scope_scene_run.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411
  1. #include <furi.h>
  2. #include <furi_hal.h>
  3. #include <furi_hal_resources.h>
  4. #include <gui/gui.h>
  5. #include <gui/view_dispatcher.h>
  6. #include <gui/scene_manager.h>
  7. #include <gui/modules/submenu.h>
  8. #include <gui/modules/variable_item_list.h>
  9. #include <gui/modules/widget.h>
  10. #include <notification/notification_messages.h>
  11. #include "stm32wbxx_hal.h"
  12. #include "stm32wbxx_hal_tim.h"
  13. #include "stm32wbxx_nucleo.h"
  14. #include "stm32wbxx_hal_adc.h"
  15. #include "../scope_app_i.h"
  16. #include "../helpers/scope_types.h"
  17. #define DIGITAL_SCALE_12BITS ((uint32_t) 0xFFF)
  18. #define ADC_CONVERTED_DATA_BUFFER_SIZE ((uint32_t) 128)
  19. #define VAR_CONVERTED_DATA_INIT_VALUE (DIGITAL_SCALE_12BITS + 1)
  20. #define VAR_CONVERTED_DATA_INIT_VALUE_16BITS (0xFFFF + 1U)
  21. #define __ADC_CALC_DATA_VOLTAGE(__VREFANALOG_VOLTAGE__, __ADC_DATA__) \
  22. ((__ADC_DATA__) * (__VREFANALOG_VOLTAGE__) / DIGITAL_SCALE_12BITS)
  23. #define VDDA_APPLI ((uint32_t)3300)
  24. // ramVector found from - https://community.nxp.com/t5/i-MX-Processors/Relocate-vector-table-to-ITCM/m-p/1302304
  25. // the aligned aspect is key!
  26. #define TABLE_SIZE 79
  27. uint32_t ramVector[TABLE_SIZE+1] __attribute__((aligned(512)));
  28. const uint32_t AHBPrescTable[16UL] = {1UL, 3UL, 5UL, 1UL, 1UL, 6UL, 10UL, 32UL, 2UL, 4UL, 8UL, 16UL, 64UL, 128UL, 256UL, 512UL};
  29. const uint32_t APBPrescTable[8UL] = {0UL, 0UL, 0UL, 0UL, 1UL, 2UL, 3UL, 4UL};
  30. const uint32_t MSIRangeTable[16UL] = {100000UL, 200000UL, 400000UL, 800000UL, 1000000UL, 2000000UL, \
  31. 4000000UL, 8000000UL, 16000000UL, 24000000UL, 32000000UL, 48000000UL, 0UL, 0UL, 0UL, 0UL}; /* 0UL values are incorrect cases */
  32. char * time;
  33. uint8_t pause=0;
  34. enum measureenum type;
  35. void Error_Handler()
  36. {
  37. while (1) {
  38. }
  39. }
  40. static ADC_HandleTypeDef hadc1;
  41. static DMA_HandleTypeDef hdma_adc1;
  42. static TIM_HandleTypeDef htim2;
  43. __IO uint16_t aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data (array of data) */
  44. __IO uint16_t aADCxConvertedData_Voltage_mVoltA[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* Value of voltage calculated from ADC conversion data (unit: mV) (array of data) */
  45. __IO uint16_t aADCxConvertedData_Voltage_mVoltB[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* Value of voltage calculated from ADC conversion data (unit: mV) (array of data) */
  46. __IO uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */
  47. __IO uint16_t *mvoltWrite = &aADCxConvertedData_Voltage_mVoltA[0];
  48. __IO uint16_t *mvoltDisplay = &aADCxConvertedData_Voltage_mVoltB[0];
  49. void HAL_ADC_MspInit(ADC_HandleTypeDef * hadc)
  50. {
  51. GPIO_InitTypeDef GPIO_InitStruct = { 0 };
  52. if (hadc->Instance == ADC1) {
  53. __HAL_RCC_ADC_CLK_ENABLE();
  54. __HAL_RCC_GPIOC_CLK_ENABLE();
  55. GPIO_InitStruct.Pin = GPIO_PIN_0;
  56. GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  57. GPIO_InitStruct.Pull = GPIO_NOPULL;
  58. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  59. hdma_adc1.Instance = DMA1_Channel1;
  60. hdma_adc1.Init.Request = DMA_REQUEST_ADC1;
  61. hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
  62. hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
  63. hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
  64. hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
  65. hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
  66. hdma_adc1.Init.Mode = DMA_CIRCULAR;
  67. hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
  68. if (HAL_DMA_Init(&hdma_adc1) != HAL_OK) {
  69. Error_Handler();
  70. }
  71. __HAL_LINKDMA(hadc, DMA_Handle, hdma_adc1);
  72. HAL_NVIC_SetPriority(ADC1_IRQn, 15, 0);
  73. HAL_NVIC_EnableIRQ(ADC1_IRQn);
  74. }
  75. }
  76. void HAL_ADC_MspDeInit(ADC_HandleTypeDef * hadc)
  77. {
  78. if (hadc->Instance == ADC1) {
  79. __HAL_RCC_ADC_CLK_DISABLE();
  80. HAL_GPIO_DeInit(GPIOC, GPIO_PIN_0);
  81. HAL_DMA_DeInit(hadc->DMA_Handle);
  82. HAL_NVIC_DisableIRQ(ADC1_IRQn);
  83. }
  84. }
  85. void HAL_TIM_Base_MspInit(TIM_HandleTypeDef * htim_base)
  86. {
  87. if (htim_base->Instance == TIM2) {
  88. __HAL_RCC_TIM2_CLK_ENABLE();
  89. HAL_NVIC_SetPriority(TIM2_IRQn, 15, 0);
  90. HAL_NVIC_EnableIRQ(TIM2_IRQn);
  91. }
  92. }
  93. void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef * htim_base)
  94. {
  95. if (htim_base->Instance == TIM2) {
  96. __HAL_RCC_TIM2_CLK_DISABLE();
  97. HAL_NVIC_DisableIRQ(TIM2_IRQn);
  98. }
  99. }
  100. void DMA1_Channel1_IRQHandler(void)
  101. {
  102. HAL_DMA_IRQHandler(&hdma_adc1);
  103. }
  104. void ADC1_IRQHandler(void)
  105. {
  106. HAL_ADC_IRQHandler(&hadc1);
  107. }
  108. void TIM2_IRQHandler(void)
  109. {
  110. HAL_TIM_IRQHandler(&htim2);
  111. }
  112. static void MX_ADC1_Init(void)
  113. {
  114. ADC_ChannelConfTypeDef sConfig = { 0 };
  115. hadc1.Instance = ADC1;
  116. hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  117. hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  118. hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  119. hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  120. hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  121. hadc1.Init.LowPowerAutoWait = DISABLE;
  122. hadc1.Init.ContinuousConvMode = DISABLE;
  123. hadc1.Init.NbrOfConversion = 1;
  124. hadc1.Init.DiscontinuousConvMode = DISABLE;
  125. hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T2_TRGO;
  126. hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  127. hadc1.Init.DMAContinuousRequests = ENABLE;
  128. hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  129. hadc1.Init.OversamplingMode = DISABLE;
  130. if (HAL_ADC_Init(&hadc1) != HAL_OK) {
  131. Error_Handler();
  132. }
  133. sConfig.Channel = ADC_CHANNEL_1;
  134. sConfig.Rank = ADC_REGULAR_RANK_1;
  135. sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLE_5;
  136. sConfig.SingleDiff = ADC_SINGLE_ENDED;
  137. sConfig.OffsetNumber = ADC_OFFSET_NONE;
  138. sConfig.Offset = 0;
  139. if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
  140. Error_Handler();
  141. }
  142. }
  143. static void MX_TIM2_Init(uint32_t period)
  144. {
  145. TIM_ClockConfigTypeDef sClockSourceConfig = { 0 };
  146. TIM_MasterConfigTypeDef sMasterConfig = { 0 };
  147. htim2.Instance = TIM2;
  148. htim2.Init.Prescaler = 1;
  149. htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  150. htim2.Init.Period = period;
  151. htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  152. htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  153. if (HAL_TIM_Base_Init(&htim2) != HAL_OK) {
  154. Error_Handler();
  155. }
  156. sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  157. if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) {
  158. Error_Handler();
  159. }
  160. sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  161. sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  162. if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) {
  163. Error_Handler();
  164. }
  165. }
  166. static void MX_DMA_Init(void)
  167. {
  168. __HAL_RCC_DMAMUX1_CLK_ENABLE();
  169. __HAL_RCC_DMA1_CLK_ENABLE();
  170. HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 15, 0);
  171. HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  172. }
  173. static void MX_GPIO_Init(void)
  174. {
  175. __HAL_RCC_GPIOC_CLK_ENABLE();
  176. }
  177. void swap(__IO uint16_t **a, __IO uint16_t **b){
  178. __IO uint16_t *tmp;
  179. tmp = *a;
  180. *a = *b;
  181. *b = tmp;
  182. }
  183. void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef * hadc)
  184. {
  185. UNUSED(hadc);
  186. uint32_t tmp_index = 0;
  187. for (tmp_index = (ADC_CONVERTED_DATA_BUFFER_SIZE / 2); tmp_index < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index++) {
  188. mvoltWrite[tmp_index] = __ADC_CALC_DATA_VOLTAGE(VDDA_APPLI, aADCxConvertedData[tmp_index]);
  189. }
  190. ubDmaTransferStatus = 1;
  191. if(!pause)
  192. swap(&mvoltWrite, &mvoltDisplay);
  193. }
  194. void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef * hadc)
  195. {
  196. UNUSED(hadc);
  197. uint32_t tmp_index = 0;
  198. for (tmp_index = 0; tmp_index < (ADC_CONVERTED_DATA_BUFFER_SIZE / 2); tmp_index++) {
  199. mvoltWrite[tmp_index] = __ADC_CALC_DATA_VOLTAGE(VDDA_APPLI, aADCxConvertedData[tmp_index]);
  200. }
  201. ubDmaTransferStatus = 0;
  202. }
  203. void HAL_ADC_ErrorCallback(ADC_HandleTypeDef * hadc)
  204. {
  205. UNUSED(hadc);
  206. Error_Handler();
  207. }
  208. static void app_draw_callback(Canvas * canvas, void *ctx)
  209. {
  210. UNUSED(ctx);
  211. switch(type){
  212. case m_time:
  213. {
  214. char buf[50];
  215. snprintf(buf, 50, "Time: %s", time);
  216. canvas_draw_str(canvas, 10, 10, buf);
  217. }
  218. break;
  219. case m_voltage:
  220. {
  221. char buf1[50];
  222. char buf2[50];
  223. char buf3[50];
  224. double max = 0.0;
  225. double min = 100.0;
  226. for(uint32_t x = 0; x < ADC_CONVERTED_DATA_BUFFER_SIZE; x++){
  227. if(mvoltDisplay[x] < min)
  228. min = mvoltDisplay[x];
  229. if(mvoltDisplay[x] > max)
  230. max = mvoltDisplay[x];
  231. }
  232. snprintf(buf1, 50, "Max: %.2fV", max/1000);
  233. canvas_draw_str(canvas, 10, 10, buf1);
  234. snprintf(buf2, 50, "Min: %.2fV", min/1000);
  235. canvas_draw_str(canvas, 10, 20, buf2);
  236. snprintf(buf3, 50, "Vpp: %.2fV", (max - min)/1000);
  237. canvas_draw_str(canvas, 10, 30, buf3);
  238. }
  239. break;
  240. default:
  241. break;
  242. }
  243. for(uint32_t x = 1; x < ADC_CONVERTED_DATA_BUFFER_SIZE; x++){
  244. uint32_t prev = 64 - (mvoltDisplay[x-1] / (VDDA_APPLI / 64));
  245. uint32_t cur = 64 - (mvoltDisplay[x] / (VDDA_APPLI / 64));
  246. canvas_draw_line(canvas, x - 1, prev, x, cur);
  247. }
  248. canvas_draw_line(canvas, 0, 0, 0, 63);
  249. canvas_draw_line(canvas, 0, 63, 128, 63);
  250. }
  251. static void app_input_callback(InputEvent * input_event, void *ctx)
  252. {
  253. furi_assert(ctx);
  254. FuriMessageQueue *event_queue = ctx;
  255. furi_message_queue_put(event_queue, input_event, FuriWaitForever);
  256. }
  257. void scope_scene_run_widget_callback(
  258. GuiButtonType result,
  259. InputType type,
  260. void* context) {
  261. ScopeApp* app = context;
  262. if(type == InputTypeShort) {
  263. view_dispatcher_send_custom_event(app->view_dispatcher, result);
  264. }
  265. }
  266. void scope_scene_run_on_enter(void* context) {
  267. ScopeApp* app = context;
  268. for (uint32_t i = 0; i < COUNT_OF(time_list); i++){
  269. if(time_list[i].time == app->time){
  270. time = time_list[i].str;
  271. break;
  272. }
  273. }
  274. pause = 0;
  275. type = app->measurement;
  276. __disable_irq();
  277. memcpy(ramVector, (uint32_t*)(FLASH_BASE | SCB->VTOR), sizeof(uint32_t) * TABLE_SIZE);
  278. SCB->VTOR = (uint32_t)ramVector;
  279. ramVector[27] = (uint32_t)DMA1_Channel1_IRQHandler;
  280. ramVector[34] = (uint32_t)ADC1_IRQHandler;
  281. ramVector[44] = (uint32_t)TIM2_IRQHandler;
  282. __enable_irq();
  283. HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
  284. FuriMessageQueue *event_queue = furi_message_queue_alloc(8, sizeof(InputEvent));
  285. uint32_t tmp_index_adc_converted_data = 0;
  286. MX_GPIO_Init();
  287. MX_DMA_Init();
  288. uint32_t period = (uint32_t)((double)HAL_RCC_GetPCLK1Freq() * app->time);
  289. MX_TIM2_Init(period);
  290. VREFBUF->CSR |= VREFBUF_CSR_ENVR;
  291. VREFBUF->CSR &= ~VREFBUF_CSR_HIZ;
  292. VREFBUF->CSR |= VREFBUF_CSR_VRS;
  293. while (!(VREFBUF->CSR & VREFBUF_CSR_VRR)) {
  294. };
  295. MX_ADC1_Init();
  296. for (tmp_index_adc_converted_data = 0;
  297. tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE;
  298. tmp_index_adc_converted_data++) {
  299. aADCxConvertedData[tmp_index_adc_converted_data] =
  300. VAR_CONVERTED_DATA_INIT_VALUE;
  301. aADCxConvertedData_Voltage_mVoltA[tmp_index_adc_converted_data] = 0;
  302. aADCxConvertedData_Voltage_mVoltB[tmp_index_adc_converted_data] = 0;
  303. }
  304. if (HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED) != HAL_OK) {
  305. Error_Handler();
  306. }
  307. if (HAL_TIM_Base_Start(&htim2) != HAL_OK) {
  308. Error_Handler();
  309. }
  310. if (HAL_ADC_Start_DMA(&hadc1, (uint32_t *) aADCxConvertedData, ADC_CONVERTED_DATA_BUFFER_SIZE) != HAL_OK) {
  311. Error_Handler();
  312. }
  313. ViewPort *view_port = view_port_alloc();
  314. view_port_draw_callback_set(view_port, app_draw_callback, view_port);
  315. view_port_input_callback_set(view_port, app_input_callback, event_queue);
  316. // Register view port in GUI
  317. Gui *gui = furi_record_open(RECORD_GUI);
  318. gui_add_view_port(gui, view_port, GuiLayerFullscreen);
  319. InputEvent event;
  320. bool running = true;
  321. while (running) {
  322. if (furi_message_queue_get(event_queue, &event, 100) == FuriStatusOk) {
  323. if ((event.type == InputTypePress) || (event.type == InputTypeRepeat)) {
  324. switch (event.key) {
  325. case InputKeyLeft:
  326. break;
  327. case InputKeyRight:
  328. break;
  329. case InputKeyUp:
  330. break;
  331. case InputKeyDown:
  332. break;
  333. case InputKeyOk:
  334. pause ^= 1;
  335. break;
  336. default:
  337. running = false;
  338. break;
  339. }
  340. }
  341. }
  342. view_port_update(view_port);
  343. }
  344. HAL_ADC_Stop_DMA (&hadc1);
  345. __disable_irq();
  346. SCB->VTOR = 0;
  347. __enable_irq();
  348. view_port_enabled_set(view_port, false);
  349. gui_remove_view_port(gui, view_port);
  350. view_port_free(view_port);
  351. furi_record_close(RECORD_GUI);
  352. scene_manager_previous_scene(app->scene_manager);
  353. submenu_set_selected_item(app->submenu, 0);
  354. }
  355. bool scope_scene_run_on_event(void* context, SceneManagerEvent event) {
  356. ScopeApp* app = context;
  357. bool consumed = false;
  358. UNUSED(app);
  359. UNUSED(event);
  360. return consumed;
  361. }
  362. void scope_scene_run_on_exit(void* context) {
  363. ScopeApp* app = context;
  364. // Clear views
  365. widget_reset(app->widget);
  366. }