0x12c8944,0x1991d75,
- 0x0b25cfe,0x1ac2938,0x0409bc7,0x18aef13,0x0486cfe,0x14e58f2,
- 0x1ba90cd,0x102655d,0x0be8538,0x0824ada,0x0f79160,0x1e5e6d3,
- 0x10d7e51,0x10c4c36,0x0b10250,0x1c61417,0x16da1b0,0x14f2397,
- 0x16d62f1,0x1362880,0x0586889,0x1638fda,0x1d74a66,0x0333138,
- 0x09099e0,0x104850f,0x1ffeda1,0x07879da,0x0ffeef9,0x0997ca0,
- 0x19482a7,0x1bf85f5,0x04fc75f,0x0b01109,0x0751b23 },
- { 0x1c9be68,0x1dceb74,0x11b3565,0x08cfa21,0x1794b5c,0x11597a0,
- 0x170f5dd,0x0235119,0x0a1b44e,0x0ca531d,0x03b2a1b,0x1773555,
- 0x1ffb0bb,0x04b1ec3,0x0c3cb43,0x00ebbe9,0x02c5dc7,0x0dba983,
- 0x064ce62,0x0e4d589,0x0cdefed,0x1c2bfce,0x1769818,0x1f18ecc,
- 0x0392a75,0x165110e,0x157719c,0x1a4c9b2,0x0ecc8dc,0x1f915b3,
- 0x0e9c013,0x03148b1,0x11aa9ae,0x1eb29fd,0x137e2ea,0x19d52c8,
- 0x0ba0de7,0x1bc7401,0x1b1d6a4,0x05b9458,0x0144cc1 } },
- /* 146 */
- { { 0x189aa3a,0x1050e94,0x193564e,0x06b3cdc,0x183f228,0x1739976,
- 0x0c32f4c,0x093d271,0x13c3cb2,0x0623262,0x1a9ab3d,0x0bf1f13,
- 0x129750a,0x1a367e1,0x1f96efc,0x170128c,0x19d37b2,0x0e4dfd5,
- 0x0cce71b,0x16e8a67,0x0deef8e,0x1f1dbb3,0x0ff807e,0x0d5d44e,
- 0x14254ef,0x188598a,0x09ef986,0x0ab87be,0x0184885,0x16c0eec,
- 0x1e5c3ed,0x177ce29,0x01af3a4,0x07b49ed,0x005e746,0x12aebe4,
- 0x0465b83,0x047e359,0x0a54770,0x066d709,0x0874ecf },
- { 0x1b3f6be,0x17c1f5d,0x08f5892,0x1211768,0x1578fbb,0x039a93f,
- 0x0c2eb5e,0x084ac47,0x0a62e04,0x1b2cdec,0x0dbde70,0x02cffc4,
- 0x062903b,0x129f935,0x090c31b,0x0259eab,0x1ae3ad7,0x19112a3,
- 0x1bac9ca,0x1121aee,0x0df9b73,0x059eb14,0x056d3dc,0x1d5c959,
- 0x013b053,0x1a74f87,0x039fc85,0x169ea27,0x1bae175,0x167ccc6,
- 0x001d520,0x088a309,0x169bbde,0x178ae15,0x194b2bf,0x129e4f2,
- 0x16bcaf1,0x11f795d,0x18d3e82,0x1039c98,0x031fb85 } },
- /* 147 */
- { { 0x15cd607,0x18368b0,0x0e98e60,0x1554658,0x080c9fa,0x1c898eb,
- 0x1c16ddd,0x001d0f4,0x036708b,0x018809d,0x14a5fc4,0x01c3288,
- 0x16814fa,0x1353cda,0x11560ea,0x17da8e1,0x0bf4b16,0x18181ce,
- 0x0aabe34,0x0f951b5,0x08a518a,0x13ae6db,0x1ccc567,0x07029f5,
- 0x0e738d2,0x1cfef50,0x02343d3,0x166a4e3,0x1ff032e,0x1304ee6,
- 0x02ec2dd,0x07a9067,0x1ba8ea9,0x0a83d32,0x1609577,0x0830089,
- 0x0a4a50b,0x05111f2,0x0795211,0x00031c3,0x0983230 },
- { 0x1f3d5a6,0x10813ab,0x1734a28,0x10dd195,0x1fce564,0x0a8f9df,
- 0x0e06c09,0x1e32b20,0x1935ebd,0x1366327,0x0ea9bac,0x0523810,
- 0x0160611,0x047267a,0x062299a,0x1636b9b,0x173dd53,0x0ac0e1f,
- 0x1ff1887,0x100952e,0x02fa78c,0x187d6e5,0x0c61d0c,0x0799e04,
- 0x08da4c8,0x183fb80,0x169e691,0x0824543,0x115eb5c,0x069fa54,
- 0x1826a38,0x1a0246c,0x0de157d,0x1695051,0x0ec997a,0x0a8bde8,
- 0x188db28,0x11156f0,0x032ab42,0x13d245c,0x08abbe3 } },
- /* 148 */
- { { 0x02d2f01,0x034829d,0x0172d11,0x06bb8cd,0x127c319,0x1a5013e,
- 0x02efc75,0x03ad521,0x15b50ec,0x0ed1a87,0x10b8980,0x08bc7e7,
- 0x121d3dd,0x1c1b774,0x1b84742,0x12f39ec,0x08f474b,0x03f01c8,
- 0x02e1e0d,0x0f8b733,0x1de919e,0x1f5e9e8,0x09d074f,0x1ec0b37,
- 0x08e8d1e,0x123b1e3,0x04d9d38,0x173ff27,0x1e67f69,0x09f39f3,
- 0x12075f5,0x15dd3c4,0x18dc326,0x0cc2634,0x1b6acef,0x0ea5e47,
- 0x0f8fe8a,0x0f18d83,0x0ea57e5,0x1a187a1,0x00f15b4 },
- { 0x10a8d85,0x1b31abc,0x0bc63cb,0x1dc4b2b,0x11bffba,0x1a8943a,
- 0x1fb1892,0x0bba2b6,0x1323471,0x11cdb55,0x151075d,0x0532578,
- 0x130cdd5,0x1b682c1,0x0003a93,0x1c6c0a9,0x152f6d6,0x190f7eb,
- 0x04a4184,0x0fffca3,0x18cdc0b,0x12f7544,0x0da2960,0x13044cd,
- 0x1ba9222,0x1d97676,0x02ef41a,0x0f15236,0x16b0cb6,0x16e025d,
- 0x062c90d,0x195f1d5,0x17a99e7,0x102dde7,0x19b9c6a,0x03725a1,
- 0x15993eb,0x068238f,0x1776efe,0x0f04070,0x0515db3 } },
- /* 149 */
- { { 0x15bef22,0x1f55537,0x1c4bb90,0x1040690,0x152d269,0x1d7b634,
- 0x12139e8,0x0063c98,0x09a8c94,0x06a1a63,0x0626686,0x0e82a00,
- 0x0c63e5d,0x1f47520,0x0e36ef3,0x10e42a4,0x0d29679,0x0653664,
- 0x12b2f7a,0x16d5dc0,0x13ce73d,0x06dbfcc,0x0fda4ca,0x08bc669,
- 0x19bbfad,0x11851fb,0x0df07c5,0x18a3d92,0x00a6de8,0x192fcd8,
- 0x10d241c,0x025b057,0x1e6acb4,0x0cfe4a4,0x0db43b1,0x16b2036,
- 0x1cf34e3,0x04db884,0x1300b2c,0x0fc357e,0x02de048 },
- { 0x1d9d484,0x19179c6,0x0b3062d,0x06f8ef7,0x0334939,0x0c95c54,
- 0x0e3c64f,0x04ab1b7,0x08e3fac,0x06bc6a8,0x1d29f60,0x1302e8b,
- 0x1df0500,0x03be614,0x1caffb6,0x113f1a0,0x0f2c30a,0x1b3d5fc,
- 0x0820835,0x0acfd53,0x173892c,0x17451d2,0x1096ac4,0x0aaa436,
- 0x0faebf0,0x0f4e0b1,0x1ae53a9,0x1c389e4,0x11e546e,0x04ca1eb,
- 0x0747905,0x087d17c,0x18183b8,0x1570592,0x120bbe7,0x008922f,
- 0x13874a3,0x09d22bb,0x1e1b9a0,0x0e39885,0x06f6ac0 } },
- /* 150 */
- { { 0x1d6e3b1,0x01156a6,0x01a74e2,0x195ac41,0x1c78e1c,0x166f407,
- 0x0e114b2,0x1c7cf08,0x0a8469f,0x10e60a5,0x1a3bc84,0x1b4fccf,
- 0x088e8f3,0x069a3a2,0x00f45b9,0x063e9b7,0x1987986,0x19dd0ee,
- 0x0931305,0x16b2ee1,0x101fdfa,0x031f6e3,0x07c284c,0x1b1fe50,
- 0x1d6016c,0x1e4a324,0x0ef3156,0x04ce461,0x00412a2,0x0e302bb,
- 0x1d80a86,0x0651f5d,0x119d5f1,0x1556ce3,0x1a7bd9f,0x0a4f972,
- 0x119bafb,0x0129873,0x00b2fcd,0x199feb5,0x06e2c24 },
- { 0x1af8793,0x18125d6,0x12398c4,0x0206b92,0x144bccf,0x1a805fc,
- 0x19ade54,0x0cbd340,0x01d1167,0x0c8d4a3,0x04f1e1e,0x165d3fb,
- 0x1595add,0x14972a4,0x14b00df,0x1cb9e0b,0x1189f03,0x1658a2d,
- 0x16a87dc,0x1c91952,0x0e4f81a,0x0109ad3,0x080fc9c,0x1654faa,
- 0x0f5a249,0x15195e7,0x000b5fc,0x0d0f520,0x0745b00,0x1914363,
- 0x014bdf4,0x10ca0e6,0x1a8a875,0x0e2c79e,0x0210ba3,0x0b7c717,
- 0x1bf1118,0x045f9a6,0x03e45ad,0x01b2f81,0x05af7fd } },
- /* 151 */
- { { 0x0a224a5,0x0dca87a,0x1ce957e,0x0998a04,0x0190457,0x1f8feaa,
- 0x04cc190,0x10669f0,0x10e50f7,0x0b400dd,0x005c4a6,0x080712b,
- 0x16866d7,0x12048e9,0x0690176,0x0dfcfb7,0x1df16a4,0x078f1bc,
- 0x0efe45a,0x09527f0,0x0bca8d0,0x1a99590,0x0b9320c,0x0543821,
- 0x134b1f7,0x0da4ce9,0x1f60657,0x1f7932e,0x014b5d8,0x1efffdd,
- 0x1db2bac,0x0edb5e8,0x0fef022,0x1b97a30,0x17fb6d6,0x0497291,
- 0x16dfb06,0x02e492d,0x152b946,0x1032c13,0x027a9c3 },
- { 0x12a93af,0x1b9a378,0x0d35cf0,0x18aa6cc,0x028b707,0x00c9e88,
- 0x1635526,0x13b1df4,0x0ef21b6,0x1c1d2e6,0x0283893,0x01474f1,
- 0x1805cbb,0x12d89e4,0x00c5e05,0x0f09802,0x0582b73,0x17f5107,
- 0x140d87c,0x0e2741c,0x02d9df9,0x07e8661,0x0c51268,0x0bc5c36,
- 0x152e77c,0x0678c1b,0x16d9c11,0x1c89ad7,0x1e177a6,0x0f4ab99,
- 0x08c04b7,0x011dc58,0x0b49669,0x18ca4b4,0x15047d7,0x1fb3760,
- 0x0acd886,0x0c1638b,0x0491254,0x129f7bd,0x01c6906 } },
- /* 152 */
- { { 0x0880026,0x13e8b9d,0x17c976d,0x0024bb2,0x09c4f0a,0x165bd24,
- 0x01544fd,0x14a520a,0x15cbbdc,0x15918e8,0x0f2f4cf,0x19332e5,
- 0x1af8cff,0x16aad01,0x13bd352,0x0f85f96,0x1ca2286,0x0ca26a3,
- 0x1ab46a9,0x110a901,0x104596d,0x1c65e45,0x1da95f3,0x0bcab40,
- 0x1844b00,0x04beff2,0x0474628,0x1d3cfc3,0x123c745,0x1374294,
- 0x0e655e8,0x0febb66,0x0867b79,0x1686468,0x02398ef,0x184aa68,
- 0x089ad23,0x0b72eab,0x10ce456,0x1ad4a09,0x07b8c13 },
- { 0x0fb6901,0x01d56a9,0x14ecbf1,0x122d944,0x1c0313f,0x0d56e30,
- 0x00c2945,0x18428eb,0x07f577d,0x09e8c93,0x0f03772,0x1d1dee4,
- 0x1a26e52,0x1f5cfb6,0x0783ae0,0x06eda5e,0x082f180,0x0ccbcef,
- 0x020d24e,0x051d976,0x18e743e,0x0e51ce1,0x068b547,0x1c7ed6b,
- 0x063a9a8,0x1383730,0x092e6cc,0x19e3b47,0x18915d4,0x0451697,
- 0x049b94d,0x0a0a0f2,0x075e3e0,0x1c1fd2f,0x195c834,0x135dff9,
- 0x0fd2fb2,0x16a9e64,0x1334075,0x1ecd2de,0x00e3c3e } },
- /* 153 */
- { { 0x1ee1d83,0x19be090,0x1e20ef0,0x1af0f6e,0x17e08f6,0x07d2674,
- 0x07f304e,0x0b17ee1,0x1a0348e,0x17bbb23,0x199cb6e,0x15794ab,
- 0x1d04f8b,0x1eaf62e,0x14a4675,0x124301d,0x1ff33e9,0x1c67325,
- 0x12c166b,0x13f8ae4,0x12baac0,0x1cee2f1,0x141a0c7,0x0b5ed52,
- 0x0267746,0x1fc1351,0x1b25fc7,0x18bdfcc,0x0087fd3,0x106b5e3,
- 0x1ac5457,0x1551db8,0x1a39c5e,0x0f694d8,0x1aec39e,0x107bb02,
- 0x1c3788b,0x009bb4d,0x09471b3,0x1c78125,0x0463098 },
- { 0x0bd0fa7,0x00463e4,0x1924e99,0x039cd7b,0x1176431,0x1f7bdf6,
- 0x18420a0,0x071c62b,0x199b5d9,0x109e63b,0x1269ae0,0x0b028b4,
- 0x11af7f1,0x1294f26,0x03f6c3f,0x193ada0,0x177ce66,0x12ae9c7,
- 0x0f52e54,0x0f99803,0x1986b4f,0x04d7b8f,0x0365d6d,0x0c9a015,
- 0x19fcbcd,0x16b895a,0x12968ee,0x10c1ca0,0x1c89f11,0x102215a,
- 0x07db65d,0x0f47c46,0x0d0c659,0x05d497f,0x10cc5e3,0x1cb0229,
- 0x0698e11,0x13a6033,0x0e16b8b,0x1274691,0x07f8fd0 } },
- /* 154 */
- { { 0x19428af,0x0c96560,0x1997c91,0x0274610,0x192a1c8,0x05debf8,
- 0x0604b8c,0x17284b1,0x1836c6b,0x06d8391,0x19261c4,0x03d2b31,
- 0x0b9c7a4,0x1756b7a,0x1fc5e79,0x0588915,0x1b97586,0x1387c7c,
- 0x1c8660f,0x16046ed,0x11526b3,0x0dcc732,0x09760fa,0x0a24314,
- 0x126a8d7,0x0d31d96,0x0a75bc7,0x0a10503,0x081f749,0x0682d2d,
- 0x1c637de,0x1c8d0e8,0x19ee559,0x1ec666b,0x095d9e1,0x0a40c19,
- 0x08476c9,0x1d427fd,0x144c509,0x0a3cc86,0x087b64c },
- { 0x130d3c4,0x037b2a5,0x1c521fd,0x184769d,0x0dec4c5,0x0526b46,
- 0x11d998f,0x0db676e,0x1cf3fb5,0x0f9a134,0x1f51a87,0x13881fa,
- 0x1dd4f13,0x1534d45,0x0df1f1d,0x1afa547,0x0c9cbad,0x0772b5a,
- 0x12508cd,0x1fe6855,0x1da3b28,0x1d3c378,0x0011bf7,0x001905c,
- 0x1149cb7,0x0cbe72e,0x0542599,0x1461df0,0x1f4bddc,0x0304fe7,
- 0x1a11288,0x08924a4,0x12f65e7,0x10f9c07,0x14b3500,0x01cb6ca,
- 0x042dbbd,0x154e150,0x18bd5df,0x0f9b380,0x08c9526 } },
- /* 155 */
- { { 0x1c1abb1,0x081972f,0x1d0d995,0x0825fc8,0x0215af5,0x182f7a9,
- 0x1d580a7,0x1d3faca,0x1dc191b,0x0739992,0x18e6c2c,0x0cbd810,
- 0x137ab3c,0x0e1f333,0x141fd44,0x0aaaace,0x1c3c861,0x0b1c5f7,
- 0x0bc312b,0x03119e8,0x186d5d0,0x0e6c4b0,0x010e8c0,0x18ce83d,
- 0x003f7b2,0x0e8022b,0x13e8f34,0x0ea8b81,0x00672ef,0x17fea52,
- 0x177d84a,0x08b73d1,0x0197c9f,0x116ba2b,0x0df61e4,0x1f68a64,
- 0x0b2d59b,0x09971d2,0x1a85afc,0x0e77094,0x08afa1b },
- { 0x193ac70,0x0cb7573,0x1441acd,0x1dddedb,0x0c94ef8,0x0117202,
- 0x13e89c1,0x0c724d6,0x0e9e5d7,0x0638ee7,0x0aab7f2,0x16e1ea2,
- 0x1f352fc,0x1441cba,0x1ee84e2,0x0762636,0x190058c,0x0abcc89,
- 0x1dd03f4,0x0412552,0x0697969,0x0d8b058,0x066b651,0x106f564,
- 0x1438810,0x1b8de31,0x13c5d2e,0x0ddc238,0x1b80eb7,0x1fe0d58,
- 0x0298446,0x0e1d88b,0x082bac8,0x09992de,0x049cc4b,0x11ddcc0,
- 0x1240adc,0x08c58d5,0x024f2d0,0x12256b4,0x0672111 } },
- /* 156 */
- { { 0x15cf9bf,0x0c9837a,0x1b6647a,0x1148d72,0x1b04530,0x1d32efc,
- 0x0787679,0x1775c78,0x1c731bc,0x09e58a8,0x1629851,0x044f49a,
- 0x0214be5,0x0be3a66,0x16b248a,0x001ac73,0x045822e,0x1a687bd,
- 0x18ac0f7,0x163aa38,0x0b2dafe,0x125d50c,0x0ec770e,0x056e9e1,
- 0x07178df,0x119bf9e,0x1a25ada,0x19a6514,0x0e055ff,0x0a2a0ee,
- 0x01fa57b,0x0d49c57,0x1fbc76b,0x0ee74cb,0x1fc7e96,0x03cbd8c,
- 0x0c0367c,0x11b4566,0x08ff814,0x02ca9c9,0x07c8639 },
- { 0x07388cf,0x0a5af65,0x14e157a,0x018066b,0x17cc0a6,0x17c2dd0,
- 0x0de2d85,0x10136d3,0x1101229,0x02e8177,0x1429e5c,0x1d0039f,
- 0x12565a6,0x1e8f71a,0x1d2a5b5,0x13b5bd6,0x0ed427b,0x1ae4419,
- 0x1b54cc3,0x150a51c,0x0ee896e,0x158c692,0x0c36218,0x1f273ee,
- 0x18ed59f,0x1294e69,0x0804180,0x121f934,0x03b3ff6,0x045c118,
- 0x1a718b6,0x1baa568,0x042d7a4,0x096c9fe,0x1e8a32b,0x100df1b,
- 0x0092043,0x11b0483,0x156b540,0x0b1f9d0,0x0325827 } },
- /* 157 */
- { { 0x19e8c60,0x0722f9a,0x061bac8,0x0a6c994,0x071bb8a,0x1c70886,
- 0x141c77f,0x0f00562,0x14c93e5,0x1a748e9,0x0743601,0x1c01705,
- 0x1ac0326,0x113541f,0x0648961,0x1413c78,0x0d5fb29,0x11c3d32,
- 0x16b1720,0x147a69c,0x1a29caa,0x12d6d16,0x03b5a17,0x052ca1d,
- 0x00267eb,0x179c939,0x05d8e00,0x0e30963,0x0b1aeaf,0x0e876fb,
- 0x1748fd7,0x04bcc24,0x01fa347,0x1950d5f,0x1e74321,0x1fac50f,
- 0x0c57c3a,0x1549e95,0x1d95926,0x0e2b7b4,0x01a4e6a },
- { 0x14d1267,0x1376f2a,0x0d20684,0x0639a05,0x17f9453,0x18fd8e9,
- 0x1c13338,0x025ae15,0x1097dc0,0x1a08585,0x1edb173,0x1a2e6d8,
- 0x05930e1,0x0344884,0x0bfb907,0x0c71f20,0x0a779fb,0x19a4dd2,
- 0x135be37,0x18b0435,0x0acea16,0x009703b,0x1ecee0f,0x003a29b,
- 0x1033be5,0x16d35c6,0x0883cb4,0x0b27a8a,0x1f18800,0x0936cce,
- 0x098dd49,0x13fd667,0x032351c,0x17a2b65,0x0ef07db,0x15b2268,
- 0x15b9dc8,0x042bed9,0x1a0cb1d,0x1270b69,0x0856a7c } },
- /* 158 */
- { { 0x10a5583,0x1e80106,0x162a801,0x1bdb48c,0x0f1301d,0x0c9cdf1,
- 0x1e590d3,0x06d2380,0x0a70c08,0x065b3c0,0x0795028,0x1f2b7d0,
- 0x18c0b4d,0x0ea5645,0x0ef34d1,0x0c472d9,0x0d05475,0x12be297,
- 0x00173ad,0x05b9483,0x0255cac,0x15bc9a2,0x0457b9a,0x193454d,
- 0x1ef3124,0x13a1b36,0x1e304b1,0x1a772c5,0x1b7c3bb,0x078dbed,
- 0x16eaad9,0x1c45772,0x00e4553,0x11dba1e,0x1aeb131,0x024811f,
- 0x0a4da63,0x13b9891,0x16900f2,0x1098c6d,0x0628890 },
- { 0x0b8d208,0x1fea9c6,0x1b52915,0x12a87e0,0x1a8f800,0x17f955b,
- 0x18553cb,0x1cf6cdb,0x1f72517,0x0ed9475,0x0274b3f,0x1ccdf27,
- 0x0e0149f,0x0c2dc46,0x1a1dcff,0x087eef3,0x10b0ba5,0x0229704,
- 0x02c0ff0,0x136b9f6,0x177bdeb,0x05362f6,0x0c44d12,0x1f806e4,
- 0x1f3cf8f,0x0251b04,0x15706d3,0x179388d,0x059be92,0x1df9c7d,
- 0x04799bc,0x19b604d,0x196bf5f,0x1c47c89,0x0750027,0x07e3d8b,
- 0x0ad9dfe,0x081a2b1,0x135630a,0x058b5b4,0x079d812 } },
- /* 159 */
- { { 0x0529507,0x0726755,0x1400535,0x08e8cab,0x056a081,0x07e23a0,
- 0x028e13c,0x11d81a6,0x03443cb,0x14101f5,0x05ca362,0x1f612fe,
- 0x1233c62,0x1a9077a,0x0e373f6,0x13a7d14,0x15d7cac,0x0507c86,
- 0x1cf3a94,0x0f617f0,0x01cb28a,0x1d36362,0x14456b8,0x0702583,
- 0x171daa1,0x03f51a8,0x1589354,0x0ba9774,0x18f42f2,0x0944bf4,
- 0x1c6476b,0x12d4826,0x1d6b1e9,0x12dbbff,0x0496da7,0x0fa8d84,
- 0x00c4f70,0x095a121,0x155eb1f,0x12b0284,0x02ab3af },
- { 0x05372a6,0x103a635,0x0e9e1b2,0x1cac525,0x128fb83,0x1a0e7ab,
- 0x05b71dd,0x13ae8ab,0x1520ef4,0x05a6750,0x1191c9c,0x1c68c3c,
- 0x1d1472f,0x1fdc562,0x15af598,0x180e3e9,0x0c9c10b,0x0a37296,
- 0x1c68d18,0x129dfc6,0x0877287,0x0c13b7f,0x092141c,0x1deb569,
- 0x157739b,0x00af6d6,0x1cfc572,0x0985b3f,0x0395c32,0x0872c7c,
- 0x1546225,0x1016d50,0x0e40996,0x001f0dd,0x08b22a2,0x1c9ea7c,
- 0x039d25e,0x119fb08,0x0272abc,0x06a4a08,0x007db2c } },
- /* 160 */
- { { 0x17d4703,0x1dc6d81,0x02e71fc,0x1f8be91,0x083708d,0x18ea017,
- 0x00c3e11,0x1d23f75,0x05a2faa,0x0af7469,0x13f07a9,0x1e20a80,
- 0x11c2e5b,0x1516ab2,0x1f5409e,0x1ebf2c8,0x00c7eba,0x19bd29e,
- 0x16cc2af,0x1e17652,0x13ba7ad,0x1f6b264,0x1698b87,0x1de94f0,
- 0x018c0e2,0x027bffe,0x0534b34,0x073bb3b,0x00af021,0x1d5baf5,
- 0x13c94fe,0x01fdf35,0x08100ea,0x0ad53be,0x0137218,0x12e98a7,
- 0x1fe5206,0x143416c,0x15d672c,0x11f9efb,0x008b6ca },
- { 0x16c3b5a,0x12df501,0x0d2f813,0x04ff3e5,0x1872610,0x1cbe079,
- 0x095c0a5,0x14753f9,0x182879e,0x12b0c05,0x1c377c5,0x1376c0f,
- 0x0715338,0x13d8704,0x08488f1,0x0ff8f33,0x0ec9d89,0x0868c04,
- 0x05bb7c6,0x00e2352,0x1118947,0x158390b,0x1e3d4bc,0x111116d,
- 0x129ffd1,0x0802ec5,0x15331be,0x1e3c458,0x04877fe,0x10b2f59,
- 0x097100d,0x06a8f2a,0x1a95233,0x0a3457e,0x1085a18,0x11ac454,
- 0x14faba0,0x021d83b,0x09f4974,0x0041a63,0x02c337b } },
- /* 161 */
- { { 0x022fa65,0x182de75,0x18e9ec8,0x09a2b3e,0x1e183ef,0x1ac91fd,
- 0x161f4fc,0x0a668e7,0x0c11d77,0x13fd983,0x1533fec,0x1cd6540,
- 0x19702e7,0x178c2b0,0x1a7e5f2,0x0a38a79,0x0434e7d,0x1c1aa81,
- 0x0d5ab16,0x1c7b05e,0x1131a63,0x156bb22,0x019edf2,0x0e3f93b,
- 0x1e6afa6,0x0bbf742,0x18ac1f3,0x1730bdb,0x1a51933,0x0c587fe,
- 0x0d81f56,0x15285b8,0x10eca39,0x10c54d8,0x13b9418,0x142fe7b,
- 0x06b7d5c,0x0a74688,0x0c724f6,0x069db10,0x0509b26 },
- { 0x0caed54,0x0a0a724,0x1a5ec6e,0x1997ea3,0x17a78c6,0x14d92c3,
- 0x0323537,0x0f148d1,0x091ee3d,0x01209be,0x1b99300,0x0469c61,
- 0x18a68f9,0x040c86b,0x0c956f2,0x0d216ae,0x05fba80,0x020f470,
- 0x10d53d3,0x071b09d,0x0816500,0x0b6fd29,0x0c63c0b,0x16c7fb5,
- 0x19007cc,0x02ae23f,0x0fa62b9,0x13a901f,0x0e319d2,0x0e912e8,
- 0x0652b11,0x004db6e,0x06f3575,0x0c3dce8,0x1880b0d,0x0ee6773,
- 0x0c31772,0x041cc91,0x01d4889,0x14ea977,0x01592d5 } },
- /* 162 */
- { { 0x17453f0,0x06cd167,0x07c15de,0x15db078,0x0ffb899,0x1415d3d,
- 0x01b4f82,0x1035cca,0x0ea3d50,0x164270d,0x0a8e2cc,0x1181021,
- 0x019ad52,0x1e9be82,0x1f6c082,0x1c83f63,0x1e1d06c,0x13c6b65,
- 0x19d2dfd,0x0fe1e05,0x1022d28,0x1ae21dd,0x1d73495,0x034e367,
- 0x0f2f3f8,0x1fa3694,0x1718cf9,0x0cb763e,0x1c580ee,0x1e0e627,
- 0x094cb97,0x176f60f,0x155539f,0x1579d66,0x11c70f2,0x1b6b528,
- 0x0cc22d2,0x0c5efa2,0x1ddf2e5,0x17aef44,0x01614bd },
- { 0x10ab04d,0x1811876,0x0ba9307,0x00dc410,0x0e347b0,0x162dafd,
- 0x0f18f10,0x06b3e21,0x1de0199,0x029cf37,0x142096c,0x09cecbb,
- 0x16d89bd,0x1de76d0,0x0983fbe,0x1946524,0x15ce62a,0x1c5553a,
- 0x1b20b17,0x0c5f52b,0x0768ed7,0x008c328,0x0679930,0x05c6919,
- 0x16245c9,0x0b42bee,0x1cc7a9b,0x1b7114e,0x1447360,0x095583d,
- 0x1fbbc00,0x02e3ae1,0x1356b94,0x048d85c,0x18a00fe,0x05cd160,
- 0x179c20a,0x0a529d5,0x01ca0e9,0x18f6016,0x0489656 } },
- /* 163 */
- { { 0x1353c25,0x124dd38,0x189390d,0x0227ecf,0x117f27a,0x0f5cf1a,
- 0x0cce870,0x1f2217a,0x078e29b,0x070e02e,0x0fc5765,0x1b2e8e8,
- 0x1084fe7,0x086d16f,0x01d2422,0x077c339,0x1a75367,0x0c1201f,
- 0x0eba86c,0x1ebb683,0x0ead7eb,0x1a920c0,0x13f82b8,0x1ea187f,
- 0x1873fc2,0x06c8e8a,0x19c1987,0x0d0a35a,0x1e8c2c1,0x146cd28,
- 0x06600a5,0x1c02c21,0x1d1a9cd,0x1f52b73,0x1226a29,0x10562a7,
- 0x06e3c49,0x00dbc48,0x0772db5,0x1d3aced,0x0082bb2 },
- { 0x0d6615f,0x077a362,0x0a71860,0x0203730,0x1c629dc,0x1932657,
- 0x0bb003e,0x189bc44,0x010ecc2,0x0a2bf03,0x08b1371,0x133e3dd,
- 0x0c95ce5,0x07ce2d9,0x0cfe9ca,0x021f208,0x062cd63,0x1f701aa,
- 0x18b8894,0x0af8779,0x1e4484c,0x0d4b6c3,0x1b23b0c,0x0a58b4e,
- 0x1e393a4,0x11a985f,0x02811ec,0x0b25628,0x18545ec,0x1f0c600,
- 0x119ef62,0x0b82f18,0x14e0107,0x1802dbc,0x0518b88,0x06908e3,
- 0x022a54f,0x12f11bb,0x0410899,0x08d2039,0x036451a } },
- /* 164 */
- { { 0x1893e71,0x0168c0c,0x02085e0,0x16a7344,0x01765d8,0x01767e5,
- 0x1a8048c,0x13bf8d5,0x1365bf5,0x0a67a8d,0x0caa023,0x1ae41a4,
- 0x0787741,0x0c74021,0x0d0facc,0x073d958,0x12fe747,0x12a9f65,
- 0x0a2c1f2,0x14f3503,0x0b3aaec,0x112b7a5,0x0227fcc,0x143a3ee,
- 0x1d7293f,0x10b2f4a,0x1bd8aa6,0x0c0ad35,0x08ddc22,0x1119550,
- 0x12979dd,0x036f76a,0x1fabec3,0x0ab73c9,0x0559d0f,0x1e91441,
- 0x0b0ebef,0x0e6d897,0x1f3c5d2,0x148d371,0x0705307 },
- { 0x088310b,0x1260272,0x15edea3,0x04a64b9,0x12726e3,0x01f7d60,
- 0x162c126,0x026ba1f,0x002ddb9,0x0b72a96,0x05a171e,0x07eeef7,
- 0x030eeca,0x18af925,0x1d9ba26,0x192f336,0x0d648ef,0x03e139b,
- 0x000871b,0x032d0b5,0x11ea3d6,0x1c50597,0x1f8cf89,0x0edad61,
- 0x09879b6,0x05f4ae3,0x046bd38,0x00e8e63,0x04ee55a,0x1af89b6,
- 0x0e68bea,0x0b3cbe7,0x138b8ff,0x17f3734,0x1690e72,0x003c229,
- 0x0a6ad12,0x0caf61b,0x0abb325,0x1a0afcc,0x080f79b } },
- /* 165 */
- { { 0x0af09b3,0x1a153b0,0x1850f3b,0x1b267bf,0x1c016eb,0x02f5541,
- 0x1c783b6,0x192e419,0x1ceaa3b,0x07af4cf,0x01be5f5,0x13a56e2,
- 0x127216b,0x04b3456,0x1cd30db,0x0ca3ecb,0x0bc5b0c,0x1547dc1,
- 0x0bf6937,0x085e39e,0x059e20f,0x16690fb,0x1acc6ac,0x07a2c31,
- 0x176c7a1,0x1f2dbd3,0x08e198a,0x1888204,0x108e0be,0x0d38656,
- 0x0032097,0x0045803,0x1299079,0x1cffecc,0x1680abb,0x00ec477,
- 0x15c58b5,0x027a79f,0x1fc677a,0x149b049,0x05f5a5d },
- { 0x08311dc,0x192bf3f,0x04d95cd,0x028cd9e,0x1ef94f5,0x0e510d6,
- 0x05916c1,0x06f4e7c,0x002e4ab,0x0754d9e,0x04596ce,0x15930af,
- 0x047760e,0x012580d,0x1f7411f,0x0ab09bf,0x1d13fb9,0x10c46a7,
- 0x15522f6,0x1871704,0x1cacfaa,0x182cf4e,0x069e69b,0x144e01e,
- 0x1720f09,0x1244c1f,0x13ee29f,0x19774aa,0x01fad58,0x0cb423d,
- 0x178e286,0x0b57ad6,0x1856547,0x0b76108,0x14c7cdc,0x16ea227,
- 0x0212907,0x08f3c0a,0x162244e,0x0021b82,0x05319c8 } },
- /* 166 */
- { { 0x161c3af,0x009b735,0x0da08c8,0x1c0f697,0x1d40f2d,0x064bf80,
- 0x1b9fce0,0x074ca3b,0x06a8c31,0x0bc5d38,0x072842a,0x0fac402,
- 0x1b22c58,0x158fa22,0x0ee8862,0x089cc91,0x107e504,0x0c62f57,
- 0x10bf33e,0x13e0548,0x093d554,0x179ec02,0x09591d1,0x1808b22,
- 0x04f6179,0x043a169,0x02af722,0x0c01f43,0x138f8f1,0x10056f6,
- 0x11972e1,0x12475d6,0x0bf9b90,0x02bc552,0x18d4787,0x09ac7fd,
- 0x0bb9ea1,0x04e2d67,0x13fc3cf,0x09be234,0x03d1331 },
- { 0x0513d1e,0x03316da,0x0af7973,0x0baab2a,0x1e78a8c,0x1c36856,
- 0x1e8ff9f,0x18bd146,0x07a04f0,0x1168952,0x1741b32,0x0dc85c4,
- 0x114c669,0x1909b03,0x1851a62,0x1c396a4,0x01b89f6,0x17a6938,
- 0x03bf657,0x1ac2ef0,0x0907aaf,0x0262ddb,0x19b5ceb,0x01b66b5,
- 0x074ac42,0x1d024f4,0x13c9d47,0x02c63bc,0x1a2edd1,0x199b50f,
- 0x136ca7d,0x16ffaf2,0x0406864,0x1c95326,0x074f88b,0x0ce7964,
- 0x0043cc7,0x1482731,0x11ab7ab,0x13f6645,0x067f28a } },
- /* 167 */
- { { 0x0148ab5,0x1d92c65,0x0145f05,0x1f678c0,0x19a1976,0x1946fcd,
- 0x01a6323,0x02fd44c,0x0e8d450,0x1d9663a,0x02908a1,0x06520af,
- 0x1237257,0x0bdf639,0x157b894,0x1778903,0x1cf1d48,0x16ba08f,
- 0x01fd73f,0x02fcd69,0x0e1b462,0x02a0f5c,0x12c01eb,0x0b40191,
- 0x057a6e0,0x14ce20e,0x0f4be7e,0x1f2a9a5,0x141cad1,0x0aeda04,
- 0x074dc2f,0x07052a1,0x087879c,0x052f772,0x154973b,0x1c9826e,
- 0x1d3efb9,0x17bfd27,0x0f6cba3,0x0e837a3,0x05ff091 },
- { 0x19c6632,0x089522b,0x0055e46,0x1f71441,0x1b19a44,0x0b1ce9d,
- 0x1ee114d,0x19de9f2,0x1bc3c9b,0x0bf15e5,0x1990439,0x1e57e33,
- 0x0d122b3,0x09abecd,0x0062768,0x1fecc3e,0x1bb79e5,0x033aab9,
- 0x1cbcf13,0x1cb931d,0x0731444,0x1002688,0x15bd878,0x0ebac6b,
- 0x0366fac,0x19186fd,0x18b2153,0x1f88f90,0x10850b9,0x121f056,
- 0x0cb012b,0x05ee418,0x0e94f64,0x1de4eae,0x19969d4,0x06cfdf5,
- 0x10373a6,0x1e9869d,0x0591b09,0x07452e4,0x0668101 } },
- /* 168 */
- { { 0x04509df,0x0ec89f4,0x0dd84e1,0x1b9e672,0x0978bed,0x11d0a47,
- 0x0974cd0,0x0f25be8,0x1ee8cb5,0x1fd0571,0x1154f10,0x0d3a638,
- 0x08f0153,0x0fdf8ea,0x13c22ef,0x048940b,0x1e69444,0x1d6ffa5,
- 0x0d7768c,0x06bf034,0x0b7c016,0x04f3b7d,0x0217225,0x0e6ef06,
- 0x1fcde16,0x06925eb,0x128953e,0x1b196a5,0x1ec985f,0x0533209,
- 0x131885a,0x0f5204d,0x0db9741,0x0f0dbf9,0x1959438,0x1c72c5d,
- 0x13beffd,0x1051a36,0x0ac7efb,0x05e17bf,0x03b35b7 },
- { 0x15c3749,0x06f4fa9,0x1122ffe,0x1f15bb3,0x03c1f20,0x1c7b319,
- 0x0cdef23,0x09352eb,0x1e8f3ae,0x094f23a,0x1898a09,0x01aa3ab,
- 0x1dc32f1,0x13c3178,0x1034a5d,0x17c6cb5,0x138854c,0x109e3c9,
- 0x0d9f918,0x0009de9,0x0ee148f,0x0872e88,0x1e8de85,0x1051141,
- 0x0778dd2,0x1a6a4ba,0x1b3edcf,0x0d0614c,0x0049529,0x000983c,
- 0x0527d11,0x12ec16d,0x033c709,0x1ae4cc1,0x129496d,0x1906819,
- 0x0771f99,0x117205e,0x11a14fd,0x1d79b2b,0x047d0a1 } },
- /* 169 */
- { { 0x12811f1,0x1a7ffb2,0x000899b,0x06c5de6,0x0aacaa9,0x05d0657,
- 0x1e95543,0x0ced870,0x0007f54,0x1a80a15,0x1c99ce8,0x0054405,
- 0x05c7fd1,0x19ee373,0x0bb95c0,0x0c7b2bb,0x0c3064a,0x1303417,
- 0x18ac947,0x1e17608,0x16e746c,0x12aed49,0x0380c32,0x084cb6a,
- 0x060f243,0x07ae43d,0x0da6d3a,0x0c6f657,0x17770a9,0x1ac63d6,
- 0x099807e,0x1da742b,0x12147f6,0x0f4b08f,0x1578a65,0x0c0b68f,
- 0x03213a1,0x0654d9c,0x0a1732c,0x094932b,0x08f4b61 },
- { 0x14eb3c1,0x0760ca5,0x09c16aa,0x0840647,0x0c549ac,0x1663554,
- 0x04c893d,0x14601a9,0x145f9a5,0x129dcdd,0x1eaeec3,0x0220112,
- 0x10e46ef,0x0bd66be,0x01cf95f,0x16b11fd,0x1e50f7c,0x0be7e67,
- 0x01555f4,0x0a7acb9,0x12e20ea,0x0239447,0x1f767ad,0x1d6d151,
- 0x1edfac0,0x1065596,0x002180e,0x104428e,0x1eb06c5,0x0344807,
- 0x0b1a519,0x04bcb95,0x04cf5bf,0x08d74c0,0x01627f2,0x1db0ab3,
- 0x13c45ea,0x09bc58b,0x06007b6,0x004a499,0x08f942d } },
- /* 170 */
- { { 0x0845808,0x1618147,0x1f147c7,0x156ef57,0x0302bff,0x0cbee3e,
- 0x152e7e3,0x0964d5f,0x03aac59,0x09d41e2,0x165370f,0x17a2ce9,
- 0x1ce3b74,0x0552c88,0x192dcdf,0x059a488,0x173871c,0x131492b,
- 0x0d1103f,0x1e490a7,0x0d7d419,0x19f0295,0x1769a83,0x0d90d81,
- 0x080d684,0x1a13229,0x0be0c93,0x04ad13f,0x0f117aa,0x08f403e,
- 0x0df1d2b,0x11bb93b,0x026dea0,0x1e42eab,0x0dce59b,0x06a4c40,
- 0x13b1eb5,0x16abe1f,0x06b2f82,0x0a52938,0x0383002 },
- { 0x0744723,0x1ad202f,0x120683b,0x0a35c10,0x1b5bcf7,0x00fbb7e,
- 0x16333fb,0x18d57f5,0x1fab37f,0x1d2ec18,0x1b6de3e,0x049191f,
- 0x10be39e,0x16c9f98,0x13eb57e,0x0b8494b,0x11e913d,0x0ba3fed,
- 0x1462dfd,0x148f928,0x0327052,0x163e7da,0x0788235,0x1ca717d,
- 0x1cb9c70,0x08b589a,0x056ec5e,0x0c6a4eb,0x1106c73,0x1c402d9,
- 0x01a8b01,0x1841376,0x0d42a06,0x08256e9,0x11c74f1,0x096a4b6,
- 0x022ce03,0x1a59b44,0x0169727,0x12dd683,0x015f187 } },
- /* 171 */
- { { 0x0ee4684,0x0f50305,0x0f20253,0x0cf9b7b,0x02b21f0,0x09898ca,
- 0x18526c6,0x14d4873,0x181a7db,0x125eea0,0x0ba03fa,0x0e0c785,
- 0x02c6213,0x09411ee,0x02c259c,0x023636b,0x1158326,0x03a21ea,
- 0x0f080e1,0x0df0622,0x12d22e1,0x0b15ecc,0x0338813,0x0327116,
- 0x1bcd6f4,0x063a4ce,0x1474dde,0x125bda3,0x1dae734,0x0ba7e2e,
- 0x166756f,0x13296c4,0x0813d52,0x165346a,0x13d83a1,0x18323b3,
- 0x13e9c2a,0x10bcf57,0x048e158,0x1e73fdc,0x06146f1 },
- { 0x18e2aa6,0x1699f03,0x0996f41,0x0f3bdd2,0x093af7f,0x1207423,
- 0x03e076a,0x0fdaadc,0x09b9a40,0x0fdddc4,0x0654641,0x15b9dbd,
- 0x19dcf44,0x0496dd1,0x1c7e34c,0x0ee96fe,0x1a54231,0x1b3adae,
- 0x17d817a,0x0d44a34,0x1a9e745,0x17c3d1c,0x040c752,0x168e97b,
- 0x1000605,0x148eda1,0x0ad996a,0x1b4bb7e,0x11eeb4b,0x1efab31,
- 0x1617468,0x0c46ef8,0x08149ef,0x085ff81,0x13a5a17,0x1c5c35e,
- 0x02a465d,0x15043ac,0x0014383,0x13c0d7a,0x095543f } },
- /* 172 */
- { { 0x1d7c6ef,0x1e37a42,0x1093df2,0x1ac7637,0x0ad8084,0x065d316,
- 0x13a22fe,0x125bf21,0x0b455c1,0x0725b43,0x1f1bb66,0x11aaee9,
- 0x176146b,0x1d71003,0x188e279,0x04a52e1,0x07961c2,0x0a920e2,
- 0x021397d,0x042a207,0x02737d2,0x110bf14,0x15b4833,0x04ce9f1,
- 0x19f514f,0x0edf188,0x15c3004,0x0a8b20a,0x1b760e8,0x1aecfe7,
- 0x0677ead,0x13d1854,0x146362a,0x0a593ca,0x1e2929f,0x1896da7,
- 0x0e5d698,0x0438827,0x05bfe97,0x0f05745,0x06db434 },
- { 0x03f0d95,0x03249ae,0x0254192,0x049ce91,0x0917db8,0x179f224,
- 0x17d89ac,0x097ee7f,0x02b7f57,0x1076e2a,0x0c9c8f1,0x13455ee,
- 0x0cbe1c0,0x1e5688a,0x0d19a75,0x15ff2fa,0x00a321a,0x04b2330,
- 0x1433587,0x1c5775d,0x150eb94,0x00ef623,0x019b869,0x1513eb1,
- 0x0990db1,0x149d0df,0x13c9d65,0x073c9ad,0x00dddfc,0x1bc0607,
- 0x104473e,0x1b33914,0x0afcd7f,0x0182878,0x0b6db87,0x099d7ff,
- 0x16d2c6e,0x1cc0d84,0x1ea513c,0x1ce55c4,0x007a791 } },
- /* 173 */
- { { 0x09f0300,0x148238f,0x04139c3,0x13799bf,0x00253ad,0x02983c7,
- 0x0a277fc,0x0c4a380,0x0ae8934,0x0f78497,0x11a117c,0x1235490,
- 0x142c90a,0x18ed6a5,0x11bb683,0x0cf6432,0x0f333df,0x0783b28,
- 0x0c56805,0x1311b61,0x10f9c6e,0x175aa17,0x1cb8319,0x1806f1e,
- 0x16311e0,0x086aea5,0x0aba1a5,0x09175b5,0x1f1c8f5,0x11c6d9a,
- 0x151a005,0x1289a35,0x09e3216,0x18e9909,0x0b21011,0x1d32a37,
- 0x05e94dd,0x0614f9c,0x1b2b00f,0x05c8a87,0x06d6acc },
- { 0x1b2d299,0x0cf4aab,0x0737ae6,0x17c7ae4,0x1a2bcd9,0x065a221,
- 0x0e13eed,0x1545cc0,0x1dc060f,0x10bbb84,0x01f37ab,0x0da7193,
- 0x0d74f0e,0x083b7df,0x08df3e0,0x1f7ff34,0x1137983,0x034d78a,
- 0x08fe561,0x1ef43a6,0x03986c3,0x07b6db2,0x0f8872b,0x0e07b24,
- 0x0134f96,0x1bb3e6c,0x1ee0e4f,0x0eab131,0x0252220,0x145e174,
- 0x1f06d6c,0x0f24954,0x18799c1,0x13d455b,0x03ca050,0x043b66f,
- 0x1f28949,0x1228d8f,0x11bbb56,0x0247a78,0x079d182 } },
- /* 174 */
- { { 0x09d5589,0x16ffc88,0x126468f,0x0805368,0x1ed52eb,0x1aa56fe,
- 0x074c2d2,0x0ce27d7,0x1a27bff,0x1c90a60,0x03d1813,0x1dcecfe,
- 0x084c817,0x01d2871,0x17e360f,0x0c46f75,0x1c99402,0x0e2ee01,
- 0x19991f0,0x12b0372,0x07f35f2,0x04c5034,0x042da82,0x0c68a2e,
- 0x07cec31,0x0c4573c,0x158b9d4,0x0003b74,0x02c3fb2,0x10d3a2f,
- 0x0555753,0x16cfa67,0x1cacdeb,0x021775f,0x1e72f1a,0x1743415,
- 0x1e88580,0x0c85159,0x1372141,0x1234f09,0x0731044 },
- { 0x048d676,0x1166f93,0x0ac5132,0x0a9e362,0x1a85eca,0x0070f5c,
- 0x0b250a6,0x112373b,0x11ac8aa,0x1869b84,0x078657c,0x156f8e3,
- 0x1773072,0x17b81bc,0x1463208,0x0cfed74,0x014ac00,0x1d60487,
- 0x1734a49,0x19f8e11,0x1a630e6,0x1110f3e,0x13d6227,0x0e38f8c,
- 0x0a40b83,0x064da55,0x0a3de1e,0x1f3b57c,0x0caf3f1,0x16b5ec2,
- 0x04bde2b,0x13c1c3b,0x039dd07,0x0126e1e,0x17ec489,0x12d017c,
- 0x0bdc009,0x0d90a68,0x1153fd0,0x192a301,0x06a8f8f } },
- /* 175 */
- { { 0x1235132,0x0f6b1a9,0x022d8a8,0x02b3b75,0x1db233f,0x0f7eec0,
- 0x15148a4,0x15d0ac4,0x1b25111,0x1a8294b,0x006f631,0x15f23ae,
- 0x1db5921,0x0bba7a2,0x14175ca,0x0e7ff69,0x05ef18e,0x0371ea6,
- 0x066cc0e,0x1b30bf1,0x1558897,0x1de44d8,0x02a70c3,0x0263039,
- 0x0d1a34d,0x1071e49,0x08888cc,0x125d0d7,0x0eed022,0x0a6100e,
- 0x07f3c91,0x0b07e61,0x1a45f74,0x1e8d193,0x00b2b43,0x10eb4c2,
- 0x0b9c753,0x07a2e96,0x0ff5f6d,0x183b650,0x04752d8 },
- { 0x1dff4d5,0x0b6756a,0x1fd1453,0x168b504,0x14cd5fd,0x0389af3,
- 0x098313f,0x11c20e1,0x01be577,0x1605dbc,0x11ac237,0x059ab1b,
- 0x16271e1,0x0a5e124,0x194226d,0x131596e,0x0636190,0x136ef96,
- 0x1d4a20c,0x1d758cc,0x0af1fd6,0x12e1284,0x1aa8b40,0x19f83e1,
- 0x0cda84d,0x1f009e1,0x0115442,0x18f06d5,0x0868011,0x14468d4,
- 0x114e411,0x15f5e4a,0x03132aa,0x05446b2,0x15dca0c,0x0092d0a,
- 0x0744b47,0x0a48e54,0x015495a,0x1e6ebf7,0x03a6518 } },
- /* 176 */
- { { 0x04042a0,0x076a811,0x079aaaa,0x0048a5e,0x0cb4e3b,0x0108ec3,
- 0x17d31da,0x07fdb94,0x1ef4d5d,0x107f1fc,0x151b953,0x0548a45,
- 0x1533a8e,0x18a233b,0x063887f,0x1a036b3,0x10ef592,0x08a4b62,
- 0x0e99dce,0x00985f0,0x1f00691,0x05a395d,0x0a19c2f,0x062ef7a,
- 0x083b250,0x1514754,0x15f49c4,0x0bb1780,0x19c994c,0x098bda1,
- 0x1fd07be,0x1b9b435,0x001d3a8,0x07b7dcc,0x1ad5c0e,0x01ad0dd,
- 0x1bfbf82,0x062e687,0x1605fa0,0x0c7db84,0x0540ac3 },
- { 0x07f43df,0x0b4d4ff,0x19329c6,0x1058373,0x0665380,0x0e148bf,
- 0x1df6216,0x0095b2c,0x196aa44,0x1654aa2,0x0a5f6ae,0x0abffe2,
- 0x1e0e9d8,0x115753e,0x18625ec,0x07f1c3e,0x0fd36f1,0x1cb76e6,
- 0x1b88037,0x1a60e02,0x08a4627,0x1b64c4c,0x1ca7c1c,0x1e463a4,
- 0x05e6097,0x1a94af1,0x0fd8121,0x1efe443,0x19b299a,0x1304a00,
- 0x16759a0,0x04d6963,0x199de09,0x0ebd18e,0x1d986b3,0x13d88f9,
- 0x0ebe15e,0x14f959b,0x05d3d37,0x1d9f42d,0x017db32 } },
- /* 177 */
- { { 0x0f40599,0x1b48cb6,0x03a9d7b,0x1601804,0x1ea10df,0x157b3cb,
- 0x0b9eff2,0x0f07b4b,0x188ddd6,0x0b31e51,0x0f3f343,0x11fc4ab,
- 0x1e5a21f,0x11a25e3,0x10fd4e3,0x00c65d3,0x11d548e,0x09afb15,
- 0x0f1b993,0x1e484a8,0x1627654,0x13134c9,0x11d569e,0x1e82649,
- 0x1c5f7b0,0x079d1db,0x04e8860,0x0ad2fef,0x01675b0,0x0fd88f4,
- 0x1d5b3e1,0x1ca6851,0x13cdb35,0x1458136,0x16454b4,0x11c7542,
- 0x17a3fb7,0x03812af,0x11176a1,0x0374328,0x0460bd0 },
- { 0x04d8077,0x06e11e1,0x14b2f0d,0x0098e41,0x02f4b58,0x0e8fff4,
- 0x0a445bd,0x1c5453b,0x092783c,0x1c57a90,0x012bcd5,0x03576b2,
- 0x10e29f5,0x1bd508c,0x115c35f,0x1bbe08d,0x1ba571b,0x0a52917,
- 0x1a26ed4,0x1c540d5,0x044dbf4,0x062cf9a,0x1e66cd7,0x1984aae,
- 0x0836726,0x0bbe181,0x16bf3b0,0x0949d30,0x16cbd09,0x1ee5be1,
- 0x1deb6bd,0x0eba720,0x131b787,0x1125e76,0x013cb4f,0x16a5ad2,
- 0x1f95421,0x0513348,0x01e3717,0x0782e69,0x07d342c } },
- /* 178 */
- { { 0x1fd127f,0x1960508,0x117b973,0x10233c9,0x06d36bb,0x1ab561b,
- 0x0c949bb,0x0eac435,0x0e54306,0x067f577,0x1a5864c,0x0fa5587,
- 0x112ede2,0x1c7e733,0x04d44eb,0x0987ac8,0x01b075f,0x030ace3,
- 0x041a766,0x0fdfd2b,0x0ea9d44,0x14753b5,0x0be35bd,0x0b7a2c9,
- 0x1c61b0f,0x1cc562e,0x187a22e,0x175688d,0x092320d,0x058b0dd,
- 0x195862e,0x0f13130,0x0eafb3c,0x1bf4150,0x130b022,0x1618f57,
- 0x00d160b,0x184db71,0x18e9c43,0x14d1c98,0x05be0af },
- { 0x1bbf49c,0x1b69c0d,0x0ffa0aa,0x13180e0,0x1e09ce4,0x07a1319,
- 0x02d7784,0x065d94b,0x1da5a45,0x0e632c0,0x03dedf6,0x10edec3,
- 0x0707e18,0x1287bff,0x066978c,0x10d7c08,0x090de6b,0x0dd8d4f,
- 0x1cd645a,0x14fbd66,0x1b2c584,0x04a8a4e,0x0e3acd2,0x1d75770,
- 0x06a33b0,0x1490a2a,0x030be22,0x00cfe16,0x0db0190,0x0ff3851,
- 0x0faf783,0x18c7cde,0x051b06c,0x037d6dd,0x1ee7a48,0x1543224,
- 0x1e80dc0,0x15af43f,0x0c2bb93,0x1eba9bc,0x01e6fcc } },
- /* 179 */
- { { 0x08ac924,0x0ffb355,0x0fa2d5f,0x0385316,0x06e9ad3,0x1d84060,
- 0x18ca597,0x07fa281,0x11d95c9,0x0d5908e,0x0032a9f,0x1085143,
- 0x096d68d,0x1106f6b,0x04a5022,0x08c3e35,0x15338df,0x1540a8b,
- 0x03aba4c,0x0c095cc,0x0c0bff5,0x04bed72,0x0406e79,0x04c5d13,
- 0x1a97fde,0x0c1a2b9,0x13c4212,0x1ad3b34,0x124f1de,0x0117b23,
- 0x17e3fe8,0x1d50b42,0x1f1c2e4,0x09bca6a,0x13a4051,0x1a98c4d,
- 0x1f0907d,0x02066b5,0x0a0de01,0x0c2bbb5,0x04522d4 },
- { 0x1fbe7c5,0x0f83cf5,0x111a225,0x1b09de6,0x10ea1de,0x10d5cb1,
- 0x07adb52,0x0d0e2d5,0x050a30c,0x1252e91,0x0eeea86,0x0638008,
- 0x155a166,0x080872f,0x041d409,0x00aad7a,0x09d3d8c,0x0dfff1f,
- 0x1ddc906,0x0616300,0x029731b,0x18425c1,0x043fdfb,0x0343187,
- 0x17d75f2,0x07c0061,0x15596ee,0x11a14c6,0x03bceb1,0x0d1522f,
- 0x036eb07,0x047e161,0x038e90c,0x02d628e,0x0a897ef,0x0de3743,
- 0x1da71fc,0x0a92b5e,0x102e827,0x152dafc,0x0346501 } },
- /* 180 */
- { { 0x02b0f1d,0x1224666,0x1c0e1af,0x1358986,0x03eb45c,0x04b5dff,
- 0x1d9767f,0x1b4a70f,0x15ae27f,0x179e274,0x0602273,0x0eec378,
- 0x01a008f,0x11650c5,0x1d28210,0x066e3e6,0x04253b7,0x0774414,
- 0x13024d5,0x1f8db0f,0x0d6bcb6,0x0db0a4b,0x01227b0,0x1c64b89,
- 0x029b949,0x0b35496,0x09ef7b0,0x0b8d94a,0x0a28131,0x07776e7,
- 0x13e5511,0x074422a,0x0683eb3,0x030e79a,0x1e634e4,0x171f64d,
- 0x06c940b,0x1845540,0x125b70e,0x19fcaa9,0x07c1d42 },
- { 0x0110aa7,0x1381fee,0x0de1d9b,0x0fe6c5c,0x0b7b79d,0x16e51e5,
- 0x11d756a,0x0e7a4b3,0x160be33,0x137653c,0x13a3fca,0x14960d8,
- 0x1ff4744,0x19db82d,0x010b33b,0x096a765,0x1aaae30,0x00d1d7a,
- 0x0cb4c6e,0x1f44023,0x08d97bb,0x1d25f74,0x112e9ba,0x0b97073,
- 0x165ce56,0x074169a,0x1b6bdfb,0x09010d2,0x1597452,0x0673f34,
- 0x0dcb1f3,0x1d29f30,0x1d6eb3c,0x0d19377,0x133ce04,0x0c14676,
- 0x1ffa93a,0x101fa1f,0x0764050,0x050e786,0x0031e98 } },
- /* 181 */
- { { 0x05a17ff,0x1f67e3b,0x09953fb,0x11a2521,0x009f388,0x06d01c5,
- 0x1711a4e,0x08d7e4c,0x1a169ad,0x1db0a2e,0x18bfa12,0x0428474,
- 0x0533cf8,0x15e4305,0x0b7d5c6,0x07188ac,0x0fa815c,0x0df9548,
- 0x1fb6a1d,0x143adc2,0x05e145b,0x0d4a37d,0x1e67620,0x01eb476,
- 0x1e784b9,0x095360d,0x12c43fd,0x122146f,0x14fd360,0x0ff2527,
- 0x0830e30,0x11c5a77,0x1180fc5,0x130c3e1,0x0142c5e,0x047c5fe,
- 0x143a35c,0x0002cdc,0x11470e8,0x08b4519,0x0494d36 },
- { 0x1a021f8,0x0135b25,0x0db0e61,0x06f2dbd,0x114c908,0x1b63b16,
- 0x14e55f8,0x02cda5c,0x0751cf2,0x1aab765,0x0928663,0x1c00336,
- 0x0edaca1,0x0590615,0x021f691,0x14e668f,0x0cdff41,0x1c9f6a6,
- 0x11f0335,0x02f888b,0x10098d7,0x0548dfb,0x131218d,0x0b3775f,
- 0x146f93b,0x18ad0f8,0x0795893,0x1a71767,0x1f8443d,0x0d56981,
- 0x1f25b50,0x097e209,0x1670f03,0x032c135,0x07b4a5c,0x0a0a07f,
- 0x134200f,0x070fa3d,0x11bcdda,0x0bd77a9,0x03cfdcc } },
- /* 182 */
- { { 0x123e13d,0x015435a,0x02814db,0x105241a,0x1014a45,0x0b894b0,
- 0x0d1e39d,0x1d47aa5,0x07eb51b,0x0ba3033,0x03a4641,0x10c30f6,
- 0x08709f7,0x1434447,0x02bb621,0x1f9a805,0x1d7d94a,0x1bcd404,
- 0x084a6bc,0x0c065fc,0x008250c,0x194c1e2,0x1d792f9,0x1677d1c,
- 0x11bbb7a,0x1944c19,0x12d8631,0x0634065,0x19c4a4d,0x02d09fa,
- 0x188db76,0x1da9ec3,0x1ece345,0x18b8aed,0x1334795,0x0f74f55,
- 0x04a1ebd,0x062c6d3,0x1ba844e,0x01e7a35,0x089296d },
- { 0x0a82c97,0x09447e6,0x0372c59,0x1a284fd,0x06c6c12,0x1f6ed49,
- 0x13c1d30,0x17ccd52,0x0eaa01e,0x030070f,0x17a1b65,0x1cf861e,
- 0x1114abc,0x05a2b51,0x075c083,0x08584e8,0x013279f,0x05582d5,
- 0x108e11a,0x0c1f5fa,0x19e670b,0x0098c69,0x0863bfb,0x0416631,
- 0x1f1ac89,0x101f583,0x0360e67,0x03c7975,0x01a3010,0x09971e4,
- 0x16197e2,0x1998ccf,0x08bca7d,0x0303e57,0x19e689a,0x199dc35,
- 0x0ac0a12,0x0173266,0x13150c6,0x1ee5634,0x09233a2 } },
- /* 183 */
- { { 0x0cbee17,0x146fb05,0x1371c5f,0x04b849f,0x0f0959c,0x07fe580,
- 0x0621f95,0x0d68de1,0x0d28511,0x0c9ef65,0x07e946e,0x09f1774,
- 0x1e0bfaa,0x08790c1,0x04927bf,0x0eef339,0x1589684,0x0fc9e59,
- 0x0c8b508,0x17f6fe4,0x1009284,0x0d6a157,0x10331c2,0x163ac2a,
- 0x122749b,0x035634f,0x09c5f0f,0x0dea167,0x1c5eeb7,0x14c2ddc,
- 0x17e2c87,0x148f076,0x0fb19ae,0x0e1f3ac,0x0e6d4b8,0x100990d,
- 0x12971ac,0x12c8497,0x00a46b2,0x0d243db,0x02bb26a },
- { 0x1f81416,0x1a21a8a,0x0ed2628,0x0f55feb,0x086e72e,0x0b930e0,
- 0x193780c,0x1fc7a3e,0x05c0a1c,0x0e03c36,0x00d004c,0x09b166d,
- 0x0d542ea,0x0d1cda6,0x1dc9ce8,0x04fe25e,0x0e1cbef,0x00a7f3f,
- 0x1aec9f7,0x1f813c2,0x1dc7ee7,0x0ba0872,0x1037330,0x08767bb,
- 0x0674219,0x0dbd1a3,0x00fcc70,0x052696c,0x0c10709,0x0f6ce11,
- 0x1ac061b,0x0f33f2c,0x17ee8ba,0x18449d1,0x12d0926,0x1c1e77f,
- 0x0e92d4d,0x130a239,0x1ac22eb,0x1f1c32d,0x0937cb3 } },
- /* 184 */
- { { 0x0fbfdce,0x073be0b,0x13015f0,0x13931a9,0x0a034cc,0x0b96907,
- 0x1b5c909,0x079cec0,0x00019a8,0x030daae,0x05c58a6,0x1007e2b,
- 0x1b80ba2,0x02d07eb,0x1050774,0x155441e,0x13b4b0d,0x04432c8,
- 0x08e123b,0x10ae8d5,0x05d2e66,0x0d1f024,0x05b4569,0x0d20bba,
- 0x0c7743b,0x15d40e0,0x16062bc,0x1d8636f,0x174b78c,0x18ca695,
- 0x0a20363,0x0a87c5e,0x0659db2,0x03e0e65,0x09f67ec,0x0063707,
- 0x1f1048c,0x09bfee0,0x1a84619,0x00ef0b0,0x04d57bb },
- { 0x1b396b6,0x1bb4529,0x16b2f12,0x09276a3,0x1c8b24c,0x0570d9d,
- 0x047ae8c,0x18a67ca,0x1945147,0x09ddeca,0x1f8f3a2,0x00622f3,
- 0x146cc86,0x1fc905e,0x0c2859c,0x0c2c069,0x0eb6b25,0x1d99489,
- 0x145a360,0x1345493,0x1128bc6,0x1d7786e,0x0d25279,0x04d33c3,
- 0x1419a87,0x1b59309,0x1efc84d,0x0d8b08e,0x1971470,0x0c84d27,
- 0x17f956c,0x0f736e8,0x1d6eb75,0x19e42b1,0x0ca4237,0x076a6cb,
- 0x15fcfae,0x12bf21a,0x0aaa038,0x0312f3e,0x01067c1 } },
- /* 185 */
- { { 0x0bf8883,0x0a84219,0x199f211,0x14dfa0c,0x0755286,0x0119aea,
- 0x03e3ddf,0x129ae16,0x02f4a2c,0x1c7306d,0x02b3d59,0x1159a23,
- 0x19a468d,0x1fadc86,0x04e0c2e,0x122099d,0x074ed4e,0x075258e,
- 0x1dddba9,0x0e62da4,0x0b12ac6,0x0e1b0dd,0x0e62b5d,0x02448a3,
- 0x1d48299,0x1d76191,0x014c290,0x0c88044,0x12d5a52,0x0997194,
- 0x0f0e911,0x0bfd9e3,0x148694b,0x1dc5c6d,0x05bb199,0x1dc9c0a,
- 0x04306ad,0x152cafd,0x05c96ce,0x123e69d,0x07e4f70 },
- { 0x1f70919,0x00b74db,0x0fd4fce,0x1a2d600,0x165216e,0x064cf2b,
- 0x13fd1de,0x0208d8d,0x030a518,0x152d5f4,0x1ca36f9,0x13cc8bc,
- 0x16ef6f4,0x056677e,0x175cfab,0x1e7eedf,0x06f8c37,0x1f61ca7,
- 0x1901ff0,0x0410056,0x1cbd733,0x1d4b312,0x0623a3d,0x157f601,
- 0x123637c,0x0cd4194,0x1d01fcd,0x0b1753b,0x1fae502,0x1772e65,
- 0x04ffc06,0x1fc4a30,0x1eaeace,0x0e5d0fd,0x05860fc,0x0b38d3e,
- 0x1eadcdb,0x162c56c,0x1a2f544,0x1a8d999,0x02ae49c } },
- /* 186 */
- { { 0x00849f2,0x0d871e2,0x063048e,0x1b48821,0x1136a4c,0x03fb24a,
- 0x16a6795,0x18cc2a6,0x07a9bba,0x1725ee2,0x11ebda4,0x0c8ca6a,
- 0x0a195a1,0x05a3d3a,0x1b2cc66,0x145650b,0x1fc9de6,0x093c2a9,
- 0x18ae94b,0x1807141,0x1a93471,0x041ade5,0x04ae86e,0x063d944,
- 0x150da6f,0x1636a5f,0x1a00acc,0x028dc7e,0x04c8c4d,0x00989e3,
- 0x05c3270,0x1dda425,0x130f12d,0x02987d6,0x1fee71a,0x0336eb7,
- 0x0918de5,0x00569f4,0x1c6dc8f,0x0a54e6e,0x0180e9d },
- { 0x1ab77b0,0x12a1794,0x18a30c5,0x19ef5dc,0x1d411d9,0x1e17a06,
- 0x01a14d4,0x19e0898,0x04b0ae4,0x1c6e3f2,0x1099bd8,0x030b2bf,
- 0x1da0924,0x1e97f5b,0x07699c7,0x12f30c7,0x0d55ea3,0x12b42c7,
- 0x03ce0ca,0x129e62b,0x18317a6,0x03698b6,0x0a508cf,0x146b4f7,
- 0x0cb2630,0x09d97e5,0x17c7fdc,0x1df1efb,0x0ee2f3f,0x0292acf,
- 0x12a2e6d,0x02ada0c,0x1b4f91b,0x07e7e68,0x1b08bd7,0x022ef0c,
- 0x1777eb4,0x1e12b31,0x016d04a,0x079b157,0x021ca6f } },
- /* 187 */
- { { 0x1e66635,0x11589d1,0x1abc385,0x16553ee,0x1ef20a2,0x0d99ab0,
- 0x0e8c11b,0x11b568e,0x17802bb,0x0205ebb,0x06d1302,0x1ebd4d3,
- 0x115b6ba,0x0d9103f,0x1846400,0x0020b8d,0x0a9790b,0x072ef0b,
- 0x0d9fc01,0x025e2bb,0x1d2522b,0x02c5012,0x0617eb5,0x0142284,
- 0x16953df,0x0605e67,0x0fd140d,0x1884253,0x077bff4,0x02000e1,
- 0x0603dd0,0x050153c,0x0440b4c,0x1515a37,0x03d610a,0x1eecfbd,
- 0x05e8d94,0x11055c0,0x1d8d4f7,0x0b24044,0x05aff58 },
- { 0x0458e40,0x1669054,0x0af6016,0x10292e6,0x1a5557d,0x0e5396a,
- 0x104c57c,0x0478e0e,0x0952b53,0x197134e,0x13eb7df,0x0aacc92,
- 0x065c592,0x0d3e933,0x0edeb34,0x050ca2a,0x03d86fe,0x1d36f83,
- 0x1f54eda,0x03b626a,0x0d011e9,0x04f49f5,0x04656ee,0x0c77fcd,
- 0x1e1af29,0x0431eb8,0x0a209e2,0x1565738,0x059b6ff,0x13491dc,
- 0x145de0d,0x1ee053b,0x0695174,0x022b0b7,0x01d9ee6,0x138f30f,
- 0x1907d84,0x1da78ea,0x0a5dd93,0x03911b1,0x03eab7e } },
- /* 188 */
- { { 0x0e5718b,0x14a5b29,0x07a71ce,0x09e99dc,0x03aefa5,0x1f76f57,
- 0x0798d54,0x034ca9d,0x15f3aca,0x12a0f0d,0x00cc5bc,0x09121a1,
- 0x0ed7129,0x1dbfca8,0x196bd8f,0x07c94f2,0x00dc74e,0x06c7e4f,
- 0x0bde7af,0x1c91a5d,0x07e6b4e,0x1545bbc,0x09162a1,0x199d5e1,
- 0x1621ff7,0x006ec63,0x1f7d9e6,0x0451ddf,0x1067278,0x03a17c8,
- 0x0a48435,0x160fc6c,0x1f63501,0x0f14ec8,0x0719e5c,0x0a882ec,
- 0x03a3b8a,0x06632f8,0x0551303,0x09e71c1,0x03491da },
- { 0x1062eae,0x1682365,0x1db59c1,0x0aba10e,0x0e7db73,0x118ae97,
- 0x00148a4,0x1b701bd,0x0c402bb,0x03c2b31,0x14ccdd0,0x04b84dd,
- 0x135f935,0x1eab476,0x1a85359,0x1163cd9,0x1896688,0x0c8b508,
- 0x171c59d,0x1aa40ab,0x1df20fb,0x1bf22ba,0x00cf441,0x012466b,
- 0x1100aec,0x1c4a749,0x05b3614,0x1f3c3a0,0x0263682,0x1b92a19,
- 0x15fbaf4,0x037499f,0x01d172b,0x02c1c20,0x0e755d3,0x1c6efb5,
- 0x00d517d,0x1534ac4,0x16862ba,0x1fad5a2,0x00c843d } },
- /* 189 */
- { { 0x1373300,0x008ffe4,0x0c01156,0x1533fb8,0x1c39332,0x1e5b2a8,
- 0x0e070d4,0x04fc337,0x096a83d,0x1a5c925,0x18fc69d,0x1f9765d,
- 0x07cbfc8,0x0086ab6,0x09e3b10,0x15ef35e,0x02fe0ab,0x1b7ef34,
- 0x0ce6baf,0x0da0e4e,0x1db6756,0x0eb8902,0x0f4d6b5,0x0a393a1,
- 0x1e69470,0x13e5add,0x034e8c1,0x0efb690,0x0d75305,0x1faa2b9,
- 0x0f4b1c3,0x1c0db0a,0x0615aec,0x1fdaef4,0x132c16a,0x0ee3333,
- 0x0a0a8ed,0x17e4b5f,0x17da7bb,0x13a6bed,0x02dcc46 },
- { 0x05f0e77,0x1668363,0x052b329,0x017ae36,0x1dcc798,0x09e6006,
- 0x07e2cf2,0x0af6c44,0x1ae8cbf,0x0fe6ad9,0x0398ff7,0x0e7eedf,
- 0x17bc929,0x0370995,0x01228d0,0x193c5d3,0x003d51e,0x12662cd,
- 0x08cc206,0x1a65767,0x066b9c9,0x0940742,0x0004841,0x17ce52a,
- 0x0032a1b,0x0246158,0x08924e1,0x17f8cae,0x1ba0ffd,0x10675b5,
- 0x00ba5ca,0x1815290,0x00c0a4f,0x0c5e3fb,0x0731667,0x11ec588,
- 0x112da0b,0x064b771,0x1e7f208,0x1b79b7b,0x05a1a65 } },
- /* 190 */
- { { 0x0485684,0x1348d21,0x0326fee,0x125388e,0x013116b,0x15028cb,
- 0x065c798,0x1b56960,0x05ff499,0x1922d53,0x0e3bffc,0x0fe94a4,
- 0x15c2ef8,0x064eaa8,0x1b71aeb,0x1595982,0x07e2dbd,0x1ad3f91,
- 0x06eebb2,0x1b55895,0x18858de,0x16973e4,0x1fcc229,0x112ab27,
- 0x12fc2e6,0x108a637,0x145df81,0x0cabe50,0x0b1bee3,0x0683180,
- 0x15298fa,0x02782f6,0x0d0ce79,0x1a1315f,0x18d7125,0x0f94957,
- 0x1c4e403,0x1a250bd,0x1ef67d2,0x133dfcb,0x05ae950 },
- { 0x04f7455,0x12f73c0,0x1a0848b,0x0e440cc,0x141a499,0x0af1999,
- 0x130c5de,0x1db2fa4,0x0e48efc,0x17a091e,0x0f08704,0x1b2433f,
- 0x0ee8738,0x0331d1d,0x0ef7184,0x14db776,0x0c28593,0x09b01ec,
- 0x0f06b1d,0x044fe5c,0x0519926,0x002f557,0x1faa4ab,0x0d02559,
- 0x16f0bfd,0x16e2dac,0x13f0aa0,0x19cfd08,0x122b273,0x040d31a,
- 0x054e101,0x0a50cf1,0x16088b1,0x0434441,0x1f30996,0x1843ff6,
- 0x0f4a7ca,0x1198b09,0x14a6032,0x0fd47db,0x0411066 } },
- /* 191 */
- { { 0x0d04b63,0x181abe1,0x0862060,0x1be9253,0x1fc5a34,0x08caef9,
- 0x1db688b,0x0e78e77,0x1cb4324,0x06f97c4,0x1fc4e05,0x1cb9d32,
- 0x14345af,0x05cb027,0x18fd7e6,0x015cbb1,0x0e950c1,0x1d6bca1,
- 0x1b497fc,0x1aa88fd,0x00cccef,0x0f0739e,0x0fda394,0x0a9f499,
- 0x0d591ab,0x0462d8d,0x144ad87,0x1778220,0x0bf7608,0x1489dad,
- 0x126ee4c,0x003cf2c,0x11231be,0x065f3ed,0x1a44103,0x13a1507,
- 0x10a96db,0x0f2137c,0x047a8f7,0x08a69be,0x01cceb6 },
- { 0x06d0f55,0x0862786,0x1274b48,0x1738ce7,0x0cadf61,0x071fddb,
- 0x06466a7,0x1c9baff,0x093b063,0x1afa4a6,0x0a4ef84,0x167828b,
- 0x1c580bd,0x07a977b,0x01c8cc8,0x176d49b,0x0e88814,0x13a6c3b,
- 0x1ea5f7b,0x1ee4758,0x18334f6,0x181f1e6,0x1f78ae3,0x0e404e0,
- 0x0f082ae,0x03730b1,0x1377e92,0x111d85a,0x1a17c6e,0x042cc69,
- 0x06b6597,0x073002e,0x0e59e54,0x1b59131,0x0176efb,0x06156c5,
- 0x0d48b20,0x1a28caa,0x17a8cf3,0x0669d44,0x01f1752 } },
- /* 192 */
- { { 0x067ea91,0x13b2d9a,0x1116022,0x1dfa5b3,0x1f4632e,0x195e379,
- 0x171b673,0x15cf6eb,0x0359813,0x1e46920,0x12f637b,0x0413c89,
- 0x0223ecb,0x10a92b1,0x0e8438c,0x1c334b3,0x1343f1e,0x1fd0a6c,
- 0x0c3123d,0x0f8437f,0x1437df9,0x0875186,0x11398a2,0x028eb85,
- 0x0e2a465,0x152d943,0x104999c,0x123e03c,0x0ab3b82,0x0d2e18d,
- 0x1b271bf,0x1c2fa45,0x1277a5a,0x185d6db,0x160e453,0x037b11d,
- 0x0a2392e,0x182e8db,0x0f0af42,0x120cb12,0x04cb8af },
- { 0x14b1953,0x0102bdd,0x1bba8ac,0x09eb2fe,0x0ce08b4,0x1209642,
- 0x1766d79,0x0330a9e,0x1b3cd49,0x0899316,0x0aed746,0x05c8dc8,
- 0x0090276,0x0bc73fb,0x157239b,0x182d906,0x02438b6,0x0477d54,
- 0x1543d86,0x0e6f21c,0x178ed01,0x1172beb,0x0462bd1,0x0b68e28,
- 0x0d5e871,0x07cd0b5,0x0d077a9,0x000b2d8,0x0ca6109,0x1e19140,
- 0x084aa55,0x06e98cb,0x1aee800,0x0020a17,0x049d402,0x03b620a,
- 0x1f080fa,0x0edc98f,0x1e3f230,0x04baf30,0x0486a5c } },
- /* 193 */
- { { 0x01b4f36,0x0f109ca,0x13e4148,0x09f0076,0x1aacfb1,0x12a5d45,
- 0x188b94a,0x0d9fbe3,0x08fe479,0x07d5ddd,0x0eb2dab,0x11b6b1b,
- 0x11ae078,0x00cefd2,0x0635cdb,0x02dddbf,0x06a35a7,0x18aae14,
- 0x1219186,0x1a8ced3,0x0a5ebe7,0x07b1d32,0x142d8e0,0x0c124c4,
- 0x019149f,0x0d98a5a,0x028b7f1,0x12334fa,0x1466ac0,0x0d2ae77,
- 0x1b31153,0x0d30d55,0x1fa4a24,0x04e76c9,0x05c5c69,0x1aa1216,
- 0x01fa75a,0x178eb66,0x1015180,0x112f1c9,0x05d269f },
- { 0x0920419,0x001860a,0x1ce4e9d,0x11212d0,0x0845d86,0x1b87d30,
- 0x05313ba,0x1970373,0x1d9fc5b,0x1e55036,0x1e3cb6a,0x084feb1,
- 0x0a06539,0x18ee295,0x1217d9e,0x037546b,0x1722c91,0x02d3ec6,
- 0x1b0b60d,0x0200b95,0x1347404,0x023d472,0x0d61a29,0x1ca2587,
- 0x0180b8d,0x0758277,0x148445a,0x1b54cdc,0x17cd8a4,0x0ed5918,
- 0x1db02f5,0x0c22c9b,0x1d4185d,0x16be4d0,0x089876e,0x0759db9,
- 0x09b0268,0x125ad60,0x1543c3f,0x0b44db2,0x08ac999 } },
- /* 194 */
- { { 0x040a39d,0x06e4d93,0x07e6cb2,0x11dbc19,0x01ff0b3,0x165d051,
- 0x1a6f687,0x02ee9e8,0x1080d04,0x1481666,0x0518122,0x1465e93,
- 0x15e956f,0x0bbb558,0x03e173e,0x1e92469,0x0ee0066,0x1e10fe3,
- 0x1bbbcd9,0x03d7fdf,0x05ed35b,0x0e2309f,0x1e01160,0x0d740e2,
- 0x1e8e6ea,0x1f6e5ef,0x0a5435c,0x1bf9546,0x048889d,0x1c9b0ed,
- 0x14725d1,0x1b75ff7,0x0867c8c,0x17573e7,0x0c7c72e,0x11a4ce8,
- 0x097912c,0x12a822c,0x07935a0,0x1b9afd4,0x00c7c1d },
- { 0x0e963a7,0x118660e,0x0b794ea,0x19898bf,0x1352f64,0x1457dfb,
- 0x08be0a0,0x00e5735,0x0ca2121,0x0139e2b,0x15db719,0x0ca90b4,
- 0x1caadd7,0x085ae3b,0x05ab0fa,0x1e736c3,0x09fd1aa,0x0106a1f,
- 0x14172f1,0x1240c59,0x12fdfc3,0x192607f,0x05058e1,0x1d043cc,
- 0x0b8d82a,0x1f86799,0x0cfe9e8,0x1eb1f28,0x04ca925,0x0e96fb2,
- 0x17ebafc,0x032314e,0x0061563,0x1b08c06,0x17b5ae1,0x02f3136,
- 0x0d41244,0x1a1222d,0x0ceaefc,0x15c3bec,0x024ffc9 } },
- /* 195 */
- { { 0x1c7cb2b,0x06e02c9,0x0fee27f,0x0ab200a,0x01243b9,0x011a1e6,
- 0x1af3d86,0x0c6c03b,0x166c18a,0x122a377,0x04ca1cd,0x0e03d92,
- 0x11a5290,0x1cbc461,0x16e009b,0x1efaf86,0x02a92d1,0x04295c3,
- 0x0a9e5ca,0x13960a1,0x0005180,0x1e51e59,0x025f519,0x1eb728d,
- 0x077c09e,0x0c27906,0x0bc8906,0x066e588,0x1bb206c,0x1f06f9a,
- 0x0d76814,0x1538281,0x026c6d0,0x17d99de,0x10332d5,0x10c39f9,
- 0x099b396,0x1e7cf79,0x06e9070,0x1a280c4,0x089e4d3 },
- { 0x05a9be3,0x14073d2,0x1ef74d7,0x100e6ad,0x04daa57,0x13de17e,
- 0x158bae5,0x1c6030d,0x047cd16,0x18133cf,0x033a6e9,0x1804be6,
- 0x10ca2f1,0x0fc327a,0x0816d18,0x03acde2,0x1978506,0x13feb6b,
- 0x0822027,0x1b89ed1,0x1ae247e,0x04cd269,0x176b011,0x03f3b50,
- 0x0664a6d,0x138fc22,0x135ea0e,0x1e619d0,0x0c33f19,0x15d6755,
- 0x0afa4e0,0x1290c45,0x1033831,0x00f590f,0x12ebdda,0x0f606f4,
- 0x19a1b5c,0x0b54844,0x143ef45,0x0dfcde3,0x0675d3e } },
- /* 196 */
- { { 0x07193e5,0x13ffeb8,0x039765d,0x030206b,0x0478aa9,0x06c77bf,
- 0x1e7fcca,0x14eac69,0x06dbbd9,0x09d0774,0x055a1a4,0x12d0fc4,
- 0x18379b2,0x04eced1,0x0fd042a,0x069a520,0x1b91b13,0x0ecfc6b,
- 0x160bbed,0x0e84537,0x07789fe,0x111c01e,0x16d5a2d,0x1a4a689,
- 0x1a350d3,0x1f449f4,0x01c9125,0x0b386b6,0x09e23b5,0x0a1b50b,
- 0x1a711cb,0x198b698,0x1864632,0x1fa9884,0x16760f1,0x113edae,
- 0x1e49788,0x0e78ed8,0x0692ea4,0x1fcc15e,0x05f7f92 },
- { 0x145167e,0x10e6302,0x0383c62,0x055ff51,0x15ee2e0,0x153de7a,
- 0x1fd450c,0x0cc499b,0x0a75108,0x1c16d21,0x046bddc,0x023e80a,
- 0x03e894c,0x15578a1,0x13938c4,0x1a55d54,0x0f0f63d,0x0c61e9b,
- 0x1d9818d,0x192aa1a,0x1eabfc5,0x189bf53,0x00494dc,0x172a1ec,
- 0x0d59839,0x021152e,0x050398d,0x0b41ec0,0x0c70459,0x11c7795,
- 0x1ce4178,0x088d61e,0x0bacc0e,0x02bc522,0x01bb112,0x0699a84,
- 0x05bd780,0x1d8d555,0x11634d9,0x1b21456,0x025bece } },
- /* 197 */
- { { 0x033a8fb,0x139c106,0x10741e6,0x021e4bb,0x0fbf6cd,0x0a415b6,
- 0x1cfe31b,0x0949ff8,0x007bf84,0x128f8c6,0x058bc0f,0x046cb32,
- 0x11a7651,0x0a009c0,0x1669d38,0x0314158,0x065e550,0x0cabd34,
- 0x0f2826c,0x18a37bc,0x053fe1e,0x19d4b01,0x0f031fa,0x1c07f09,
- 0x1fd147d,0x184f41d,0x054bef6,0x00a81da,0x015ec1c,0x176ee75,
- 0x01dae94,0x0964c26,0x1d30ed5,0x0b90379,0x0ba3a0e,0x1537af7,
- 0x096373a,0x06c3490,0x0fd8fc8,0x0978761,0x00a616a },
- { 0x01339c9,0x0f9f6b7,0x029881d,0x057f160,0x1afaa07,0x06cda3b,
- 0x1b20af3,0x18fbf5f,0x100ca54,0x1898ac7,0x10c6b91,0x05e2717,
- 0x0a44910,0x1886fe4,0x063c560,0x0a9a95f,0x07559e9,0x064f790,
- 0x149e831,0x0435f38,0x0023e80,0x1bbd0c9,0x1ba0049,0x16046ee,
- 0x1538c7f,0x0a8b1af,0x1fa327a,0x1be32e9,0x0c90975,0x1d768ae,
- 0x1700a1f,0x1ef4a22,0x00728f0,0x0311efd,0x0f983eb,0x1321b7f,
- 0x0311ba0,0x0a07ea0,0x11932a3,0x09c0f8c,0x0876d15 } },
- /* 198 */
- { { 0x0d3ea8a,0x06b6961,0x003b4e9,0x175084c,0x16be681,0x0383391,
- 0x0403790,0x0f78a7e,0x06a7d7a,0x1f2db7f,0x186a0f8,0x09f2bab,
- 0x0a6e699,0x1b04be1,0x12b3489,0x020220f,0x1baa679,0x0096cc6,
- 0x00b8389,0x1888c22,0x072addf,0x016a499,0x120576f,0x086cd2c,
- 0x0e64ba9,0x1c83f1c,0x08cacaf,0x12c1d63,0x08e28b4,0x1a92ec9,
- 0x07b6915,0x0540ef9,0x0f75b39,0x10e8039,0x12edff5,0x0c4eec1,
- 0x0f4b145,0x11ae8d8,0x05c02bc,0x077ceda,0x03040c2 },
- { 0x0fa9a70,0x0e2ada7,0x1842c43,0x1ea7d0c,0x14de414,0x1c513fe,
- 0x1044c27,0x0787b2b,0x106661d,0x02884d2,0x0d44f94,0x1294c1d,
- 0x0bcaa29,0x0f3e99c,0x19054dc,0x1ce3e7d,0x1fc4651,0x027e8a2,
- 0x0f0c4ed,0x17f0719,0x015051b,0x1c0f5c9,0x0c0e781,0x17eb58f,
- 0x16b4414,0x0467434,0x022f835,0x1acce31,0x0f2b6f2,0x197aeec,
- 0x02afa4e,0x1d714ff,0x1dfd1e7,0x1a8e2e0,0x176643d,0x1d0c567,
- 0x032a74b,0x18d6ac5,0x126887a,0x1343d77,0x05486d7 } },
- /* 199 */
- { { 0x1359e13,0x11a7fd0,0x01472cb,0x1e5032c,0x002d8db,0x0b25af1,
- 0x008f48d,0x025d2bc,0x042f6ac,0x189a05b,0x0dc977e,0x10a56ca,
- 0x0d543ba,0x0692335,0x0bb735a,0x0e51703,0x024547c,0x0dfbc01,
- 0x15a7ed9,0x1f14232,0x0ec9559,0x116fd91,0x1416de9,0x1dabca4,
- 0x075409e,0x1888388,0x00a67db,0x1913251,0x16f8c79,0x09309ed,
- 0x0a69f5a,0x16794f3,0x0eb7fb3,0x0b05818,0x0ee3ec8,0x1595733,
- 0x128b409,0x0092b46,0x17e2f48,0x01eb588,0x0380f1b },
- { 0x0a0068f,0x0cf35f3,0x1d4f02e,0x15914e6,0x0b67cf2,0x1d75be2,
- 0x09522cb,0x1874d93,0x1340260,0x1a0bfcc,0x1dce79f,0x10ab981,
- 0x1a8ee56,0x1c04a4e,0x02d443d,0x0ddffe1,0x1c28d5c,0x1d8bb87,
- 0x165a9ee,0x0b57ddf,0x1a2ab4f,0x1b79332,0x081ec44,0x003b9f3,
- 0x180a4b6,0x06317d9,0x1058afb,0x19006c2,0x0b83b3c,0x1dcb773,
- 0x1acd263,0x15182fd,0x09b0fd6,0x1f7e175,0x16ea85d,0x1cb0696,
- 0x1b110b3,0x08227aa,0x0a17a4a,0x1dbd7ae,0x04abedd } },
- /* 200 */
- { { 0x00ef376,0x0f0dcb8,0x0ffccd5,0x14cd9b5,0x156e5d9,0x143b236,
- 0x095d51f,0x0d367b8,0x000f793,0x07a25c5,0x14b8a4a,0x163d418,
- 0x1208c32,0x1b94d9c,0x1e37848,0x0473ab4,0x19ab26d,0x1a0c228,
- 0x033929a,0x0d696fc,0x09f923f,0x0556595,0x08d7dbe,0x00c94b2,
- 0x1c454e2,0x1175dc5,0x106fcc1,0x0fdfa06,0x1ff6f93,0x141dca6,
- 0x019aeb1,0x1154ff4,0x1364b1e,0x19ba2e1,0x1cab382,0x1e0c2ce,
- 0x11e3fb0,0x1846846,0x0cb4d1b,0x16631c2,0x06a20ab },
- { 0x085cbc7,0x1880b35,0x0a9faa0,0x0d269f3,0x1099094,0x1c78d9e,
- 0x042239d,0x1338442,0x12247b7,0x1527fc7,0x121339f,0x1ae28a8,
- 0x04b3171,0x07cc61b,0x100e525,0x028b052,0x1f397df,0x12ed488,
- 0x050e445,0x0b01261,0x18bca6b,0x0d0ba11,0x1d7e542,0x012eb1a,
- 0x1182182,0x0e87f5a,0x0691e49,0x1c18c04,0x0a315ea,0x134a57c,
- 0x0dc3a51,0x0d75a09,0x07af8a3,0x1223ed7,0x19ffc1c,0x1c8982b,
- 0x05456ff,0x0233455,0x0e5dd46,0x14f7e6d,0x045e353 } },
- /* 201 */
- { { 0x1092f71,0x0b3b249,0x15c5d81,0x05eb725,0x0b66b6c,0x045b62f,
- 0x0526f8b,0x07d3b66,0x020c036,0x117ac1d,0x15c25fd,0x1a66079,
- 0x0c688ac,0x15dc8b5,0x14303e3,0x1361d0b,0x02c84c1,0x08dfba3,
- 0x1129ab4,0x1dabf2f,0x1369c76,0x1d688cf,0x1b22e22,0x1ca1707,
- 0x0371beb,0x1532cdc,0x02199c1,0x198d2a1,0x173d2c0,0x1ad1fc1,
- 0x1ed4c71,0x054b405,0x01cd3a3,0x0d0e827,0x1de368e,0x1dd04e8,
- 0x15da333,0x1e2dddb,0x0f4dbb7,0x04994f3,0x015941f },
- { 0x17dd512,0x0607c53,0x17d90ba,0x0e3b86c,0x091b59a,0x1a9c315,
- 0x0533421,0x195d01a,0x1d272fa,0x1121186,0x1f2d685,0x182c804,
- 0x03eea3e,0x00f7cf8,0x1c02d67,0x0291b82,0x1270da3,0x0ea08e0,
- 0x10606bc,0x1dc8918,0x100b801,0x0ccf1d4,0x1b7ca15,0x0135ffb,
- 0x1b0bd0d,0x0122eb3,0x1a2cdc0,0x1073bf2,0x1836b8d,0x03f0737,
- 0x124ed8c,0x17a6403,0x182e588,0x0815da9,0x09ade87,0x12c6db1,
- 0x168641e,0x1bedbb4,0x0b40dc2,0x094231f,0x06d17c3 } },
- /* 202 */
- { { 0x181c99b,0x04420e0,0x12bf3d8,0x0390f7b,0x165dc90,0x106d5f5,
- 0x0d11cdc,0x0b768c1,0x0537751,0x03ce1cb,0x1b09dd3,0x045c152,
- 0x00d447f,0x15607a2,0x05484c0,0x1075a1b,0x06bc905,0x0419859,
- 0x0a24128,0x1d2ef52,0x0b18e25,0x0cc2e28,0x077abff,0x15abed4,
- 0x1bcb7a5,0x16ae7a6,0x07228df,0x179a003,0x1850b6c,0x0ec80f4,
- 0x015e11b,0x16171cc,0x0c8194a,0x197c80d,0x15c4d04,0x1772e50,
- 0x156ee28,0x14f8a4f,0x0753933,0x1487d3c,0x01ab9b5 },
- { 0x14fa7a3,0x0d5c918,0x058c81b,0x008f1ff,0x0c4af0f,0x06cfede,
- 0x05c4e41,0x1fc999c,0x112c045,0x0105175,0x1db5f6b,0x08f1fb1,
- 0x1a44fc5,0x053db7f,0x1b9cb17,0x1eeb110,0x09b6fd6,0x0bfd229,
- 0x0aa0835,0x03a3632,0x11494df,0x0f93c4f,0x0f604be,0x176a7a4,
- 0x0f083aa,0x1994c21,0x0ca80ea,0x0c90a73,0x1125022,0x104858a,
- 0x1558c73,0x0e63ed7,0x1294d15,0x1731a70,0x187650d,0x1f64526,
- 0x1ca966a,0x0140e21,0x0cfb631,0x0ad8435,0x024b349 } },
- /* 203 */
- { { 0x19824e2,0x0e5c332,0x1d3126f,0x109c27c,0x0dc4ce4,0x1f0f753,
- 0x06899ae,0x0af4980,0x11e3ec4,0x1d95c73,0x0a392d1,0x0bc05eb,
- 0x0d7e8b1,0x1199a98,0x07adb9b,0x0a405d0,0x09e17a4,0x1d65d1b,
- 0x1c39327,0x082863a,0x1eb8812,0x059f095,0x10642bd,0x1e90dfb,
- 0x1052311,0x1e72993,0x04a7eca,0x1ed883c,0x0f6c089,0x03f5db8,
- 0x1def98a,0x07fd688,0x079850a,0x18c5d8a,0x0c466f3,0x01f9fbf,
- 0x1a80d04,0x0e1497e,0x16fe649,0x1cafc78,0x0212d65 },
- { 0x015cf08,0x0d9c365,0x0bac8eb,0x0903c2e,0x0dfa4ac,0x0168602,
- 0x0fe4d35,0x18f3a3b,0x174404d,0x0e7b039,0x0aff376,0x0883d26,
- 0x1860508,0x0e34154,0x1a44328,0x0398135,0x01841ac,0x04a947e,
- 0x0efb58c,0x02415db,0x1250e6a,0x1618667,0x0538387,0x1177e5f,
- 0x0ba54e5,0x00aff42,0x1e7ea91,0x0cda169,0x0e7ce5c,0x18f3f67,
- 0x0e83163,0x0df4d0e,0x01d43eb,0x189a43d,0x1680e67,0x0f2d8d8,
- 0x06727ab,0x17cd557,0x0911f9b,0x0a934b8,0x066afa5 } },
- /* 204 */
- { { 0x180e91d,0x155d464,0x1beb696,0x12d5931,0x093cf50,0x1193315,
- 0x0382a36,0x07d6132,0x0008145,0x0e90a98,0x077a100,0x067c7ae,
- 0x122bb0d,0x1f0cd00,0x17db600,0x071ce8c,0x14c78a8,0x02c817f,
- 0x04c4d23,0x055f6e3,0x057b74e,0x0bce7d8,0x0924c9d,0x1a07f1f,
- 0x0a6423a,0x0053b0f,0x1563fe9,0x0fa9848,0x087e30b,0x006cbbd,
- 0x09ad7a7,0x193909a,0x1c5edba,0x0b1d068,0x0e68f46,0x1bd9510,
- 0x0bf6bf0,0x17979af,0x0af7ef1,0x0621ab1,0x001ef06 },
- { 0x0cdcbb0,0x0818b1f,0x0554afe,0x104f839,0x19e2d72,0x1ae4980,
- 0x1c0c255,0x0613ca4,0x1969839,0x0e0e2d4,0x020b7c3,0x01fef9a,
- 0x11ef9f8,0x0fcbf02,0x04541d7,0x036ab9b,0x1fe9cc6,0x079437f,
- 0x03c9331,0x1b671f0,0x1ae3352,0x161b291,0x1b66e67,0x1620953,
- 0x08ca810,0x1d6884d,0x1cc1480,0x04e01fc,0x1400f5c,0x11273b4,
- 0x0b0a8bb,0x1dc188a,0x195d399,0x01520ea,0x15abdfc,0x0e156eb,
- 0x0db730b,0x08404c8,0x04808d0,0x1fabd1a,0x00e4f5f } },
- /* 205 */
- { { 0x1f14c38,0x0322207,0x07caf47,0x155d9c2,0x1a5b59f,0x17b1984,
- 0x0169c8a,0x1dd548c,0x082af24,0x0e4fb2d,0x0845677,0x17fdd73,
- 0x0ff4ee4,0x1a74275,0x18f41d9,0x1559c48,0x1e00e0b,0x1c465f0,
- 0x17eaf72,0x0ad1d5a,0x199d7ca,0x1262bf5,0x0f60354,0x17d30e7,
- 0x0572ce9,0x02f4e23,0x15cc02e,0x03143b9,0x1541769,0x0989207,
- 0x0d92488,0x16b6284,0x1e324ff,0x078b57b,0x140490d,0x1881bb4,
- 0x0133d97,0x019a10d,0x1c08022,0x0c210ed,0x033d411 },
- { 0x078e5ec,0x0d1b5cc,0x08c9d4c,0x028d230,0x1de3e32,0x1182322,
- 0x068cf42,0x0b3a2bf,0x1aa1736,0x1a60dc3,0x1753f9c,0x0945f24,
- 0x14ac209,0x0131587,0x1259687,0x0b97887,0x03e447d,0x03ace48,
- 0x148e4c0,0x1e42bc0,0x1f3492a,0x0f8fac9,0x1ffedb5,0x19bb6bf,
- 0x03b4bc3,0x00432ca,0x12ff755,0x1a07453,0x0d76c09,0x0d358cc,
- 0x1663df3,0x181e4f6,0x0790a22,0x0c667e0,0x0a1232d,0x1974aaf,
- 0x16c54fd,0x110296b,0x0d19964,0x1548f6d,0x02d3de7 } },
- /* 206 */
- { { 0x1add3b7,0x13a3132,0x10aaab7,0x0b57e49,0x05888f3,0x12bec9f,
- 0x1272b86,0x17fa82a,0x02c76f7,0x11170c7,0x080acc3,0x11d57c6,
- 0x0a67f28,0x0e8e878,0x0699ae8,0x15a316f,0x1492881,0x087055b,
- 0x1eb6c3a,0x04810d8,0x132f7d4,0x0294210,0x01c30cb,0x1f3413d,
- 0x077f158,0x0c4c2c2,0x0bb0095,0x045526e,0x0987774,0x062e528,
- 0x162f90a,0x0aecc00,0x1b79564,0x19be7a2,0x18c655f,0x12d8ff8,
- 0x1631628,0x1811eee,0x04a9a2d,0x16cb638,0x047003b },
- { 0x11c1c96,0x000e0e4,0x05c3665,0x124f425,0x0a5dcdf,0x014883d,
- 0x0b85f0f,0x0207572,0x1a3fe47,0x17e747b,0x0663b89,0x1abc9dd,
- 0x18b0d09,0x071d20f,0x0988812,0x14a0d5f,0x0a5a26c,0x158e009,
- 0x06d5c94,0x1ee6993,0x1fe12c6,0x0fa897b,0x0424f5e,0x1dc334c,
- 0x0906eac,0x1531798,0x0415b47,0x17ff070,0x135f216,0x0c2b77f,
- 0x091871d,0x1835a44,0x007e978,0x07ef437,0x1285ac8,0x165994d,
- 0x033fe81,0x06b696b,0x0b39aad,0x00960d4,0x073dff5 } },
- /* 207 */
- { { 0x0e20fb8,0x0ac02ec,0x0fc22d8,0x09056a6,0x1c6873e,0x142a653,
- 0x1c0055a,0x022a40b,0x0cb3692,0x1ff6356,0x024ade1,0x01d98fe,
- 0x0c1fa3c,0x1422ff2,0x0d991fb,0x1e224b6,0x085f8b1,0x1ea3c0f,
- 0x0c3c69b,0x04d0731,0x0b92c65,0x166e5c7,0x13bae31,0x0bedaa5,
- 0x10ead8e,0x06e099f,0x0f2364d,0x03107c4,0x0ac45a3,0x0adea14,
- 0x014853b,0x1b77f95,0x17ca492,0x0d709fb,0x0ff81f9,0x17be822,
- 0x12ab05f,0x1250693,0x1d4d58f,0x16ee291,0x07544d0 },
- { 0x0797ace,0x0689a40,0x05f93fa,0x015f0db,0x016d6aa,0x0d347e1,
- 0x09a23bd,0x109b7e1,0x19f9b26,0x05937a2,0x074bf06,0x19f5133,
- 0x1552fef,0x11211ca,0x0be3609,0x06f01ab,0x069f63a,0x1c7891a,
- 0x1353fab,0x068a9fb,0x1d09293,0x1bd39da,0x0ea0062,0x0aa5831,
- 0x1f276e5,0x18e4d78,0x17fc9ae,0x0ba8ee7,0x1d4f44c,0x0a08036,
- 0x1267bd2,0x0be7374,0x18f12f9,0x0527956,0x1b73d9b,0x14aecfe,
- 0x1922f59,0x03b9f8b,0x0b526ea,0x1d583c8,0x0220081 } },
- /* 208 */
- { { 0x037a0ba,0x1eab9dd,0x17d8c10,0x19ba2ed,0x05a431b,0x10387b8,
- 0x0b3f310,0x0120664,0x067c2d1,0x055e987,0x02f3e97,0x0bbd97f,
- 0x0b362c9,0x1bc3d88,0x19f49dd,0x0bcc9ae,0x15e6ec0,0x1309648,
- 0x19a70c3,0x0d2c639,0x06359e6,0x07b4171,0x09f2776,0x1ff9870,
- 0x01f1295,0x0513c81,0x0628ab7,0x0d51dcf,0x1d500a0,0x13c225a,
- 0x1163803,0x11b01ad,0x1746fc7,0x1886643,0x0efa457,0x1048c0a,
- 0x019f6fd,0x0719459,0x0dcce11,0x158237a,0x0620541 },
- { 0x09e5a29,0x1e9c128,0x0c783df,0x016864a,0x0748d7d,0x1c41dcc,
- 0x04d5334,0x0f51ee9,0x08bfbb1,0x15c563a,0x0b4b171,0x14cc0be,
- 0x03a4616,0x0de58dc,0x1659894,0x04cb567,0x1042fee,0x067ba98,
- 0x0c89416,0x1ae7f7b,0x1556c70,0x1a78616,0x0484750,0x164b366,
- 0x061d854,0x1bec310,0x1710acf,0x1fc8c0d,0x0a4949f,0x02c2f43,
- 0x0b13172,0x02c1ddb,0x0ddcc8b,0x1121002,0x199d5a3,0x0c30099,
- 0x0214165,0x19c2ad2,0x0fa5e47,0x131f265,0x07f3781 } },
- /* 209 */
- { { 0x1a6639a,0x1a5ed6f,0x0e4668d,0x080556e,0x0cbd48d,0x018f168,
- 0x1c8d91c,0x03eb8bd,0x0d0599d,0x04f715e,0x0e110ed,0x16c1c1a,
- 0x08d285e,0x1349c97,0x0faa4bc,0x0a71fb7,0x1bfb8bc,0x048a2af,
- 0x11a6dda,0x0b3fe3c,0x1682ae2,0x0fa0ef2,0x1073b2c,0x0a5a35d,
- 0x0f07199,0x023643b,0x079efdd,0x19c4a30,0x0ad2f11,0x16c3141,
- 0x19f2e4e,0x0d749de,0x1a3cd31,0x1d51f47,0x0813941,0x11f9cd1,
- 0x061bb60,0x0ba0b85,0x043433b,0x167ed58,0x06de716 },
- { 0x12d6dc5,0x0c6820b,0x1973539,0x0cc72f8,0x1ed2cde,0x0f5a745,
- 0x1f86032,0x1b6f5ce,0x075fa2e,0x113aa34,0x199ce15,0x049d523,
- 0x0e4b303,0x11ae459,0x08ea158,0x0510ec0,0x0c2a8f9,0x0cefb6b,
- 0x1bd7a2d,0x1830bfe,0x148aec2,0x159d6ab,0x1e24b84,0x095df78,
- 0x1b4f2d5,0x010bd75,0x03ba1a2,0x0922a89,0x19bd5b1,0x0fb8d8e,
- 0x1de89b1,0x05fe01b,0x1ccd166,0x18ef772,0x1c5ee56,0x09d7933,
- 0x1fe1f77,0x0c1b0b1,0x096c242,0x061767a,0x051f908 } },
- /* 210 */
- { { 0x0922461,0x1b7d0f9,0x034524d,0x062ca1a,0x1bb1b1c,0x0c3046e,
- 0x070cc37,0x00d2572,0x136b899,0x1309625,0x180148f,0x1617bea,
- 0x05e1977,0x11b512a,0x0bffdc1,0x07b1df1,0x0781172,0x166d3e9,
- 0x06f79ee,0x1789770,0x178e0b0,0x1976952,0x0f2c202,0x0365c04,
- 0x00d0d17,0x0d72ded,0x1e506ee,0x0dbe719,0x0a65c5f,0x00ede0a,
- 0x03a1776,0x1833bb3,0x198c82d,0x037c9bf,0x11fd488,0x118c26e,
- 0x1f5bbe7,0x09d1612,0x12f9e78,0x11c1546,0x05eed21 },
- { 0x1d4dc0b,0x12baa00,0x0c1f855,0x0feacd7,0x01ae5f2,0x1112ead,
- 0x1afaee0,0x0d7d30b,0x01189ec,0x19d690e,0x1936757,0x0319d99,
- 0x1917da5,0x0b5b2da,0x128b4fb,0x0ee3990,0x1758ffa,0x13fcc40,
- 0x0b1a69e,0x0d5c245,0x046d50d,0x18e3734,0x12dfcc2,0x1a17627,
- 0x03a605b,0x003c601,0x175cfc9,0x1421fd9,0x10a9969,0x0c6672f,
- 0x01a3145,0x17b1eb0,0x06bf615,0x12370e9,0x0a1e456,0x115e65d,
- 0x0287d30,0x1ba7408,0x10953ab,0x00d4c4c,0x08c14ba } },
- /* 211 */
- { { 0x17ee201,0x1bc4ad8,0x09dc321,0x0311caf,0x005aa47,0x01122b6,
- 0x19d8e5e,0x03a3387,0x0c9c3ba,0x1f37c60,0x027af82,0x09ff687,
- 0x16fe85f,0x0673fdd,0x02f3338,0x0d8c8a7,0x12a6526,0x143b755,
- 0x1e68e10,0x158d219,0x19815c9,0x18e6647,0x07d73ce,0x1ed0fbd,
- 0x1be6a9c,0x00afd0b,0x120e0d7,0x19f821f,0x0ef2ebf,0x07ed8a8,
- 0x19821ac,0x11094a5,0x197ecd9,0x08f5c4f,0x1e8ac33,0x1482dcd,
- 0x1ecc03b,0x1e8acc9,0x0597b8a,0x0bbd576,0x0645c0a },
- { 0x0aa7e31,0x02102a8,0x1697653,0x185f0a3,0x0ec8df0,0x1937355,
- 0x1a424f1,0x13532c8,0x02619bf,0x16dee1b,0x0fef55c,0x01c1c4a,
- 0x061b426,0x06384f0,0x10967ee,0x1d8b72f,0x0bbcdda,0x0fd5fbe,
- 0x12dc0fa,0x0bd163c,0x0fddb4d,0x17039a7,0x06c1b95,0x0abf14a,
- 0x0a4f91f,0x046816a,0x08fd597,0x1f0c117,0x0d1d947,0x03e940b,
- 0x0da08bd,0x0b9cf62,0x0c36156,0x0212106,0x17bcc74,0x0dc8ddc,
- 0x083567f,0x132fb83,0x1b246ca,0x081a5f4,0x027e9ff } },
- /* 212 */
- { { 0x1e952e7,0x08c49eb,0x1c61d49,0x078e6b7,0x15b3058,0x1f02488,
- 0x1664a5b,0x194e656,0x0806d2f,0x1a28c2c,0x017b649,0x0d40371,
- 0x0c71ab7,0x16cfaaf,0x13a765d,0x175397b,0x12048f2,0x19ed305,
- 0x04ac4ca,0x0f810cb,0x11d7697,0x0584c82,0x0db72a7,0x1115c4b,
- 0x0ab23d1,0x19eece1,0x1f882ab,0x1e8d3e7,0x0d74d09,0x1be7ad5,
- 0x0ef6f47,0x04553d6,0x15efe5c,0x008621e,0x1e884dc,0x0118bdb,
- 0x1787026,0x1110bda,0x05ddab6,0x0ce7b59,0x04feee5 },
- { 0x1d3d780,0x0c6a95a,0x1d10c38,0x060e2cc,0x0dadb5d,0x1a10ab2,
- 0x0e1b969,0x10c641a,0x08d6bbb,0x0c61487,0x18f7457,0x06465a4,
- 0x16981a4,0x0c4c231,0x1439f2a,0x1596267,0x04da519,0x1a89c3c,
- 0x177207f,0x1c7f57b,0x043a832,0x0a18ccd,0x1f09e16,0x0e862c7,
- 0x0abcf32,0x1d3ada6,0x15d3e53,0x1f40217,0x14a6279,0x1a1eab4,
- 0x0930a29,0x196caf4,0x1d2a888,0x112f560,0x140fa1a,0x1efdde4,
- 0x04c561f,0x08d2e98,0x1783bb4,0x1cf393d,0x04fe818 } },
- /* 213 */
- { { 0x1c1c7ff,0x0964ebf,0x0b44009,0x1b3f513,0x09bd419,0x1274e65,
- 0x0492901,0x1999274,0x043942e,0x0265e5c,0x05a56ce,0x03fb0e9,
- 0x1f004c2,0x0108b2d,0x120767d,0x02204d3,0x028dde0,0x0f1192b,
- 0x0a6c013,0x06e8aeb,0x1c21ec9,0x1ffb6e7,0x1eccd1a,0x06e58fb,
- 0x1a64b4d,0x0715626,0x0fc8125,0x1d96f5a,0x07c150c,0x00daf43,
- 0x16158b1,0x1856e47,0x19395ce,0x0991894,0x1f15fb9,0x0f9235b,
- 0x110b659,0x1788b0f,0x0fff381,0x0536e9a,0x0819155 },
- { 0x0d9d4ee,0x09218b7,0x1c063b0,0x08d135f,0x1dffa15,0x04d1fa1,
- 0x0d27caa,0x1649574,0x0d467ef,0x0d8f471,0x040b88b,0x06a8072,
- 0x0b18dea,0x1297841,0x0aae14f,0x1ba8e84,0x0c1ed36,0x1389851,
- 0x0a5747b,0x01d0da0,0x1ad3ca6,0x043e3fa,0x19ab1a0,0x10c8cb1,
- 0x1cecfde,0x13287c1,0x0518744,0x05ccd84,0x1850997,0x00a85e9,
- 0x027fbbd,0x14cc645,0x1183f3a,0x0e3ca87,0x12f9e4b,0x044ea8a,
- 0x1136770,0x02608d8,0x1bbcc9d,0x18fd1d4,0x07d06bc } },
- /* 214 */
- { { 0x090212f,0x02ca138,0x011224a,0x18aa43d,0x091b7d4,0x16ddc93,
- 0x0108af8,0x1009807,0x1bd81f8,0x0bb90f6,0x06f0d8c,0x17dd591,
- 0x0dc136c,0x1dc7802,0x1c6d82d,0x115709e,0x0d04e21,0x0934899,
- 0x1b32053,0x0492ddc,0x1c15b0e,0x0bbafd6,0x02cb38c,0x1a4478a,
- 0x1c08466,0x1c5c171,0x193184b,0x0e43954,0x1653559,0x08f5d25,
- 0x145669d,0x18fa7b3,0x033aad5,0x0a1231a,0x074ba03,0x143cc37,
- 0x1c673ca,0x0fb2aff,0x12e4852,0x133a1f3,0x048b52b },
- { 0x1dc05be,0x0a9ccf7,0x17a68e4,0x1027c12,0x1e70db1,0x0d9fed6,
- 0x18ba737,0x0a288f0,0x01a0094,0x15818b1,0x083a8e8,0x1018472,
- 0x0b4b279,0x111dc7f,0x14e53c6,0x02da958,0x0563e56,0x10b1fb9,
- 0x1c50866,0x1ff27f6,0x0474aa0,0x0949eb1,0x149be5b,0x19fc4ed,
- 0x12ea87d,0x08aee90,0x1d1c0e3,0x164f7e5,0x18168ea,0x0192fa0,
- 0x06b9632,0x1665531,0x1704222,0x0f89df1,0x0e42ff2,0x1b46d28,
- 0x0d0684a,0x1713030,0x1dbb3c5,0x10f3b18,0x017c0de } },
- /* 215 */
- { { 0x0c01958,0x0fa29ee,0x0e4ef29,0x0839d10,0x1d94595,0x0fadb6b,
- 0x1428558,0x178bcc6,0x07e2d36,0x08e1e43,0x10e9b0a,0x1b094b5,
- 0x0df6c7e,0x0cc0036,0x04f102f,0x1d876f2,0x0875671,0x0fbc5d8,
- 0x10fa26a,0x051edd6,0x01ed1c9,0x19d70f5,0x1f7ca37,0x049656b,
- 0x1a5b1b9,0x102b15d,0x146845b,0x123a4e0,0x1ed3e34,0x015b8b3,
- 0x11823b0,0x0b78160,0x091cf7b,0x0bfacf1,0x05a6317,0x0e61ca0,
- 0x15c799b,0x1e1a86f,0x1875c31,0x1c4158d,0x06862b9 },
- { 0x1fa1f64,0x17a73cf,0x0d255b1,0x1543c48,0x1ed6a91,0x1ba9197,
- 0x1b83336,0x00fd341,0x10322d6,0x1e4859b,0x1fbe1ef,0x15a48c5,
- 0x1429480,0x015fe79,0x08525a7,0x1c71ff8,0x1e0a539,0x0372908,
- 0x0a94527,0x13d84c2,0x15322a5,0x096b835,0x0657f88,0x1390852,
- 0x1b108e9,0x0417bbf,0x0d77201,0x099d5d4,0x12d2987,0x0185dec,
- 0x1ba9698,0x155d42b,0x142dca5,0x1884e56,0x0f1d261,0x13ad587,
- 0x090af64,0x070e201,0x179b319,0x05aa3f1,0x05093fa } },
- /* 216 */
- { { 0x02d553b,0x1994026,0x10a7133,0x04772cd,0x1c1abe2,0x0b48a56,
- 0x152708a,0x192aad4,0x1999976,0x064fc5a,0x1a0fcf6,0x0f7aeed,
- 0x17c22c5,0x1e42f62,0x0a50aad,0x0c3ea9e,0x1e56e2c,0x0779a03,
- 0x084f6d2,0x0bd195e,0x18c7f00,0x1ef9934,0x11c3214,0x1814a96,
- 0x088d7ca,0x00f737a,0x1582dd4,0x0d7ad7d,0x0a4bd9b,0x188338a,
- 0x053c040,0x0dc1311,0x085bc3b,0x0950029,0x106bd7e,0x15d80ce,
- 0x0f7ef24,0x18b2137,0x090e0cb,0x09ad8ef,0x012f9c4 },
- { 0x1313a1c,0x0f4b241,0x0cdc654,0x14678b1,0x18edd3d,0x1620224,
- 0x0fd4b1e,0x1d09db7,0x10dcb5e,0x136537b,0x108be21,0x11eadba,
- 0x0eec0ae,0x0330f61,0x1def150,0x0a47820,0x13ad422,0x1369cc8,
- 0x039f2cf,0x0bc3d0b,0x1b45d10,0x1fe4bcd,0x11f24e5,0x12f6b24,
- 0x1d4a909,0x1f39910,0x0fa254b,0x1dec514,0x1462410,0x0c13a74,
- 0x1034235,0x0b2f01e,0x0cbed0f,0x0887632,0x089c238,0x0627af8,
- 0x1679b1a,0x036c333,0x0746346,0x09c4d5c,0x002f75e } },
- /* 217 */
- { { 0x1f307d7,0x1bf5fa3,0x11dc6d8,0x15a0282,0x0b644a6,0x02d4063,
- 0x0f594b8,0x0630546,0x1fed07b,0x078d079,0x1b965f2,0x0ff26d2,
- 0x1ec09ee,0x03ffe00,0x0a9fb0f,0x0e7739b,0x0fef8f3,0x0aa4fc4,
- 0x0eee262,0x1a32c38,0x07b7c88,0x14efe55,0x164a93f,0x1c95641,
- 0x19ee23a,0x0d2897f,0x07d7b2c,0x0b5d4c8,0x0fb47df,0x11bff19,
- 0x1039da4,0x04ba10b,0x0a5c420,0x1aad14b,0x15609b1,0x07b9224,
- 0x1bce972,0x05cc2fc,0x0650560,0x0ccc72c,0x072b1b5 },
- { 0x10e5558,0x045043c,0x1e0275c,0x020d135,0x1853604,0x189dafc,
- 0x1ee2908,0x035d0bc,0x055a49d,0x15d0949,0x1c6c2f9,0x0961586,
- 0x195e76c,0x09c7370,0x1413ce6,0x13442b0,0x02260ae,0x146ea0a,
- 0x1a12173,0x009d372,0x1e43d8b,0x12c43f7,0x1e5312e,0x038bce7,
- 0x08e67f1,0x0e20893,0x033dae6,0x04c47c5,0x0a96629,0x15543d0,
- 0x14fcb42,0x099405d,0x066772a,0x1daa8d9,0x1938b58,0x0ad1dd1,
- 0x0e78b5b,0x15d94c9,0x096b737,0x02dc2e4,0x05df192 } },
- /* 218 */
- { { 0x1f2e7e3,0x13f0f46,0x1f78800,0x11b1b40,0x1183cc6,0x05734a5,
- 0x0e9a52d,0x1119c6b,0x13ca62e,0x0b6cbef,0x1fb4b22,0x0276a5d,
- 0x0f3de47,0x135e842,0x01b1038,0x12477a0,0x1bbfc81,0x00f4db8,
- 0x0ab31ac,0x038f6c3,0x0840999,0x1247b2b,0x194324d,0x1e8ea48,
- 0x161d187,0x05109c2,0x06fff4f,0x021e562,0x1914186,0x0fd7fd0,
- 0x0265a45,0x12abca6,0x11236de,0x196bcc7,0x1baa861,0x16c2797,
- 0x06a2a48,0x1da2753,0x070c9fd,0x185c151,0x0452265 },
- { 0x1430010,0x0f63c92,0x03012b5,0x1fd7a12,0x0ac786f,0x14e9fae,
- 0x1d3fc82,0x0bf4bf3,0x0a3edc6,0x05fa089,0x0fac47f,0x073819e,
- 0x0088248,0x0552db8,0x175b53a,0x1157171,0x1fdb756,0x171138e,
- 0x1d11583,0x1d86e76,0x1296e43,0x130e7ba,0x1e3abe4,0x152db36,
- 0x1ae0e3f,0x1ea8c04,0x1770977,0x16625a5,0x0b77110,0x1c5a35d,
- 0x191ae3d,0x16bd9e3,0x09efc8d,0x1f65503,0x0eb9827,0x03832a5,
- 0x1f4dbde,0x118176a,0x015550f,0x1f23c0f,0x014b02b } },
- /* 219 */
- { { 0x07e5b57,0x0e3b45c,0x155cb1c,0x0fea634,0x0bcc78f,0x0cbee40,
- 0x0fe2fdd,0x0be9ff2,0x1139e17,0x1470136,0x1329b2c,0x0e4f972,
- 0x1c6b83b,0x003cfbf,0x0bf8ec8,0x1a2e05d,0x0decf3b,0x015652a,
- 0x0bc371b,0x082678d,0x035e17c,0x12e67af,0x0fa8799,0x0aa0b8d,
- 0x11a4834,0x1c4d334,0x0398402,0x0c6757a,0x1d03882,0x138360b,
- 0x03259b1,0x03419f2,0x0efffbe,0x0eb263d,0x0f9f42b,0x0c9b08f,
- 0x0ea2aa4,0x0de6fdd,0x1429752,0x0e8598f,0x085e07e },
- { 0x1c25bca,0x1705305,0x13b08ea,0x03c89ec,0x0e8e55f,0x03dbb9b,
- 0x05b62d8,0x013c3cd,0x0d30059,0x14853a3,0x112642a,0x199a597,
- 0x1d072b1,0x034717a,0x03f9b1b,0x11d921a,0x1f053e2,0x0c90762,
- 0x0010330,0x043f69e,0x02c779b,0x09fe625,0x09cdd6f,0x1758fbb,
- 0x1def9e1,0x069fafa,0x04d703e,0x1862baf,0x0cd318d,0x00b8165,
- 0x071c45f,0x1d24dee,0x12823c4,0x179cd37,0x02efb40,0x0671b6b,
- 0x1db6932,0x1a4918b,0x1d0c396,0x13f1a93,0x0096403 } },
- /* 220 */
- { { 0x0999eba,0x1a78b2b,0x0c1485d,0x0f63bcc,0x1d8ee28,0x0593349,
- 0x1dc9b78,0x143b035,0x13f8942,0x1a2349c,0x0f84f0d,0x0c2bd40,
- 0x0fbcf6b,0x0a7139e,0x03030d6,0x0b8ada6,0x056c672,0x127e99d,
- 0x02fa5e8,0x0a695b5,0x0251a57,0x133e115,0x1e6490a,0x018b892,
- 0x1bdb59d,0x1b42728,0x131a909,0x0f9aed9,0x06bf59d,0x0bd66a1,
- 0x0ca4502,0x0cdd37d,0x1404a2c,0x171f4ac,0x1a61725,0x008e71f,
- 0x0ad666d,0x1d9f075,0x1795af2,0x1a4c778,0x0626b0f },
- { 0x1a1ec42,0x0bedd70,0x11411c8,0x1756b59,0x0a6ae7d,0x0998e8d,
- 0x0ac7a19,0x0df6fc3,0x03d3012,0x0229838,0x186146e,0x13c1bdc,
- 0x0428064,0x15344aa,0x01bd28f,0x1ec6510,0x1adcb56,0x1a5df21,
- 0x12bfe53,0x1737b57,0x17be036,0x12de831,0x0365079,0x0de7576,
- 0x19d4468,0x1eb410b,0x12ab5ab,0x090d225,0x1e15341,0x048f7fb,
- 0x05a68ee,0x1d70dfb,0x0c426ce,0x09461c4,0x0a0445e,0x016adcd,
- 0x16399e0,0x1f389ac,0x1ab064c,0x1b342f6,0x009bbdd } },
- /* 221 */
- { { 0x0fd3673,0x1ce0ef2,0x181dd78,0x034cb91,0x1880d9d,0x04e3ff7,
- 0x10771ca,0x0008e4b,0x03529d2,0x1b39af7,0x11ebcd6,0x05da78e,
- 0x15c1f8f,0x08977ef,0x1ce663e,0x13872b9,0x0184985,0x0f6b913,
- 0x19a5e57,0x12745e1,0x12a7237,0x0b4358e,0x029aae3,0x15105c9,
- 0x015de22,0x0bf0064,0x13e76e3,0x1cefadf,0x067547b,0x1d99011,
- 0x170221b,0x093821d,0x02687d4,0x1f6a65b,0x185df20,0x153e387,
- 0x1af366e,0x0aebf82,0x0b4939b,0x171a3df,0x02eaa01 },
- { 0x1357c74,0x1fdb80f,0x1e51791,0x1553c76,0x13085c4,0x02d482c,
- 0x01ccdba,0x1929e13,0x1be0244,0x09c047f,0x159837d,0x1f27476,
- 0x1691ddd,0x19dcaf6,0x1d8ddef,0x041a916,0x1b7bb39,0x1c8dc88,
- 0x1a84f3c,0x1e117f0,0x0e587cc,0x0bf500c,0x14fb63e,0x18aa328,
- 0x0434378,0x0d358f5,0x07834b5,0x1cd5bbd,0x16259a8,0x1247cdc,
- 0x177f0ac,0x1dde2fb,0x0ebceae,0x1ce42cb,0x110d55f,0x11ed296,
- 0x07d5bba,0x068a878,0x061ad23,0x1d36983,0x002d31d } },
- /* 222 */
- { { 0x079499d,0x1cf0f6f,0x0ab69ae,0x11fa1f8,0x16ca8ff,0x1ec9ab7,
- 0x1e3a069,0x04f7d81,0x1e8f063,0x01e8e4f,0x002faef,0x042e766,
- 0x1b805c7,0x009e0c0,0x1082821,0x13a0200,0x07ef0ca,0x14f4d0b,
- 0x0bbb775,0x19213a3,0x0a72076,0x1fc71d4,0x1928665,0x0f6853c,
- 0x1f7a7a7,0x1f49e73,0x1172534,0x1581f7e,0x148407a,0x0a53f36,
- 0x19fcdda,0x1523243,0x16679e2,0x0ddeb7a,0x03cfb87,0x13e47fc,
- 0x0bf9fa9,0x08bab36,0x15d971e,0x1e5c1e9,0x0965860 },
- { 0x1a5f79c,0x03815bf,0x09b79cd,0x0cb5e5a,0x130bd42,0x19f0674,
- 0x02e61b1,0x05a8b7b,0x14ee44a,0x0df3df6,0x122869f,0x00492ad,
- 0x0ec129e,0x1be6fc0,0x17016b1,0x14b36df,0x02b589c,0x1b8535d,
- 0x066096b,0x1080433,0x10b6fc4,0x0a3d11f,0x074a12d,0x141515e,
- 0x010a428,0x16c58ed,0x04acabd,0x03d6366,0x135ee3b,0x021d19c,
- 0x1b3c145,0x11dff4d,0x007eb26,0x132a63d,0x021b598,0x182ddc8,
- 0x0549ee4,0x1de280a,0x02949e9,0x0643f53,0x0650810 } },
- /* 223 */
- { { 0x07ed9b2,0x072305b,0x0f4927c,0x0186db2,0x0cda0fd,0x03af0e0,
- 0x18fa623,0x19376b2,0x1614bc0,0x0bddf49,0x1a1815d,0x100334e,
- 0x049a9b8,0x0476e2a,0x0df8abd,0x0b30b51,0x19eb51a,0x04f3bf6,
- 0x0efc093,0x04a4e9d,0x0636dd0,0x040aa2e,0x1662d8a,0x001b740,
- 0x1aed048,0x11d1cde,0x06078a8,0x1f84027,0x0cb4f27,0x1eae2a8,
- 0x11f719b,0x16a40d1,0x127032f,0x0fd0ad6,0x12ba05a,0x0593417,
- 0x1a7ca8a,0x1037909,0x194bd81,0x08d30c4,0x0982950 },
- { 0x011c128,0x1a30017,0x09f8f8d,0x1a1cdb9,0x00dfae5,0x0a91324,
- 0x05b8b65,0x087c880,0x0880b71,0x12fc479,0x0e2073d,0x11a8a4d,
- 0x1eca3d2,0x0fdc357,0x1167747,0x1f2b1f3,0x0c24c74,0x1aa4430,
- 0x12da7d3,0x1d48793,0x0cecd06,0x17399a7,0x14d0f26,0x0652e26,
- 0x0ccd635,0x0062e61,0x0d7ce9b,0x12bfe80,0x12653ba,0x10e659b,
- 0x0f4b806,0x144a0a4,0x1510fdf,0x13f5918,0x038a988,0x01ddca7,
- 0x0a23cd1,0x0fe4506,0x1d52fab,0x0367cf1,0x04b7e6e } },
- /* 224 */
- { { 0x15f928b,0x083b7ed,0x13b1e72,0x0d6e68f,0x06250bb,0x007620f,
- 0x1de62b0,0x18ea96c,0x09d9619,0x006905d,0x10d0fe4,0x01a0b3c,
- 0x17ed42c,0x028c9ae,0x1ce7a15,0x0039c7b,0x18264f7,0x0131c88,
- 0x07e1eab,0x1e4aa9c,0x1aaace8,0x04b2fc8,0x1f7759e,0x048a73f,
- 0x1163fa3,0x0cacb66,0x112eb3a,0x1902be5,0x0f9ea55,0x061554a,
- 0x1575e32,0x1de49c8,0x0b2aff4,0x0e1353d,0x1024737,0x05e1dac,
- 0x00ca282,0x0521058,0x1d96255,0x18ba652,0x00611c4 },
- { 0x1e81829,0x1000e54,0x0b33c64,0x0011450,0x1ed3332,0x0ef6cde,
- 0x1f7863e,0x00617fa,0x1b78890,0x1c9d606,0x1e97759,0x123a6ae,
- 0x0bbb00d,0x00169e1,0x1e88e9e,0x12029c2,0x08cfb54,0x1ffcafc,
- 0x1c6db81,0x037e978,0x0c8b7cd,0x1011ac4,0x0b8ec92,0x02240ec,
- 0x135b8a4,0x0984da9,0x1b1015b,0x090380b,0x16a1b52,0x0086748,
- 0x1d1571d,0x10a02f3,0x1e03271,0x089045d,0x05decf3,0x002bcd8,
- 0x10cbfe5,0x0d12604,0x0159942,0x0523821,0x0820795 } },
- /* 225 */
- { { 0x07d353e,0x09e7f8e,0x18ed74b,0x1afbc19,0x15e7ecc,0x143b1ae,
- 0x01d7db2,0x07d6962,0x025f9ad,0x1420270,0x12d6bb6,0x1d1240b,
- 0x016b963,0x04f910d,0x17b8360,0x159493c,0x1d9ea41,0x06b2642,
- 0x1110a8d,0x0d89d26,0x15a46a4,0x1f1e7b2,0x0b1bfe5,0x082faf9,
- 0x05c1ee5,0x0263b2b,0x07bafe7,0x1020135,0x1a63886,0x0e9cc46,
- 0x11a56d8,0x1ed68e5,0x002b46a,0x188b8b2,0x05942df,0x063fbca,
- 0x1e0c05e,0x1c7939d,0x1129e53,0x06d5106,0x07487b0 },
- { 0x03e2370,0x072bace,0x1c66a18,0x07f0090,0x19d5819,0x117cd50,
- 0x0fcf29b,0x136741b,0x1614471,0x163f4ac,0x1fb086d,0x18e9bdf,
- 0x1fa9049,0x1fa8675,0x08192c8,0x1bc2b17,0x0c049a1,0x1589411,
- 0x07549fc,0x096fb36,0x0430b65,0x0e87fe8,0x111c216,0x00a88d7,
- 0x14a674f,0x0ca9be3,0x0e8eb76,0x0aa64a3,0x1533b5e,0x0b65f19,
- 0x13928fb,0x04fc833,0x12f44d0,0x0dcbc97,0x1a0a974,0x1e5b09d,
- 0x1b6fa69,0x1b5891e,0x0ef7731,0x18a43f4,0x0834f85 } },
- /* 226 */
- { { 0x0e9b31a,0x1a3e096,0x0edcca4,0x15fc7f6,0x1d88522,0x1fc87e8,
- 0x1ed354b,0x03a979d,0x02b1a08,0x1d8b9c3,0x047c214,0x0374548,
- 0x1a538c1,0x0a0db01,0x056e4f0,0x1ae82f1,0x1aab10b,0x114c9dc,
- 0x0644a61,0x17a08c1,0x0ba5ccb,0x1877505,0x19a7ebe,0x0cc312e,
- 0x0462235,0x12a6a42,0x10d9ffe,0x14c7713,0x1478da4,0x0e8e8e1,
- 0x1df2eb5,0x154c069,0x1339227,0x189c8e2,0x017f986,0x0a1cdae,
- 0x174ff51,0x0a5b307,0x0d53374,0x014a665,0x0639d8b },
- { 0x02217cd,0x118b10b,0x039be90,0x1502385,0x0e0e4a2,0x1b36e01,
- 0x1386085,0x1ded1b3,0x1046a06,0x0931b9c,0x0484054,0x0463bbd,
- 0x1344eea,0x08a14c6,0x01f23c8,0x0afd20c,0x0ba63d9,0x093f939,
- 0x17a32b8,0x1d01994,0x063fe7c,0x11127bd,0x1605baf,0x0ce7c68,
- 0x0e5a789,0x1ea26f6,0x094daea,0x06ead44,0x1f77af1,0x10d771d,
- 0x0f19135,0x0579f31,0x0b2bf6e,0x14b1630,0x07cca7e,0x067616b,
- 0x0bb5002,0x1b4d0d5,0x100b2c1,0x06c18ea,0x0409031 } },
- /* 227 */
- { { 0x070433f,0x1439d0b,0x17f2134,0x0c4a927,0x09394df,0x1e7c4f6,
- 0x0866a03,0x02dd60b,0x0db2976,0x1cf2188,0x18c11b8,0x1b93b3c,
- 0x1e50742,0x0ef4e54,0x06b6320,0x03a1be6,0x194fb7b,0x0c3555f,
- 0x0cf20b4,0x1b44f43,0x0d8436c,0x1a1cb81,0x1ec68bb,0x0102533,
- 0x1fddc46,0x11c1405,0x1748e58,0x0965691,0x1c9353e,0x0179bd9,
- 0x1a4b6cb,0x025f714,0x1b5b317,0x0023a6a,0x08ec206,0x11f370f,
- 0x1e95257,0x0c84c30,0x0af2361,0x1dbe6f4,0x080668e },
- { 0x19a0249,0x0e69ad9,0x1abb8bb,0x0965f15,0x0f230cd,0x11ef82d,
- 0x05791c8,0x1e852b6,0x0e0e937,0x1b34c15,0x12458ae,0x16e5197,
- 0x01019d2,0x07a4ee5,0x144aba7,0x00f68b8,0x1a7630f,0x088da48,
- 0x00e1d3a,0x09e6994,0x143348d,0x132265b,0x107f43a,0x0b66187,
- 0x19ae1f9,0x05609fb,0x17b62d8,0x006c5a9,0x0ad81c4,0x0a7fb0f,
- 0x0a27a0c,0x093187a,0x1600dd4,0x10b8176,0x1067094,0x06bf963,
- 0x1a9c1f3,0x1194fe1,0x1b3a564,0x09037bc,0x0046775 } },
- /* 228 */
- { { 0x1233c96,0x0f2b71c,0x1abfb8f,0x1900e6f,0x068c409,0x0d5e344,
- 0x046f480,0x00b595c,0x12b4862,0x196754d,0x0415b03,0x0fc2de3,
- 0x01e3238,0x12ee152,0x1d4d96a,0x17d0dd4,0x0cc12b4,0x0bb614d,
- 0x158ca53,0x1f956f1,0x1f24a01,0x058655c,0x0076fa2,0x02980a9,
- 0x06e5bf4,0x1d53b32,0x0f2e5ad,0x1c22312,0x04e097f,0x1ad8bb3,
- 0x0a6d927,0x0a7f9eb,0x196422e,0x1fb1a50,0x06f42df,0x0ab2f19,
- 0x1c22989,0x1f59c71,0x1115ad7,0x1f61067,0x0038a49 },
- { 0x1e93257,0x1c0c609,0x106cd78,0x1b4c24e,0x14cebc9,0x1560358,
- 0x04925f2,0x02c9edd,0x13daa11,0x113c719,0x080d2a0,0x0cbc9bc,
- 0x10e7cc5,0x050dd31,0x1f7257c,0x0df7b76,0x1236695,0x140eecf,
- 0x0c4cb75,0x1cc6337,0x1337c63,0x117e120,0x1b88ac0,0x117d638,
- 0x081937e,0x05611c2,0x176324e,0x0763329,0x1b56448,0x1d65535,
- 0x01ed533,0x00df230,0x07cd44e,0x06cf98d,0x06eea3e,0x0c3ba87,
- 0x1f74a8e,0x06153c3,0x1598198,0x0442436,0x04bb76e } },
- /* 229 */
- { { 0x0354817,0x08f4573,0x10e1e85,0x15e0716,0x13d494e,0x0ac4c31,
- 0x11a2216,0x024990d,0x11dcbac,0x10a9c13,0x16b419c,0x1f1981d,
- 0x16f487a,0x128072e,0x0cc147f,0x0feab5a,0x11bd6e4,0x085388d,
- 0x11d1ab5,0x0e134f1,0x135ea68,0x1132017,0x09fc5c9,0x0618260,
- 0x08efafb,0x04be368,0x0701b1d,0x1de3808,0x03e2da9,0x07676e6,
- 0x1cf431d,0x0125c20,0x0c5f96e,0x095ba18,0x0f3caa8,0x041e272,
- 0x0107eb0,0x0c200b1,0x1e62c91,0x0bef6ed,0x08843d2 },
- { 0x1b2a83e,0x080ee76,0x1c91385,0x005771a,0x1cfe8fb,0x12efb15,
- 0x0196764,0x1861204,0x142ab6f,0x038aee7,0x0277f4f,0x00ab41e,
- 0x0a73c05,0x11ac857,0x19d1763,0x0e93c24,0x0d876ff,0x1a9c17a,
- 0x0483198,0x13fddf5,0x11cafc6,0x08cfeb8,0x1785808,0x0eb89ab,
- 0x1c3bd90,0x1f9210c,0x04f7b5a,0x100197a,0x03a1163,0x1075b13,
- 0x0de31fa,0x0fa4c98,0x1bd7958,0x0e4c61a,0x1915c56,0x0aadc45,
- 0x1a7373b,0x1f9516f,0x12525c6,0x073126b,0x00503f9 } },
- /* 230 */
- { { 0x1dad4f6,0x0ee3338,0x086d96b,0x120497d,0x038e488,0x02e9ee9,
- 0x1238bd8,0x113f6ed,0x0b0d96b,0x1eafaef,0x06cb2c4,0x146acc0,
- 0x14e0b5b,0x01f1e92,0x1f52476,0x11d4fc6,0x023240c,0x1744302,
- 0x047266e,0x0305e7d,0x1919374,0x1cd43d6,0x09b0b2b,0x0e9e52a,
- 0x1040af5,0x051a589,0x0651000,0x17379da,0x1f42e75,0x0bdf036,
- 0x0753331,0x097a211,0x0e8ec50,0x1da8011,0x1deb776,0x1618a62,
- 0x1ecfead,0x0698e94,0x1a3e5a4,0x1fc2ecc,0x0735778 },
- { 0x03c1137,0x1771f42,0x0f343e1,0x147e16e,0x1c1c42f,0x19071d1,
- 0x19e762a,0x15c1cea,0x016242f,0x1caf8fa,0x024b91b,0x0238736,
- 0x007b88e,0x0611b56,0x0a500f9,0x005cc2c,0x1412dac,0x133082f,
- 0x18b818c,0x18514f0,0x1c8d74d,0x1979d91,0x08463fe,0x08bff7e,
- 0x0417c07,0x08f08c1,0x113015c,0x136ab40,0x1be4de4,0x0dba677,
- 0x01cb199,0x12f7ee2,0x0c4c01d,0x1833b0e,0x1b6b153,0x1165940,
- 0x1450d0f,0x0cced53,0x00a87f1,0x14c3463,0x052e637 } },
- /* 231 */
- { { 0x1ebc6db,0x18078b5,0x1649205,0x17f2a07,0x0a6b45d,0x0a9c8ca,
- 0x134f174,0x1798e2b,0x1e5ad2a,0x0150e02,0x0d19be5,0x086756f,
- 0x0b36a82,0x1d09c8c,0x104efb6,0x1cd9d74,0x02490f4,0x134c52b,
- 0x0fc7cf2,0x041b4de,0x1ab3bb7,0x0eb1a38,0x0845b50,0x07a6c12,
- 0x1222730,0x14f7006,0x0118ee9,0x1fa9980,0x045fd17,0x0f26b14,
- 0x11eb182,0x1015b93,0x1603b2c,0x17de531,0x126917e,0x177e2df,
- 0x04bc94a,0x003fbfe,0x05a6104,0x09f4e96,0x07c916b },
- { 0x0bac2d4,0x137c8bc,0x01d7040,0x104c035,0x0a2e809,0x19eb204,
- 0x09db801,0x1115a5e,0x0fcc1fb,0x01b0862,0x0ca47d1,0x104594d,
- 0x1c5727b,0x0476307,0x1154cb2,0x1a9160c,0x099ed9a,0x1a8f244,
- 0x150fc40,0x16916be,0x0eeb841,0x1f6ac8e,0x09b32c6,0x19eb517,
- 0x0df0f9d,0x0da7e25,0x02cd1f7,0x14f9404,0x04c5213,0x066165a,
- 0x112a86b,0x00a4f81,0x13b6828,0x1e7a83b,0x1041c08,0x0d546e9,
- 0x0b74c92,0x1e88003,0x141f1cc,0x0deef51,0x01ff391 } },
- /* 232 */
- { { 0x197939d,0x0c7f27c,0x0ecea88,0x16f22b0,0x1d4dfbb,0x1bab059,
- 0x0d76a1f,0x131674f,0x15da92c,0x0e01400,0x19bd2aa,0x155a8cc,
- 0x17e1eb4,0x0a674ee,0x0c5e944,0x060ec5d,0x0a4ef8f,0x17a3533,
- 0x043951b,0x168b8d0,0x04dd900,0x0c25d78,0x1debc89,0x109a85f,
- 0x1c8725c,0x1ef1e60,0x1639320,0x0127e44,0x0d88b23,0x0f208b8,
- 0x1118beb,0x1580edc,0x19612e4,0x08a0df0,0x0d18cb7,0x15e91ae,
- 0x125e34d,0x18fbacc,0x0432706,0x0ac0e57,0x019ed1a },
- { 0x0735473,0x1fe6f36,0x10fa73d,0x0ec0077,0x0ab88e6,0x0ccddc5,
- 0x1f2f3ec,0x17a2430,0x19acccc,0x1b98220,0x195166e,0x1e7961e,
- 0x02214af,0x17c9314,0x1b2068d,0x04170d5,0x1329f9d,0x0554165,
- 0x1dcf324,0x07f21ea,0x17e182f,0x15fb112,0x12bd839,0x08ec5be,
- 0x144bfbd,0x1a9f8c5,0x076e5c1,0x1291625,0x02c18e3,0x1074be1,
- 0x0b71ba4,0x0af7d2f,0x13d6208,0x11bfc9c,0x00b11ad,0x0bd1ae7,
- 0x11fed1d,0x112e65f,0x05667d9,0x1f2d0d0,0x06f31e0 } },
- /* 233 */
- { { 0x0b8f204,0x17f2ac1,0x152b116,0x0da6b16,0x0c0441b,0x0afaf6d,
- 0x19efeb3,0x126e427,0x1139bcd,0x08a6385,0x0f2ec06,0x0b032db,
- 0x01714b4,0x0f69ae9,0x0a5f4d4,0x03e41d2,0x0376a3e,0x0c7b204,
- 0x1cf35c1,0x15153a5,0x1f6d150,0x00ee6ec,0x1ecdba0,0x1eadb05,
- 0x0eb655c,0x110ad2a,0x124aa96,0x0c20a01,0x089f037,0x05711d8,
- 0x1a34434,0x18856cd,0x11b2079,0x146a424,0x18f43bb,0x0a95e35,
- 0x01556f4,0x1f26142,0x09f984d,0x010c7b1,0x0875e33 },
- { 0x16c0acc,0x07eee57,0x1023720,0x0d763cf,0x15ad1e6,0x02c2d6e,
- 0x1eb860a,0x14db8e2,0x0275c7d,0x0e2a1a0,0x0e7856f,0x10a5a4d,
- 0x10f4b4c,0x1502fd2,0x0287efd,0x19664be,0x047817b,0x0e37c0f,
- 0x03fcb87,0x1a8650e,0x17fc2cb,0x0b33e3f,0x0289240,0x10b4d89,
- 0x1acb7b5,0x02be822,0x11199b0,0x1d2e55a,0x17d63d2,0x03e7f36,
- 0x1131d36,0x01c4e82,0x1067d87,0x0c2577b,0x15ea2c9,0x1765942,
- 0x15f0fde,0x0e2dfdb,0x1802525,0x103e70d,0x05abb05 } },
- /* 234 */
- { { 0x0c97f57,0x11695f8,0x031e2f9,0x032c5e5,0x0fe0487,0x1a855d8,
- 0x0919d1e,0x1db8a91,0x144fa09,0x1593701,0x16a5bbd,0x0dc7560,
- 0x02fd44c,0x1873574,0x0c00cb1,0x1133bdb,0x02bd7e4,0x1145ea0,
- 0x0df0470,0x05d2c73,0x171643f,0x0767489,0x03b0ff0,0x1fa1f18,
- 0x18bc902,0x1d63b4d,0x09f2af0,0x1b39675,0x124cc99,0x0449034,
- 0x053a22a,0x084c120,0x11461aa,0x13cf052,0x0a2e58b,0x018fe95,
- 0x0b1b3e8,0x1810854,0x192f13b,0x10037fd,0x0705446 },
- { 0x01901c1,0x1eb8989,0x12abeac,0x0ffd5aa,0x090a262,0x045d11f,
- 0x14a16f0,0x0fcc9ed,0x136ec22,0x0cc980a,0x0646ae3,0x15720d8,
- 0x0c99a16,0x1b24e71,0x0c73d6f,0x075010d,0x15966be,0x02c9033,
- 0x12e8b3c,0x06c4f39,0x1486188,0x03f7fa9,0x0b055ee,0x04475e4,
- 0x098964b,0x12bdfd6,0x002ab9e,0x1a1fa9e,0x018a80c,0x1ca0319,
- 0x13b6b76,0x1bf11e2,0x044bb79,0x16cfe9c,0x0f52dc7,0x0d8367c,
- 0x1620503,0x11a509e,0x029adb1,0x19f70d0,0x06f56ae } },
- /* 235 */
- { { 0x1205c5d,0x0e401ec,0x04a6c07,0x1ace247,0x08955f7,0x0db2b2b,
- 0x0fff676,0x1fc7bd7,0x0d3b1ac,0x0221caf,0x13bbfee,0x1642c12,
- 0x0b04328,0x114c8ff,0x0c7fea0,0x1a0eacc,0x0e6190d,0x086ef33,
- 0x015df01,0x0078abd,0x040775b,0x0fc8b91,0x1b24739,0x176747e,
- 0x08a408e,0x1cb4d14,0x0816284,0x1a6edf1,0x0e06761,0x0a2bcd3,
- 0x023ce96,0x0f6e3a5,0x03029c5,0x0186008,0x10a2d13,0x181087e,
- 0x130e0b9,0x1357fc3,0x112b763,0x0229dac,0x07b6be8 },
- { 0x13aa54e,0x1c7251e,0x0268fb0,0x07b07aa,0x1023394,0x1caaf10,
- 0x0988490,0x089f095,0x1f51d3d,0x088238b,0x0938dca,0x0858fd9,
- 0x1e62d24,0x02fd2ae,0x16948f6,0x1436b18,0x0da851d,0x0637ae6,
- 0x000051a,0x1795504,0x02e0044,0x14700b8,0x1dd4079,0x14159d9,
- 0x19359e6,0x0597840,0x16b03bc,0x07bb4d5,0x164f013,0x16e47ec,
- 0x1625ebb,0x0a61721,0x0dacd0e,0x09175a4,0x15bee10,0x1c98bf5,
- 0x1700a1d,0x02760f6,0x151d08a,0x06bb794,0x086f9a8 } },
- /* 236 */
- { { 0x10cc69f,0x0c82aa2,0x063c387,0x1993dbf,0x10eb14b,0x1f5d00a,
- 0x139dfb9,0x0a63772,0x1998f8e,0x1bd339b,0x1bbbc17,0x09c6362,
- 0x1558838,0x0c2e2f0,0x04a1c8f,0x0a55577,0x145cbd9,0x07f28f1,
- 0x189059d,0x01dc50f,0x02f0c5d,0x178800c,0x1f7051b,0x1eb7c59,
- 0x19e92e7,0x09f07b9,0x1ed95af,0x0035675,0x08e2895,0x16ef28b,
- 0x12ac554,0x171dc20,0x00dfe31,0x0223aca,0x180f10c,0x0685246,
- 0x0460a91,0x03788a6,0x07e1a4c,0x15e076a,0x05bfa9f },
- { 0x07b258e,0x1fa9608,0x0770a88,0x17acc68,0x189e82b,0x1e7f8d4,
- 0x13b6208,0x03ea947,0x0719b49,0x02dbbca,0x0f7ee3d,0x0430486,
- 0x0e898c2,0x0249287,0x0776473,0x0ecaa1f,0x0ae4fa1,0x0a86151,
- 0x10c9fd1,0x1439c85,0x1e41f7a,0x0b2c1d8,0x04e856b,0x17f5b3c,
- 0x0d5a5a1,0x0e6cd50,0x02387ef,0x1639545,0x1f7f879,0x01db48a,
- 0x07abe4a,0x10fd034,0x10e4e0c,0x0694b60,0x0958420,0x1009fb9,
- 0x12755bd,0x064b0b0,0x1bb69ab,0x155051f,0x01b1266 } },
- /* 237 */
- { { 0x14ee49c,0x005003b,0x1f5d3af,0x0596c46,0x176f685,0x1c9c51b,
- 0x112b177,0x17bf80a,0x0b6fbfb,0x19c4764,0x1cbabb0,0x179ae8b,
- 0x1784ac8,0x18f6749,0x1159826,0x1f42753,0x0ac7de8,0x0b2b7db,
- 0x14cae1c,0x1bdae94,0x1f095f8,0x05d5444,0x0ac350a,0x16f5d85,
- 0x07f2810,0x1a621d9,0x1bfbb2c,0x0c84dc3,0x09c2db2,0x0db5cf4,
- 0x041110c,0x0724221,0x0c4bc5d,0x0082c55,0x0da13f6,0x1d24dee,
- 0x071ef60,0x17d348a,0x1e88d14,0x1b6431a,0x033517f },
- { 0x13c4a36,0x19fa32c,0x07baa70,0x106d635,0x0c69d71,0x1bdf765,
- 0x0307509,0x138ab44,0x07e4f17,0x1465127,0x162288f,0x06d3a8d,
- 0x1857373,0x1983817,0x13ac731,0x1aae8e3,0x19735ee,0x1458c26,
- 0x1c133b0,0x0a2f440,0x0a537f4,0x0c6b831,0x1fc4a74,0x1aefc38,
- 0x0571bb1,0x05903d2,0x060d436,0x0e95861,0x1ab8ef7,0x08cfb0f,
- 0x06c9eca,0x16bbb00,0x1c4cc13,0x02c8fd3,0x156c50d,0x07cfcc4,
- 0x1a3592b,0x0c9bdc2,0x1d524d2,0x07a618e,0x031fac6 } },
- /* 238 */
- { { 0x0913fb6,0x0678d82,0x1accbba,0x002ed34,0x1e40135,0x1f30f83,
- 0x0edc5e0,0x1fcf21d,0x1e27f2f,0x12883fc,0x1e26fc7,0x0cffdb5,
- 0x0d124ba,0x12c6f34,0x0480387,0x157dc31,0x0a36df5,0x14b1399,
- 0x12fad2a,0x186f9f5,0x1a7672c,0x0b749e2,0x0c317ea,0x0c67277,
- 0x0317cde,0x0b62615,0x1e0c2cb,0x0fecbcc,0x05b96a9,0x1a820df,
- 0x1b52bf0,0x0e619cc,0x1f40a60,0x06c2785,0x09e64d0,0x112d437,
- 0x07626b0,0x10c12a0,0x12fd4fb,0x1b6f561,0x001db35 },
- { 0x00efee2,0x1de16d6,0x0d15b83,0x1bae3b7,0x0406ebc,0x1b4d5f4,
- 0x178f866,0x045ce57,0x137e018,0x0e5bf30,0x162d312,0x0038228,
- 0x03cbb8c,0x143e2eb,0x02d211d,0x0ceec84,0x1a1454c,0x00c23ef,
- 0x060e746,0x1d223ba,0x1046bed,0x0493c6f,0x06e7727,0x03466d8,
- 0x1d62b88,0x16e14a5,0x064f9de,0x1e12d0f,0x0e3ba77,0x0332a1e,
- 0x1f1eb24,0x0eec9dd,0x08695fd,0x032e78a,0x1c2e6b1,0x03c1841,
- 0x06e2cdb,0x1746945,0x0d0758d,0x119aeaa,0x07b6ba9 } },
- /* 239 */
- { { 0x1881ab4,0x0cf01e0,0x12232c7,0x0b662d1,0x19c25d5,0x11b2670,
- 0x0f51ca0,0x049505a,0x0f161aa,0x0cca1c8,0x0ecb265,0x1801c3d,
- 0x157838b,0x1ef63d3,0x1577f32,0x044151f,0x1c24ff7,0x026e901,
- 0x1bfbfd2,0x02e7661,0x0b355ec,0x198b214,0x067c74a,0x0dd027f,
- 0x1d9e505,0x0f8e035,0x0b02cc6,0x0522e57,0x023b159,0x11c27e9,
- 0x1b5ab83,0x131a123,0x101059e,0x032475e,0x0392995,0x10d662d,
- 0x1375e79,0x08a23f9,0x1142088,0x032e3d6,0x047e810 },
- { 0x08c290d,0x0ea2d5e,0x0ce9c11,0x0b021f6,0x033d135,0x1ddf97d,
- 0x002491b,0x1b2575e,0x1385c7c,0x07f9f8d,0x066172b,0x01d9c2c,
- 0x08c5b15,0x154443a,0x1b829fc,0x1b9918d,0x08e5e88,0x1cec446,
- 0x12e1910,0x0e6be59,0x16f24dd,0x1b9e207,0x130784e,0x1fdad23,
- 0x025fff3,0x0e3fe1d,0x1c95fb9,0x1968762,0x0db1354,0x07c9f99,
- 0x14ea995,0x005bfe5,0x0f58d0a,0x131ca22,0x0622a32,0x0ef1c7e,
- 0x13e8669,0x1236677,0x1a1ece5,0x005c1b9,0x0785b19 } },
- /* 240 */
- { { 0x12f9a20,0x111b0d4,0x103bf33,0x0f3ac8a,0x17bdca8,0x006be2d,
- 0x06a1474,0x04da8e7,0x02e97c9,0x13d646e,0x09aa2c1,0x1ffcf1b,
- 0x092aea3,0x11e28db,0x0a2fd51,0x02834d0,0x0797155,0x03b78e2,
- 0x05df604,0x197dec7,0x0e7af4b,0x04aa0de,0x1d6f125,0x0e0834a,
- 0x14066d1,0x157f00f,0x161dd57,0x0505ab7,0x07ae80d,0x03eeacf,
- 0x1bdb884,0x0705566,0x056e166,0x0eb1a55,0x1bdae74,0x08cbdd1,
- 0x0e4ed84,0x110b056,0x0b09e66,0x0cf6ee2,0x06557c3 },
- { 0x15b6e52,0x181346b,0x1a25586,0x00231a1,0x1081364,0x1758d75,
- 0x0ccc1a8,0x1299fea,0x06d0908,0x1231113,0x1075213,0x044f6bf,
- 0x0dbb351,0x0bd1831,0x197a81d,0x05b8b26,0x17bd66e,0x1a65651,
- 0x0425621,0x1afa477,0x13bf220,0x09c6223,0x0703f4e,0x10fb49f,
- 0x1370a67,0x05c56ff,0x13415fd,0x1e15d79,0x13f33ae,0x1a2608b,
- 0x0d08179,0x124b44d,0x0d1f0a5,0x1ddfedc,0x1d25c8b,0x09526c9,
- 0x0227d28,0x08d73bc,0x02ad322,0x00941c1,0x015c40d } },
- /* 241 */
- { { 0x00e18d1,0x18b4d15,0x1f0a6eb,0x0e98064,0x1971c01,0x0131674,
- 0x0c8fdef,0x0f3b034,0x1818ff3,0x04cedc6,0x0f0cc08,0x0c7a99a,
- 0x13663f6,0x008d02a,0x14c970c,0x148e1de,0x1dcf980,0x04e6b85,
- 0x127b41c,0x08a5a23,0x0e13e64,0x1a5633b,0x0befd0f,0x10b854b,
- 0x0c0a6ae,0x0624bdf,0x011c124,0x1f55caa,0x1e6ba92,0x1d43a48,
- 0x0502ae5,0x155f532,0x055f537,0x132aba0,0x16ecd9c,0x1ff92b5,
- 0x1119d6b,0x11a1dce,0x078dd91,0x1413a68,0x0788e94 },
- { 0x053461a,0x137f2ce,0x1bb414e,0x1c11c76,0x15ec897,0x146c9cb,
- 0x14bcc1d,0x09f51eb,0x0cc213d,0x1eb5ffb,0x0051f26,0x16820b6,
- 0x09590c7,0x1e3dc0b,0x08d8a2d,0x0f1d241,0x06e5bce,0x1e33504,
- 0x17b0763,0x09a5049,0x0ce93dd,0x0260cee,0x0242b3d,0x086b4fd,
- 0x0d875d8,0x0d93319,0x07a98e0,0x1202cf8,0x1cc1285,0x0bcbf86,
- 0x18ec896,0x08df1a8,0x1a612b4,0x17d1cc8,0x15e3057,0x108430b,
- 0x119f678,0x0af61b8,0x1aa4f7d,0x18cf01b,0x091b19c } },
- /* 242 */
- { { 0x15d8b80,0x1384ee5,0x183bafc,0x05f86ac,0x03b9618,0x0f7cb48,
- 0x1664415,0x08570e7,0x1e47c43,0x0f525a6,0x1e219f4,0x0489aa9,
- 0x0fcc4b9,0x1ec6bbf,0x0c68b2b,0x1eac727,0x0e7e8c1,0x1034692,
- 0x065cc15,0x1f576c9,0x174f5f5,0x0802a11,0x00c9231,0x071d227,
- 0x1e2b53f,0x05f61b6,0x0deeda0,0x1a0fd1d,0x1313b5e,0x09ebec7,
- 0x04a5920,0x15fa5a7,0x1b6a069,0x0518d3d,0x1238212,0x0b80db0,
- 0x04f0c32,0x13fd97f,0x10ebda1,0x0680ce6,0x03c2ba8 },
- { 0x13ad63b,0x16bbace,0x0c7ead8,0x0eb3c1d,0x1f9cab9,0x02f08b9,
- 0x0a98ce2,0x13ce066,0x0e20b2f,0x11657e7,0x12a51fc,0x14fc93d,
- 0x0db529b,0x11146c4,0x0550859,0x12ac249,0x1ec3923,0x0407511,
- 0x10dc191,0x120fcfa,0x0e441b8,0x0aab1f2,0x12dfe91,0x14961f4,
- 0x1829eb2,0x1c96654,0x1120181,0x014e414,0x0991ced,0x0d06123,
- 0x1ae3337,0x0691a10,0x1a2325b,0x177099b,0x1427d82,0x1eacdda,
- 0x147f253,0x1870488,0x0ef60f4,0x14b820e,0x01fa627 } },
- /* 243 */
- { { 0x0478fd4,0x1115121,0x0002844,0x02ce164,0x0cf4c6f,0x0ce36f5,
- 0x0c13e0d,0x179ee37,0x17b93cd,0x0c71414,0x16d82d8,0x15c6461,
- 0x0996e1b,0x0b2d9d9,0x1ff4ed2,0x0abbbe2,0x1c6bc70,0x1d2c31c,
- 0x0e05f5f,0x1525da9,0x08a4c3e,0x13691d8,0x0420aca,0x02e021d,
- 0x1228adc,0x0cbc238,0x1883a27,0x0a773c8,0x1f77c97,0x07cb81f,
- 0x1973df9,0x0577cc1,0x03f8245,0x100beb6,0x12f2e03,0x173c865,
- 0x00a45ed,0x052d66e,0x1d0f854,0x00a8f30,0x067b8bd },
- { 0x0797cf7,0x03cda7a,0x180b998,0x15a07fb,0x031c998,0x055778f,
- 0x1d8e953,0x022b546,0x0f76497,0x06cd0ff,0x06c69d9,0x18e75e5,
- 0x137ce0d,0x1db3654,0x186c20f,0x0d4f0cc,0x0fe32fb,0x0dfa6ba,
- 0x1c02958,0x0dde13b,0x115925f,0x1fc18e8,0x0af10e0,0x0d7bc6e,
- 0x0c10c53,0x12db6ae,0x1e20b31,0x0928bf3,0x1a99b8d,0x0789a28,
- 0x09207d2,0x0d75823,0x00161cd,0x125050a,0x13b7c62,0x093b29a,
- 0x0467a82,0x1b18b2d,0x0bb7d94,0x1534993,0x074297a } },
- /* 244 */
- { { 0x01124ba,0x1ac5271,0x0f4b125,0x1150fff,0x19bd819,0x131c544,
- 0x13744f5,0x0ec8bf7,0x015f7bf,0x0322ffc,0x1b55fa5,0x06df89c,
- 0x195fa67,0x09730ed,0x0b991d6,0x128943d,0x00ccbdf,0x03cabae,
- 0x16cc75d,0x02608e4,0x1ae6a3d,0x112655a,0x1e2077c,0x0510fe4,
- 0x1d2991a,0x02cc6df,0x0289ab1,0x07a0eb2,0x061d4a2,0x0c296c3,
- 0x1dcb962,0x1140281,0x1b5c13b,0x1bc151b,0x0678fec,0x001f283,
- 0x1bc14e9,0x15502c8,0x0ec49c8,0x175aab7,0x089aab7 },
- { 0x056bdc7,0x02d4b6b,0x14ee2cd,0x1fc2ed9,0x03bdc8a,0x0b2621a,
- 0x062d8cb,0x083ad2a,0x179b82b,0x079b253,0x033e0bf,0x089dff6,
- 0x1b907b3,0x0880943,0x14320f1,0x121dfe7,0x05934cd,0x074f935,
- 0x1c20ad7,0x0b55e40,0x0165e5f,0x1af673e,0x13adcb1,0x130d9ac,
- 0x10a81be,0x15574ac,0x1ffc54d,0x1dde931,0x063d5ef,0x0121d41,
- 0x0ac1158,0x0a95d0e,0x00be14f,0x03b434a,0x13278c8,0x157dcf7,
- 0x01bc4d7,0x0b513ee,0x0ad1b52,0x12eb281,0x0002dc2 } },
- /* 245 */
- { { 0x09d60c3,0x19c9bdb,0x1d57b94,0x05fd2e4,0x060be55,0x0392d31,
- 0x0de3703,0x185623f,0x0cab2e7,0x0c1613f,0x0c8b2da,0x1bb3dc4,
- 0x174bcee,0x0913827,0x0ac67b4,0x0c2cb2a,0x085854a,0x096fa61,
- 0x0c64921,0x016b7ef,0x152aba4,0x08008cf,0x1f2f2a5,0x15bb0df,
- 0x1d1cbe5,0x160ba33,0x0f6743c,0x17ea6df,0x14ebc99,0x171a5c6,
- 0x05cf0a5,0x00b5026,0x095f8f4,0x1afbb02,0x0359ccc,0x0518b3d,
- 0x0054212,0x09e9927,0x169cc2d,0x06a7877,0x04d5645 },
- { 0x05c0877,0x17c003f,0x1d91cc8,0x0c19534,0x081b43e,0x00938b2,
- 0x13d2e8b,0x184463e,0x1ed3136,0x0acb42b,0x0cc3782,0x064471b,
- 0x1cae826,0x0cc8475,0x0beb502,0x0463cca,0x014af0d,0x085c68c,
- 0x072f0d2,0x018a961,0x1f8e268,0x19a5f9d,0x1f5158b,0x056b2bf,
- 0x1090b09,0x01a14c2,0x117857f,0x0de7394,0x178168e,0x08c8de1,
- 0x01dc05d,0x108b495,0x06944b3,0x0aa0d48,0x1d2a0a8,0x09598da,
- 0x1155c8b,0x04dd59d,0x1b18ab7,0x19cee60,0x01f2f89 } },
- /* 246 */
- { { 0x0ffefdf,0x1f7a0cd,0x15ae094,0x0a99f24,0x05d7ece,0x0272418,
- 0x00bcad1,0x03e6ee0,0x1cba547,0x0c4baaf,0x0f8056c,0x0797ab9,
- 0x09c8848,0x1505c21,0x13df1a5,0x1ec3a4a,0x1d461f3,0x18c4285,
- 0x0891c55,0x0421121,0x0b0d7ba,0x176c977,0x0d6aef0,0x0bbd912,
- 0x0cabe96,0x0257dab,0x12f155a,0x1b446e4,0x1a74929,0x1cb7b53,
- 0x11b62e8,0x05de974,0x0b90db7,0x0d93d7e,0x1f82642,0x1dba469,
- 0x16f4366,0x19e0b23,0x0351ef7,0x0fe2fca,0x009c809 },
- { 0x0050c07,0x058a030,0x0df9a81,0x108751c,0x029e831,0x0af20fe,
- 0x0a6caed,0x0759728,0x02ce60e,0x097f52d,0x160bd3b,0x1fe7b73,
- 0x1adc7b1,0x143e9bf,0x1afb30d,0x0ea7291,0x032ecb0,0x13c8a9f,
- 0x1c1d5a4,0x000a9ea,0x19ba6a6,0x064003a,0x0e1c734,0x1245be2,
- 0x1386f30,0x1be0bd3,0x1a0cd5e,0x1d3f8b3,0x0151864,0x19d49ca,
- 0x024749a,0x1a69b71,0x12a0222,0x06db8c8,0x13d167f,0x0ccce5f,
- 0x04ff303,0x1f9346a,0x185b168,0x1a6d223,0x06f113e } },
- /* 247 */
- { { 0x036f1c9,0x0efac8c,0x01f54aa,0x0a84646,0x1a6519f,0x16942d7,
- 0x11c0577,0x0eb080d,0x0af627f,0x10aa2e5,0x0105f42,0x03dd59c,
- 0x03ae111,0x13089a2,0x0a2f7da,0x19797f6,0x0ab52db,0x06f4f78,
- 0x004f996,0x183036f,0x1225e9d,0x0dcc893,0x02c76af,0x10298b2,
- 0x198e322,0x13f2f82,0x1b64d3b,0x18772cd,0x1ba4bf5,0x076d5cc,
- 0x19d3ae1,0x07836ab,0x0919a34,0x14307d9,0x0d2652a,0x0d535bb,
- 0x16811ff,0x19106ff,0x00f886d,0x077a343,0x06636a2 },
- { 0x0587283,0x0ad1690,0x11777d7,0x13de0ff,0x0b3822c,0x1b6f1c0,
- 0x0f5543b,0x03a2f0d,0x125d167,0x11e7c83,0x0c77bc5,0x0e3e39b,
- 0x0a74bf9,0x04217e2,0x127a0c0,0x0a9eeae,0x1c727f8,0x187176d,
- 0x13892b2,0x0f77b57,0x108dbb2,0x1602df6,0x106c673,0x1920979,
- 0x0123ef7,0x16dd56d,0x0f62660,0x04853e3,0x16e6320,0x10b732f,
- 0x0c9274d,0x1dcb3fa,0x1789fa8,0x194fad1,0x0eebfa7,0x002c174,
- 0x0f5378a,0x169db0d,0x09be03c,0x0ece785,0x07aeecc } },
- /* 248 */
- { { 0x043b0db,0x03abe6e,0x12b7ce9,0x0b30233,0x1d8a4e8,0x0b60ab1,
- 0x16fd918,0x12ff012,0x04f533e,0x11503de,0x1f16b4f,0x06ce739,
- 0x0ca9824,0x06b4029,0x09ae8eb,0x1d8cc31,0x1908a1c,0x0deb072,
- 0x0ac6da5,0x10834a0,0x195bae3,0x090c850,0x061b7fc,0x063fb37,
- 0x0beacad,0x1bd96f9,0x1331ca3,0x1b12644,0x10a9927,0x139c067,
- 0x1ab0e3a,0x0b0d489,0x0439a80,0x0f81e54,0x1fc0585,0x0bdbcfe,
- 0x07a1f88,0x124c841,0x1d91520,0x00d6f14,0x028ec40 },
- { 0x0fe0009,0x1061751,0x13a7860,0x05e270e,0x011ba5d,0x126da97,
- 0x0915314,0x0532ea4,0x07fede5,0x0a3ba13,0x1403513,0x0335364,
- 0x0b01d34,0x0c34922,0x0229248,0x1c3739c,0x023dd1b,0x05d0b48,
- 0x0a8c078,0x187ca86,0x0788242,0x1d38483,0x06d5bde,0x0951989,
- 0x12a09c7,0x01cf856,0x075dbe5,0x139a308,0x1fb60e9,0x1f05b10,
- 0x0d3b76b,0x17872ec,0x16bee54,0x1854202,0x0183fdf,0x1e8ca7f,
- 0x0011c0a,0x0a43b79,0x0970daf,0x18e192a,0x0134f4c } },
- /* 249 */
- { { 0x138dff4,0x0d1f674,0x068e588,0x1690d4f,0x1d101a7,0x0a829bb,
- 0x1be5f7a,0x1b7e589,0x1e65d87,0x18c204c,0x0e33ebc,0x1ff66e7,
- 0x0eb89c7,0x142148b,0x0ea9417,0x14ec8d1,0x1094ebe,0x1d3c87e,
- 0x164a24a,0x1beda9c,0x1741679,0x0e7e7f6,0x0808ccc,0x101fe42,
- 0x0efd298,0x08085fa,0x1740d11,0x194f1bb,0x0858c87,0x0f659a1,
- 0x1e8b2c2,0x04aea90,0x05eb6dc,0x18248cf,0x0857af2,0x02a0ceb,
- 0x1381d47,0x0973a7b,0x15bd027,0x05307a7,0x06ea378 },
- { 0x05cc40a,0x004a5a7,0x17ef197,0x1435e6f,0x1a2e3f6,0x0137223,
- 0x1fa77e4,0x0a7dece,0x193880f,0x1c3c64a,0x112aa6d,0x160efec,
- 0x1c4aa30,0x1790461,0x1145a0c,0x0cc7741,0x1ae658d,0x03e013b,
- 0x187644c,0x1678715,0x1ea4ef0,0x13b4ae1,0x0c0bcde,0x018bc1a,
- 0x0c1c56a,0x1cff002,0x10832f3,0x1fa92b8,0x0a0e7c9,0x0dceab4,
- 0x151c1b5,0x0b250c8,0x1225dff,0x1384e45,0x1196366,0x10a4fa8,
- 0x07c08d6,0x02ac6d4,0x1c1f51f,0x1cd769d,0x0606ee6 } },
- /* 250 */
- { { 0x1c621f6,0x0cfe3ab,0x15200b6,0x02ffd07,0x092e40c,0x18ccd81,
- 0x11e867b,0x0cc37bf,0x0e62c76,0x0502081,0x0e1d4de,0x06e1cce,
- 0x0f16cda,0x0f1d32d,0x0065d34,0x1c41379,0x048f78f,0x10cba10,
- 0x1d66071,0x140b157,0x102dc83,0x1a4e44b,0x1c9ac90,0x034cf15,
- 0x12f1e9d,0x114cc45,0x03fca6b,0x0e57f36,0x1cf5ec4,0x11cc0eb,
- 0x162850f,0x164d1bb,0x09d7e45,0x07fbb4e,0x09557f1,0x062cd9b,
- 0x04aa767,0x0266f85,0x01c1d81,0x1efd229,0x049dba6 },
- { 0x158e37a,0x03fd953,0x1d98839,0x0e5b1d5,0x0f6b31d,0x0e11085,
- 0x157e5be,0x0566a55,0x190efc3,0x049fb93,0x12c9900,0x13b883c,
- 0x15435c9,0x02d8abc,0x0a1e380,0x06aeb7f,0x0a40e67,0x0cce290,
- 0x1fba9d6,0x104b290,0x148bca6,0x00f8951,0x00a7dee,0x1459c6a,
- 0x1cc182a,0x162d2a3,0x0fab578,0x023b0e9,0x082cdfa,0x1a4daab,
- 0x19a6bc0,0x1177d1c,0x06ebfea,0x1ca55fc,0x1e0bd54,0x1e7b570,
- 0x0bc8eb8,0x05fbcbf,0x19e3116,0x14936fb,0x04890a7 } },
- /* 251 */
- { { 0x1a995f6,0x0cb44c6,0x1bbf5ca,0x0fd8c2a,0x139eaae,0x15416ae,
- 0x01030d5,0x1fcd2b2,0x1c135bc,0x1023590,0x0571e2c,0x16c81eb,
- 0x00ea720,0x13e2fda,0x0093beb,0x077f805,0x14c0edb,0x14bec7e,
- 0x07c93af,0x00520af,0x06b912f,0x078c3f5,0x05bf11f,0x13ab846,
- 0x1fd2778,0x166610c,0x122498f,0x0674d6d,0x0d30a62,0x1a5945b,
- 0x00208d8,0x193666d,0x0352e25,0x1ba2b65,0x1b29031,0x172711a,
- 0x1c92065,0x12ad859,0x069dbe3,0x0960487,0x05c1747 },
- { 0x0accab5,0x073e145,0x016f622,0x0d559da,0x1802783,0x1607b28,
- 0x01df733,0x10430b7,0x0125c28,0x1e56e0e,0x1715324,0x0814cff,
- 0x1345df5,0x013c451,0x0f21b8b,0x1f4589e,0x069e3a0,0x19f43a2,
- 0x1ce60f3,0x1b548e4,0x18a5c59,0x05a54b6,0x0c18f12,0x1cb122a,
- 0x12bcfc2,0x061e1c6,0x1e1390a,0x01cf170,0x04fd539,0x1496786,
- 0x0164028,0x1283cc0,0x1f92db7,0x09d0e5b,0x0905b29,0x0f2acf2,
- 0x11ab0fa,0x1b798ed,0x10230d7,0x168f6b0,0x05d675e } },
- /* 252 */
- { { 0x10c6025,0x10d3bc3,0x1f2abbb,0x0f2345b,0x1c4a23b,0x15b2627,
- 0x18310e1,0x162f61c,0x1e5ae72,0x0ead8be,0x1e884b5,0x11593dd,
- 0x166dfc8,0x0a01c5c,0x1abbefb,0x05d989f,0x1568e2d,0x184cd61,
- 0x04abc81,0x1d4c240,0x1218548,0x0dc4e18,0x13ffb67,0x1cce662,
- 0x091c4e0,0x0700e0f,0x1ebe0c0,0x01376c9,0x13c3be0,0x080e33b,
- 0x1ea1e01,0x1810433,0x0cd6ede,0x1837ff0,0x181fe06,0x1ef80ab,
- 0x0080b36,0x1b1fce7,0x1b28e0a,0x15e153f,0x002fccb },
- { 0x07cac61,0x0ea68da,0x04b2664,0x0f570dc,0x0e9d168,0x0a78211,
- 0x157b0ae,0x1cb18d0,0x148e648,0x120028c,0x06b15f2,0x1f65df1,
- 0x0d9ba91,0x0df3c96,0x1064818,0x03c2a9e,0x1cbbd0f,0x0c16910,
- 0x1111006,0x1d6277f,0x0fdc062,0x194cbc8,0x1cea5f0,0x0cf4c97,
- 0x16d9460,0x1ad273c,0x01b48dd,0x08dba60,0x1f0f23c,0x026af6b,
- 0x15e19cb,0x0769ec7,0x01851dc,0x139f941,0x1833498,0x1ea1475,
- 0x0ac60f6,0x072c7e7,0x1551600,0x0ac2708,0x056f1e4 } },
- /* 253 */
- { { 0x0c24f3b,0x059fb19,0x1f98073,0x1e0db02,0x19eb1c7,0x1133bb4,
- 0x102edaa,0x1c11b8c,0x00845d5,0x01c57ff,0x09e6a1e,0x1963f03,
- 0x10f34fe,0x1f340cd,0x0b8a0b4,0x14970d4,0x1ce8237,0x0e25cbb,
- 0x1d8d90e,0x0d67b70,0x04970f4,0x004bcb8,0x09197d5,0x1237c87,
- 0x0876287,0x1636bf0,0x10d0663,0x004416d,0x1d94bb0,0x031b849,
- 0x0c95ece,0x053ad21,0x0012e16,0x168d242,0x16d482a,0x0605d93,
- 0x05dc34e,0x1717e34,0x033e2bf,0x06c4aa0,0x0911d19 },
- { 0x1e5af5b,0x0deac7a,0x0a9c4ec,0x16f6d44,0x07ca263,0x17956e5,
- 0x1b137ce,0x17b56d7,0x1a04420,0x1328f2c,0x0db0445,0x1676974,
- 0x103b448,0x1fa1218,0x18aff37,0x0d97678,0x0a5f1a9,0x06f0ae2,
- 0x1347e60,0x15b143c,0x1a3abe0,0x071b339,0x004af45,0x02559bb,
- 0x03af692,0x0e72018,0x115d825,0x1edb573,0x1f5ca58,0x0415083,
- 0x0c1f7c6,0x1112d47,0x103e63c,0x1d9f85c,0x1513618,0x1dea090,
- 0x009887d,0x080cdce,0x0e19579,0x1fd41ea,0x02be744 } },
- /* 254 */
- { { 0x150f324,0x0682fad,0x1e88153,0x083d478,0x19b1eb2,0x1c735bd,
- 0x02971ff,0x104950b,0x0ec0408,0x01c817f,0x0ea6f76,0x0929a19,
- 0x1e72b26,0x194e4f0,0x05dbe42,0x1b703a0,0x102ceba,0x002ea75,
- 0x1cae2ff,0x080b626,0x1190874,0x00bcf56,0x17104a2,0x056919a,
- 0x03dd3ec,0x019ea25,0x1cfd354,0x089334e,0x0c3a098,0x1c66ab2,
- 0x0eecdec,0x1e85d00,0x0e99497,0x08c5940,0x1e82e3d,0x0980f68,
- 0x1568fde,0x0871e29,0x039eb1c,0x05f9d5a,0x0735f54 },
- { 0x0380039,0x0d0b89c,0x07232aa,0x0fee9a3,0x0dfafe1,0x1e0d45d,
- 0x0e4fb32,0x00b25a8,0x1fe0297,0x02edf9c,0x1a6cd8f,0x0b57261,
- 0x0a4552b,0x157ea4a,0x198c0c8,0x15886fd,0x0d73f02,0x041354d,
- 0x04d58a6,0x0a6ac53,0x1b3998c,0x03b9a15,0x0321a7e,0x1f36f34,
- 0x10020e4,0x0d4eba8,0x134d1e2,0x06c3a34,0x0856376,0x0add67d,
- 0x193c37b,0x111580f,0x07ee73f,0x18e5ea0,0x00fc27b,0x1bf58fa,
- 0x0d475ba,0x0b4be5a,0x0e67897,0x13a297a,0x01e984c } },
- /* 255 */
- { { 0x050c817,0x082b0a4,0x04b71db,0x1269130,0x108a5b1,0x0c65df5,
- 0x1455179,0x0b4e4e7,0x04be61e,0x0805afd,0x1ae3862,0x0d23af5,
- 0x0baa088,0x09ad1ea,0x1999abf,0x0fa7bcc,0x19957ec,0x01c5160,
- 0x1a35bd7,0x091d1ec,0x1746a06,0x163d6e0,0x07e7f24,0x060cb86,
- 0x116c084,0x13491d0,0x01879ab,0x0c6e144,0x047e733,0x1b9b155,
- 0x01189b0,0x1bdfedb,0x00c25f2,0x1696a2a,0x093336f,0x0530090,
- 0x039a949,0x0dfe700,0x0b8052d,0x0aced28,0x06c474a },
- { 0x188e3a1,0x1cd20be,0x10a8eba,0x118908e,0x105d3c8,0x1308988,
- 0x1a344ff,0x117cb3b,0x11a869e,0x047adb5,0x1764285,0x18b354e,
- 0x137a8ab,0x110a300,0x0326f1d,0x099b25e,0x147c382,0x121fd53,
- 0x09742e4,0x0c7430d,0x0ebc817,0x1e4de5d,0x0ef0d06,0x08ba3bb,
- 0x13160f7,0x0fa70c0,0x16dd739,0x0a79ca5,0x0de4c2a,0x13366a8,
- 0x1b457ab,0x0ebaeca,0x0d8996c,0x12a952f,0x1c47132,0x09c9fea,
- 0x1c5305b,0x0f4c2d1,0x08b3885,0x0a9f437,0x06b2589 } },
- };
- /* Multiply the base point of P1024 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * Stripe implementation.
- * Pre-generated: 2^0, 2^128, ...
- * Pre-generated: products of all combinations of above.
- * 8 doubles and adds (with qz=1)
- *
- * r Resulting point.
- * k Scalar to multiply by.
- * map Indicates whether to convert result to affine.
- * ct Constant time required.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- static int sp_1024_ecc_mulmod_base_42(sp_point_1024* r, const sp_digit* k,
- int map, int ct, void* heap)
- {
- return sp_1024_ecc_mulmod_stripe_42(r, &p1024_base, p1024_table,
- k, map, ct, heap);
- }
- #endif
- /* Multiply the base point of P1024 by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_base_1024(const mp_int* km, ecc_point* r, int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_1024* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_1024 point[1];
- sp_digit k[42];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 42, heap,
- DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_1024_from_mp(k, 42, km);
- err = sp_1024_ecc_mulmod_base_42(point, k, map, 1, heap);
- }
- if (err == MP_OKAY) {
- err = sp_1024_point_to_ecc_point_42(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Multiply the base point of P1024 by the scalar, add point a and return
- * the result. If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * am Point to add to scalar multiply result.
- * inMont Point to add is in montgomery form.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_base_add_1024(const mp_int* km, const ecc_point* am,
- int inMont, ecc_point* r, int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_1024* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_1024 point[2];
- sp_digit k[42 + 42 * 2 * 37];
- #endif
- sp_point_1024* addP = NULL;
- sp_digit* tmp = NULL;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(
- sizeof(sp_digit) * (42 + 42 * 2 * 37),
- heap, DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- addP = point + 1;
- tmp = k + 42;
- sp_1024_from_mp(k, 42, km);
- sp_1024_point_from_ecc_point_42(addP, am);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_1024_mod_mul_norm_42(addP->x, addP->x, p1024_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_1024_mod_mul_norm_42(addP->y, addP->y, p1024_mod);
- }
- if ((err == MP_OKAY) && (!inMont)) {
- err = sp_1024_mod_mul_norm_42(addP->z, addP->z, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_ecc_mulmod_base_42(point, k, 0, 0, heap);
- }
- if (err == MP_OKAY) {
- sp_1024_proj_point_add_42(point, point, addP, tmp);
- if (map) {
- sp_1024_map_42(point, point, tmp);
- }
- err = sp_1024_point_to_ecc_point_42(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #ifndef WOLFSSL_SP_SMALL
- /* Generate a pre-computation table for the point.
- *
- * gm Point to generate table for.
- * table Buffer to hold pre-computed points table.
- * len Length of table.
- * heap Heap to use for allocation.
- * returns BAD_FUNC_ARG when gm or len is NULL, LENGTH_ONLY_E when table is
- * NULL and length is returned, BUFFER_E if length is too small and 0 otherwise.
- */
- int sp_ecc_gen_table_1024(const ecc_point* gm, byte* table, word32* len,
- void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_1024* point = NULL;
- sp_digit* t = NULL;
- #else
- sp_point_1024 point[1];
- sp_digit t[38 * 2 * 42];
- #endif
- int err = MP_OKAY;
- if ((gm == NULL) || (len == NULL)) {
- err = BAD_FUNC_ARG;
- }
- if ((err == MP_OKAY) && (table == NULL)) {
- *len = sizeof(sp_table_entry_1024) * 256;
- err = LENGTH_ONLY_E;
- }
- if ((err == MP_OKAY) && (*len < (int)(sizeof(sp_table_entry_1024) * 256))) {
- err = BUFFER_E;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- point = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 38 * 2 * 42, heap,
- DYNAMIC_TYPE_ECC);
- if (t == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_1024_point_from_ecc_point_42(point, gm);
- err = sp_1024_gen_stripe_table_42(point,
- (sp_table_entry_1024*)table, t, heap);
- }
- if (err == 0) {
- *len = sizeof(sp_table_entry_1024) * 256;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t != NULL)
- XFREE(t, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #else
- /* Generate a pre-computation table for the point.
- *
- * gm Point to generate table for.
- * table Buffer to hold pre-computed points table.
- * len Length of table.
- * heap Heap to use for allocation.
- * returns BAD_FUNC_ARG when gm or len is NULL, LENGTH_ONLY_E when table is
- * NULL and length is returned, BUFFER_E if length is too small and 0 otherwise.
- */
- int sp_ecc_gen_table_1024(const ecc_point* gm, byte* table, word32* len,
- void* heap)
- {
- int err = 0;
- if ((gm == NULL) || (len == NULL)) {
- err = BAD_FUNC_ARG;
- }
- if ((err == 0) && (table == NULL)) {
- *len = 0;
- err = LENGTH_ONLY_E;
- }
- if ((err == 0) && (*len != 0)) {
- err = BUFFER_E;
- }
- if (err == 0) {
- *len = 0;
- }
- (void)heap;
- return err;
- }
- #endif
- /* Multiply the point by the scalar and return the result.
- * If map is true then convert result to affine coordinates.
- *
- * km Scalar to multiply by.
- * gm Point to multiply.
- * table Pre-computed points.
- * r Resulting point.
- * map Indicates whether to convert result to affine.
- * heap Heap to use for allocation.
- * returns MEMORY_E when memory allocation fails and MP_OKAY on success.
- */
- int sp_ecc_mulmod_table_1024(const mp_int* km, const ecc_point* gm, byte* table,
- ecc_point* r, int map, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_1024* point = NULL;
- sp_digit* k = NULL;
- #else
- sp_point_1024 point[1];
- sp_digit k[42];
- #endif
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- point = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024), heap,
- DYNAMIC_TYPE_ECC);
- if (point == NULL) {
- err = MEMORY_E;
- }
- if (err == MP_OKAY) {
- k = (sp_digit*)XMALLOC(sizeof(sp_digit) * 42, heap, DYNAMIC_TYPE_ECC);
- if (k == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- sp_1024_from_mp(k, 42, km);
- sp_1024_point_from_ecc_point_42(point, gm);
- #ifndef WOLFSSL_SP_SMALL
- err = sp_1024_ecc_mulmod_stripe_42(point, point,
- (const sp_table_entry_1024*)table, k, map, 0, heap);
- #else
- (void)table;
- err = sp_1024_ecc_mulmod_42(point, point, k, map, 0, heap);
- #endif
- }
- if (err == MP_OKAY) {
- err = sp_1024_point_to_ecc_point_42(point, r);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (k != NULL)
- XFREE(k, heap, DYNAMIC_TYPE_ECC);
- if (point != NULL)
- XFREE(point, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Multiply p* in projective coordinates by q*.
- *
- * r.x = p.x - (p.y * q.y)
- * r.y = (p.x * q.y) + p.y
- *
- * px [in,out] A single precision integer - X ordinate of number to multiply.
- * py [in,out] A single precision integer - Y ordinate of number to multiply.
- * q [in] A single precision integer - multiplier.
- * t [in] Two single precision integers - temps.
- */
- static void sp_1024_proj_mul_qx1_42(sp_digit* px, sp_digit* py,
- const sp_digit* q, sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2 * 42;
- /* t1 = p.x * q.y */
- sp_1024_mont_mul_42(t1, px, q, p1024_mod, p1024_mp_mod);
- /* t2 = p.y * q.y */
- sp_1024_mont_mul_42(t2, py, q, p1024_mod, p1024_mp_mod);
- /* r.x = p.x - (p.y * q.y) */
- sp_1024_mont_sub_42(px, px, t2, p1024_mod);
- /* r.y = (p.x * q.y) + p.y */
- sp_1024_mont_add_42(py, t1, py, p1024_mod);
- }
- /* Square p* in projective coordinates.
- *
- * px' = (p.x + p.y) * (p.x - p.y) = p.x^2 - p.y^2
- * py' = 2 * p.x * p.y
- *
- * px [in,out] A single precision integer - X ordinate of number to square.
- * py [in,out] A single precision integer - Y ordinate of number to square.
- * t [in] Two single precision integers - temps.
- */
- static void sp_1024_proj_sqr_42(sp_digit* px, sp_digit* py, sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2 * 42;
- /* t1 = p.x + p.y */
- sp_1024_mont_add_42(t1, px, py, p1024_mod);
- /* t2 = p.x - p.y */
- sp_1024_mont_sub_42(t2, px, py, p1024_mod);
- /* r.y = p.x * p.y */
- sp_1024_mont_mul_42(py, px, py, p1024_mod, p1024_mp_mod);
- /* r.x = (p.x + p.y) * (p.x - p.y) */
- sp_1024_mont_mul_42(px, t1, t2, p1024_mod, p1024_mp_mod);
- /* r.y = (p.x * p.y) * 2 */
- sp_1024_mont_dbl_42(py, py, p1024_mod);
- }
- #ifdef WOLFSSL_SP_SMALL
- /* Perform the modular exponentiation in Fp* for SAKKE.
- *
- * Simple square and multiply when expontent bit is one algorithm.
- * Square and multiply performed in Fp*.
- *
- * base [in] Base. MP integer.
- * exp [in] Exponent. MP integer.
- * res [out] Result. MP integer.
- * returns 0 on success and MEMORY_E if memory allocation fails.
- */
- int sp_ModExp_Fp_star_1024(const mp_int* base, mp_int* exp, mp_int* res)
- {
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- sp_digit* td;
- sp_digit* t;
- sp_digit* tx;
- sp_digit* ty;
- sp_digit* b;
- sp_digit* e;
- #else
- sp_digit t[36 * 2 * 42];
- sp_digit tx[2 * 42];
- sp_digit ty[2 * 42];
- sp_digit b[2 * 42];
- sp_digit e[2 * 42];
- #endif
- sp_digit* r;
- int err = MP_OKAY;
- int bits;
- int i;
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 40 * 42 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL) {
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- t = td;
- tx = td + 36 * 42 * 2;
- ty = td + 37 * 42 * 2;
- b = td + 38 * 42 * 2;
- e = td + 39 * 42 * 2;
- #endif
- r = ty;
- bits = mp_count_bits(exp);
- sp_1024_from_mp(b, 42, base);
- sp_1024_from_mp(e, 42, exp);
- XMEMCPY(tx, p1024_norm_mod, sizeof(sp_digit) * 42);
- sp_1024_mul_42(b, b, p1024_norm_mod);
- err = sp_1024_mod_42(b, b, p1024_mod);
- }
- if (err == MP_OKAY) {
- XMEMCPY(ty, b, sizeof(sp_digit) * 42);
- for (i = bits - 2; i >= 0; i--) {
- sp_1024_proj_sqr_42(tx, ty, t);
- if ((e[i / 25] >> (i % 25)) & 1) {
- sp_1024_proj_mul_qx1_42(tx, ty, b, t);
- }
- }
- }
- if (err == MP_OKAY) {
- sp_1024_mont_inv_42(tx, tx, t);
- XMEMSET(tx + 42, 0, sizeof(sp_digit) * 42);
- sp_1024_mont_reduce_42(tx, p1024_mod, p1024_mp_mod);
- XMEMSET(ty + 42, 0, sizeof(sp_digit) * 42);
- sp_1024_mont_reduce_42(ty, p1024_mod, p1024_mp_mod);
- sp_1024_mul_42(r, tx, ty);
- err = sp_1024_mod_42(r, r, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_to_mp(r, res);
- }
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- if (td != NULL) {
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- }
- #endif
- return err;
- }
- #else
- /* Pre-computed table for exponentiating g.
- * Striping: 8 points at a distance of (128 combined for
- * a total of 256 points.
- */
- static const sp_digit sp_1024_g_table[256][42] = {
- { 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000,
- 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000,
- 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000,
- 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000,
- 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000,
- 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000,
- 0x0000000, 0x0000000, 0x0000000, 0x0000000, 0x0000000 },
- { 0x15c1685, 0x1236919, 0x09605c2, 0x03c200f, 0x0ac9e97, 0x052539f,
- 0x1cf7d0f, 0x0ea81d1, 0x1826424, 0x1237c0a, 0x15db449, 0x176966c,
- 0x1b3af49, 0x195f8d7, 0x078b451, 0x0a3cdb1, 0x02c2fd1, 0x013df44,
- 0x1e21c5f, 0x1db90b1, 0x0c6fadd, 0x1f8b563, 0x15b6166, 0x11d5cb1,
- 0x01a1b2d, 0x186873a, 0x018707c, 0x1f5ef40, 0x07e0966, 0x084d4db,
- 0x1f59b6f, 0x0fa769e, 0x1f11c06, 0x1e4c710, 0x080b1c9, 0x02c2a57,
- 0x086cb22, 0x0ac448f, 0x0ebd2bf, 0x0d4d7a7, 0x059e93c },
- { 0x1dd4594, 0x0e9b7b8, 0x079b953, 0x1e015de, 0x1bc9cc9, 0x0fb2985,
- 0x0913a86, 0x0513d4b, 0x13f5209, 0x0c4554c, 0x1050621, 0x12991eb,
- 0x1a97537, 0x0089ccf, 0x02f5e4b, 0x0d56a23, 0x0fdf5cb, 0x15cde9d,
- 0x1b2e594, 0x1a39645, 0x1813813, 0x13a01c4, 0x1f51589, 0x1908639,
- 0x1119b4a, 0x15b28fb, 0x0428603, 0x1b3ed52, 0x1bfa2ed, 0x168bcfb,
- 0x1644e51, 0x0a153a1, 0x0f18631, 0x1b9e98b, 0x0835be0, 0x12be338,
- 0x1b6a52b, 0x02d6354, 0x0b80efa, 0x0f6e9ec, 0x063ef18 },
- { 0x16f45e7, 0x1b5bf80, 0x0be1f0d, 0x0e57d90, 0x1c1bdb5, 0x014db00,
- 0x1dd0739, 0x03ae725, 0x0c7afd8, 0x1edf851, 0x04262db, 0x163ee48,
- 0x0fbda41, 0x1db07c6, 0x101d1d2, 0x1789ab6, 0x141b330, 0x1499f06,
- 0x0cfe8ef, 0x105060e, 0x0cd1ae1, 0x0d87ae3, 0x083b4a6, 0x130c191,
- 0x1354e3f, 0x020bff9, 0x1855567, 0x026c130, 0x1f85cbb, 0x1b1e094,
- 0x0faac32, 0x08ed0bf, 0x02ecc49, 0x0cb19b4, 0x1b0bac6, 0x14a0bd1,
- 0x1dac2cd, 0x0e63ca6, 0x1688e43, 0x039e325, 0x04fe679 },
- { 0x1e8733c, 0x011ea82, 0x1f06529, 0x0a3aae2, 0x0c845e6, 0x10d9916,
- 0x1fa23a5, 0x19846f8, 0x0db4181, 0x02238e3, 0x0f5c843, 0x0bc4e27,
- 0x0900c87, 0x1960bd8, 0x1f7a7b6, 0x1d5ed3b, 0x1e5e88c, 0x1218536,
- 0x0e073a9, 0x0f4c34f, 0x18d5aaa, 0x13119fc, 0x1a94b40, 0x0d13535,
- 0x0fdd060, 0x155daaf, 0x1972b12, 0x019f4f9, 0x1507613, 0x188a474,
- 0x14be936, 0x09d343c, 0x09570c4, 0x000b818, 0x1d84681, 0x0431843,
- 0x1e78d9d, 0x0e8fff5, 0x0ca5d55, 0x030ac3b, 0x004482a },
- { 0x1d486d8, 0x0c56139, 0x079f9dd, 0x0cc39b8, 0x0169f94, 0x0455a7c,
- 0x067f086, 0x060e479, 0x0f33736, 0x072a781, 0x1089828, 0x1c4b7b1,
- 0x00560be, 0x0298de3, 0x1f0c1f1, 0x1fd6a51, 0x11a7e44, 0x1eb790f,
- 0x1c4a34d, 0x089338a, 0x0a45c8e, 0x1f6bd97, 0x058ec14, 0x147a445,
- 0x07a0432, 0x1342061, 0x14d5165, 0x16a30a9, 0x1557e95, 0x124feb9,
- 0x1e99b86, 0x10d240e, 0x1267fd9, 0x0138106, 0x034f9cd, 0x09f426a,
- 0x08ccdb4, 0x0e1f92b, 0x1e27c6a, 0x1f1bdb7, 0x0833a0f },
- { 0x1376b76, 0x00ce3d5, 0x0332a31, 0x064fa1e, 0x1b7294f, 0x0628a69,
- 0x0e78aa4, 0x14dcad7, 0x0a62575, 0x18dd28f, 0x102a224, 0x00f6131,
- 0x0a56fee, 0x1a60b51, 0x0f96bba, 0x04c1609, 0x10be6eb, 0x072899a,
- 0x075709c, 0x1db5ad4, 0x0dd1339, 0x0cf4edd, 0x1cd9bb5, 0x1a0dd81,
- 0x1be882d, 0x1eda109, 0x032c461, 0x05ac739, 0x01058a2, 0x0af0ec5,
- 0x1c47fb2, 0x1456e89, 0x1f73ea6, 0x02e0601, 0x146bd3c, 0x00e83fa,
- 0x05f811a, 0x16fcad4, 0x0597cb8, 0x1c7d649, 0x0692b3c },
- { 0x0a127b4, 0x165b969, 0x05bc339, 0x0b1f250, 0x06a46ea, 0x11bb0b3,
- 0x1d18d1e, 0x1dc87d9, 0x1e0ab96, 0x11ecd00, 0x16fa305, 0x18db65d,
- 0x05c8145, 0x06f2733, 0x109b2b9, 0x0a5f25e, 0x14074e2, 0x08ba685,
- 0x14abe0c, 0x0481aef, 0x093654c, 0x0b9eb29, 0x1607e8e, 0x13a8d2a,
- 0x1491ca0, 0x01e02dc, 0x0d51499, 0x189d0a6, 0x1283278, 0x0198ea0,
- 0x094cb59, 0x0e06c3e, 0x0479038, 0x184f932, 0x06c627b, 0x00ee832,
- 0x01de5fe, 0x078557c, 0x10b5b03, 0x015e800, 0x0333e43 },
- { 0x126d3b7, 0x026f267, 0x06f977c, 0x0d6a7ef, 0x17a7730, 0x045b322,
- 0x0f17c60, 0x0c14802, 0x0850373, 0x1948f52, 0x1840dfb, 0x1afa160,
- 0x1b1ffc9, 0x12e489d, 0x1413765, 0x10b0fb3, 0x1aff13b, 0x0ca451b,
- 0x18fb9d5, 0x086907f, 0x1386b54, 0x1a02318, 0x0ff0879, 0x1bd6b18,
- 0x104e5cd, 0x0a959d0, 0x0995cb3, 0x09fc30c, 0x0aa4089, 0x18d08ad,
- 0x18bae69, 0x08b3d48, 0x0dc6fe5, 0x18151c5, 0x05d52ba, 0x037631a,
- 0x0f7791d, 0x093b1b1, 0x15c22b8, 0x03bad77, 0x010e8b3 },
- { 0x0d9f1af, 0x181f29f, 0x059ae1f, 0x0eaccec, 0x03ad247, 0x070adc0,
- 0x158c1d3, 0x0b671b9, 0x026b1e8, 0x03bf158, 0x0670546, 0x1a2e35f,
- 0x1ab1654, 0x09c12a3, 0x00ba792, 0x0bdeb2f, 0x07c26d5, 0x036e3fe,
- 0x1efad53, 0x11f2ba5, 0x0357903, 0x1f01b60, 0x1f96437, 0x1b87eff,
- 0x16eae4f, 0x14467e5, 0x13cd786, 0x163f78a, 0x0a5568c, 0x0ed96d0,
- 0x15cf238, 0x0b6deaa, 0x087393f, 0x005034d, 0x0ccb9eb, 0x1670c8d,
- 0x0a8495a, 0x130e419, 0x112f3f4, 0x09819b9, 0x0648552 },
- { 0x0a6ff2a, 0x1d9f162, 0x0a286af, 0x146b4c8, 0x0aa03fb, 0x17fba11,
- 0x09fc226, 0x1271084, 0x0ba5dbd, 0x19bc41d, 0x060b2c8, 0x15d3a54,
- 0x0538186, 0x04d00f8, 0x1c1d935, 0x03cf573, 0x1eb917b, 0x1c9208f,
- 0x1c32ed6, 0x163206a, 0x1e7c700, 0x0adc8a5, 0x1754607, 0x102305a,
- 0x0443719, 0x0cb89ae, 0x115d2e6, 0x04eb1a4, 0x0d28b23, 0x147ab19,
- 0x0269942, 0x1f4707e, 0x0078bac, 0x19ec012, 0x1830028, 0x12ca8d4,
- 0x0df8b44, 0x030e3d1, 0x158f290, 0x1e5e468, 0x01f76f3 },
- { 0x0c436b0, 0x160a1a2, 0x01ea6a8, 0x0c3ed39, 0x1907055, 0x16d96fb,
- 0x045ed7d, 0x1046be6, 0x1ed56ba, 0x0bb0fa0, 0x0be9221, 0x0c9efa1,
- 0x1ef8314, 0x1d6e738, 0x07ca454, 0x0e91153, 0x093116b, 0x1593dfb,
- 0x0ee510e, 0x14b5193, 0x1de8a98, 0x131772f, 0x1fe1e00, 0x025596e,
- 0x193dd18, 0x0491d37, 0x137212f, 0x1f25499, 0x14995aa, 0x1157f8e,
- 0x074f095, 0x009db13, 0x19fc33c, 0x1529c7e, 0x0a513b4, 0x0d80519,
- 0x049ea72, 0x19b3dd8, 0x0381743, 0x1f67a21, 0x004924f },
- { 0x073562f, 0x0471ee3, 0x1230195, 0x0bc5d5c, 0x13b3302, 0x0e34bbe,
- 0x14cad78, 0x0f7cc3f, 0x06ebe55, 0x1271032, 0x1b86390, 0x038083a,
- 0x1b76739, 0x0a6bf4a, 0x03aee38, 0x0371897, 0x1d42099, 0x1a5745b,
- 0x004a434, 0x01becdc, 0x1f4ef8a, 0x11c92f2, 0x125f892, 0x0104e55,
- 0x1b2cb15, 0x130bcd3, 0x18941c9, 0x08160e5, 0x02fa49b, 0x10c1483,
- 0x13b6b67, 0x1e78a77, 0x180a784, 0x013ccc3, 0x0dda7c5, 0x0cb1505,
- 0x0146842, 0x06c24e6, 0x0b8d423, 0x0138701, 0x04dfce8 },
- { 0x127b780, 0x14e596a, 0x0375141, 0x0b2ef26, 0x152da01, 0x1e8131e,
- 0x1802f89, 0x0562198, 0x0bb2d1b, 0x0081613, 0x0b7cf0d, 0x0c46aa9,
- 0x074c652, 0x02f87fa, 0x0244e09, 0x0dcf9ad, 0x0c5ca91, 0x141fd46,
- 0x0572362, 0x01e273a, 0x16b31e1, 0x1740ee2, 0x1c5cf70, 0x09db375,
- 0x0cb045c, 0x1143fe7, 0x011f404, 0x00ffafb, 0x1a532f3, 0x18a9cf9,
- 0x0889295, 0x1c42a78, 0x1e9e81d, 0x052042c, 0x057790a, 0x078ac4b,
- 0x1339bd2, 0x1ed7fc4, 0x1a00b71, 0x0117140, 0x00d0759 },
- { 0x0085f2a, 0x17953ef, 0x0b961c2, 0x1f7d336, 0x08fcd24, 0x05209dc,
- 0x1498567, 0x0a31181, 0x08559f8, 0x1815172, 0x0b68347, 0x0043ec4,
- 0x1583b96, 0x16e51b0, 0x0170bd5, 0x18d04b8, 0x11c7910, 0x100a467,
- 0x1c9a56f, 0x1e512c4, 0x0ef6392, 0x1ad46b2, 0x020f42e, 0x1f978a5,
- 0x122441c, 0x1f2f786, 0x1149845, 0x0bb5f9d, 0x0928e9f, 0x095cf82,
- 0x0aada18, 0x0727e5c, 0x03f744d, 0x008a894, 0x1fb5c03, 0x1df7dda,
- 0x04360df, 0x06f10ad, 0x14d6bcb, 0x0385e10, 0x024fa96 },
- { 0x16df7f6, 0x1ed9fb0, 0x0c981d9, 0x11f7b20, 0x043057d, 0x016aa23,
- 0x0aa41ba, 0x1b62e9b, 0x1689643, 0x14279a2, 0x0681808, 0x03bf991,
- 0x1218b19, 0x0b613e8, 0x0d1abd3, 0x0a28b75, 0x086c989, 0x12d2bfa,
- 0x1250be7, 0x0429d39, 0x0158c03, 0x07a0ca8, 0x09cf872, 0x15a8756,
- 0x1759f39, 0x0b9c675, 0x1f943b8, 0x1c3716f, 0x0d7d4e5, 0x18fe47a,
- 0x1cfd8d6, 0x0eaac07, 0x0ff77e3, 0x17d3047, 0x0745dd4, 0x02403ec,
- 0x0a6fb6e, 0x0bd01ea, 0x0045253, 0x07bf89e, 0x0371cc2 },
- { 0x090c351, 0x188aeed, 0x1018a26, 0x1e6c9b3, 0x0d196eb, 0x08598db,
- 0x0480bd9, 0x05eef51, 0x06f5764, 0x01460b2, 0x00049f3, 0x1c6c102,
- 0x1bdc4f7, 0x0e26403, 0x0db3423, 0x081e510, 0x156e002, 0x1894078,
- 0x072ce54, 0x14daf13, 0x00383f9, 0x099d401, 0x1029253, 0x0fa68e8,
- 0x17e91e8, 0x12522b4, 0x1c9b778, 0x01b2fa0, 0x00c30e7, 0x12c6bb2,
- 0x1181bda, 0x0b74dcd, 0x1c2c0e8, 0x009f401, 0x09ebc6f, 0x1e661ed,
- 0x09f4d78, 0x101727e, 0x1edfcf9, 0x1401901, 0x092b6bc },
- { 0x100822e, 0x0ae41af, 0x1c48b8f, 0x057162d, 0x0e82571, 0x1851980,
- 0x0a7124a, 0x0a90386, 0x1a7cc19, 0x1a71956, 0x0504fda, 0x19dc376,
- 0x070bee9, 0x0549651, 0x1edeea9, 0x122a7db, 0x0faea3b, 0x0e6a395,
- 0x03c303e, 0x013cfc0, 0x1b70e8f, 0x192e6f5, 0x0938761, 0x136c76d,
- 0x1ae084a, 0x1b2ff15, 0x00ff563, 0x0802837, 0x162759f, 0x0f6d51d,
- 0x0235fb1, 0x0f21c61, 0x0af6e67, 0x1bf18cd, 0x00c07c9, 0x1842b5b,
- 0x0f33871, 0x0da5cc6, 0x1e2779f, 0x1929e05, 0x071ff62 },
- { 0x04a84d9, 0x0388115, 0x079aa93, 0x1abd78e, 0x02ee4ac, 0x06b2bc7,
- 0x0a297c7, 0x14a7623, 0x1fff120, 0x1faf7cf, 0x1940ce0, 0x11c213c,
- 0x00a4c59, 0x050220c, 0x1a7e643, 0x05183c3, 0x146f598, 0x1c5c196,
- 0x0ebd4da, 0x1e51406, 0x168a753, 0x18db6a7, 0x04bb712, 0x199a3e1,
- 0x0692a72, 0x01976ef, 0x1748899, 0x07541ef, 0x12661cd, 0x1b1f51e,
- 0x168e36e, 0x1fb86fb, 0x1e19fc6, 0x1b5a678, 0x0d4213b, 0x12d8316,
- 0x1f1bba6, 0x141ff4e, 0x009cf9a, 0x1cebf2b, 0x040fd47 },
- { 0x07140a4, 0x05ba313, 0x0bed6e2, 0x1dd56de, 0x0dbbfc1, 0x0312a43,
- 0x12239a6, 0x185bb3d, 0x12eb6ef, 0x0df75d0, 0x03fe21a, 0x0295159,
- 0x10cfc22, 0x1ad10ca, 0x15725ba, 0x1f6d32b, 0x0054171, 0x1c99c4e,
- 0x0d1a0cd, 0x0ba8a43, 0x025c2d8, 0x042089a, 0x0535a28, 0x0d842e8,
- 0x00139ec, 0x026f296, 0x1fdcc02, 0x019e172, 0x178aa32, 0x15130fa,
- 0x10c6b05, 0x1f36d5c, 0x0b9fab3, 0x0534a8c, 0x0447615, 0x0cd1b04,
- 0x1ffbe28, 0x19a6cc6, 0x0ce302c, 0x0afcc72, 0x05b1c11 },
- { 0x0b6bb8f, 0x0d558b9, 0x0b0a43b, 0x0405f92, 0x0dc64ed, 0x14a639c,
- 0x08f17f9, 0x1c9e857, 0x1cb54dc, 0x0b6e32f, 0x108370c, 0x0d46c64,
- 0x14cb2d6, 0x02b6e7c, 0x19c1b9c, 0x0593a2d, 0x164a4f3, 0x01404e3,
- 0x09bb72a, 0x11b061d, 0x1f57ab1, 0x1340e32, 0x13f46b3, 0x1425820,
- 0x1651c7d, 0x1240fc8, 0x1b1de46, 0x15877ac, 0x1e67a30, 0x0e7a3c2,
- 0x046dab4, 0x1b41fab, 0x0d3fc44, 0x031a272, 0x0005b87, 0x079c2c9,
- 0x13e50ab, 0x0f4e5c1, 0x1bbd213, 0x0754ead, 0x0963ab8 },
- { 0x14ea5a3, 0x1a3ec6f, 0x17fa512, 0x0ab9fc8, 0x1656881, 0x1e1ab24,
- 0x1f56228, 0x02ba2dc, 0x0e7c99e, 0x072ad9f, 0x01c6f21, 0x009beaa,
- 0x0e3fee2, 0x0202bee, 0x001bca4, 0x0aae0e2, 0x10dbba7, 0x07f461c,
- 0x0c66b6b, 0x0b796c6, 0x1fd8364, 0x183e105, 0x00627a2, 0x0fb2af1,
- 0x109697d, 0x11dc72a, 0x06e67d3, 0x06fa264, 0x0cfb6a0, 0x1290d30,
- 0x168046c, 0x106e705, 0x0594aaa, 0x0ee03b3, 0x07f60f0, 0x0991372,
- 0x076b988, 0x015c4c8, 0x11561ae, 0x1f97c8b, 0x0443480 },
- { 0x114221a, 0x1ffda48, 0x09ebe3f, 0x1c7d0af, 0x0aec4f2, 0x12a3c3a,
- 0x143903e, 0x0a485c5, 0x1d6f961, 0x19f3598, 0x1a6ddfb, 0x0a6ff7f,
- 0x0ab2296, 0x1da1d43, 0x0a743cb, 0x0558d85, 0x0ed2457, 0x1920942,
- 0x1c86e9e, 0x0d122fc, 0x078da38, 0x00608bd, 0x16fbdf0, 0x02c0b59,
- 0x09071d3, 0x1749c0a, 0x18196a3, 0x05b5b53, 0x02be82c, 0x1c6c622,
- 0x16356c4, 0x1edae56, 0x16c224b, 0x01f36cd, 0x173e3ac, 0x0373a6a,
- 0x0170037, 0x168f585, 0x09faead, 0x1119ff5, 0x097118a },
- { 0x1ecb5d8, 0x02cd166, 0x019afe7, 0x175274d, 0x0083c81, 0x1ba7dfc,
- 0x1760411, 0x16849c1, 0x0a02070, 0x1bcd1e5, 0x1ede079, 0x1f761f7,
- 0x049d352, 0x1f7950e, 0x0c36080, 0x1ca0351, 0x17b14b3, 0x15c2c31,
- 0x0a20bfc, 0x0e14931, 0x0fa55ba, 0x019d837, 0x089cc02, 0x05fdc55,
- 0x002f410, 0x1d2d216, 0x0628088, 0x09cec53, 0x03fc72e, 0x1d1342e,
- 0x19f6e8a, 0x1fca5d5, 0x14fe763, 0x1a2fb2a, 0x01689c3, 0x18616a8,
- 0x0573387, 0x150bbd5, 0x1ea0b55, 0x11a96e3, 0x017c077 },
- { 0x135e37b, 0x0ff8e93, 0x15c839b, 0x0ccadd8, 0x09884e5, 0x1dd4bc6,
- 0x0b2767a, 0x18945eb, 0x0ba09f3, 0x07d228c, 0x010ddd0, 0x02efeb6,
- 0x0a8c3fa, 0x0b3d176, 0x0877b36, 0x17a8143, 0x0700528, 0x13b45e5,
- 0x01a4712, 0x092a563, 0x1fd5f22, 0x02f436a, 0x05b84b1, 0x10b34d4,
- 0x1915737, 0x1073d06, 0x0683ff3, 0x047e861, 0x0cc9a37, 0x1bcdd4b,
- 0x0e16a36, 0x035a474, 0x1d12ae0, 0x1aec236, 0x0e878af, 0x0d3ffd8,
- 0x0452ed6, 0x074270d, 0x1931b5b, 0x190ae3f, 0x01219d5 },
- { 0x02969eb, 0x1533f93, 0x1dcd0fa, 0x1a5e07c, 0x1a3ab39, 0x1d84849,
- 0x1f9455e, 0x0e9cc24, 0x18d1502, 0x1c15876, 0x02f6f43, 0x15b1cb0,
- 0x0bffffc, 0x14ba1f3, 0x14f41d6, 0x023aca3, 0x1b18bac, 0x00a425e,
- 0x0c930e2, 0x1b3321d, 0x07c695c, 0x083fd63, 0x085a987, 0x09cd70e,
- 0x0f762a0, 0x0642184, 0x072e95f, 0x10cbbac, 0x14a07a2, 0x1586e91,
- 0x1e4f0a5, 0x0740f27, 0x0f92839, 0x14f673b, 0x187c2f8, 0x04e16af,
- 0x1e626f4, 0x0a5417b, 0x1c8c04c, 0x165acaf, 0x02c8d7a },
- { 0x025e4d6, 0x1ac4904, 0x0d119f3, 0x0addf07, 0x1f51eaa, 0x080846e,
- 0x197604c, 0x07ec7cc, 0x18dd096, 0x14fc4fa, 0x190da88, 0x09bb3be,
- 0x078c4b1, 0x0a2f5dd, 0x16b91a7, 0x1e70333, 0x1775a4d, 0x188c555,
- 0x078dffa, 0x12f17a5, 0x17efda8, 0x1556516, 0x1a73b56, 0x0fad514,
- 0x0d05dc6, 0x11a364c, 0x15dfe12, 0x08e97e1, 0x0cd59a7, 0x059776c,
- 0x1ef510a, 0x1a3a731, 0x0fd1cd5, 0x10588d8, 0x0f6e528, 0x08b2c02,
- 0x1b404c4, 0x15b82d0, 0x165625b, 0x0ee9613, 0x02299d2 },
- { 0x04397e6, 0x06ac6e3, 0x0c796e7, 0x1d7edba, 0x0c198f1, 0x0f8ed95,
- 0x16384fa, 0x118b0cd, 0x18fcdc6, 0x02d7143, 0x1007f50, 0x019bca7,
- 0x16a4b28, 0x008edaf, 0x058fcb5, 0x1f141b9, 0x189bec4, 0x1f6aea8,
- 0x05bba62, 0x1fa27b2, 0x148e336, 0x198216f, 0x1a496c6, 0x1c00e9c,
- 0x16291ac, 0x14a867a, 0x0094c5f, 0x11a7169, 0x1c446be, 0x0e95c10,
- 0x0d31eb4, 0x1e16cb2, 0x1c44135, 0x106a838, 0x0dbd4b2, 0x0d2e36e,
- 0x07b46c2, 0x0ffd2b9, 0x1863abe, 0x0f2326c, 0x021ac67 },
- { 0x17fbcd2, 0x1071f96, 0x1062ad0, 0x072f7bf, 0x1272247, 0x1aea5a0,
- 0x0cfe137, 0x1a69240, 0x03807b7, 0x1e6a11b, 0x10d895b, 0x1613667,
- 0x14dfc19, 0x1079140, 0x15bcdd6, 0x0337027, 0x059037c, 0x0384bc5,
- 0x1fc9ee7, 0x13132e1, 0x03894f3, 0x02b0ad2, 0x1f03869, 0x0c05ee9,
- 0x1496a3e, 0x10e7fd1, 0x06c9872, 0x07e3886, 0x0164cdc, 0x08edf70,
- 0x07d8488, 0x1cfef7d, 0x0463ee4, 0x170dd98, 0x19e24b0, 0x0c02bef,
- 0x04483a5, 0x1ec46b1, 0x1676198, 0x1ce1cc5, 0x00e8ec1 },
- { 0x00878dd, 0x06614c5, 0x1c6aa23, 0x1acc800, 0x19ac175, 0x0b9b0bc,
- 0x1208294, 0x02b2068, 0x0dd58a3, 0x0b6811f, 0x088684c, 0x17a911a,
- 0x0330785, 0x0ace247, 0x12cf79e, 0x14ee36e, 0x1824c67, 0x1a17701,
- 0x02e4514, 0x1ed9bbc, 0x1e9159e, 0x144d91b, 0x1e0c2b8, 0x0bb064a,
- 0x07a4c49, 0x13370c2, 0x1b41dcd, 0x0f6242f, 0x14a3256, 0x1643514,
- 0x0996064, 0x10c9b06, 0x0aa0f56, 0x09f2dbb, 0x144bd2c, 0x1bc5457,
- 0x1b6b73f, 0x0860e00, 0x0d8d761, 0x0beba20, 0x0653a79 },
- { 0x0dcb199, 0x144c2a8, 0x0d833f8, 0x1cff405, 0x135b8e5, 0x1b01e85,
- 0x15f0f25, 0x16b794f, 0x127f131, 0x0729446, 0x04b54ac, 0x09bdc56,
- 0x073aa70, 0x0edb92e, 0x01ac760, 0x16227c4, 0x19ac5d1, 0x1858941,
- 0x0d175d8, 0x12e197b, 0x1e8e14f, 0x1f59092, 0x1265fe4, 0x0fb544d,
- 0x1739cee, 0x074deba, 0x1c7fbc8, 0x0dd97a7, 0x0a42b14, 0x108a3e3,
- 0x147e652, 0x04ff61f, 0x089eb4f, 0x06d25e9, 0x14c6690, 0x0c2230d,
- 0x1b9d797, 0x1fb2d2f, 0x19d7820, 0x0f7a888, 0x030dfc4 },
- { 0x0aadfe8, 0x02d714f, 0x004af3f, 0x0969a9d, 0x05027e5, 0x099ab09,
- 0x00b7e2d, 0x029560e, 0x056a6a2, 0x15ce102, 0x041a3a8, 0x1ef460b,
- 0x0fb1a3d, 0x0c41888, 0x1452c86, 0x11c3946, 0x136c4b7, 0x05bdf11,
- 0x18bda61, 0x0e79cc7, 0x1ac6170, 0x1316efb, 0x01b8452, 0x1af8791,
- 0x192bf07, 0x14493b0, 0x0fac6b8, 0x1b4d3c1, 0x1849395, 0x18ba928,
- 0x08260eb, 0x080f475, 0x0c52a4d, 0x1f10c4d, 0x1f6ab83, 0x022a6b8,
- 0x197f250, 0x17f4391, 0x04b3f85, 0x03ea984, 0x0572a59 },
- { 0x1a5553a, 0x1420c84, 0x0ef1259, 0x1064ee6, 0x1f05431, 0x17eb481,
- 0x0d2c8fb, 0x1a9f39d, 0x1f22126, 0x09e5fcd, 0x1655e2f, 0x03805fd,
- 0x186d967, 0x0501836, 0x0965f3b, 0x09fcb77, 0x1613d67, 0x15b82f6,
- 0x1fccfdd, 0x06c456c, 0x0c31f1d, 0x0308e5c, 0x056f3cf, 0x07a3552,
- 0x067dce5, 0x1a1d1c2, 0x07e422a, 0x005fd25, 0x15767a9, 0x04cec68,
- 0x1edb8f9, 0x1215fa0, 0x142db5c, 0x18c8740, 0x1ef1b22, 0x1c2418d,
- 0x04919a4, 0x0432a99, 0x0b0f203, 0x1c3b190, 0x065c2cb },
- { 0x060bb63, 0x06d1053, 0x0915a13, 0x150dd0c, 0x07dc3b0, 0x10776b9,
- 0x0b3d9ae, 0x0b0ec8e, 0x1679dd1, 0x0e0b172, 0x14b511e, 0x04ee108,
- 0x1eb6884, 0x009fabc, 0x06f1acd, 0x02ee105, 0x1ec9501, 0x1c9750a,
- 0x1dce060, 0x09c6008, 0x12f15e3, 0x04b9f0e, 0x030f28d, 0x137a7bd,
- 0x0f1dc22, 0x169d2e2, 0x0e53bdf, 0x107dfe3, 0x0e7a1a7, 0x19c6efd,
- 0x1491b6d, 0x0341330, 0x153d72e, 0x07a55a1, 0x1562837, 0x124a675,
- 0x0e7888b, 0x02a80b0, 0x1fd9b60, 0x1aa774e, 0x0831440 },
- { 0x011b2da, 0x117197b, 0x1ab3d0f, 0x13a1f48, 0x1d066e2, 0x059e06a,
- 0x1cfa208, 0x1e1d12f, 0x01d3e44, 0x02e1473, 0x09e99b1, 0x1ecdbfa,
- 0x17929d7, 0x080f428, 0x16e1828, 0x0f1bae6, 0x0983de0, 0x1751fe7,
- 0x0e33846, 0x0efb6ac, 0x0b3bc99, 0x17a429b, 0x01220e0, 0x195bf8c,
- 0x07a3c64, 0x1b8bf06, 0x1e0851e, 0x19a2fef, 0x011e3e3, 0x11e60da,
- 0x1b7a559, 0x130bf68, 0x139ac8f, 0x08ce52b, 0x0736f3c, 0x0a70a73,
- 0x015a281, 0x0c2d387, 0x115992a, 0x114dabe, 0x0504c3a },
- { 0x0fa53c7, 0x0a941dc, 0x138c02d, 0x10a128e, 0x185cff3, 0x1e712fc,
- 0x090710d, 0x1da469a, 0x0e5a129, 0x0c19218, 0x1319d0a, 0x12ad557,
- 0x016ad38, 0x1f740f7, 0x1700075, 0x04e0545, 0x0b6670b, 0x1a611e3,
- 0x1ba28ee, 0x1cacfd4, 0x13eab35, 0x07534b3, 0x0f1c2cf, 0x1c51d59,
- 0x1a9c3e6, 0x1ed42d3, 0x1954ded, 0x15cd09b, 0x0937dc2, 0x01f2b6f,
- 0x0897b2b, 0x1f08608, 0x12ea6c9, 0x0e2905f, 0x1f41dff, 0x1a7195e,
- 0x09f56ad, 0x1d7858b, 0x0874b09, 0x1338e3a, 0x0496e46 },
- { 0x1a93467, 0x07e414f, 0x1852e85, 0x081d654, 0x02e3768, 0x19f04de,
- 0x13ebd20, 0x198cb37, 0x03686bd, 0x042cba9, 0x0c85aaf, 0x010103e,
- 0x1840bfd, 0x0be040d, 0x18ef698, 0x0f27788, 0x086bb04, 0x0de80fd,
- 0x1359031, 0x03d9cc5, 0x15c45a2, 0x0a1101e, 0x05efda9, 0x022cf6f,
- 0x00edc95, 0x134675a, 0x1dd96e8, 0x0cf5595, 0x0b51f9d, 0x0cf4d75,
- 0x0ea2e83, 0x161ad0c, 0x14b215e, 0x034a960, 0x136f97c, 0x0a6a99b,
- 0x0b3744b, 0x15ae67e, 0x1ffa13c, 0x0e62606, 0x0133891 },
- { 0x1003cd1, 0x0032022, 0x0b1bb9a, 0x18895c5, 0x1dac17b, 0x07298a7,
- 0x1067f7a, 0x0b8979a, 0x1c7cea9, 0x0f1a75c, 0x0df8060, 0x0c5a71e,
- 0x08bb577, 0x1304c86, 0x1133ec0, 0x094f7d9, 0x1f950a3, 0x185e249,
- 0x10cc13b, 0x0e82e4a, 0x0a2a680, 0x1935e45, 0x0bb03f2, 0x08bfd4b,
- 0x09b463b, 0x1d64f3d, 0x1957ef6, 0x17652a5, 0x05dff44, 0x0053024,
- 0x05943c3, 0x09bd48f, 0x0c5104d, 0x11d0101, 0x0825a57, 0x0ba59df,
- 0x0da1f34, 0x00815a3, 0x0fef532, 0x0e7e706, 0x0422eb5 },
- { 0x0ad3f47, 0x0975b53, 0x083ab16, 0x1b2e297, 0x10861f6, 0x140a2cd,
- 0x1a4641c, 0x006af83, 0x064ea58, 0x1be4a71, 0x049c8f3, 0x0d58a96,
- 0x0a72537, 0x0d7db9b, 0x09ae907, 0x079b9e5, 0x120cba0, 0x0e44f44,
- 0x0c3f4eb, 0x041968b, 0x19fef2e, 0x0a6b302, 0x09ba969, 0x13bf178,
- 0x1fa8b88, 0x15ff731, 0x059a8fc, 0x01e38fc, 0x1312e14, 0x1e4e3a3,
- 0x1fc27fa, 0x0e4f333, 0x119b9c2, 0x09582be, 0x0d32dff, 0x0d53f77,
- 0x00da2dc, 0x1d13ebd, 0x0960b3e, 0x19e584a, 0x0368541 },
- { 0x0799d37, 0x09e4f11, 0x0ce9443, 0x0b59f46, 0x1b677de, 0x07bcad8,
- 0x1863c20, 0x1849cd5, 0x0afc8df, 0x0da9e15, 0x10b709a, 0x036c1d0,
- 0x0879754, 0x16033ff, 0x09bcabe, 0x1b0efab, 0x003bd07, 0x1681045,
- 0x152f8bc, 0x08e7e0c, 0x023e34b, 0x157a8af, 0x199f040, 0x1835e91,
- 0x1bf9d2a, 0x0805806, 0x06da84f, 0x04c9f48, 0x094c11e, 0x1c354bf,
- 0x1d059a5, 0x10d4b0d, 0x1d8cf2d, 0x093f484, 0x01a71fe, 0x0c0e77f,
- 0x0241a56, 0x0bbc401, 0x04cd2e2, 0x0b2444c, 0x059a5bf },
- { 0x1347191, 0x0e48f40, 0x05cba74, 0x19d72d3, 0x186c1ab, 0x0a353f8,
- 0x01d9ea7, 0x12e0f11, 0x0daa7d3, 0x149e7e6, 0x0e6a836, 0x13e3b23,
- 0x0c08bee, 0x1c6e9e3, 0x19ff5e3, 0x1020104, 0x0d09422, 0x1fc9c30,
- 0x0b6d1fe, 0x14e355b, 0x0f8a6a6, 0x1bd30ab, 0x072a81a, 0x1091793,
- 0x105e039, 0x09ad50d, 0x1caaaa4, 0x0dbb846, 0x1f3bd13, 0x103cd89,
- 0x135df9f, 0x09598be, 0x10b5cbe, 0x07e9b46, 0x17e2613, 0x1009b48,
- 0x13d3e0f, 0x077b0c6, 0x1e673c5, 0x18287d6, 0x0467564 },
- { 0x0fff5d7, 0x12c825b, 0x1d4a35c, 0x1f25b88, 0x037f33a, 0x105c550,
- 0x155d5b4, 0x073212b, 0x143baec, 0x111afe0, 0x0ae6c0c, 0x095ed14,
- 0x01a2feb, 0x0a69ae3, 0x1140c62, 0x0e90cc3, 0x0a2ea87, 0x1d6495b,
- 0x046f1bc, 0x09162a0, 0x1cb28eb, 0x1463cf6, 0x08a3f84, 0x1a5400d,
- 0x1bc0ca5, 0x0284fb8, 0x08bc56e, 0x062cee6, 0x036218f, 0x19463d0,
- 0x07bfa35, 0x09f03c1, 0x08f39cb, 0x0286c83, 0x0059edf, 0x062ee7e,
- 0x0d6a1e0, 0x07bd6df, 0x0135434, 0x02c9dd3, 0x08a0dee },
- { 0x1366e6f, 0x0c8dfa3, 0x0015412, 0x1fd0d86, 0x18084d9, 0x06671b5,
- 0x11d4690, 0x1c42989, 0x03f1961, 0x1da3553, 0x11790ee, 0x0bf2808,
- 0x1f56a78, 0x048f10a, 0x0346d5f, 0x1011bb7, 0x13ec7ee, 0x0354722,
- 0x0ea87a3, 0x0cfdf17, 0x0109c03, 0x18f1f0c, 0x0c43647, 0x0414586,
- 0x0fd0e7e, 0x13bfcbe, 0x1155330, 0x03d0190, 0x028403f, 0x1e0ebdb,
- 0x1f3a26e, 0x07fc142, 0x178a966, 0x00039bb, 0x067f07c, 0x053d3b6,
- 0x16f6bed, 0x13ff3ed, 0x1388cb3, 0x1a5dd2f, 0x07b04b5 },
- { 0x0c5faf8, 0x035e3c1, 0x025d6d5, 0x1d1d702, 0x1a734c5, 0x1c28f00,
- 0x1a1879d, 0x03e7aac, 0x1e956d5, 0x19d0809, 0x0f0df20, 0x0e63878,
- 0x0cc7351, 0x1060a47, 0x1dce3ef, 0x1de82c0, 0x0bbe1bb, 0x1976378,
- 0x1e94615, 0x0558dd9, 0x0df00aa, 0x0bb371d, 0x01ca40b, 0x045adc6,
- 0x15089c6, 0x017e6a6, 0x0e9b760, 0x15c4364, 0x0863723, 0x0d2a99c,
- 0x08b9519, 0x151b030, 0x05119a0, 0x14bbd6c, 0x00c8de1, 0x189e29a,
- 0x1c7b272, 0x0d840e4, 0x18c7145, 0x1499337, 0x01c6a95 },
- { 0x0821363, 0x0a56ae1, 0x18729ac, 0x069a2fb, 0x029c182, 0x16f4244,
- 0x14b1332, 0x04f5deb, 0x182489e, 0x009559c, 0x07649fd, 0x0131e10,
- 0x1f92c9c, 0x1ae5d68, 0x01ef7d1, 0x13f62df, 0x0b81a1d, 0x17a556d,
- 0x1d7cedd, 0x14f2476, 0x08fe475, 0x0b6dddd, 0x067742b, 0x0e1568b,
- 0x161644b, 0x178c1b7, 0x04d2f66, 0x148c910, 0x1abda32, 0x11375d4,
- 0x1ed7244, 0x1ccac4b, 0x0ec8709, 0x0725f26, 0x0678206, 0x19a9672,
- 0x14f6879, 0x004e420, 0x1932697, 0x0046150, 0x072708a },
- { 0x14a466c, 0x1e058f9, 0x16e93cc, 0x18ff3a8, 0x01bae09, 0x143c2e5,
- 0x03fb838, 0x103ae1e, 0x0908808, 0x12638a3, 0x10f68e0, 0x1855760,
- 0x12e2416, 0x07637a1, 0x0f69c4f, 0x07c38e6, 0x049c979, 0x095ac83,
- 0x0d724d9, 0x05ab616, 0x1b2adb6, 0x111f2e0, 0x0d57adb, 0x02d6a2a,
- 0x0b5cebb, 0x08e67f4, 0x07dc25a, 0x1c1030d, 0x085bd59, 0x1cfdb0d,
- 0x1df2197, 0x1f5c207, 0x169d3cc, 0x13f4ef8, 0x11cdcd1, 0x072a4b8,
- 0x0369511, 0x1aae05a, 0x17485f6, 0x098e64c, 0x07491c7 },
- { 0x0d2b94d, 0x16adfc0, 0x182cc4b, 0x0774964, 0x1b8ac63, 0x110cd08,
- 0x1163358, 0x11d590d, 0x1aeb82c, 0x0be67b5, 0x1e73b4c, 0x13dcb3d,
- 0x1a2dfb2, 0x1215e6a, 0x09f6263, 0x16403b5, 0x1c85974, 0x049f14a,
- 0x07f16b7, 0x0eaf09b, 0x03ba69e, 0x0f80955, 0x15b11c2, 0x0ba7973,
- 0x09f37c8, 0x15e8fed, 0x174f752, 0x0a90fc4, 0x1ba22ee, 0x0580859,
- 0x0ec03f5, 0x18dd1b9, 0x1591493, 0x1433265, 0x1eaef39, 0x0d6e653,
- 0x08906b7, 0x14e8e13, 0x1a105a0, 0x1cae82e, 0x08bcfd3 },
- { 0x1c8c314, 0x0139a69, 0x00cc1a2, 0x02230e1, 0x15f0b2f, 0x145d0b4,
- 0x1df0f01, 0x10f726f, 0x0779247, 0x1b2f06c, 0x04889d4, 0x1cbc3f3,
- 0x0f15527, 0x13effea, 0x01a5920, 0x0c71214, 0x1f22f58, 0x0eac59e,
- 0x0bc83ab, 0x08d712d, 0x0257834, 0x05a83a3, 0x0275e5c, 0x0454d22,
- 0x0d20640, 0x1bcecf4, 0x1d9c7b0, 0x03cbf15, 0x1fe91ed, 0x128482b,
- 0x061bd50, 0x0a51208, 0x14dda81, 0x09956f8, 0x043876e, 0x117af00,
- 0x105a937, 0x0c68f24, 0x0ad24f8, 0x1ef7a6f, 0x053cadc },
- { 0x053d0ff, 0x0f6fbaf, 0x1d9c6ed, 0x1911157, 0x1886606, 0x10368ae,
- 0x0c3e048, 0x066c923, 0x1e22b6a, 0x180c1a2, 0x0ecc5ec, 0x129762e,
- 0x15aba67, 0x1ee4f2c, 0x079619d, 0x049a318, 0x0822396, 0x1a70832,
- 0x0957754, 0x0a5cb3b, 0x079c617, 0x15cf214, 0x0062d3a, 0x03e57da,
- 0x0784b49, 0x14f657b, 0x0879e50, 0x1b9b73a, 0x1262243, 0x0a42887,
- 0x170da50, 0x14ca1d8, 0x06f190a, 0x14bb008, 0x16bada6, 0x0cea854,
- 0x032d104, 0x1ebaf4e, 0x18ac5a6, 0x0c97f18, 0x0908499 },
- { 0x093c661, 0x0867b2d, 0x015ac4e, 0x093b6be, 0x1848626, 0x0d0bc40,
- 0x0ea7694, 0x1352552, 0x16772de, 0x1865dc7, 0x0521f06, 0x1d7af8e,
- 0x1e6e67f, 0x0731211, 0x0d0e0b5, 0x085f1f3, 0x10ebb5a, 0x14b7ed2,
- 0x022693c, 0x03666ec, 0x0516c92, 0x1dc3af6, 0x1274cb5, 0x0202496,
- 0x0d2cac4, 0x1bd5ec3, 0x071087e, 0x0d0c441, 0x17de33f, 0x04d5fb5,
- 0x1a0f865, 0x1d27924, 0x1ee18f0, 0x0266066, 0x1578237, 0x05a9db7,
- 0x13580d2, 0x1badf23, 0x15fa30a, 0x1f48d19, 0x03d7f6f },
- { 0x1fbd5d1, 0x194866f, 0x037fa9e, 0x0d2e067, 0x1d759da, 0x1f76e4c,
- 0x02c2243, 0x11cacd0, 0x142dce6, 0x034857a, 0x19360af, 0x1e57655,
- 0x008519d, 0x1f8cadb, 0x04919fd, 0x043e8ac, 0x02cd83c, 0x1b2cd1a,
- 0x159458c, 0x0e37eaa, 0x0562557, 0x1aaa45d, 0x17f1a24, 0x125e474,
- 0x1920394, 0x00bdaa0, 0x0e72718, 0x0cea51c, 0x1e60195, 0x076a288,
- 0x154fc19, 0x03a2d4a, 0x03f9eb9, 0x055f718, 0x13f4895, 0x187c318,
- 0x1d434e7, 0x0ca6b7f, 0x1d39902, 0x07edbbc, 0x08fb12d },
- { 0x13cb7a4, 0x1c0d114, 0x1935b18, 0x0170f6f, 0x053e09f, 0x0561f7a,
- 0x0a08c1e, 0x1229e42, 0x0578cae, 0x04ffd68, 0x0e9377a, 0x12d4e2d,
- 0x004a2b6, 0x1b7ac05, 0x1a06853, 0x0260e28, 0x17b4c2f, 0x089ac7c,
- 0x04cbee2, 0x12d32c5, 0x1af7878, 0x0513452, 0x0a77614, 0x0473f06,
- 0x11f6dfe, 0x0ced7bb, 0x193d1d2, 0x1e41fa5, 0x1ca0e95, 0x1f3bc33,
- 0x1b26d90, 0x06eb303, 0x1858ecd, 0x18e4bf3, 0x096466a, 0x077d28d,
- 0x06ff345, 0x0981d10, 0x0dec53e, 0x062eba4, 0x03fcc67 },
- { 0x121f920, 0x0f5eaef, 0x0e41427, 0x1f82803, 0x1af70e1, 0x132557f,
- 0x12ff656, 0x0444853, 0x12c37a1, 0x109042a, 0x0e49afc, 0x07e8fbd,
- 0x1c1d4c9, 0x0fd9f8e, 0x1cf9302, 0x1788c25, 0x0595b51, 0x12b042d,
- 0x043f6f4, 0x1ebac5e, 0x13c22a2, 0x07ef865, 0x183758b, 0x01e4a96,
- 0x024a36b, 0x15b8aa2, 0x1559184, 0x074b40b, 0x15249cc, 0x1867d0f,
- 0x022faf8, 0x0fcc543, 0x0ec6903, 0x14c9c92, 0x0eb2bd0, 0x0aebe1f,
- 0x13fa868, 0x09a2ee5, 0x070d350, 0x1fb8e2a, 0x0645146 },
- { 0x01924f9, 0x0319d5d, 0x1b87b3b, 0x0c00c64, 0x1ba6f13, 0x087e0bd,
- 0x15eb1f9, 0x000406e, 0x1ef3d8e, 0x1298c8c, 0x1169d32, 0x0d54a3b,
- 0x189545a, 0x098a095, 0x087563f, 0x1a000dc, 0x0057bb1, 0x180de18,
- 0x1b46a70, 0x1138d2d, 0x1a48f17, 0x0fcc2c7, 0x1ebcb4d, 0x12f7d0a,
- 0x109b981, 0x12ea1a6, 0x14a6a89, 0x1b80eea, 0x18fa801, 0x1df3e02,
- 0x13b2b40, 0x0a97429, 0x0d70a9f, 0x0853a49, 0x1415b01, 0x14db8f0,
- 0x0d005dd, 0x1e5254a, 0x07cb8a9, 0x0e557f7, 0x0448d3d },
- { 0x1b33989, 0x178a294, 0x056b715, 0x19535d0, 0x068351b, 0x03a20a4,
- 0x1584d2c, 0x07767e8, 0x03cd9f3, 0x0ae7215, 0x1b928e5, 0x09d8bfe,
- 0x1113ade, 0x1287554, 0x0ab1c56, 0x1dfbfa7, 0x0995666, 0x10630f6,
- 0x1a911c2, 0x145171e, 0x04c9108, 0x0272a42, 0x100bbd6, 0x1c5e66e,
- 0x1b162d0, 0x05e5c12, 0x1ed1bdf, 0x1b9a263, 0x12fd893, 0x1c764b7,
- 0x1e08205, 0x04b2518, 0x18c5d67, 0x1e22ca6, 0x0f7e658, 0x1e50b46,
- 0x192a309, 0x04b8bae, 0x06695c9, 0x0f396e0, 0x0768814 },
- { 0x1767eed, 0x1d08a48, 0x176ee90, 0x1b257ec, 0x1e11b9a, 0x12f10d2,
- 0x0b3800e, 0x02bd144, 0x12a3354, 0x1b02210, 0x1ab5898, 0x0768953,
- 0x05c2c56, 0x1059577, 0x1018992, 0x1c3ae97, 0x1758bf2, 0x0badc6a,
- 0x0228997, 0x1e1dcfa, 0x12a71cf, 0x0ed85b8, 0x05e4538, 0x030d25a,
- 0x125d04b, 0x00ae1ac, 0x115b33a, 0x1c4a7e9, 0x1f0e3ad, 0x120e4ff,
- 0x06691e4, 0x1bb57da, 0x0b9d06e, 0x1728328, 0x098167e, 0x00ce26a,
- 0x132ce18, 0x1b007da, 0x0189bcd, 0x038bcb5, 0x0670eb0 },
- { 0x1cdbb43, 0x1e057b9, 0x06b77dc, 0x0afe486, 0x0f08ecc, 0x0d1c22e,
- 0x01504a8, 0x1e322f0, 0x09224dd, 0x0d08279, 0x11fbfda, 0x071b7d5,
- 0x024352f, 0x1e16899, 0x0eced39, 0x168edf8, 0x030b5e4, 0x0534f4a,
- 0x1d691bc, 0x0646812, 0x0ece7d9, 0x0f2eb27, 0x0024e26, 0x0468bd3,
- 0x01250db, 0x0b5bdc1, 0x09fd2de, 0x06aa526, 0x190b1f2, 0x060aa5d,
- 0x158bba7, 0x12225ef, 0x1a9c8f5, 0x157190f, 0x1e6072e, 0x145a1e5,
- 0x0075166, 0x1f81b30, 0x1fc9edd, 0x1cec6bb, 0x0504852 },
- { 0x0f392fa, 0x19e72d1, 0x01e0bc3, 0x15d8d92, 0x126c076, 0x1d557b1,
- 0x17a4a12, 0x1275a03, 0x1cbe8e9, 0x00d8b69, 0x142422c, 0x18485b2,
- 0x1871305, 0x1c29d79, 0x1bf585c, 0x053418c, 0x00ed3c4, 0x1bb9a8a,
- 0x1eafc09, 0x0362543, 0x11778a3, 0x0102c59, 0x0814c00, 0x18fbd73,
- 0x1d9fca9, 0x09855ff, 0x0fa199f, 0x00bded3, 0x09e13fd, 0x198474d,
- 0x070bce9, 0x1723d5d, 0x14c9a19, 0x073621f, 0x1b9d863, 0x00a1a19,
- 0x1240f8b, 0x126e202, 0x03313ec, 0x0a3efd2, 0x0992fe1 },
- { 0x0f197aa, 0x06d989c, 0x1e61115, 0x1b0f0e5, 0x04ded69, 0x1854145,
- 0x09ec113, 0x18d2f68, 0x0a31e48, 0x010f0d7, 0x03bfb26, 0x013fbb3,
- 0x0ee38cb, 0x040659d, 0x0e13ea1, 0x0aae641, 0x0a84747, 0x1dd2dda,
- 0x1543a5a, 0x1c10159, 0x1550a9b, 0x0e77881, 0x111147a, 0x08264b9,
- 0x0e75fc4, 0x19eb137, 0x00e2978, 0x1dd4bd3, 0x10abd26, 0x1f5cd15,
- 0x0a5cc86, 0x136c105, 0x092e484, 0x1e61565, 0x1a2a64a, 0x163b902,
- 0x1c8eb9f, 0x0767a5c, 0x1c7804d, 0x15098b6, 0x05a68bf },
- { 0x10a2bfb, 0x19da2ff, 0x02c2d3f, 0x12aa05f, 0x1105fff, 0x0e06136,
- 0x162156c, 0x00829bc, 0x10d3b9d, 0x08b432d, 0x14e45fb, 0x08a604d,
- 0x0e2f5a2, 0x1a6d9e0, 0x08bd24f, 0x11e5cd4, 0x08ae241, 0x0a438aa,
- 0x026fbd8, 0x06c750a, 0x1bec6ab, 0x1d5c65d, 0x0472878, 0x023472d,
- 0x0dc9840, 0x0bbb8f0, 0x0835729, 0x1f305c1, 0x097bc1f, 0x1822c0c,
- 0x19fad02, 0x010b5ab, 0x1c24a46, 0x1bdbe25, 0x1e8298c, 0x1fa2b91,
- 0x1ef1628, 0x07377bd, 0x1d0e55b, 0x1f33ebd, 0x078acfd },
- { 0x0520189, 0x1bf8afc, 0x071116f, 0x018efec, 0x154202a, 0x11170dc,
- 0x11ae77e, 0x10e73db, 0x11f4a34, 0x16b0133, 0x13314b4, 0x1252902,
- 0x03cd933, 0x02f4f89, 0x1da8490, 0x16defbc, 0x0a0ae36, 0x0711837,
- 0x00e9638, 0x02a4317, 0x031a538, 0x1b50209, 0x0618aed, 0x0637ce3,
- 0x0253cbf, 0x10ff46d, 0x08df7a1, 0x1bf8a66, 0x0e48902, 0x09fb485,
- 0x14bc972, 0x11754dd, 0x0bcb8f0, 0x1a514b3, 0x183e422, 0x12de215,
- 0x1061c94, 0x1a5a465, 0x08d9a32, 0x0e7a0eb, 0x00ad92d },
- { 0x0ca548a, 0x0aff6e1, 0x06aefee, 0x01019b1, 0x0778c62, 0x1361402,
- 0x0552cd1, 0x0057d32, 0x1d4be89, 0x11df049, 0x1a07b7a, 0x132a27c,
- 0x01847b7, 0x017a00b, 0x0aa3d2c, 0x0ffd1e4, 0x14d4aeb, 0x11f7965,
- 0x0ebb57d, 0x18a2a36, 0x11639ad, 0x08cc618, 0x1b0733f, 0x1afb11f,
- 0x0c17ba3, 0x04bee15, 0x0d19084, 0x11f4c9a, 0x190bcf0, 0x005bca5,
- 0x1ad7afe, 0x016a153, 0x178b4ba, 0x153358d, 0x04d09e6, 0x1a349fd,
- 0x075b3ce, 0x1a6e578, 0x1a6ba3b, 0x140e14d, 0x095bbd8 },
- { 0x014bbd0, 0x0924af3, 0x0d8d67e, 0x0f7047c, 0x1567a88, 0x0deb53b,
- 0x127b3f0, 0x085c48f, 0x18e835c, 0x1fd57a3, 0x1819a8a, 0x09c155b,
- 0x16314ef, 0x0e0b699, 0x0aea98d, 0x1c7120e, 0x071e2f0, 0x1fd214e,
- 0x141f643, 0x03cba17, 0x1c04cac, 0x1528a7a, 0x1a7fcd7, 0x0aa9d82,
- 0x053fcc0, 0x03fc498, 0x1ca8d65, 0x163b0d6, 0x0be487a, 0x1830157,
- 0x0878a7e, 0x1bf739e, 0x0a10d6d, 0x0fe7ad0, 0x0167c83, 0x155a28e,
- 0x18867a2, 0x06e337d, 0x0a46520, 0x09f824b, 0x0375a88 },
- { 0x017f7ea, 0x05f1709, 0x16ac5e3, 0x150eb8d, 0x1a161e2, 0x0d8d2a0,
- 0x1fb006f, 0x195eee0, 0x0e4fd73, 0x1c43250, 0x0836199, 0x0cc9a27,
- 0x08baebc, 0x0469833, 0x0c97e67, 0x0b2a080, 0x1c92f1c, 0x1dc9f6c,
- 0x1078199, 0x06cec6a, 0x0763fdf, 0x185c8d3, 0x1f65fee, 0x0f39341,
- 0x069ea60, 0x0239355, 0x007aaa3, 0x0e60790, 0x063c55c, 0x0e40d7d,
- 0x16f7b1d, 0x09fa255, 0x1cdcde2, 0x041c500, 0x169c65a, 0x133fc1b,
- 0x1841537, 0x1d849d9, 0x013b19a, 0x1161197, 0x0268d81 },
- { 0x1580555, 0x171ac20, 0x00edcf6, 0x0e8e7a2, 0x0fc32e6, 0x0660d5a,
- 0x0404efb, 0x1bc4818, 0x0b24ee9, 0x1204cf9, 0x03819b6, 0x16b73f5,
- 0x0e37b0c, 0x121c6bf, 0x0b81391, 0x002816b, 0x1642b72, 0x03fbe98,
- 0x0e7929e, 0x1e9db66, 0x037586e, 0x169d3ec, 0x0979dfb, 0x0e0f85d,
- 0x1ad37bd, 0x0c4c41f, 0x083e5e4, 0x02d6c67, 0x1a208e8, 0x0145173,
- 0x1ab8930, 0x0886aa2, 0x171fe3c, 0x195fa88, 0x0ccd3d7, 0x0c7d727,
- 0x01b53a5, 0x0cf6a58, 0x0912e10, 0x0b80ad9, 0x08b0273 },
- { 0x1019195, 0x1da3270, 0x0306e26, 0x0de7f85, 0x1de4c02, 0x1e1d908,
- 0x039b8af, 0x05f5824, 0x091bdf9, 0x038de2d, 0x056f27b, 0x15681b3,
- 0x1e485d7, 0x13248ff, 0x119da3b, 0x1c4cb2f, 0x119afbc, 0x16caa96,
- 0x186ddb0, 0x0d8ffd1, 0x0d1bbae, 0x00ebf1d, 0x059f60a, 0x1312e68,
- 0x09af95e, 0x0c11f0a, 0x1228320, 0x03e0049, 0x006c0dd, 0x1fede18,
- 0x133d5c7, 0x0b0ee7a, 0x12ecf7e, 0x0a06c59, 0x1e0bf4d, 0x04b0454,
- 0x0436504, 0x1a2e1f8, 0x017f96a, 0x140969b, 0x0400e3a },
- { 0x046e4a2, 0x10b24af, 0x01d11cc, 0x084826c, 0x17a2ed6, 0x0763be9,
- 0x08ec718, 0x05ccb24, 0x1e5e0ac, 0x109d561, 0x01eadd7, 0x08378a2,
- 0x1bda17c, 0x19e129e, 0x0c8bb25, 0x0452ccb, 0x1b8a501, 0x1ff9c33,
- 0x1886a66, 0x0cc1aa0, 0x03f5fed, 0x03644fe, 0x08f0a14, 0x0c8a34f,
- 0x150b9f1, 0x0379f69, 0x099f2d6, 0x0f87c06, 0x1185b12, 0x03bccb3,
- 0x06f201f, 0x0942601, 0x1c157d4, 0x18fa684, 0x191eb6b, 0x106c5ee,
- 0x13a6a19, 0x015cd67, 0x180e529, 0x1451b4d, 0x0131c3d },
- { 0x1da83ba, 0x02ff8d3, 0x10d929e, 0x0ba09e8, 0x1415b42, 0x01fc097,
- 0x066f7b0, 0x144f811, 0x080f5f4, 0x0c6a08d, 0x0946e71, 0x0c21fb4,
- 0x123d32d, 0x069d979, 0x0ed1413, 0x0107933, 0x04bf4c2, 0x08cc622,
- 0x0c3a0ff, 0x04c35ee, 0x1b9060c, 0x0fe5816, 0x0183293, 0x1e3cf90,
- 0x1838b9d, 0x06487fb, 0x1f131a4, 0x16f39f2, 0x15f1546, 0x0a6baeb,
- 0x1fc4c54, 0x03961d1, 0x1c074f1, 0x0bb0ad3, 0x0b06cb0, 0x0172415,
- 0x04aa0ff, 0x004c56a, 0x173a77a, 0x0d468a8, 0x071d1a4 },
- { 0x01b382e, 0x1c7bb7d, 0x0835d85, 0x06ee5bb, 0x00d8ecc, 0x0a68985,
- 0x0acab17, 0x05954b5, 0x08d7262, 0x1e9c5d2, 0x0fb4189, 0x1b6d947,
- 0x0fc5410, 0x1c9e766, 0x0de9621, 0x1c7afec, 0x0fd6e65, 0x08fb2ed,
- 0x0291590, 0x08950ac, 0x140bc3b, 0x1427bc2, 0x03d1ece, 0x09ac1ec,
- 0x1dadd5e, 0x16ac127, 0x105f4ed, 0x1199f21, 0x1fc13ad, 0x15ef992,
- 0x0e4023a, 0x06c91f5, 0x090d716, 0x096a59f, 0x1ce8931, 0x1672c9f,
- 0x133d0ac, 0x0e620b2, 0x1d486e5, 0x13e22cf, 0x06cd269 },
- { 0x0f4f3ac, 0x0059d89, 0x17ecb63, 0x0533a37, 0x103dcfe, 0x19b9935,
- 0x0d3e0c3, 0x104a800, 0x17c5a8c, 0x16eb449, 0x1c51088, 0x07a19b1,
- 0x12eb709, 0x0c2ba17, 0x09e569d, 0x1b5bb12, 0x02c087a, 0x170af94,
- 0x1aaded7, 0x1b8e922, 0x0bb47bb, 0x05d2c56, 0x14c3f90, 0x1758737,
- 0x017ebe2, 0x05e06f2, 0x1b18681, 0x1696334, 0x1355694, 0x01a6f93,
- 0x1be4ce3, 0x0615632, 0x0f03742, 0x064b2f4, 0x12e1b22, 0x0df45df,
- 0x07eeb82, 0x17713a6, 0x1770867, 0x07fb468, 0x0327c06 },
- { 0x147cd53, 0x0cf7fad, 0x1bfaace, 0x1a32875, 0x1be9869, 0x0154335,
- 0x131ec50, 0x02dcc9d, 0x0b1c25a, 0x1f3e155, 0x1789c70, 0x16f2045,
- 0x1fc4216, 0x1b36b52, 0x037f320, 0x0666dcb, 0x09eda81, 0x068aca8,
- 0x0c2fedf, 0x0801e42, 0x0780370, 0x0cc9da4, 0x06f9381, 0x1e79a44,
- 0x1a1fe39, 0x1c38311, 0x0bbb2d3, 0x0554456, 0x07b83b7, 0x024b361,
- 0x0fc6bd3, 0x1b4bf4b, 0x042a94b, 0x00d793d, 0x008922c, 0x1935f75,
- 0x1670112, 0x15ce951, 0x1a15bad, 0x1a381be, 0x0020f19 },
- { 0x0dbba20, 0x08d4352, 0x1714dc1, 0x0db63bc, 0x1618ebc, 0x092c205,
- 0x0286799, 0x09b34f0, 0x1d2bccc, 0x0201816, 0x0168925, 0x047a205,
- 0x08e9ff0, 0x1d24313, 0x04dfb8c, 0x0228e77, 0x0f24cd6, 0x1f1bf71,
- 0x0f415f3, 0x177fa74, 0x0fce79f, 0x09e66ef, 0x17ee85b, 0x0462e4e,
- 0x058ec5b, 0x16dc8b0, 0x19c830e, 0x0ed33d7, 0x0f6bba4, 0x01c345a,
- 0x1c0989d, 0x1e3140e, 0x0b0092a, 0x108b02a, 0x03aeb32, 0x0133a12,
- 0x0c888f6, 0x0bf0ff8, 0x01513dd, 0x041600a, 0x079e727 },
- { 0x020a239, 0x1679294, 0x0c418ca, 0x1d55cd6, 0x11a3974, 0x0050efd,
- 0x15ae923, 0x155ac3f, 0x15a3ee7, 0x1229e1c, 0x0111b74, 0x0b41730,
- 0x0f54845, 0x0f0b33b, 0x0a765ef, 0x0eb433e, 0x00c7893, 0x0f92965,
- 0x1d0ea61, 0x035e7ce, 0x1d8de96, 0x0b3366d, 0x1c31e71, 0x18a71f2,
- 0x1854ecb, 0x08e0a51, 0x0a849a1, 0x11b54e7, 0x1f558c5, 0x1da2954,
- 0x017a6d6, 0x1f7a2bc, 0x1af7f83, 0x0c9ce9b, 0x049ce28, 0x0d4890f,
- 0x1511a05, 0x14595ac, 0x011b790, 0x1c6e02b, 0x0001d3c },
- { 0x145b1d7, 0x11b5cf0, 0x19935af, 0x140138a, 0x13e3938, 0x007b6df,
- 0x0b9f79f, 0x0725cac, 0x0c343f5, 0x0882273, 0x025ec65, 0x0571b21,
- 0x1ca5ab6, 0x0897bcb, 0x087dc2d, 0x051c963, 0x154750f, 0x0c8e6eb,
- 0x1ee0597, 0x101c5ff, 0x02b3b4c, 0x03aca68, 0x197b4e7, 0x1067db8,
- 0x0a49d56, 0x10c6609, 0x13cda4e, 0x0e6d297, 0x12c404e, 0x09a57e6,
- 0x050d330, 0x023a803, 0x11bd5fc, 0x02f2303, 0x011ff16, 0x080aeb2,
- 0x190b7a0, 0x1401b03, 0x11a12cc, 0x1f8815f, 0x04bb8c6 },
- { 0x10f8796, 0x0716efe, 0x0778c48, 0x1b62679, 0x0968a40, 0x1b4e373,
- 0x19b02a4, 0x077fd46, 0x0600727, 0x1f2db6b, 0x0050e4d, 0x19e1197,
- 0x0539e4e, 0x0ff5e00, 0x1ffa736, 0x16a7890, 0x0440199, 0x1f5c57a,
- 0x04d467a, 0x049c765, 0x1c162f1, 0x0564164, 0x0183086, 0x13b8b21,
- 0x1d6f270, 0x094d668, 0x14db541, 0x0d2daa8, 0x120bfc5, 0x0efcac8,
- 0x04300fd, 0x021ff4d, 0x1a3e88d, 0x19413cc, 0x1e95b10, 0x13a9f39,
- 0x1a135d8, 0x07f54f4, 0x1f9e0ba, 0x1036d4e, 0x03699a8 },
- { 0x0b1c64d, 0x119b90f, 0x05516f2, 0x1be3a50, 0x09cf3a2, 0x1b8837f,
- 0x1a6cd94, 0x09b6fc5, 0x14f7cbf, 0x160b8a8, 0x02cdfc1, 0x02dc40b,
- 0x05cbde4, 0x041a74e, 0x114e9fa, 0x074eb05, 0x1e2e9ac, 0x14a6def,
- 0x1799f00, 0x1d8d978, 0x080d795, 0x0f8a135, 0x0308f09, 0x11a9f3f,
- 0x0d20d6a, 0x11af716, 0x134edf0, 0x071b54a, 0x1a4d528, 0x07601eb,
- 0x1cee782, 0x0f03968, 0x09475e9, 0x18e5565, 0x0e797b0, 0x0ee4e3e,
- 0x0253518, 0x18474fc, 0x1fe2c77, 0x0064115, 0x04f3a4b },
- { 0x0d095f8, 0x1c0838f, 0x15383de, 0x0db444d, 0x03e37fa, 0x19b68e9,
- 0x0614abe, 0x023161f, 0x007d8e3, 0x08a31a7, 0x03c5bac, 0x152fc7c,
- 0x17b9634, 0x010f761, 0x152ee71, 0x0438248, 0x1dbd72b, 0x05a766a,
- 0x17c835f, 0x0070d0d, 0x00a2f96, 0x1eefc37, 0x07d4d67, 0x1891155,
- 0x154fa5a, 0x0fa621e, 0x0f44127, 0x0dae295, 0x00607a5, 0x159f581,
- 0x1784c54, 0x0f40464, 0x1be1c18, 0x1426da4, 0x1d294ab, 0x0089e49,
- 0x0b5a7b8, 0x092e018, 0x1e7f679, 0x08d4da2, 0x06d8744 },
- { 0x09a42f5, 0x083d55f, 0x13234a7, 0x186f039, 0x1fd5316, 0x034f508,
- 0x169b677, 0x034e34e, 0x188fee9, 0x10cf06f, 0x113c493, 0x09b9f1a,
- 0x0499c2b, 0x18d74a7, 0x1db7e48, 0x199840b, 0x076cf28, 0x193fdd4,
- 0x15fdf3a, 0x141e03e, 0x1b746e1, 0x1a79fe9, 0x180fc7c, 0x183a427,
- 0x1c4a742, 0x0c05076, 0x01f7ae1, 0x195584e, 0x0848bc5, 0x1c8fd78,
- 0x0743d75, 0x00f58eb, 0x1f514ad, 0x1e2988b, 0x1cd2413, 0x1b2b472,
- 0x1bb70f3, 0x125654b, 0x1582656, 0x193ff38, 0x03cf384 },
- { 0x01fc9e3, 0x0835d67, 0x0e65c01, 0x04ced60, 0x0972174, 0x15fbd9a,
- 0x06e379c, 0x1ee5694, 0x079b209, 0x1430154, 0x1aa3872, 0x17219c4,
- 0x1a90580, 0x1f1279c, 0x1cce6df, 0x0c5c23d, 0x1916293, 0x05b62ec,
- 0x1dec93d, 0x0e9c34a, 0x11e9511, 0x1a82f22, 0x1ce03f2, 0x106437b,
- 0x17afb14, 0x0957a6c, 0x0dd1f97, 0x13300d7, 0x19a6080, 0x0eb2df4,
- 0x0821549, 0x1a8abd0, 0x04828d9, 0x1053293, 0x1017615, 0x011918a,
- 0x1103077, 0x13f39e3, 0x17c98f1, 0x0a1dce7, 0x02b2488 },
- { 0x141159f, 0x1e6f342, 0x02c885c, 0x109f682, 0x18224c1, 0x1650e3b,
- 0x018647c, 0x0800f45, 0x0a8b23e, 0x16103eb, 0x08d1294, 0x04214d6,
- 0x05071a0, 0x1af694a, 0x03961f2, 0x198d9b6, 0x0ef810f, 0x0b62b5c,
- 0x0b610ee, 0x118b1ec, 0x0975124, 0x1eba633, 0x12e40d8, 0x0d8cdec,
- 0x0f7f2e6, 0x05f31a4, 0x07049af, 0x05f3a88, 0x0e49e8b, 0x1951b9e,
- 0x1c2b01f, 0x1d0361b, 0x0486758, 0x110e8a9, 0x1534751, 0x1942116,
- 0x14414a1, 0x130f673, 0x108545c, 0x198d475, 0x0938b3b },
- { 0x0ded340, 0x050b5f2, 0x00daa79, 0x1501d10, 0x0e65fb2, 0x0b9d65c,
- 0x0581b73, 0x1532e11, 0x0aaa657, 0x01d021a, 0x006c187, 0x18b0922,
- 0x0cf304f, 0x0d05db2, 0x03ed86b, 0x05bebcc, 0x0ecf554, 0x1c0c615,
- 0x1bddb57, 0x040aeca, 0x1d97740, 0x0849299, 0x0d59ade, 0x1add6bf,
- 0x055e574, 0x05bd723, 0x16956d1, 0x01ef436, 0x147ea56, 0x0bcdc9b,
- 0x159e5c0, 0x1e5b59c, 0x0e7e0e8, 0x01e0345, 0x181e13a, 0x03308e8,
- 0x1530734, 0x1464f68, 0x075ac93, 0x14bb3d1, 0x06cff58 },
- { 0x1e51f68, 0x000d801, 0x1f59423, 0x0a3a5fc, 0x01d1f22, 0x1ec402f,
- 0x0342c26, 0x16fef33, 0x003e415, 0x0af483d, 0x165e609, 0x0cfac0f,
- 0x16d1484, 0x0da29c4, 0x170ec7a, 0x0a1e80a, 0x013809f, 0x01a8008,
- 0x008cff7, 0x165f4da, 0x00b8fbb, 0x057f8c1, 0x02da02c, 0x1a62fc0,
- 0x004dc38, 0x1efd8ea, 0x1333231, 0x067aa88, 0x013f841, 0x03f3376,
- 0x121fea1, 0x008dc5c, 0x13f83d8, 0x1d9d661, 0x1f15218, 0x0e78c4f,
- 0x0b936af, 0x13fc557, 0x04c9d7d, 0x11e636f, 0x05fe4ac },
- { 0x16f401e, 0x1525fc5, 0x1b51606, 0x075ab8f, 0x05db12a, 0x183da50,
- 0x01c99be, 0x1a8f603, 0x09c22bc, 0x0e88f82, 0x1c7257f, 0x0fa8d26,
- 0x0f5454a, 0x0cd2375, 0x1b157ee, 0x12da00c, 0x07c7fef, 0x00c31be,
- 0x0e0fa57, 0x183a68d, 0x02dcbaf, 0x09805da, 0x1570e16, 0x1cfce24,
- 0x1ec2b34, 0x1746ec6, 0x02c6133, 0x13939f6, 0x0278646, 0x062124d,
- 0x19e3730, 0x04021e5, 0x10d95f2, 0x1d21014, 0x1325a5d, 0x1b0dc4a,
- 0x0b2abda, 0x098e44f, 0x0152082, 0x0c82438, 0x0813771 },
- { 0x05a8edf, 0x1592f4e, 0x1eb5899, 0x0420f14, 0x0e1388c, 0x1b776fb,
- 0x1cdf521, 0x02ebe04, 0x1627446, 0x017d3fc, 0x14e0a89, 0x17b3670,
- 0x0f3e2cf, 0x017b8df, 0x16b5ec4, 0x0152575, 0x0fa677d, 0x02b155e,
- 0x07f7fcd, 0x1d7a2ea, 0x0c78573, 0x093e128, 0x15fd961, 0x0f9512d,
- 0x116eec4, 0x04f7067, 0x019d88b, 0x199af36, 0x12c0758, 0x0c417c7,
- 0x054c7f1, 0x14c010a, 0x032b37e, 0x062dd49, 0x0d860ba, 0x1c9af76,
- 0x12f146f, 0x1239ae6, 0x16e62fc, 0x1dd39a5, 0x079c280 },
- { 0x0b48122, 0x04101f9, 0x123af73, 0x0d60958, 0x08c0491, 0x02442f5,
- 0x193727f, 0x03959e0, 0x182c100, 0x1c1c4cb, 0x178942a, 0x0e42ced,
- 0x007339e, 0x070d5c1, 0x0a96baa, 0x0965c2f, 0x0a06bc1, 0x0126946,
- 0x05ad88c, 0x18b76f0, 0x1606570, 0x0e67735, 0x1b1448d, 0x07d5c84,
- 0x1f89f18, 0x1a58d95, 0x1a71989, 0x1c75e78, 0x1e38bc3, 0x02135a8,
- 0x0ef82c1, 0x0e7c81c, 0x0dbc58e, 0x12df213, 0x15e2d6f, 0x107f3ba,
- 0x12c8f40, 0x0cfbc8a, 0x1fd3e7f, 0x14953c7, 0x0758073 },
- { 0x091ca22, 0x1d82bc3, 0x06d9f49, 0x0c27454, 0x1206bfd, 0x1caa09f,
- 0x14e16b1, 0x00fd097, 0x0755366, 0x0e8c515, 0x0389331, 0x1bcf914,
- 0x1d2e166, 0x1e23a6d, 0x155d430, 0x10874ad, 0x0c11366, 0x16f7a22,
- 0x1d2e10c, 0x08dca79, 0x1783146, 0x1854fec, 0x12f0340, 0x0fdc406,
- 0x0c82429, 0x163ded2, 0x1ff5ef9, 0x1a16217, 0x07f3ff3, 0x123b046,
- 0x114b485, 0x169fa98, 0x0e52599, 0x0f08203, 0x1e8527a, 0x1bf7573,
- 0x0661d32, 0x0153fd4, 0x1aaa24d, 0x0b1f5ec, 0x03f3e34 },
- { 0x11597aa, 0x01ad7ca, 0x13ad47b, 0x1893bec, 0x1677d4a, 0x1a77fad,
- 0x136726f, 0x06a04ed, 0x1515a29, 0x11f6524, 0x0ee70d0, 0x0aa7fb3,
- 0x1c8a696, 0x16f0f84, 0x07ba77f, 0x0bf31f3, 0x156199e, 0x15c7d14,
- 0x14a4b0c, 0x070eb06, 0x081bb76, 0x0e7e207, 0x01cd3b7, 0x08afb2b,
- 0x15e9f65, 0x095ec16, 0x18c31e3, 0x11dc647, 0x033d67c, 0x172660a,
- 0x0bb9dec, 0x0790629, 0x0d9f807, 0x117b1ab, 0x1788a83, 0x1c883dd,
- 0x0c48295, 0x0f0bf6b, 0x053bc7a, 0x1886985, 0x0640d20 },
- { 0x084d513, 0x105c719, 0x14e93a6, 0x0be62a0, 0x074c354, 0x166a950,
- 0x1d01d16, 0x16f66dc, 0x01de50d, 0x005ee7e, 0x07f11b6, 0x0fb84a9,
- 0x088d9d4, 0x181f83d, 0x0dbbc4c, 0x1a98453, 0x0ca6d4a, 0x1a7230d,
- 0x127c6dc, 0x1c6a3bf, 0x0e65ca8, 0x06aba30, 0x02f1025, 0x065a6cf,
- 0x02b330f, 0x1745b18, 0x18a15d0, 0x1340e96, 0x0c29c36, 0x1588c3b,
- 0x1eb7f94, 0x12257a2, 0x19e4609, 0x1531cf9, 0x1598d26, 0x031dc81,
- 0x072e05c, 0x1448156, 0x0a05ae5, 0x15181b2, 0x00f9c1c },
- { 0x1433df3, 0x1d559b3, 0x0a307ae, 0x0e2ba6c, 0x16aa534, 0x1862e65,
- 0x083625f, 0x1f22746, 0x165e408, 0x1648c65, 0x1cd145c, 0x10a9aa6,
- 0x094b638, 0x05a6e50, 0x04e668c, 0x0264ce6, 0x1300a3b, 0x06792b3,
- 0x1822ce2, 0x0c1bf4c, 0x0dfd5ea, 0x183d948, 0x162b5d2, 0x0d29f36,
- 0x02789d7, 0x1d8c190, 0x02d98c3, 0x10b27b7, 0x1e3eaf4, 0x1fb8632,
- 0x1e0f6d1, 0x07ce4c7, 0x1949c91, 0x17f99b1, 0x1b1b9b9, 0x0137359,
- 0x098a824, 0x1ecdd38, 0x1bb14d2, 0x05e8ba6, 0x07e31c1 },
- { 0x1fd2dd7, 0x00eb406, 0x0762f8a, 0x004956c, 0x1efacb0, 0x018fcb8,
- 0x0017e51, 0x1797386, 0x0959cb3, 0x10646fd, 0x0ed0199, 0x18619ff,
- 0x0dfdd5f, 0x1cb4d08, 0x118c6f9, 0x1fa36f4, 0x09ede13, 0x119b718,
- 0x1251c1d, 0x077f5bf, 0x022376b, 0x0eee639, 0x1ea4649, 0x0d89dc3,
- 0x10d7315, 0x1a3ba0f, 0x0438acd, 0x1ec9dc8, 0x04d93c4, 0x0969f7e,
- 0x0ba1afa, 0x1f89f76, 0x13b7e03, 0x050dde2, 0x13d4cdf, 0x015832d,
- 0x1e23ba6, 0x120d183, 0x14d5d37, 0x08a64da, 0x01a219c },
- { 0x04db0bc, 0x1bf7c55, 0x058ff73, 0x0cf6d93, 0x0e23180, 0x050c979,
- 0x0419cf6, 0x0e384c7, 0x0ffdc77, 0x0676171, 0x103b6f0, 0x1c6b45f,
- 0x03997c8, 0x0166302, 0x1843b06, 0x10240f1, 0x0cb2b0c, 0x17e86f1,
- 0x0795fe3, 0x188afed, 0x11c34d6, 0x192da9f, 0x054f9a6, 0x1f13971,
- 0x0330ac4, 0x1f32115, 0x065559a, 0x05fe465, 0x1442d19, 0x0816a1b,
- 0x00dcf35, 0x17d4d28, 0x04ce590, 0x1833178, 0x0dfbe00, 0x06d582a,
- 0x16d0bf9, 0x15e7bbd, 0x064bf80, 0x1337920, 0x017aaa9 },
- { 0x055db2e, 0x0ab21c7, 0x014434f, 0x067728d, 0x035dee4, 0x042317c,
- 0x103956e, 0x0f83428, 0x1ea17e2, 0x17f9d9a, 0x17dea69, 0x186dbb2,
- 0x0f23f99, 0x1eeb396, 0x05ff766, 0x08b80e4, 0x01edd20, 0x0fa0056,
- 0x1fc1ac9, 0x0ab90e9, 0x09be94b, 0x1287252, 0x0291283, 0x076d026,
- 0x05e91b4, 0x162f449, 0x04853e5, 0x117dbbc, 0x17fa977, 0x152607c,
- 0x19c3d15, 0x14b7fa4, 0x08fd86b, 0x10477d1, 0x163ef9d, 0x1876965,
- 0x026474b, 0x0affc61, 0x0c92bef, 0x1e14be7, 0x06b282a },
- { 0x141a595, 0x0012fb1, 0x0a31e3f, 0x0d488bc, 0x191c38d, 0x0234212,
- 0x1b8f7ad, 0x066e57a, 0x1755478, 0x1ca3369, 0x185b10f, 0x09a6107,
- 0x1491141, 0x0ad3d65, 0x176519a, 0x1f6c828, 0x1098fd2, 0x08816ef,
- 0x0ff61ec, 0x165a5a1, 0x10882a2, 0x0e2ca2a, 0x1a7a6f9, 0x0048bbc,
- 0x18bf4a8, 0x187771b, 0x02c8c1a, 0x01617ad, 0x1e9f3d8, 0x02e3615,
- 0x115da95, 0x0900584, 0x09d167b, 0x096fda1, 0x109cad0, 0x0427cc8,
- 0x0e8d976, 0x127a94f, 0x1bafed9, 0x046a8e0, 0x06d4f5d },
- { 0x0ba9f88, 0x0795b00, 0x02fcd72, 0x00f76da, 0x1dc807e, 0x1c0f2df,
- 0x1b50ace, 0x03c1424, 0x0a7ac78, 0x1ae7367, 0x172e98c, 0x1cdfe6f,
- 0x073e308, 0x11e4b24, 0x0372989, 0x0869a05, 0x17e8818, 0x13975d2,
- 0x06de289, 0x07ab3ef, 0x0ea3a9e, 0x0e9783d, 0x14bc29f, 0x1a0bee9,
- 0x0467824, 0x15b707f, 0x00045b7, 0x0410a2e, 0x137580b, 0x0f492c7,
- 0x0ce70a9, 0x0e80e17, 0x18bd7a5, 0x1bec873, 0x01cae65, 0x08aa3f9,
- 0x00db81b, 0x0d49e22, 0x0d2b5bb, 0x09facba, 0x04aaf0b },
- { 0x114c7af, 0x192831a, 0x1ab66fb, 0x1b78303, 0x109e7da, 0x11f62c5,
- 0x0ba1e3e, 0x10bde79, 0x1173b86, 0x06dfd5a, 0x14cb776, 0x1f81243,
- 0x06b2490, 0x05ece23, 0x1bce1ae, 0x1b7b69d, 0x12fa061, 0x1e0e6ea,
- 0x16f0136, 0x1d31344, 0x063664d, 0x15c2b94, 0x01be60d, 0x1c89540,
- 0x1a8048b, 0x06388d2, 0x1825c06, 0x0dbdbc9, 0x011fb11, 0x02bbd96,
- 0x165cabb, 0x14e43d9, 0x04dade1, 0x1f9d48a, 0x09af5ba, 0x0ff338a,
- 0x1c2e14d, 0x0a0b2d8, 0x18cde87, 0x0730578, 0x08b2cbd },
- { 0x052e991, 0x00df945, 0x0bb0a3b, 0x0d9f3a8, 0x0ba202f, 0x1a75228,
- 0x144c318, 0x139060f, 0x1c5762b, 0x1e12bd9, 0x10a8b4f, 0x11a290f,
- 0x0abd329, 0x118ca44, 0x053c69e, 0x00da594, 0x13b06ba, 0x0e38654,
- 0x19017a2, 0x07e967d, 0x0ae79aa, 0x199aef7, 0x13193ba, 0x17e3a99,
- 0x1f57803, 0x1fee8aa, 0x151585a, 0x083d816, 0x0e33f60, 0x0073043,
- 0x1d48f7e, 0x1e04879, 0x19a79c8, 0x066ac1c, 0x093a1d3, 0x030d850,
- 0x0fc5c83, 0x0775764, 0x0d9c088, 0x008fb7c, 0x057e283 },
- { 0x1cdf666, 0x05b4c7d, 0x0749b98, 0x1317d76, 0x1dd06a9, 0x04c21b5,
- 0x0b6ea01, 0x11a8089, 0x0522bc8, 0x1b5fbaf, 0x08ec835, 0x1736508,
- 0x12655c4, 0x099cc53, 0x103d249, 0x0ec02cb, 0x0b70ca3, 0x13b6a79,
- 0x00c3e96, 0x11324a4, 0x0705469, 0x03db02a, 0x05acdfa, 0x1bc365f,
- 0x0f73153, 0x182f7cb, 0x12b553b, 0x1d97791, 0x1617b05, 0x0e85549,
- 0x1f7aca2, 0x0f97442, 0x0c0fbd5, 0x0516b9d, 0x0d58675, 0x07a1a79,
- 0x091d606, 0x1f74ea6, 0x1f69ba2, 0x06ed2df, 0x04f12e0 },
- { 0x1f1a610, 0x1d2110a, 0x0669333, 0x0a6f0ca, 0x004a5c5, 0x01c09a4,
- 0x09151ce, 0x054248d, 0x04b284e, 0x10ada42, 0x144c83e, 0x18ca28d,
- 0x1a36464, 0x1854507, 0x1aea231, 0x1009df6, 0x0e793c4, 0x13a73e7,
- 0x056b85a, 0x09a4597, 0x14dd8c3, 0x0ffce0e, 0x0767b62, 0x004a6e3,
- 0x0866d32, 0x02530d0, 0x0a6f591, 0x0b64656, 0x17bab14, 0x1496793,
- 0x00be223, 0x1528916, 0x1e69c6e, 0x10f65b9, 0x1aa56d4, 0x043492d,
- 0x1858afb, 0x1bc753a, 0x1be46a3, 0x07d624c, 0x083d233 },
- { 0x1b478d7, 0x1994433, 0x1270718, 0x02a145f, 0x01ee1ae, 0x09120dd,
- 0x0acc063, 0x12c0b6d, 0x0893cd6, 0x0f8f944, 0x05ea1da, 0x0cc1502,
- 0x17159d6, 0x18739eb, 0x0480465, 0x0be15d0, 0x10093f5, 0x12947f7,
- 0x01537ec, 0x0f1b71b, 0x1fbbb39, 0x1b7a2ec, 0x15ad0fb, 0x17dc72f,
- 0x04bfed5, 0x0d68bef, 0x05afddb, 0x003c1eb, 0x00754ca, 0x14071ea,
- 0x1cca2c8, 0x1f1d0dd, 0x0db6122, 0x0f2c347, 0x1abedf4, 0x17044d6,
- 0x0f40a55, 0x1a990a9, 0x0588518, 0x07d8b46, 0x07362f1 },
- { 0x1c0c430, 0x1593e39, 0x195de4b, 0x1f4a386, 0x0cc0a65, 0x0ca78dc,
- 0x13b3b48, 0x08ea14b, 0x0814b49, 0x04a2b44, 0x1eefd06, 0x103496d,
- 0x08bbf0a, 0x1855430, 0x1bd3d63, 0x0f2bc6e, 0x1683987, 0x0ec9b0e,
- 0x0ea3435, 0x0219b1c, 0x0455b65, 0x1fdb60d, 0x18f8bf6, 0x19123f2,
- 0x1154eae, 0x1b21648, 0x17fd5a3, 0x1d63ce2, 0x0b399e0, 0x0e6b979,
- 0x02f9ebe, 0x113e17e, 0x1c39bac, 0x01b4a8f, 0x164a426, 0x11e10c3,
- 0x1a0a20a, 0x18b7816, 0x03ab766, 0x07f4718, 0x02f1069 },
- { 0x006ded2, 0x1674886, 0x01ec1e9, 0x1e5fb21, 0x1974842, 0x1b1ad37,
- 0x0ff5aa7, 0x04dc8d1, 0x11ed606, 0x05b0c48, 0x1b95201, 0x113e6d3,
- 0x011fb2f, 0x0e4b510, 0x0f4444f, 0x0675939, 0x0fe10d6, 0x133acd6,
- 0x1ea98a7, 0x14cdf91, 0x028364b, 0x04a3f9c, 0x09a1ab9, 0x139b533,
- 0x03a05d5, 0x1b74146, 0x1023a8b, 0x18f5f62, 0x1953c87, 0x0472579,
- 0x13c9547, 0x13b553c, 0x153d279, 0x18ca02d, 0x0352b5b, 0x163dfed,
- 0x16437cd, 0x1aedeec, 0x0810c9d, 0x1c89fcf, 0x0985f83 },
- { 0x0f45294, 0x01e0b75, 0x1d46258, 0x018496a, 0x1013116, 0x0b5a96b,
- 0x08060e7, 0x0809822, 0x0ed9433, 0x03ce781, 0x106da1c, 0x0516e9e,
- 0x010c5b0, 0x0e4560f, 0x10fc1da, 0x09e1c7b, 0x0a3f8b2, 0x12d62f7,
- 0x0d31708, 0x0d0975c, 0x052aee6, 0x11cd5e2, 0x0949679, 0x1be8b99,
- 0x12cd1e9, 0x07d583e, 0x0c6910f, 0x0e03392, 0x0003b30, 0x0d54c96,
- 0x0b9a3f7, 0x01b1978, 0x19f179c, 0x00e5396, 0x09bc79e, 0x1377e2b,
- 0x10dcc79, 0x0bbceaa, 0x18bc553, 0x0801fd2, 0x00c88e5 },
- { 0x0f44357, 0x18d3574, 0x0daa13d, 0x0c74795, 0x175b4bf, 0x15e3407,
- 0x076796b, 0x1e46699, 0x08a753e, 0x1657842, 0x18f23b3, 0x09820eb,
- 0x1ae2801, 0x1ba7c69, 0x07568e3, 0x0655d77, 0x064b80e, 0x13acc42,
- 0x0af0de4, 0x051cdfe, 0x01977b3, 0x17f7687, 0x1aeec7e, 0x0660cb5,
- 0x0ac955a, 0x07433a7, 0x1e48b6f, 0x1833fb1, 0x1b907a8, 0x1742cc3,
- 0x15e305e, 0x0767459, 0x1f33627, 0x1bb97c4, 0x0067ea1, 0x0dd75d4,
- 0x1a25ced, 0x0ef24c9, 0x01c5539, 0x1715e22, 0x08e2560 },
- { 0x141aba6, 0x1ba3618, 0x1e795b4, 0x1f75659, 0x05a1079, 0x0e93e3a,
- 0x0a0c673, 0x01d6c70, 0x09dfd95, 0x111bb19, 0x1023fc8, 0x0b9a752,
- 0x181e0b1, 0x188b008, 0x0a00802, 0x1774e93, 0x15da383, 0x0938ced,
- 0x14411b5, 0x106814c, 0x1b1f607, 0x0f4ba91, 0x024a753, 0x0145157,
- 0x0345c8e, 0x0e3a020, 0x082b7c2, 0x024eb58, 0x11d6116, 0x1932919,
- 0x142d06a, 0x0a72394, 0x10cc77c, 0x1118a91, 0x124a3e4, 0x13117c1,
- 0x12fd9a2, 0x19ec95c, 0x1cb97fb, 0x0450649, 0x059005f },
- { 0x04c1c74, 0x0ba861e, 0x0de5aec, 0x01d2cdf, 0x1e73aac, 0x02cb9fd,
- 0x176499b, 0x16d0b4e, 0x03a8656, 0x04bfc99, 0x11b37a3, 0x0762a08,
- 0x1f2b704, 0x1ff9c4b, 0x0245bdc, 0x0e564a9, 0x01cb18b, 0x1489ee8,
- 0x0230379, 0x0ea3e29, 0x0a58d0a, 0x0a42ac6, 0x0645d5c, 0x14cc7b4,
- 0x1430144, 0x10c4bb8, 0x12c3821, 0x1be3215, 0x1ead9c2, 0x1e0679c,
- 0x0840203, 0x02e705b, 0x085ac6e, 0x1519c00, 0x0144c98, 0x1bd2f23,
- 0x143bae8, 0x04ac9b5, 0x17dbb91, 0x04daf07, 0x057a78e },
- { 0x0dbddd8, 0x19a37a0, 0x0eb0586, 0x0f28218, 0x0b49a92, 0x03679d9,
- 0x09e0c62, 0x1d718a8, 0x033b93d, 0x16f9919, 0x1d5e75c, 0x13ea81b,
- 0x009c8d5, 0x01077a8, 0x15e99f7, 0x10c87cb, 0x11867f0, 0x1e2359c,
- 0x165ab70, 0x14488b5, 0x04d0ecf, 0x0d8622a, 0x1963d62, 0x1082fae,
- 0x09301e0, 0x1447376, 0x0b11538, 0x194bded, 0x0f462d6, 0x0247d60,
- 0x0d90644, 0x011b140, 0x12407d8, 0x1adbf42, 0x0e9fdb4, 0x0f698a6,
- 0x0f6ada8, 0x08f2094, 0x1cba0c9, 0x18b0388, 0x01ca370 },
- { 0x001b68a, 0x0a8b8d4, 0x02ce52f, 0x19fa333, 0x1312879, 0x0b19013,
- 0x0aafd04, 0x1b6920b, 0x0f5b01f, 0x0ff43fa, 0x084a2ed, 0x047539b,
- 0x1778de5, 0x03de98f, 0x1c58687, 0x0986a17, 0x1d02390, 0x0daef67,
- 0x0623c4b, 0x165105c, 0x0e74224, 0x0efcced, 0x0374a00, 0x19a39a4,
- 0x067b508, 0x11ce56a, 0x170219f, 0x1862387, 0x0250726, 0x0b9015a,
- 0x00dc684, 0x05dfb20, 0x1bf464e, 0x09d81c1, 0x122876f, 0x14a7a08,
- 0x06265ba, 0x0da97a7, 0x0b1e4cb, 0x0989867, 0x02584b3 },
- { 0x0eec688, 0x031c495, 0x148cf2e, 0x148bf7c, 0x05e740b, 0x105afc5,
- 0x1c7dff5, 0x07a845c, 0x0487491, 0x0ae8c2e, 0x1f60351, 0x166df42,
- 0x0404c2b, 0x1602a29, 0x09c6152, 0x14cae7e, 0x045a8b9, 0x03b6e98,
- 0x0bb9f32, 0x0587c2c, 0x07d02e4, 0x0326fb6, 0x000999c, 0x0f96910,
- 0x1dd51dc, 0x1f02c93, 0x1861e25, 0x167f557, 0x15737c6, 0x0917796,
- 0x1fff9ab, 0x1fea353, 0x1b60269, 0x03dd557, 0x1515a60, 0x15c3906,
- 0x151ca49, 0x0edb7fc, 0x0c216b3, 0x0e87f35, 0x07e8113 },
- { 0x10a88b1, 0x11545c1, 0x1f86b5c, 0x119c222, 0x11918ea, 0x04da3ec,
- 0x142e010, 0x1a67c05, 0x16c46d1, 0x09c0969, 0x059a72d, 0x1b61cb1,
- 0x1e2fd09, 0x0ad866a, 0x1173418, 0x188a730, 0x15a2386, 0x1860e0a,
- 0x17fd0f2, 0x0e9bcbe, 0x00cdda7, 0x0c71c8e, 0x0ec1dae, 0x009e50d,
- 0x11eff50, 0x1ff4beb, 0x12bbb02, 0x07c168d, 0x01ad942, 0x0333995,
- 0x08b914e, 0x072db48, 0x00c9f81, 0x195ff7f, 0x06898f6, 0x02c6ed8,
- 0x1a56fa9, 0x0e3c8c5, 0x0169800, 0x0c9bf09, 0x0436b8c },
- { 0x0b764bc, 0x0bf4ec5, 0x1e12204, 0x0940efb, 0x1fa61e9, 0x0c775ee,
- 0x1974c30, 0x1b8b4ee, 0x1fc9451, 0x0448b57, 0x08d1e95, 0x1c660e3,
- 0x1f01a52, 0x191da0e, 0x0ee577a, 0x1850cc6, 0x0c943c8, 0x06ebeb4,
- 0x0365c1a, 0x13a83c3, 0x199de4f, 0x0846493, 0x1e6422e, 0x0e72946,
- 0x0148ed4, 0x09ff30a, 0x1f35479, 0x0a030a2, 0x03dcb6e, 0x03af012,
- 0x0154180, 0x02f2a88, 0x1dcde62, 0x0d2fff2, 0x03854df, 0x0cdef92,
- 0x0768cb6, 0x1bd5720, 0x0578477, 0x13cdb7d, 0x05266ca },
- { 0x186b3db, 0x0f73689, 0x1502137, 0x14f871c, 0x19e4af5, 0x027a4ef,
- 0x01103ac, 0x1fb6683, 0x0fde5a4, 0x09c50f4, 0x15f3f08, 0x1248604,
- 0x013e6e6, 0x0cfeb86, 0x0671b8c, 0x03fe06a, 0x17486c3, 0x0479a70,
- 0x103387a, 0x0531fb2, 0x0d7cf1e, 0x0e8a4b0, 0x1bee32c, 0x05e77fe,
- 0x013472b, 0x07f903e, 0x1051bbe, 0x1334416, 0x13e2208, 0x1b15bde,
- 0x09df7b0, 0x0c4d7d4, 0x175044e, 0x065b3d4, 0x11253ed, 0x141e656,
- 0x1fc6703, 0x1d04900, 0x128af05, 0x17339b0, 0x041f325 },
- { 0x02843a4, 0x16a89e7, 0x0bf0c4b, 0x1c00e51, 0x0748498, 0x032672f,
- 0x0a08936, 0x07751de, 0x0a62008, 0x0032382, 0x14ce34d, 0x03b297d,
- 0x185905e, 0x031f3d9, 0x15e32d4, 0x0f77254, 0x196289e, 0x0cc13b6,
- 0x05edcd0, 0x05b88fe, 0x0944dfe, 0x0f8ed64, 0x1648d48, 0x080154e,
- 0x0d28d23, 0x1219edb, 0x1a9d86e, 0x0c8ee0b, 0x1d07ddc, 0x1d36cdf,
- 0x1f6251e, 0x0485951, 0x0f2e3ac, 0x01a3400, 0x19c3ae3, 0x1a93de8,
- 0x19aa18f, 0x19e9bde, 0x1aa79f6, 0x16dcb19, 0x056b30f },
- { 0x180a428, 0x06e5566, 0x02441fb, 0x190e659, 0x1af922d, 0x0d220fb,
- 0x01e60eb, 0x11441b1, 0x0924b00, 0x1f6cd22, 0x0070e8e, 0x067965d,
- 0x1321235, 0x12fc03e, 0x13901d5, 0x15d9786, 0x1a51f2f, 0x085fd77,
- 0x17a2a23, 0x0c694b5, 0x0a9178b, 0x1c4a1c9, 0x11382df, 0x17639b1,
- 0x0237790, 0x0571849, 0x0be1c81, 0x1d5369f, 0x13cd83d, 0x00fac2e,
- 0x1e4fb7e, 0x18ca474, 0x0f88c51, 0x06cb4ac, 0x0e2c5f0, 0x0fc8e5f,
- 0x1ccf7f0, 0x0840f2e, 0x1451a26, 0x0aeb17b, 0x01353cc },
- { 0x1bf6e18, 0x0b24b9c, 0x071ca29, 0x04c9371, 0x19e8b5a, 0x145c73a,
- 0x0d28373, 0x0191b28, 0x1204704, 0x09adfa8, 0x0e3a0b6, 0x02c8d4f,
- 0x142ab3a, 0x13fc094, 0x160fb58, 0x0e52fe2, 0x1e072d6, 0x1c20b53,
- 0x14e790a, 0x10bb0d9, 0x1bad496, 0x03cac6e, 0x029e5ff, 0x0b9cdbd,
- 0x0f92815, 0x11ad2ac, 0x03e28d8, 0x0be9cae, 0x077ae57, 0x07e0294,
- 0x0f6f1a7, 0x14d62dd, 0x14193a9, 0x060f8c7, 0x10f2ec7, 0x131a3be,
- 0x1a21e78, 0x1d41872, 0x17d61c8, 0x0bbe8a3, 0x03ec218 },
- { 0x10bc2d7, 0x063eb8f, 0x104ae75, 0x18dca3a, 0x0982c6c, 0x0fc07b3,
- 0x0b64e82, 0x13925c0, 0x1047ae0, 0x1ee9692, 0x0d47e6d, 0x093e6fe,
- 0x1e35031, 0x03bc285, 0x1527387, 0x1a590d3, 0x0cb12f0, 0x0b01215,
- 0x0f0a2e7, 0x1118acf, 0x0550ba1, 0x10835e0, 0x0390184, 0x0fa8653,
- 0x04b1f8d, 0x0f0586c, 0x1f4e254, 0x094cf5c, 0x097607b, 0x02bdc5e,
- 0x1cad49f, 0x0a92f54, 0x093c5f3, 0x0eb335e, 0x0330e6f, 0x06be3bd,
- 0x09d447a, 0x03ee2e7, 0x0af94c2, 0x16d4423, 0x089b356 },
- { 0x1dcc837, 0x0d857ef, 0x1ea7b5b, 0x1550e36, 0x0fb80ba, 0x0ea5b90,
- 0x0ff2470, 0x0b88275, 0x1adac9e, 0x0dab5fb, 0x195e8fd, 0x05b5170,
- 0x0e5664a, 0x0720eca, 0x0c13dc8, 0x06cb023, 0x1263743, 0x131f08e,
- 0x109b6ba, 0x051d9de, 0x0dc2ee6, 0x04e58b1, 0x0045867, 0x0c90c86,
- 0x1817f87, 0x0434e7a, 0x095612f, 0x03772e0, 0x1f7928e, 0x1e77805,
- 0x194b309, 0x1b8c1dd, 0x0f3a80e, 0x0e17ca7, 0x0afa1eb, 0x04fc240,
- 0x0a0d4f5, 0x178c704, 0x1449995, 0x01aaf8b, 0x039c4f1 },
- { 0x08aecd3, 0x0db4674, 0x0a76cea, 0x114a315, 0x155b091, 0x0a772a2,
- 0x136b52f, 0x109db83, 0x102068d, 0x0db45b3, 0x0b1cb5e, 0x01a1023,
- 0x187dac8, 0x140d053, 0x079b4d6, 0x0c506da, 0x1ea3bd1, 0x06420f4,
- 0x0531111, 0x182eeb1, 0x1202a7b, 0x12f8d50, 0x1cad8dc, 0x1a98aad,
- 0x1767ec7, 0x08ddf63, 0x0f51bfd, 0x102fd76, 0x17e3392, 0x1f46b9f,
- 0x113f796, 0x0b5da49, 0x0c6c977, 0x0bce7a2, 0x1c1edb9, 0x1817342,
- 0x1069fbc, 0x18b23c4, 0x0ac033f, 0x05a922a, 0x0414b54 },
- { 0x06e173b, 0x18f2c30, 0x04e8cf0, 0x1721cce, 0x1b7f4e1, 0x1d9057a,
- 0x0d44b7a, 0x0e084bf, 0x105120e, 0x1c4630b, 0x0f93b31, 0x0c05202,
- 0x173ef05, 0x00e3736, 0x074d6b2, 0x0d2153f, 0x08f9450, 0x17098f4,
- 0x12bc20b, 0x1f36648, 0x0ea9708, 0x160dd15, 0x0cb9359, 0x01b6539,
- 0x14a6e74, 0x003d78f, 0x034610c, 0x0957249, 0x156a6c7, 0x077c76a,
- 0x0984cce, 0x04e1a2f, 0x08e623e, 0x07adffa, 0x0bea582, 0x0a78e6c,
- 0x044e851, 0x0bbc3a2, 0x02ca90e, 0x0d5c017, 0x052678d },
- { 0x136aeb4, 0x18e2cef, 0x02ad77f, 0x1952578, 0x12d6653, 0x1d2fc0a,
- 0x1d25a49, 0x03e1c07, 0x02dfd49, 0x084ea0a, 0x07e26e1, 0x18a54ae,
- 0x05258c2, 0x0999a24, 0x1586012, 0x13c1257, 0x14f3f7d, 0x10d19f4,
- 0x106fe41, 0x0831a65, 0x095cfab, 0x072d52b, 0x1ce7124, 0x1a5afff,
- 0x1196ef6, 0x0548720, 0x143de52, 0x1d9a80e, 0x053b4f3, 0x1cd9698,
- 0x1252d63, 0x0bb32e9, 0x0ee842a, 0x17b415c, 0x1076fc8, 0x0c474b3,
- 0x08efcea, 0x0d630a6, 0x1bb7411, 0x0b78219, 0x07040ba },
- { 0x15a1a96, 0x127c0a8, 0x1f80b0d, 0x0630864, 0x11a6350, 0x0c9ea79,
- 0x199406b, 0x0e61412, 0x1273b61, 0x0bb4a78, 0x16a74a7, 0x10eda59,
- 0x178886d, 0x140a60b, 0x0069d08, 0x0d2d63c, 0x16b8667, 0x11a4913,
- 0x0c97c01, 0x09e18cb, 0x0c4a2fd, 0x0ffd94a, 0x1949cd2, 0x03a66de,
- 0x00d8ade, 0x10760ff, 0x039f8e1, 0x1f3447d, 0x14c31ea, 0x1b90dbb,
- 0x12a5f4a, 0x086caf0, 0x0c3e582, 0x07551fd, 0x1d39c3d, 0x11fe5bf,
- 0x1e87324, 0x140f0d7, 0x12704f4, 0x1ac17a3, 0x09043a6 },
- { 0x06c7937, 0x0d07f3b, 0x0f8c544, 0x1957787, 0x1b2ded5, 0x0444560,
- 0x1833380, 0x1e65582, 0x1616200, 0x143aa5e, 0x0ba81a4, 0x107a694,
- 0x0fb801c, 0x0e5f083, 0x15e80ea, 0x19b2915, 0x022cedf, 0x04cb584,
- 0x101a620, 0x068c75c, 0x1663c3c, 0x06facbf, 0x1ec4ba9, 0x19255f3,
- 0x1383440, 0x0aa1646, 0x193a368, 0x13790b8, 0x0e801a7, 0x0fd16da,
- 0x0ca55dc, 0x03c6af3, 0x1d2c138, 0x1683c3d, 0x177ffea, 0x0dc8b8e,
- 0x173eac4, 0x1b051e5, 0x17cd6c1, 0x0907424, 0x026362b },
- { 0x0fc3e89, 0x1469477, 0x19c4971, 0x0ed3d3d, 0x0d0ee87, 0x0f25ba9,
- 0x0ee1abd, 0x067160f, 0x0cb86b3, 0x1b84839, 0x14aeb36, 0x01d5fea,
- 0x09fd3d2, 0x0606d0f, 0x1bacac5, 0x0e28b4b, 0x08a44f9, 0x09c8fb4,
- 0x181b521, 0x17a6203, 0x0d4921f, 0x12df54e, 0x11793ca, 0x17e43b4,
- 0x0d464a7, 0x038bdb0, 0x0015355, 0x127f119, 0x00f2e91, 0x09e8df7,
- 0x1cd6b39, 0x1828724, 0x0c26563, 0x15af749, 0x02ca5b1, 0x15390dc,
- 0x09ff59b, 0x17f1188, 0x04d7914, 0x040aab9, 0x02e952b },
- { 0x15f886e, 0x035e56b, 0x1160aa1, 0x1da87bf, 0x068a5db, 0x1d8dc37,
- 0x116d801, 0x16a207c, 0x1355ff2, 0x0071764, 0x0fb3256, 0x1e4d44c,
- 0x13bc702, 0x0c0f2f1, 0x0d6ce18, 0x040ec50, 0x1ec6c12, 0x0812889,
- 0x1ef615b, 0x04dc74f, 0x1cb1a5c, 0x19ceb75, 0x03be0fe, 0x09a5f51,
- 0x053f2a4, 0x14bbd55, 0x0d4ec7e, 0x1829de6, 0x159a307, 0x05088ba,
- 0x183fd81, 0x16126ef, 0x1cd96b0, 0x1813995, 0x025b6cb, 0x0d4b829,
- 0x0b53ef0, 0x054264f, 0x0392c70, 0x02e606f, 0x01236d0 },
- { 0x084373b, 0x00e47e0, 0x1ebb5d2, 0x10c8c12, 0x09ae476, 0x1de1a59,
- 0x17e8184, 0x1602601, 0x0934bc2, 0x18938a6, 0x0f9f88d, 0x0c521c5,
- 0x0086524, 0x1680840, 0x13eee7f, 0x08aecaa, 0x1384231, 0x1787605,
- 0x0c28ca0, 0x15eb286, 0x181765b, 0x1438377, 0x0ef7786, 0x0ea61d2,
- 0x0727dba, 0x0e5be96, 0x19d3325, 0x1618bac, 0x18906db, 0x09b2921,
- 0x1cecff3, 0x1a28cb1, 0x1881941, 0x1f8748c, 0x1555b25, 0x15cc2de,
- 0x0b9ec7e, 0x1e16c2a, 0x0d5b8d4, 0x028c419, 0x002a480 },
- { 0x06ccd38, 0x1691ea8, 0x0a98475, 0x0920b37, 0x029a1c5, 0x0808e29,
- 0x0709da7, 0x0fae2f9, 0x0d82893, 0x03f0da3, 0x0d420fa, 0x1777070,
- 0x18f5d63, 0x156d612, 0x09ed09e, 0x09a3fe1, 0x0bd9f15, 0x0ccd593,
- 0x1b2557f, 0x01ff7f1, 0x1880dec, 0x13a4fe5, 0x1ba55f1, 0x00229bd,
- 0x15dee1e, 0x163991c, 0x1cda7d1, 0x1254c96, 0x0b25991, 0x033048f,
- 0x1690c11, 0x145d187, 0x02da887, 0x0b68c5f, 0x10970d5, 0x07489c5,
- 0x155f75f, 0x1c820a5, 0x1ff80c4, 0x0df1e42, 0x01d8bde },
- { 0x0028924, 0x09cfc51, 0x0e7c0f3, 0x1960dd9, 0x0e54f19, 0x182c233,
- 0x0f2df5b, 0x0ed0c57, 0x05a0607, 0x1f0338b, 0x1fb0436, 0x12f5621,
- 0x1c9397c, 0x178ddb2, 0x084e099, 0x17471e8, 0x0cba672, 0x120a6f6,
- 0x022c179, 0x1a9a87f, 0x14d1594, 0x1d564a6, 0x1e64fd5, 0x162ec70,
- 0x02a6abf, 0x0ad3a7e, 0x0edbf19, 0x1032d6b, 0x0d2139d, 0x0e42774,
- 0x09b70dd, 0x06c1a74, 0x1b00a02, 0x09dc3dc, 0x0d737ae, 0x1d66dda,
- 0x0c83209, 0x12d945e, 0x04f07d5, 0x0878c20, 0x0349c69 },
- { 0x1e6c88a, 0x1ca2226, 0x01fb46c, 0x028e004, 0x15c2c47, 0x015bc06,
- 0x1628887, 0x07d6de8, 0x0085099, 0x04fbab2, 0x1c3061d, 0x0af375d,
- 0x10400ba, 0x19be387, 0x1d0a4e1, 0x0fd7e5a, 0x0ec2146, 0x1e2d471,
- 0x0cdfd14, 0x14ccdca, 0x150a243, 0x03f685e, 0x12647c7, 0x17a3f23,
- 0x13e90f4, 0x14d9d3f, 0x097c384, 0x0c113d1, 0x1896359, 0x10bb839,
- 0x127434e, 0x04e3055, 0x0f842d5, 0x1e2e14e, 0x0a64205, 0x124232a,
- 0x0725576, 0x17993f4, 0x163ea8c, 0x1571385, 0x0056587 },
- { 0x0e4733d, 0x0b1768e, 0x1110021, 0x1731ca2, 0x1faff7c, 0x15a35ca,
- 0x0087ea6, 0x026be06, 0x0b61a8c, 0x0a4a62f, 0x0d65da2, 0x006c6d6,
- 0x1657c95, 0x1561697, 0x1a1323c, 0x0e07cd7, 0x0d89bd2, 0x1872d9a,
- 0x1a1caae, 0x1b231ef, 0x0ee1c4a, 0x0fe2029, 0x10aa27a, 0x1216a3d,
- 0x0ee3f31, 0x0a7e165, 0x1dbffc9, 0x11fa286, 0x1e09725, 0x06b4441,
- 0x0e1bcf0, 0x01f62a8, 0x1d0a0e9, 0x1570031, 0x192fdb2, 0x198870e,
- 0x1f1d0f6, 0x0f8ab29, 0x16f7a05, 0x1db70d9, 0x01b87f2 },
- { 0x10b15b1, 0x095dd95, 0x1de4d5e, 0x0f9cd74, 0x03e4b5a, 0x079bbcd,
- 0x1ff6776, 0x1dff759, 0x1c298d1, 0x02a285e, 0x00c7180, 0x0aad88e,
- 0x060e3f5, 0x0aeb403, 0x1c3c1ea, 0x0a5840e, 0x0e02d10, 0x0671f42,
- 0x0aa3315, 0x00f23cf, 0x03a3b05, 0x19dd191, 0x1358879, 0x0c65320,
- 0x1b94d39, 0x0b6c3dc, 0x1dfae01, 0x1bf3968, 0x1ca0cc8, 0x06f476f,
- 0x12b890c, 0x12e2541, 0x14bf416, 0x0454c9b, 0x11de221, 0x1d7c7e7,
- 0x04a3e59, 0x15c3d8e, 0x0f08ec8, 0x1887d2b, 0x08e0227 },
- { 0x010964d, 0x1115419, 0x1bac003, 0x0bfe0ad, 0x1ccd5df, 0x18f56be,
- 0x0e87f6b, 0x1c6042e, 0x067cdca, 0x01419f0, 0x1324334, 0x099717b,
- 0x151cc57, 0x19125a7, 0x1b29c50, 0x105310d, 0x03abb3f, 0x1e80730,
- 0x106a37a, 0x1d9c361, 0x061db98, 0x121bc61, 0x08a291b, 0x02cbcba,
- 0x1dd0da6, 0x071637c, 0x052dfbc, 0x075c713, 0x09f306b, 0x0b59ded,
- 0x16ce8f0, 0x0714109, 0x09a26d3, 0x074a82f, 0x064d4e5, 0x18a51cb,
- 0x0ea206b, 0x076588a, 0x175ba12, 0x16a80a8, 0x014b15a },
- { 0x04c59a2, 0x0c364b3, 0x0a943db, 0x02c1faf, 0x1dfe2be, 0x1965c71,
- 0x0d5a641, 0x1c067f3, 0x18176a7, 0x19192ec, 0x1c202d7, 0x09ce8b0,
- 0x0579a0d, 0x06aea70, 0x1b837bc, 0x051c349, 0x1fac87b, 0x16056cf,
- 0x1c26d3b, 0x031a5e7, 0x1d87d6f, 0x1394974, 0x13225ab, 0x128ec79,
- 0x0953d60, 0x0fd6544, 0x0063efe, 0x17dd2f5, 0x03d701d, 0x1074a5b,
- 0x0bf7c83, 0x08fd4e4, 0x1ba6e30, 0x1ab8fe5, 0x072984a, 0x0b9cafc,
- 0x009a55f, 0x0b563b0, 0x078b878, 0x1b18871, 0x0742bbe },
- { 0x1dc2c73, 0x1436e60, 0x0afc8fa, 0x1782c87, 0x0bbbfd5, 0x0c650fa,
- 0x1e87c93, 0x18e0ff1, 0x08cb5ca, 0x1345370, 0x19a9f77, 0x0c96a9c,
- 0x187d54c, 0x14dbd6b, 0x076e88a, 0x15728f1, 0x140e364, 0x0a6c46a,
- 0x1dcb804, 0x05c05a3, 0x0278c8c, 0x0ba3715, 0x1320981, 0x030f8fa,
- 0x15bb34b, 0x064f361, 0x1bae3f8, 0x1b167bf, 0x11e415e, 0x1a743e8,
- 0x1e6daf0, 0x170cb8f, 0x1908bbf, 0x060be59, 0x139b87b, 0x16e2fa3,
- 0x17cdd69, 0x0f19847, 0x1049054, 0x0296b92, 0x097bd5a },
- { 0x1e82861, 0x0317f40, 0x103b807, 0x1bba858, 0x103d4b6, 0x0f48f2b,
- 0x1956f99, 0x1bafca5, 0x05abbbf, 0x05a49ba, 0x0917d2e, 0x1ea58e5,
- 0x18b4f15, 0x0a8794e, 0x010d6a1, 0x1cebf9d, 0x19b582d, 0x14efbb5,
- 0x08322e5, 0x1098bf4, 0x0af452e, 0x0885450, 0x0bddf4b, 0x0c02787,
- 0x1bbd8ca, 0x02f81c4, 0x089be0c, 0x01b3737, 0x0c8b9ab, 0x1424067,
- 0x063c14f, 0x1ff57b4, 0x163367a, 0x1261526, 0x0f92990, 0x1ca1ea7,
- 0x064fba2, 0x0962c64, 0x151a7e2, 0x0629198, 0x0317c6d },
- { 0x0b7d42b, 0x092d816, 0x12b830d, 0x12621f5, 0x15240bc, 0x102047a,
- 0x0808bfc, 0x1411aba, 0x1e0c10e, 0x180a017, 0x1ac8f5a, 0x0d14e31,
- 0x197fbef, 0x0092950, 0x051ad69, 0x01add40, 0x048110e, 0x0acd7e7,
- 0x08b7860, 0x03a4fe0, 0x09dae9a, 0x0b6e1fa, 0x1b6e5b4, 0x17c8010,
- 0x0e3f5ef, 0x08e7e0d, 0x07b32f0, 0x13ae0c8, 0x1f8636f, 0x113ca92,
- 0x0c12408, 0x184ec78, 0x169796a, 0x031859b, 0x00f0764, 0x0f39869,
- 0x0e3d3f1, 0x0b28f87, 0x0e3f514, 0x0733b41, 0x06ae597 },
- { 0x1f4d2ee, 0x09de3df, 0x0f615ec, 0x126162e, 0x0075422, 0x0a49b61,
- 0x12f541e, 0x17d6c4a, 0x05efd55, 0x0af9195, 0x10ce247, 0x150a9c1,
- 0x04c06f4, 0x0730fca, 0x0b16d66, 0x10f6f9e, 0x01ffd5f, 0x062b243,
- 0x08abe93, 0x0c3f62b, 0x0774ee2, 0x1316cbd, 0x0c3fdc8, 0x19e00f5,
- 0x1ae22d6, 0x10a0d44, 0x134d1bc, 0x11100a6, 0x16497e2, 0x1dffcbd,
- 0x1f23f9c, 0x1f455ff, 0x08595b2, 0x0d39345, 0x1cfbc54, 0x173df39,
- 0x0744b82, 0x0772f8f, 0x1f9caa1, 0x11b78c7, 0x0664904 },
- { 0x08b760d, 0x1ddbc0f, 0x0a8246d, 0x104b55b, 0x147b0bd, 0x1a9137e,
- 0x0f67fea, 0x11d0292, 0x0bffc14, 0x136e913, 0x0f8f6d2, 0x1f15453,
- 0x0b5a032, 0x1a58558, 0x036f1c0, 0x090d063, 0x1b57d65, 0x16e665f,
- 0x1160791, 0x0d566f3, 0x0ce2850, 0x1714187, 0x0244da9, 0x0d9018e,
- 0x19356cf, 0x143245b, 0x1fbdac7, 0x142ec6e, 0x10f1c9f, 0x0e60c1f,
- 0x174b270, 0x02d57db, 0x0f0526d, 0x186f24b, 0x038aa4e, 0x147c1d3,
- 0x0f13873, 0x16bd6d0, 0x127b1bc, 0x0b9e7f4, 0x04eb93b },
- { 0x11fae32, 0x0fbf2f0, 0x1d46f62, 0x0b88047, 0x113d74f, 0x0e1fb7e,
- 0x0537d24, 0x16e3600, 0x1555279, 0x0c24d2b, 0x0801a07, 0x112e0b7,
- 0x0abb9e8, 0x009e516, 0x0889067, 0x0cedf04, 0x085fd33, 0x157dddb,
- 0x161e28a, 0x187ea4e, 0x1173931, 0x17f79ea, 0x04abbbf, 0x114d0f0,
- 0x05cc8bd, 0x00b0c4d, 0x0f667c3, 0x059ffb6, 0x1d48b68, 0x0a0350c,
- 0x182fd59, 0x1d38d89, 0x005e223, 0x020b92b, 0x077a1a0, 0x10a7cf0,
- 0x07001cc, 0x1ae485e, 0x0fda337, 0x126f808, 0x02b582d },
- { 0x1abc2ae, 0x12e4140, 0x1b2a845, 0x0bc56d3, 0x073380f, 0x1ffb37d,
- 0x0cf481f, 0x00d812f, 0x0547765, 0x0b01c13, 0x1e88717, 0x13e76af,
- 0x15dcbac, 0x04c6dee, 0x1d436d3, 0x1e654f0, 0x103d9ef, 0x042f108,
- 0x1c47107, 0x1a2e585, 0x0c09cee, 0x124f1a4, 0x0a38e49, 0x03dbbf7,
- 0x1936b83, 0x051b8e5, 0x1bd4219, 0x02b87a0, 0x1acfcd9, 0x19e6f49,
- 0x0abfa38, 0x167e5ef, 0x1ee10d7, 0x0774d25, 0x0d23adf, 0x1b83b1d,
- 0x1a574af, 0x124e71f, 0x0d3013e, 0x0130c5b, 0x0786151 },
- { 0x0e72c21, 0x1fa403d, 0x1694ff8, 0x09fa1e1, 0x031aa14, 0x01d22a3,
- 0x187a3e3, 0x1578edd, 0x051b4f1, 0x1cd704a, 0x16ec90d, 0x072faf9,
- 0x0d2a3a4, 0x015eafe, 0x0533ffa, 0x1deb4f4, 0x112f427, 0x1ddf276,
- 0x0134f33, 0x1487dc5, 0x0e1e9b0, 0x09c7763, 0x15ede2e, 0x171d0f6,
- 0x004e467, 0x0100c6a, 0x14d0dd3, 0x1915b80, 0x08deb50, 0x1b02aa1,
- 0x13d90dc, 0x1875f45, 0x0d80ec0, 0x0ab7cda, 0x04f0eaa, 0x10daa3f,
- 0x04161c6, 0x0d1455c, 0x100967e, 0x16ed793, 0x0540b6b },
- { 0x01d315d, 0x0b9a619, 0x1740138, 0x05b0dc0, 0x0ef5661, 0x1466c0a,
- 0x18516ee, 0x135d5f5, 0x1acdc78, 0x1d83d24, 0x1d5c3c7, 0x135ab0e,
- 0x1e6a21e, 0x1cde29e, 0x12a0dfa, 0x131d65c, 0x0931d62, 0x0a1b6d9,
- 0x08d8bd1, 0x1f78f1d, 0x058543a, 0x0bd55fb, 0x0aa5cf6, 0x1249ac0,
- 0x1dabe0c, 0x074ee73, 0x01f2b7c, 0x0d3b31e, 0x020538f, 0x02d0ba8,
- 0x0a782d4, 0x088c39a, 0x1b7d1a3, 0x0740c1e, 0x1dd9788, 0x0dc3850,
- 0x12dd50f, 0x112c33a, 0x0e230b2, 0x02925c0, 0x0897cab },
- { 0x18bab8a, 0x09c0986, 0x002967b, 0x1948704, 0x011d364, 0x0c0a0ae,
- 0x0fcb101, 0x0e80d0f, 0x07ac896, 0x156869d, 0x1046821, 0x020b72e,
- 0x1c44928, 0x19c19b8, 0x0612c47, 0x1063ce9, 0x1840d1a, 0x0386976,
- 0x1244bf8, 0x06c516d, 0x08d2d88, 0x1d8a7d4, 0x113e3df, 0x015927c,
- 0x12a4dcf, 0x1d32b27, 0x0a9b093, 0x05ec535, 0x0cd9498, 0x15d1dfb,
- 0x0b6ae41, 0x0414a30, 0x0822e67, 0x1c9d296, 0x16b0c3a, 0x145fe8f,
- 0x1ff673a, 0x1162527, 0x03b1771, 0x0c68ed6, 0x064b007 },
- { 0x1c9a404, 0x1a99f59, 0x054878f, 0x076fdf3, 0x11db7f7, 0x129b49d,
- 0x0f8a5b0, 0x1a98fe2, 0x00738ee, 0x073fa62, 0x1b2b41f, 0x16679c4,
- 0x11ccfd3, 0x00f62e7, 0x1e124d4, 0x09c03b0, 0x09ddc08, 0x19fc7e0,
- 0x0e6d6b3, 0x1956658, 0x151c217, 0x1dcf7aa, 0x10b6bc2, 0x042f52a,
- 0x16f56e1, 0x0157de3, 0x0b08dc0, 0x002f162, 0x10a2938, 0x01cfd83,
- 0x1902d4b, 0x0aed952, 0x1925153, 0x1471b71, 0x1090675, 0x084aab2,
- 0x09e50e8, 0x0fdc160, 0x1b630a4, 0x14ccc31, 0x07dd22e },
- { 0x1cbb3bf, 0x14225a4, 0x0c95fff, 0x08aac5f, 0x1e0cc70, 0x0d422d6,
- 0x194de7d, 0x1f83cdd, 0x0e51277, 0x0b6bf93, 0x0d5c625, 0x097260c,
- 0x142c75d, 0x0b4abf9, 0x085224a, 0x0e85673, 0x13282e5, 0x1467a75,
- 0x0c91edc, 0x1a7bbb0, 0x02376b0, 0x19900d2, 0x19ea7d8, 0x029490a,
- 0x003c114, 0x08b20b2, 0x1edbdaa, 0x015fa88, 0x06f7906, 0x04986d6,
- 0x00a57e5, 0x17a773b, 0x05ff94b, 0x16f87b4, 0x03f1472, 0x12b91f3,
- 0x113b748, 0x0ce4455, 0x1f32255, 0x0ccbe31, 0x031377c },
- { 0x1cfb35f, 0x0ef04be, 0x1be0d71, 0x1e03986, 0x0dccca9, 0x1b65b19,
- 0x1a175d5, 0x0eafd27, 0x0f7b4b3, 0x016ea45, 0x0866d43, 0x1a9f613,
- 0x079d95c, 0x18dff30, 0x0bb4565, 0x1b5a4ea, 0x0cf2596, 0x1a1cc40,
- 0x07a429b, 0x1df6a6d, 0x060ae52, 0x1181e9f, 0x11025d9, 0x0a0e1c0,
- 0x164faa9, 0x0e97e79, 0x1815893, 0x11f3276, 0x15e467d, 0x0c12006,
- 0x092cd6a, 0x0191e8a, 0x089d024, 0x100bcf1, 0x08f1922, 0x1bde8a8,
- 0x187edab, 0x0feb4aa, 0x149c4e9, 0x019423c, 0x03dacc5 },
- { 0x099ae4c, 0x127ca32, 0x149f2cf, 0x02e0a78, 0x046dcbe, 0x1c17455,
- 0x173a6f9, 0x08b00fe, 0x0d8481e, 0x1632694, 0x01bf42d, 0x0a31545,
- 0x09f35e4, 0x0f8e6da, 0x0dee6eb, 0x07d5fef, 0x010aec2, 0x1f9fdb1,
- 0x06ff4be, 0x17470b7, 0x13a00a9, 0x09c403f, 0x1946835, 0x0f65085,
- 0x04404b1, 0x1853d59, 0x1fe7767, 0x1faaed0, 0x09df646, 0x1eda79f,
- 0x137347b, 0x0c1be32, 0x1d2df7a, 0x0ef82ae, 0x0b0f81a, 0x037da7e,
- 0x03248a3, 0x0dbab09, 0x113dd1a, 0x1c2d28e, 0x0866949 },
- { 0x14ab07a, 0x106d29f, 0x1efcea6, 0x07ea94d, 0x0cd6f33, 0x1e79481,
- 0x1a486c8, 0x0b01925, 0x0848e3d, 0x0ac0e1f, 0x0862af2, 0x1f7ba76,
- 0x1793af1, 0x03365a6, 0x1663a84, 0x0074070, 0x14e990c, 0x0a8009c,
- 0x1421ded, 0x0c963cf, 0x10913b6, 0x1deba63, 0x15e76c6, 0x05abba1,
- 0x144354e, 0x1c14296, 0x0ccca76, 0x1a57083, 0x16d4800, 0x07583dc,
- 0x11bea11, 0x1852bb8, 0x1a50569, 0x1f6271b, 0x0dce53d, 0x0f85a70,
- 0x1b08317, 0x1c427fa, 0x0966370, 0x171163f, 0x0574352 },
- { 0x15d7ce9, 0x0c9fb86, 0x1abfb48, 0x0c1690f, 0x1c19fd2, 0x132fe81,
- 0x0ad65ef, 0x0acf889, 0x078270d, 0x0ced430, 0x1c06637, 0x1801754,
- 0x1f8a84e, 0x142cc2e, 0x109f924, 0x051b05d, 0x0f0de20, 0x0ccb665,
- 0x0708807, 0x0c918ec, 0x19eb4e7, 0x1e048e0, 0x0a58cd6, 0x1acf057,
- 0x03a69f0, 0x049929d, 0x034a519, 0x1e40868, 0x1f68733, 0x10d084c,
- 0x0691114, 0x0d32c02, 0x1cbcc09, 0x1d4a72f, 0x1763e14, 0x027109a,
- 0x13b6a3a, 0x0c63126, 0x0f13c90, 0x1e40d5c, 0x03e431a },
- { 0x1d381f1, 0x1ec9cc1, 0x0f0fe59, 0x1da1806, 0x16501aa, 0x0083b41,
- 0x1d34151, 0x1a77e75, 0x05093a6, 0x0368acc, 0x1ca402a, 0x0e83b25,
- 0x1543ae0, 0x1b785ba, 0x0cabe98, 0x0dadffd, 0x0a3aa45, 0x1684853,
- 0x1bf6d91, 0x149fb55, 0x0f7d336, 0x020d4a1, 0x1f46ff9, 0x03dc83d,
- 0x0a3ed85, 0x0e2bfe1, 0x1847a4d, 0x1e392d0, 0x1bb3434, 0x1b3329d,
- 0x0ab355d, 0x15b12d8, 0x06931ba, 0x1fd20f9, 0x0f461ae, 0x03141f7,
- 0x0203cef, 0x1ebec15, 0x134d470, 0x02bc4cc, 0x06dad3f },
- { 0x0ec35a1, 0x005be89, 0x04a3465, 0x0dcfbf6, 0x0219c5b, 0x1990eab,
- 0x1e31bc4, 0x16c5984, 0x033c58e, 0x13b4825, 0x00f10d7, 0x1eabb32,
- 0x1915090, 0x01ecb50, 0x06f249b, 0x1974e0c, 0x1038c0a, 0x1cba54f,
- 0x0662c86, 0x028042e, 0x0c6f7a4, 0x0efc4ac, 0x0c1a566, 0x17a0253,
- 0x12f1dbe, 0x0e1a8bf, 0x0f7cea3, 0x02134c2, 0x0375c51, 0x0224339,
- 0x14c2396, 0x12707a5, 0x0590ba4, 0x1c1be2b, 0x1f182ff, 0x1ff87dc,
- 0x07d2d55, 0x1d29c81, 0x1e8ff21, 0x1a8bea2, 0x02438e9 },
- { 0x015af3c, 0x0298444, 0x1b57129, 0x05e7937, 0x055f1a3, 0x1b2eeff,
- 0x137265e, 0x16b5de3, 0x012e51e, 0x0e30eca, 0x1c92418, 0x18a9cc7,
- 0x11bd0da, 0x0859f11, 0x0510a73, 0x0c020de, 0x1c2f1da, 0x0fb9be1,
- 0x0ef13ec, 0x01c096d, 0x01cb715, 0x048df14, 0x0816d32, 0x0e03eb6,
- 0x0633cd7, 0x04878da, 0x18a944d, 0x1667de8, 0x11f7f28, 0x1e39b47,
- 0x19f76d1, 0x17a82d6, 0x0ada511, 0x0add9fa, 0x1f37fde, 0x0f3a552,
- 0x16200e6, 0x145bd94, 0x0380402, 0x0235fc6, 0x013f390 },
- { 0x1d0c827, 0x14b77bd, 0x1d18f74, 0x069453f, 0x106110f, 0x0d28ad2,
- 0x0c1a072, 0x0eff0f2, 0x1268bca, 0x146c022, 0x01177f7, 0x0049330,
- 0x04cbb83, 0x146072c, 0x0435c41, 0x0c0c47f, 0x0a8263b, 0x19541c6,
- 0x0d71742, 0x176bcea, 0x1110293, 0x0aab20a, 0x13baa67, 0x17b400b,
- 0x11ad01b, 0x00c7f18, 0x1e93634, 0x092fc17, 0x12b8662, 0x1bd00e7,
- 0x02ccf75, 0x1b18975, 0x0075b73, 0x1bde4de, 0x1b51c8a, 0x165308c,
- 0x0bda1b0, 0x13e7126, 0x00ed85e, 0x0d6d00e, 0x0458d4b },
- { 0x154d8b2, 0x1510726, 0x0836289, 0x1c9a641, 0x05a5696, 0x0a7b800,
- 0x16163e6, 0x150d316, 0x02f6549, 0x1256e1e, 0x134035e, 0x10326d2,
- 0x1d1812e, 0x1982015, 0x0e6c001, 0x0c8208d, 0x049a1b3, 0x070850a,
- 0x048c088, 0x12bd4b3, 0x00c3eae, 0x0d8da41, 0x0fbf0ba, 0x193d714,
- 0x15cb585, 0x0327f2d, 0x065e11c, 0x035c063, 0x07d49f2, 0x05b8479,
- 0x1ada3bc, 0x05ee4aa, 0x059ef18, 0x0d80d19, 0x115d893, 0x18015c0,
- 0x1668f95, 0x071d832, 0x0fe458a, 0x1f56df7, 0x05f13f5 },
- { 0x09b0dc6, 0x16cd71d, 0x1b21f1b, 0x12df107, 0x0ea1bde, 0x059b3bd,
- 0x0fe23aa, 0x157d4cd, 0x09a66e3, 0x17d355e, 0x05fff77, 0x02f6d04,
- 0x1cc4d33, 0x1486f82, 0x10723c8, 0x0ce9dee, 0x1177d11, 0x10f87ef,
- 0x0d66272, 0x01d9cf8, 0x082dfdf, 0x0fb5ce2, 0x03bb64b, 0x17e394e,
- 0x13e6655, 0x0ce39b8, 0x00973b2, 0x0159652, 0x03e69c9, 0x11d1740,
- 0x068df27, 0x02ee274, 0x00a3c53, 0x10ba6be, 0x1595bd6, 0x0c6a1b8,
- 0x05f802f, 0x112d220, 0x0928845, 0x0bb46f7, 0x0219649 },
- { 0x1142680, 0x197e989, 0x13d0032, 0x0ecba29, 0x0b9e91d, 0x11334f5,
- 0x13aaf7f, 0x18b8d41, 0x00ae22b, 0x177e72c, 0x1b0942f, 0x130d96d,
- 0x1f3c2b7, 0x0b9c78f, 0x0b6c68b, 0x191d909, 0x028516e, 0x0cb84de,
- 0x1a3df6d, 0x1262531, 0x17f9f36, 0x15cad8c, 0x1123bf1, 0x1554809,
- 0x109529a, 0x0584ff8, 0x1451055, 0x1879197, 0x1f34352, 0x1de1a13,
- 0x104cfbd, 0x1a4312f, 0x0a17940, 0x0a45002, 0x11f5b39, 0x04b5418,
- 0x1d56fa6, 0x18e7539, 0x17c20a5, 0x160088e, 0x093ad0e },
- { 0x08a9963, 0x1b4b3cc, 0x0375e82, 0x0eca2bd, 0x01e477f, 0x15a8793,
- 0x18e18ed, 0x1bcc4e9, 0x1d33922, 0x1d4dc6a, 0x096cf58, 0x07f6d0f,
- 0x033c38d, 0x0981719, 0x1dbc270, 0x1999e31, 0x1c3e02f, 0x192a602,
- 0x1b998bd, 0x1da16e4, 0x0079c04, 0x1c0a1ff, 0x075591a, 0x002d918,
- 0x09448c9, 0x1cbf7c5, 0x0fe08f5, 0x0ace989, 0x0de451e, 0x1b97de6,
- 0x178161b, 0x0882fd5, 0x1fc88d5, 0x12c46e2, 0x08255db, 0x12572a4,
- 0x1844d1f, 0x046ea12, 0x100d110, 0x1e1d483, 0x073f8c3 },
- { 0x1f763dd, 0x1a7e42e, 0x00da254, 0x06758e3, 0x1b1427f, 0x078ad01,
- 0x0f85dba, 0x11c1b6b, 0x0cb2088, 0x09c84a2, 0x12ba987, 0x135b0af,
- 0x137804c, 0x08cfbdf, 0x16110a1, 0x1519f54, 0x0f1293a, 0x0b13776,
- 0x08da805, 0x1c1b31d, 0x0dcd749, 0x171990f, 0x1bffdb6, 0x16f2399,
- 0x1eea628, 0x1b0cb1e, 0x08b45b8, 0x029c0aa, 0x1ae206a, 0x0c7e58a,
- 0x1928b81, 0x1f9464b, 0x1268745, 0x00d4507, 0x101c84d, 0x10f9f3a,
- 0x1caa51b, 0x1692ecb, 0x175d77f, 0x0735b7d, 0x00108ae },
- { 0x1e88f63, 0x0bc79d4, 0x0c95534, 0x1d5618e, 0x0a05b11, 0x10ec535,
- 0x14f9b89, 0x190ee74, 0x08d0b91, 0x06dbed7, 0x0c01349, 0x00e7d37,
- 0x0bde10b, 0x0a71848, 0x02fbf9d, 0x13913f9, 0x1990cc6, 0x10b5782,
- 0x1565446, 0x1070073, 0x1afcddc, 0x0ca362e, 0x10fd96e, 0x1c14b33,
- 0x04be81e, 0x18bfddf, 0x1becea6, 0x11123c6, 0x1dad008, 0x16baa22,
- 0x07c326a, 0x1aa12fc, 0x1fc46ab, 0x0d270ef, 0x026eb21, 0x0710901,
- 0x00c4523, 0x05da17d, 0x1077cd2, 0x1b1d627, 0x0807c06 },
- { 0x0ee0ef6, 0x0b4f64c, 0x1ebc02a, 0x07176f6, 0x1a9d548, 0x17c7edd,
- 0x1324a80, 0x0f84890, 0x08b7055, 0x1ed900d, 0x146bc9e, 0x07c8c15,
- 0x1be5934, 0x0cc64af, 0x0a6a50a, 0x03a76a7, 0x1deda86, 0x14ba6d9,
- 0x14e6703, 0x0a4b93d, 0x09bdce1, 0x00fb908, 0x026d5a2, 0x1042349,
- 0x17d1599, 0x1ad047f, 0x0bbc3c9, 0x1beed67, 0x0f358b5, 0x007bfd1,
- 0x0d24fc6, 0x187360c, 0x0c4ffcf, 0x01da9d5, 0x18985d6, 0x184d258,
- 0x155399f, 0x1efd1b5, 0x1e986cb, 0x0d932c0, 0x016424c },
- { 0x12744a9, 0x12e2aee, 0x1061775, 0x05fc75e, 0x0544c1c, 0x1458449,
- 0x0ba67bf, 0x0346590, 0x1a9df69, 0x05bd592, 0x0659d0c, 0x0aa137d,
- 0x0298384, 0x0579689, 0x1b34963, 0x0e4e579, 0x098bcc7, 0x0445720,
- 0x0e3be83, 0x12c2829, 0x112cd43, 0x1cf6b26, 0x113fd9e, 0x0fe6808,
- 0x055e42e, 0x0f5d4f3, 0x1516c3a, 0x1a2df88, 0x1ded283, 0x1f0a781,
- 0x1711d28, 0x1599970, 0x1c9adff, 0x1d28dd1, 0x0f05c94, 0x027bfcd,
- 0x1b5831b, 0x0d7a5cf, 0x11e2b77, 0x00549e8, 0x05544e6 },
- { 0x0a80b4f, 0x02989dd, 0x03be25f, 0x1ec77b9, 0x0122716, 0x0162d40,
- 0x10b6ded, 0x1195c4e, 0x1088330, 0x0ecf0f4, 0x106ac7a, 0x187e5a6,
- 0x10352c8, 0x16ca2c3, 0x0f41403, 0x1b3b02c, 0x173c290, 0x0c1a4ee,
- 0x1db1f4a, 0x078bc03, 0x033c205, 0x0365a10, 0x00c41d1, 0x1a135e3,
- 0x08bd209, 0x140bb64, 0x1ac9e51, 0x01ee1cd, 0x11b540d, 0x0cef0cd,
- 0x10dc82d, 0x0453296, 0x0b7ecdc, 0x029e7c0, 0x1738b7b, 0x0583499,
- 0x1ed60f4, 0x1e9f6e8, 0x1498775, 0x0b9c483, 0x0573599 },
- { 0x0237056, 0x1d1fdd0, 0x0e23712, 0x0867566, 0x0856c16, 0x0f63093,
- 0x1aef49c, 0x1d9803d, 0x1e3031b, 0x1ef5819, 0x0287d6a, 0x0832c23,
- 0x134eee4, 0x0db0079, 0x125d085, 0x10ee7d8, 0x1cf0886, 0x08db8c2,
- 0x106df7f, 0x188d9af, 0x1e897b0, 0x0d25262, 0x1450ecb, 0x03ff29b,
- 0x05984bb, 0x032edcd, 0x13273cd, 0x187209c, 0x0e64c9a, 0x0de0756,
- 0x06be1ca, 0x0ed15b3, 0x0c22821, 0x0a0612e, 0x02062a5, 0x0f77a76,
- 0x049a691, 0x1476af8, 0x17bc391, 0x1be7d88, 0x0885486 },
- { 0x1dff464, 0x01649a5, 0x1145aa5, 0x1e4b4f6, 0x1db2719, 0x0df1921,
- 0x01c2cc9, 0x0739960, 0x119fe33, 0x02ad18d, 0x1ba3fc8, 0x15d0483,
- 0x0faca69, 0x0af7c6f, 0x01f7421, 0x0e78cec, 0x00f1a1b, 0x04f124b,
- 0x074da04, 0x01d144e, 0x06b9bcb, 0x113442f, 0x0a7846a, 0x0bd5c32,
- 0x1d0ab18, 0x08e4c5a, 0x103e07e, 0x14172dc, 0x0fc5031, 0x05e7cca,
- 0x181343a, 0x1e233ad, 0x1d81697, 0x0670619, 0x0a1eaa9, 0x0e52106,
- 0x091ff9d, 0x0ea69f6, 0x058b717, 0x1d1a957, 0x031cecf },
- { 0x08b21e8, 0x1fecd7e, 0x1b7d0de, 0x0763286, 0x05dd32b, 0x0e1b507,
- 0x00b5248, 0x121fcb2, 0x1a3d0fa, 0x14ef426, 0x148ef63, 0x0d5ab76,
- 0x159663e, 0x1766b4b, 0x00288fe, 0x16b3930, 0x0d9b4fb, 0x08804e0,
- 0x07483fc, 0x154f7b9, 0x1a3d839, 0x16f66b7, 0x1d40bd9, 0x0a2d953,
- 0x0d4fbc5, 0x1622407, 0x19b1d0a, 0x0bff4be, 0x1252f86, 0x1ca2ff9,
- 0x0f4adf1, 0x0ebb396, 0x0fefc05, 0x178e939, 0x18ef5b5, 0x0623610,
- 0x1a6a4ec, 0x079e784, 0x11ecd76, 0x0d5b44a, 0x06961b4 },
- { 0x135e2ac, 0x1ac3f65, 0x136741e, 0x16af5e2, 0x1ed5546, 0x1450260,
- 0x1e96f6c, 0x1e1d942, 0x0709d54, 0x0fc8ea2, 0x1d003a8, 0x13fb38d,
- 0x10a6e71, 0x1dc670c, 0x12e23b7, 0x07fa49c, 0x0dd246e, 0x0fcbc0f,
- 0x1956bd7, 0x0241cd6, 0x1ca7d67, 0x0ec9a09, 0x169e0b4, 0x00ff443,
- 0x020a297, 0x091b4bf, 0x0953a10, 0x1d6a3e6, 0x051f9f1, 0x06cf1b0,
- 0x1a4b895, 0x0e79cb7, 0x1aec42b, 0x1bca7ee, 0x0cbb34f, 0x1313534,
- 0x0781aad, 0x1271178, 0x1484865, 0x018a6ea, 0x06a63a9 },
- { 0x17acbbb, 0x0a7001e, 0x0421d95, 0x156e9ec, 0x0c01668, 0x0628cd9,
- 0x059c8e2, 0x09fc945, 0x03eb94d, 0x0b33b8a, 0x1b4bd80, 0x19be19a,
- 0x1f086a3, 0x1d9b87b, 0x1960085, 0x07cf9f0, 0x0c15a4d, 0x0b2c440,
- 0x0e8fd28, 0x1ab02cb, 0x11ddd6e, 0x09ae523, 0x0af31e0, 0x0894aed,
- 0x1f074e8, 0x175404d, 0x0dba940, 0x0a75036, 0x021ed3a, 0x0983870,
- 0x197082e, 0x10c2fe2, 0x027f892, 0x0e685c6, 0x111a08d, 0x034a8ec,
- 0x0255296, 0x044ffec, 0x1643bff, 0x045a2a3, 0x051ed4a },
- { 0x09701b4, 0x14b1d22, 0x0bc8df5, 0x07764f9, 0x0a8d91a, 0x194b2ff,
- 0x0f856d5, 0x0fa7df3, 0x1db50bf, 0x0d3d02a, 0x10ee6dd, 0x101d9cc,
- 0x1efd674, 0x1675aea, 0x09834b5, 0x1912fe5, 0x00c5ed7, 0x1b47e19,
- 0x0339a17, 0x0a79ec5, 0x015e41c, 0x0fb8833, 0x038a5c4, 0x0a01d98,
- 0x1213823, 0x1243d43, 0x01b0a7f, 0x1e1524c, 0x0f9712a, 0x1f9570f,
- 0x0fe4f7c, 0x1a5a2d3, 0x15f6fb1, 0x0bc9e06, 0x1899d2a, 0x0dd6f5f,
- 0x09f4925, 0x19eca57, 0x1739505, 0x1785716, 0x02d6951 },
- { 0x04e222e, 0x03ecfc8, 0x0427740, 0x1f0de9c, 0x133f248, 0x014f771,
- 0x13a2e3d, 0x031a932, 0x1cfc775, 0x0ab9a0a, 0x1d0bc4a, 0x1474161,
- 0x196e7fe, 0x013a1a8, 0x0572df7, 0x0e3418f, 0x166711e, 0x0c10547,
- 0x0e1d3d5, 0x12bb385, 0x162783d, 0x1c73870, 0x152d935, 0x1254e85,
- 0x153f58b, 0x136c921, 0x0511ed7, 0x0440916, 0x1931a03, 0x19865e7,
- 0x1a02eb5, 0x14f5e44, 0x1c4d089, 0x1c9fcba, 0x1306e0e, 0x1c8c920,
- 0x165b3ae, 0x075d010, 0x117c289, 0x0f1c119, 0x065c48e },
- { 0x0222c22, 0x039e76f, 0x0ed0687, 0x1bf9d44, 0x1683d8c, 0x0a1d832,
- 0x12c52c8, 0x0ee0603, 0x159fcec, 0x0256fc7, 0x0133bca, 0x1038624,
- 0x07fb1c5, 0x0a39a88, 0x134fbba, 0x11181ea, 0x10b4d31, 0x16dfb3f,
- 0x03c6344, 0x07e5a22, 0x001376a, 0x1403e9f, 0x0e027e8, 0x1cfd9c0,
- 0x10a4625, 0x0977837, 0x16ca257, 0x1050cfd, 0x10553ad, 0x1a44845,
- 0x117841b, 0x1de48a8, 0x0280fa6, 0x0d1e5f1, 0x1e16a36, 0x1a805aa,
- 0x1438ba2, 0x1eecffe, 0x089bfd8, 0x058f4d6, 0x036b5cd },
- { 0x05679a7, 0x1a7102a, 0x1d421ff, 0x028a418, 0x04d80b4, 0x02ce6c3,
- 0x15fea6d, 0x1472146, 0x1c85af1, 0x0cf579c, 0x0d697a8, 0x1af31b2,
- 0x0a0d475, 0x1c0d33c, 0x140660d, 0x1d020e8, 0x1790cc2, 0x03a41cb,
- 0x1d04891, 0x043a225, 0x1a37c6a, 0x1c9b528, 0x0343a17, 0x14e9bf1,
- 0x0151eea, 0x0e27fa8, 0x1e4f3e6, 0x09c3054, 0x0a9ab61, 0x1ef89bb,
- 0x1fd1564, 0x0a44713, 0x0f73caf, 0x02f450c, 0x0583dd1, 0x11a4f99,
- 0x19a51dc, 0x097a629, 0x0ff601a, 0x089b673, 0x008d7c1 },
- { 0x0cca773, 0x006cb1f, 0x055a027, 0x05a9184, 0x07ea919, 0x15eb20c,
- 0x135d36d, 0x1bfe1d9, 0x02a678c, 0x19891ba, 0x01edf9d, 0x1b17a2b,
- 0x067a966, 0x1098526, 0x1068405, 0x02f7be7, 0x0385fce, 0x03e6374,
- 0x0379ea9, 0x12b7715, 0x08e395e, 0x1ac4c18, 0x0ff87a2, 0x08ed294,
- 0x1243ee3, 0x15f80cb, 0x0aec334, 0x07fd388, 0x1b2b49f, 0x093207c,
- 0x07ed641, 0x18e6cfa, 0x0385e8b, 0x10a3da6, 0x02bad7b, 0x123a60a,
- 0x04004ad, 0x161c3c8, 0x0080a38, 0x1dd756e, 0x05f2aa8 },
- { 0x066524b, 0x06a3209, 0x1d9b882, 0x01a1433, 0x17bf388, 0x08375fd,
- 0x1a17b68, 0x08d4b54, 0x1e642dd, 0x134f469, 0x0b93582, 0x18c38d0,
- 0x0cef349, 0x07e5a9a, 0x1dbb8ec, 0x0cf704d, 0x12705eb, 0x13ed5d0,
- 0x02f817d, 0x1764fc3, 0x05d12ba, 0x1d4716c, 0x0566bf2, 0x1b3a70d,
- 0x12d1ae2, 0x03776e7, 0x187a9bc, 0x13b8a5c, 0x0e5ae85, 0x1c5a433,
- 0x11f0a09, 0x00579a7, 0x1ff0340, 0x1f417ec, 0x11d9e12, 0x09d1095,
- 0x03c9f22, 0x0b24c04, 0x1e5268c, 0x13168df, 0x062501a },
- { 0x1264086, 0x1becd56, 0x12f558f, 0x174bc1c, 0x0a6a33d, 0x069eb3e,
- 0x0c00a32, 0x033d04a, 0x046e64b, 0x1446d64, 0x0914da8, 0x032e415,
- 0x0cfa3c9, 0x16aa9f5, 0x0c326c3, 0x157a702, 0x0e02ea8, 0x1b11403,
- 0x1b33f9d, 0x17ea9b9, 0x1b7052f, 0x18a7868, 0x0f66a38, 0x1362e83,
- 0x12133d5, 0x14528ce, 0x1269bfa, 0x1ae8203, 0x04eb10f, 0x1bd05ae,
- 0x17b46b3, 0x123f3b4, 0x0499b73, 0x152c33c, 0x1127037, 0x1557549,
- 0x01f3531, 0x0e2fb9d, 0x1199732, 0x1fdfa7f, 0x0497b15 },
- { 0x05568e9, 0x165d57a, 0x09be295, 0x1d8e325, 0x1491a0f, 0x1929cd7,
- 0x0f74e6a, 0x153b760, 0x04ac37d, 0x032917c, 0x03d6d32, 0x1744054,
- 0x1f8c8cd, 0x114e29c, 0x027f1d6, 0x1e05d02, 0x131ca90, 0x1ce6836,
- 0x1885b6f, 0x03e0887, 0x1d918f3, 0x165d1f5, 0x066a9a2, 0x1800fe9,
- 0x0d0d242, 0x1e71540, 0x1e1aa6d, 0x1b1bff7, 0x108edcd, 0x1f426b1,
- 0x1290174, 0x00d0025, 0x0fa33fe, 0x10838ed, 0x144fb7a, 0x0d85dd7,
- 0x0ff637e, 0x173f2e1, 0x132dede, 0x0d93ca2, 0x018d46a },
- { 0x18b7802, 0x05d9153, 0x0bd21a3, 0x0492f97, 0x0745ddb, 0x17456e8,
- 0x0bcf90a, 0x1c989d6, 0x0b4ceb4, 0x0055e6d, 0x17f502b, 0x064b464,
- 0x052e0d8, 0x09d639a, 0x1f815c4, 0x0e372d9, 0x188b141, 0x1ba03d3,
- 0x169e94a, 0x160c06d, 0x16ac70e, 0x1cec28b, 0x0ac2cdb, 0x052a9e7,
- 0x09d297c, 0x0d68a08, 0x03735c1, 0x0e1bd39, 0x15e7513, 0x1ae6bdd,
- 0x030fc36, 0x140dce1, 0x1f93d41, 0x18286a2, 0x1e29fa4, 0x1221aa9,
- 0x1a38fef, 0x137c722, 0x0b901a7, 0x003a7ec, 0x0550446 },
- { 0x0cb9cc9, 0x0e48803, 0x0053471, 0x0e83a00, 0x142074d, 0x11b7dc2,
- 0x198f844, 0x104f9b0, 0x029ad5f, 0x0b90fff, 0x07f20ce, 0x17f452a,
- 0x0f1d21f, 0x00068a2, 0x1781b9d, 0x05cd639, 0x16b9179, 0x148212c,
- 0x06b5459, 0x0b91ca5, 0x1e98336, 0x02cd777, 0x188883a, 0x1855dc7,
- 0x1318970, 0x05e5e5a, 0x0e7fc40, 0x0ef947b, 0x12973f4, 0x00bb7a9,
- 0x06c9c1d, 0x13457a0, 0x12118ac, 0x1cfc9d0, 0x0824f75, 0x17e684a,
- 0x06f5d7d, 0x1d47fbe, 0x1b13d58, 0x1f9af61, 0x00da313 },
- { 0x1aa2557, 0x12d460a, 0x1a70dc4, 0x1801127, 0x0a21d70, 0x1c5411e,
- 0x0e6519e, 0x05490e2, 0x07cb004, 0x09f4d3a, 0x0b38603, 0x09ff93c,
- 0x022d2bf, 0x024d756, 0x14c6834, 0x00cc1aa, 0x016f03d, 0x02694d3,
- 0x1c6dfc0, 0x1aa1ac3, 0x050c473, 0x1de51ef, 0x0ebc3b2, 0x1851e4e,
- 0x19bea09, 0x132714a, 0x03e1c11, 0x1af85d4, 0x1083ef6, 0x1270b98,
- 0x152b7eb, 0x128384a, 0x0940c26, 0x11681a8, 0x1042845, 0x1c882ce,
- 0x1e82290, 0x01186c0, 0x12b3188, 0x1d1b682, 0x063630b },
- { 0x07d2e41, 0x0a91145, 0x01e6fe3, 0x07d6c5f, 0x09e7582, 0x0016c4a,
- 0x0cf75b1, 0x15a369a, 0x0de2c59, 0x01f026b, 0x0770e22, 0x11e8937,
- 0x0cbf3f3, 0x1a5b862, 0x065f462, 0x1408b3b, 0x00c13ce, 0x08fb4d9,
- 0x038981b, 0x1ae04ab, 0x1b79ca3, 0x1b930e8, 0x0f53f65, 0x0286df4,
- 0x0afa85a, 0x003ab57, 0x02ed10f, 0x0d367d3, 0x18f6be3, 0x0c3672a,
- 0x027f394, 0x1f1591f, 0x10cd478, 0x0d53975, 0x1cdf579, 0x00d00e9,
- 0x08544eb, 0x0c22e03, 0x023b4a5, 0x0e3e2cd, 0x0306a98 },
- { 0x14ec136, 0x08f4eb1, 0x163ef11, 0x141cdec, 0x1edf27c, 0x0da0900,
- 0x0054b03, 0x0cf537c, 0x0c5bfee, 0x1db7790, 0x15808e1, 0x0471345,
- 0x1935283, 0x03d7dc4, 0x1959363, 0x185bcc1, 0x1c00ac9, 0x1a57915,
- 0x0aa748a, 0x0dec630, 0x101b28e, 0x00fa993, 0x101d71c, 0x00ebf23,
- 0x018f882, 0x088fb6a, 0x146faa9, 0x13f4c51, 0x12a13df, 0x1d0bb73,
- 0x0715479, 0x0efe980, 0x106215b, 0x0eac449, 0x1cc64f2, 0x08e3574,
- 0x18e57cd, 0x01f5f02, 0x0f8dd91, 0x083d020, 0x02833ac },
- { 0x1a5ec5c, 0x125c346, 0x0c91f95, 0x103811b, 0x0c3d9da, 0x0bd3945,
- 0x07c2e31, 0x1853af8, 0x19d343d, 0x08957f3, 0x180ce4d, 0x099ffb8,
- 0x01b438e, 0x0e7d0ca, 0x1689c03, 0x00892fa, 0x1f82732, 0x16af991,
- 0x0e4f1b9, 0x0f4b1c2, 0x04311b8, 0x08825d5, 0x1b2da2f, 0x04569af,
- 0x01c5a47, 0x1d5604e, 0x1c81ad7, 0x085f552, 0x16327ef, 0x1e6b4cb,
- 0x1678772, 0x010ef0f, 0x15ba9e4, 0x000c8b2, 0x1d5f797, 0x117ab38,
- 0x0bcf353, 0x1810768, 0x18c0d9c, 0x0a9493a, 0x0120cd4 },
- { 0x0b0f9ee, 0x0dc7a65, 0x03bbaff, 0x00599cb, 0x1c003ef, 0x068332d,
- 0x1a1056a, 0x0e936d4, 0x09b9577, 0x01769d3, 0x06ad719, 0x0fe08e4,
- 0x133de48, 0x10d2786, 0x0bfce00, 0x1bb9bde, 0x15829db, 0x15e8b7a,
- 0x1a4f7fc, 0x00b6961, 0x0ec12ef, 0x0905e4d, 0x1787ea8, 0x0cff525,
- 0x0e2c2d4, 0x11a336d, 0x117accf, 0x0b1b5ec, 0x0103cb7, 0x0cfb478,
- 0x0c299eb, 0x137c048, 0x11f693a, 0x02a5e0a, 0x125bad0, 0x1daad30,
- 0x1019336, 0x18b3bf3, 0x1a8fa3b, 0x02cffbd, 0x0021cfd },
- { 0x15c36f3, 0x1b8afef, 0x095171c, 0x0fac95a, 0x103bde3, 0x07bb89b,
- 0x03443cb, 0x190aa6d, 0x10f3993, 0x12f63db, 0x0b93287, 0x0eec609,
- 0x0bfdb16, 0x1e9dd8c, 0x03dc5f8, 0x07ab41b, 0x13f6634, 0x0a93383,
- 0x158022d, 0x16a5de2, 0x070ffae, 0x1c91252, 0x0e5eb57, 0x0556a35,
- 0x0e391ed, 0x01657c3, 0x1e65d0c, 0x1818fca, 0x0ae28ad, 0x140bfe8,
- 0x073223e, 0x17f1dab, 0x07c22df, 0x145db40, 0x08c7ac4, 0x06bbdb8,
- 0x020595a, 0x16e6ce5, 0x1de39c7, 0x08d8e79, 0x007265b },
- { 0x166232f, 0x0ccf85e, 0x1c59cf7, 0x138804e, 0x059aaf8, 0x0307e26,
- 0x1b7e96e, 0x0775f04, 0x07a943f, 0x1cf5455, 0x110a348, 0x1634a47,
- 0x1a0e0e1, 0x14b9dca, 0x1a838e9, 0x0ea76ab, 0x0aa2557, 0x1f51cce,
- 0x1a55ec7, 0x1bee5e0, 0x0302f8a, 0x009de9a, 0x00e27cd, 0x148752e,
- 0x127d0f8, 0x0b7999f, 0x02b6bde, 0x1b38181, 0x012aa2c, 0x124da4e,
- 0x1a5b732, 0x0f4158d, 0x188deee, 0x004076e, 0x1d74191, 0x1b1e8ea,
- 0x0cc2f4b, 0x0eb33e8, 0x125b1ba, 0x09663a2, 0x036c575 },
- { 0x123d84b, 0x0023779, 0x113e448, 0x04fcf13, 0x0699112, 0x0dc02ad,
- 0x0bd3a48, 0x09c961d, 0x0807997, 0x19cc225, 0x1e31e58, 0x0cd4e81,
- 0x09c9054, 0x06b6f7a, 0x06343df, 0x1c97438, 0x06b4b23, 0x0a94bed,
- 0x1060031, 0x13bfe78, 0x07771c0, 0x0d9bf7b, 0x1b1241d, 0x0a27bda,
- 0x03a4050, 0x182d4a6, 0x05ac2c5, 0x1ace85d, 0x0af5ae3, 0x024a624,
- 0x17b01e1, 0x192b045, 0x0c01532, 0x06ca7a0, 0x1797059, 0x0b45bb5,
- 0x02975eb, 0x054564d, 0x0513bf2, 0x0c2328d, 0x006fbf8 },
- { 0x145aa97, 0x099c71f, 0x1facb59, 0x103a081, 0x183b58c, 0x0f7c5ce,
- 0x1d66c3f, 0x0f80bfd, 0x0e4d741, 0x1f5838d, 0x08688de, 0x03eb661,
- 0x03982b6, 0x1db2de8, 0x17ca8ab, 0x0d7e698, 0x09d5cbf, 0x0f2055e,
- 0x01984a9, 0x1864dbe, 0x0e28422, 0x0ecab8d, 0x124879a, 0x1a6869d,
- 0x0b10b23, 0x099be44, 0x1e7681e, 0x0da5d2a, 0x19cf4d9, 0x03509b0,
- 0x0860cf5, 0x1b2bddf, 0x1d19653, 0x147876c, 0x104680f, 0x0254fb0,
- 0x04bb5ab, 0x1214a98, 0x0a7a979, 0x1fa3e1f, 0x05e9ca0 },
- { 0x17c5dc4, 0x0a2b88c, 0x16896f5, 0x1fcf152, 0x02da40b, 0x0d87597,
- 0x07bf3ff, 0x0f8cbf7, 0x00d1746, 0x0a96e16, 0x031a8fa, 0x18f78eb,
- 0x1ac1fc9, 0x0a01a54, 0x1e558b3, 0x096adf8, 0x1be61f6, 0x19371b7,
- 0x1a11ca2, 0x18973c3, 0x0c8a6ad, 0x09d47cd, 0x1fc597f, 0x1c7c026,
- 0x13a4503, 0x071bde4, 0x0d9591e, 0x1598aa2, 0x0ddc77e, 0x0b8b832,
- 0x0534ce4, 0x0ed26d2, 0x1b318dc, 0x012533a, 0x071cd89, 0x08d363e,
- 0x09955f3, 0x01022da, 0x1abe233, 0x1678d06, 0x0940622 },
- { 0x1997973, 0x0665b86, 0x04551c4, 0x1ba7f1e, 0x1b29625, 0x0bd5ea9,
- 0x113556e, 0x14b19e1, 0x0673e14, 0x1190f05, 0x18891b1, 0x1f3a7a4,
- 0x110541a, 0x17e41d8, 0x1b61d51, 0x0a549bc, 0x1a8f016, 0x123f4be,
- 0x16600ad, 0x05674d5, 0x04b20f8, 0x1ad74e2, 0x1a6a901, 0x1a57eee,
- 0x15de2ce, 0x06d579f, 0x0925e90, 0x1de3d51, 0x03ba9c1, 0x03041e1,
- 0x120b83e, 0x1e32145, 0x0a998a4, 0x119b46c, 0x12333f7, 0x03c5693,
- 0x1de6bd7, 0x1a4c125, 0x1b6dae7, 0x0c8f0b7, 0x080bb16 },
- { 0x1145cb5, 0x0baff7e, 0x020c179, 0x0358bcd, 0x155ee56, 0x09d9398,
- 0x1c33e1e, 0x0708c3c, 0x0133b23, 0x18aa9ef, 0x1ee81e7, 0x0187454,
- 0x1a2fb9e, 0x1f38437, 0x0ff5aa0, 0x1972787, 0x1008bb4, 0x0db5d42,
- 0x1be0b6f, 0x0daf12e, 0x09ff0b6, 0x1b2a75a, 0x1f569bf, 0x0416644,
- 0x1d2371f, 0x06e66b2, 0x09538a7, 0x13d4938, 0x118ff97, 0x0cb1e58,
- 0x02d925d, 0x198b000, 0x09598dd, 0x03bce4b, 0x0460443, 0x0b2a20f,
- 0x03b85a3, 0x1e0aa43, 0x08d43b7, 0x1d48242, 0x0077ba5 },
- { 0x1d86f61, 0x11c69e6, 0x02ac2ce, 0x0a0a054, 0x0312144, 0x1681392,
- 0x1b71601, 0x01e3225, 0x08a32f1, 0x0ee0fcc, 0x031d800, 0x03a21d0,
- 0x13bb1d3, 0x1a32745, 0x1bb1f97, 0x093dda8, 0x1369abf, 0x1eab4d7,
- 0x136b79d, 0x10dd4e5, 0x19209d2, 0x06a2d6a, 0x0af9c08, 0x1335cfe,
- 0x1236e62, 0x003d5f2, 0x174fd57, 0x1262f37, 0x150e80c, 0x0cad291,
- 0x01a04e2, 0x15fe0eb, 0x101265c, 0x1cb2984, 0x06cbd1c, 0x02b6790,
- 0x1bc77d2, 0x1bac0ec, 0x08b8aeb, 0x1be8b23, 0x06b2006 },
- { 0x05b1bc1, 0x128544b, 0x13f6cbf, 0x152c576, 0x131f536, 0x073fccc,
- 0x034cc00, 0x0bdaae3, 0x153d512, 0x0394792, 0x0972be1, 0x0309a42,
- 0x1e4f8a6, 0x1abfb3c, 0x1c69c04, 0x180b4a9, 0x00c1531, 0x0b854fa,
- 0x1ea2ddd, 0x01972ed, 0x0ce910d, 0x0f4ee09, 0x0d1dbd0, 0x0abf129,
- 0x17a7527, 0x0d22e46, 0x01895d0, 0x0d825c2, 0x17b16cd, 0x17dc648,
- 0x08098a9, 0x071ad61, 0x0d116e6, 0x1c74192, 0x0300cb0, 0x19092a8,
- 0x06868af, 0x0dc88e3, 0x0d54215, 0x14d7a4d, 0x053217e },
- { 0x19f52b4, 0x0023992, 0x11b3f21, 0x17cc422, 0x168da9c, 0x05e9374,
- 0x0e17b2b, 0x0892c9d, 0x1e4a543, 0x1bed516, 0x093fdea, 0x1090703,
- 0x0f6dc3b, 0x00e40af, 0x1ea5acd, 0x163c340, 0x1e8c3d4, 0x0627d74,
- 0x0b3a7aa, 0x071a3c8, 0x052f0f9, 0x061ae60, 0x09c9f6b, 0x140de0f,
- 0x001c9e9, 0x0d0e40f, 0x0d29b59, 0x13c11b9, 0x04a9a6a, 0x08b9b02,
- 0x16fe38b, 0x1e57a52, 0x1893dd0, 0x00d894c, 0x0de7e5e, 0x05411a6,
- 0x01830ac, 0x1eb000b, 0x0fbbd92, 0x03db35b, 0x0038693 },
- { 0x09885a5, 0x1d5d9e8, 0x0c1f435, 0x0fc6ab7, 0x0d9d2b6, 0x175d76f,
- 0x0e33d4d, 0x1ac7784, 0x0699ce4, 0x0e5173c, 0x1653358, 0x088e222,
- 0x12354ff, 0x0198b56, 0x12f9c24, 0x1eb88ab, 0x1fd49ff, 0x020c33c,
- 0x1e71b10, 0x159aea1, 0x121a75b, 0x0414b93, 0x19dfb72, 0x1dea05e,
- 0x16887e5, 0x107412c, 0x1efcc83, 0x0b3d26c, 0x1dccb24, 0x1b77c5d,
- 0x0f60738, 0x16ecd0c, 0x1a097fc, 0x036dc0d, 0x075b563, 0x179a744,
- 0x14a8748, 0x04b3e6d, 0x0708039, 0x0922a08, 0x02caaf7 },
- { 0x0d20424, 0x0c00337, 0x151513e, 0x06448e2, 0x13e4ea2, 0x0d46435,
- 0x14695e0, 0x0164d1d, 0x17ae5b7, 0x06855ba, 0x14e6092, 0x06406ad,
- 0x046ca8b, 0x16f98fd, 0x1a39a04, 0x1b9e539, 0x032d925, 0x15c84e9,
- 0x159c8f7, 0x191ef1e, 0x16f9302, 0x14d5d64, 0x045c975, 0x1a342e0,
- 0x047ca57, 0x1f3b2b5, 0x070628a, 0x176baa2, 0x10d9d96, 0x02f8d6a,
- 0x062d5b9, 0x0e160aa, 0x0e886e2, 0x07fc89b, 0x1cf4276, 0x1d8f8e3,
- 0x1350361, 0x10ddf14, 0x0ef6196, 0x0648bfc, 0x086d7f5 },
- { 0x0bf719a, 0x0b75b58, 0x044e67c, 0x111787b, 0x1697509, 0x0680da5,
- 0x039489b, 0x039f5ca, 0x090898d, 0x1f1d62a, 0x1b199b4, 0x13b710f,
- 0x184da3b, 0x1df522d, 0x0c01913, 0x160b0b0, 0x1d98355, 0x19b4f9d,
- 0x1e6f304, 0x047350a, 0x18110fb, 0x1cb715e, 0x13d6d14, 0x0331fa4,
- 0x13baf24, 0x08e803f, 0x0e20df5, 0x114cedb, 0x075b166, 0x1531757,
- 0x0f1a3bb, 0x07b6c10, 0x1fe5f94, 0x1b62d2f, 0x143df60, 0x0aa5929,
- 0x0bc1ff8, 0x061e37e, 0x0d37569, 0x1c70d81, 0x0682a55 },
- { 0x07495aa, 0x11ad22c, 0x117723c, 0x18698e4, 0x0276026, 0x0d23719,
- 0x03316dd, 0x1cfad5c, 0x1ecc3e5, 0x0869cb2, 0x0598a62, 0x085e285,
- 0x071b133, 0x0543b91, 0x0649f9a, 0x14d1791, 0x07e2324, 0x10aa1f9,
- 0x0737086, 0x08ed089, 0x10ac6c4, 0x078a296, 0x06f1ff5, 0x09608b9,
- 0x10a31ff, 0x1089661, 0x0214bdd, 0x02ba8d4, 0x1dd7a64, 0x1829637,
- 0x046b5cd, 0x0f698f9, 0x0ecc3ab, 0x06b866e, 0x006dda2, 0x0ba59be,
- 0x040d390, 0x0792a17, 0x1373415, 0x14dfdfc, 0x002227f },
- { 0x151948b, 0x0f7ecdb, 0x0974601, 0x0dfbfa4, 0x0efeed4, 0x1645914,
- 0x038253c, 0x1cb9625, 0x196f7c5, 0x088485f, 0x0fb2827, 0x0089699,
- 0x040959d, 0x0704658, 0x12557e6, 0x09f9c43, 0x19d68fa, 0x15e0f93,
- 0x1c42ba6, 0x03c29c0, 0x07f4b02, 0x0fc408b, 0x19345ba, 0x193e34a,
- 0x1c22ebb, 0x1757ad2, 0x1f8d083, 0x1e6e2db, 0x04e8435, 0x1c8aeae,
- 0x0065c7a, 0x051ff75, 0x0fc55fc, 0x1babc32, 0x1535f74, 0x00684fc,
- 0x15ebc7d, 0x1735310, 0x05de111, 0x134524d, 0x0547e24 },
- { 0x1ffda27, 0x1434550, 0x1d411c1, 0x18f2ab9, 0x14e6cdc, 0x11f9ec5,
- 0x1478429, 0x015eca2, 0x09de5e7, 0x1a093f5, 0x10a08d6, 0x1375f26,
- 0x113d2c0, 0x1517bea, 0x126760e, 0x1804a31, 0x11dddee, 0x15062dd,
- 0x0f73c73, 0x1bbf080, 0x1eda7ff, 0x14b0b7e, 0x195f934, 0x06543e1,
- 0x1656979, 0x071e922, 0x00c6475, 0x08ebc1d, 0x00218b7, 0x1f50e11,
- 0x014d1e6, 0x117964a, 0x0eb5c90, 0x099737e, 0x13a8f18, 0x1638d0b,
- 0x1fe6c1e, 0x16e3a2d, 0x03bab10, 0x181a561, 0x045a41c },
- { 0x1bbf0e1, 0x0d963a6, 0x1c38faa, 0x1f42f9e, 0x01ff962, 0x15a6332,
- 0x09d617b, 0x0fdb83d, 0x0a9beb1, 0x1aa0969, 0x15d0693, 0x1ea5450,
- 0x1f2c9e4, 0x0c27e88, 0x17df692, 0x0309d27, 0x1dc0df3, 0x0d957de,
- 0x10878dd, 0x047a4a4, 0x181e963, 0x1224efb, 0x121ef87, 0x0b137d5,
- 0x001ed3d, 0x16e8a2b, 0x14a3ffd, 0x1e17b37, 0x0f298c0, 0x0cea450,
- 0x110b4c9, 0x1b11cd2, 0x02d7a77, 0x0157b1b, 0x1adadab, 0x0550980,
- 0x1087da0, 0x028564e, 0x10322ea, 0x19285dc, 0x0128763 },
- { 0x0bac178, 0x00783d6, 0x1db8a6a, 0x0869611, 0x1cc2004, 0x1f6f693,
- 0x07451c3, 0x0cfd2c6, 0x1866157, 0x108aed1, 0x021522c, 0x0b89961,
- 0x037c75f, 0x0d17470, 0x0a7484e, 0x02ea4b6, 0x0668b88, 0x07f4fed,
- 0x0779faf, 0x1b1b118, 0x01233f1, 0x0f0190c, 0x0d1d959, 0x1932be7,
- 0x05561b1, 0x18d839b, 0x02c4fad, 0x02c1963, 0x13a0eb2, 0x1289ccd,
- 0x1d1fa36, 0x1641f9a, 0x08ca1f9, 0x136b92f, 0x019ed04, 0x1ed4fc0,
- 0x08bb637, 0x01025bb, 0x1d3487a, 0x199f89e, 0x075e96b },
- { 0x119716e, 0x08fee06, 0x1494627, 0x10f8708, 0x1f58505, 0x0c3e956,
- 0x11b47aa, 0x01ec950, 0x16c0715, 0x15b5fc1, 0x1f56dc4, 0x1a8c9ad,
- 0x1f91d85, 0x07a9faa, 0x1e220d9, 0x1225352, 0x1d88150, 0x030041d,
- 0x0a1dbd2, 0x0e4d07d, 0x0489a76, 0x1d60ad9, 0x1a02cb9, 0x1a3b325,
- 0x0f8d242, 0x0494c2f, 0x073cf79, 0x18af605, 0x0876279, 0x1c1e58a,
- 0x01ff80b, 0x115cb6d, 0x0ba4fe4, 0x1c0cb57, 0x026d75a, 0x1b150de,
- 0x016e523, 0x07ab35d, 0x0252762, 0x135744d, 0x0309a6e },
- { 0x1fbe97a, 0x1f7285e, 0x1137bc9, 0x1f718a1, 0x1a5fe70, 0x104fae0,
- 0x1ac05ff, 0x18b98f7, 0x1bed36c, 0x1d0ad42, 0x03b4ea3, 0x19b6eaa,
- 0x01c0c3a, 0x15c8434, 0x007be1f, 0x0b9978b, 0x162c49d, 0x050ad99,
- 0x1e8993a, 0x162e283, 0x0e880fb, 0x07c70f7, 0x099fe36, 0x1856c7a,
- 0x0cfd621, 0x17ee98e, 0x154ef9f, 0x049b7cf, 0x0a358a9, 0x03bfed9,
- 0x10750ba, 0x0ebad15, 0x19673c7, 0x1f52ae7, 0x03f5c53, 0x05c6b2f,
- 0x1769b20, 0x19b329a, 0x0de27ba, 0x115aeb2, 0x0045825 },
- { 0x042dbdf, 0x18d3a50, 0x1e8977d, 0x0eaef3b, 0x0d40585, 0x17332b9,
- 0x12e9c34, 0x05c1ccd, 0x1ca2e89, 0x02eb3a2, 0x19ad7ca, 0x1bde1e1,
- 0x03f56a8, 0x1183b3e, 0x1ba1476, 0x0d739c1, 0x0584334, 0x14c602b,
- 0x1acf1d0, 0x1f9c4da, 0x1e00b35, 0x1f9cbbb, 0x102256f, 0x16db10d,
- 0x0f6a6e7, 0x025c1e4, 0x0d3c0a4, 0x1dc2908, 0x04ec34b, 0x08ad974,
- 0x045fdd2, 0x12da213, 0x0af663c, 0x1d6605d, 0x1d5f907, 0x1200970,
- 0x0f86c02, 0x1c4072b, 0x1cd628a, 0x1c12b6e, 0x053f4a3 },
- { 0x1fc48e7, 0x1846744, 0x0bac46e, 0x0f5f56b, 0x1a60c57, 0x00e5ad5,
- 0x12fe283, 0x16de0d7, 0x079757c, 0x0977d75, 0x064581f, 0x0162ec6,
- 0x09e26d9, 0x15bbdbd, 0x0a86ad8, 0x1e57e85, 0x0cd285d, 0x01c7760,
- 0x0ea3dfc, 0x128febe, 0x15b5d35, 0x077e0e5, 0x05f2370, 0x0b08b9f,
- 0x0cca0c4, 0x1797f5c, 0x0492789, 0x0dd1b31, 0x1ed89a1, 0x0736a41,
- 0x1cdf099, 0x0a3b220, 0x1a3f145, 0x14cf809, 0x18b8c17, 0x070a02a,
- 0x0908d56, 0x1cc6ba3, 0x148daab, 0x0a7ae47, 0x00a99e6 },
- { 0x1bc0559, 0x1b7a355, 0x05808d4, 0x1735434, 0x0163067, 0x0b40dae,
- 0x148a430, 0x00e453f, 0x11378e9, 0x092a5f0, 0x04e8b58, 0x0af556f,
- 0x1bc60ff, 0x0332a96, 0x1cb7e2d, 0x0146d4d, 0x0938c17, 0x14d698c,
- 0x06dd366, 0x1b357c5, 0x0523c5c, 0x19fbc24, 0x13dd1c9, 0x01c60c7,
- 0x0a93a0d, 0x1ec6093, 0x0d09238, 0x1c4043c, 0x03ddfaf, 0x01f7419,
- 0x19f65cd, 0x0664c73, 0x1768775, 0x12aa44f, 0x10c5d4c, 0x152ca1f,
- 0x1eebf7e, 0x0aede89, 0x12f02d6, 0x08a021f, 0x03a95cb },
- { 0x1d7ff2e, 0x134659c, 0x123e553, 0x1783ab8, 0x0dd1cb4, 0x14a1c54,
- 0x0b1ddc5, 0x19c0552, 0x091cad8, 0x0b2e058, 0x142349e, 0x1156659,
- 0x1a0c579, 0x134815e, 0x16f0f0e, 0x1a43034, 0x1255186, 0x1aa2e84,
- 0x09f9936, 0x0ef9b7a, 0x12daf00, 0x1246684, 0x0055f2a, 0x0a65566,
- 0x1a3a024, 0x1d19517, 0x0d0732a, 0x0bf6c73, 0x04aee6a, 0x16e0a3a,
- 0x16805c0, 0x19b7527, 0x05bb436, 0x1c278a4, 0x1d98ca5, 0x0726b2f,
- 0x1ad672c, 0x189e0ee, 0x1c91575, 0x05c0616, 0x0366d22 },
- { 0x13ea5b2, 0x1a43aab, 0x1137542, 0x17521b4, 0x0fce401, 0x0d01880,
- 0x1e995e8, 0x0c0f6a7, 0x1cf1144, 0x1154052, 0x02fd25c, 0x1e0b4a7,
- 0x010b8eb, 0x0995669, 0x050451f, 0x1a0fb5c, 0x12c7b5a, 0x1b34938,
- 0x1d23281, 0x0bfdce7, 0x18d86dc, 0x0c95c53, 0x063b452, 0x05e2eb3,
- 0x13145dd, 0x1c72745, 0x057e5c6, 0x06811bc, 0x11b3684, 0x136ed6f,
- 0x1f8157a, 0x1cb2656, 0x1b76e73, 0x049fea5, 0x054f4c2, 0x148850e,
- 0x0661bfd, 0x1ee6690, 0x1f4945c, 0x132f3bd, 0x09072ba },
- { 0x020ea39, 0x0f26ecb, 0x1ba11d3, 0x1f90639, 0x1bf1649, 0x1d4e21f,
- 0x02ec734, 0x1aa161d, 0x13f3df1, 0x11c1437, 0x1b26cda, 0x05671e1,
- 0x034ed07, 0x194e04f, 0x193261d, 0x044854d, 0x0c68ad1, 0x1751f45,
- 0x0f7e96e, 0x01c457f, 0x15926ae, 0x07d8507, 0x1585c7b, 0x10e3f1a,
- 0x0886d6b, 0x1ed19d9, 0x04d7846, 0x16337d5, 0x0f153f6, 0x0d203f8,
- 0x1b93605, 0x0fad805, 0x0608d97, 0x047a33f, 0x0f66daa, 0x08fd1e4,
- 0x039d165, 0x164b292, 0x1b0a49a, 0x17a6aa8, 0x08d92c6 },
- { 0x1eb0ff7, 0x06be755, 0x0be2cf8, 0x087c1c8, 0x1be3525, 0x00424cf,
- 0x0c89b7a, 0x186afa3, 0x11cd44b, 0x167170f, 0x13fb867, 0x1b7886b,
- 0x1c1245a, 0x1c9fac0, 0x13ba103, 0x1728f0e, 0x19cbda0, 0x148b53b,
- 0x095eb82, 0x1902b5f, 0x01b0abc, 0x16f8531, 0x05eb7b0, 0x1f217b9,
- 0x0502b81, 0x11edf35, 0x054ef79, 0x097f3bc, 0x084c255, 0x0d5fbc4,
- 0x1c2a23f, 0x19776a8, 0x0aa52b1, 0x09f7a98, 0x05b0a41, 0x15f00a7,
- 0x0dd827e, 0x01ec4c4, 0x1970235, 0x02eb835, 0x04e4bec },
- { 0x0c09676, 0x041d17e, 0x0a52fe1, 0x1e33d53, 0x057c4a3, 0x0152eea,
- 0x0bbcf5c, 0x1b14d0a, 0x0843fe7, 0x1c8afe9, 0x0d45639, 0x15302dc,
- 0x10644bb, 0x0f6ba37, 0x06e5742, 0x1e16b1a, 0x181b90a, 0x123b822,
- 0x13f44d7, 0x0978d7a, 0x13a50bd, 0x13da741, 0x09b7381, 0x0ad5343,
- 0x08f30ff, 0x1ff1607, 0x03b0b18, 0x1390100, 0x1508a8a, 0x1052cc7,
- 0x0e91270, 0x0652502, 0x0b94cb3, 0x140d101, 0x14a3b1f, 0x0ec8fc7,
- 0x1487767, 0x133e8d5, 0x1b491cb, 0x1eadf3b, 0x07a4aa3 },
- { 0x07a0045, 0x178dd71, 0x0d41567, 0x1f64859, 0x1c812d4, 0x07c6926,
- 0x1e390e7, 0x0a84748, 0x19b3f9c, 0x1aa27e2, 0x087f3e5, 0x02655ff,
- 0x1b5ac68, 0x1a51641, 0x1e3fb80, 0x0976ee9, 0x00fcd3f, 0x14b6632,
- 0x0144ba9, 0x1b9d3b6, 0x181e775, 0x0ee6e71, 0x19f7286, 0x1a7fcaa,
- 0x0b3f3a9, 0x1a7e0f7, 0x0868649, 0x11c17e8, 0x169b123, 0x17da146,
- 0x1e05664, 0x13fa13b, 0x0fcebde, 0x15aefa4, 0x093ed06, 0x0bb93bf,
- 0x00a269c, 0x1ebee46, 0x0b78432, 0x0f7efe1, 0x060282a },
- { 0x0eea2e7, 0x1f29c6e, 0x1875f01, 0x1078840, 0x18a322c, 0x0fb28b1,
- 0x0a3e53c, 0x020ced0, 0x1c7776a, 0x10db4fd, 0x1ad017c, 0x082f6bc,
- 0x02c63a3, 0x08d3db2, 0x067c962, 0x0288099, 0x0a82cad, 0x09c3496,
- 0x021a6f3, 0x105ffc0, 0x066af1e, 0x070b7f2, 0x10c2dc5, 0x0032271,
- 0x142f919, 0x1572fdb, 0x003e945, 0x1202cda, 0x073a43e, 0x1bd66c6,
- 0x1c95543, 0x1f78b86, 0x16a407d, 0x01cf696, 0x14e5a33, 0x01c8f4e,
- 0x0a5fbe7, 0x09436ca, 0x0e508ff, 0x18e478d, 0x05f4ae9 },
- { 0x1f4d561, 0x116ed29, 0x064b65a, 0x002db43, 0x086d45d, 0x0a58289,
- 0x007eff7, 0x1d48934, 0x19f2195, 0x0a44506, 0x1986cc9, 0x161546e,
- 0x02c4151, 0x1cf2f70, 0x0311c7b, 0x1102f73, 0x06ea865, 0x1525e54,
- 0x09a3f02, 0x15b70ef, 0x06a9bbc, 0x04b5b9b, 0x022cd19, 0x0cc385b,
- 0x098d415, 0x1061977, 0x1b24050, 0x0b67698, 0x0752aff, 0x139a979,
- 0x07288d4, 0x0a21c9b, 0x164ce73, 0x0554017, 0x1c9ab29, 0x072734f,
- 0x001aa50, 0x09f148a, 0x0bf4a73, 0x047b88d, 0x092a014 },
- { 0x02f7dbd, 0x125f08e, 0x1feba7c, 0x1f6faa4, 0x1a8c900, 0x0478946,
- 0x096ee19, 0x0832c7c, 0x0481419, 0x15b89f1, 0x1d5bee6, 0x1a02f4c,
- 0x1de87f7, 0x02c6c85, 0x1376178, 0x0d57a4e, 0x07a8256, 0x0c11ff7,
- 0x1090065, 0x0461aee, 0x046e9f6, 0x16565af, 0x0115e7c, 0x14990fc,
- 0x0626316, 0x02b9511, 0x0f666c2, 0x1943348, 0x08789e9, 0x15d1f24,
- 0x0f61b70, 0x1280d87, 0x160b5b9, 0x04abf7c, 0x0a2e258, 0x16de588,
- 0x161c515, 0x1a43830, 0x12e6e41, 0x03d5511, 0x00fc8fe },
- { 0x0b90f2d, 0x10df6ff, 0x1565a2b, 0x1949162, 0x1393bb3, 0x074b1af,
- 0x0be73d9, 0x18457cc, 0x0f8be75, 0x0a61208, 0x1dd4a4d, 0x0e06bcd,
- 0x11bd7ea, 0x0b16559, 0x1921a38, 0x1e7ff84, 0x070c860, 0x1589c8f,
- 0x16260df, 0x0cf8ea3, 0x0941df3, 0x1a15f99, 0x18542da, 0x182631f,
- 0x0f46e78, 0x0b04af4, 0x0e8b12c, 0x167e3b5, 0x1afbf32, 0x1ae7380,
- 0x1171b33, 0x0bd10e9, 0x0d27530, 0x16e5f1d, 0x1945771, 0x1a7250b,
- 0x199892d, 0x0aa6c36, 0x1e27cf2, 0x0c5bfa6, 0x02d0ba8 },
- { 0x072e1af, 0x0c7745a, 0x0f33ab3, 0x1d6ed57, 0x0b354ea, 0x0c9fdef,
- 0x02fe343, 0x00d36a4, 0x1fe6fc7, 0x066b06b, 0x18bce7f, 0x1bbd49d,
- 0x1ea9353, 0x0d40f28, 0x0c2497a, 0x0ceeebd, 0x1a1d136, 0x0f719a6,
- 0x14d535a, 0x05193fa, 0x0d54c1d, 0x0ac952f, 0x0e5dc5d, 0x1ee1b03,
- 0x0367fb7, 0x13d2e9f, 0x0aa4ceb, 0x17cfdd9, 0x1cfbb77, 0x18fcf11,
- 0x0049933, 0x11292ed, 0x1129f4a, 0x111ad86, 0x169026d, 0x14e0a6e,
- 0x08a376d, 0x1b263aa, 0x16ff333, 0x0249a83, 0x0963c87 },
- { 0x036a814, 0x14865ef, 0x0ad6eb8, 0x0ae6762, 0x1bdb019, 0x1ff070c,
- 0x1619fdd, 0x1d41d75, 0x129720c, 0x13e8cfe, 0x07b1c82, 0x0ca3205,
- 0x1e434d7, 0x1da8c88, 0x1abfc5e, 0x0fec10a, 0x19ad80a, 0x168512e,
- 0x0123041, 0x150d5ff, 0x149cffc, 0x1ca1d6b, 0x14fa2f7, 0x1cd2d76,
- 0x00284e3, 0x10afdcf, 0x0bbbb90, 0x1d6cc61, 0x0f3c633, 0x1dcf176,
- 0x102763e, 0x09c0181, 0x1da4ffa, 0x1df5638, 0x1965755, 0x1f652d7,
- 0x08cec7e, 0x08fdd6d, 0x15ef45d, 0x079feab, 0x02d03eb },
- { 0x0f2ec1d, 0x1492f82, 0x1b8bac5, 0x0c1a28f, 0x0878f27, 0x0cecf05,
- 0x1d812ab, 0x0b6885b, 0x13f7103, 0x08efa25, 0x05756e2, 0x0567197,
- 0x03c2827, 0x0f74769, 0x053bed5, 0x1e7c6de, 0x00f13b0, 0x179e223,
- 0x0f5ccd7, 0x1f37aed, 0x1a6e889, 0x18fbaad, 0x0227b9d, 0x04336d9,
- 0x184feed, 0x008b134, 0x1fb0bb9, 0x1a898e6, 0x0fcd372, 0x02d131f,
- 0x1aee50e, 0x0cc6f04, 0x109321b, 0x15bd3ec, 0x09e4fb9, 0x0f849f1,
- 0x07cf61b, 0x0546925, 0x0b3668f, 0x1838a97, 0x0842e40 },
- { 0x061d843, 0x1476b53, 0x0335689, 0x149eb66, 0x02328cc, 0x08f0bb8,
- 0x1fb444c, 0x0ce2dcd, 0x0c66959, 0x086f65a, 0x0b8a01a, 0x17ecaf6,
- 0x10bdac5, 0x0f7f216, 0x1fe0b28, 0x1945f04, 0x00aca5f, 0x162aa76,
- 0x1791541, 0x04ed83b, 0x1513ac5, 0x047183b, 0x0dfd32c, 0x10f2f99,
- 0x16d9acc, 0x1694657, 0x10364cc, 0x0b2c902, 0x1a409fd, 0x114b942,
- 0x04f31ab, 0x0c447a1, 0x173c2a5, 0x07e04bb, 0x1ab144a, 0x185aa4c,
- 0x1c31fe6, 0x0b5be5d, 0x04ca296, 0x1359592, 0x00e6331 },
- { 0x0360ac2, 0x097d6f8, 0x016ad73, 0x1c50bcc, 0x06b660d, 0x0dcd8a4,
- 0x13c4389, 0x0a9058d, 0x1aa9ac5, 0x0afd1c6, 0x101c3a7, 0x0370a4d,
- 0x0d3dfcf, 0x1fe6629, 0x1e6a5ac, 0x18fea06, 0x0290bfc, 0x0f1b2ce,
- 0x074f9a8, 0x147b6ad, 0x02d55b1, 0x1acdbda, 0x0d054a2, 0x045400d,
- 0x1efa49c, 0x1db49a6, 0x026d338, 0x01e7003, 0x0baf329, 0x1e0259d,
- 0x18ac1ce, 0x1ff0713, 0x1a5a222, 0x0d1ad93, 0x1547fe9, 0x0416f53,
- 0x08e1a7c, 0x1cf6779, 0x1c16924, 0x14430e4, 0x088839d },
- { 0x01ce29a, 0x1361838, 0x15415ad, 0x0cb1303, 0x1acaf12, 0x0fcf909,
- 0x1f03041, 0x027a9b5, 0x0373e3d, 0x172b8f3, 0x1b8f2bf, 0x190df45,
- 0x1ae7269, 0x0e901c2, 0x132992b, 0x1d359eb, 0x1573000, 0x190bf93,
- 0x19c9cfb, 0x09b68e1, 0x0776c93, 0x1b9aadb, 0x10a53d3, 0x180a300,
- 0x036b96f, 0x0858fd5, 0x0ec1486, 0x1f1163b, 0x0aef528, 0x0dc874f,
- 0x040d5e4, 0x1b6d037, 0x17fb2eb, 0x0e1b4f9, 0x1475105, 0x1273a14,
- 0x1d2e21c, 0x0ce6538, 0x0309bf1, 0x1fd43ea, 0x064128c },
- { 0x0f5b0b5, 0x13c5174, 0x0167c0d, 0x19a681e, 0x1c7e249, 0x053e762,
- 0x011064f, 0x1308288, 0x0bc83af, 0x1ae51a3, 0x02eec01, 0x0067f55,
- 0x17f39f0, 0x19c1187, 0x063c3b7, 0x1e68a7a, 0x00cd448, 0x0bc6ff8,
- 0x146a91d, 0x045181a, 0x08d1849, 0x0418649, 0x175389c, 0x0259fa7,
- 0x1a6868f, 0x1036335, 0x0e22ce8, 0x122093b, 0x0dae010, 0x082c80b,
- 0x1f76197, 0x1c4a7c6, 0x199e905, 0x0c38da2, 0x0309f3a, 0x1c6459e,
- 0x174a132, 0x07aa6d0, 0x12f6805, 0x0137b57, 0x093634a },
- { 0x1a2e304, 0x13593d4, 0x04918a0, 0x0d83498, 0x057e186, 0x1c0b886,
- 0x0e0c888, 0x1fd2275, 0x1a9847c, 0x14db5c2, 0x1d1bf5f, 0x19e256b,
- 0x0d29655, 0x001c733, 0x0555cae, 0x0bd56e5, 0x0016fa9, 0x0f265d3,
- 0x077b6a0, 0x0220e37, 0x161ebbc, 0x0d1f8e7, 0x05fc002, 0x07c19f7,
- 0x0777b37, 0x11da9b9, 0x1344e75, 0x005f213, 0x07d78e3, 0x196d27c,
- 0x18c7b59, 0x168090e, 0x02077a3, 0x011591b, 0x0cb6773, 0x0f88118,
- 0x06deeee, 0x062df91, 0x0d5f92d, 0x0cf780c, 0x0266cb4 },
- { 0x16363e8, 0x120aa5a, 0x136dbea, 0x1078354, 0x0b4fd07, 0x0f32cba,
- 0x03778ae, 0x108286b, 0x0fa004b, 0x19a571f, 0x0446996, 0x05d9e33,
- 0x18cf44b, 0x129b5fb, 0x12aa0ce, 0x1b92aab, 0x0b98870, 0x0b0370f,
- 0x07cd447, 0x0650fa1, 0x1364e3c, 0x15ceae7, 0x1a2cbd3, 0x157193c,
- 0x0e89263, 0x108e0aa, 0x1b0daad, 0x0a91051, 0x17d1201, 0x1fe5d0d,
- 0x15c24ca, 0x0a62b71, 0x0e7b5bc, 0x19d60bf, 0x0347dd1, 0x06f05fa,
- 0x1c8f2af, 0x1814d41, 0x13b86f2, 0x036a48a, 0x04b1d5a },
- { 0x1d52c0c, 0x128ba31, 0x06744bf, 0x1c31181, 0x1735525, 0x071cab1,
- 0x0558cd8, 0x086b8c4, 0x0acfa5a, 0x059f8e5, 0x1a041e2, 0x1414f2f,
- 0x0a90123, 0x18af040, 0x0c7dad6, 0x1b5b574, 0x012fca3, 0x06bef2f,
- 0x17d4472, 0x0e6c361, 0x1d4e328, 0x0a32bab, 0x1f32003, 0x00fd922,
- 0x10f3d52, 0x0718840, 0x04c3ba8, 0x1a9cade, 0x05a2ec0, 0x17099f5,
- 0x142efdf, 0x17cd577, 0x1c07762, 0x1fb0cb7, 0x1738482, 0x159063f,
- 0x1622d42, 0x1a1cfd5, 0x12c9f81, 0x07ea11c, 0x08186b9 },
- { 0x1312867, 0x0e8aa04, 0x16d3186, 0x0b7f5ef, 0x1e042c0, 0x0faeed3,
- 0x059a07d, 0x105839e, 0x1a4fc3d, 0x055282b, 0x02e3f94, 0x1acb9cd,
- 0x04ed30e, 0x1f5a6b2, 0x0c0702e, 0x0092fd9, 0x044831c, 0x03daee2,
- 0x0df66c7, 0x1cd4013, 0x1c91351, 0x1ceca3b, 0x12ee18e, 0x1a82214,
- 0x0589105, 0x1bd55d3, 0x110d602, 0x0010d9e, 0x1e357e3, 0x003b485,
- 0x13ac4e7, 0x04f6a42, 0x0bfff1a, 0x1d5ab89, 0x1b5c8b0, 0x14f39f8,
- 0x134a9bf, 0x01ef2bf, 0x0aca91d, 0x12f93dc, 0x00bf97e },
- { 0x1a19e96, 0x027646e, 0x1a2e5bb, 0x14d860d, 0x14ce18e, 0x1b48c52,
- 0x184ad97, 0x132fd06, 0x10d9a0d, 0x1637b45, 0x1730246, 0x0f48c5f,
- 0x1398a69, 0x0ade1f0, 0x13897c6, 0x12e60cb, 0x0dab393, 0x10c4b76,
- 0x0bc4a01, 0x10341e6, 0x07df9eb, 0x170e96e, 0x14f5d05, 0x08e6b33,
- 0x07976ad, 0x01cf116, 0x0a7d7bd, 0x1bc6f53, 0x09d94e3, 0x0055cf3,
- 0x121adeb, 0x0153a17, 0x0bfa9e0, 0x1789073, 0x1c3559d, 0x1eaed50,
- 0x1eaac23, 0x0c8dda7, 0x0aaecef, 0x0587c81, 0x08fe548 },
- { 0x09a4d1e, 0x133e167, 0x00e216b, 0x069e3a4, 0x0c3eb80, 0x0830c92,
- 0x03ce897, 0x038b8d9, 0x1308fb4, 0x01ef056, 0x10a53a0, 0x0b79ce3,
- 0x1a9961f, 0x1817586, 0x1881e37, 0x1d16db8, 0x115b64a, 0x1e43f7a,
- 0x02d3463, 0x0f3e3ca, 0x1f43696, 0x10a90cc, 0x1170026, 0x0c814bf,
- 0x084be0f, 0x0b353ea, 0x048f6ad, 0x1923176, 0x075d2c4, 0x08a6321,
- 0x15a99f0, 0x195a5bd, 0x1a913b9, 0x1ae46ca, 0x062dad2, 0x0c313da,
- 0x142d3bf, 0x15b1035, 0x0f0fd2b, 0x0d37791, 0x03928c6 },
- { 0x0cb4b64, 0x1f5256d, 0x0687792, 0x09e4c2f, 0x03f62a4, 0x0889520,
- 0x12539ea, 0x03de755, 0x1d36f33, 0x02247de, 0x0e17124, 0x057880f,
- 0x1b42604, 0x1090dbb, 0x1629658, 0x1d308b5, 0x04f67ce, 0x098b3a5,
- 0x18ecbc3, 0x1d177c9, 0x10eb7fa, 0x0ed3e49, 0x1a077db, 0x0b3a1a8,
- 0x0fa98c2, 0x0fed6f7, 0x1afa870, 0x1629b3c, 0x1405d11, 0x0e4590e,
- 0x150eeab, 0x0e7124e, 0x01dff93, 0x0e6f278, 0x0cfbc1c, 0x130386b,
- 0x1150d0d, 0x026970c, 0x0d3d85c, 0x11e6aa2, 0x06ccc88 },
- { 0x0d7504c, 0x1b7873d, 0x1777e34, 0x1fef2b3, 0x1ca3265, 0x0f33d55,
- 0x07b7bfb, 0x05e1b9a, 0x0baebf3, 0x13b7a67, 0x1b73f04, 0x0dcc029,
- 0x176825a, 0x0cd6c75, 0x0306a0a, 0x19c3c17, 0x0a909b8, 0x1189012,
- 0x12f4d46, 0x1fb3173, 0x08becb8, 0x1c7d58f, 0x092104d, 0x0e7959f,
- 0x10f5d39, 0x12a0bf6, 0x1096754, 0x02fc290, 0x191393a, 0x1c21ba5,
- 0x1a54f56, 0x0359479, 0x1792b21, 0x07c0ac7, 0x0443230, 0x1a06bfe,
- 0x0d4ed7b, 0x1d31abd, 0x0bbe5ab, 0x10164df, 0x02f1519 },
- { 0x1d2d439, 0x118ed14, 0x0554321, 0x0578073, 0x121fbbc, 0x02dbad8,
- 0x05e49b0, 0x1d87cb5, 0x0b6ce47, 0x0b67a60, 0x031961b, 0x0ecf3b1,
- 0x17baaa1, 0x199aad0, 0x076e79f, 0x0b50a06, 0x1d80aef, 0x1c1c0f1,
- 0x168c6f7, 0x1b65202, 0x1d7dc71, 0x1a4a4c7, 0x18e3dad, 0x17dddec,
- 0x1f3f913, 0x1d9a276, 0x07d2ad9, 0x0c2e64e, 0x02df11e, 0x16387e9,
- 0x048e880, 0x040b89d, 0x1be0389, 0x1cc907b, 0x0216a3a, 0x1438432,
- 0x1eb54aa, 0x002e745, 0x03595b2, 0x16e158b, 0x0354b05 },
- { 0x09170e9, 0x0f11b3d, 0x0335c5c, 0x1a995aa, 0x01eec42, 0x0ee67d8,
- 0x0093cf3, 0x035ff7d, 0x1a66cae, 0x19f4671, 0x11f4069, 0x14ff2cb,
- 0x1eb7138, 0x0e1ecb8, 0x01638fd, 0x14e5600, 0x0c32ff0, 0x1a92c8d,
- 0x0ef39db, 0x1f6b797, 0x1a18a32, 0x1c54fc0, 0x1cc906a, 0x14d0c61,
- 0x13332ec, 0x09df98e, 0x11120bc, 0x08f5f3f, 0x081be28, 0x110bd23,
- 0x1e5865b, 0x1cabdf9, 0x138f932, 0x06382cc, 0x12e1c2b, 0x047cfb5,
- 0x0f09fac, 0x0df449e, 0x08e8750, 0x1895c6a, 0x048dc55 },
- { 0x1092193, 0x11c1352, 0x1c32398, 0x04d1312, 0x046ec36, 0x04f5a0f,
- 0x15abc97, 0x08a5e26, 0x083c7d2, 0x0bc0320, 0x0038e10, 0x1ecf2fa,
- 0x1c982de, 0x12890a8, 0x0badb9e, 0x110d270, 0x0778af5, 0x10aa708,
- 0x09473c0, 0x00e0eb1, 0x1c58187, 0x1bb8989, 0x137aea7, 0x02ab209,
- 0x1b973ba, 0x19d2eb3, 0x0c7435e, 0x0a393e9, 0x0af2cd8, 0x0eb8c5c,
- 0x18867ca, 0x130d71a, 0x194ccff, 0x1ce19e5, 0x092ee4e, 0x110e4bc,
- 0x06e38c6, 0x0e7262b, 0x1008501, 0x1ba16db, 0x05f6a8e },
- { 0x19a8690, 0x02652c7, 0x101e0dc, 0x0c5eed4, 0x1f36976, 0x1008141,
- 0x0b631a4, 0x19ff782, 0x0bce3a4, 0x06ac78b, 0x0ac9b53, 0x0c94095,
- 0x0878046, 0x07522bd, 0x173eee9, 0x12f2800, 0x1b3b8a5, 0x0a9bca8,
- 0x1f87dce, 0x0573c89, 0x17974ca, 0x06ef992, 0x1910a2b, 0x14487b7,
- 0x1a3420e, 0x00f3246, 0x0fd0f38, 0x19ccac5, 0x1db490c, 0x0210f93,
- 0x1c2103c, 0x117f6f9, 0x16ccb70, 0x1cbe98a, 0x00356a1, 0x1736669,
- 0x1eb814b, 0x09703d4, 0x01eb0b8, 0x0e594ff, 0x01ca650 },
- { 0x19d25a0, 0x190e795, 0x1b6feec, 0x14814e8, 0x06affdc, 0x11b45ab,
- 0x14c3967, 0x11f8382, 0x07d8006, 0x1768f52, 0x1f75a15, 0x11fcac8,
- 0x089b74d, 0x04dbc6d, 0x05ad41e, 0x067223b, 0x0438bbe, 0x19cdba9,
- 0x1616317, 0x1a887c1, 0x0a34ef8, 0x04cb235, 0x1374b6d, 0x0cea878,
- 0x13bd1e6, 0x0c2bfd6, 0x01a2602, 0x01ae218, 0x1acabad, 0x1f9924f,
- 0x04a7deb, 0x029f343, 0x15dec1c, 0x183d082, 0x0e647ec, 0x09594cc,
- 0x15ffff6, 0x027ec89, 0x0f3bab1, 0x16d975a, 0x0462caf },
- { 0x03237dd, 0x05323ef, 0x1010598, 0x190570e, 0x15f735c, 0x1d2afc4,
- 0x07d6777, 0x095ef0f, 0x0726b91, 0x0f7821f, 0x0f8a605, 0x127a392,
- 0x1118753, 0x1778c19, 0x08af9d1, 0x1425743, 0x1fc25a9, 0x1a73f46,
- 0x070e45f, 0x1f92fb5, 0x1e41dfe, 0x0185175, 0x0f21d74, 0x065a399,
- 0x1d235a7, 0x16987ba, 0x1b66ea9, 0x0dfdcff, 0x1485760, 0x07d5b2f,
- 0x102a9e1, 0x0a27f07, 0x1155e22, 0x1ce8991, 0x1c60fa3, 0x1ba5f6e,
- 0x1546eaf, 0x148a81d, 0x0d820a8, 0x118d9b2, 0x01293c9 },
- { 0x1d53b77, 0x00928a4, 0x0b1dc9e, 0x1b2dd5f, 0x06ab403, 0x1b5b88d,
- 0x11f6d28, 0x1836faf, 0x087e771, 0x11c6384, 0x0dd48a0, 0x157e676,
- 0x0d495f6, 0x0643a98, 0x0c0a272, 0x0223561, 0x186e77b, 0x16541e5,
- 0x06f4627, 0x181f714, 0x17c7be1, 0x1d8d74e, 0x1633ecb, 0x08187d0,
- 0x023c549, 0x083e82e, 0x05d2b64, 0x0dcf3c8, 0x0e71421, 0x1f82832,
- 0x13e8291, 0x1fbfac2, 0x0929cd4, 0x14c45e3, 0x0130e51, 0x03db64b,
- 0x046f8fb, 0x125af9f, 0x052e9cf, 0x142d1d5, 0x053b79a },
- { 0x0bbb6a1, 0x1d7e722, 0x1ca085b, 0x00cf042, 0x13a5bba, 0x0ec9cd6,
- 0x12cc2a7, 0x1fdde3c, 0x1f19efa, 0x117579e, 0x1b00500, 0x179cf69,
- 0x18fed5a, 0x0896339, 0x05a3b99, 0x11344c9, 0x06929fe, 0x09188cc,
- 0x1ce5f01, 0x073b1a8, 0x16c40d5, 0x0a11a2c, 0x19002f1, 0x08cc23a,
- 0x07f5853, 0x107dc94, 0x0f27576, 0x0813320, 0x1af2a80, 0x04cbe41,
- 0x18797bd, 0x06502a3, 0x09dc01b, 0x0088264, 0x12a5610, 0x1a2a1f6,
- 0x13872c9, 0x137beaf, 0x1a0cd02, 0x1a2ad85, 0x08290d6 },
- { 0x0546946, 0x11be36c, 0x1febe11, 0x12d3d8a, 0x1a134a3, 0x04803f6,
- 0x166935e, 0x013a846, 0x00dc7b8, 0x012abff, 0x1e12a6d, 0x0a5a5ac,
- 0x1fe62ae, 0x05e56da, 0x1c53298, 0x1f94b44, 0x1e633aa, 0x0e61046,
- 0x1659e04, 0x01dab9d, 0x1660238, 0x14ed990, 0x1b9ad57, 0x0ea46b4,
- 0x0d02ca6, 0x0708df5, 0x06ccfe8, 0x0398ddf, 0x0a2a085, 0x1f13783,
- 0x13ff488, 0x1d88f67, 0x0f332e1, 0x14c2700, 0x05ee82a, 0x088b3e5,
- 0x0e952e1, 0x10ecb4f, 0x0aec1be, 0x156609f, 0x0506ef1 },
- { 0x1bff163, 0x075939a, 0x061046d, 0x1fd53f5, 0x1130b96, 0x1593e73,
- 0x1acfe77, 0x1aacd59, 0x19dd1c3, 0x16d78d2, 0x01d6aa8, 0x14fd4e6,
- 0x18f5090, 0x11838da, 0x09abce7, 0x15b386d, 0x13ddf73, 0x15146b1,
- 0x1722685, 0x0a99597, 0x1c3cdd3, 0x11ea6e5, 0x17fa8d0, 0x13b25a3,
- 0x074d237, 0x1b2b776, 0x1e3bb59, 0x02948ad, 0x0feb1fe, 0x1ba1fd4,
- 0x11feaf9, 0x1731f97, 0x004ccf8, 0x138370a, 0x1effdc6, 0x10d99a5,
- 0x0d85c67, 0x179feda, 0x00d136a, 0x17e2a40, 0x0415b7d },
- { 0x18377a7, 0x082c33e, 0x09ca5c0, 0x1197006, 0x068a3d6, 0x1d26190,
- 0x14a27c0, 0x121facf, 0x193c8f2, 0x1e384ae, 0x168ae12, 0x0279d3c,
- 0x1b712fa, 0x07f5cf9, 0x1ab1b18, 0x0a985f8, 0x0d96e0e, 0x0866d1b,
- 0x18c8280, 0x132ea30, 0x0f11454, 0x08cbf80, 0x1e4c632, 0x126ca11,
- 0x04c3fe6, 0x05500ee, 0x0617c1a, 0x0d345df, 0x15511c7, 0x0778515,
- 0x014d48b, 0x168245c, 0x06965ed, 0x0ea1f80, 0x0bf305d, 0x13f9c1f,
- 0x0c831d5, 0x0ee4def, 0x01e7549, 0x1e35eb1, 0x01ec314 },
- { 0x08310c2, 0x1ff7796, 0x1dd0198, 0x148afc7, 0x0a7e14d, 0x1a3443d,
- 0x043f394, 0x18a7256, 0x1637ec2, 0x0f251c7, 0x0be37f3, 0x06416a8,
- 0x1150773, 0x1bef0b8, 0x04c0be7, 0x1378c68, 0x063ae4b, 0x180c58e,
- 0x14be79b, 0x0388ddb, 0x0fa0f00, 0x0b93766, 0x14eec2a, 0x08dc18f,
- 0x1b99d77, 0x1765498, 0x1fd61d6, 0x01916de, 0x139c82e, 0x18be4b4,
- 0x192eccb, 0x07bcb4c, 0x05135d2, 0x1fd35bb, 0x12d14aa, 0x1ce326d,
- 0x0dc105d, 0x0e60479, 0x15e22b5, 0x024fffe, 0x017e91d },
- { 0x1e051ca, 0x16769db, 0x1b52fa4, 0x1a338ee, 0x0644d4f, 0x033c25e,
- 0x12d4802, 0x0639156, 0x1ce9d6b, 0x1533113, 0x07a71cf, 0x1347a51,
- 0x0e39524, 0x08950cf, 0x1427997, 0x0b5d8a8, 0x0928c36, 0x153dea3,
- 0x1e58f83, 0x132fc8e, 0x132d354, 0x0bdaccb, 0x035d965, 0x1a9476c,
- 0x04aeb91, 0x1144cac, 0x1077acf, 0x1cca7d4, 0x0571df6, 0x0c76ab9,
- 0x1e729f2, 0x16315c3, 0x101a38f, 0x1dcbf79, 0x1f098fd, 0x0a2c53e,
- 0x0fc4a0d, 0x1211415, 0x030077c, 0x0967bba, 0x0118f3b },
- { 0x0d4762b, 0x050543d, 0x05d5d28, 0x1518b1a, 0x1aef84d, 0x1bb6c30,
- 0x1258133, 0x1162dfe, 0x07e60d9, 0x05f43c3, 0x1076eb0, 0x1ff67d9,
- 0x1a83637, 0x0eeb0a3, 0x1129825, 0x08dcb84, 0x0345b08, 0x0d1f0bc,
- 0x1de9301, 0x1d6d0dc, 0x0695735, 0x07efbac, 0x16f062d, 0x1bfca5e,
- 0x18d0b1b, 0x1d08ab0, 0x1401c56, 0x0f1d981, 0x1d617f8, 0x1e8d616,
- 0x04076f6, 0x0436c2e, 0x1d2b631, 0x0c9e110, 0x09e513d, 0x08459d1,
- 0x04f1702, 0x0da9b52, 0x19c9cee, 0x0f91a07, 0x001d0a6 },
- { 0x046533c, 0x1211b0f, 0x0ab9ee5, 0x01f7118, 0x0947799, 0x16250c7,
- 0x1745a90, 0x08a0336, 0x1d83c7a, 0x09af40e, 0x198f8dc, 0x17ba996,
- 0x0374a69, 0x13b606b, 0x19fb36f, 0x11b4cf6, 0x12111e6, 0x101eaa2,
- 0x0ba1942, 0x199d6ba, 0x1b37596, 0x1e95781, 0x1355cb7, 0x17ab2a5,
- 0x04ba1fa, 0x0b4a91b, 0x1ad3b61, 0x1e8fa8a, 0x10d5d47, 0x1ab964a,
- 0x0116b62, 0x090dc5f, 0x0dd2dfa, 0x1d82265, 0x0d0f15a, 0x0dbaa4f,
- 0x197c08e, 0x16dd124, 0x0c83f26, 0x00cfb4c, 0x01b625b },
- { 0x1d8446d, 0x1d53da7, 0x0fad137, 0x035edfd, 0x001b2f0, 0x041c5ae,
- 0x10e23fa, 0x1177e88, 0x1bba975, 0x19e21a7, 0x15af27c, 0x19750e2,
- 0x0b2b971, 0x0fa484c, 0x0917970, 0x18bbad6, 0x1342b41, 0x1c3ee5a,
- 0x13614b5, 0x1f018c6, 0x1a34db1, 0x0c1219e, 0x1b5b8c9, 0x0fbe184,
- 0x020653f, 0x1b2fb34, 0x10d832c, 0x0994acf, 0x06656ac, 0x15614c1,
- 0x1a0c87e, 0x17e0d2e, 0x1f5ca6f, 0x1b31c89, 0x04869c1, 0x1c2a72f,
- 0x0400736, 0x18a1944, 0x05236f7, 0x12c33f9, 0x0333eca },
- { 0x0775d81, 0x1bca456, 0x0f288cc, 0x1fa83b7, 0x18c2518, 0x1e74a41,
- 0x1e93ef3, 0x1cec478, 0x054703f, 0x169b11b, 0x0ced6ea, 0x074827f,
- 0x102b3a1, 0x1fae00f, 0x0cd5969, 0x12cc2bb, 0x0dc5235, 0x0eb9204,
- 0x1585ba4, 0x0ff1ca3, 0x19995a1, 0x15e592d, 0x04305bb, 0x126e87d,
- 0x08cf133, 0x053f9af, 0x0b952d9, 0x10fb4e9, 0x0d449d9, 0x191532e,
- 0x17555ec, 0x06fcf62, 0x05082a5, 0x089a7bb, 0x1d0bcb3, 0x0c9a4b8,
- 0x0ccf074, 0x0ece03a, 0x144d6ba, 0x0210e51, 0x072fc21 },
- { 0x16004c8, 0x15901fc, 0x17fea41, 0x1e8b00a, 0x183f95c, 0x19ac84e,
- 0x1619d57, 0x1ddaefa, 0x1e550c8, 0x14f537d, 0x0182052, 0x1952ab4,
- 0x0291c8c, 0x1e74103, 0x07fb9e2, 0x1f0bc94, 0x0069a3d, 0x175cd6f,
- 0x14f7999, 0x1b9e18f, 0x0d51fbb, 0x0dae99b, 0x08a28e4, 0x05ff878,
- 0x18d285c, 0x12dbb07, 0x0cbdec5, 0x1dc91bc, 0x1770401, 0x1ec22b0,
- 0x0800e00, 0x13bdff3, 0x173f648, 0x11ad272, 0x0e3a85f, 0x0dc344e,
- 0x0840a6c, 0x0778be4, 0x164b48e, 0x1f1623d, 0x0480946 },
- { 0x171f119, 0x1a3d47e, 0x1a56131, 0x1ca7d66, 0x19e65c5, 0x0c2c3d0,
- 0x19e198a, 0x1e81c5e, 0x1ab18d6, 0x052444c, 0x02e3012, 0x00498c6,
- 0x12a1a99, 0x16557c4, 0x05d4258, 0x1ac4909, 0x0bae20f, 0x064434d,
- 0x10adf75, 0x05609ad, 0x17d03b7, 0x1b04c97, 0x189dd7a, 0x00dcd09,
- 0x1c06e7d, 0x0038044, 0x0792ef4, 0x167686c, 0x0846e4c, 0x1335a5d,
- 0x07a86b9, 0x08c8c9b, 0x01c2eb2, 0x029cfe0, 0x0f9b07e, 0x0ff0de5,
- 0x0f68afc, 0x1474576, 0x1a4085b, 0x1fb8e70, 0x08dab61 },
- { 0x14d1d45, 0x0e481ea, 0x0e890a9, 0x1dfe9f3, 0x0cd4297, 0x0a3c5a5,
- 0x0d480d3, 0x0345b11, 0x108c462, 0x0d95d15, 0x195008d, 0x1376690,
- 0x06d3d23, 0x088f997, 0x19dabb6, 0x1fb843b, 0x1cf3f06, 0x143bfc5,
- 0x1b14540, 0x0e29833, 0x100d802, 0x15d2c83, 0x0841113, 0x1b992af,
- 0x0229f31, 0x1f6c34a, 0x0ee05a7, 0x1d9cef5, 0x0f080e5, 0x050a965,
- 0x1c556fa, 0x197af9d, 0x0b21b14, 0x0bf709f, 0x0b459ee, 0x193bdef,
- 0x118f690, 0x1e543c8, 0x0a79f80, 0x05bf336, 0x06f77e6 },
- { 0x00bbf59, 0x0def6f2, 0x0b5a89c, 0x06c8035, 0x177ba45, 0x0a0e688,
- 0x180d5cd, 0x05e2eab, 0x04b71b0, 0x032da33, 0x0cd67cd, 0x0227502,
- 0x0722eb7, 0x179c756, 0x04aa3f5, 0x1e76b2f, 0x12fff3b, 0x188d500,
- 0x0170fef, 0x15f57ff, 0x0c4299a, 0x1783606, 0x047828b, 0x076f675,
- 0x15d5777, 0x00518a6, 0x1b59a61, 0x1cbc5ce, 0x1a8be6a, 0x1039972,
- 0x002184d, 0x1839eab, 0x06d7578, 0x1688177, 0x003da2f, 0x164689c,
- 0x0184f0e, 0x0ebc434, 0x13e01e6, 0x12387a5, 0x063819c },
- { 0x084b073, 0x1c970bc, 0x1fab294, 0x19d624c, 0x1ec3a1f, 0x181c53c,
- 0x1d7c241, 0x0e07a0f, 0x0e4c47b, 0x195603e, 0x05ae472, 0x09dc37f,
- 0x1ff9666, 0x157527d, 0x1d5d624, 0x0ca01d7, 0x191fade, 0x02d55f9,
- 0x1c74481, 0x066ede2, 0x181ac5b, 0x08d069e, 0x07fd831, 0x0d50896,
- 0x0cfe797, 0x12d0859, 0x0af6984, 0x0263993, 0x1d453ee, 0x0b69a75,
- 0x10783f0, 0x0a096d7, 0x0d0319a, 0x1c655e0, 0x0f9c28b, 0x0fc8741,
- 0x15e49b4, 0x057f762, 0x15fbb20, 0x02504cb, 0x067d48d },
- { 0x02d56d6, 0x0acd3f5, 0x098c1a3, 0x1c4e901, 0x171abd0, 0x19b366e,
- 0x076c2b9, 0x178d7a2, 0x007204e, 0x1db1ce5, 0x198a4fe, 0x05cfeef,
- 0x1d89a24, 0x1add461, 0x19f28ad, 0x1f351bd, 0x03d64a2, 0x02396ee,
- 0x1586804, 0x053be8e, 0x09d4842, 0x02e2db2, 0x057d8b2, 0x1924f9b,
- 0x16b1b4d, 0x0cb7eea, 0x017b981, 0x1d17624, 0x129401f, 0x152855f,
- 0x010fbf2, 0x021a383, 0x0900d0f, 0x00efaea, 0x0ea4a2c, 0x0a59e22,
- 0x1f0e43f, 0x0bf5e18, 0x1371e8f, 0x071d070, 0x027950e },
- { 0x1d0fa79, 0x10ff870, 0x17a7aac, 0x060916b, 0x0b9fd03, 0x11ba65a,
- 0x11a24bf, 0x0d69926, 0x04eb21f, 0x1a413fd, 0x179f9ee, 0x1ef3524,
- 0x1146716, 0x1eea629, 0x10afcd9, 0x0dbbe28, 0x14cd2e9, 0x09039ca,
- 0x140aaa2, 0x02835d0, 0x0cc94e0, 0x0d4777b, 0x03b8038, 0x1019b5f,
- 0x0849158, 0x0232ae7, 0x11a58a0, 0x1e7574b, 0x15dfbff, 0x027c2e8,
- 0x094cd73, 0x13ed09e, 0x1f0440c, 0x12dec53, 0x14feec7, 0x175d008,
- 0x1f2225a, 0x04cc09f, 0x175c687, 0x108f364, 0x054ff78 },
- { 0x040b068, 0x177186f, 0x14789f1, 0x17cde74, 0x1226465, 0x1d90fb4,
- 0x11813e8, 0x02bc494, 0x1c04181, 0x052d2d6, 0x0434ad4, 0x08831bf,
- 0x0fe3285, 0x0e58600, 0x1d3963f, 0x011c776, 0x13b4a2c, 0x0e3478d,
- 0x13367b2, 0x1be1021, 0x0a9f339, 0x0e5bc37, 0x0454d8b, 0x0ab5d5b,
- 0x05e31c9, 0x035944a, 0x162da9b, 0x0d45803, 0x18a427d, 0x016e1b3,
- 0x0b01a7a, 0x0519260, 0x1875500, 0x080f30b, 0x05967e8, 0x0d159b5,
- 0x0e30b28, 0x0722b9f, 0x0c3f939, 0x10a7e30, 0x08adbad },
- { 0x169d524, 0x1708f84, 0x11e4182, 0x0fe7379, 0x142fdaf, 0x00fe617,
- 0x19d99f3, 0x09e79d8, 0x0e2336d, 0x0b5ce79, 0x103dfd1, 0x0bbd1c3,
- 0x0e6aa1f, 0x04c27d8, 0x0f0ab48, 0x096519b, 0x1a61b46, 0x1a04867,
- 0x090fcfb, 0x10de602, 0x07e740d, 0x0666af4, 0x056c5b3, 0x04d9a83,
- 0x1168c30, 0x198201f, 0x0e05b01, 0x17c70d9, 0x007a1dd, 0x0379ac2,
- 0x0bc53ae, 0x02e2fc3, 0x188b4f8, 0x1e4b67a, 0x06999b2, 0x036eb88,
- 0x027e71c, 0x0160d50, 0x1797fcd, 0x06d8128, 0x0739300 },
- { 0x0cdaf42, 0x1babe91, 0x0aae553, 0x1be8303, 0x188b591, 0x08a792b,
- 0x1a067d5, 0x1791730, 0x0f18fd5, 0x0b21704, 0x13ae45a, 0x0ba2045,
- 0x0592b30, 0x1527b4c, 0x05640f9, 0x1395c2e, 0x09d6117, 0x125ebeb,
- 0x0a7006a, 0x1bfabba, 0x08ccdac, 0x0d6c888, 0x1c17775, 0x1591e2a,
- 0x0c7b164, 0x197a1a5, 0x06d4918, 0x034a29c, 0x1fc4476, 0x130db98,
- 0x0c516e7, 0x1c12c36, 0x1561348, 0x17911e7, 0x059dcfa, 0x0738515,
- 0x0a7c99d, 0x0880c15, 0x197896f, 0x095c852, 0x08bc6ec },
- { 0x1f2a32b, 0x172e073, 0x08c3425, 0x1812711, 0x1f54800, 0x0f1b067,
- 0x10df100, 0x14c0dfc, 0x0bb6054, 0x12afe4e, 0x1ea9b99, 0x10c108a,
- 0x17510e1, 0x1594d95, 0x0b3f288, 0x1b4c341, 0x1e351b7, 0x1399241,
- 0x0f9b232, 0x08e3dcd, 0x09a1e31, 0x0e45b2e, 0x195950c, 0x1acb977,
- 0x0c3b948, 0x1547e4d, 0x06ba6ca, 0x0611f84, 0x00aa6ad, 0x0f86d53,
- 0x1535a9f, 0x1305f81, 0x044d96a, 0x1d26b94, 0x10b1611, 0x0b56025,
- 0x1ceb895, 0x1e47b8e, 0x1f854ac, 0x0fb7d38, 0x08e8543 },
- };
- /* Perform the modular exponentiation in Fp* for SAKKE.
- *
- * Base is fixed to be the g parameter - a precomputed table is used.
- *
- * Striping: 128 points at a distance of 8 combined.
- * Total of 256 points in table.
- * Square and multiply performed in Fp*.
- *
- * base [in] Base. MP integer.
- * exp [in] Exponent. MP integer.
- * res [out] Result. MP integer.
- * returns 0 on success, MP_READ_E if there are too many bytes in an array
- * and MEMORY_E if memory allocation fails.
- */
- int sp_ModExp_Fp_star_1024(const mp_int* base, mp_int* exp, mp_int* res)
- {
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- sp_digit* td;
- sp_digit* t;
- sp_digit* tx;
- sp_digit* ty;
- #else
- sp_digit t[36 * 2 * 42];
- sp_digit tx[2 * 42];
- sp_digit ty[2 * 42];
- #endif
- sp_digit* r = NULL;
- unsigned char e[128];
- int err = MP_OKAY;
- int i;
- int y;
- (void)base;
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 38 * 42 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL) {
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- t = td;
- tx = td + 36 * 42 * 2;
- ty = td + 37 * 42 * 2;
- #endif
- r = ty;
- (void)mp_to_unsigned_bin_len(exp, e, 128);
- XMEMCPY(tx, p1024_norm_mod, sizeof(sp_digit) * 42);
- y = e[112] >> 7;
- y |= (e[96] >> 7) << 1;
- y |= (e[80] >> 7) << 2;
- y |= (e[64] >> 7) << 3;
- y |= (e[48] >> 7) << 4;
- y |= (e[32] >> 7) << 5;
- y |= (e[16] >> 7) << 6;
- y |= (e[0] >> 7) << 7;
- XMEMCPY(ty, sp_1024_g_table[y], sizeof(sp_digit) * 42);
- for (i = 126; i >= 0; i--) {
- y = (e[127 - (i / 8)] >> (i & 0x7)) & 1;
- y |= ((e[111 - (i / 8)] >> (i & 0x7)) & 1) << 1;
- y |= ((e[95 - (i / 8)] >> (i & 0x7)) & 1) << 2;
- y |= ((e[79 - (i / 8)] >> (i & 0x7)) & 1) << 3;
- y |= ((e[63 - (i / 8)] >> (i & 0x7)) & 1) << 4;
- y |= ((e[47 - (i / 8)] >> (i & 0x7)) & 1) << 5;
- y |= ((e[31 - (i / 8)] >> (i & 0x7)) & 1) << 6;
- y |= ((e[15 - (i / 8)] >> (i & 0x7)) & 1) << 7;
- sp_1024_proj_sqr_42(tx, ty, t);
- sp_1024_proj_mul_qx1_42(tx, ty, sp_1024_g_table[y], t);
- }
- }
- if (err == MP_OKAY) {
- sp_1024_mont_inv_42(tx, tx, t);
- sp_1024_mont_mul_42(r, tx, ty, p1024_mod, p1024_mp_mod);
- XMEMSET(r + 42, 0, sizeof(sp_digit) * 42);
- sp_1024_mont_reduce_42(r, p1024_mod, p1024_mp_mod);
- err = sp_1024_to_mp(r, res);
- }
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- if (td != NULL) {
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- }
- #endif
- return err;
- }
- #endif /* WOLFSSL_SP_SMALL */
- /* Multiply p* by q* in projective coordinates.
- *
- * p.x' = (p.x * q.x) - (p.y * q.y)
- * p.y' = (p.x * q.y) + (p.y * q.x)
- * But applying Karatsuba:
- * v0 = p.x * q.x
- * v1 = p.y * q.y
- * p.x' = v0 - v1
- * p.y' = (px + py) * (qx + qy) - v0 - v1
- *
- * px [in,out] A single precision integer - X ordinate of number to multiply.
- * py [in,out] A single precision integer - Y ordinate of number to multiply.
- * qx [in] A single precision integer - X ordinate of number of
- * multiplier.
- * qy [in] A single precision integer - Y ordinate of number of
- * multiplier.
- * t [in] Two single precision integers - temps.
- */
- static void sp_1024_proj_mul_42(sp_digit* px, sp_digit* py,
- const sp_digit* qx, const sp_digit* qy, sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2 * 42;
- /* t1 = px + py */
- sp_1024_mont_add_42(t1, px, py, p1024_mod);
- /* t2 = qx + qy */
- sp_1024_mont_add_42(t2, qx, qy, p1024_mod);
- /* t2 = (px + py) * (qx + qy) */
- sp_1024_mont_mul_42(t2, t1, t2, p1024_mod, p1024_mp_mod);
- /* t1 = py * qy */
- sp_1024_mont_mul_42(t1, py, qy, p1024_mod, p1024_mp_mod);
- /* t2 = (px + py) * (qx + qy) - (py * qy) */
- sp_1024_mont_sub_42(t2, t2, t1, p1024_mod);
- /* px = px * qx */
- sp_1024_mont_mul_42(px, px, qx, p1024_mod, p1024_mp_mod);
- /* py = (px + py) * (qx + qy) - (py * qy) - (px * qx) */
- sp_1024_mont_sub_42(py, t2, px, p1024_mod);
- /* px = (px * qx) - (py * qy)*/
- sp_1024_mont_sub_42(px, px, t1, p1024_mod);
- }
- #ifndef WOLFSSL_SP_SMALL
- /*
- * Convert point from projective to affine but keep in Montgomery form.
- *
- * p [in,out] Point to convert.
- * t [in] Temporary numbers: 2.
- */
- static void sp_1024_mont_map_42(sp_point_1024* p, sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2 * 42;
- sp_1024_mont_inv_42(t1, p->z, t2);
- sp_1024_mont_sqr_42(t2, t1, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(t1, t2, t1, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(p->x, p->x, t2, p1024_mod, p1024_mp_mod);
- sp_1024_mont_mul_42(p->y, p->y, t1, p1024_mod, p1024_mp_mod);
- XMEMCPY(p->z, p1024_norm_mod, sizeof(sp_digit) * 42);
- }
- #endif /* WOLFSSL_SP_SMALL */
- /*
- * Calculate gradient of line through P, P and [-2]P, accumulate line and
- * double P.
- *
- * Calculations:
- * l = 3 * (p.x^2 - p.z^4) = 3 * (p.x - p.z^2) * (p.x + p.z^2)
- * r.x = l * (p.x + q.x * p.z^2) - 2 * p.y^2
- * r.y = 2 * p.y * p.z^3 * q.y (= p'.z * p.z^2 * q.y)
- * v* = v*^2 * r*
- * p'.x = l^2 - 8 * p.y^2 * p.x
- * p'.y = (4 * p.y^2 * p.x - p'.x) * l - 8 * p.y^4
- * p'.z = 2 * p.y * p.z
- *
- * @param [in,out] vx X-ordinate of projective value in F*.
- * @param [in,out] vy Y-ordinate of projective value in F*.
- * @param [in,out] p ECC point - point on E(F_p^2) to double.
- * @param [in] q ECC point - second point on E(F_P^2).
- * @param [in] t SP temporaries (6 used).
- */
- static void sp_1024_accumulate_line_dbl_42(sp_digit* vx, sp_digit* vy,
- sp_point_1024* p, const sp_point_1024* q, sp_digit* t)
- {
- sp_digit* t1 = t + 0 * 42;
- sp_digit* pz2 = t + 2 * 42;
- sp_digit* rx = t + 4 * 42;
- sp_digit* ry = t + 6 * 42;
- sp_digit* l = t + 8 * 42;
- sp_digit* ty = t + 10 * 42;
- /* v = v^2 */
- sp_1024_proj_sqr_42(vx, vy, t);
- /* pz2 = p.z^2 */
- sp_1024_mont_sqr_42(pz2, p->z, p1024_mod, p1024_mp_mod);
- /* t1 = p.x + p.z^2 */
- sp_1024_mont_add_42(ty, p->x, pz2, p1024_mod);
- /* l = p.x - p.z^2 */
- sp_1024_mont_sub_42(l, p->x, pz2, p1024_mod);
- /* t1 = (p.x + p.z^2) * (p.x - p.z^2) = p.x^2 - p.z^4 */
- sp_1024_mont_mul_42(t1, l, ty, p1024_mod, p1024_mp_mod);
- /* l = 3 * (p.x^2 - p.z^4) */
- sp_1024_mont_tpl_42(l, t1, p1024_mod);
- /* t1 = q.x * p.z^2 */
- sp_1024_mont_mul_42(t1, q->x, pz2, p1024_mod, p1024_mp_mod);
- /* t1 = p.x + q.x * p.z^2 */
- sp_1024_mont_add_42(t1, p->x, t1, p1024_mod);
- /* r.x = l * (p.x + q.x * p.z^2) */
- sp_1024_mont_mul_42(rx, l, t1, p1024_mod, p1024_mp_mod);
- /* r.y = 2 * p.y */
- sp_1024_mont_dbl_42(ry, p->y, p1024_mod);
- /* ty = 4 * p.y ^ 2 */
- sp_1024_mont_sqr_42(ty, ry, p1024_mod, p1024_mp_mod);
- /* t1 = 2 * p.y ^ 2 */
- sp_1024_mont_div2_42(t1, ty, p1024_mod);
- /* r.x -= 2 * (p.y ^ 2) */
- sp_1024_mont_sub_42(rx, rx, t1, p1024_mod);
- /* p'.z = p.y * 2 * p.z */
- sp_1024_mont_mul_42(p->z, p->z, ry, p1024_mod, p1024_mp_mod);
- /* r.y = p'.z * p.z^2 */
- sp_1024_mont_mul_42(t1, p->z, pz2, p1024_mod, p1024_mp_mod);
- /* r.y = p'.z * p.z^2 * q.y */
- sp_1024_mont_mul_42(ry, t1, q->y, p1024_mod, p1024_mp_mod);
- /* v = v^2 * r */
- sp_1024_proj_mul_42(vx, vy, rx, ry, t);
- /* Double point using previously calculated values
- * l = 3 * (p.x - p.z^2).(p.x + p.z^2)
- * ty = 4 * p.y^2
- * p'.z = 2 * p.y * p.z
- */
- /* t1 = (4 * p.y^2) ^ 2 = 16 * p.y^4 */
- sp_1024_mont_sqr_42(t1, ty, p1024_mod, p1024_mp_mod);
- /* t1 = 16 * p.y^4 / 2 = 8 * p.y^4 */
- sp_1024_mont_div2_42(t1, t1, p1024_mod);
- /* p'.y = 4 * p.y^2 * p.x */
- sp_1024_mont_mul_42(p->y, ty, p->x, p1024_mod, p1024_mp_mod);
- /* p'.x = l^2 */
- sp_1024_mont_sqr_42(p->x, l, p1024_mod, p1024_mp_mod);
- /* p'.x = l^2 - 4 * p.y^2 * p.x */
- sp_1024_mont_sub_42(p->x, p->x, p->y, p1024_mod);
- /* p'.x = l^2 - 8 * p.y^2 * p.x */
- sp_1024_mont_sub_42(p->x, p->x, p->y, p1024_mod);
- /* p'.y = 4 * p.y^2 * p.x - p.x' */
- sp_1024_mont_sub_42(ty, p->y, p->x, p1024_mod);
- /* p'.y = (4 * p.y^2 * p.x - p'.x) * l */
- sp_1024_mont_mul_42(p->y, ty, l, p1024_mod, p1024_mp_mod);
- /* p'.y = (4 * p.y^2 * p.x - p'.x) * l - 8 * p.y^4 */
- sp_1024_mont_sub_42(p->y, p->y, t1, p1024_mod);
- }
- #ifdef WOLFSSL_SP_SMALL
- /*
- * Calculate gradient of line through C, P and -C-P, accumulate line and
- * add P to C.
- *
- * Calculations:
- * r.x = (q.x + p.x) * c.y - (q.x * c.z^2 + c.x) * p.y * c.z
- * r.y = (c.x - p.x * c.z^2) * q.y * c.z
- * v* = v* * r*
- * r = p.y * c.z^3 - c.y
- * c'.x = r^2 + h^3 - 2 * c.x * h^2
- * c'.y = r * (c'.x - c.x * h^2) - c.y * h^3
- * c'.z = (c.x - p.x * c.z^2) * c.z
- *
- * @param [in,out] vx X-ordinate of projective value in F*.
- * @param [in,out] vy Y-ordinate of projective value in F*.
- * @param [in,out] c ECC point - current point on E(F_p^2) to be added
- * to.
- * @param [in] p ECC point - point on E(F_p^2) to add.
- * @param [in] q ECC point - second point on E(F_P^2).
- * @param [in] qx_px SP that is a constant value across adds.
- * @param [in] t SP temporaries (6 used).
- */
- static void sp_1024_accumulate_line_add_one_42(sp_digit* vx, sp_digit* vy,
- sp_point_1024* c, sp_point_1024* p, sp_point_1024* q, sp_digit* qx_px,
- sp_digit* t)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2 * 42;
- sp_digit* rx = t + 4 * 42;
- sp_digit* ry = t + 6 * 42;
- sp_digit* h = t + 8 * 42;
- sp_digit* r = t + 10 * 42;
- /* r.x = (q.x + p.x) * c.y */
- sp_1024_mont_mul_42(rx, qx_px, c->y, p1024_mod, p1024_mp_mod);
- /* t2 = c.z^2 */
- sp_1024_mont_sqr_42(t2, c->z, p1024_mod, p1024_mp_mod);
- /* t1 = q.x * c.z^2 */
- sp_1024_mont_mul_42(t1, q->x, t2, p1024_mod, p1024_mp_mod);
- /* t1 = q.x * c.z^2 + c.x */
- sp_1024_mont_add_42(h, t1, c->x, p1024_mod);
- /* r = p.y * c.z */
- sp_1024_mont_mul_42(ry, p->y, c->z, p1024_mod, p1024_mp_mod);
- /* t1 = (q.x * c.z^2 + c.x) * p.y * c.z */
- sp_1024_mont_mul_42(t1, h, ry, p1024_mod, p1024_mp_mod);
- /* r = p.y * c.z * c.z^2 = p.y * c.z^3 */
- sp_1024_mont_mul_42(r, ry, t2, p1024_mod, p1024_mp_mod);
- /* r.x -= (q.x * c.z^2 + c.x) * p.y * c.z */
- sp_1024_mont_sub_42(rx, rx, t1, p1024_mod);
- /* t1 = p.x * c.z^2 */
- sp_1024_mont_mul_42(t1, p->x, t2, p1024_mod, p1024_mp_mod);
- /* h = c.x - p.x * c.z^2 */
- sp_1024_mont_sub_42(h, c->x, t1, p1024_mod);
- /* c'.z = (c.x - p.x * c.z^2) * c.z */
- sp_1024_mont_mul_42(c->z, h, c->z, p1024_mod, p1024_mp_mod);
- /* r.y = (c.x - p.x * c.z^2) * c.z * q.y */
- sp_1024_mont_mul_42(ry, c->z, q->y, p1024_mod, p1024_mp_mod);
- /* v = v * r */
- sp_1024_proj_mul_42(vx, vy, rx, ry, t);
- /* Add p to c using previously calculated values.
- * h = c.x - p.x * c.z^2
- * r = p.y * c.z^3
- * c'.z = (c.x - p.x * c.z^2) * c.z
- */
- /* r = p.y * c.z^3 - c.y */
- sp_1024_mont_sub_42(r, r, c->y, p1024_mod);
- /* t1 = r^2 */
- sp_1024_mont_sqr_42(t1, r, p1024_mod, p1024_mp_mod);
- /* t2 = h^2 */
- sp_1024_mont_sqr_42(rx, h, p1024_mod, p1024_mp_mod);
- /* ry = c.x * h^2 */
- sp_1024_mont_mul_42(ry, c->x, rx, p1024_mod, p1024_mp_mod);
- /* t2 = h^3 */
- sp_1024_mont_mul_42(t2, rx, h, p1024_mod, p1024_mp_mod);
- /* c->x = r^2 + h^3 */
- sp_1024_mont_add_42(c->x, t1, t2, p1024_mod);
- /* t1 = 2 * c.x * h^2 */
- sp_1024_mont_dbl_42(t1, ry, p1024_mod);
- /* c'.x = r^2 + h^3 - 2 * c.x * h^2 */
- sp_1024_mont_sub_42(c->x, c->x, t1, p1024_mod);
- /* ry = c'.x - c.x * h^2 */
- sp_1024_mont_sub_42(t1, c->x, ry, p1024_mod);
- /* ry = r * (c'.x - c.x * h^2) */
- sp_1024_mont_mul_42(ry, t1, r, p1024_mod, p1024_mp_mod);
- /* t2 = c.y * h^3 */
- sp_1024_mont_mul_42(t1, t2, c->y, p1024_mod, p1024_mp_mod);
- /* c'.y = r * (c'.x - c.x * h^2) - c.y * h^3 */
- sp_1024_mont_sub_42(c->y, ry, t1, p1024_mod);
- }
- /*
- * Calculate r = pairing <P, Q>.
- *
- * That is, multiply base in PF_p[q] by the scalar s, such that s.P = Q.
- *
- * @param [in] key SAKKE key.
- * @param [in] p First point on E(F_p)[q].
- * @param [in] q Second point on E(F_p)[q].
- * @param [in] r Result of calculation.
- * @return 0 on success.
- * @return MEMORY_E when dynamic memory allocation fails.
- * @return Other -ve value on internal failure.
- */
- int sp_Pairing_1024(const ecc_point* pm, const ecc_point* qm, mp_int* res)
- {
- int err = MP_OKAY;
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- sp_digit* td = NULL;
- sp_digit* t;
- sp_digit* vx;
- sp_digit* vy;
- sp_digit* qx_px;
- #else
- sp_digit t[36 * 2 * 42];
- sp_digit vx[2 * 42];
- sp_digit vy[2 * 42];
- sp_digit qx_px[2 * 42];
- sp_point_1024 pd;
- sp_point_1024 qd;
- sp_point_1024 cd;
- #endif
- sp_point_1024* p = NULL;
- sp_point_1024* q = NULL;
- sp_point_1024* c = NULL;
- sp_digit* r = NULL;
- int i;
- err = sp_1024_point_new_42(NULL, pd, p);
- if (err == MP_OKAY) {
- err = sp_1024_point_new_42(NULL, qd, q);
- }
- if (err == MP_OKAY) {
- err = sp_1024_point_new_42(NULL, cd, c);
- }
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 39 * 42 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL) {
- err = MEMORY_E;
- }
- }
- #endif
- if (err == MP_OKAY) {
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- t = td;
- vx = td + 36 * 42 * 2;
- vy = td + 37 * 42 * 2;
- qx_px = td + 38 * 42 * 2;
- #endif
- r = vy;
- sp_1024_point_from_ecc_point_42(p, pm);
- sp_1024_point_from_ecc_point_42(q, qm);
- err = sp_1024_mod_mul_norm_42(p->x, p->x, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(p->y, p->y, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(p->z, p->z, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(q->x, q->x, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(q->y, q->y, p1024_mod);
- }
- if (err == MP_OKAY) {
- XMEMCPY(c, p, sizeof(sp_point_1024));
- XMEMSET(vx, 0, sizeof(sp_digit) * 2 * 42);
- vx[0] = 1;
- XMEMSET(vy, 0, sizeof(sp_digit) * 2 * 42);
- sp_1024_mont_add_42(qx_px, q->x, p->x, p1024_mod);
- for (i = 1020; i >= 0; i--) {
- /* Accumulate line into v and double point. */
- sp_1024_accumulate_line_dbl_42(vx, vy, c, q, t);
- if ((i > 0) && ((p1024_order[i / 25] >> (i % 25)) & 1)) {
- /* Accumulate line into v and add P into C. */
- sp_1024_accumulate_line_add_one_42(vx, vy, c, p, q, qx_px, t);
- }
- }
- /* Final exponentiation */
- sp_1024_proj_sqr_42(vx, vy, t);
- sp_1024_proj_sqr_42(vx, vy, t);
- /* Convert from PF_p[q] to F_p */
- sp_1024_mont_inv_42(vx, vx, t);
- sp_1024_mont_mul_42(r, vx, vy, p1024_mod, p1024_mp_mod);
- XMEMSET(r + 42, 0, sizeof(sp_digit) * 42);
- sp_1024_mont_reduce_42(r, p1024_mod, p1024_mp_mod);
- err = sp_1024_to_mp(r, res);
- }
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- if (td != NULL) {
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- }
- #endif
- sp_1024_point_free_42(c, 1, NULL);
- sp_1024_point_free_42(q, 1, NULL);
- sp_1024_point_free_42(p, 1, NULL);
- return err;
- }
- #else
- /*
- * Calculate gradient of line through C, P and -C-P, accumulate line and
- * add P to C.
- *
- * Both C and P have z ordinates to use in the calculation.
- *
- * Calculations:
- * r.x = (q.x * c.z^2 + c.x) * p.y * c.z - (q.x * p.z^2 + p.x) * c.y * p.z
- * r.y = (p.x * c.z^2 - c.x * p.z^2) * q.y * p.z * c.z
- * v* = v* * r*
- * h = p.x * c.z^2 - c.x * p.z^2
- * r = p.y * c.z^3 - c.y * p.z^3
- * c'.x = r^2 - h^3 - 2 * c.x * p.z^2 * h^2
- * c'.y = r * (c.x * p.z^2 * h^2 - c'.x) - c.y * p.z^3 * h^3
- * c'.z = (p.x * c.z^2 - c.x * p.z^2) * c.z
- *
- * @param [in,out] vx X-ordinate of projective value in F*.
- * @param [in,out] vy Y-ordinate of projective value in F*.
- * @param [in,out] c ECC point - current point on E(F_p^2) to be added
- * to.
- * @param [in,out] p ECC point - point on E(F_p^2) to add.
- * @param [in,out] q ECC point - second point on E(F_P^2).
- * @param [in,out] t SP temporaries (6 used).
- * @param [in,out] neg Indicates to use negative P.
- * @return 0 on success.
- * @return MEMORY_E when dynamic memory allocation fails.
- * @return Other -ve value on internal failure.
- */
- static void sp_1024_accumulate_line_add_n_42(sp_digit* vx, sp_digit* vy,
- const sp_point_1024* p, const sp_point_1024* q,
- sp_point_1024* c, sp_digit* t, int neg)
- {
- sp_digit* t1 = t;
- sp_digit* t2 = t + 2 * 42;
- sp_digit* rx = t + 4 * 42;
- sp_digit* ry = t + 6 * 42;
- sp_digit* h = t + 8 * 42;
- sp_digit* r = t + 10 * 42;
- /* h = p.z^2 */
- sp_1024_mont_sqr_42(h, p->z, p1024_mod, p1024_mp_mod);
- /* rx = q.x * p.z^2 */
- sp_1024_mont_mul_42(rx, q->x, h, p1024_mod, p1024_mp_mod);
- /* rx = q.x * p.z^2 + p.x */
- sp_1024_mont_add_42(t2, rx, p->x, p1024_mod);
- /* c.y = c.y * p.z */
- sp_1024_mont_mul_42(t1, c->y, p->z, p1024_mod, p1024_mp_mod);
- /* r.x = (q.x * p.z^2 + p.x) * c.y * p.z */
- sp_1024_mont_mul_42(rx, t2, t1, p1024_mod, p1024_mp_mod);
- /* c.y = c.y * p.z^3 */
- sp_1024_mont_mul_42(c->y, t1, h, p1024_mod, p1024_mp_mod);
- /* t2 = c.z^2 */
- sp_1024_mont_sqr_42(t2, c->z, p1024_mod, p1024_mp_mod);
- /* t1 = q.x * c.z^2 */
- sp_1024_mont_mul_42(t1, q->x, t2, p1024_mod, p1024_mp_mod);
- /* t1 = q.x * c.z^2 + c.x */
- sp_1024_mont_add_42(t1, t1, c->x, p1024_mod);
- /* c.x = c.x * p.z^2 */
- sp_1024_mont_mul_42(c->x, c->x, h, p1024_mod, p1024_mp_mod);
- /* r = p.y * c.z */
- sp_1024_mont_mul_42(r, p->y, c->z, p1024_mod, p1024_mp_mod);
- if (neg) {
- /* r = -p.y * c.z */
- sp_1024_mont_sub_42(r, p1024_mod, r, p1024_mod);
- }
- /* t1 = (q.x * c.z^2 + c.x) * p.y * c.z */
- sp_1024_mont_mul_42(ry, t1, r, p1024_mod, p1024_mp_mod);
- /* r.x -= (q.x * c.z^2 + c.x) * p.y * c.z */
- sp_1024_mont_sub_42(rx, ry, rx, p1024_mod);
- /* t1 = p.x * c.z^2 */
- sp_1024_mont_mul_42(t1, p->x, t2, p1024_mod, p1024_mp_mod);
- /* h = p.x * c.z^2 - c.x * p.z^2 */
- sp_1024_mont_sub_42(h, t1, c->x, p1024_mod);
- /* c'.z = (p.x * c.z^2 - c.x * p.z^2) * c.z */
- sp_1024_mont_mul_42(t1, h, c->z, p1024_mod, p1024_mp_mod);
- /* c'.z = (p.x * c.z^2 - c.x * p.z^2) * c.z * p.z */
- sp_1024_mont_mul_42(c->z, t1, p->z, p1024_mod, p1024_mp_mod);
- /* r.y = (p.x * c.z^2 - c.x * p.z^2) * c.z * p.z * q.y */
- sp_1024_mont_mul_42(ry, c->z, q->y, p1024_mod, p1024_mp_mod);
- /* r = p.y * c.z^3 */
- sp_1024_mont_mul_42(t1, r, t2, p1024_mod, p1024_mp_mod);
- /* r = p.y * c.z^3 - c.y * p.z^3 */
- sp_1024_mont_sub_42(r, t1, c->y, p1024_mod);
- /* v = v * r */
- sp_1024_proj_mul_42(vx, vy, rx, ry, t);
- /* Add p to c using previously calculated values.
- * h = p.x * c.z^2 - c.x * p.z^2
- * r = p.y * c.z^3 - c.y * p.z^3
- * c'.z = (p.x * c.z^2 - c.x * p.z^2) * c.z
- */
- /* t1 = r^2 */
- sp_1024_mont_sqr_42(t1, r, p1024_mod, p1024_mp_mod);
- /* t2 = h^2 */
- sp_1024_mont_sqr_42(rx, h, p1024_mod, p1024_mp_mod);
- /* ry = c.x * p.z^2 * h^2 */
- sp_1024_mont_mul_42(ry, rx, c->x, p1024_mod, p1024_mp_mod);
- /* t2 = h^3 */
- sp_1024_mont_mul_42(t2, rx, h, p1024_mod, p1024_mp_mod);
- /* c'.x = r^2 - h^3 */
- sp_1024_mont_sub_42(c->x, t1, t2, p1024_mod);
- /* t1 = 2 * c.x * p.z^2 * h^2 */
- sp_1024_mont_dbl_42(t1, ry, p1024_mod);
- /* c'.x = r^2 - h^3 - 2 * c.x * p.z^2 * h^2 */
- sp_1024_mont_sub_42(c->x, c->x, t1, p1024_mod);
- /* ry = c.x * p.z^2 * h^2 - c'.x */
- sp_1024_mont_sub_42(t1, ry, c->x, p1024_mod);
- /* ry = r * (c.x * p.z^2 * h^2 - c'.x) */
- sp_1024_mont_mul_42(ry, t1, r, p1024_mod, p1024_mp_mod);
- /* t2 = c.y * p.z^3 * h^3 */
- sp_1024_mont_mul_42(t1, t2, c->y, p1024_mod, p1024_mp_mod);
- /* c'.y = r * (c.x * p.z^2 * h^2 - c'.x) - c.y * p.z^3 * h^3 */
- sp_1024_mont_sub_42(c->y, ry, t1, p1024_mod);
- }
- /*
- * Perform n accumulate doubles and doubles of P.
- *
- * py = 2 * p.y
- *
- * For each double:
- * Calculate gradient of line through P, P and [-2]P, accumulate line and
- * double P.
- *
- * Calculations:
- * l = 3 * (p.x^2 - p.z^4) = 3 * (p.x - p.z^2) * (p.x + p.z^2)
- * r.x = l * (p.x + q.x * p.z^2) - py^2 / 2
- * r.y = py * p.z^3 * q.y (= p'.z * p.z^2 * q.y)
- * v* = v*^2 * r*
- * p'.x = l^2 - 2 * py^2 * p.x
- * py' = (py^2 * p.x - p'.x) * l - py^4 (= 2 * p'.y)
- * p'.z = py * p.z
- *
- * Finally:
- * p'.y = py' / 2
- *
- * @param [in,out] vx X-ordinate of projective value in F*.
- * @param [in,out] vy Y-ordinate of projective value in F*.
- * @param [in,out] p ECC point - point on E(F_p^2) to double.
- * @param [in] q ECC point - second point on E(F_P^2).
- * @param [in] n Number of times to double.
- * @param [in] t SP temporaries (6 used).
- */
- static void sp_1024_accumulate_line_dbl_n_42(sp_digit* vx, sp_digit* vy,
- sp_point_1024* p, const sp_point_1024* q, int n, sp_digit* t)
- {
- sp_digit* t1 = t + 0 * 42;
- sp_digit* pz2 = t + 2 * 42;
- sp_digit* rx = t + 4 * 42;
- sp_digit* ry = t + 6 * 42;
- sp_digit* l = t + 8 * 42;
- sp_digit* ty = t + 10 * 42;
- int i;
- /* py = 2 * p.y */
- sp_1024_mont_dbl_42(p->y, p->y, p1024_mod);
- for (i = 0; i < n; i++) {
- /* v = v^2 */
- sp_1024_proj_sqr_42(vx, vy, t);
- /* pz2 = p.z^2 */
- sp_1024_mont_sqr_42(pz2, p->z, p1024_mod, p1024_mp_mod);
- /* t1 = p.x + p.z^2 */
- sp_1024_mont_add_42(t1, p->x, pz2, p1024_mod);
- /* l = p.x - p.z^2 */
- sp_1024_mont_sub_42(l, p->x, pz2, p1024_mod);
- /* t1 = (p.x + p.z^2) * (p.x - p.z^2) = p.x^2 - p.z^4 */
- sp_1024_mont_mul_42(ty, l, t1, p1024_mod, p1024_mp_mod);
- /* l = 3 * (p.x^2 - p.z^4) */
- sp_1024_mont_tpl_42(l, ty, p1024_mod);
- /* t1 = q.x * p.z^2 */
- sp_1024_mont_mul_42(t1, q->x, pz2, p1024_mod, p1024_mp_mod);
- /* t1 = p.x + q.x * p.z^2 */
- sp_1024_mont_add_42(t1, p->x, t1, p1024_mod);
- /* r.x = l * (p.x + q.x * p.z^2) */
- sp_1024_mont_mul_42(rx, l, t1, p1024_mod, p1024_mp_mod);
- /* ty = py ^ 2 */
- sp_1024_mont_sqr_42(ty, p->y, p1024_mod, p1024_mp_mod);
- /* t1 = py ^ 2 / 2 */
- sp_1024_mont_div2_42(t1, ty, p1024_mod);
- /* r.x -= py ^ 2 / 2 */
- sp_1024_mont_sub_42(rx, rx, t1, p1024_mod);
- /* p'.z = py * pz */
- sp_1024_mont_mul_42(p->z, p->z, p->y, p1024_mod, p1024_mp_mod);
- /* r.y = p'.z * p.z^2 */
- sp_1024_mont_mul_42(t1, p->z, pz2, p1024_mod, p1024_mp_mod);
- /* r.y = p'.z * p.z^2 * q.y */
- sp_1024_mont_mul_42(ry, t1, q->y, p1024_mod, p1024_mp_mod);
- /* v = v^2 * r */
- sp_1024_proj_mul_42(vx, vy, rx, ry, t);
- /* Double point using previously calculated values
- * l = 3 * (p.x - p.z^2).(p.x + p.z^2)
- * ty = py^2
- * p'.z = py * p.z
- */
- /* t1 = py^2 ^ 2 = py^4 */
- sp_1024_mont_sqr_42(t1, ty, p1024_mod, p1024_mp_mod);
- /* py' = py^2 * p. x */
- sp_1024_mont_mul_42(p->y, ty, p->x, p1024_mod, p1024_mp_mod);
- /* p'.x = l^2 */
- sp_1024_mont_sqr_42(p->x, l, p1024_mod, p1024_mp_mod);
- /* p'.x = l^2 - py^2 * p.x */
- sp_1024_mont_sub_42(p->x, p->x, p->y, p1024_mod);
- /* p'.x = l^2 - 2 * p.y^2 * p.x */
- sp_1024_mont_sub_42(p->x, p->x, p->y, p1024_mod);
- /* py' = py^2 * p.x - p.x' */
- sp_1024_mont_sub_42(ty, p->y, p->x, p1024_mod);
- /* py' = (p.y^2 * p.x - p'.x) * l */
- sp_1024_mont_mul_42(p->y, ty, l, p1024_mod, p1024_mp_mod);
- /* py' = (p.y^2 * p.x - p'.x) * l * 2 */
- sp_1024_mont_dbl_42(p->y, p->y, p1024_mod);
- /* py' = (p.y^2 * p.x - p'.x) * l * 2 - p.y^4 */
- sp_1024_mont_sub_42(p->y, p->y, t1, p1024_mod);
- }
- /* p'.y = py' / 2 */
- sp_1024_mont_div2_42(p->y, p->y, p1024_mod);
- }
- /* Operations to perform based on order - 1.
- * Sliding window. Start at bottom and stop when bottom bit is one.
- * Subtract if top bit in window is one.
- * Width of 6 bits.
- * Pairs: #dbls, add/subtract window value
- */
- static const signed char sp_1024_order_op[] = {
- 5, 6, -13, 9, -21, 6, -5, 8, 31, 6, 3, 6, -27, 6, 25, 9,
- -1, 6, -11, 6, -13, 6, -7, 6, -15, 6, -29, 7, 25, 6, -9, 6,
- -19, 7, 3, 6, 11, 9, -23, 6, 1, 6, 27, 6, 1, 7, -25, 8,
- 13, 7, -13, 7, -23, 10, 19, 7, 7, 7, -3, 7, 27, 6, -7, 7,
- -21, 7, 11, 7, 31, 8, 1, 7, -23, 6, -17, 6, -3, 10, 11, 6,
- -21, 7, -27, 11, -29, 6, -1, 10, 15, 8, 27, 7, 17, 6, 17, 7,
- -13, 8, 13, 6, 21, 7, -29, 6, 19, 7, -25, 6, 11, 9, 29, 7,
- -7, 8, 27, 7, 29, 10, -1, 8, -7, 8, 17, 6, 17, 7, -27, 7,
- -21, 6, -9, 6, -27, 12, -23, 6, 19, 6, 13, 6, -11, 7, 27, 6,
- 17, 6, -7, 6, -25, 7, -29, 6, 9, 7, 7, 6, 13, 6, -25, 6,
- -19, 6, 13, 6, -11, 6, 5, 8, 19, 6, -21, 8, 23, 7, 27, 6,
- -13, 6, -19, 11, 29, 7, -15, 6, -9, 7, -21, 10, -3, 7, 21, 10,
- 25, 6, -15, 6, -23, 6, 21, 6, 1, 6, 21, 7, -3, 6, -3, 7,
- -7, 6, -23, 7, 7, 8, 15, 9, 5, 6, -11, 6, 21, 11, -27, 7,
- 27, 6, -11, 6, 31, 6, -21, 6, 19, 6, -7, 8, -7, 13, -3, 6,
- -7, 7, -3, 6, 1, 6, 7, 8, 19, 8, 11, 9, -9, 7, -31, 12,
- 25, 6, -17, 9, -15, 7, 5, 6, 25, 7, -5, 7, -25, 6, 17, 8,
- -19, 6, -13, 6, 27, 8, 1, 7, -5, 7, -1, 6, 21, 6, 3, 10,
- -3, 1,
- };
- /*
- * Calculate r = pairing <P, Q>.
- *
- * That is, multiply base in PF_p[q] by the scalar s, such that s.P = Q.
- *
- * Sliding window. Start at bottom and stop when bottom bit is one.
- * Subtract if top bit in window is one.
- * Width of 6 bits.
- *
- * @param [in] pm First point on E(F_p)[q].
- * @param [in] qm Second point on E(F_p)[q].
- * @param [in] res Result of calculation.
- * @return 0 on success.
- * @return MEMORY_E when dynamic memory allocation fails.
- */
- int sp_Pairing_1024(const ecc_point* pm, const ecc_point* qm, mp_int* res)
- {
- int err;
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- sp_digit* td = NULL;
- sp_digit* t;
- sp_digit* vx;
- sp_digit* vy;
- sp_digit (*pre_vx)[84];
- sp_digit (*pre_vy)[84];
- sp_digit (*pre_nvy)[84];
- sp_point_1024* pre_p;
- #else
- sp_digit t[36 * 2 * 42];
- sp_digit vx[2 * 42];
- sp_digit vy[2 * 42];
- sp_digit pre_vx[16][84];
- sp_digit pre_vy[16][84];
- sp_digit pre_nvy[16][84];
- sp_point_1024 pre_p[16];
- sp_point_1024 pd;
- sp_point_1024 qd;
- sp_point_1024 cd;
- #endif
- sp_point_1024* p = NULL;
- sp_point_1024* q = NULL;
- sp_point_1024* c = NULL;
- sp_digit* r = NULL;
- int i;
- int j;
- err = sp_1024_point_new_42(NULL, pd, p);
- if (err == MP_OKAY) {
- err = sp_1024_point_new_42(NULL, qd, q);
- }
- if (err == MP_OKAY) {
- err = sp_1024_point_new_42(NULL, cd, c);
- }
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 86 * 42 * 2 + 16 * sizeof(sp_point_1024), NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL) {
- err = MEMORY_E;
- }
- }
- #endif
- if (err == MP_OKAY) {
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- t = td;
- vx = td + 36 * 42 * 2;
- vy = td + 37 * 42 * 2;
- pre_vx = (sp_digit(*)[84])(td + 38 * 42 * 2);
- pre_vy = (sp_digit(*)[84])(td + 54 * 42 * 2);
- pre_nvy = (sp_digit(*)[84])(td + 70 * 42 * 2);
- pre_p = (sp_point_1024*)(td + 86 * 42 * 2);
- #endif
- r = vy;
- sp_1024_point_from_ecc_point_42(p, pm);
- sp_1024_point_from_ecc_point_42(q, qm);
- err = sp_1024_mod_mul_norm_42(p->x, p->x, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(p->y, p->y, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(p->z, p->z, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(q->x, q->x, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(q->y, q->y, p1024_mod);
- }
- if (err == MP_OKAY) {
- /* Generate pre-computation table: 1, 3, ... , 31 */
- XMEMCPY(&pre_p[0], p, sizeof(sp_point_1024));
- XMEMSET(pre_vx[0], 0, sizeof(sp_digit) * 2 * 42);
- pre_vx[0][0] = 1;
- XMEMSET(pre_vy[0], 0, sizeof(sp_digit) * 2 * 42);
- sp_1024_mont_sub_42(pre_nvy[0], p1024_mod, pre_vy[0], p1024_mod);
- /* [2]P for adding */
- XMEMCPY(c, p, sizeof(sp_point_1024));
- XMEMSET(vx, 0, sizeof(sp_digit) * 2 * 42);
- vx[0] = 1;
- XMEMSET(vy, 0, sizeof(sp_digit) * 2 * 42);
- sp_1024_accumulate_line_dbl_42(vx, vy, c, q, t);
- /* 3, 5, ... */
- for (i = 1; i < 16; i++) {
- XMEMCPY(&pre_p[i], &pre_p[i-1], sizeof(sp_point_1024));
- XMEMCPY(pre_vx[i], pre_vx[i-1], sizeof(sp_digit) * 2 * 42);
- XMEMCPY(pre_vy[i], pre_vy[i-1], sizeof(sp_digit) * 2 * 42);
- sp_1024_proj_mul_42(pre_vx[i], pre_vy[i], vx, vy, t);
- sp_1024_accumulate_line_add_n_42(pre_vx[i], pre_vy[i], c,
- q, &pre_p[i], t, 0);
- sp_1024_mont_sub_42(pre_nvy[i], p1024_mod, pre_vy[i], p1024_mod);
- }
- j = sp_1024_order_op[0] / 2;
- XMEMCPY(c, &pre_p[j], sizeof(sp_point_1024));
- XMEMCPY(vx, pre_vx[j], sizeof(sp_digit) * 2 * 42);
- XMEMCPY(vy, pre_vy[j], sizeof(sp_digit) * 2 * 42);
- /* Accumulate line into v and double point n times. */
- sp_1024_accumulate_line_dbl_n_42(vx, vy, c, q,
- sp_1024_order_op[1], t);
- for (i = 2; i < 290; i += 2) {
- j = sp_1024_order_op[i];
- if (j > 0) {
- j /= 2;
- /* Accumulate line into v and add P into C. */
- sp_1024_proj_mul_42(vx, vy, pre_vx[j], pre_vy[j], t);
- sp_1024_accumulate_line_add_n_42(vx, vy, &pre_p[j], q, c,
- t, 0);
- }
- else {
- j = -j / 2;
- /* Accumulate line into v and add P into C. */
- sp_1024_proj_mul_42(vx, vy, pre_vx[j], pre_nvy[j], t);
- sp_1024_accumulate_line_add_n_42(vx, vy, &pre_p[j], q, c,
- t, 1);
- }
- /* Accumulate line into v and double point n times. */
- sp_1024_accumulate_line_dbl_n_42(vx, vy, c, q,
- sp_1024_order_op[i + 1], t);
- }
- /* Final exponentiation */
- sp_1024_proj_sqr_42(vx, vy, t);
- sp_1024_proj_sqr_42(vx, vy, t);
- /* Convert from PF_p[q] to F_p */
- sp_1024_mont_inv_42(vx, vx, t);
- sp_1024_mont_mul_42(r, vx, vy, p1024_mod, p1024_mp_mod);
- XMEMSET(r + 42, 0, sizeof(sp_digit) * 42);
- sp_1024_mont_reduce_42(r, p1024_mod, p1024_mp_mod);
- err = sp_1024_to_mp(r, res);
- }
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- if (td != NULL) {
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- }
- #endif
- sp_1024_point_free_42(c, 1, NULL);
- sp_1024_point_free_42(q, 1, NULL);
- sp_1024_point_free_42(p, 1, NULL);
- return err;
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef WOLFSSL_SP_SMALL
- /*
- * Generate table for pairing.
- *
- * Small implementation does not use a table - returns 0 length.
- *
- * pm [in] Point to generate table for.
- * table [in] Generated table.
- * len [in,out] On in, the size of the buffer.
- * On out, length of table generated.
- * @return 0 on success.
- * LENGTH_ONLY_E when table is NULL and only length returned.
- * BUFFER_E when len is too small.
- */
- int sp_Pairing_gen_precomp_1024(const ecc_point* pm, byte* table,
- word32* len)
- {
- int err = 0;
- if (table == NULL) {
- *len = 0;
- err = LENGTH_ONLY_E;
- }
- else if (*len != 0) {
- err = BUFFER_E;
- }
- (void)*pm;
- return err;
- }
- /*
- * Calculate r = pairing <P, Q>.
- *
- * That is, multiply base in PF_p[q] by the scalar s, such that s.P = Q.
- *
- * Small implementation does not use a table - use the normal implementation.
- *
- * @param [in] pm First point on E(F_p)[q].
- * @param [in] qm Second point on E(F_p)[q].
- * @param [in] res Result of calculation.
- * @param [in] table Precomputed table of values.
- * @param [in] len Length of precomputed table of values in bytes.
- * @return 0 on success.
- * @return MEMORY_E when dynamic memory allocation fails.
- */
- int sp_Pairing_precomp_1024(const ecc_point* pm, const ecc_point* qm,
- mp_int* res, const byte* table, word32 len)
- {
- (void)table;
- (void)len;
- return sp_Pairing_1024(pm, qm, res);
- }
- #else
- /*
- * Calc l and c for the point when doubling p.
- *
- * l = 3 * (p.x^2 - 1) / (2 * p.y)
- * c = l * p.x - p.y
- *
- * @param [out] lr Gradient result - table entry.
- * @param [out] cr Constant result - table entry.
- * @param [in] px X-ordinate of point to double.
- * @param [in] py Y-ordinate of point to double.
- * @param [in] t SP temporaries (3 used).
- */
- static void sp_1024_accum_dbl_calc_lc_42(sp_digit* lr, sp_digit* cr,
- const sp_digit* px, const sp_digit* py, sp_digit* t)
- {
- sp_digit* t1 = t + 33 * 2 * 42;
- sp_digit* t2 = t + 34 * 2 * 42;
- sp_digit* l = t + 35 * 2 * 42;
- /* l = 1 / 2 * p.y */
- sp_1024_mont_dbl_42(l, py, p1024_mod);
- sp_1024_mont_inv_42(l, l, t);
- /* t1 = p.x^2 */
- sp_1024_mont_sqr_42(t1, px, p1024_mod, p1024_mp_mod);
- /* t1 = p.x - 1 */
- sp_1024_mont_sub_42(t1, t1, p1024_norm_mod, p1024_mod);
- /* t1 = 3 * (p.x^2 - 1) */
- sp_1024_mont_dbl_42(t2, t1, p1024_mod);
- sp_1024_mont_add_42(t1, t1, t2, p1024_mod);
- /* t1 = 3 * (p.x^2 - 1) / (2 * p.y) */
- sp_1024_mont_mul_42(l, l, t1, p1024_mod, p1024_mp_mod);
- /* t2 = l * p.x */
- sp_1024_mont_mul_42(t2, l, px, p1024_mod, p1024_mp_mod);
- /* c = t2 = l * p.x - p.y */
- sp_1024_mont_sub_42(t2, t2, py, p1024_mod);
- XMEMCPY(lr, l, sizeof(sp_digit) * 42);
- XMEMCPY(cr, t2, sizeof(sp_digit) * 42);
- }
- /*
- * Calc l and c when adding p and c.
- *
- * l = (c.y - p.y) / (c.x - p.x)
- * c = (p.x * c.y - cx * p.y) / (cx - p.x)
- *
- * @param [out] lr Gradient result - table entry.
- * @param [out] cr Constant result - table entry.
- * @param [in] px X-ordinate of point to add.
- * @param [in] py Y-ordinate of point to add.
- * @param [in] cx X-ordinate of current point.
- * @param [in] cy Y-ordinate of current point.
- * @param [in] t SP temporaries (3 used).
- */
- static void sp_1024_accum_add_calc_lc_42(sp_digit* lr, sp_digit* cr,
- const sp_digit* px, const sp_digit* py, const sp_digit* cx,
- const sp_digit* cy, sp_digit* t)
- {
- sp_digit* t1 = t + 33 * 2 * 42;
- sp_digit* c = t + 34 * 2 * 42;
- sp_digit* l = t + 35 * 2 * 42;
- /* l = 1 / (c.x - p.x) */
- sp_1024_mont_sub_42(l, cx, px, p1024_mod);
- sp_1024_mont_inv_42(l, l, t);
- /* c = p.x * c.y */
- sp_1024_mont_mul_42(c, px, cy, p1024_mod, p1024_mp_mod);
- /* t1 = c.x * p.y */
- sp_1024_mont_mul_42(t1, cx, py, p1024_mod, p1024_mp_mod);
- /* c = (p.x * c.y) - (c.x * p.y) */
- sp_1024_mont_sub_42(c, c, t1, p1024_mod);
- /* c = ((p.x * c.y) - (c.x * p.y)) / (c.x - p.x) */
- sp_1024_mont_mul_42(c, c, l, p1024_mod, p1024_mp_mod);
- /* t1 = c.y - p.y */
- sp_1024_mont_sub_42(t1, cy, py, p1024_mod);
- /* l = (c.y - p.y) / (c.x - p.x) */
- sp_1024_mont_mul_42(l, t1, l, p1024_mod, p1024_mp_mod);
- XMEMCPY(lr, l, sizeof(sp_digit) * 42);
- XMEMCPY(cr, c, sizeof(sp_digit) * 42);
- }
- /*
- * Calculate vx and vy given gradient l and constant c and point q.
- *
- * l is a the gradient and is multiplied by q->x.
- * c is a the constant that is added to the multiplicative result.
- * q->y is the y-ordinate in result to multiply.
- *
- * if dbl
- * v* = v*^2
- * r.x = l * q.x + c
- * r.y = q->y
- * v* = v* * r*
- *
- * @param [in,out] vx X-ordinate of projective value in F*.
- * @param [in,out] vy Y-ordinate of projective value in F*.
- * @param [in] l Gradient to multiply with.
- * @param [in] c Constant to add with.
- * @param [in] q ECC point - second point on E(F_P^2).
- * @param [in] t SP temporaries (3 used).
- * @param [in] dbl Indicates whether this is for doubling. Otherwise
- * adding.
- */
- static void sp_1024_accumulate_line_lc_42(sp_digit* vx, sp_digit* vy,
- const sp_digit* l, const sp_digit* c, const sp_point_1024* q,
- sp_digit* t, int dbl)
- {
- sp_digit* rx = t + 4 * 2 * 42;
- /* v = v^2 */
- if (dbl) {
- sp_1024_proj_sqr_42(vx, vy, t);
- }
- /* rx = l * q.x + c */
- sp_1024_mont_mul_42(rx, l, q->x, p1024_mod, p1024_mp_mod);
- sp_1024_mont_add_42(rx, rx, c, p1024_mod);
- /* v = v^2 * r */
- sp_1024_proj_mul_42(vx, vy, rx, q->y, t);
- }
- /* Operations to perform based on order - 1.
- * Sliding window. Start at bottom and stop when bottom bit is one.
- * Subtract if top bit in window is one.
- * Width of 6 bits.
- * Pairs: #dbls, add/subtract window value
- */
- static const signed char sp_1024_order_op_pre[] = {
- 5, 6, -13, 9, -21, 6, -5, 8, 31, 6, 3, 6, -27, 6, 25, 9,
- -1, 6, -11, 6, -13, 6, -7, 6, -15, 6, -29, 7, 25, 6, -9, 6,
- -19, 7, 3, 6, 11, 9, -23, 6, 1, 6, 27, 6, 1, 7, -25, 8,
- 13, 7, -13, 7, -23, 10, 19, 7, 7, 7, -3, 7, 27, 6, -7, 7,
- -21, 7, 11, 7, 31, 8, 1, 7, -23, 6, -17, 6, -3, 10, 11, 6,
- -21, 7, -27, 11, -29, 6, -1, 10, 15, 8, 27, 7, 17, 6, 17, 7,
- -13, 8, 13, 6, 21, 7, -29, 6, 19, 7, -25, 6, 11, 9, 29, 7,
- -7, 8, 27, 7, 29, 10, -1, 8, -7, 8, 17, 6, 17, 7, -27, 7,
- -21, 6, -9, 6, -27, 12, -23, 6, 19, 6, 13, 6, -11, 7, 27, 6,
- 17, 6, -7, 6, -25, 7, -29, 6, 9, 7, 7, 6, 13, 6, -25, 6,
- -19, 6, 13, 6, -11, 6, 5, 8, 19, 6, -21, 8, 23, 7, 27, 6,
- -13, 6, -19, 11, 29, 7, -15, 6, -9, 7, -21, 10, -3, 7, 21, 10,
- 25, 6, -15, 6, -23, 6, 21, 6, 1, 6, 21, 7, -3, 6, -3, 7,
- -7, 6, -23, 7, 7, 8, 15, 9, 5, 6, -11, 6, 21, 11, -27, 7,
- 27, 6, -11, 6, 31, 6, -21, 6, 19, 6, -7, 8, -7, 13, -3, 6,
- -7, 7, -3, 6, 1, 6, 7, 8, 19, 8, 11, 9, -9, 7, -31, 12,
- 25, 6, -17, 9, -15, 7, 5, 6, 25, 7, -5, 7, -25, 6, 17, 8,
- -19, 6, -13, 6, 27, 8, 1, 7, -5, 7, -1, 6, 21, 6, 3, 10,
- -3, 1,
- };
- /*
- * Generate table for pairing.
- *
- * Calculate the graident (l) and constant (c) at each step of the way.
- * Sliding window. Start at bottom and stop when bottom bit is one.
- * Subtract if top bit in window is one.
- * Width of 6 bits.
- *
- * pm [in] Point to generate table for.
- * table [in] Generated table.
- * len [in,out] On in, the size of the buffer.
- * On out, length of table generated.
- * @return 0 on success.
- * LENGTH_ONLY_E when table is NULL and only length returned.
- * BUFFER_E when len is too small.
- * MEMORY_E when dynamic memory allocation fauls.
- */
- int sp_Pairing_gen_precomp_1024(const ecc_point* pm, byte* table,
- word32* len)
- {
- int err = 0;
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- sp_digit* td = NULL;
- sp_digit* t;
- sp_point_1024* pre_p;
- #else
- sp_digit t[36 * 2 * 42];
- sp_point_1024 pre_p[16];
- sp_point_1024 pd;
- sp_point_1024 cd;
- sp_point_1024 negd;
- #endif
- sp_point_1024* p = NULL;
- sp_point_1024* c = NULL;
- sp_point_1024* neg = NULL;
- int i;
- int j;
- int k;
- sp_table_entry_1024* precomp = (sp_table_entry_1024*)table;
- if (table == NULL) {
- *len = sizeof(sp_table_entry_1024) * 1167;
- err = LENGTH_ONLY_E;
- }
- if ((err == MP_OKAY) &&
- (*len < (int)(sizeof(sp_table_entry_1024) * 1167))) {
- err = BUFFER_E;
- }
- if (err == MP_OKAY) {
- err = sp_1024_point_new_42(NULL, pd, p);
- }
- if (err == MP_OKAY) {
- err = sp_1024_point_new_42(NULL, cd, c);
- }
- if (err == MP_OKAY) {
- err = sp_1024_point_new_42(NULL, negd, neg);
- }
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 36 * 42 * 2 + 16 *
- sizeof(sp_point_1024), NULL, DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL) {
- err = MEMORY_E;
- }
- }
- #endif
- if (err == MP_OKAY) {
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- t = td;
- pre_p = (sp_point_1024*)(td + 36 * 42 * 2);
- #endif
- sp_1024_point_from_ecc_point_42(p, pm);
- err = sp_1024_mod_mul_norm_42(p->x, p->x, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(p->y, p->y, p1024_mod);
- }
- if (err == MP_OKAY) {
- XMEMCPY(p->z, p1024_norm_mod, sizeof(p1024_norm_mod));
- neg->infinity = 0;
- c->infinity = 0;
- /* Generate pre-computation table: 1, 3, ... , 31 */
- XMEMCPY(&pre_p[0], p, sizeof(sp_point_1024));
- /* [2]P for adding */
- sp_1024_proj_point_dbl_42(c, p, t);
- /* 1, 3, ... */
- for (i = 1; i < 16; i++) {
- sp_1024_proj_point_add_42(&pre_p[i], &pre_p[i-1], c, t);
- sp_1024_mont_map_42(&pre_p[i], t);
- }
- k = 0;
- j = sp_1024_order_op_pre[0] / 2;
- XMEMCPY(c, &pre_p[j], sizeof(sp_point_1024));
- for (j = 0; j < sp_1024_order_op_pre[1]; j++) {
- sp_1024_accum_dbl_calc_lc_42(precomp[k].x, precomp[k].y, c->x,
- c->y, t);
- k++;
- sp_1024_proj_point_dbl_42(c, c, t);
- sp_1024_mont_map_42(c, t);
- }
- for (i = 2; i < 290; i += 2) {
- j = sp_1024_order_op_pre[i];
- if (j > 0) {
- sp_1024_accum_add_calc_lc_42(precomp[k].x, precomp[k].y,
- pre_p[j/2].x, pre_p[j/2].y, c->x, c->y, t);
- k++;
- sp_1024_proj_point_add_42(c, c, &pre_p[j/2], t);
- sp_1024_mont_map_42(c, t);
- }
- else {
- XMEMCPY(neg->x, pre_p[-j / 2].x, sizeof(pre_p->x));
- sp_1024_mont_sub_42(neg->y, p1024_mod, pre_p[-j / 2].y,
- p1024_mod);
- XMEMCPY(neg->z, pre_p[-j / 2].z, sizeof(pre_p->z));
- sp_1024_accum_add_calc_lc_42(precomp[k].x, precomp[k].y,
- neg->x, neg->y, c->x, c->y, t);
- k++;
- sp_1024_proj_point_add_42(c, c, neg, t);
- sp_1024_mont_map_42(c, t);
- }
- for (j = 0; j < sp_1024_order_op_pre[i + 1]; j++) {
- sp_1024_accum_dbl_calc_lc_42(precomp[k].x, precomp[k].y, c->x,
- c->y, t);
- k++;
- sp_1024_proj_point_dbl_42(c, c, t);
- sp_1024_mont_map_42(c, t);
- }
- }
- *len = sizeof(sp_table_entry_1024) * 1167;
- }
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- if (td != NULL) {
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- }
- #endif
- sp_1024_point_free_42(neg, 1, NULL);
- sp_1024_point_free_42(c, 1, NULL);
- sp_1024_point_free_42(p, 1, NULL);
- return err;
- }
- /*
- * Calculate r = pairing <P, Q>.
- *
- * That is, multiply base in PF_p[q] by the scalar s, such that s.P = Q.
- *
- * Sliding window. Start at bottom and stop when bottom bit is one.
- * Subtract if top bit in window is one.
- * Width of 6 bits.
- * Pre-generate values in window (1, 3, ...) - only V.
- * Table contains all gradient l and a constant for each point on the path.
- *
- * @param [in] pm First point on E(F_p)[q].
- * @param [in] qm Second point on E(F_p)[q].
- * @param [in] res Result of calculation.
- * @param [in] table Precomputed table of values.
- * @param [in] len Length of precomputed table of values in bytes.
- * @return 0 on success.
- * @return MEMORY_E when dynamic memory allocation fails.
- */
- int sp_Pairing_precomp_1024(const ecc_point* pm, const ecc_point* qm,
- mp_int* res, const byte* table, word32 len)
- {
- int err = 0;
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- sp_digit* td = NULL;
- sp_digit* t;
- sp_digit* vx;
- sp_digit* vy;
- sp_digit (*pre_vx)[84];
- sp_digit (*pre_vy)[84];
- sp_digit (*pre_nvy)[84];
- #else
- sp_digit t[36 * 2 * 42];
- sp_digit vx[2 * 42];
- sp_digit vy[2 * 42];
- sp_digit pre_vx[16][84];
- sp_digit pre_vy[16][84];
- sp_digit pre_nvy[16][84];
- sp_point_1024 pd;
- sp_point_1024 qd;
- sp_point_1024 cd;
- #endif
- sp_point_1024* p = NULL;
- sp_point_1024* q = NULL;
- sp_point_1024* c = NULL;
- sp_digit* r = NULL;
- int i;
- int j;
- int k;
- const sp_table_entry_1024* precomp = (const sp_table_entry_1024*)table;
- if (len < (int)(sizeof(sp_table_entry_1024) * 1167)) {
- err = BUFFER_E;
- }
- if (err == MP_OKAY) {
- err = sp_1024_point_new_42(NULL, pd, p);
- }
- if (err == MP_OKAY) {
- err = sp_1024_point_new_42(NULL, qd, q);
- }
- if (err == MP_OKAY) {
- err = sp_1024_point_new_42(NULL, cd, c);
- }
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- if (err == MP_OKAY) {
- td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 86 * 42 * 2, NULL,
- DYNAMIC_TYPE_TMP_BUFFER);
- if (td == NULL) {
- err = MEMORY_E;
- }
- }
- #endif
- if (err == MP_OKAY) {
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- t = td;
- vx = td + 36 * 42 * 2;
- vy = td + 37 * 42 * 2;
- pre_vx = (sp_digit(*)[84])(td + 38 * 42 * 2);
- pre_vy = (sp_digit(*)[84])(td + 54 * 42 * 2);
- pre_nvy = (sp_digit(*)[84])(td + 70 * 42 * 2);
- #endif
- r = vy;
- sp_1024_point_from_ecc_point_42(p, pm);
- sp_1024_point_from_ecc_point_42(q, qm);
- err = sp_1024_mod_mul_norm_42(p->x, p->x, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(p->y, p->y, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(p->z, p->z, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(q->x, q->x, p1024_mod);
- }
- if (err == MP_OKAY) {
- err = sp_1024_mod_mul_norm_42(q->y, q->y, p1024_mod);
- }
- if (err == MP_OKAY) {
- /* Generate pre-computation table: 1, 3, ... , 31 */
- XMEMSET(pre_vx[0], 0, sizeof(sp_digit) * 2 * 42);
- pre_vx[0][0] = 1;
- XMEMSET(pre_vy[0], 0, sizeof(sp_digit) * 2 * 42);
- sp_1024_mont_sub_42(pre_nvy[0], p1024_mod, pre_vy[0], p1024_mod);
- /* [2]P for adding */
- XMEMCPY(c, p, sizeof(sp_point_1024));
- XMEMSET(vx, 0, sizeof(sp_digit) * 2 * 42);
- vx[0] = 1;
- XMEMSET(vy, 0, sizeof(sp_digit) * 2 * 42);
- sp_1024_accumulate_line_dbl_42(vx, vy, c, q, t);
- /* 3, 5, ... */
- for (i = 1; i < 16; i++) {
- XMEMCPY(pre_vx[i], pre_vx[i-1], sizeof(sp_digit) * 2 * 42);
- XMEMCPY(pre_vy[i], pre_vy[i-1], sizeof(sp_digit) * 2 * 42);
- sp_1024_proj_mul_42(pre_vx[i], pre_vy[i], vx, vy, t);
- sp_1024_accumulate_line_add_n_42(pre_vx[i], pre_vy[i], c,
- q, p, t, 0);
- sp_1024_mont_sub_42(pre_nvy[i], p1024_mod, pre_vy[i],
- p1024_mod);
- }
- XMEMCPY(c->z, p1024_norm_mod, sizeof(sp_digit) * 42);
- c->infinity = 0;
- j = sp_1024_order_op_pre[0] / 2;
- XMEMCPY(vx, pre_vx[j], sizeof(sp_digit) * 2 * 42);
- XMEMCPY(vy, pre_vy[j], sizeof(sp_digit) * 2 * 42);
- k = 0;
- for (j = 0; j < sp_1024_order_op_pre[1]; j++) {
- /* Accumulate line into v and double point. */
- sp_1024_accumulate_line_lc_42(vx, vy, precomp[k].x,
- precomp[k].y, q, t, 1);
- k++;
- }
- for (i = 2; i < 290; i += 2) {
- sp_1024_accumulate_line_lc_42(vx, vy, precomp[k].x,
- precomp[k].y, q, t, 0);
- k++;
- j = sp_1024_order_op_pre[i];
- if (j > 0) {
- j /= 2;
- /* Accumulate line into v. */
- sp_1024_proj_mul_42(vx, vy, pre_vx[j], pre_vy[j], t);
- }
- else {
- j = -j / 2;
- /* Accumulate line into v. */
- sp_1024_proj_mul_42(vx, vy, pre_vx[j], pre_nvy[j], t);
- }
- for (j = 0; j < sp_1024_order_op_pre[i + 1]; j++) {
- /* Accumulate line into v and double point. */
- sp_1024_accumulate_line_lc_42(vx, vy, precomp[k].x,
- precomp[k].y, q, t, 1);
- k++;
- }
- }
- /* Final exponentiation */
- sp_1024_proj_sqr_42(vx, vy, t);
- sp_1024_proj_sqr_42(vx, vy, t);
- /* Convert from PF_p[q] to F_p */
- sp_1024_mont_inv_42(vx, vx, t);
- sp_1024_mont_mul_42(r, vx, vy, p1024_mod, p1024_mp_mod);
- XMEMSET(r + 42, 0, sizeof(sp_digit) * 42);
- sp_1024_mont_reduce_42(r, p1024_mod, p1024_mp_mod);
- err = sp_1024_to_mp(r, res);
- }
- #if (defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SP_NO_MALLOC)) || \
- defined(WOLFSSL_SP_SMALL_STACK)
- if (td != NULL) {
- XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER);
- }
- #endif
- sp_1024_point_free_42(c, 1, NULL);
- sp_1024_point_free_42(q, 1, NULL);
- sp_1024_point_free_42(p, 1, NULL);
- return err;
- }
- #endif /* WOLFSSL_SP_SMALL */
- #ifdef HAVE_ECC_CHECK_KEY
- /* Read big endian unsigned byte array into r.
- *
- * r A single precision integer.
- * size Maximum number of bytes to convert
- * a Byte array.
- * n Number of bytes in array to read.
- */
- static void sp_1024_from_bin(sp_digit* r, int size, const byte* a, int n)
- {
- int i;
- int j = 0;
- word32 s = 0;
- r[0] = 0;
- for (i = n-1; i >= 0; i--) {
- r[j] |= (((sp_digit)a[i]) << s);
- if (s >= 17U) {
- r[j] &= 0x1ffffff;
- s = 25U - s;
- if (j + 1 >= size) {
- break;
- }
- r[++j] = (sp_digit)a[i] >> s;
- s = 8U - s;
- }
- else {
- s += 8U;
- }
- }
- for (j++; j < size; j++) {
- r[j] = 0;
- }
- }
- /* Check that the x and y ordinates are a valid point on the curve.
- *
- * point EC point.
- * heap Heap to use if dynamically allocating.
- * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
- * not on the curve and MP_OKAY otherwise.
- */
- static int sp_1024_ecc_is_point_42(const sp_point_1024* point,
- void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* t1 = NULL;
- #else
- sp_digit t1[42 * 4];
- #endif
- sp_digit* t2 = NULL;
- sp_int32 n;
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- t1 = (sp_digit*)XMALLOC(sizeof(sp_digit) * 42 * 4, heap, DYNAMIC_TYPE_ECC);
- if (t1 == NULL)
- err = MEMORY_E;
- #endif
- (void)heap;
- if (err == MP_OKAY) {
- t2 = t1 + 2 * 42;
- /* y^2 - x^3 - a.x = b */
- sp_1024_sqr_42(t1, point->y);
- (void)sp_1024_mod_42(t1, t1, p1024_mod);
- sp_1024_sqr_42(t2, point->x);
- (void)sp_1024_mod_42(t2, t2, p1024_mod);
- sp_1024_mul_42(t2, t2, point->x);
- (void)sp_1024_mod_42(t2, t2, p1024_mod);
- sp_1024_mont_sub_42(t1, t1, t2, p1024_mod);
- /* y^2 - x^3 + 3.x = b, when a = -3 */
- sp_1024_mont_add_42(t1, t1, point->x, p1024_mod);
- sp_1024_mont_add_42(t1, t1, point->x, p1024_mod);
- sp_1024_mont_add_42(t1, t1, point->x, p1024_mod);
- n = sp_1024_cmp_42(t1, p1024_mod);
- sp_1024_cond_sub_42(t1, t1, p1024_mod, ~(n >> 24));
- sp_1024_norm_42(t1);
- if (!sp_1024_iszero_42(t1)) {
- err = MP_VAL;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (t1 != NULL)
- XFREE(t1, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Check that the x and y ordinates are a valid point on the curve.
- *
- * pX X ordinate of EC point.
- * pY Y ordinate of EC point.
- * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
- * not on the curve and MP_OKAY otherwise.
- */
- int sp_ecc_is_point_1024(const mp_int* pX, const mp_int* pY)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_point_1024* pub = NULL;
- #else
- sp_point_1024 pub[1];
- #endif
- const byte one[1] = { 1 };
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_SMALL_STACK
- pub = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024), NULL,
- DYNAMIC_TYPE_ECC);
- if (pub == NULL)
- err = MEMORY_E;
- #endif
- if (err == MP_OKAY) {
- sp_1024_from_mp(pub->x, 42, pX);
- sp_1024_from_mp(pub->y, 42, pY);
- sp_1024_from_bin(pub->z, 42, one, (int)sizeof(one));
- err = sp_1024_ecc_is_point_42(pub, NULL);
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (pub != NULL)
- XFREE(pub, NULL, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- /* Check that the private scalar generates the EC point (px, py), the point is
- * on the curve and the point has the correct order.
- *
- * pX X ordinate of EC point.
- * pY Y ordinate of EC point.
- * privm Private scalar that generates EC point.
- * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is
- * not on the curve, ECC_INF_E if the point does not have the correct order,
- * ECC_PRIV_KEY_E when the private scalar doesn't generate the EC point and
- * MP_OKAY otherwise.
- */
- int sp_ecc_check_key_1024(const mp_int* pX, const mp_int* pY,
- const mp_int* privm, void* heap)
- {
- #ifdef WOLFSSL_SP_SMALL_STACK
- sp_digit* priv = NULL;
- sp_point_1024* pub = NULL;
- #else
- sp_digit priv[42];
- sp_point_1024 pub[2];
- #endif
- sp_point_1024* p = NULL;
- const byte one[1] = { 1 };
- int err = MP_OKAY;
- /* Quick check the lengs of public key ordinates and private key are in
- * range. Proper check later.
- */
- if (((mp_count_bits(pX) > 1024) ||
- (mp_count_bits(pY) > 1024) ||
- ((privm != NULL) && (mp_count_bits(privm) > 1024)))) {
- err = ECC_OUT_OF_RANGE_E;
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (err == MP_OKAY) {
- pub = (sp_point_1024*)XMALLOC(sizeof(sp_point_1024) * 2, heap,
- DYNAMIC_TYPE_ECC);
- if (pub == NULL)
- err = MEMORY_E;
- }
- if (err == MP_OKAY && privm) {
- priv = (sp_digit*)XMALLOC(sizeof(sp_digit) * 42, heap,
- DYNAMIC_TYPE_ECC);
- if (priv == NULL)
- err = MEMORY_E;
- }
- #endif
- if (err == MP_OKAY) {
- p = pub + 1;
- sp_1024_from_mp(pub->x, 42, pX);
- sp_1024_from_mp(pub->y, 42, pY);
- sp_1024_from_bin(pub->z, 42, one, (int)sizeof(one));
- if (privm)
- sp_1024_from_mp(priv, 42, privm);
- /* Check point at infinitiy. */
- if ((sp_1024_iszero_42(pub->x) != 0) &&
- (sp_1024_iszero_42(pub->y) != 0)) {
- err = ECC_INF_E;
- }
- }
- /* Check range of X and Y */
- if ((err == MP_OKAY) &&
- ((sp_1024_cmp_42(pub->x, p1024_mod) >= 0) ||
- (sp_1024_cmp_42(pub->y, p1024_mod) >= 0))) {
- err = ECC_OUT_OF_RANGE_E;
- }
- if (err == MP_OKAY) {
- /* Check point is on curve */
- err = sp_1024_ecc_is_point_42(pub, heap);
- }
- if (err == MP_OKAY) {
- /* Point * order = infinity */
- err = sp_1024_ecc_mulmod_42(p, pub, p1024_order, 1, 1, heap);
- }
- /* Check result is infinity */
- if ((err == MP_OKAY) && ((sp_1024_iszero_42(p->x) == 0) ||
- (sp_1024_iszero_42(p->y) == 0))) {
- err = ECC_INF_E;
- }
- if (privm) {
- if (err == MP_OKAY) {
- /* Base * private = point */
- err = sp_1024_ecc_mulmod_base_42(p, priv, 1, 1, heap);
- }
- /* Check result is public key */
- if ((err == MP_OKAY) &&
- ((sp_1024_cmp_42(p->x, pub->x) != 0) ||
- (sp_1024_cmp_42(p->y, pub->y) != 0))) {
- err = ECC_PRIV_KEY_E;
- }
- }
- #ifdef WOLFSSL_SP_SMALL_STACK
- if (pub != NULL)
- XFREE(pub, heap, DYNAMIC_TYPE_ECC);
- if (priv != NULL)
- XFREE(priv, heap, DYNAMIC_TYPE_ECC);
- #endif
- return err;
- }
- #endif
- #endif /* WOLFSSL_SP_1024 */
- #endif /* WOLFCRYPT_HAVE_SAKKE */
- #endif /* WOLFSSL_HAVE_SP_ECC */
- #endif /* SP_WORD_SIZE == 32 */
- #endif /* !WOLFSSL_SP_ASM */
- #endif /* WOLFSSL_HAVE_SP_RSA | WOLFSSL_HAVE_SP_DH | WOLFSSL_HAVE_SP_ECC */
|