esp_loader.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. /* Copyright 2020 Espressif Systems (Shanghai) PTE LTD
  2. *
  3. * Licensed under the Apache License, Version 2.0 (the "License");
  4. * you may not use this file except in compliance with the License.
  5. * You may obtain a copy of the License at
  6. *
  7. * http://www.apache.org/licenses/LICENSE-2.0
  8. *
  9. * Unless required by applicable law or agreed to in writing, software
  10. * distributed under the License is distributed on an "AS IS" BASIS,
  11. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. * See the License for the specific language governing permissions and
  13. * limitations under the License.
  14. */
  15. #include "serial_comm_prv.h"
  16. #include "serial_comm.h"
  17. #include "serial_io.h"
  18. #include "esp_loader.h"
  19. #include "esp_targets.h"
  20. #include "md5_hash.h"
  21. #include <string.h>
  22. #include <assert.h>
  23. #ifndef MAX
  24. #define MAX(a, b) ((a) > (b)) ? (a) : (b)
  25. #endif
  26. #ifndef MIN
  27. #define MIN(a, b) ((a) < (b)) ? (a) : (b)
  28. #endif
  29. #ifndef ROUNDUP
  30. #define ROUNDUP(a, b) (((int)a + (int)b - 1) / (int)b)
  31. #endif
  32. static const uint32_t DEFAULT_TIMEOUT = 1000;
  33. static const uint32_t DEFAULT_FLASH_TIMEOUT = 3000; // timeout for most flash operations
  34. static const uint32_t ERASE_REGION_TIMEOUT_PER_MB = 10000; // timeout (per megabyte) for erasing a region
  35. static const uint32_t LOAD_RAM_TIMEOUT_PER_MB = 2000000; // timeout (per megabyte) for erasing a region
  36. static const uint8_t PADDING_PATTERN = 0xFF;
  37. typedef enum {
  38. SPI_FLASH_READ_ID = 0x9F
  39. } spi_flash_cmd_t;
  40. static uint32_t s_flash_write_size = 0;
  41. static const target_registers_t *s_reg = NULL;
  42. static target_chip_t s_target = ESP_UNKNOWN_CHIP;
  43. #if MD5_ENABLED
  44. static const uint32_t MD5_TIMEOUT_PER_MB = 800;
  45. static struct MD5Context s_md5_context;
  46. static uint32_t s_start_address;
  47. static uint32_t s_image_size;
  48. static inline void init_md5(uint32_t address, uint32_t size)
  49. {
  50. s_start_address = address;
  51. s_image_size = size;
  52. MD5Init(&s_md5_context);
  53. }
  54. static inline void md5_update(const uint8_t *data, uint32_t size)
  55. {
  56. MD5Update(&s_md5_context, data, size);
  57. }
  58. static inline void md5_final(uint8_t digets[16])
  59. {
  60. MD5Final(digets, &s_md5_context);
  61. }
  62. #else
  63. static inline void init_md5(uint32_t address, uint32_t size) { }
  64. static inline void md5_update(const uint8_t *data, uint32_t size) { }
  65. static inline void md5_final(uint8_t digets[16]) { }
  66. #endif
  67. static uint32_t timeout_per_mb(uint32_t size_bytes, uint32_t time_per_mb)
  68. {
  69. uint32_t timeout = time_per_mb * (size_bytes / 1e6);
  70. return MAX(timeout, DEFAULT_FLASH_TIMEOUT);
  71. }
  72. esp_loader_error_t esp_loader_connect(esp_loader_connect_args_t *connect_args)
  73. {
  74. uint32_t spi_config;
  75. esp_loader_error_t err;
  76. int32_t trials = connect_args->trials;
  77. loader_port_enter_bootloader();
  78. do {
  79. loader_port_start_timer(connect_args->sync_timeout);
  80. err = loader_sync_cmd();
  81. if (err == ESP_LOADER_ERROR_TIMEOUT) {
  82. if (--trials == 0) {
  83. return ESP_LOADER_ERROR_TIMEOUT;
  84. }
  85. loader_port_delay_ms(100);
  86. } else if (err != ESP_LOADER_SUCCESS) {
  87. return err;
  88. }
  89. } while (err != ESP_LOADER_SUCCESS);
  90. RETURN_ON_ERROR( loader_detect_chip(&s_target, &s_reg) );
  91. if (s_target == ESP8266_CHIP) {
  92. err = loader_flash_begin_cmd(0, 0, 0, 0, s_target);
  93. } else {
  94. RETURN_ON_ERROR( loader_read_spi_config(s_target, &spi_config) );
  95. loader_port_start_timer(DEFAULT_TIMEOUT);
  96. err = loader_spi_attach_cmd(spi_config);
  97. }
  98. return err;
  99. }
  100. target_chip_t esp_loader_get_target(void)
  101. {
  102. return s_target;
  103. }
  104. static esp_loader_error_t spi_set_data_lengths(size_t mosi_bits, size_t miso_bits)
  105. {
  106. if (mosi_bits > 0) {
  107. RETURN_ON_ERROR( esp_loader_write_register(s_reg->mosi_dlen, mosi_bits - 1) );
  108. }
  109. if (miso_bits > 0) {
  110. RETURN_ON_ERROR( esp_loader_write_register(s_reg->miso_dlen, miso_bits - 1) );
  111. }
  112. return ESP_LOADER_SUCCESS;
  113. }
  114. static esp_loader_error_t spi_set_data_lengths_8266(size_t mosi_bits, size_t miso_bits)
  115. {
  116. uint32_t mosi_mask = (mosi_bits == 0) ? 0 : mosi_bits - 1;
  117. uint32_t miso_mask = (miso_bits == 0) ? 0 : miso_bits - 1;
  118. return esp_loader_write_register(s_reg->usr1, (miso_mask << 8) | (mosi_mask << 17));
  119. }
  120. static esp_loader_error_t spi_flash_command(spi_flash_cmd_t cmd, void *data_tx, size_t tx_size, void *data_rx, size_t rx_size)
  121. {
  122. assert(rx_size <= 32); // Reading more than 32 bits back from a SPI flash operation is unsupported
  123. assert(tx_size <= 64); // Writing more than 64 bytes of data with one SPI command is unsupported
  124. uint32_t SPI_USR_CMD = (1 << 31);
  125. uint32_t SPI_USR_MISO = (1 << 28);
  126. uint32_t SPI_USR_MOSI = (1 << 27);
  127. uint32_t SPI_CMD_USR = (1 << 18);
  128. uint32_t CMD_LEN_SHIFT = 28;
  129. // Save SPI configuration
  130. uint32_t old_spi_usr;
  131. uint32_t old_spi_usr2;
  132. RETURN_ON_ERROR( esp_loader_read_register(s_reg->usr, &old_spi_usr) );
  133. RETURN_ON_ERROR( esp_loader_read_register(s_reg->usr2, &old_spi_usr2) );
  134. if (s_target == ESP8266_CHIP) {
  135. RETURN_ON_ERROR( spi_set_data_lengths_8266(tx_size, rx_size) );
  136. } else {
  137. RETURN_ON_ERROR( spi_set_data_lengths(tx_size, rx_size) );
  138. }
  139. uint32_t usr_reg_2 = (7 << CMD_LEN_SHIFT) | cmd;
  140. uint32_t usr_reg = SPI_USR_CMD;
  141. if (rx_size > 0) {
  142. usr_reg |= SPI_USR_MISO;
  143. }
  144. if (tx_size > 0) {
  145. usr_reg |= SPI_USR_MOSI;
  146. }
  147. RETURN_ON_ERROR( esp_loader_write_register(s_reg->usr, usr_reg) );
  148. RETURN_ON_ERROR( esp_loader_write_register(s_reg->usr2, usr_reg_2 ) );
  149. if (tx_size == 0) {
  150. // clear data register before we read it
  151. RETURN_ON_ERROR( esp_loader_write_register(s_reg->w0, 0) );
  152. } else {
  153. uint32_t *data = (uint32_t *)data_tx;
  154. uint32_t words_to_write = (tx_size + 31) / (8 * 4);
  155. uint32_t data_reg_addr = s_reg->w0;
  156. while (words_to_write--) {
  157. uint32_t word = *data++;
  158. RETURN_ON_ERROR( esp_loader_write_register(data_reg_addr, word) );
  159. data_reg_addr += 4;
  160. }
  161. }
  162. RETURN_ON_ERROR( esp_loader_write_register(s_reg->cmd, SPI_CMD_USR) );
  163. uint32_t trials = 10;
  164. while (trials--) {
  165. uint32_t cmd_reg;
  166. RETURN_ON_ERROR( esp_loader_read_register(s_reg->cmd, &cmd_reg) );
  167. if ((cmd_reg & SPI_CMD_USR) == 0) {
  168. break;
  169. }
  170. }
  171. if (trials == 0) {
  172. return ESP_LOADER_ERROR_TIMEOUT;
  173. }
  174. RETURN_ON_ERROR( esp_loader_read_register(s_reg->w0, data_rx) );
  175. // Restore SPI configuration
  176. RETURN_ON_ERROR( esp_loader_write_register(s_reg->usr, old_spi_usr) );
  177. RETURN_ON_ERROR( esp_loader_write_register(s_reg->usr2, old_spi_usr2) );
  178. return ESP_LOADER_SUCCESS;
  179. }
  180. static esp_loader_error_t detect_flash_size(size_t *flash_size)
  181. {
  182. uint32_t flash_id = 0;
  183. RETURN_ON_ERROR( spi_flash_command(SPI_FLASH_READ_ID, NULL, 0, &flash_id, 24) );
  184. uint32_t size_id = flash_id >> 16;
  185. if (size_id < 0x12 || size_id > 0x18) {
  186. return ESP_LOADER_ERROR_UNSUPPORTED_CHIP;
  187. }
  188. *flash_size = 1 << size_id;
  189. return ESP_LOADER_SUCCESS;
  190. }
  191. esp_loader_error_t esp_loader_flash_start(uint32_t offset, uint32_t image_size, uint32_t block_size)
  192. {
  193. uint32_t blocks_to_write = (image_size + block_size - 1) / block_size;
  194. uint32_t erase_size = block_size * blocks_to_write;
  195. s_flash_write_size = block_size;
  196. size_t flash_size = 0;
  197. if (detect_flash_size(&flash_size) == ESP_LOADER_SUCCESS) {
  198. if (image_size > flash_size) {
  199. return ESP_LOADER_ERROR_IMAGE_SIZE;
  200. }
  201. loader_port_start_timer(DEFAULT_TIMEOUT);
  202. RETURN_ON_ERROR( loader_spi_parameters(flash_size) );
  203. } else {
  204. loader_port_debug_print("Flash size detection failed, falling back to default");
  205. }
  206. init_md5(offset, image_size);
  207. bool encryption_in_cmd = encryption_in_begin_flash_cmd(s_target);
  208. loader_port_start_timer(timeout_per_mb(erase_size, ERASE_REGION_TIMEOUT_PER_MB));
  209. return loader_flash_begin_cmd(offset, erase_size, block_size, blocks_to_write, encryption_in_cmd);
  210. }
  211. esp_loader_error_t esp_loader_flash_write(const void *payload, uint32_t size)
  212. {
  213. uint32_t padding_bytes = s_flash_write_size - size;
  214. uint8_t *data = (uint8_t *)payload;
  215. uint32_t padding_index = size;
  216. while (padding_bytes--) {
  217. data[padding_index++] = PADDING_PATTERN;
  218. }
  219. md5_update(payload, (size + 3) & ~3);
  220. loader_port_start_timer(DEFAULT_TIMEOUT);
  221. return loader_flash_data_cmd(data, s_flash_write_size);
  222. }
  223. esp_loader_error_t esp_loader_flash_finish(bool reboot)
  224. {
  225. loader_port_start_timer(DEFAULT_TIMEOUT);
  226. return loader_flash_end_cmd(!reboot);
  227. }
  228. esp_loader_error_t esp_loader_mem_start(uint32_t offset, uint32_t size, uint32_t block_size)
  229. {
  230. uint32_t blocks_to_write = ROUNDUP(size, block_size);
  231. loader_port_start_timer(timeout_per_mb(size, LOAD_RAM_TIMEOUT_PER_MB));
  232. return loader_mem_begin_cmd(offset, size, blocks_to_write, block_size);
  233. }
  234. esp_loader_error_t esp_loader_mem_write(const void *payload, uint32_t size)
  235. {
  236. uint8_t *data = (uint8_t *)payload;
  237. loader_port_start_timer(timeout_per_mb(size, LOAD_RAM_TIMEOUT_PER_MB));
  238. return loader_mem_data_cmd(data, size);
  239. }
  240. esp_loader_error_t esp_loader_mem_finish(uint32_t entrypoint)
  241. {
  242. loader_port_start_timer(DEFAULT_TIMEOUT);
  243. return loader_mem_end_cmd(entrypoint);
  244. }
  245. esp_loader_error_t esp_loader_read_register(uint32_t address, uint32_t *reg_value)
  246. {
  247. loader_port_start_timer(DEFAULT_TIMEOUT);
  248. return loader_read_reg_cmd(address, reg_value);
  249. }
  250. esp_loader_error_t esp_loader_write_register(uint32_t address, uint32_t reg_value)
  251. {
  252. loader_port_start_timer(DEFAULT_TIMEOUT);
  253. return loader_write_reg_cmd(address, reg_value, 0xFFFFFFFF, 0);
  254. }
  255. esp_loader_error_t esp_loader_change_baudrate(uint32_t baudrate)
  256. {
  257. if (s_target == ESP8266_CHIP) {
  258. return ESP_LOADER_ERROR_UNSUPPORTED_FUNC;
  259. }
  260. loader_port_start_timer(DEFAULT_TIMEOUT);
  261. return loader_change_baudrate_cmd(baudrate);
  262. }
  263. #if MD5_ENABLED
  264. static void hexify(const uint8_t raw_md5[16], uint8_t hex_md5_out[32])
  265. {
  266. static const uint8_t dec_to_hex[] = {
  267. '0', '1', '2', '3', '4', '5', '6', '7',
  268. '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
  269. };
  270. for (int i = 0; i < 16; i++) {
  271. *hex_md5_out++ = dec_to_hex[raw_md5[i] >> 4];
  272. *hex_md5_out++ = dec_to_hex[raw_md5[i] & 0xF];
  273. }
  274. }
  275. esp_loader_error_t esp_loader_flash_verify(void)
  276. {
  277. if (s_target == ESP8266_CHIP) {
  278. return ESP_LOADER_ERROR_UNSUPPORTED_FUNC;
  279. }
  280. uint8_t raw_md5[16] = {0};
  281. /* Zero termination and new line character require 2 bytes */
  282. uint8_t hex_md5[MD5_SIZE + 2] = {0};
  283. uint8_t received_md5[MD5_SIZE + 2] = {0};
  284. md5_final(raw_md5);
  285. hexify(raw_md5, hex_md5);
  286. loader_port_start_timer(timeout_per_mb(s_image_size, MD5_TIMEOUT_PER_MB));
  287. RETURN_ON_ERROR( loader_md5_cmd(s_start_address, s_image_size, received_md5) );
  288. bool md5_match = memcmp(hex_md5, received_md5, MD5_SIZE) == 0;
  289. if (!md5_match) {
  290. hex_md5[MD5_SIZE] = '\n';
  291. received_md5[MD5_SIZE] = '\n';
  292. loader_port_debug_print("Error: MD5 checksum does not match:\n");
  293. loader_port_debug_print("Expected:\n");
  294. loader_port_debug_print((char *)received_md5);
  295. loader_port_debug_print("Actual:\n");
  296. loader_port_debug_print((char *)hex_md5);
  297. return ESP_LOADER_ERROR_INVALID_MD5;
  298. }
  299. return ESP_LOADER_SUCCESS;
  300. }
  301. #endif
  302. void esp_loader_reset_target(void)
  303. {
  304. loader_port_reset_target();
  305. }