scope_scene_run.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. #include <furi.h>
  2. #include <furi_hal.h>
  3. #include <furi_hal_resources.h>
  4. #include <gui/gui.h>
  5. #include <gui/view_dispatcher.h>
  6. #include <gui/scene_manager.h>
  7. #include <gui/modules/submenu.h>
  8. #include <gui/modules/variable_item_list.h>
  9. #include <gui/modules/widget.h>
  10. #include <notification/notification_messages.h>
  11. #include "stm32wbxx_hal.h"
  12. #include "stm32wbxx_hal_tim.h"
  13. #include "stm32wbxx_nucleo.h"
  14. #include "stm32wbxx_hal_adc.h"
  15. #include "../scope_app_i.h"
  16. #include "../helpers/scope_types.h"
  17. #define DIGITAL_SCALE_12BITS ((uint32_t) 0xFFF)
  18. #define ADC_CONVERTED_DATA_BUFFER_SIZE ((uint32_t) 128)
  19. #define VAR_CONVERTED_DATA_INIT_VALUE (DIGITAL_SCALE_12BITS + 1)
  20. #define VAR_CONVERTED_DATA_INIT_VALUE_16BITS (0xFFFF + 1U)
  21. #define __ADC_CALC_DATA_VOLTAGE(__VREFANALOG_VOLTAGE__, __ADC_DATA__) \
  22. ((__ADC_DATA__) * (__VREFANALOG_VOLTAGE__) / DIGITAL_SCALE_12BITS)
  23. #define VDDA_APPLI ((uint32_t)3300)
  24. // ramVector found from - https://community.nxp.com/t5/i-MX-Processors/Relocate-vector-table-to-ITCM/m-p/1302304
  25. // the aligned aspect is key!
  26. #define TABLE_SIZE 79
  27. uint32_t ramVector[TABLE_SIZE+1] __attribute__((aligned(512)));
  28. const uint32_t AHBPrescTable[16UL] = {1UL, 3UL, 5UL, 1UL, 1UL, 6UL, 10UL, 32UL, 2UL, 4UL, 8UL, 16UL, 64UL, 128UL, 256UL, 512UL};
  29. const uint32_t APBPrescTable[8UL] = {0UL, 0UL, 0UL, 0UL, 1UL, 2UL, 3UL, 4UL};
  30. const uint32_t MSIRangeTable[16UL] = {100000UL, 200000UL, 400000UL, 800000UL, 1000000UL, 2000000UL, \
  31. 4000000UL, 8000000UL, 16000000UL, 24000000UL, 32000000UL, 48000000UL, 0UL, 0UL, 0UL, 0UL}; /* 0UL values are incorrect cases */
  32. double time;
  33. uint8_t pause=0;
  34. void Error_Handler()
  35. {
  36. while (1) {
  37. }
  38. }
  39. static ADC_HandleTypeDef hadc1;
  40. static DMA_HandleTypeDef hdma_adc1;
  41. static TIM_HandleTypeDef htim2;
  42. __IO uint16_t aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data (array of data) */
  43. __IO uint16_t aADCxConvertedData_Voltage_mVoltA[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* Value of voltage calculated from ADC conversion data (unit: mV) (array of data) */
  44. __IO uint16_t aADCxConvertedData_Voltage_mVoltB[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* Value of voltage calculated from ADC conversion data (unit: mV) (array of data) */
  45. __IO uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */
  46. __IO uint16_t *mvoltWrite = &aADCxConvertedData_Voltage_mVoltA[0];
  47. __IO uint16_t *mvoltDisplay = &aADCxConvertedData_Voltage_mVoltB[0];
  48. void HAL_ADC_MspInit(ADC_HandleTypeDef * hadc)
  49. {
  50. GPIO_InitTypeDef GPIO_InitStruct = { 0 };
  51. if (hadc->Instance == ADC1) {
  52. __HAL_RCC_ADC_CLK_ENABLE();
  53. __HAL_RCC_GPIOC_CLK_ENABLE();
  54. GPIO_InitStruct.Pin = GPIO_PIN_0;
  55. GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  56. GPIO_InitStruct.Pull = GPIO_NOPULL;
  57. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  58. hdma_adc1.Instance = DMA1_Channel1;
  59. hdma_adc1.Init.Request = DMA_REQUEST_ADC1;
  60. hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
  61. hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
  62. hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
  63. hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
  64. hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
  65. hdma_adc1.Init.Mode = DMA_CIRCULAR;
  66. hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
  67. if (HAL_DMA_Init(&hdma_adc1) != HAL_OK) {
  68. Error_Handler();
  69. }
  70. __HAL_LINKDMA(hadc, DMA_Handle, hdma_adc1);
  71. HAL_NVIC_SetPriority(ADC1_IRQn, 15, 0);
  72. HAL_NVIC_EnableIRQ(ADC1_IRQn);
  73. }
  74. }
  75. void HAL_ADC_MspDeInit(ADC_HandleTypeDef * hadc)
  76. {
  77. if (hadc->Instance == ADC1) {
  78. __HAL_RCC_ADC_CLK_DISABLE();
  79. HAL_GPIO_DeInit(GPIOC, GPIO_PIN_0);
  80. HAL_DMA_DeInit(hadc->DMA_Handle);
  81. HAL_NVIC_DisableIRQ(ADC1_IRQn);
  82. }
  83. }
  84. void HAL_TIM_Base_MspInit(TIM_HandleTypeDef * htim_base)
  85. {
  86. if (htim_base->Instance == TIM2) {
  87. __HAL_RCC_TIM2_CLK_ENABLE();
  88. HAL_NVIC_SetPriority(TIM2_IRQn, 15, 0);
  89. HAL_NVIC_EnableIRQ(TIM2_IRQn);
  90. }
  91. }
  92. void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef * htim_base)
  93. {
  94. if (htim_base->Instance == TIM2) {
  95. __HAL_RCC_TIM2_CLK_DISABLE();
  96. HAL_NVIC_DisableIRQ(TIM2_IRQn);
  97. }
  98. }
  99. void DMA1_Channel1_IRQHandler(void)
  100. {
  101. HAL_DMA_IRQHandler(&hdma_adc1);
  102. }
  103. void ADC1_IRQHandler(void)
  104. {
  105. HAL_ADC_IRQHandler(&hadc1);
  106. }
  107. void TIM2_IRQHandler(void)
  108. {
  109. HAL_TIM_IRQHandler(&htim2);
  110. }
  111. static void MX_ADC1_Init(void)
  112. {
  113. ADC_ChannelConfTypeDef sConfig = { 0 };
  114. hadc1.Instance = ADC1;
  115. hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  116. hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  117. hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  118. hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  119. hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  120. hadc1.Init.LowPowerAutoWait = DISABLE;
  121. hadc1.Init.ContinuousConvMode = DISABLE;
  122. hadc1.Init.NbrOfConversion = 1;
  123. hadc1.Init.DiscontinuousConvMode = DISABLE;
  124. hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T2_TRGO;
  125. hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  126. hadc1.Init.DMAContinuousRequests = ENABLE;
  127. hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  128. hadc1.Init.OversamplingMode = DISABLE;
  129. if (HAL_ADC_Init(&hadc1) != HAL_OK) {
  130. Error_Handler();
  131. }
  132. sConfig.Channel = ADC_CHANNEL_1;
  133. sConfig.Rank = ADC_REGULAR_RANK_1;
  134. sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLE_5;
  135. sConfig.SingleDiff = ADC_SINGLE_ENDED;
  136. sConfig.OffsetNumber = ADC_OFFSET_NONE;
  137. sConfig.Offset = 0;
  138. if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
  139. Error_Handler();
  140. }
  141. }
  142. static void MX_TIM2_Init(uint32_t period)
  143. {
  144. TIM_ClockConfigTypeDef sClockSourceConfig = { 0 };
  145. TIM_MasterConfigTypeDef sMasterConfig = { 0 };
  146. htim2.Instance = TIM2;
  147. htim2.Init.Prescaler = 1;
  148. htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  149. htim2.Init.Period = period;
  150. htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  151. htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  152. if (HAL_TIM_Base_Init(&htim2) != HAL_OK) {
  153. Error_Handler();
  154. }
  155. sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  156. if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) {
  157. Error_Handler();
  158. }
  159. sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  160. sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  161. if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) {
  162. Error_Handler();
  163. }
  164. }
  165. static void MX_DMA_Init(void)
  166. {
  167. __HAL_RCC_DMAMUX1_CLK_ENABLE();
  168. __HAL_RCC_DMA1_CLK_ENABLE();
  169. HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 15, 0);
  170. HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  171. }
  172. static void MX_GPIO_Init(void)
  173. {
  174. __HAL_RCC_GPIOC_CLK_ENABLE();
  175. }
  176. void swap(__IO uint16_t **a, __IO uint16_t **b){
  177. __IO uint16_t *tmp;
  178. tmp = *a;
  179. *a = *b;
  180. *b = tmp;
  181. }
  182. void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef * hadc)
  183. {
  184. UNUSED(hadc);
  185. uint32_t tmp_index = 0;
  186. for (tmp_index = (ADC_CONVERTED_DATA_BUFFER_SIZE / 2); tmp_index < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index++) {
  187. mvoltWrite[tmp_index] = __ADC_CALC_DATA_VOLTAGE(VDDA_APPLI, aADCxConvertedData[tmp_index]);
  188. }
  189. ubDmaTransferStatus = 1;
  190. if(!pause)
  191. swap(&mvoltWrite, &mvoltDisplay);
  192. }
  193. void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef * hadc)
  194. {
  195. UNUSED(hadc);
  196. uint32_t tmp_index = 0;
  197. for (tmp_index = 0; tmp_index < (ADC_CONVERTED_DATA_BUFFER_SIZE / 2); tmp_index++) {
  198. mvoltWrite[tmp_index] = __ADC_CALC_DATA_VOLTAGE(VDDA_APPLI, aADCxConvertedData[tmp_index]);
  199. }
  200. ubDmaTransferStatus = 0;
  201. }
  202. void HAL_ADC_ErrorCallback(ADC_HandleTypeDef * hadc)
  203. {
  204. UNUSED(hadc);
  205. Error_Handler();
  206. }
  207. static void app_draw_callback(Canvas * canvas, void *ctx)
  208. {
  209. UNUSED(ctx);
  210. char buf[50];
  211. snprintf(buf, 50, "Time: %.3f", time);
  212. canvas_draw_str(canvas, 10, 10, buf);
  213. for(uint32_t x = 1; x < ADC_CONVERTED_DATA_BUFFER_SIZE; x++){
  214. uint32_t prev = 64 - (mvoltDisplay[x-1] / (VDDA_APPLI / 64));
  215. uint32_t cur = 64 - (mvoltDisplay[x] / (VDDA_APPLI / 64));
  216. canvas_draw_line(canvas, x - 1, prev, x, cur);
  217. }
  218. canvas_draw_line(canvas, 0, 0, 0, 63);
  219. canvas_draw_line(canvas, 0, 63, 128, 63);
  220. }
  221. static void app_input_callback(InputEvent * input_event, void *ctx)
  222. {
  223. furi_assert(ctx);
  224. FuriMessageQueue *event_queue = ctx;
  225. furi_message_queue_put(event_queue, input_event, FuriWaitForever);
  226. }
  227. void scope_scene_run_widget_callback(
  228. GuiButtonType result,
  229. InputType type,
  230. void* context) {
  231. ScopeApp* app = context;
  232. if(type == InputTypeShort) {
  233. view_dispatcher_send_custom_event(app->view_dispatcher, result);
  234. }
  235. }
  236. void scope_scene_run_on_enter(void* context) {
  237. ScopeApp* app = context;
  238. time = app->time;
  239. UNUSED(app);
  240. pause = 0;
  241. __disable_irq();
  242. memcpy(ramVector, (uint32_t*)(FLASH_BASE | SCB->VTOR), sizeof(uint32_t) * TABLE_SIZE);
  243. SCB->VTOR = (uint32_t)ramVector;
  244. ramVector[27] = (uint32_t)DMA1_Channel1_IRQHandler;
  245. ramVector[34] = (uint32_t)ADC1_IRQHandler;
  246. ramVector[44] = (uint32_t)TIM2_IRQHandler;
  247. __enable_irq();
  248. HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
  249. FuriMessageQueue *event_queue = furi_message_queue_alloc(8, sizeof(InputEvent));
  250. uint32_t tmp_index_adc_converted_data = 0;
  251. MX_GPIO_Init();
  252. MX_DMA_Init();
  253. uint32_t period = (uint32_t)((double)HAL_RCC_GetPCLK1Freq() * app->time);
  254. MX_TIM2_Init(period);
  255. VREFBUF->CSR |= VREFBUF_CSR_ENVR;
  256. VREFBUF->CSR &= ~VREFBUF_CSR_HIZ;
  257. VREFBUF->CSR |= VREFBUF_CSR_VRS;
  258. while (!(VREFBUF->CSR & VREFBUF_CSR_VRR)) {
  259. };
  260. MX_ADC1_Init();
  261. for (tmp_index_adc_converted_data = 0;
  262. tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE;
  263. tmp_index_adc_converted_data++) {
  264. aADCxConvertedData[tmp_index_adc_converted_data] =
  265. VAR_CONVERTED_DATA_INIT_VALUE;
  266. }
  267. if (HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED) != HAL_OK) {
  268. Error_Handler();
  269. }
  270. if (HAL_TIM_Base_Start(&htim2) != HAL_OK) {
  271. Error_Handler();
  272. }
  273. if (HAL_ADC_Start_DMA(&hadc1, (uint32_t *) aADCxConvertedData, ADC_CONVERTED_DATA_BUFFER_SIZE) != HAL_OK) {
  274. Error_Handler();
  275. }
  276. ViewPort *view_port = view_port_alloc();
  277. view_port_draw_callback_set(view_port, app_draw_callback, view_port);
  278. view_port_input_callback_set(view_port, app_input_callback, event_queue);
  279. // Register view port in GUI
  280. Gui *gui = furi_record_open(RECORD_GUI);
  281. gui_add_view_port(gui, view_port, GuiLayerFullscreen);
  282. InputEvent event;
  283. bool running = true;
  284. while (running) {
  285. if (furi_message_queue_get(event_queue, &event, 100) == FuriStatusOk) {
  286. if ((event.type == InputTypePress) || (event.type == InputTypeRepeat)) {
  287. switch (event.key) {
  288. case InputKeyLeft:
  289. break;
  290. case InputKeyRight:
  291. break;
  292. case InputKeyUp:
  293. break;
  294. case InputKeyDown:
  295. break;
  296. case InputKeyOk:
  297. pause ^= 1;
  298. break;
  299. default:
  300. running = false;
  301. break;
  302. }
  303. }
  304. }
  305. view_port_update(view_port);
  306. }
  307. HAL_ADC_Stop_DMA (&hadc1);
  308. __disable_irq();
  309. SCB->VTOR = 0;
  310. __enable_irq();
  311. view_port_enabled_set(view_port, false);
  312. gui_remove_view_port(gui, view_port);
  313. view_port_free(view_port);
  314. furi_record_close(RECORD_GUI);
  315. scene_manager_previous_scene(app->scene_manager);
  316. submenu_set_selected_item(app->submenu, 0);
  317. }
  318. bool scope_scene_run_on_event(void* context, SceneManagerEvent event) {
  319. ScopeApp* app = context;
  320. bool consumed = false;
  321. UNUSED(app);
  322. UNUSED(event);
  323. return consumed;
  324. }
  325. void scope_scene_run_on_exit(void* context) {
  326. ScopeApp* app = context;
  327. // Clear views
  328. widget_reset(app->widget);
  329. }