mag_helpers.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660
  1. #include "mag_helpers.h"
  2. #define TAG "MagHelpers"
  3. #define GPIO_PIN_A &gpio_ext_pa6
  4. #define GPIO_PIN_B &gpio_ext_pa7
  5. #define GPIO_PIN_ENABLE &gpio_ext_pa4
  6. #define RFID_PIN_OUT &gpio_rfid_carrier_out
  7. #define ZERO_PREFIX 25 // n zeros prefix
  8. #define ZERO_BETWEEN 53 // n zeros between tracks
  9. #define ZERO_SUFFIX 25 // n zeros suffix
  10. // bits per char on a given track
  11. const uint8_t bitlen[] = {7, 5, 5};
  12. // char offset by track
  13. const int sublen[] = {32, 48, 48};
  14. uint8_t bit_dir = 0;
  15. uint8_t last_value = 2;
  16. void bitbang_raw(bool value, MagSetting* setting)
  17. {
  18. switch(setting->tx) {
  19. case MagTxStateRFID:
  20. furi_hal_gpio_write(RFID_PIN_OUT, value);
  21. break;
  22. case MagTxStateGPIOA6A7:
  23. furi_hal_gpio_write(GPIO_PIN_A, value);
  24. furi_hal_gpio_write(GPIO_PIN_B, !value);
  25. break;
  26. case MagTxCC1101_434:
  27. case MagTxCC1101_868:
  28. if (last_value == 2 || value != (bool)last_value)
  29. {
  30. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  31. furi_delay_us(64);
  32. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  33. }
  34. break;
  35. default:
  36. break;
  37. }
  38. last_value = value;
  39. }
  40. void play_bit_rf(bool bit, MagSetting* setting) {
  41. bit_dir ^= 1;
  42. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  43. furi_delay_us(64);
  44. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  45. furi_delay_us(setting->us_clock);
  46. if(bit) {
  47. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  48. furi_delay_us(64);
  49. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  50. }
  51. furi_delay_us(setting->us_clock);
  52. furi_delay_us(setting->us_interpacket);
  53. }
  54. void play_bit_rfid(uint8_t send_bit, MagSetting* setting) {
  55. // internal TX over RFID coil
  56. bit_dir ^= 1;
  57. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  58. furi_delay_us(setting->us_clock);
  59. if(send_bit) {
  60. bit_dir ^= 1;
  61. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  62. }
  63. furi_delay_us(setting->us_clock);
  64. furi_delay_us(setting->us_interpacket);
  65. }
  66. void play_bit_gpio(uint8_t send_bit, MagSetting* setting) {
  67. // external TX over motor driver wired to PIN_A and PIN_B
  68. bit_dir ^= 1;
  69. furi_hal_gpio_write(GPIO_PIN_A, bit_dir);
  70. furi_hal_gpio_write(GPIO_PIN_B, !bit_dir);
  71. furi_delay_us(setting->us_clock);
  72. if(send_bit) {
  73. bit_dir ^= 1;
  74. furi_hal_gpio_write(GPIO_PIN_A, bit_dir);
  75. furi_hal_gpio_write(GPIO_PIN_B, !bit_dir);
  76. }
  77. furi_delay_us(setting->us_clock);
  78. furi_delay_us(setting->us_interpacket);
  79. }
  80. bool play_bit(uint8_t send_bit, MagSetting* setting) {
  81. // Initialize configured TX method
  82. switch(setting->tx) {
  83. case MagTxStateRFID:
  84. play_bit_rfid(send_bit, setting);
  85. break;
  86. case MagTxStateGPIOA6A7:
  87. play_bit_gpio(send_bit, setting);
  88. break;
  89. case MagTxCC1101_434:
  90. case MagTxCC1101_868:
  91. play_bit_rf(send_bit & 0x01, setting);
  92. break;
  93. default:
  94. return false;
  95. }
  96. return true;
  97. }
  98. void tx_init_rfid() {
  99. // initialize RFID system for TX
  100. furi_hal_power_enable_otg();
  101. furi_hal_ibutton_start_drive();
  102. furi_hal_ibutton_pin_low();
  103. // Initializing at GpioSpeedLow seems sufficient for our needs; no improvements seen by increasing speed setting
  104. // this doesn't seem to make a difference, leaving it in
  105. furi_hal_gpio_init(&gpio_rfid_data_in, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  106. furi_hal_gpio_write(&gpio_rfid_data_in, false);
  107. // false->ground RFID antenna; true->don't ground
  108. // skotopes (RFID dev) say normally you'd want RFID_PULL in high for signal forming, while modulating RFID_OUT
  109. // dunaevai135 had it low in their old code. Leaving low, as it doesn't seem to make a difference on my janky antenna
  110. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  111. furi_hal_gpio_write(&gpio_nfc_irq_rfid_pull, false);
  112. furi_hal_gpio_init(RFID_PIN_OUT, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  113. // confirm this delay is needed / sufficient? legacy from hackathon...
  114. furi_delay_ms(300);
  115. }
  116. void tx_reset_rfid() {
  117. // reset RFID system
  118. furi_hal_gpio_write(RFID_PIN_OUT, 0);
  119. furi_hal_rfid_pins_reset();
  120. furi_hal_power_disable_otg();
  121. }
  122. void tx_init_gpio() {
  123. furi_hal_power_enable_otg();
  124. // gpio_item_configure_all_pins(GpioModeOutputPushPull);
  125. furi_hal_gpio_init(GPIO_PIN_A, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  126. furi_hal_gpio_init(GPIO_PIN_B, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  127. furi_hal_gpio_init(GPIO_PIN_ENABLE, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  128. furi_hal_gpio_write(GPIO_PIN_ENABLE, 1);
  129. furi_delay_ms(500);
  130. }
  131. void tx_reset_gpio() {
  132. furi_hal_gpio_write(GPIO_PIN_A, 0);
  133. furi_hal_gpio_write(GPIO_PIN_B, 0);
  134. furi_hal_gpio_write(GPIO_PIN_ENABLE, 0);
  135. // set back to analog output mode?
  136. //gpio_item_configure_all_pins(GpioModeAnalog);
  137. furi_hal_power_disable_otg();
  138. }
  139. void tx_init_rf(int hz)
  140. {
  141. // presets and frequency will need some experimenting
  142. furi_hal_subghz_reset();
  143. furi_hal_subghz_load_preset(FuriHalSubGhzPresetOok650Async);
  144. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetGFSK9_99KbAsync);
  145. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetMSK99_97KbAsync);
  146. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev238Async);
  147. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev476Async);
  148. furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  149. furi_hal_subghz_set_frequency_and_path(hz);
  150. furi_hal_subghz_tx();
  151. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  152. }
  153. void tx_deinit_rf()
  154. {
  155. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  156. furi_hal_subghz_reset();
  157. furi_hal_subghz_idle();
  158. }
  159. bool tx_init(MagSetting* setting) {
  160. // Initialize configured TX method
  161. switch(setting->tx) {
  162. case MagTxStateRFID:
  163. tx_init_rfid();
  164. break;
  165. case MagTxStateGPIOA6A7:
  166. tx_init_gpio();
  167. break;
  168. case MagTxCC1101_434:
  169. tx_init_rf(434000000);
  170. break;
  171. case MagTxCC1101_868:
  172. tx_init_rf(868000000);
  173. break;
  174. default:
  175. return false;
  176. }
  177. return true;
  178. }
  179. bool tx_reset(MagSetting* setting) {
  180. // Reset configured TX method
  181. switch(setting->tx) {
  182. case MagTxStateRFID:
  183. tx_reset_rfid();
  184. break;
  185. case MagTxStateGPIOA6A7:
  186. tx_reset_gpio();
  187. break;
  188. case MagTxCC1101_434:
  189. case MagTxCC1101_868:
  190. tx_deinit_rf();
  191. break;
  192. default:
  193. return false;
  194. }
  195. return true;
  196. }
  197. void track_to_bits(uint8_t* bit_array, const char* track_data, uint8_t track_index) {
  198. // convert individual track to bits
  199. int tmp, crc, lrc = 0;
  200. int i = 0;
  201. // Please forgive the mess. This was a bug battlezone. Will clean up over the weekend
  202. // So many stupid things done here, many learnings lol
  203. //FURI_LOG_D(TAG, "%d", strlen(track_data));
  204. //FURI_LOG_D(TAG, "%d", strlen(track_data) * bitlen[track_index]);
  205. // convert track data to bits
  206. for(uint8_t j = 0; track_data[j] != '\0'; j++) {
  207. crc = 1;
  208. tmp = track_data[j] - sublen[track_index];
  209. for(uint8_t k = 0; k < bitlen[track_index] - 1; k++) {
  210. crc ^= tmp & 1;
  211. lrc ^= (tmp & 1) << k;
  212. bit_array[i] = tmp & 1;
  213. //FURI_LOG_D(
  214. // TAG, "i, j, k: %d %d %d char %s bit %d", i, j, k, &track_data[j], bit_array[i]);
  215. i++;
  216. tmp >>= 1;
  217. }
  218. bit_array[i] = crc;
  219. //FURI_LOG_D(TAG, "i, j: %d %d char %s bit %d", i, j, &track_data[j], bit_array[i]);
  220. i++;
  221. }
  222. FURI_LOG_D(TAG, "LRC");
  223. // finish calculating final "byte" (LRC)
  224. tmp = lrc;
  225. crc = 1;
  226. for(uint8_t j = 0; j < bitlen[track_index] - 1; j++) {
  227. crc ^= tmp & 1;
  228. bit_array[i] = tmp & 1;
  229. //FURI_LOG_D(TAG, "i, j: %d %d bit %d", i, j, bit_array[i]);
  230. i++;
  231. tmp >>= 1;
  232. }
  233. bit_array[i] = crc;
  234. //FURI_LOG_D(TAG, "i: %d bit %d", i, bit_array[i]);
  235. i++;
  236. // My makeshift end sentinel. All other values 0/1
  237. bit_array[i] = 2;
  238. //FURI_LOG_D(TAG, "i: %d bit %d", i, bit_array[i]);
  239. i++;
  240. // Log the output (messy but works)
  241. //char output[500] = {0x0};
  242. /*FuriString* tmp_str;
  243. tmp_str = furi_string_alloc();
  244. for(uint8_t j = 0; bit_array[j] != 2; j++) {
  245. furi_string_cat_printf(tmp_str, "%d", (bit_array[j] & 1));
  246. //strcat(output, furi_string_get_cstr(tmp_str));
  247. }
  248. FURI_LOG_D(TAG, "Track %d: %s", (track_index + 1), track_data);
  249. FURI_LOG_D(TAG, "Track %d: %s", (track_index + 1), furi_string_get_cstr(tmp_str));*/
  250. //furi_string_free(tmp_str);
  251. }
  252. void mag_spoof_bitwise(Mag* mag) {
  253. MagSetting* setting = mag->setting;
  254. FuriString* ft1 = mag->mag_dev->dev_data.track[0].str;
  255. FuriString* ft2 = mag->mag_dev->dev_data.track[1].str;
  256. char* data1; char* data2;
  257. data1 = malloc(furi_string_size(ft1)+1);
  258. data2 = malloc(furi_string_size(ft2)+1);
  259. strncpy(data1, furi_string_get_cstr(ft1), furi_string_size(ft1));
  260. strncpy(data2, furi_string_get_cstr(ft2), furi_string_size(ft2));
  261. if(furi_log_get_level() >= FuriLogLevelDebug) {
  262. debug_msr_string(data1, BITS_TRACK1, OFFSET_TRACK1);
  263. debug_msr_string(data2, BITS_TRACK2, OFFSET_TRACK2);
  264. }
  265. uint8_t bits_t1_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  266. uint8_t bits_t1_manchester[128] = {0x00}; // twice the above
  267. uint16_t bits_t1_count = msr_encode(data1, (uint8_t*) bits_t1_manchester, (uint8_t*) bits_t1_raw, BITS_TRACK1, OFFSET_TRACK1);
  268. uint8_t bits_t2_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  269. uint8_t bits_t2_manchester[128] = {0x00}; // twice the above
  270. uint16_t bits_t2_count = msr_encode(data2, (uint8_t*) bits_t2_manchester, (uint8_t*) bits_t2_raw, BITS_TRACK2, OFFSET_TRACK2);
  271. if(furi_log_get_level() >= FuriLogLevelDebug) {
  272. printf("Manchester bitcount: T1: %d, T2: %d\r\n", bits_t1_count, bits_t2_count);
  273. printf("T1 raw: ");
  274. for (int i = 0; i < bits_t1_count / 16; i++) printf("%02x ", bits_t1_raw[i]);
  275. printf("\r\n");
  276. printf("T1 manchester: ");
  277. for (int i = 0; i < bits_t1_count / 8; i++) printf("%02x ", bits_t1_manchester[i]);
  278. printf("\r\n");
  279. printf("T2 raw: ");
  280. for (int i = 0; i < bits_t2_count / 16; i++) printf("%02x ", bits_t2_raw[i]);
  281. printf("\r\n");
  282. printf("T2 manchester: ");
  283. for (int i = 0; i < bits_t2_count / 8; i++) printf("%02x ", bits_t2_manchester[i]);
  284. printf("\r\n");
  285. printf("Bitwise emulation done\r\n\r\n");
  286. }
  287. if(!tx_init(setting)) return;
  288. last_value = 2;
  289. FURI_CRITICAL_ENTER();
  290. bool bit = false;
  291. if((setting->track == MagTrackStateAll))
  292. for(uint16_t i = 0; i < ZERO_PREFIX; i++)
  293. {
  294. bit ^= 0xFF;
  295. bitbang_raw(bit, setting);
  296. furi_delay_us(setting->us_clock*2);
  297. }
  298. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateOne))
  299. for(uint16_t i = 0; i < bits_t1_count; i++)
  300. {
  301. uint8_t byte = i / 8;
  302. uint8_t bitmask = 1 << (7-(i % 8));
  303. /* this comment is mostly for zw's convenience:
  304. *
  305. * bits are stored in their arrays like on a card (LSB first). This is not how usually bits are stored in a
  306. * byte, with the MSB first. the var bitmask creates the pattern to iterate through each bit, LSB first, like so
  307. * 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x80... masking bits one by one from the current byte
  308. *
  309. * i've chosen this LSB approach since bits and bytes are hard enough to visualize with the 5/8 and 7/8 encoding
  310. * MSR uses. It's a biiit more complicated to process, but visualizing it with printf or a debugger is
  311. * infinitely easier
  312. *
  313. * Encoding the following pairs of 5 bits as 5/8: A1234 B1234 C1234 D1234
  314. * using this LSB format looks like: A1234B12 34C1234D 12340000
  315. * using the MSB format, looks like: 21B4321A D4321C43 00004321
  316. * this means reading each byte backwards when printing/debugging, and the jumping 16 bits ahead, reading 8 more
  317. * bits backward, jumping 16 more bits ahead.
  318. *
  319. * I find this much more convenient for debugging, with the tiny incovenience of reading the bits in reverse
  320. * order. THus, the reason for the bitmask above
  321. */
  322. bit = !!(bits_t1_manchester[byte] & bitmask);
  323. // TODO: reimplement timing delays. Replace fixed furi_hal_cortex_delay_us to wait instead to a specific value
  324. // for DWT->CYCCNT. Note timer is aliased to 64us as per
  325. // #define FURI_HAL_CORTEX_INSTRUCTIONS_PER_MICROSECOND (SystemCoreClock / 1000000) | furi_hal_cortex.c
  326. bitbang_raw(bit, setting);
  327. furi_delay_us(setting->us_clock);
  328. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  329. }
  330. if((setting->track == MagTrackStateAll))
  331. for(uint16_t i = 0; i < ZERO_BETWEEN; i++)
  332. {
  333. bit ^= 0xFF;
  334. bitbang_raw(bit, setting);
  335. furi_delay_us(setting->us_clock*2);
  336. }
  337. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateTwo))
  338. for(uint16_t i = 0; i < bits_t2_count; i++)
  339. {
  340. uint16_t j = bits_t2_count - i - 1;
  341. uint8_t byte = j / 8;
  342. uint8_t bitmask = 1 << (7-(j % 8));
  343. bool bit = !!(bits_t2_manchester[byte] & bitmask);
  344. bitbang_raw(bit, setting);
  345. furi_delay_us(setting->us_clock);
  346. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  347. }
  348. if((setting->track == MagTrackStateAll))
  349. for(uint16_t i = 0; i < ZERO_SUFFIX; i++)
  350. {
  351. bit ^= 0xFF;
  352. bitbang_raw(bit, setting);
  353. furi_delay_us(setting->us_clock*2);
  354. }
  355. FURI_CRITICAL_EXIT();
  356. free(data1);
  357. free(data2);
  358. tx_reset(setting);
  359. }
  360. void mag_spoof(Mag* mag) {
  361. MagSetting* setting = mag->setting;
  362. // precompute tracks (WIP; ignores reverse and 3rd track)
  363. // likely will be reworked to antirez's bitmap method anyway...
  364. const char* data1 = furi_string_get_cstr(mag->mag_dev->dev_data.track[0].str);
  365. const char* data2 = furi_string_get_cstr(mag->mag_dev->dev_data.track[1].str);
  366. uint8_t bit_array1[2 * (strlen(data1) * bitlen[0]) + 1];
  367. uint8_t bit_array2[2 * (strlen(data2) * bitlen[1]) + 1];
  368. track_to_bits(bit_array1, data1, 0);
  369. track_to_bits(bit_array2, data2, 1);
  370. bool spoofed = false;
  371. do {
  372. // Initialize configured TX method
  373. if(!tx_init(setting)) break;
  374. // Critical timing section (need to eliminate ifs? does this impact timing?)
  375. FURI_CRITICAL_ENTER();
  376. // Prefix of zeros
  377. for(uint16_t i = 0; i < ZERO_PREFIX; i++) {
  378. if(!play_bit(0, setting)) break;
  379. }
  380. // Track 1
  381. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateOne)) {
  382. for(uint16_t i = 0; bit_array1[i] != 2; i++) {
  383. if(!play_bit((bit_array1[i] & 1), setting)) break;
  384. }
  385. }
  386. // Zeros between tracks
  387. if(setting->track == MagTrackStateAll) {
  388. for(uint16_t i = 0; i < ZERO_BETWEEN; i++) {
  389. if(!play_bit(0, setting)) break;
  390. }
  391. }
  392. // Track 2 (TODO: Reverse track)
  393. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateTwo)) {
  394. for(uint16_t i = 0; bit_array2[i] != 2; i++) {
  395. if(!play_bit((bit_array2[i] & 1), setting)) break;
  396. }
  397. }
  398. // Suffix of zeros
  399. for(uint16_t i = 0; i < ZERO_SUFFIX; i++) {
  400. if(!play_bit(0, setting)) break;
  401. }
  402. FURI_CRITICAL_EXIT();
  403. // Reset configured TX method
  404. if(!tx_reset(setting)) break;
  405. spoofed = true;
  406. } while(0);
  407. UNUSED(spoofed);
  408. /*if(!spoofed) {
  409. // error handling?
  410. // cleanup?
  411. }*/
  412. }
  413. //// @antirez's code from protoview for bitmapping. May want to refactor to use this...
  414. /* Set the 'bitpos' bit to value 'val', in the specified bitmap
  415. * 'b' of len 'blen'.
  416. * Out of range bits will silently be discarded. */
  417. void set_bit(uint8_t* b, uint32_t blen, uint32_t bitpos, bool val) {
  418. uint32_t byte = bitpos / 8;
  419. uint32_t bit = bitpos & 7;
  420. if(byte >= blen) return;
  421. if(val)
  422. b[byte] |= 1 << bit;
  423. else
  424. b[byte] &= ~(1 << bit);
  425. }
  426. /* Get the bit 'bitpos' of the bitmap 'b' of 'blen' bytes.
  427. * Out of range bits return false (not bit set). */
  428. bool get_bit(uint8_t* b, uint32_t blen, uint32_t bitpos) {
  429. uint32_t byte = bitpos / 8;
  430. uint32_t bit = bitpos & 7;
  431. if(byte >= blen) return 0;
  432. return (b[byte] & (1 << bit)) != 0;
  433. }
  434. /*uint32_t convert_signal_to_bits(uint8_t *b, uint32_t blen, RawSamplesBuffer *s, uint32_t idx, uint32_t count, uint32_t rate) {
  435. if (rate == 0) return 0; // We can't perform the conversion.
  436. uint32_t bitpos = 0;
  437. for (uint32_t j = 0; j < count; j++) {
  438. uint32_t dur;
  439. bool level;
  440. raw_samples_get(s, j+idx, &level, &dur);
  441. uint32_t numbits = dur / rate; // full bits that surely fit.
  442. uint32_t rest = dur % rate; // How much we are left with.
  443. if (rest > rate/2) numbits++; // There is another one.
  444. while(numbits--) set_bit(b,blen,bitpos++,s[j].level);
  445. }
  446. return bitpos;
  447. }*/
  448. uint16_t add_bit(bool value, uint8_t* out, uint16_t count)
  449. {
  450. uint8_t bit = count % 8;
  451. uint8_t byte = count / 8;
  452. if (value)
  453. {
  454. out[byte] |= 0x01;
  455. }
  456. if (bit < 7) out[byte] <<= 1;
  457. return count+1;
  458. }
  459. uint16_t add_bit_manchester(bool value, uint8_t* out, uint16_t count)
  460. {
  461. static bool toggle = 0;
  462. toggle ^= 0x01;
  463. count = add_bit(toggle, out, count);
  464. if (value) toggle ^= 0x01;
  465. count = add_bit(toggle, out, count);
  466. return count;
  467. }
  468. uint16_t msr_encode(char* data, uint8_t* out_manchester, uint8_t* out_raw, uint8_t track_bits, uint8_t track_ascii_offset)
  469. {
  470. /*
  471. * track_bits - the number of raw (data) bits on the track. on ISO cards, that's 7 for track 5, or 4 for 2/3 - this is samy's bitlen
  472. * - this count includes the parity bit
  473. * track_ascii_offset - how much the ascii values are offset. track 1 makes space (ascii 32) become data 0x00,
  474. * - tracks 2/3 make ascii "0" become data 0x00 - this is samy's sublen
  475. *
  476. */
  477. uint16_t raw_bits_count = 0;
  478. uint16_t output_count = 0;
  479. int tmp, crc, lrc = 0;
  480. for (int i = 0; i < PREFIX_NUM_ZEROES; i++)
  481. {
  482. output_count = add_bit_manchester(0, out_manchester, output_count);
  483. raw_bits_count = add_bit(0, out_raw, raw_bits_count);
  484. }
  485. for (int i = 0; *(data+i) != 0; i++)
  486. {
  487. crc = 1;
  488. tmp = *(data+i) - track_ascii_offset;
  489. for (int j = 0; j < track_bits-1; j++)
  490. {
  491. crc ^= tmp & 1;
  492. lrc ^= (tmp & 1) << j;
  493. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  494. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  495. tmp >>= 1;
  496. }
  497. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  498. output_count = add_bit_manchester(crc, out_manchester, output_count);
  499. }
  500. // LRC byte
  501. tmp = lrc;
  502. crc = 1;
  503. for (int j = 0; j < track_bits-1; j++)
  504. {
  505. crc ^= tmp & 0x01;
  506. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  507. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  508. tmp >>= 1;
  509. }
  510. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  511. output_count = add_bit_manchester(crc, out_manchester, output_count);
  512. return output_count;
  513. }
  514. void debug_msr_string(char* data, uint8_t track_bits, uint8_t track_ascii_offset)
  515. {
  516. uint8_t bits_raw[64] = {0}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  517. uint8_t bits_manchester[128] = {0}; // twice the above
  518. int numbits = 0;
  519. printf("Encoding [%s] with %d bits\r\n", data, track_bits);
  520. numbits = msr_encode(data, (uint8_t*)bits_manchester, (uint8_t*)bits_raw, track_bits, track_ascii_offset);
  521. printf("Got %d bits\r\n", numbits);
  522. printf("Raw byte stream: ");
  523. for(int i = 0; i < numbits / 8 / 2; i++)
  524. {
  525. printf("%02x", bits_raw[i]);
  526. if (i%4==3) printf(" ");
  527. }
  528. printf("\r\n");
  529. printf("Bits ");
  530. int space_counter = 0;
  531. for(int i = 0; i < numbits / 2; i++)
  532. {
  533. if (i < PREFIX_NUM_ZEROES)
  534. {
  535. printf("X");
  536. continue;
  537. }
  538. else if (i == PREFIX_NUM_ZEROES)
  539. {
  540. printf (" ");
  541. space_counter = 0;
  542. }
  543. printf("%01x", (bits_raw[i/8] & (1 << (7-(i%8)))) != 0);
  544. if ((space_counter) % track_bits == track_bits-1) printf(" ");
  545. space_counter++;
  546. }
  547. printf("\r\n");
  548. printf("Manchester encoded, byte stream: ");
  549. for(int i = 0; i < numbits / 8; i++)
  550. {
  551. printf("%02x", bits_manchester[i]);
  552. if (i%4==3) printf(" ");
  553. }
  554. printf("\r\n\r\n");
  555. }