scope.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379
  1. #include <furi.h>
  2. #include <furi_hal.h>
  3. #include <furi_hal_resources.h>
  4. #include <gui/gui.h>
  5. #include <input/input.h>
  6. #include <stdlib.h>
  7. #include <string.h>
  8. #include "stm32wbxx_hal.h"
  9. #include "stm32wbxx_hal_tim.h"
  10. #include "stm32wbxx_nucleo.h"
  11. #include "stm32wbxx_hal_adc.h"
  12. #include "scope_icons.h"
  13. #define DIGITAL_SCALE_12BITS ((uint32_t) 0xFFF)
  14. #define ADC_CONVERTED_DATA_BUFFER_SIZE ((uint32_t) 128)
  15. #define VAR_CONVERTED_DATA_INIT_VALUE (DIGITAL_SCALE_12BITS + 1)
  16. #define VAR_CONVERTED_DATA_INIT_VALUE_16BITS (0xFFFF + 1U)
  17. #define __ADC_CALC_DATA_VOLTAGE(__VREFANALOG_VOLTAGE__, __ADC_DATA__) \
  18. ((__ADC_DATA__) * (__VREFANALOG_VOLTAGE__) / DIGITAL_SCALE_12BITS)
  19. #define VDDA_APPLI ((uint32_t)3300)
  20. const uint32_t AHBPrescTable[16UL] = {1UL, 3UL, 5UL, 1UL, 1UL, 6UL, 10UL, 32UL, 2UL, 4UL, 8UL, 16UL, 64UL, 128UL, 256UL, 512UL};
  21. const uint32_t APBPrescTable[8UL] = {0UL, 0UL, 0UL, 0UL, 1UL, 2UL, 3UL, 4UL};
  22. const uint32_t MSIRangeTable[16UL] = {100000UL, 200000UL, 400000UL, 800000UL, 1000000UL, 2000000UL, \
  23. 4000000UL, 8000000UL, 16000000UL, 24000000UL, 32000000UL, 48000000UL, 0UL, 0UL, 0UL, 0UL}; /* 0UL values are incorrect cases */
  24. void Error_Handler()
  25. {
  26. while (1) {
  27. }
  28. }
  29. uint32_t timebase = 50;
  30. static ADC_HandleTypeDef hadc1;
  31. static DMA_HandleTypeDef hdma_adc1;
  32. static TIM_HandleTypeDef htim2;
  33. __IO uint16_t aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data (array of data) */
  34. __IO uint16_t aADCxConvertedData_Voltage_mVoltA[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* Value of voltage calculated from ADC conversion data (unit: mV) (array of data) */
  35. __IO uint16_t aADCxConvertedData_Voltage_mVoltB[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* Value of voltage calculated from ADC conversion data (unit: mV) (array of data) */
  36. __IO uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */
  37. __IO uint16_t *mvoltWrite = &aADCxConvertedData_Voltage_mVoltA[0];
  38. __IO uint16_t *mvoltDisplay = &aADCxConvertedData_Voltage_mVoltB[0];
  39. void HAL_ADC_MspInit(ADC_HandleTypeDef * hadc)
  40. {
  41. GPIO_InitTypeDef GPIO_InitStruct = { 0 };
  42. if (hadc->Instance == ADC1) {
  43. __HAL_RCC_ADC_CLK_ENABLE();
  44. __HAL_RCC_GPIOC_CLK_ENABLE();
  45. GPIO_InitStruct.Pin = GPIO_PIN_0;
  46. GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  47. GPIO_InitStruct.Pull = GPIO_NOPULL;
  48. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  49. hdma_adc1.Instance = DMA1_Channel1;
  50. hdma_adc1.Init.Request = DMA_REQUEST_ADC1;
  51. hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
  52. hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
  53. hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
  54. hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
  55. hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
  56. hdma_adc1.Init.Mode = DMA_CIRCULAR;
  57. hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
  58. if (HAL_DMA_Init(&hdma_adc1) != HAL_OK) {
  59. Error_Handler();
  60. }
  61. __HAL_LINKDMA(hadc, DMA_Handle, hdma_adc1);
  62. HAL_NVIC_SetPriority(ADC1_IRQn, 15, 0);
  63. HAL_NVIC_EnableIRQ(ADC1_IRQn);
  64. }
  65. }
  66. void HAL_ADC_MspDeInit(ADC_HandleTypeDef * hadc)
  67. {
  68. if (hadc->Instance == ADC1) {
  69. __HAL_RCC_ADC_CLK_DISABLE();
  70. HAL_GPIO_DeInit(GPIOC, GPIO_PIN_0);
  71. HAL_DMA_DeInit(hadc->DMA_Handle);
  72. HAL_NVIC_DisableIRQ(ADC1_IRQn);
  73. }
  74. }
  75. void HAL_TIM_Base_MspInit(TIM_HandleTypeDef * htim_base)
  76. {
  77. if (htim_base->Instance == TIM2) {
  78. __HAL_RCC_TIM2_CLK_ENABLE();
  79. HAL_NVIC_SetPriority(TIM2_IRQn, 15, 0);
  80. HAL_NVIC_EnableIRQ(TIM2_IRQn);
  81. }
  82. }
  83. void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef * htim_base)
  84. {
  85. if (htim_base->Instance == TIM2) {
  86. __HAL_RCC_TIM2_CLK_DISABLE();
  87. HAL_NVIC_DisableIRQ(TIM2_IRQn);
  88. }
  89. }
  90. void DMA1_Channel1_IRQHandler(void)
  91. {
  92. HAL_DMA_IRQHandler(&hdma_adc1);
  93. }
  94. void ADC1_IRQHandler(void)
  95. {
  96. HAL_ADC_IRQHandler(&hadc1);
  97. }
  98. void TIM2_IRQHandler(void)
  99. {
  100. HAL_TIM_IRQHandler(&htim2);
  101. }
  102. static void MX_ADC1_Init(void)
  103. {
  104. ADC_ChannelConfTypeDef sConfig = { 0 };
  105. hadc1.Instance = ADC1;
  106. hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  107. hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  108. hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  109. hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  110. hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  111. hadc1.Init.LowPowerAutoWait = DISABLE;
  112. hadc1.Init.ContinuousConvMode = DISABLE;
  113. hadc1.Init.NbrOfConversion = 1;
  114. hadc1.Init.DiscontinuousConvMode = DISABLE;
  115. hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T2_TRGO;
  116. hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  117. hadc1.Init.DMAContinuousRequests = ENABLE;
  118. hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  119. hadc1.Init.OversamplingMode = DISABLE;
  120. if (HAL_ADC_Init(&hadc1) != HAL_OK) {
  121. Error_Handler();
  122. }
  123. sConfig.Channel = ADC_CHANNEL_1;
  124. sConfig.Rank = ADC_REGULAR_RANK_1;
  125. sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLE_5; ////ADC_SAMPLETIME_640CYCLES_5;
  126. sConfig.SingleDiff = ADC_SINGLE_ENDED;
  127. sConfig.OffsetNumber = ADC_OFFSET_NONE;
  128. sConfig.Offset = 0;
  129. if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
  130. Error_Handler();
  131. }
  132. }
  133. static void MX_TIM2_Init(void)
  134. {
  135. uint32_t period = HAL_RCC_GetPCLK1Freq() / timebase;
  136. TIM_ClockConfigTypeDef sClockSourceConfig = { 0 };
  137. TIM_MasterConfigTypeDef sMasterConfig = { 0 };
  138. htim2.Instance = TIM2;
  139. htim2.Init.Prescaler = 1;
  140. htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  141. htim2.Init.Period = period;
  142. htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  143. htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  144. if (HAL_TIM_Base_Init(&htim2) != HAL_OK) {
  145. Error_Handler();
  146. }
  147. sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  148. if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) {
  149. Error_Handler();
  150. }
  151. sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  152. sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  153. if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) !=
  154. HAL_OK) {
  155. Error_Handler();
  156. }
  157. }
  158. static void MX_DMA_Init(void)
  159. {
  160. __HAL_RCC_DMAMUX1_CLK_ENABLE();
  161. __HAL_RCC_DMA1_CLK_ENABLE();
  162. HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 15, 0);
  163. HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  164. }
  165. static void MX_GPIO_Init(void)
  166. {
  167. __HAL_RCC_GPIOC_CLK_ENABLE();
  168. }
  169. void swap(__IO uint16_t **a, __IO uint16_t **b){
  170. __IO uint16_t *tmp;
  171. tmp = *a;
  172. *a = *b;
  173. *b = tmp;
  174. }
  175. void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef * hadc)
  176. {
  177. UNUSED(hadc);
  178. uint32_t tmp_index = 0;
  179. for (tmp_index = (ADC_CONVERTED_DATA_BUFFER_SIZE / 2);
  180. tmp_index < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index++) {
  181. mvoltWrite[tmp_index] =
  182. __ADC_CALC_DATA_VOLTAGE(VDDA_APPLI,
  183. aADCxConvertedData[tmp_index]);
  184. }
  185. ubDmaTransferStatus = 1;
  186. swap(&mvoltWrite, &mvoltDisplay);
  187. }
  188. void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef * hadc)
  189. {
  190. UNUSED(hadc);
  191. uint32_t tmp_index = 0;
  192. for (tmp_index = 0; tmp_index < (ADC_CONVERTED_DATA_BUFFER_SIZE / 2);
  193. tmp_index++) {
  194. mvoltWrite[tmp_index] =
  195. __ADC_CALC_DATA_VOLTAGE(VDDA_APPLI,
  196. aADCxConvertedData[tmp_index]);
  197. }
  198. ubDmaTransferStatus = 0;
  199. }
  200. void HAL_ADC_ErrorCallback(ADC_HandleTypeDef * hadc)
  201. {
  202. UNUSED(hadc);
  203. Error_Handler();
  204. }
  205. typedef struct {
  206. uint8_t x, y;
  207. } ImagePosition;
  208. static ImagePosition image_position = {.x = 0,.y = 0 };
  209. void assert_failed(uint8_t * file, uint32_t line)
  210. {
  211. UNUSED(file);
  212. UNUSED(line);
  213. while (1) {
  214. }
  215. }
  216. // Screen is 128x64 px
  217. static void app_draw_callback(Canvas * canvas, void *ctx)
  218. {
  219. UNUSED(ctx);
  220. char buf[50];
  221. snprintf(buf, 50, "Time: %.3f", (double)1.0/((double)timebase));
  222. canvas_draw_str(canvas, 10, 10, buf);
  223. for(uint32_t x = 1; x < ADC_CONVERTED_DATA_BUFFER_SIZE; x++){
  224. uint32_t prev = 64 - (mvoltDisplay[x-1] / (VDDA_APPLI / 64));
  225. uint32_t cur = 64 - (mvoltDisplay[x] / (VDDA_APPLI / 64));
  226. canvas_draw_line(canvas, x - 1, prev, x, cur);
  227. }
  228. canvas_draw_line(canvas, 0, 0, 0, 63);
  229. canvas_draw_line(canvas, 0, 63, 128, 63);
  230. }
  231. static void app_input_callback(InputEvent * input_event, void *ctx)
  232. {
  233. furi_assert(ctx);
  234. FuriMessageQueue *event_queue = ctx;
  235. furi_message_queue_put(event_queue, input_event, FuriWaitForever);
  236. }
  237. // ramVector found from - https://community.nxp.com/t5/i-MX-Processors/Relocate-vector-table-to-ITCM/m-p/1302304
  238. // the aligned aspect is key!
  239. #define TABLE_SIZE 79
  240. uint32_t ramVector[TABLE_SIZE+1] __attribute__((aligned(512)));
  241. int32_t scope_main(void *p)
  242. {
  243. __disable_irq();
  244. memcpy(ramVector, (uint32_t*)(FLASH_BASE | SCB->VTOR), sizeof(uint32_t) * TABLE_SIZE);
  245. SCB->VTOR = (uint32_t)ramVector;
  246. ramVector[27] = (uint32_t)DMA1_Channel1_IRQHandler;
  247. ramVector[34] = (uint32_t)ADC1_IRQHandler;
  248. ramVector[44] = (uint32_t)TIM2_IRQHandler;
  249. __enable_irq();
  250. UNUSED(p);
  251. HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
  252. FuriMessageQueue *event_queue =
  253. furi_message_queue_alloc(8, sizeof(InputEvent));
  254. uint32_t tmp_index_adc_converted_data = 0;
  255. MX_GPIO_Init();
  256. MX_DMA_Init();
  257. MX_TIM2_Init();
  258. VREFBUF->CSR |= VREFBUF_CSR_ENVR;
  259. VREFBUF->CSR &= ~VREFBUF_CSR_HIZ;
  260. VREFBUF->CSR |= VREFBUF_CSR_VRS;
  261. while (!(VREFBUF->CSR & VREFBUF_CSR_VRR)) {
  262. };
  263. MX_ADC1_Init();
  264. for (tmp_index_adc_converted_data = 0;
  265. tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE;
  266. tmp_index_adc_converted_data++) {
  267. aADCxConvertedData[tmp_index_adc_converted_data] =
  268. VAR_CONVERTED_DATA_INIT_VALUE;
  269. }
  270. if (HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED) != HAL_OK) {
  271. Error_Handler();
  272. }
  273. if (HAL_TIM_Base_Start(&htim2) != HAL_OK) {
  274. Error_Handler();
  275. }
  276. if (HAL_ADC_Start_DMA(&hadc1,
  277. (uint32_t *) aADCxConvertedData,
  278. ADC_CONVERTED_DATA_BUFFER_SIZE) != HAL_OK) {
  279. Error_Handler();
  280. }
  281. ViewPort *view_port = view_port_alloc();
  282. view_port_draw_callback_set(view_port, app_draw_callback, view_port);
  283. view_port_input_callback_set(view_port, app_input_callback,
  284. event_queue);
  285. // Register view port in GUI
  286. Gui *gui = furi_record_open(RECORD_GUI);
  287. gui_add_view_port(gui, view_port, GuiLayerFullscreen);
  288. InputEvent event;
  289. bool running = true;
  290. while (running) {
  291. if (furi_message_queue_get(event_queue, &event, 1) ==
  292. FuriStatusOk) {
  293. if ((event.type == InputTypePress)
  294. || (event.type == InputTypeRepeat)) {
  295. switch (event.key) {
  296. case InputKeyLeft:
  297. image_position.x -= 2;
  298. break;
  299. case InputKeyRight:
  300. image_position.x += 2;
  301. break;
  302. case InputKeyUp:
  303. image_position.y -= 2;
  304. break;
  305. case InputKeyDown:
  306. image_position.y += 2;
  307. break;
  308. default:
  309. running = false;
  310. break;
  311. }
  312. }
  313. }
  314. view_port_update(view_port);
  315. }
  316. HAL_ADC_Stop_DMA (&hadc1);
  317. __disable_irq();
  318. SCB->VTOR = 0;
  319. __enable_irq();
  320. UNUSED(p);
  321. view_port_enabled_set(view_port, false);
  322. gui_remove_view_port(gui, view_port);
  323. view_port_free(view_port);
  324. furi_message_queue_free(event_queue);
  325. furi_record_close(RECORD_GUI);
  326. return 0;
  327. }