mag_helpers.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652
  1. #include "mag_helpers.h"
  2. #define TAG "MagHelpers"
  3. #define GPIO_PIN_A &gpio_ext_pa6
  4. #define GPIO_PIN_B &gpio_ext_pa7
  5. #define GPIO_PIN_ENABLE &gpio_ext_pa4
  6. #define RFID_PIN_OUT &gpio_rfid_carrier_out
  7. #define ZERO_PREFIX 25 // n zeros prefix
  8. #define ZERO_BETWEEN 53 // n zeros between tracks
  9. #define ZERO_SUFFIX 25 // n zeros suffix
  10. // bits per char on a given track
  11. const uint8_t bitlen[] = {7, 5, 5};
  12. // char offset by track
  13. const int sublen[] = {32, 48, 48};
  14. uint8_t bit_dir = 0;
  15. uint8_t last_value = 2;
  16. void bitbang_raw(bool value, MagSetting* setting) {
  17. switch(setting->tx) {
  18. case MagTxStateRFID:
  19. furi_hal_gpio_write(RFID_PIN_OUT, value);
  20. break;
  21. case MagTxStateGPIO:
  22. furi_hal_gpio_write(GPIO_PIN_A, value);
  23. furi_hal_gpio_write(GPIO_PIN_B, !value);
  24. break;
  25. case MagTxStatePiezo:
  26. furi_hal_gpio_write(&gpio_speaker, value);
  27. break;
  28. case MagTxCC1101_434:
  29. case MagTxCC1101_868:
  30. if(last_value == 2 || value != (bool)last_value) {
  31. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  32. furi_delay_us(64);
  33. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  34. }
  35. break;
  36. default:
  37. break;
  38. }
  39. last_value = value;
  40. }
  41. void play_bit_rf(bool bit, MagSetting* setting) {
  42. bit_dir ^= 1;
  43. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  44. furi_delay_us(64);
  45. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  46. furi_delay_us(setting->us_clock);
  47. if(bit) {
  48. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  49. furi_delay_us(64);
  50. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  51. }
  52. furi_delay_us(setting->us_clock);
  53. furi_delay_us(setting->us_interpacket);
  54. }
  55. void play_bit_rfid(uint8_t send_bit, MagSetting* setting) {
  56. // internal TX over RFID coil
  57. bit_dir ^= 1;
  58. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  59. furi_delay_us(setting->us_clock);
  60. if(send_bit) {
  61. bit_dir ^= 1;
  62. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  63. }
  64. furi_delay_us(setting->us_clock);
  65. furi_delay_us(setting->us_interpacket);
  66. }
  67. void play_bit_gpio(uint8_t send_bit, MagSetting* setting) {
  68. // external TX over motor driver wired to PIN_A and PIN_B
  69. bit_dir ^= 1;
  70. furi_hal_gpio_write(GPIO_PIN_A, bit_dir);
  71. furi_hal_gpio_write(GPIO_PIN_B, !bit_dir);
  72. furi_delay_us(setting->us_clock);
  73. if(send_bit) {
  74. bit_dir ^= 1;
  75. furi_hal_gpio_write(GPIO_PIN_A, bit_dir);
  76. furi_hal_gpio_write(GPIO_PIN_B, !bit_dir);
  77. }
  78. furi_delay_us(setting->us_clock);
  79. furi_delay_us(setting->us_interpacket);
  80. }
  81. void play_bit_piezo(uint8_t send_bit, MagSetting* setting) {
  82. // TX testing with parasitic EMF from buzzer
  83. bit_dir ^= 1;
  84. furi_hal_gpio_write(&gpio_speaker, bit_dir);
  85. furi_delay_us(setting->us_clock);
  86. if(send_bit) {
  87. bit_dir ^= 1;
  88. furi_hal_gpio_write(&gpio_speaker, bit_dir);
  89. }
  90. furi_delay_us(setting->us_clock);
  91. furi_delay_us(setting->us_interpacket);
  92. }
  93. void play_bit_lf_p(uint8_t send_bit, MagSetting* setting) {
  94. // TX testing with parasitic EMF from buzzer
  95. bit_dir ^= 1;
  96. furi_hal_gpio_write(&gpio_speaker, bit_dir);
  97. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  98. furi_delay_us(setting->us_clock);
  99. if(send_bit) {
  100. bit_dir ^= 1;
  101. furi_hal_gpio_write(&gpio_speaker, bit_dir);
  102. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  103. }
  104. furi_delay_us(setting->us_clock);
  105. furi_delay_us(setting->us_interpacket);
  106. }
  107. bool play_bit(uint8_t send_bit, MagSetting* setting) {
  108. // Initialize configured TX method
  109. switch(setting->tx) {
  110. case MagTxStateRFID:
  111. play_bit_rfid(send_bit, setting);
  112. break;
  113. case MagTxStateGPIO:
  114. play_bit_gpio(send_bit, setting);
  115. break;
  116. case MagTxStatePiezo:
  117. play_bit_piezo(send_bit, setting);
  118. break;
  119. case MagTxStateLF_P:
  120. play_bit_lf_p(send_bit, setting);
  121. break;
  122. case MagTxCC1101_434:
  123. case MagTxCC1101_868:
  124. play_bit_rf(send_bit & 0x01, setting);
  125. break;
  126. default:
  127. return false;
  128. }
  129. return true;
  130. }
  131. void tx_init_rfid() {
  132. // initialize RFID system for TX
  133. furi_hal_power_enable_otg();
  134. furi_hal_ibutton_start_drive();
  135. furi_hal_ibutton_pin_low();
  136. // Initializing at GpioSpeedLow seems sufficient for our needs; no improvements seen by increasing speed setting
  137. // this doesn't seem to make a difference, leaving it in
  138. furi_hal_gpio_init(&gpio_rfid_data_in, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  139. furi_hal_gpio_write(&gpio_rfid_data_in, false);
  140. // false->ground RFID antenna; true->don't ground
  141. // skotopes (RFID dev) say normally you'd want RFID_PULL in high for signal forming, while modulating RFID_OUT
  142. // dunaevai135 had it low in their old code. Leaving low, as it doesn't seem to make a difference on my janky antenna
  143. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  144. furi_hal_gpio_write(&gpio_nfc_irq_rfid_pull, false);
  145. furi_hal_gpio_init(RFID_PIN_OUT, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  146. furi_delay_ms(300);
  147. }
  148. void tx_deinit_rfid() {
  149. // reset RFID system
  150. furi_hal_gpio_write(RFID_PIN_OUT, 0);
  151. furi_hal_rfid_pins_reset();
  152. furi_hal_power_disable_otg();
  153. }
  154. void tx_init_gpio() {
  155. furi_hal_power_enable_otg();
  156. // gpio_item_configure_all_pins(GpioModeOutputPushPull);
  157. furi_hal_gpio_init(GPIO_PIN_A, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  158. furi_hal_gpio_init(GPIO_PIN_B, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  159. furi_hal_gpio_init(GPIO_PIN_ENABLE, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  160. furi_hal_gpio_write(GPIO_PIN_ENABLE, 1);
  161. // had some issues with ~300; bumped higher temporarily
  162. furi_delay_ms(500);
  163. }
  164. void tx_deinit_gpio() {
  165. furi_hal_gpio_write(GPIO_PIN_A, 0);
  166. furi_hal_gpio_write(GPIO_PIN_B, 0);
  167. furi_hal_gpio_write(GPIO_PIN_ENABLE, 0);
  168. // set back to analog output mode?
  169. //gpio_item_configure_all_pins(GpioModeAnalog);
  170. furi_hal_power_disable_otg();
  171. }
  172. void tx_init_rf(int hz) {
  173. // presets and frequency will need some experimenting
  174. furi_hal_subghz_reset();
  175. furi_hal_subghz_load_preset(FuriHalSubGhzPresetOok650Async);
  176. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetGFSK9_99KbAsync);
  177. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetMSK99_97KbAsync);
  178. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev238Async);
  179. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev476Async);
  180. furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  181. furi_hal_subghz_set_frequency_and_path(hz);
  182. furi_hal_subghz_tx();
  183. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  184. }
  185. void tx_deinit_rf() {
  186. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  187. furi_hal_subghz_reset();
  188. furi_hal_subghz_idle();
  189. }
  190. void tx_init_piezo() {
  191. // TODO: some special mutex acquire procedure? c.f. furi_hal_speaker.c
  192. furi_hal_gpio_init(&gpio_speaker, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  193. // tossing in this delay arbitrarily to make it easier to see light blinking during TX
  194. //furi_delay_ms(100);
  195. }
  196. void tx_deinit_piezo() {
  197. // TODO: some special mutex release procedure?
  198. furi_hal_gpio_init(&gpio_speaker, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  199. }
  200. bool tx_init(MagSetting* setting) {
  201. // Initialize configured TX method
  202. switch(setting->tx) {
  203. case MagTxStateRFID:
  204. tx_init_rfid();
  205. break;
  206. case MagTxStateGPIO:
  207. tx_init_gpio();
  208. break;
  209. case MagTxStatePiezo:
  210. tx_init_piezo();
  211. break;
  212. case MagTxStateLF_P:
  213. tx_init_piezo();
  214. tx_init_rfid();
  215. break;
  216. case MagTxCC1101_434:
  217. tx_init_rf(434000000);
  218. break;
  219. case MagTxCC1101_868:
  220. tx_init_rf(868000000);
  221. break;
  222. default:
  223. return false;
  224. }
  225. return true;
  226. }
  227. bool tx_deinit(MagSetting* setting) {
  228. // Reset configured TX method
  229. switch(setting->tx) {
  230. case MagTxStateRFID:
  231. tx_deinit_rfid();
  232. break;
  233. case MagTxStateGPIO:
  234. tx_deinit_gpio();
  235. break;
  236. case MagTxStatePiezo:
  237. tx_deinit_piezo();
  238. break;
  239. case MagTxStateLF_P:
  240. tx_deinit_piezo();
  241. tx_deinit_rfid();
  242. break;
  243. case MagTxCC1101_434:
  244. case MagTxCC1101_868:
  245. tx_deinit_rf();
  246. break;
  247. default:
  248. return false;
  249. }
  250. return true;
  251. }
  252. // due for deprecation
  253. void track_to_bits(uint8_t* bit_array, const char* track_data, uint8_t track_index) {
  254. // convert individual track to bits
  255. int tmp, crc, lrc = 0;
  256. int i = 0;
  257. // convert track data to bits
  258. for(uint8_t j = 0; track_data[j] != '\0'; j++) {
  259. crc = 1;
  260. tmp = track_data[j] - sublen[track_index];
  261. for(uint8_t k = 0; k < bitlen[track_index] - 1; k++) {
  262. crc ^= tmp & 1;
  263. lrc ^= (tmp & 1) << k;
  264. bit_array[i] = tmp & 1;
  265. i++;
  266. tmp >>= 1;
  267. }
  268. bit_array[i] = crc;
  269. i++;
  270. }
  271. FURI_LOG_D(TAG, "LRC");
  272. // finish calculating final "byte" (LRC)
  273. tmp = lrc;
  274. crc = 1;
  275. for(uint8_t j = 0; j < bitlen[track_index] - 1; j++) {
  276. crc ^= tmp & 1;
  277. bit_array[i] = tmp & 1;
  278. i++;
  279. tmp >>= 1;
  280. }
  281. bit_array[i] = crc;
  282. i++;
  283. // My makeshift end sentinel. All other values 0/1
  284. bit_array[i] = 2;
  285. i++;
  286. // Log the output (messy but works)
  287. //char output[500] = {0x0};
  288. /*FuriString* tmp_str;
  289. tmp_str = furi_string_alloc();
  290. for(uint8_t j = 0; bit_array[j] != 2; j++) {
  291. furi_string_cat_printf(tmp_str, "%d", (bit_array[j] & 1));
  292. //strcat(output, furi_string_get_cstr(tmp_str));
  293. }
  294. FURI_LOG_D(TAG, "Track %d: %s", (track_index + 1), track_data);
  295. FURI_LOG_D(TAG, "Track %d: %s", (track_index + 1), furi_string_get_cstr(tmp_str));*/
  296. //furi_string_free(tmp_str);
  297. }
  298. void mag_spoof_bitwise(Mag* mag) {
  299. MagSetting* setting = mag->setting;
  300. FuriString* ft1 = mag->mag_dev->dev_data.track[0].str;
  301. FuriString* ft2 = mag->mag_dev->dev_data.track[1].str;
  302. char* data1;
  303. char* data2;
  304. data1 = malloc(furi_string_size(ft1) + 1);
  305. data2 = malloc(furi_string_size(ft2) + 1);
  306. strncpy(data1, furi_string_get_cstr(ft1), furi_string_size(ft1));
  307. strncpy(data2, furi_string_get_cstr(ft2), furi_string_size(ft2));
  308. if(furi_log_get_level() >= FuriLogLevelDebug) {
  309. debug_msr_string(data1, BITS_TRACK1, OFFSET_TRACK1);
  310. debug_msr_string(data2, BITS_TRACK2, OFFSET_TRACK2);
  311. }
  312. uint8_t bits_t1_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  313. uint8_t bits_t1_manchester[128] = {0x00}; // twice the above
  314. uint16_t bits_t1_count = msr_encode(
  315. data1, (uint8_t*)bits_t1_manchester, (uint8_t*)bits_t1_raw, BITS_TRACK1, OFFSET_TRACK1);
  316. uint8_t bits_t2_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  317. uint8_t bits_t2_manchester[128] = {0x00}; // twice the above
  318. uint16_t bits_t2_count = msr_encode(
  319. data2, (uint8_t*)bits_t2_manchester, (uint8_t*)bits_t2_raw, BITS_TRACK2, OFFSET_TRACK2);
  320. if(furi_log_get_level() >= FuriLogLevelDebug) {
  321. printf("Manchester bitcount: T1: %d, T2: %d\r\n", bits_t1_count, bits_t2_count);
  322. printf("T1 raw: ");
  323. for(int i = 0; i < bits_t1_count / 16; i++) printf("%02x ", bits_t1_raw[i]);
  324. printf("\r\n");
  325. printf("T1 manchester: ");
  326. for(int i = 0; i < bits_t1_count / 8; i++) printf("%02x ", bits_t1_manchester[i]);
  327. printf("\r\n");
  328. printf("T2 raw: ");
  329. for(int i = 0; i < bits_t2_count / 16; i++) printf("%02x ", bits_t2_raw[i]);
  330. printf("\r\n");
  331. printf("T2 manchester: ");
  332. for(int i = 0; i < bits_t2_count / 8; i++) printf("%02x ", bits_t2_manchester[i]);
  333. printf("\r\n");
  334. printf("Bitwise emulation done\r\n\r\n");
  335. }
  336. if(!tx_init(setting)) return;
  337. last_value = 2;
  338. FURI_CRITICAL_ENTER();
  339. bool bit = false;
  340. if((setting->track == MagTrackStateAll))
  341. for(uint16_t i = 0; i < ZERO_PREFIX; i++) {
  342. bit ^= 0xFF;
  343. bitbang_raw(bit, setting);
  344. furi_delay_us(setting->us_clock * 2);
  345. }
  346. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateOne))
  347. for(uint16_t i = 0; i < bits_t1_count; i++) {
  348. uint8_t byte = i / 8;
  349. uint8_t bitmask = 1 << (7 - (i % 8));
  350. /* Bits are stored in their arrays like on a card (LSB first). This is not how usually bits are stored in a
  351. * byte, with the MSB first. the var bitmask creates the pattern to iterate through each bit, LSB first, like so
  352. * 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x80... masking bits one by one from the current byte
  353. *
  354. * I've chosen this LSB approach since bits and bytes are hard enough to visualize with the 5/8 and 7/8 encoding
  355. * MSR uses. It's a biiit more complicated to process, but visualizing it with printf or a debugger is
  356. * infinitely easier
  357. *
  358. * Encoding the following pairs of 5 bits as 5/8: A1234 B1234 C1234 D1234
  359. * using this LSB format looks like: A1234B12 34C1234D 12340000
  360. * using the MSB format, looks like: 21B4321A D4321C43 00004321
  361. * this means reading each byte backwards when printing/debugging, and the jumping 16 bits ahead, reading 8 more
  362. * bits backward, jumping 16 more bits ahead.
  363. *
  364. * I find this much more convenient for debugging, with the tiny incovenience of reading the bits in reverse
  365. * order. Thus, the reason for the bitmask above
  366. */
  367. bit = !!(bits_t1_manchester[byte] & bitmask);
  368. // TODO: reimplement timing delays. Replace fixed furi_hal_cortex_delay_us to wait instead to a specific value
  369. // for DWT->CYCCNT. Note timer is aliased to 64us as per
  370. // #define FURI_HAL_CORTEX_INSTRUCTIONS_PER_MICROSECOND (SystemCoreClock / 1000000) | furi_hal_cortex.c
  371. bitbang_raw(bit, setting);
  372. furi_delay_us(setting->us_clock);
  373. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  374. }
  375. if((setting->track == MagTrackStateAll))
  376. for(uint16_t i = 0; i < ZERO_BETWEEN; i++) {
  377. bit ^= 0xFF;
  378. bitbang_raw(bit, setting);
  379. furi_delay_us(setting->us_clock * 2);
  380. }
  381. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateTwo))
  382. for(uint16_t i = 0; i < bits_t2_count; i++) {
  383. uint16_t j = bits_t2_count - i - 1;
  384. uint8_t byte = j / 8;
  385. uint8_t bitmask = 1 << (7 - (j % 8));
  386. bool bit = !!(bits_t2_manchester[byte] & bitmask);
  387. bitbang_raw(bit, setting);
  388. furi_delay_us(setting->us_clock);
  389. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  390. }
  391. if((setting->track == MagTrackStateAll))
  392. for(uint16_t i = 0; i < ZERO_SUFFIX; i++) {
  393. bit ^= 0xFF;
  394. bitbang_raw(bit, setting);
  395. furi_delay_us(setting->us_clock * 2);
  396. }
  397. FURI_CRITICAL_EXIT();
  398. free(data1);
  399. free(data2);
  400. tx_deinit(setting);
  401. }
  402. // due for deprecation
  403. void mag_spoof(Mag* mag) {
  404. MagSetting* setting = mag->setting;
  405. // precompute tracks (WIP; ignores reverse and 3rd track)
  406. // likely will be reworked to antirez's bitmap method anyway...
  407. const char* data1 = furi_string_get_cstr(mag->mag_dev->dev_data.track[0].str);
  408. const char* data2 = furi_string_get_cstr(mag->mag_dev->dev_data.track[1].str);
  409. uint8_t bit_array1[2 * (strlen(data1) * bitlen[0]) + 1];
  410. uint8_t bit_array2[2 * (strlen(data2) * bitlen[1]) + 1];
  411. track_to_bits(bit_array1, data1, 0);
  412. track_to_bits(bit_array2, data2, 1);
  413. bool spoofed = false;
  414. do {
  415. // Initialize configured TX method
  416. if(!tx_init(setting)) break;
  417. // Critical timing section (need to eliminate ifs? does this impact timing?)
  418. FURI_CRITICAL_ENTER();
  419. // Prefix of zeros
  420. for(uint16_t i = 0; i < ZERO_PREFIX; i++) {
  421. if(!play_bit(0, setting)) break;
  422. }
  423. // Track 1
  424. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateOne)) {
  425. for(uint16_t i = 0; bit_array1[i] != 2; i++) {
  426. if(!play_bit((bit_array1[i] & 1), setting)) break;
  427. }
  428. }
  429. // Zeros between tracks
  430. if(setting->track == MagTrackStateAll) {
  431. for(uint16_t i = 0; i < ZERO_BETWEEN; i++) {
  432. if(!play_bit(0, setting)) break;
  433. }
  434. }
  435. // Track 2 (TODO: Reverse track)
  436. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateTwo)) {
  437. for(uint16_t i = 0; bit_array2[i] != 2; i++) {
  438. if(!play_bit((bit_array2[i] & 1), setting)) break;
  439. }
  440. }
  441. // Suffix of zeros
  442. for(uint16_t i = 0; i < ZERO_SUFFIX; i++) {
  443. if(!play_bit(0, setting)) break;
  444. }
  445. FURI_CRITICAL_EXIT();
  446. // Reset configured TX method
  447. if(!tx_deinit(setting)) break;
  448. spoofed = true;
  449. } while(0);
  450. UNUSED(spoofed);
  451. /*if(!spoofed) {
  452. // error handling?
  453. // cleanup?
  454. }*/
  455. }
  456. uint16_t add_bit(bool value, uint8_t* out, uint16_t count) {
  457. uint8_t bit = count % 8;
  458. uint8_t byte = count / 8;
  459. if(value) {
  460. out[byte] |= 0x01;
  461. }
  462. if(bit < 7) out[byte] <<= 1;
  463. return count + 1;
  464. }
  465. uint16_t add_bit_manchester(bool value, uint8_t* out, uint16_t count) {
  466. static bool toggle = 0;
  467. toggle ^= 0x01;
  468. count = add_bit(toggle, out, count);
  469. if(value) toggle ^= 0x01;
  470. count = add_bit(toggle, out, count);
  471. return count;
  472. }
  473. uint16_t msr_encode(
  474. char* data,
  475. uint8_t* out_manchester,
  476. uint8_t* out_raw,
  477. uint8_t track_bits,
  478. uint8_t track_ascii_offset) {
  479. /*
  480. * track_bits - the number of raw (data) bits on the track. on ISO cards, that's 7 for track 1, or 5 for 2/3 - this is samy's bitlen
  481. * - this count includes the parity bit
  482. * track_ascii_offset - how much the ascii values are offset. track 1 makes space (ascii 32) become data 0x00,
  483. * - tracks 2/3 make ascii "0" become data 0x00 - this is samy's sublen
  484. *
  485. */
  486. uint16_t raw_bits_count = 0;
  487. uint16_t output_count = 0;
  488. int tmp, crc, lrc = 0;
  489. for(int i = 0; i < PREFIX_NUM_ZEROES; i++) {
  490. output_count = add_bit_manchester(0, out_manchester, output_count);
  491. raw_bits_count = add_bit(0, out_raw, raw_bits_count);
  492. }
  493. for(int i = 0; *(data + i) != 0; i++) {
  494. crc = 1;
  495. tmp = *(data + i) - track_ascii_offset;
  496. for(int j = 0; j < track_bits - 1; j++) {
  497. crc ^= tmp & 1;
  498. lrc ^= (tmp & 1) << j;
  499. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  500. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  501. tmp >>= 1;
  502. }
  503. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  504. output_count = add_bit_manchester(crc, out_manchester, output_count);
  505. }
  506. // LRC byte
  507. tmp = lrc;
  508. crc = 1;
  509. for(int j = 0; j < track_bits - 1; j++) {
  510. crc ^= tmp & 0x01;
  511. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  512. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  513. tmp >>= 1;
  514. }
  515. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  516. output_count = add_bit_manchester(crc, out_manchester, output_count);
  517. return output_count;
  518. }
  519. void debug_msr_string(char* data, uint8_t track_bits, uint8_t track_ascii_offset) {
  520. uint8_t bits_raw[64] = {0}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  521. uint8_t bits_manchester[128] = {0}; // twice the above
  522. int numbits = 0;
  523. printf("Encoding [%s] with %d bits\r\n", data, track_bits);
  524. numbits = msr_encode(
  525. data, (uint8_t*)bits_manchester, (uint8_t*)bits_raw, track_bits, track_ascii_offset);
  526. printf("Got %d bits\r\n", numbits);
  527. printf("Raw byte stream: ");
  528. for(int i = 0; i < numbits / 8 / 2; i++) {
  529. printf("%02x", bits_raw[i]);
  530. if(i % 4 == 3) printf(" ");
  531. }
  532. printf("\r\n");
  533. printf("Bits ");
  534. int space_counter = 0;
  535. for(int i = 0; i < numbits / 2; i++) {
  536. if(i < PREFIX_NUM_ZEROES) {
  537. printf("X");
  538. continue;
  539. } else if(i == PREFIX_NUM_ZEROES) {
  540. printf(" ");
  541. space_counter = 0;
  542. }
  543. printf("%01x", (bits_raw[i / 8] & (1 << (7 - (i % 8)))) != 0);
  544. if((space_counter) % track_bits == track_bits - 1) printf(" ");
  545. space_counter++;
  546. }
  547. printf("\r\n");
  548. printf("Manchester encoded, byte stream: ");
  549. for(int i = 0; i < numbits / 8; i++) {
  550. printf("%02x", bits_manchester[i]);
  551. if(i % 4 == 3) printf(" ");
  552. }
  553. printf("\r\n\r\n");
  554. }