irda.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303
  1. #include "flipper.h"
  2. #include "flipper_v2.h"
  3. #include "irda_nec.h"
  4. #include "irda_samsung.h"
  5. #include "irda_protocols.h"
  6. typedef enum {
  7. EventTypeTick,
  8. EventTypeKey,
  9. } EventType;
  10. typedef struct {
  11. union {
  12. InputEvent input;
  13. } value;
  14. EventType type;
  15. } AppEvent;
  16. typedef struct {
  17. uint8_t mode_id;
  18. uint16_t carrier_freq;
  19. uint8_t carrier_duty_cycle_id;
  20. uint8_t nec_packet_id;
  21. uint8_t samsung_packet_id;
  22. } State;
  23. typedef void (*ModeInput)(AppEvent*, State*);
  24. typedef void (*ModeRender)(CanvasApi*, State*);
  25. void input_carrier(AppEvent* event, State* state);
  26. void render_carrier(CanvasApi* canvas, State* state);
  27. void input_nec(AppEvent* event, State* state);
  28. void render_nec(CanvasApi* canvas, State* state);
  29. void render_carrier(CanvasApi* canvas, State* state);
  30. void input_samsung(AppEvent* event, State* state);
  31. void render_samsung(CanvasApi* canvas, State* state);
  32. typedef struct {
  33. ModeRender render;
  34. ModeInput input;
  35. } Mode;
  36. typedef struct {
  37. uint8_t addr;
  38. uint8_t data;
  39. } NecPacket;
  40. typedef struct {
  41. uint16_t addr;
  42. uint16_t data;
  43. } SamsungPacket;
  44. const Mode modes[] = {
  45. {.render = render_carrier, .input = input_carrier},
  46. {.render = render_nec, .input = input_nec},
  47. {.render = render_samsung, .input = input_samsung},
  48. };
  49. const NecPacket nec_packets[] = {
  50. {.addr = 0xFF, .data = 0x11},
  51. {.addr = 0xF7, .data = 0x59},
  52. {.addr = 0xFF, .data = 0x01},
  53. {.addr = 0xFF, .data = 0x10},
  54. {.addr = 0xFF, .data = 0x15},
  55. {.addr = 0xFF, .data = 0x25},
  56. {.addr = 0xFF, .data = 0xF0},
  57. };
  58. const SamsungPacket samsung_packets[] = {
  59. {.addr = 0xE0E, .data = 0xF30C},
  60. {.addr = 0xE0E, .data = 0xF40D},
  61. {.addr = 0xE0E, .data = 0xF50E},
  62. };
  63. const float duty_cycles[] = {0.1, 0.25, 0.333, 0.5, 1.0};
  64. void render_carrier(CanvasApi* canvas, State* state) {
  65. canvas->set_font(canvas, FontSecondary);
  66. canvas->draw_str(canvas, 2, 25, "carrier mode >");
  67. canvas->draw_str(canvas, 2, 37, "? /\\ freq | \\/ duty cycle");
  68. {
  69. char buf[24];
  70. sprintf(buf, "frequency: %d Hz", state->carrier_freq);
  71. canvas->draw_str(canvas, 2, 50, buf);
  72. sprintf(
  73. buf,
  74. "duty cycle: %d/1000",
  75. (uint32_t)(duty_cycles[state->carrier_duty_cycle_id] * 1000));
  76. canvas->draw_str(canvas, 2, 62, buf);
  77. }
  78. }
  79. void render_nec(CanvasApi* canvas, State* state) {
  80. canvas->set_font(canvas, FontSecondary);
  81. canvas->draw_str(canvas, 2, 25, "< nec mode >");
  82. canvas->draw_str(canvas, 2, 37, "? /\\ \\/ packet");
  83. {
  84. char buf[24];
  85. sprintf(
  86. buf,
  87. "packet: %02X %02X",
  88. nec_packets[state->nec_packet_id].addr,
  89. nec_packets[state->nec_packet_id].data);
  90. canvas->draw_str(canvas, 2, 50, buf);
  91. }
  92. }
  93. void render_samsung(CanvasApi* canvas, State* state) {
  94. canvas->set_font(canvas, FontSecondary);
  95. canvas->draw_str(canvas, 2, 25, "< samsung32 mode");
  96. canvas->draw_str(canvas, 2, 37, "? /\\ \\/ packet");
  97. {
  98. char buf[24];
  99. sprintf(
  100. buf,
  101. "packet: %02X %02X",
  102. samsung_packets[state->samsung_packet_id].addr,
  103. samsung_packets[state->samsung_packet_id].data);
  104. canvas->draw_str(canvas, 2, 50, buf);
  105. }
  106. }
  107. void input_carrier(AppEvent* event, State* state) {
  108. if(event->value.input.input == InputOk) {
  109. if(event->value.input.state) {
  110. hal_pwm_set(
  111. duty_cycles[state->carrier_duty_cycle_id],
  112. state->carrier_freq,
  113. &htim2,
  114. TIM_CHANNEL_4);
  115. } else {
  116. hal_pwm_stop(&htim2, TIM_CHANNEL_4);
  117. }
  118. }
  119. if(event->value.input.state && event->value.input.input == InputUp) {
  120. if(state->carrier_freq < 45000) {
  121. state->carrier_freq += 1000;
  122. } else {
  123. state->carrier_freq = 33000;
  124. }
  125. }
  126. if(event->value.input.state && event->value.input.input == InputDown) {
  127. uint8_t duty_cycles_count = sizeof(duty_cycles) / sizeof(duty_cycles[0]);
  128. if(state->carrier_duty_cycle_id < (duty_cycles_count - 1)) {
  129. state->carrier_duty_cycle_id++;
  130. } else {
  131. state->carrier_duty_cycle_id = 0;
  132. }
  133. }
  134. }
  135. void input_nec(AppEvent* event, State* state) {
  136. uint8_t packets_count = sizeof(nec_packets) / sizeof(nec_packets[0]);
  137. if(event->value.input.input == InputOk) {
  138. if(event->value.input.state) {
  139. vTaskSuspendAll();
  140. ir_nec_send(
  141. nec_packets[state->nec_packet_id].addr, nec_packets[state->nec_packet_id].data);
  142. xTaskResumeAll();
  143. }
  144. }
  145. if(event->value.input.state && event->value.input.input == InputUp) {
  146. if(state->nec_packet_id < (packets_count - 1)) {
  147. state->nec_packet_id++;
  148. } else {
  149. state->nec_packet_id = 0;
  150. }
  151. }
  152. if(event->value.input.state && event->value.input.input == InputDown) {
  153. if(state->nec_packet_id > 0) {
  154. state->nec_packet_id--;
  155. } else {
  156. state->nec_packet_id = packets_count - 1;
  157. }
  158. }
  159. }
  160. void input_samsung(AppEvent* event, State* state) {
  161. uint8_t packets_count = sizeof(samsung_packets) / sizeof(samsung_packets[0]);
  162. if(event->value.input.input == InputOk) {
  163. if(event->value.input.state) {
  164. vTaskSuspendAll();
  165. ir_samsung_send(
  166. samsung_packets[state->samsung_packet_id].addr,
  167. samsung_packets[state->samsung_packet_id].data);
  168. xTaskResumeAll();
  169. }
  170. }
  171. if(event->value.input.state && event->value.input.input == InputUp) {
  172. if(state->samsung_packet_id < (packets_count - 1)) {
  173. state->samsung_packet_id++;
  174. } else {
  175. state->samsung_packet_id = 0;
  176. }
  177. }
  178. if(event->value.input.state && event->value.input.input == InputDown) {
  179. if(state->samsung_packet_id > 0) {
  180. state->samsung_packet_id--;
  181. } else {
  182. state->samsung_packet_id = packets_count - 1;
  183. }
  184. }
  185. }
  186. static void render_callback(CanvasApi* canvas, void* ctx) {
  187. State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25);
  188. canvas->clear(canvas);
  189. canvas->set_color(canvas, ColorBlack);
  190. canvas->set_font(canvas, FontPrimary);
  191. canvas->draw_str(canvas, 2, 12, "irda test");
  192. modes[state->mode_id].render(canvas, state);
  193. release_mutex((ValueMutex*)ctx, state);
  194. }
  195. static void input_callback(InputEvent* input_event, void* ctx) {
  196. osMessageQueueId_t event_queue = (QueueHandle_t)ctx;
  197. AppEvent event;
  198. event.type = EventTypeKey;
  199. event.value.input = *input_event;
  200. osMessageQueuePut(event_queue, &event, 0, 0);
  201. }
  202. void irda(void* p) {
  203. osMessageQueueId_t event_queue = osMessageQueueNew(1, sizeof(AppEvent), NULL);
  204. State _state;
  205. uint8_t mode_count = sizeof(modes) / sizeof(modes[0]);
  206. uint8_t duty_cycles_count = sizeof(duty_cycles) / sizeof(duty_cycles[0]);
  207. _state.carrier_duty_cycle_id = duty_cycles_count - 2;
  208. _state.carrier_freq = 36000;
  209. _state.mode_id = 0;
  210. _state.nec_packet_id = 0;
  211. _state.samsung_packet_id = 0;
  212. ValueMutex state_mutex;
  213. if(!init_mutex(&state_mutex, &_state, sizeof(State))) {
  214. printf("cannot create mutex\n");
  215. furiac_exit(NULL);
  216. }
  217. Widget* widget = widget_alloc();
  218. widget_draw_callback_set(widget, render_callback, &state_mutex);
  219. widget_input_callback_set(widget, input_callback, event_queue);
  220. // Open GUI and register widget
  221. GuiApi* gui = (GuiApi*)furi_open("gui");
  222. if(gui == NULL) {
  223. printf("gui is not available\n");
  224. furiac_exit(NULL);
  225. }
  226. gui->add_widget(gui, widget, GuiLayerFullscreen);
  227. AppEvent event;
  228. while(1) {
  229. osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, osWaitForever);
  230. State* state = (State*)acquire_mutex_block(&state_mutex);
  231. if(event_status == osOK) {
  232. if(event.type == EventTypeKey) {
  233. // press events
  234. if(event.value.input.state && event.value.input.input == InputBack) {
  235. printf("[irda] bye!\n");
  236. // TODO remove all widgets create by app
  237. widget_enabled_set(widget, false);
  238. furiac_exit(NULL);
  239. }
  240. if(event.value.input.state && event.value.input.input == InputLeft) {
  241. if(state->mode_id > 0) {
  242. state->mode_id--;
  243. }
  244. }
  245. if(event.value.input.state && event.value.input.input == InputRight) {
  246. if(state->mode_id < (mode_count - 1)) {
  247. state->mode_id++;
  248. }
  249. }
  250. modes[state->mode_id].input(&event, state);
  251. }
  252. } else {
  253. // event timeout
  254. }
  255. release_mutex(&state_mutex, state);
  256. widget_update(widget);
  257. }
  258. }