mag_helpers.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481
  1. #include "mag_helpers.h"
  2. #define TAG "MagHelpers"
  3. // Haviv Board - pins gpio_ext_pa7 & gpio_ext_pa6 was swapped.
  4. #define GPIO_PIN_A &gpio_ext_pa7
  5. #define GPIO_PIN_B &gpio_ext_pa6
  6. #define GPIO_PIN_ENABLE &gpio_ext_pa4
  7. #define RFID_PIN_OUT &gpio_rfid_carrier_out
  8. #define ZERO_PREFIX 25 // n zeros prefix
  9. #define ZERO_BETWEEN 53 // n zeros between tracks
  10. #define ZERO_SUFFIX 25 // n zeros suffix
  11. // bits per char on a given track
  12. const uint8_t bitlen[] = {7, 5, 5};
  13. // char offset by track
  14. const int sublen[] = {32, 48, 48};
  15. uint8_t last_value = 2;
  16. void play_halfbit(bool value, MagSetting* setting) {
  17. switch(setting->tx) {
  18. case MagTxStateRFID:
  19. furi_hal_gpio_write(RFID_PIN_OUT, value);
  20. /*furi_hal_gpio_write(RFID_PIN_OUT, !value);
  21. furi_hal_gpio_write(RFID_PIN_OUT, value);
  22. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  23. furi_hal_gpio_write(RFID_PIN_OUT, value);*/
  24. break;
  25. case MagTxStateGPIO:
  26. furi_hal_gpio_write(GPIO_PIN_A, value);
  27. furi_hal_gpio_write(GPIO_PIN_B, !value);
  28. break;
  29. case MagTxStatePiezo:
  30. furi_hal_gpio_write(&gpio_speaker, value);
  31. /*furi_hal_gpio_write(&gpio_speaker, !value);
  32. furi_hal_gpio_write(&gpio_speaker, value);
  33. furi_hal_gpio_write(&gpio_speaker, !value);
  34. furi_hal_gpio_write(&gpio_speaker, value);*/
  35. break;
  36. case MagTxStateLF_P:
  37. furi_hal_gpio_write(RFID_PIN_OUT, value);
  38. furi_hal_gpio_write(&gpio_speaker, value);
  39. /* // Weaker but cleaner signal
  40. if(value) {
  41. furi_hal_gpio_write(RFID_PIN_OUT, value);
  42. furi_hal_gpio_write(&gpio_speaker, value);
  43. furi_delay_us(10);
  44. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  45. furi_hal_gpio_write(&gpio_speaker, !value);
  46. } else {
  47. furi_delay_us(10);
  48. }*/
  49. /*furi_hal_gpio_write(RFID_PIN_OUT, value);
  50. furi_hal_gpio_write(&gpio_speaker, value);
  51. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  52. furi_hal_gpio_write(&gpio_speaker, !value);
  53. furi_hal_gpio_write(RFID_PIN_OUT, value);
  54. furi_hal_gpio_write(&gpio_speaker, value);*/
  55. break;
  56. case MagTxStateNFC:
  57. // turn on for duration of half-bit? or "blip" the field on / off?
  58. // getting nothing from the mag reader either way
  59. //(value) ? furi_hal_nfc_ll_txrx_on() : furi_hal_nfc_ll_txrx_off();
  60. if(last_value == 2 || value != (bool)last_value) {
  61. furi_hal_nfc_ll_txrx_on();
  62. //furi_delay_us(64);
  63. furi_hal_nfc_ll_txrx_off();
  64. }
  65. break;
  66. case MagTxCC1101_434:
  67. case MagTxCC1101_868:
  68. if(last_value == 2 || value != (bool)last_value) {
  69. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  70. furi_delay_us(64);
  71. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  72. }
  73. break;
  74. default:
  75. break;
  76. }
  77. last_value = value;
  78. }
  79. void play_track(uint8_t* bits_manchester, uint16_t n_bits, MagSetting* setting, bool reverse) {
  80. for(uint16_t i = 0; i < n_bits; i++) {
  81. uint16_t j = (reverse) ? (n_bits - i - 1) : i;
  82. uint8_t byte = j / 8;
  83. uint8_t bitmask = 1 << (7 - (j % 8));
  84. /* Bits are stored in their arrays like on a card (LSB first). This is not how usually bits are stored in a
  85. * byte, with the MSB first. the var bitmask creates the pattern to iterate through each bit, LSB first, like so
  86. * 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x80... masking bits one by one from the current byte
  87. *
  88. * I've chosen this LSB approach since bits and bytes are hard enough to visualize with the 5/8 and 7/8 encoding
  89. * MSR uses. It's a biiit more complicated to process, but visualizing it with printf or a debugger is
  90. * infinitely easier
  91. *
  92. * Encoding the following pairs of 5 bits as 5/8: A1234 B1234 C1234 D1234
  93. * using this LSB format looks like: A1234B12 34C1234D 12340000
  94. * using the MSB format, looks like: 21B4321A D4321C43 00004321
  95. * this means reading each byte backwards when printing/debugging, and the jumping 16 bits ahead, reading 8 more
  96. * bits backward, jumping 16 more bits ahead.
  97. *
  98. * I find this much more convenient for debugging, with the tiny incovenience of reading the bits in reverse
  99. * order. Thus, the reason for the bitmask above
  100. */
  101. bool bit = !!(bits_manchester[byte] & bitmask);
  102. // TODO: reimplement timing delays. Replace fixed furi_hal_cortex_delay_us to wait instead to a specific value
  103. // for DWT->CYCCNT. Note timer is aliased to 64us as per
  104. // #define FURI_HAL_CORTEX_INSTRUCTIONS_PER_MICROSECOND (SystemCoreClock / 1000000) | furi_hal_cortex.c
  105. play_halfbit(bit, setting);
  106. furi_delay_us(setting->us_clock);
  107. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  108. }
  109. }
  110. void tx_init_rfid() {
  111. // initialize RFID system for TX
  112. // OTG needed for RFID? Or just legacy from GPIO?
  113. // furi_hal_power_enable_otg();
  114. furi_hal_ibutton_pin_configure();
  115. // furi_hal_ibutton_start_drive();
  116. furi_hal_ibutton_pin_write(false);
  117. // Initializing at GpioSpeedLow seems sufficient for our needs; no improvements seen by increasing speed setting
  118. // this doesn't seem to make a difference, leaving it in
  119. furi_hal_gpio_init(&gpio_rfid_data_in, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  120. furi_hal_gpio_write(&gpio_rfid_data_in, false);
  121. // false->ground RFID antenna; true->don't ground
  122. // skotopes (RFID dev) say normally you'd want RFID_PULL in high for signal forming, while modulating RFID_OUT
  123. // dunaevai135 had it low in their old code. Leaving low, as it doesn't seem to make a difference on my janky antenna
  124. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  125. furi_hal_gpio_write(&gpio_nfc_irq_rfid_pull, false);
  126. furi_hal_gpio_init(RFID_PIN_OUT, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  127. furi_delay_ms(300);
  128. }
  129. void tx_deinit_rfid() {
  130. // reset RFID system
  131. furi_hal_gpio_write(RFID_PIN_OUT, 0);
  132. furi_hal_rfid_pins_reset();
  133. furi_hal_power_disable_otg();
  134. }
  135. void tx_init_rf(int hz) {
  136. // presets and frequency will need some experimenting
  137. furi_hal_subghz_reset();
  138. furi_hal_subghz_load_preset(FuriHalSubGhzPresetOok650Async);
  139. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetGFSK9_99KbAsync);
  140. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetMSK99_97KbAsync);
  141. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev238Async);
  142. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev476Async);
  143. furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  144. furi_hal_subghz_set_frequency_and_path(hz);
  145. furi_hal_subghz_tx();
  146. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  147. }
  148. void tx_init_piezo() {
  149. // TODO: some special mutex acquire procedure? c.f. furi_hal_speaker.c
  150. furi_hal_gpio_init(&gpio_speaker, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  151. }
  152. void tx_deinit_piezo() {
  153. // TODO: some special mutex release procedure?
  154. furi_hal_gpio_init(&gpio_speaker, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  155. }
  156. bool tx_init(MagSetting* setting) {
  157. // Initialize configured TX method
  158. switch(setting->tx) {
  159. case MagTxStateRFID:
  160. tx_init_rfid();
  161. break;
  162. case MagTxStateGPIO:
  163. furi_hal_power_enable_otg();
  164. // gpio_item_configure_all_pins(GpioModeOutputPushPull);
  165. furi_hal_gpio_init(GPIO_PIN_A, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  166. furi_hal_gpio_init(GPIO_PIN_B, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  167. furi_hal_gpio_init(GPIO_PIN_ENABLE, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  168. furi_hal_gpio_write(GPIO_PIN_ENABLE, 1);
  169. // had some issues with ~300; bumped higher temporarily
  170. furi_delay_ms(500);
  171. break;
  172. case MagTxStatePiezo:
  173. tx_init_piezo();
  174. break;
  175. case MagTxStateLF_P:
  176. tx_init_piezo();
  177. tx_init_rfid();
  178. break;
  179. case MagTxStateNFC:
  180. furi_hal_nfc_exit_sleep();
  181. break;
  182. case MagTxCC1101_434:
  183. tx_init_rf(434000000);
  184. break;
  185. case MagTxCC1101_868:
  186. tx_init_rf(868000000);
  187. break;
  188. default:
  189. return false;
  190. }
  191. return true;
  192. }
  193. bool tx_deinit(MagSetting* setting) {
  194. // Reset configured TX method
  195. switch(setting->tx) {
  196. case MagTxStateRFID:
  197. tx_deinit_rfid();
  198. break;
  199. case MagTxStateGPIO:
  200. furi_hal_gpio_write(GPIO_PIN_A, 0);
  201. furi_hal_gpio_write(GPIO_PIN_B, 0);
  202. furi_hal_gpio_write(GPIO_PIN_ENABLE, 0);
  203. // set back to analog output mode?
  204. //gpio_item_configure_all_pins(GpioModeAnalog);
  205. furi_hal_power_disable_otg();
  206. break;
  207. case MagTxStatePiezo:
  208. tx_deinit_piezo();
  209. break;
  210. case MagTxStateLF_P:
  211. tx_deinit_piezo();
  212. tx_deinit_rfid();
  213. break;
  214. case MagTxStateNFC:
  215. furi_hal_nfc_ll_txrx_off();
  216. furi_hal_nfc_start_sleep();
  217. break;
  218. case MagTxCC1101_434:
  219. case MagTxCC1101_868:
  220. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  221. furi_hal_subghz_reset();
  222. furi_hal_subghz_idle();
  223. break;
  224. default:
  225. return false;
  226. }
  227. return true;
  228. }
  229. void mag_spoof(Mag* mag) {
  230. MagSetting* setting = mag->setting;
  231. // TODO: cleanup this section. Possibly move precompute + tx_init to emulate_on_enter?
  232. FuriString* ft1 = mag->mag_dev->dev_data.track[0].str;
  233. FuriString* ft2 = mag->mag_dev->dev_data.track[1].str;
  234. FuriString* ft3 = mag->mag_dev->dev_data.track[2].str;
  235. char *data1, *data2, *data3;
  236. data1 = malloc(furi_string_size(ft1) + 1);
  237. data2 = malloc(furi_string_size(ft2) + 1);
  238. data3 = malloc(furi_string_size(ft3) + 1);
  239. strncpy(data1, furi_string_get_cstr(ft1), furi_string_size(ft1));
  240. strncpy(data2, furi_string_get_cstr(ft2), furi_string_size(ft2));
  241. strncpy(data3, furi_string_get_cstr(ft3), furi_string_size(ft3));
  242. if(furi_log_get_level() >= FuriLogLevelDebug) {
  243. debug_mag_string(data1, bitlen[0], sublen[0]);
  244. debug_mag_string(data2, bitlen[1], sublen[1]);
  245. debug_mag_string(data3, bitlen[2], sublen[2]);
  246. }
  247. uint8_t bits_t1_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  248. uint8_t bits_t1_manchester[128] = {0x00}; // twice the above
  249. uint16_t bits_t1_count = mag_encode(
  250. data1, (uint8_t*)bits_t1_manchester, (uint8_t*)bits_t1_raw, bitlen[0], sublen[0]);
  251. uint8_t bits_t2_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  252. uint8_t bits_t2_manchester[128] = {0x00}; // twice the above
  253. uint16_t bits_t2_count = mag_encode(
  254. data2, (uint8_t*)bits_t2_manchester, (uint8_t*)bits_t2_raw, bitlen[1], sublen[1]);
  255. uint8_t bits_t3_raw[64] = {0x00};
  256. uint8_t bits_t3_manchester[128] = {0x00};
  257. uint16_t bits_t3_count = mag_encode(
  258. data3, (uint8_t*)bits_t3_manchester, (uint8_t*)bits_t3_raw, bitlen[2], sublen[2]);
  259. if(furi_log_get_level() >= FuriLogLevelDebug) {
  260. printf(
  261. "Manchester bitcount: T1: %d, T2: %d, T3: %d\r\n",
  262. bits_t1_count,
  263. bits_t2_count,
  264. bits_t3_count);
  265. printf("T1 raw: ");
  266. for(int i = 0; i < bits_t1_count / 16; i++) printf("%02x ", bits_t1_raw[i]);
  267. printf("\r\nT1 manchester: ");
  268. for(int i = 0; i < bits_t1_count / 8; i++) printf("%02x ", bits_t1_manchester[i]);
  269. printf("\r\nT2 raw: ");
  270. for(int i = 0; i < bits_t2_count / 16; i++) printf("%02x ", bits_t2_raw[i]);
  271. printf("\r\nT2 manchester: ");
  272. for(int i = 0; i < bits_t2_count / 8; i++) printf("%02x ", bits_t2_manchester[i]);
  273. printf("\r\nT3 raw: ");
  274. for(int i = 0; i < bits_t3_count / 16; i++) printf("%02x ", bits_t3_raw[i]);
  275. printf("\r\nT3 manchester: ");
  276. for(int i = 0; i < bits_t3_count / 8; i++) printf("%02x ", bits_t3_manchester[i]);
  277. printf("\r\nBitwise emulation done\r\n\r\n");
  278. }
  279. last_value = 2;
  280. bool bit = false;
  281. if(!tx_init(setting)) return;
  282. FURI_CRITICAL_ENTER();
  283. for(uint16_t i = 0; i < (ZERO_PREFIX * 2); i++) {
  284. // is this right?
  285. if(!!(i % 2)) bit ^= 1;
  286. play_halfbit(bit, setting);
  287. furi_delay_us(setting->us_clock);
  288. }
  289. if((setting->track == MagTrackStateOneAndTwo) || (setting->track == MagTrackStateOne))
  290. play_track((uint8_t*)bits_t1_manchester, bits_t1_count, setting, false);
  291. if((setting->track == MagTrackStateOneAndTwo))
  292. for(uint16_t i = 0; i < (ZERO_BETWEEN * 2); i++) {
  293. if(!!(i % 2)) bit ^= 1;
  294. play_halfbit(bit, setting);
  295. furi_delay_us(setting->us_clock);
  296. }
  297. if((setting->track == MagTrackStateOneAndTwo) || (setting->track == MagTrackStateTwo))
  298. play_track(
  299. (uint8_t*)bits_t2_manchester,
  300. bits_t2_count,
  301. setting,
  302. (setting->reverse == MagReverseStateOn));
  303. if((setting->track == MagTrackStateThree))
  304. play_track((uint8_t*)bits_t3_manchester, bits_t3_count, setting, false);
  305. for(uint16_t i = 0; i < (ZERO_SUFFIX * 2); i++) {
  306. if(!!(i % 2)) bit ^= 1;
  307. play_halfbit(bit, setting);
  308. furi_delay_us(setting->us_clock);
  309. }
  310. FURI_CRITICAL_EXIT();
  311. free(data1);
  312. free(data2);
  313. free(data3);
  314. tx_deinit(setting);
  315. }
  316. uint16_t add_bit(bool value, uint8_t* out, uint16_t count) {
  317. uint8_t bit = count % 8;
  318. uint8_t byte = count / 8;
  319. if(value) {
  320. out[byte] |= 0x01;
  321. }
  322. if(bit < 7) out[byte] <<= 1;
  323. return count + 1;
  324. }
  325. uint16_t add_bit_manchester(bool value, uint8_t* out, uint16_t count) {
  326. static bool toggle = 0;
  327. toggle ^= 0x01;
  328. count = add_bit(toggle, out, count);
  329. if(value) toggle ^= 0x01;
  330. count = add_bit(toggle, out, count);
  331. return count;
  332. }
  333. uint16_t mag_encode(
  334. char* data,
  335. uint8_t* out_manchester,
  336. uint8_t* out_raw,
  337. uint8_t track_bits,
  338. uint8_t track_ascii_offset) {
  339. /*
  340. * track_bits - the number of raw (data) bits on the track. on ISO cards, that's 7 for track 1, or 5 for 2/3 - this is samy's bitlen
  341. * - this count includes the parity bit
  342. * track_ascii_offset - how much the ascii values are offset. track 1 makes space (ascii 32) become data 0x00,
  343. * - tracks 2/3 make ascii "0" become data 0x00 - this is samy's sublen
  344. *
  345. */
  346. uint16_t raw_bits_count = 0;
  347. uint16_t output_count = 0;
  348. int tmp, crc, lrc = 0;
  349. /* // why are we adding zeros to the encoded string if we're also doing it while playing?
  350. for(int i = 0; i < ZERO_PREFIX; i++) {
  351. output_count = add_bit_manchester(0, out_manchester, output_count);
  352. raw_bits_count = add_bit(0, out_raw, raw_bits_count);
  353. }*/
  354. for(int i = 0; *(data + i) != 0; i++) {
  355. crc = 1;
  356. tmp = *(data + i) - track_ascii_offset;
  357. for(int j = 0; j < track_bits - 1; j++) {
  358. crc ^= tmp & 1;
  359. lrc ^= (tmp & 1) << j;
  360. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  361. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  362. tmp >>= 1;
  363. }
  364. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  365. output_count = add_bit_manchester(crc, out_manchester, output_count);
  366. }
  367. // LRC byte
  368. tmp = lrc;
  369. crc = 1;
  370. for(int j = 0; j < track_bits - 1; j++) {
  371. crc ^= tmp & 0x01;
  372. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  373. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  374. tmp >>= 1;
  375. }
  376. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  377. output_count = add_bit_manchester(crc, out_manchester, output_count);
  378. return output_count;
  379. }
  380. void debug_mag_string(char* data, uint8_t track_bits, uint8_t track_ascii_offset) {
  381. uint8_t bits_raw[64] = {0}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  382. uint8_t bits_manchester[128] = {0}; // twice the above
  383. int numbits = 0;
  384. printf("Encoding [%s] with %d bits\r\n", data, track_bits);
  385. numbits = mag_encode(
  386. data, (uint8_t*)bits_manchester, (uint8_t*)bits_raw, track_bits, track_ascii_offset);
  387. printf("Got %d bits\r\n", numbits);
  388. printf("Raw byte stream: ");
  389. for(int i = 0; i < numbits / 8 / 2; i++) {
  390. printf("%02x", bits_raw[i]);
  391. if(i % 4 == 3) printf(" ");
  392. }
  393. printf("\r\n");
  394. printf("Bits ");
  395. int space_counter = 0;
  396. for(int i = 0; i < numbits / 2; i++) {
  397. /*if(i < ZERO_PREFIX) {
  398. printf("X");
  399. continue;
  400. } else if(i == ZERO_PREFIX) {
  401. printf(" ");
  402. space_counter = 0;
  403. }*/
  404. printf("%01x", (bits_raw[i / 8] & (1 << (7 - (i % 8)))) != 0);
  405. if((space_counter) % track_bits == track_bits - 1) printf(" ");
  406. space_counter++;
  407. }
  408. printf("\r\n");
  409. printf("Manchester encoded, byte stream: ");
  410. for(int i = 0; i < numbits / 8; i++) {
  411. printf("%02x", bits_manchester[i]);
  412. if(i % 4 == 3) printf(" ");
  413. }
  414. printf("\r\n\r\n");
  415. }