sam_api.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. #include "sam_api.h"
  2. #define TAG "SAMAPI"
  3. #define APDU_HEADER_LEN 5
  4. #define ASN1_PREFIX 6
  5. #define ASN1_DEBUG true
  6. #ifdef ASN1_DEBUG
  7. char payloadDebug[384] = {0};
  8. #endif
  9. static char display[SEADER_UART_RX_BUF_SIZE * 2 + 1] = {0};
  10. char asn1_log[SEADER_UART_RX_BUF_SIZE] = {0};
  11. bool requestPacs = true;
  12. void* calloc(size_t count, size_t size) {
  13. return malloc(count * size);
  14. }
  15. bool seader_send_apdu(
  16. SeaderUartBridge* seader_uart,
  17. uint8_t CLA,
  18. uint8_t INS,
  19. uint8_t P1,
  20. uint8_t P2,
  21. uint8_t* payload,
  22. uint8_t length) {
  23. if(APDU_HEADER_LEN + length > SEADER_UART_RX_BUF_SIZE) {
  24. FURI_LOG_E(TAG, "Cannot send message, too long: %d", APDU_HEADER_LEN + length);
  25. return false;
  26. }
  27. uint8_t* apdu = malloc(APDU_HEADER_LEN + length);
  28. apdu[0] = CLA;
  29. apdu[1] = INS;
  30. apdu[2] = P1;
  31. apdu[3] = P2;
  32. apdu[4] = length;
  33. memcpy(apdu + APDU_HEADER_LEN, payload, length);
  34. seader_ccid_XfrBlock(seader_uart, apdu, APDU_HEADER_LEN + length);
  35. free(apdu);
  36. return true;
  37. }
  38. static int seader_asn_to_string(const void* buffer, size_t size, void* app_key) {
  39. if(app_key) {
  40. char* str = (char*)app_key;
  41. size_t next = strlen(str);
  42. strncpy(str + next, buffer, size);
  43. } else {
  44. uint8_t next = strlen(asn1_log);
  45. strncpy(asn1_log + next, buffer, size);
  46. }
  47. return 0;
  48. }
  49. void seader_send_payload(
  50. SeaderUartBridge* seader_uart,
  51. Payload_t* payload,
  52. uint8_t to,
  53. uint8_t from,
  54. uint8_t replyTo) {
  55. uint8_t rBuffer[SEADER_UART_RX_BUF_SIZE] = {0};
  56. asn_enc_rval_t er = der_encode_to_buffer(
  57. &asn_DEF_Payload, payload, rBuffer + ASN1_PREFIX, sizeof(rBuffer) - ASN1_PREFIX);
  58. #ifdef ASN1_DEBUG
  59. if(er.encoded > -1) {
  60. memset(payloadDebug, 0, sizeof(payloadDebug));
  61. (&asn_DEF_Payload)
  62. ->op->print_struct(&asn_DEF_Payload, payload, 1, seader_asn_to_string, payloadDebug);
  63. if(strlen(payloadDebug) > 0) {
  64. FURI_LOG_D(TAG, "Sending payload[%d %d %d]: %s", to, from, replyTo, payloadDebug);
  65. }
  66. }
  67. #endif
  68. //0xa0, 0xda, 0x02, 0x63, 0x00, 0x00, 0x0a,
  69. //0x44, 0x0a, 0x44, 0x00, 0x00, 0x00, 0xa0, 0x02, 0x96, 0x00
  70. rBuffer[0] = to;
  71. rBuffer[1] = from;
  72. rBuffer[2] = replyTo;
  73. seader_send_apdu(seader_uart, 0xA0, 0xDA, 0x02, 0x63, rBuffer, 6 + er.encoded);
  74. }
  75. void seader_send_response(
  76. SeaderUartBridge* seader_uart,
  77. Response_t* response,
  78. uint8_t to,
  79. uint8_t from,
  80. uint8_t replyTo) {
  81. Payload_t* payload = 0;
  82. payload = calloc(1, sizeof *payload);
  83. assert(payload);
  84. payload->present = Payload_PR_response;
  85. payload->choice.response = *response;
  86. seader_send_payload(seader_uart, payload, to, from, replyTo);
  87. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  88. }
  89. void sendRequestPacs(SeaderUartBridge* seader_uart) {
  90. RequestPacs_t* requestPacs = 0;
  91. requestPacs = calloc(1, sizeof *requestPacs);
  92. assert(requestPacs);
  93. requestPacs->contentElementTag = ContentElementTag_implicitFormatPhysicalAccessBits;
  94. SamCommand_t* samCommand = 0;
  95. samCommand = calloc(1, sizeof *samCommand);
  96. assert(samCommand);
  97. samCommand->present = SamCommand_PR_requestPacs;
  98. samCommand->choice.requestPacs = *requestPacs;
  99. Payload_t* payload = 0;
  100. payload = calloc(1, sizeof *payload);
  101. assert(payload);
  102. payload->present = Payload_PR_samCommand;
  103. payload->choice.samCommand = *samCommand;
  104. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  105. ASN_STRUCT_FREE(asn_DEF_RequestPacs, requestPacs);
  106. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  107. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  108. }
  109. void seader_worker_send_version(SeaderWorker* seader_worker) {
  110. SeaderUartBridge* seader_uart = seader_worker->uart;
  111. SamCommand_t* samCommand = 0;
  112. samCommand = calloc(1, sizeof *samCommand);
  113. assert(samCommand);
  114. samCommand->present = SamCommand_PR_version;
  115. Payload_t* payload = 0;
  116. payload = calloc(1, sizeof *payload);
  117. assert(payload);
  118. payload->present = Payload_PR_samCommand;
  119. payload->choice.samCommand = *samCommand;
  120. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  121. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  122. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  123. }
  124. void seader_send_card_detected(SeaderUartBridge* seader_uart, CardDetails_t* cardDetails) {
  125. CardDetected_t* cardDetected = 0;
  126. cardDetected = calloc(1, sizeof *cardDetected);
  127. assert(cardDetected);
  128. cardDetected->detectedCardDetails = *cardDetails;
  129. SamCommand_t* samCommand = 0;
  130. samCommand = calloc(1, sizeof *samCommand);
  131. assert(samCommand);
  132. samCommand->present = SamCommand_PR_cardDetected;
  133. samCommand->choice.cardDetected = *cardDetected;
  134. Payload_t* payload = 0;
  135. payload = calloc(1, sizeof *payload);
  136. assert(payload);
  137. payload->present = Payload_PR_samCommand;
  138. payload->choice.samCommand = *samCommand;
  139. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  140. ASN_STRUCT_FREE(asn_DEF_CardDetected, cardDetected);
  141. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  142. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  143. }
  144. bool seader_unpack_pacs(SeaderCredential* seader_credential, uint8_t* buf, size_t size) {
  145. PAC_t* pac = 0;
  146. pac = calloc(1, sizeof *pac);
  147. assert(pac);
  148. bool rtn = false;
  149. asn_dec_rval_t rval = asn_decode(0, ATS_DER, &asn_DEF_PAC, (void**)&pac, buf, size);
  150. if(rval.code == RC_OK) {
  151. char pacDebug[384] = {0};
  152. (&asn_DEF_PAC)->op->print_struct(&asn_DEF_PAC, pac, 1, seader_asn_to_string, pacDebug);
  153. if(strlen(pacDebug) > 0) {
  154. FURI_LOG_D(TAG, "Received pac: %s", pacDebug);
  155. memset(display, 0, sizeof(display));
  156. if(seader_credential->sio[0] == 0x30) {
  157. for(uint8_t i = 0; i < sizeof(seader_credential->sio); i++) {
  158. snprintf(
  159. display + (i * 2), sizeof(display), "%02x", seader_credential->sio[i]);
  160. }
  161. FURI_LOG_D(TAG, "SIO %s", display);
  162. }
  163. }
  164. if(pac->size <= sizeof(seader_credential->credential)) {
  165. // TODO: make credential into a 12 byte array
  166. seader_credential->bit_length = pac->size * 8 - pac->bits_unused;
  167. memcpy(&seader_credential->credential, pac->buf, pac->size);
  168. seader_credential->credential = __builtin_bswap64(seader_credential->credential);
  169. seader_credential->credential = seader_credential->credential >>
  170. (64 - seader_credential->bit_length);
  171. rtn = true;
  172. } else {
  173. // PACS too big (probably bad data)
  174. }
  175. }
  176. ASN_STRUCT_FREE(asn_DEF_PAC, pac);
  177. return rtn;
  178. }
  179. // 800201298106683d052026b6820101
  180. //300F800201298106683D052026B6820101
  181. bool seader_parse_version(SeaderWorker* seader_worker, uint8_t* buf, size_t size) {
  182. SamVersion_t* version = 0;
  183. version = calloc(1, sizeof *version);
  184. assert(version);
  185. bool rtn = false;
  186. if(size > 30) {
  187. // Too large to handle now
  188. FURI_LOG_W(TAG, "Version of %d is to long to parse", size);
  189. return false;
  190. }
  191. // Add sequence prefix
  192. uint8_t seq[32] = {0x30};
  193. seq[1] = (uint8_t)size;
  194. memcpy(seq + 2, buf, size);
  195. asn_dec_rval_t rval =
  196. asn_decode(0, ATS_DER, &asn_DEF_SamVersion, (void**)&version, seq, size + 2);
  197. if(rval.code == RC_OK) {
  198. char versionDebug[128] = {0};
  199. (&asn_DEF_SamVersion)
  200. ->op->print_struct(
  201. &asn_DEF_SamVersion, version, 1, seader_asn_to_string, versionDebug);
  202. if(strlen(versionDebug) > 0) {
  203. // FURI_LOG_D(TAG, "Received version: %s", versionDebug);
  204. }
  205. if(version->version.size == 2) {
  206. memcpy(seader_worker->sam_version, version->version.buf, version->version.size);
  207. }
  208. rtn = true;
  209. }
  210. ASN_STRUCT_FREE(asn_DEF_SamVersion, version);
  211. return rtn;
  212. }
  213. bool seader_parse_sam_response(Seader* seader, SamResponse_t* samResponse) {
  214. SeaderWorker* seader_worker = seader->worker;
  215. SeaderUartBridge* seader_uart = seader_worker->uart;
  216. SeaderCredential* credential = seader->credential;
  217. if(samResponse->size == 0) {
  218. if(requestPacs) {
  219. FURI_LOG_D(TAG, "samResponse %d => requesting PACS", samResponse->size);
  220. sendRequestPacs(seader_uart);
  221. requestPacs = false;
  222. } else {
  223. FURI_LOG_D(TAG, "samResponse %d, no action", samResponse->size);
  224. }
  225. } else if(seader_parse_version(seader_worker, samResponse->buf, samResponse->size)) {
  226. // no-op
  227. } else if(seader_unpack_pacs(credential, samResponse->buf, samResponse->size)) {
  228. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventWorkerExit);
  229. } else {
  230. memset(display, 0, sizeof(display));
  231. for(uint8_t i = 0; i < samResponse->size; i++) {
  232. snprintf(display + (i * 2), sizeof(display), "%02x", samResponse->buf[i]);
  233. }
  234. FURI_LOG_D(TAG, "Unknown samResponse %d: %s", samResponse->size, display);
  235. }
  236. return false;
  237. }
  238. bool seader_parse_response(Seader* seader, Response_t* response) {
  239. switch(response->present) {
  240. case Response_PR_samResponse:
  241. seader_parse_sam_response(seader, &response->choice.samResponse);
  242. break;
  243. default:
  244. break;
  245. };
  246. return false;
  247. }
  248. void seader_send_nfc_rx(SeaderUartBridge* seader_uart, uint8_t* buffer, size_t len) {
  249. OCTET_STRING_t rxData = {.buf = buffer, .size = len};
  250. uint8_t status[] = {0x00, 0x00};
  251. RfStatus_t rfStatus = {.buf = status, .size = 2};
  252. NFCRx_t* nfcRx = 0;
  253. nfcRx = calloc(1, sizeof *nfcRx);
  254. assert(nfcRx);
  255. nfcRx->rfStatus = rfStatus;
  256. nfcRx->data = &rxData;
  257. NFCResponse_t* nfcResponse = 0;
  258. nfcResponse = calloc(1, sizeof *nfcResponse);
  259. assert(nfcResponse);
  260. nfcResponse->present = NFCResponse_PR_nfcRx;
  261. nfcResponse->choice.nfcRx = *nfcRx;
  262. Response_t* response = 0;
  263. response = calloc(1, sizeof *response);
  264. assert(response);
  265. response->present = Response_PR_nfcResponse;
  266. response->choice.nfcResponse = *nfcResponse;
  267. seader_send_response(seader_uart, response, 0x14, 0x0a, 0x0);
  268. ASN_STRUCT_FREE(asn_DEF_NFCRx, nfcRx);
  269. ASN_STRUCT_FREE(asn_DEF_NFCResponse, nfcResponse);
  270. ASN_STRUCT_FREE(asn_DEF_Response, response);
  271. }
  272. static uint16_t seader_worker_picopass_update_ccitt(uint16_t crcSeed, uint8_t dataByte) {
  273. uint16_t crc = crcSeed;
  274. uint8_t dat = dataByte;
  275. dat ^= (uint8_t)(crc & 0xFFU);
  276. dat ^= (dat << 4);
  277. crc = (crc >> 8) ^ (((uint16_t)dat) << 8) ^ (((uint16_t)dat) << 3) ^ (((uint16_t)dat) >> 4);
  278. return crc;
  279. }
  280. static uint16_t seader_worker_picopass_calculate_ccitt(
  281. uint16_t preloadValue,
  282. const uint8_t* buf,
  283. uint16_t length) {
  284. uint16_t crc = preloadValue;
  285. uint16_t index;
  286. for(index = 0; index < length; index++) {
  287. crc = seader_worker_picopass_update_ccitt(crc, buf[index]);
  288. }
  289. return crc;
  290. }
  291. uint8_t read4Block6[] = {0x06, 0x06, 0x45, 0x56};
  292. uint8_t read4Block9[] = {0x06, 0x09, 0xB2, 0xAE};
  293. uint8_t read4Block10[] = {0x06, 0x0A, 0x29, 0x9C};
  294. uint8_t read4Block13[] = {0x06, 0x0D, 0x96, 0xE8};
  295. uint8_t updateBlock2[] = {0x87, 0x02}; // TODO
  296. void seader_capture_sio(BitBuffer* tx_buffer, BitBuffer* rx_buffer, SeaderCredential* credential) {
  297. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  298. size_t len = bit_buffer_get_size_bytes(tx_buffer);
  299. const uint8_t* rxBuffer = bit_buffer_get_data(rx_buffer);
  300. if(memcmp(buffer, read4Block6, len) == 0 && rxBuffer[0] == 0x30) {
  301. memcpy(credential->sio, rxBuffer, 32);
  302. } else if(memcmp(buffer, read4Block10, len) == 0 && rxBuffer[0] == 0x30) {
  303. memcpy(credential->sio, rxBuffer, 32);
  304. } else if(memcmp(buffer, read4Block9, len) == 0) {
  305. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  306. } else if(memcmp(buffer, read4Block13, len) == 0) {
  307. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  308. }
  309. }
  310. PicopassError seader_worker_fake_epurse_update(BitBuffer* tx_buffer, BitBuffer* rx_buffer) {
  311. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  312. uint8_t fake_response[10];
  313. memset(fake_response, 0, sizeof(fake_response));
  314. memcpy(fake_response + 0, buffer + 6, 4);
  315. memcpy(fake_response + 4, buffer + 2, 4);
  316. uint16_t crc = seader_worker_picopass_calculate_ccitt(0xE012, fake_response, 8);
  317. memcpy(fake_response + 8, &crc, sizeof(uint16_t));
  318. bit_buffer_append_bytes(rx_buffer, fake_response, sizeof(fake_response));
  319. memset(display, 0, sizeof(display));
  320. for(uint8_t i = 0; i < sizeof(fake_response); i++) {
  321. snprintf(display + (i * 2), sizeof(display), "%02x", fake_response[i]);
  322. }
  323. FURI_LOG_I(TAG, "Fake update E-Purse response: %s", display);
  324. return PicopassErrorNone;
  325. }
  326. void seader_iso15693_transmit(
  327. Seader* seader,
  328. PicopassPoller* picopass_poller,
  329. uint8_t* buffer,
  330. size_t len) {
  331. UNUSED(seader);
  332. UNUSED(buffer);
  333. UNUSED(len);
  334. SeaderWorker* seader_worker = seader->worker;
  335. SeaderUartBridge* seader_uart = seader_worker->uart;
  336. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  337. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  338. PicopassError error = PicopassErrorNone;
  339. do {
  340. bit_buffer_append_bytes(tx_buffer, buffer, len);
  341. if(memcmp(buffer, updateBlock2, sizeof(updateBlock2)) == 0) {
  342. error = seader_worker_fake_epurse_update(tx_buffer, rx_buffer);
  343. } else {
  344. error = picopass_poller_send_frame(
  345. picopass_poller, tx_buffer, rx_buffer, SEADER_POLLER_MAX_FWT);
  346. }
  347. if(error == PicopassErrorIncorrectCrc) {
  348. error = PicopassErrorNone;
  349. }
  350. if(error != PicopassErrorNone) {
  351. seader_worker->stage = SeaderPollerEventTypeFail;
  352. break;
  353. }
  354. seader_capture_sio(tx_buffer, rx_buffer, seader->credential);
  355. seader_send_nfc_rx(
  356. seader_uart,
  357. (uint8_t*)bit_buffer_get_data(rx_buffer),
  358. bit_buffer_get_size_bytes(rx_buffer));
  359. } while(false);
  360. bit_buffer_free(tx_buffer);
  361. bit_buffer_free(rx_buffer);
  362. }
  363. /* Assumes this is called in the context of the NFC API callback */
  364. void seader_iso14443a_transmit(
  365. Seader* seader,
  366. Iso14443_4aPoller* iso14443_4a_poller,
  367. uint8_t* buffer,
  368. size_t len,
  369. uint16_t timeout,
  370. uint8_t format[3]) {
  371. UNUSED(timeout);
  372. UNUSED(format);
  373. furi_assert(seader);
  374. furi_assert(buffer);
  375. furi_assert(iso14443_4a_poller);
  376. SeaderWorker* seader_worker = seader->worker;
  377. SeaderUartBridge* seader_uart = seader_worker->uart;
  378. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  379. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  380. do {
  381. bit_buffer_append_bytes(tx_buffer, buffer, len);
  382. Iso14443_4aError error =
  383. iso14443_4a_poller_send_block(iso14443_4a_poller, tx_buffer, rx_buffer);
  384. if(error != Iso14443_4aErrorNone) {
  385. FURI_LOG_W(TAG, "iso14443_4a_poller_send_block error %d", error);
  386. seader_worker->stage = SeaderPollerEventTypeFail;
  387. break;
  388. }
  389. seader_send_nfc_rx(
  390. seader_uart,
  391. (uint8_t*)bit_buffer_get_data(rx_buffer),
  392. bit_buffer_get_size_bytes(rx_buffer));
  393. } while(false);
  394. bit_buffer_free(tx_buffer);
  395. bit_buffer_free(rx_buffer);
  396. }
  397. void seader_parse_nfc_command_transmit(
  398. Seader* seader,
  399. NFCSend_t* nfcSend,
  400. SeaderPollerContainer* spc) {
  401. long timeOut = nfcSend->timeOut;
  402. Protocol_t protocol = nfcSend->protocol;
  403. FrameProtocol_t frameProtocol = protocol.buf[1];
  404. #ifdef ASN1_DEBUG
  405. memset(display, 0, sizeof(display));
  406. for(uint8_t i = 0; i < nfcSend->data.size; i++) {
  407. snprintf(display + (i * 2), sizeof(display), "%02x", nfcSend->data.buf[i]);
  408. }
  409. FURI_LOG_D(
  410. TAG,
  411. "Transmit (%ld timeout) %d bytes [%s] via %lx",
  412. timeOut,
  413. nfcSend->data.size,
  414. display,
  415. frameProtocol);
  416. #endif
  417. if(frameProtocol == FrameProtocol_iclass) {
  418. seader_iso15693_transmit(
  419. seader, spc->picopass_poller, nfcSend->data.buf, nfcSend->data.size);
  420. } else if(frameProtocol == FrameProtocol_nfc) {
  421. seader_iso14443a_transmit(
  422. seader,
  423. spc->iso14443_4a_poller,
  424. nfcSend->data.buf,
  425. nfcSend->data.size,
  426. (uint16_t)timeOut,
  427. nfcSend->format->buf);
  428. } else {
  429. FURI_LOG_W(TAG, "unknown frame protocol %lx", frameProtocol);
  430. }
  431. }
  432. void seader_parse_nfc_off(SeaderUartBridge* seader_uart) {
  433. FURI_LOG_D(TAG, "Set Field Off");
  434. NFCResponse_t* nfcResponse = 0;
  435. nfcResponse = calloc(1, sizeof *nfcResponse);
  436. assert(nfcResponse);
  437. nfcResponse->present = NFCResponse_PR_nfcAck;
  438. Response_t* response = 0;
  439. response = calloc(1, sizeof *response);
  440. assert(response);
  441. response->present = Response_PR_nfcResponse;
  442. response->choice.nfcResponse = *nfcResponse;
  443. seader_send_response(seader_uart, response, 0x44, 0x0a, 0);
  444. ASN_STRUCT_FREE(asn_DEF_Response, response);
  445. ASN_STRUCT_FREE(asn_DEF_NFCResponse, nfcResponse);
  446. }
  447. void seader_parse_nfc_command(Seader* seader, NFCCommand_t* nfcCommand, SeaderPollerContainer* spc) {
  448. SeaderWorker* seader_worker = seader->worker;
  449. SeaderUartBridge* seader_uart = seader_worker->uart;
  450. switch(nfcCommand->present) {
  451. case NFCCommand_PR_nfcSend:
  452. seader_parse_nfc_command_transmit(seader, &nfcCommand->choice.nfcSend, spc);
  453. break;
  454. case NFCCommand_PR_nfcOff:
  455. seader_parse_nfc_off(seader_uart);
  456. seader->worker->stage = SeaderPollerEventTypeComplete;
  457. break;
  458. default:
  459. FURI_LOG_W(TAG, "unparsed NFCCommand");
  460. break;
  461. };
  462. }
  463. bool seader_worker_state_machine(
  464. Seader* seader,
  465. Payload_t* payload,
  466. bool online,
  467. SeaderPollerContainer* spc) {
  468. bool processed = false;
  469. switch(payload->present) {
  470. case Payload_PR_response:
  471. seader_parse_response(seader, &payload->choice.response);
  472. processed = true;
  473. break;
  474. case Payload_PR_nfcCommand:
  475. if(online) {
  476. seader_parse_nfc_command(seader, &payload->choice.nfcCommand, spc);
  477. processed = true;
  478. }
  479. break;
  480. case Payload_PR_errorResponse:
  481. FURI_LOG_W(TAG, "Error Response");
  482. processed = true;
  483. break;
  484. default:
  485. FURI_LOG_W(TAG, "unhandled payload");
  486. break;
  487. };
  488. return processed;
  489. }
  490. bool seader_process_success_response_i(
  491. Seader* seader,
  492. uint8_t* apdu,
  493. size_t len,
  494. bool online,
  495. SeaderPollerContainer* spc) {
  496. Payload_t* payload = 0;
  497. payload = calloc(1, sizeof *payload);
  498. assert(payload);
  499. bool processed = false;
  500. asn_dec_rval_t rval =
  501. asn_decode(0, ATS_DER, &asn_DEF_Payload, (void**)&payload, apdu + 6, len - 6);
  502. if(rval.code == RC_OK) {
  503. processed = seader_worker_state_machine(seader, payload, online, spc);
  504. #ifdef ASN1_DEBUG
  505. if(processed) {
  506. memset(payloadDebug, 0, sizeof(payloadDebug));
  507. (&asn_DEF_Payload)
  508. ->op->print_struct(
  509. &asn_DEF_Payload, payload, 1, seader_asn_to_string, payloadDebug);
  510. if(strlen(payloadDebug) > 0) {
  511. FURI_LOG_D(TAG, "Received payload: %s", payloadDebug);
  512. }
  513. }
  514. #endif
  515. } else {
  516. FURI_LOG_D(TAG, "Failed to decode APDU payload");
  517. }
  518. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  519. return processed;
  520. }
  521. NfcCommand seader_worker_card_detect(
  522. Seader* seader,
  523. uint8_t sak,
  524. uint8_t* atqa,
  525. const uint8_t* uid,
  526. uint8_t uid_len,
  527. uint8_t* ats,
  528. uint8_t ats_len) {
  529. UNUSED(ats);
  530. UNUSED(ats_len);
  531. // We're telling the SAM we've seen a new card, so reset out requestPacs check
  532. requestPacs = true;
  533. SeaderWorker* seader_worker = seader->worker;
  534. SeaderUartBridge* seader_uart = seader_worker->uart;
  535. CardDetails_t* cardDetails = 0;
  536. cardDetails = calloc(1, sizeof *cardDetails);
  537. assert(cardDetails);
  538. OCTET_STRING_fromBuf(&cardDetails->csn, (const char*)uid, uid_len);
  539. if(sak != 0 && atqa != NULL) {
  540. uint8_t protocol_bytes[] = {0x00, FrameProtocol_nfc};
  541. OCTET_STRING_fromBuf(
  542. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  543. OCTET_STRING_t sak_string = {.buf = &sak, .size = 1};
  544. cardDetails->sak = &sak_string;
  545. OCTET_STRING_t atqa_string = {.buf = atqa, .size = 2};
  546. cardDetails->atqa = &atqa_string;
  547. } else {
  548. uint8_t protocol_bytes[] = {0x00, FrameProtocol_iclass};
  549. OCTET_STRING_fromBuf(
  550. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  551. }
  552. seader_send_card_detected(seader_uart, cardDetails);
  553. ASN_STRUCT_FREE(asn_DEF_CardDetails, cardDetails);
  554. return NfcCommandContinue;
  555. }