| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336 |
- #include "../app.h"
- /* Copyright (C) 2023 Salvatore Sanfilippo -- All Rights Reserved
- * See the LICENSE file for information about the license.
- *
- * ----------------------------------------------------------------------------
- * The "unknown" decoder fires as the last one, once we are sure no other
- * decoder was able to identify the signal. The goal is to detect the
- * preamble and line code used in the received signal, then turn the
- * decoded bits into bytes.
- *
- * The techniques used for the detection are described in the comments
- * below.
- * ----------------------------------------------------------------------------
- */
- /* Scan the signal bitmap looking for a PWM modulation. In this case
- * for PWM we are referring to two exact patterns of high and low
- * signal (each bit in the bitmap is worth the smallest gap/pulse duration
- * we detected) that repeat each other in a given segment of the message.
- *
- * This modulation is quite common, for instance sometimes zero and
- * one are rappresented by a 700us pulse followed by 350 gap,
- * and 350us pulse followed by a 700us gap. So the signal bitmap received
- * by the decoder would contain 110 and 100 symbols.
- *
- * The way this function work is commented inline.
- *
- * The function returns the number of consecutive symbols found, having
- * a symbol length of 'symlen' (3 in the above example), and stores
- * in *s1i the offset of the first symbol found, and in *s2i the offset
- * of the second symbol. The function can't tell which is one and which
- * zero. */
- static uint32_t find_pwm(uint8_t *bits, uint32_t numbytes, uint32_t numbits,
- uint32_t symlen, uint32_t *s1i, uint32_t *s2i)
- {
- uint32_t best_count = 0; /* Max number of symbols found in this try. */
- uint32_t best_idx1 = 0; /* First symbol offset of longest sequence found.
- * This is also the start sequence offset. */
- uint32_t best_idx2 = 0; /* Second symbol offset. */
- /* Try all the possible symbol offsets that are less of our
- * symbol len. This is likely not really useful but we take
- * a conservative approach. Because if have have, for instance,
- * repeating symbols "100" and "110", they will form a sequence
- * that is choerent at different offsets, but out-of-sync.
- *
- * Anyway at the end of the function we try to fix the sync. */
- for (uint32_t off = 0; off < symlen; off++) {
- uint32_t c = 0; // Number of contiguous symbols found.
- uint32_t c1 = 0, c2 = 0; // Occurrences of first/second symbol.
- *s1i = off; // Assume we start at one symbol boundaty.
- *s2i = UINT32_MAX; // Second symbol first index still unknown.
- uint32_t next = off;
- /* We scan the whole bitmap in one pass, resetting the state
- * each time we find a pattern that is not one of the two
- * symbols we found so far. */
- while(next < numbits-symlen) {
- bool match1 = bitmap_match_bitmap(bits,numbytes,next,
- bits,numbytes,*s1i,
- symlen);
- if (!match1 && *s2i == UINT32_MAX) {
- /* It's not the first sybol. We don't know how the
- * second look like. Assume we found an occurrence of
- * the second symbol. */
- *s2i = next;
- }
- bool match2 = bitmap_match_bitmap(bits,numbytes,next,
- bits,numbytes,*s2i,
- symlen);
- /* One or the other should match. */
- if (match1 || match2) {
- c++;
- if (match1) c1++;
- if (match2) c2++;
- if (c > best_count &&
- c1 >= best_count/5 && // Require enough presence of both
- c2 >= best_count/5) // zero and one.
- {
- best_count = c;
- best_idx1 = *s1i;
- best_idx2 = *s2i;
- }
- next += symlen;
- } else {
- /* No match. Continue resetting the signal info. */
- c = 0; // Start again to count contiguous symbols.
- c1 = 0;
- c2 = 0;
- *s1i = next; // First symbol always at start.
- *s2i = UINT32_MAX; // Second symbol unknown.
- }
- }
- }
- /* We don't know if we are really synchronized with the bits at this point.
- * For example if zero bit is 100 and one bit is 110 in a specific
- * line code, our detector could randomly believe it's 001 and 101.
- * However PWD line codes normally start with a pulse in both symbols.
- * If that is the case, let's align. */
- uint32_t shift;
- for (shift = 0; shift < symlen; shift++) {
- if (bitmap_get(bits,numbytes,best_idx1+shift) &&
- bitmap_get(bits,numbytes,best_idx2+shift)) break;
- }
- if (shift != symlen) {
- best_idx1 += shift;
- best_idx2 += shift;
- }
- *s1i = best_idx1;
- *s2i = best_idx2;
- return best_count;
- }
- /* Find the longest sequence that looks like Manchester coding.
- *
- * Manchester coding requires each pairs of bits to be either
- * 01 or 10. We'll have to try odd and even offsets to be
- * sure to find it.
- *
- * Note that this will also detect differential Manchester, but
- * will report it as Manchester. I can't think of any way to
- * distinguish between the two line codes, because shifting them
- * one symbol will make one to look like the other.
- *
- * Only option could be to decode the message with both line
- * codes and use statistical properties (common byte values)
- * to determine what's more likely, but this looks very fragile.
- *
- * Fortunately differential Manchester is more rarely used,
- * so we can assume Manchester most of the times. Yet we are left
- * with the indetermination about zero being pulse-gap or gap-pulse
- * or the other way around.
- *
- * If the 'only_raising' parameter is true, the function detects
- * only sequences going from gap to pulse: this is useful in order
- * to locate preambles of alternating gaps and pulses. */
- static uint32_t find_alternating_bits(uint8_t *bits, uint32_t numbytes,
- uint32_t numbits, uint32_t *start, bool only_raising)
- {
- uint32_t best_count = 0; // Max number of symbols found
- uint32_t best_off = 0; // Max symbols start offset.
- for (int odd = 0; odd < 2; odd++) {
- uint32_t count = 0; // Symbols found so far
- uint32_t start_off = odd;
- uint32_t j = odd;
- while (j < numbits-1) {
- bool bit1 = bitmap_get(bits,numbytes,j);
- bool bit2 = bitmap_get(bits,numbytes,j+1);
- if ((!only_raising && bit1 != bit2) ||
- (only_raising && !bit1 && bit2))
- {
- count++;
- if (count > best_count) {
- best_count = count;
- best_off = start_off;
- }
- } else {
- /* End of sequence. Continue with the next
- * part of the signal. */
- count = 0;
- start_off = j + 2;
- }
- j += 2;
- }
- }
- *start = best_off;
- return best_count;
- }
- /* Wrapper to find Manchester code. */
- static uint32_t find_manchester(uint8_t *bits, uint32_t numbytes,
- uint32_t numbits, uint32_t *start)
- {
- return find_alternating_bits(bits,numbytes,numbits,start,false);
- }
- /* Wrapper to find preamble sections. */
- static uint32_t find_preamble(uint8_t *bits, uint32_t numbytes,
- uint32_t numbits, uint32_t *start)
- {
- return find_alternating_bits(bits,numbytes,numbits,start,true);
- }
- typedef enum {
- LineCodeNone,
- LineCodeManchester,
- LineCodePWM3,
- LineCodePWM4,
- } LineCodeGuess;
- static char *get_linecode_name(LineCodeGuess lc) {
- switch(lc) {
- case LineCodeNone: return "none";
- case LineCodeManchester: return "Manchester";
- case LineCodePWM3: return "PWM3";
- case LineCodePWM4: return "PWM4";
- }
- return "unknown";
- }
- static bool decode(uint8_t *bits, uint32_t numbytes, uint32_t numbits, ProtoViewMsgInfo *info) {
- /* No decoder was able to detect this message. Let's try if we can
- * find some structure. To start, we'll see if it looks like is
- * manchester coded, or PWM with symbol len of 3 or 4. */
- /* For PWM, start1 and start2 are the offsets at which the two
- * sequences composing the message appear the first time.
- * So start1 is also the message start offset. Start2 is not used
- * for Manchester, that does not have two separated symbols like
- * PWM. */
- uint32_t start1 = 0, start2 = 0;
- uint32_t msgbits; // Number of message bits in the bitmap, so
- // this will be the number of symbols, not actual
- // bits after the message is decoded.
- uint32_t tmp1, tmp2; // Temp vars to store the start.
- uint32_t minbits = 16; // Less than that gets undetected.
- uint32_t pwm_len; // Bits per symbol, in the case of PWM.
- LineCodeGuess linecode = LineCodeNone;
- // Try PWM3
- uint32_t pwm3_bits = find_pwm(bits,numbytes,numbits,3,&tmp1,&tmp2);
- if (pwm3_bits >= minbits) {
- linecode = LineCodePWM3;
- start1 = tmp1;
- start2 = tmp2;
- pwm_len = 3;
- msgbits = pwm3_bits*pwm_len;
- }
- // Try PWM4
- uint32_t pwm4_bits = find_pwm(bits,numbytes,numbits,4,&tmp1,&tmp2);
- if (pwm4_bits >= minbits && pwm4_bits > pwm3_bits) {
- linecode = LineCodePWM4;
- start1 = tmp1;
- start2 = tmp2;
- pwm_len = 4;
- msgbits = pwm3_bits*pwm_len;
- }
- // Try Manchester
- uint32_t manchester_bits = find_manchester(bits,numbytes,numbits,&tmp1);
- if (manchester_bits > minbits &&
- manchester_bits > pwm3_bits &&
- manchester_bits > pwm4_bits)
- {
- linecode = LineCodeManchester;
- start1 = tmp1;
- msgbits = manchester_bits*2;
- //FURI_LOG_T(TAG, "MANCHESTER START: %lu", tmp1);s
- }
- if (linecode == LineCodeNone) return false;
- /* Often there is a preamble before the signal. We'll try to find
- * it, and if it is not too far away from our signal, we'll claim
- * our signal starts at the preamble. */
- uint32_t preamble_len = find_preamble(bits,numbytes,numbits,&tmp1);
- uint32_t min_preamble_len = 10;
- uint32_t max_preamble_distance = 32;
- uint32_t preamble_start = 0;
- bool preamble_found = false;
- /* Note that because of the following checks, if the Manchester detector
- * detected the preamble bits as data, we are ok with that, since it
- * means that the synchronization is not designed to "break" the bits
- * flow. In this case we ignore the preamble and return all as data. */
- if (preamble_len >= min_preamble_len && // Not too short.
- tmp1 < start1 && // Should be before the data.
- start1-tmp1 <= max_preamble_distance) // Not too far.
- {
- preamble_start = tmp1;
- preamble_found = true;
- }
- info->start_off = preamble_found ? preamble_start : start1;
- info->pulses_count = (start1+msgbits) - info->start_off;
- info->pulses_count += 20; /* Add a few more, so that if the user resends
- * the message, it is more likely we will
- * transfer all that is needed, like a message
- * terminator (that we don't detect). */
- // if (preamble_found)
- // FURI_LOG_T(TAG, "PREAMBLE AT: %lu", preamble_start);
- // FURI_LOG_T(TAG, "START: %lu", info->start_off);
- // FURI_LOG_T(TAG, "MSGBITS: %lu", msgbits);
- // FURI_LOG_T(TAG, "DATASTART: %lu", start1);
- // FURI_LOG_T(TAG, "PULSES: %lu", info->pulses_count);
- /* We think there is a message and we know where it starts and the
- * line code used. We can turn it into bits and bytes. */
- uint32_t decoded;
- uint8_t data[32];
- uint32_t datalen;
- char symbol1[5], symbol2[5];
- if (linecode == LineCodePWM3 || linecode == LineCodePWM4) {
- bitmap_to_string(symbol1,bits,numbytes,start1,pwm_len);
- bitmap_to_string(symbol2,bits,numbytes,start2,pwm_len);
- } else if (linecode == LineCodeManchester) {
- memcpy(symbol1,"01",3);
- memcpy(symbol2,"10",3);
- }
- decoded = convert_from_line_code(data,sizeof(data),bits,numbytes,start1,
- symbol1,symbol2);
- datalen = (decoded+7)/8;
-
- char *linecode_name = get_linecode_name(linecode);
- fieldset_add_str(info->fieldset,"line code",
- linecode_name,strlen(linecode_name));
- fieldset_add_uint(info->fieldset,"data bits",decoded,8);
- if (preamble_found)
- fieldset_add_uint(info->fieldset,"preamble len",preamble_len,8);
- fieldset_add_str(info->fieldset,"first symbol",symbol1,strlen(symbol1));
- fieldset_add_str(info->fieldset,"second symbol",symbol2,strlen(symbol2));
- for (uint32_t j = 0; j < datalen; j++) {
- char label[16];
- snprintf(label,sizeof(label),"data[%lu]",j);
- fieldset_add_bytes(info->fieldset,label,data+j,2);
- }
- return true;
- }
- ProtoViewDecoder UnknownDecoder = {
- .name = "Unknown",
- .decode = decode,
- .get_fields = NULL,
- .build_message = NULL
- };
|