furi_hal_nfc.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805
  1. #include <limits.h>
  2. #include <furi_hal_nfc.h>
  3. #include <st25r3916.h>
  4. #include <st25r3916_irq.h>
  5. #include <rfal_rf.h>
  6. #include <furi.h>
  7. #include <lib/digital_signal/digital_signal.h>
  8. #include <furi_hal_spi.h>
  9. #include <furi_hal_gpio.h>
  10. #include <furi_hal_cortex.h>
  11. #include <furi_hal_resources.h>
  12. #define TAG "FuriHalNfc"
  13. static const uint32_t clocks_in_ms = 64 * 1000;
  14. FuriEventFlag* event = NULL;
  15. #define EVENT_FLAG_INTERRUPT (1UL << 0)
  16. #define EVENT_FLAG_STATE_CHANGED (1UL << 1)
  17. #define EVENT_FLAG_STOP (1UL << 2)
  18. #define EVENT_FLAG_ALL (EVENT_FLAG_INTERRUPT | EVENT_FLAG_STATE_CHANGED | EVENT_FLAG_STOP)
  19. #define FURI_HAL_NFC_UID_INCOMPLETE (0x04)
  20. void furi_hal_nfc_init() {
  21. ReturnCode ret = rfalNfcInitialize();
  22. if(ret == ERR_NONE) {
  23. furi_hal_nfc_start_sleep();
  24. event = furi_event_flag_alloc();
  25. FURI_LOG_I(TAG, "Init OK");
  26. } else {
  27. FURI_LOG_W(TAG, "Initialization failed, RFAL returned: %d", ret);
  28. }
  29. }
  30. bool furi_hal_nfc_is_busy() {
  31. return rfalNfcGetState() != RFAL_NFC_STATE_IDLE;
  32. }
  33. bool furi_hal_nfc_is_init() {
  34. return rfalNfcGetState() != RFAL_NFC_STATE_NOTINIT;
  35. }
  36. void furi_hal_nfc_field_on() {
  37. furi_hal_nfc_exit_sleep();
  38. st25r3916TxRxOn();
  39. }
  40. void furi_hal_nfc_field_off() {
  41. st25r3916TxRxOff();
  42. furi_hal_nfc_start_sleep();
  43. }
  44. void furi_hal_nfc_start_sleep() {
  45. rfalLowPowerModeStart();
  46. }
  47. void furi_hal_nfc_exit_sleep() {
  48. rfalLowPowerModeStop();
  49. }
  50. bool furi_hal_nfc_detect(FuriHalNfcDevData* nfc_data, uint32_t timeout) {
  51. furi_assert(nfc_data);
  52. rfalNfcDevice* dev_list = NULL;
  53. uint8_t dev_cnt = 0;
  54. bool detected = false;
  55. rfalLowPowerModeStop();
  56. rfalNfcState state = rfalNfcGetState();
  57. rfalNfcState state_old = 0;
  58. if(state == RFAL_NFC_STATE_NOTINIT) {
  59. rfalNfcInitialize();
  60. }
  61. rfalNfcDiscoverParam params;
  62. params.compMode = RFAL_COMPLIANCE_MODE_EMV;
  63. params.techs2Find = RFAL_NFC_POLL_TECH_A | RFAL_NFC_POLL_TECH_B | RFAL_NFC_POLL_TECH_F |
  64. RFAL_NFC_POLL_TECH_V | RFAL_NFC_POLL_TECH_AP2P | RFAL_NFC_POLL_TECH_ST25TB;
  65. params.totalDuration = 1000;
  66. params.devLimit = 3;
  67. params.wakeupEnabled = false;
  68. params.wakeupConfigDefault = true;
  69. params.nfcfBR = RFAL_BR_212;
  70. params.ap2pBR = RFAL_BR_424;
  71. params.maxBR = RFAL_BR_KEEP;
  72. params.GBLen = RFAL_NFCDEP_GB_MAX_LEN;
  73. params.notifyCb = NULL;
  74. uint32_t start = DWT->CYCCNT;
  75. rfalNfcDiscover(&params);
  76. while(true) {
  77. rfalNfcWorker();
  78. state = rfalNfcGetState();
  79. if(state != state_old) {
  80. FURI_LOG_T(TAG, "State change %d -> %d", state_old, state);
  81. }
  82. state_old = state;
  83. if(state == RFAL_NFC_STATE_ACTIVATED) {
  84. detected = true;
  85. break;
  86. }
  87. if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
  88. start = DWT->CYCCNT;
  89. continue;
  90. }
  91. if(state == RFAL_NFC_STATE_POLL_SELECT) {
  92. rfalNfcSelect(0);
  93. }
  94. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  95. rfalNfcDeactivate(true);
  96. FURI_LOG_T(TAG, "Timeout");
  97. break;
  98. }
  99. furi_delay_tick(1);
  100. }
  101. rfalNfcGetDevicesFound(&dev_list, &dev_cnt);
  102. if(detected) {
  103. if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCA) {
  104. nfc_data->type = FuriHalNfcTypeA;
  105. nfc_data->atqa[0] = dev_list[0].dev.nfca.sensRes.anticollisionInfo;
  106. nfc_data->atqa[1] = dev_list[0].dev.nfca.sensRes.platformInfo;
  107. nfc_data->sak = dev_list[0].dev.nfca.selRes.sak;
  108. uint8_t* cuid_start = dev_list[0].nfcid;
  109. if(dev_list[0].nfcidLen == 7) {
  110. cuid_start = &dev_list[0].nfcid[3];
  111. }
  112. nfc_data->cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
  113. (cuid_start[3]);
  114. } else if(
  115. dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCB ||
  116. dev_list[0].type == RFAL_NFC_LISTEN_TYPE_ST25TB) {
  117. nfc_data->type = FuriHalNfcTypeB;
  118. } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCF) {
  119. nfc_data->type = FuriHalNfcTypeF;
  120. } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCV) {
  121. nfc_data->type = FuriHalNfcTypeV;
  122. }
  123. if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_RF) {
  124. nfc_data->interface = FuriHalNfcInterfaceRf;
  125. } else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_ISODEP) {
  126. nfc_data->interface = FuriHalNfcInterfaceIsoDep;
  127. } else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_NFCDEP) {
  128. nfc_data->interface = FuriHalNfcInterfaceNfcDep;
  129. }
  130. nfc_data->uid_len = dev_list[0].nfcidLen;
  131. memcpy(nfc_data->uid, dev_list[0].nfcid, nfc_data->uid_len);
  132. }
  133. return detected;
  134. }
  135. bool furi_hal_nfc_activate_nfca(uint32_t timeout, uint32_t* cuid) {
  136. rfalNfcDevice* dev_list;
  137. uint8_t dev_cnt = 0;
  138. rfalLowPowerModeStop();
  139. rfalNfcState state = rfalNfcGetState();
  140. if(state == RFAL_NFC_STATE_NOTINIT) {
  141. rfalNfcInitialize();
  142. }
  143. rfalNfcDiscoverParam params = {
  144. .compMode = RFAL_COMPLIANCE_MODE_NFC,
  145. .techs2Find = RFAL_NFC_POLL_TECH_A,
  146. .totalDuration = 1000,
  147. .devLimit = 3,
  148. .wakeupEnabled = false,
  149. .wakeupConfigDefault = true,
  150. .nfcfBR = RFAL_BR_212,
  151. .ap2pBR = RFAL_BR_424,
  152. .maxBR = RFAL_BR_KEEP,
  153. .GBLen = RFAL_NFCDEP_GB_MAX_LEN,
  154. .notifyCb = NULL,
  155. };
  156. uint32_t start = DWT->CYCCNT;
  157. rfalNfcDiscover(&params);
  158. while(state != RFAL_NFC_STATE_ACTIVATED) {
  159. rfalNfcWorker();
  160. state = rfalNfcGetState();
  161. FURI_LOG_T(TAG, "Current state %d", state);
  162. if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
  163. start = DWT->CYCCNT;
  164. continue;
  165. }
  166. if(state == RFAL_NFC_STATE_POLL_SELECT) {
  167. rfalNfcSelect(0);
  168. }
  169. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  170. rfalNfcDeactivate(true);
  171. FURI_LOG_T(TAG, "Timeout");
  172. return false;
  173. }
  174. furi_thread_yield();
  175. }
  176. rfalNfcGetDevicesFound(&dev_list, &dev_cnt);
  177. // Take first device and set cuid
  178. if(cuid) {
  179. uint8_t* cuid_start = dev_list[0].nfcid;
  180. if(dev_list[0].nfcidLen == 7) {
  181. cuid_start = &dev_list[0].nfcid[3];
  182. }
  183. *cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
  184. (cuid_start[3]);
  185. FURI_LOG_T(TAG, "Activated tag with cuid: %lX", *cuid);
  186. }
  187. return true;
  188. }
  189. bool furi_hal_nfc_listen(
  190. uint8_t* uid,
  191. uint8_t uid_len,
  192. uint8_t* atqa,
  193. uint8_t sak,
  194. bool activate_after_sak,
  195. uint32_t timeout) {
  196. rfalNfcState state = rfalNfcGetState();
  197. if(state == RFAL_NFC_STATE_NOTINIT) {
  198. rfalNfcInitialize();
  199. } else if(state >= RFAL_NFC_STATE_ACTIVATED) {
  200. rfalNfcDeactivate(false);
  201. }
  202. rfalLowPowerModeStop();
  203. rfalNfcDiscoverParam params = {
  204. .techs2Find = RFAL_NFC_LISTEN_TECH_A,
  205. .totalDuration = 1000,
  206. .devLimit = 1,
  207. .wakeupEnabled = false,
  208. .wakeupConfigDefault = true,
  209. .nfcfBR = RFAL_BR_212,
  210. .ap2pBR = RFAL_BR_424,
  211. .maxBR = RFAL_BR_KEEP,
  212. .GBLen = RFAL_NFCDEP_GB_MAX_LEN,
  213. .notifyCb = NULL,
  214. .activate_after_sak = activate_after_sak,
  215. };
  216. if(FURI_BIT(sak, 5)) {
  217. params.compMode = RFAL_COMPLIANCE_MODE_EMV;
  218. } else {
  219. params.compMode = RFAL_COMPLIANCE_MODE_NFC;
  220. }
  221. params.lmConfigPA.nfcidLen = uid_len;
  222. memcpy(params.lmConfigPA.nfcid, uid, uid_len);
  223. params.lmConfigPA.SENS_RES[0] = atqa[0];
  224. params.lmConfigPA.SENS_RES[1] = atqa[1];
  225. params.lmConfigPA.SEL_RES = sak;
  226. rfalNfcDiscover(&params);
  227. // Disable EMD suppression.
  228. st25r3916ModifyRegister(ST25R3916_REG_EMD_SUP_CONF, ST25R3916_REG_EMD_SUP_CONF_emd_emv, 0);
  229. uint32_t start = DWT->CYCCNT;
  230. while(state != RFAL_NFC_STATE_ACTIVATED) {
  231. rfalNfcWorker();
  232. state = rfalNfcGetState();
  233. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  234. rfalNfcDeactivate(true);
  235. return false;
  236. }
  237. furi_delay_tick(1);
  238. }
  239. return true;
  240. }
  241. static void furi_hal_nfc_read_fifo(uint8_t* data, uint16_t* bits) {
  242. uint8_t fifo_status[2];
  243. uint8_t rx_buff[64];
  244. st25r3916ReadMultipleRegisters(
  245. ST25R3916_REG_FIFO_STATUS1, fifo_status, ST25R3916_FIFO_STATUS_LEN);
  246. uint16_t rx_bytes =
  247. ((((uint16_t)fifo_status[1] & ST25R3916_REG_FIFO_STATUS2_fifo_b_mask) >>
  248. ST25R3916_REG_FIFO_STATUS2_fifo_b_shift)
  249. << 8);
  250. rx_bytes |= (((uint16_t)fifo_status[0]) & 0x00FFU);
  251. st25r3916ReadFifo(rx_buff, rx_bytes);
  252. memcpy(data, rx_buff, rx_bytes);
  253. *bits = rx_bytes * 8;
  254. }
  255. void furi_hal_nfc_listen_sleep() {
  256. st25r3916ExecuteCommand(ST25R3916_CMD_GOTO_SLEEP);
  257. }
  258. void furi_hal_nfc_stop_cmd() {
  259. st25r3916ExecuteCommand(ST25R3916_CMD_STOP);
  260. }
  261. bool furi_hal_nfc_listen_rx(FuriHalNfcTxRxContext* tx_rx, uint32_t timeout_ms) {
  262. furi_assert(tx_rx);
  263. // Wait for interrupts
  264. uint32_t start = furi_get_tick();
  265. bool data_received = false;
  266. while(true) {
  267. if(furi_hal_gpio_read(&gpio_nfc_irq_rfid_pull) == true) {
  268. st25r3916CheckForReceivedInterrupts();
  269. if(st25r3916GetInterrupt(ST25R3916_IRQ_MASK_RXE)) {
  270. furi_hal_nfc_read_fifo(tx_rx->rx_data, &tx_rx->rx_bits);
  271. data_received = true;
  272. if(tx_rx->sniff_rx) {
  273. tx_rx->sniff_rx(tx_rx->rx_data, tx_rx->rx_bits, false, tx_rx->sniff_context);
  274. }
  275. break;
  276. }
  277. continue;
  278. }
  279. if(furi_get_tick() - start > timeout_ms) {
  280. FURI_LOG_T(TAG, "Interrupt waiting timeout");
  281. furi_delay_tick(1);
  282. break;
  283. }
  284. }
  285. return data_received;
  286. }
  287. void furi_hal_nfc_listen_start(FuriHalNfcDevData* nfc_data) {
  288. furi_assert(nfc_data);
  289. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeInput, GpioPullDown, GpioSpeedVeryHigh);
  290. // Clear interrupts
  291. st25r3916ClearInterrupts();
  292. // Mask all interrupts
  293. st25r3916DisableInterrupts(ST25R3916_IRQ_MASK_ALL);
  294. // RESET
  295. st25r3916ExecuteCommand(ST25R3916_CMD_STOP);
  296. // Setup registers
  297. st25r3916WriteRegister(
  298. ST25R3916_REG_OP_CONTROL,
  299. ST25R3916_REG_OP_CONTROL_en | ST25R3916_REG_OP_CONTROL_rx_en |
  300. ST25R3916_REG_OP_CONTROL_en_fd_auto_efd);
  301. st25r3916WriteRegister(
  302. ST25R3916_REG_MODE,
  303. ST25R3916_REG_MODE_targ_targ | ST25R3916_REG_MODE_om3 | ST25R3916_REG_MODE_om0);
  304. st25r3916WriteRegister(
  305. ST25R3916_REG_PASSIVE_TARGET,
  306. ST25R3916_REG_PASSIVE_TARGET_fdel_2 | ST25R3916_REG_PASSIVE_TARGET_fdel_0 |
  307. ST25R3916_REG_PASSIVE_TARGET_d_ac_ap2p | ST25R3916_REG_PASSIVE_TARGET_d_212_424_1r);
  308. st25r3916WriteRegister(ST25R3916_REG_MASK_RX_TIMER, 0x02);
  309. // Mask interrupts
  310. uint32_t clear_irq_mask =
  311. (ST25R3916_IRQ_MASK_RXE | ST25R3916_IRQ_MASK_RXE_PTA | ST25R3916_IRQ_MASK_WU_A_X |
  312. ST25R3916_IRQ_MASK_WU_A);
  313. st25r3916EnableInterrupts(clear_irq_mask);
  314. // Set 4 or 7 bytes UID
  315. if(nfc_data->uid_len == 4) {
  316. st25r3916ChangeRegisterBits(
  317. ST25R3916_REG_AUX, ST25R3916_REG_AUX_nfc_id_mask, ST25R3916_REG_AUX_nfc_id_4bytes);
  318. } else {
  319. st25r3916ChangeRegisterBits(
  320. ST25R3916_REG_AUX, ST25R3916_REG_AUX_nfc_id_mask, ST25R3916_REG_AUX_nfc_id_7bytes);
  321. }
  322. // Write PT Memory
  323. uint8_t pt_memory[15] = {};
  324. memcpy(pt_memory, nfc_data->uid, nfc_data->uid_len);
  325. pt_memory[10] = nfc_data->atqa[0];
  326. pt_memory[11] = nfc_data->atqa[1];
  327. if(nfc_data->uid_len == 4) {
  328. pt_memory[12] = nfc_data->sak & ~FURI_HAL_NFC_UID_INCOMPLETE;
  329. } else {
  330. pt_memory[12] = FURI_HAL_NFC_UID_INCOMPLETE;
  331. }
  332. pt_memory[13] = nfc_data->sak & ~FURI_HAL_NFC_UID_INCOMPLETE;
  333. pt_memory[14] = nfc_data->sak & ~FURI_HAL_NFC_UID_INCOMPLETE;
  334. st25r3916WritePTMem(pt_memory, sizeof(pt_memory));
  335. // Go to sense
  336. st25r3916ExecuteCommand(ST25R3916_CMD_GOTO_SENSE);
  337. }
  338. void rfal_interrupt_callback_handler() {
  339. furi_event_flag_set(event, EVENT_FLAG_INTERRUPT);
  340. }
  341. void rfal_state_changed_callback(void* context) {
  342. UNUSED(context);
  343. furi_event_flag_set(event, EVENT_FLAG_STATE_CHANGED);
  344. }
  345. void furi_hal_nfc_stop() {
  346. if(event) {
  347. furi_event_flag_set(event, EVENT_FLAG_STOP);
  348. }
  349. }
  350. bool furi_hal_nfc_emulate_nfca(
  351. uint8_t* uid,
  352. uint8_t uid_len,
  353. uint8_t* atqa,
  354. uint8_t sak,
  355. FuriHalNfcEmulateCallback callback,
  356. void* context,
  357. uint32_t timeout) {
  358. rfalSetUpperLayerCallback(rfal_interrupt_callback_handler);
  359. rfal_set_state_changed_callback(rfal_state_changed_callback);
  360. rfalLmConfPA config;
  361. config.nfcidLen = uid_len;
  362. memcpy(config.nfcid, uid, uid_len);
  363. memcpy(config.SENS_RES, atqa, RFAL_LM_SENS_RES_LEN);
  364. config.SEL_RES = sak;
  365. uint8_t buff_rx[256];
  366. uint16_t buff_rx_size = 256;
  367. uint16_t buff_rx_len = 0;
  368. uint8_t buff_tx[1040];
  369. uint16_t buff_tx_len = 0;
  370. uint32_t data_type = FURI_HAL_NFC_TXRX_DEFAULT;
  371. rfalLowPowerModeStop();
  372. if(rfalListenStart(
  373. RFAL_LM_MASK_NFCA,
  374. &config,
  375. NULL,
  376. NULL,
  377. buff_rx,
  378. rfalConvBytesToBits(buff_rx_size),
  379. &buff_rx_len)) {
  380. rfalListenStop();
  381. FURI_LOG_E(TAG, "Failed to start listen mode");
  382. return false;
  383. }
  384. while(true) {
  385. buff_rx_len = 0;
  386. buff_tx_len = 0;
  387. uint32_t flag = furi_event_flag_wait(event, EVENT_FLAG_ALL, FuriFlagWaitAny, timeout);
  388. if(flag == (unsigned)FuriFlagErrorTimeout || flag == EVENT_FLAG_STOP) {
  389. break;
  390. }
  391. bool data_received = false;
  392. buff_rx_len = 0;
  393. rfalWorker();
  394. rfalLmState state = rfalListenGetState(&data_received, NULL);
  395. if(data_received) {
  396. rfalTransceiveBlockingRx();
  397. if(nfca_emulation_handler(buff_rx, buff_rx_len, buff_tx, &buff_tx_len)) {
  398. if(rfalListenSleepStart(
  399. RFAL_LM_STATE_SLEEP_A,
  400. buff_rx,
  401. rfalConvBytesToBits(buff_rx_size),
  402. &buff_rx_len)) {
  403. FURI_LOG_E(TAG, "Failed to enter sleep mode");
  404. break;
  405. } else {
  406. continue;
  407. }
  408. }
  409. if(buff_tx_len) {
  410. ReturnCode ret = rfalTransceiveBitsBlockingTx(
  411. buff_tx,
  412. buff_tx_len,
  413. buff_rx,
  414. sizeof(buff_rx),
  415. &buff_rx_len,
  416. data_type,
  417. RFAL_FWT_NONE);
  418. if(ret) {
  419. FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
  420. break;
  421. }
  422. continue;
  423. }
  424. if((state == RFAL_LM_STATE_ACTIVE_A || state == RFAL_LM_STATE_ACTIVE_Ax)) {
  425. if(callback) {
  426. callback(buff_rx, buff_rx_len, buff_tx, &buff_tx_len, &data_type, context);
  427. }
  428. if(!rfalIsExtFieldOn()) {
  429. break;
  430. }
  431. if(buff_tx_len) {
  432. if(buff_tx_len == UINT16_MAX) buff_tx_len = 0;
  433. ReturnCode ret = rfalTransceiveBitsBlockingTx(
  434. buff_tx,
  435. buff_tx_len,
  436. buff_rx,
  437. sizeof(buff_rx),
  438. &buff_rx_len,
  439. data_type,
  440. RFAL_FWT_NONE);
  441. if(ret) {
  442. FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
  443. continue;
  444. }
  445. } else {
  446. break;
  447. }
  448. }
  449. }
  450. }
  451. rfalListenStop();
  452. return true;
  453. }
  454. static bool furi_hal_nfc_transparent_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
  455. furi_assert(tx_rx->nfca_signal);
  456. bool ret = false;
  457. // Start transparent mode
  458. st25r3916ExecuteCommand(ST25R3916_CMD_TRANSPARENT_MODE);
  459. // Reconfigure gpio for Transparent mode
  460. furi_hal_spi_bus_handle_deinit(&furi_hal_spi_bus_handle_nfc);
  461. // Send signal
  462. FURI_CRITICAL_ENTER();
  463. nfca_signal_encode(tx_rx->nfca_signal, tx_rx->tx_data, tx_rx->tx_bits, tx_rx->tx_parity);
  464. digital_signal_send(tx_rx->nfca_signal->tx_signal, &gpio_spi_r_mosi);
  465. FURI_CRITICAL_EXIT();
  466. furi_hal_gpio_write(&gpio_spi_r_mosi, false);
  467. // Configure gpio back to SPI and exit transparent
  468. furi_hal_spi_bus_handle_init(&furi_hal_spi_bus_handle_nfc);
  469. st25r3916ExecuteCommand(ST25R3916_CMD_UNMASK_RECEIVE_DATA);
  470. // Manually wait for interrupt
  471. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeInput, GpioPullDown, GpioSpeedVeryHigh);
  472. st25r3916ClearAndEnableInterrupts(ST25R3916_IRQ_MASK_RXE);
  473. if(tx_rx->sniff_tx) {
  474. tx_rx->sniff_tx(tx_rx->tx_data, tx_rx->tx_bits, false, tx_rx->sniff_context);
  475. }
  476. uint32_t irq = 0;
  477. uint8_t rxe = 0;
  478. uint32_t start = DWT->CYCCNT;
  479. while(true) {
  480. if(!rfalIsExtFieldOn()) {
  481. return false;
  482. }
  483. if(furi_hal_gpio_read(&gpio_nfc_irq_rfid_pull) == true) {
  484. st25r3916ReadRegister(ST25R3916_REG_IRQ_MAIN, &rxe);
  485. if(rxe & (1 << 4)) {
  486. irq = 1;
  487. break;
  488. }
  489. }
  490. uint32_t timeout = DWT->CYCCNT - start;
  491. if(timeout / furi_hal_cortex_instructions_per_microsecond() > timeout_ms * 1000) {
  492. FURI_LOG_D(TAG, "Interrupt waiting timeout");
  493. break;
  494. }
  495. }
  496. if(irq) {
  497. uint8_t fifo_stat[2];
  498. st25r3916ReadMultipleRegisters(
  499. ST25R3916_REG_FIFO_STATUS1, fifo_stat, ST25R3916_FIFO_STATUS_LEN);
  500. uint16_t len =
  501. ((((uint16_t)fifo_stat[1] & ST25R3916_REG_FIFO_STATUS2_fifo_b_mask) >>
  502. ST25R3916_REG_FIFO_STATUS2_fifo_b_shift)
  503. << RFAL_BITS_IN_BYTE);
  504. len |= (((uint16_t)fifo_stat[0]) & 0x00FFU);
  505. uint8_t rx[100];
  506. st25r3916ReadFifo(rx, len);
  507. tx_rx->rx_bits = len * 8;
  508. memcpy(tx_rx->rx_data, rx, len);
  509. if(tx_rx->sniff_rx) {
  510. tx_rx->sniff_rx(tx_rx->rx_data, tx_rx->rx_bits, false, tx_rx->sniff_context);
  511. }
  512. ret = true;
  513. } else {
  514. FURI_LOG_E(TAG, "Timeout error");
  515. ret = false;
  516. }
  517. st25r3916ClearInterrupts();
  518. return ret;
  519. }
  520. static uint32_t furi_hal_nfc_tx_rx_get_flag(FuriHalNfcTxRxType type) {
  521. uint32_t flags = 0;
  522. if(type == FuriHalNfcTxRxTypeRxNoCrc) {
  523. flags = RFAL_TXRX_FLAGS_CRC_RX_KEEP;
  524. } else if(type == FuriHalNfcTxRxTypeRxKeepPar) {
  525. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  526. RFAL_TXRX_FLAGS_PAR_RX_KEEP;
  527. } else if(type == FuriHalNfcTxRxTypeRaw) {
  528. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  529. RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE;
  530. } else if(type == FuriHalNfcTxRxTypeRxRaw) {
  531. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  532. RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE;
  533. }
  534. return flags;
  535. }
  536. static uint16_t furi_hal_nfc_data_and_parity_to_bitstream(
  537. uint8_t* data,
  538. uint16_t len,
  539. uint8_t* parity,
  540. uint8_t* out) {
  541. furi_assert(data);
  542. furi_assert(out);
  543. uint8_t next_par_bit = 0;
  544. uint16_t curr_bit_pos = 0;
  545. for(uint16_t i = 0; i < len; i++) {
  546. next_par_bit = FURI_BIT(parity[i / 8], 7 - (i % 8));
  547. if(curr_bit_pos % 8 == 0) {
  548. out[curr_bit_pos / 8] = data[i];
  549. curr_bit_pos += 8;
  550. out[curr_bit_pos / 8] = next_par_bit;
  551. curr_bit_pos++;
  552. } else {
  553. out[curr_bit_pos / 8] |= data[i] << (curr_bit_pos % 8);
  554. out[curr_bit_pos / 8 + 1] = data[i] >> (8 - curr_bit_pos % 8);
  555. out[curr_bit_pos / 8 + 1] |= next_par_bit << (curr_bit_pos % 8);
  556. curr_bit_pos += 9;
  557. }
  558. }
  559. return curr_bit_pos;
  560. }
  561. uint16_t furi_hal_nfc_bitstream_to_data_and_parity(
  562. uint8_t* in_buff,
  563. uint16_t in_buff_bits,
  564. uint8_t* out_data,
  565. uint8_t* out_parity) {
  566. if(in_buff_bits < 8) {
  567. out_data[0] = in_buff[0];
  568. return in_buff_bits;
  569. }
  570. if(in_buff_bits % 9 != 0) {
  571. return 0;
  572. }
  573. uint8_t curr_byte = 0;
  574. uint16_t bit_processed = 0;
  575. memset(out_parity, 0, in_buff_bits / 9);
  576. while(bit_processed < in_buff_bits) {
  577. out_data[curr_byte] = in_buff[bit_processed / 8] >> (bit_processed % 8);
  578. out_data[curr_byte] |= in_buff[bit_processed / 8 + 1] << (8 - bit_processed % 8);
  579. out_parity[curr_byte / 8] |= FURI_BIT(in_buff[bit_processed / 8 + 1], bit_processed % 8)
  580. << (7 - curr_byte % 8);
  581. bit_processed += 9;
  582. curr_byte++;
  583. }
  584. return curr_byte * 8;
  585. }
  586. bool furi_hal_nfc_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
  587. furi_assert(tx_rx);
  588. ReturnCode ret;
  589. rfalNfcState state = RFAL_NFC_STATE_ACTIVATED;
  590. uint8_t temp_tx_buff[FURI_HAL_NFC_DATA_BUFF_SIZE] = {};
  591. uint16_t temp_tx_bits = 0;
  592. uint8_t* temp_rx_buff = NULL;
  593. uint16_t* temp_rx_bits = NULL;
  594. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTransparent) {
  595. return furi_hal_nfc_transparent_tx_rx(tx_rx, timeout_ms);
  596. }
  597. // Prepare data for FIFO if necessary
  598. uint32_t flags = furi_hal_nfc_tx_rx_get_flag(tx_rx->tx_rx_type);
  599. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw) {
  600. temp_tx_bits = furi_hal_nfc_data_and_parity_to_bitstream(
  601. tx_rx->tx_data, tx_rx->tx_bits / 8, tx_rx->tx_parity, temp_tx_buff);
  602. ret = rfalNfcDataExchangeCustomStart(
  603. temp_tx_buff, temp_tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags);
  604. } else {
  605. ret = rfalNfcDataExchangeCustomStart(
  606. tx_rx->tx_data, tx_rx->tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags);
  607. }
  608. if(ret != ERR_NONE) {
  609. FURI_LOG_E(TAG, "Failed to start data exchange");
  610. return false;
  611. }
  612. if(tx_rx->sniff_tx) {
  613. bool crc_dropped = !(flags & RFAL_TXRX_FLAGS_CRC_TX_MANUAL);
  614. tx_rx->sniff_tx(tx_rx->tx_data, tx_rx->tx_bits, crc_dropped, tx_rx->sniff_context);
  615. }
  616. uint32_t start = DWT->CYCCNT;
  617. while(state != RFAL_NFC_STATE_DATAEXCHANGE_DONE) {
  618. rfalNfcWorker();
  619. state = rfalNfcGetState();
  620. ret = rfalNfcDataExchangeGetStatus();
  621. if(ret == ERR_BUSY) {
  622. if(DWT->CYCCNT - start > timeout_ms * clocks_in_ms) {
  623. FURI_LOG_D(TAG, "Timeout during data exchange");
  624. return false;
  625. }
  626. continue;
  627. } else {
  628. start = DWT->CYCCNT;
  629. }
  630. furi_delay_tick(1);
  631. }
  632. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw ||
  633. tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRxRaw) {
  634. tx_rx->rx_bits = furi_hal_nfc_bitstream_to_data_and_parity(
  635. temp_rx_buff, *temp_rx_bits, tx_rx->rx_data, tx_rx->rx_parity);
  636. } else {
  637. memcpy(tx_rx->rx_data, temp_rx_buff, MIN(*temp_rx_bits / 8, FURI_HAL_NFC_DATA_BUFF_SIZE));
  638. tx_rx->rx_bits = *temp_rx_bits;
  639. }
  640. if(tx_rx->sniff_rx) {
  641. bool crc_dropped = !(flags & RFAL_TXRX_FLAGS_CRC_RX_KEEP);
  642. tx_rx->sniff_rx(tx_rx->rx_data, tx_rx->rx_bits, crc_dropped, tx_rx->sniff_context);
  643. }
  644. return true;
  645. }
  646. bool furi_hal_nfc_tx_rx_full(FuriHalNfcTxRxContext* tx_rx) {
  647. uint16_t part_len_bytes;
  648. if(!furi_hal_nfc_tx_rx(tx_rx, 1000)) {
  649. return false;
  650. }
  651. while(tx_rx->rx_bits && tx_rx->rx_data[0] == 0xAF) {
  652. FuriHalNfcTxRxContext tmp = *tx_rx;
  653. tmp.tx_data[0] = 0xAF;
  654. tmp.tx_bits = 8;
  655. if(!furi_hal_nfc_tx_rx(&tmp, 1000)) {
  656. return false;
  657. }
  658. part_len_bytes = tmp.rx_bits / 8;
  659. if(part_len_bytes > FURI_HAL_NFC_DATA_BUFF_SIZE - tx_rx->rx_bits / 8) {
  660. FURI_LOG_W(TAG, "Overrun rx buf");
  661. return false;
  662. }
  663. if(part_len_bytes == 0) {
  664. FURI_LOG_W(TAG, "Empty 0xAF response");
  665. return false;
  666. }
  667. memcpy(tx_rx->rx_data + tx_rx->rx_bits / 8, tmp.rx_data + 1, part_len_bytes - 1);
  668. tx_rx->rx_data[0] = tmp.rx_data[0];
  669. tx_rx->rx_bits += 8 * (part_len_bytes - 1);
  670. }
  671. return true;
  672. }
  673. void furi_hal_nfc_sleep() {
  674. rfalNfcDeactivate(false);
  675. rfalLowPowerModeStart();
  676. }
  677. FuriHalNfcReturn
  678. furi_hal_nfc_ll_set_mode(FuriHalNfcMode mode, FuriHalNfcBitrate txBR, FuriHalNfcBitrate rxBR) {
  679. return rfalSetMode((rfalMode)mode, (rfalBitRate)txBR, (rfalBitRate)rxBR);
  680. }
  681. void furi_hal_nfc_ll_set_error_handling(FuriHalNfcErrorHandling eHandling) {
  682. rfalSetErrorHandling((rfalEHandling)eHandling);
  683. }
  684. void furi_hal_nfc_ll_set_guard_time(uint32_t cycles) {
  685. rfalSetGT(cycles);
  686. }
  687. void furi_hal_nfc_ll_set_fdt_listen(uint32_t cycles) {
  688. rfalSetFDTListen(cycles);
  689. }
  690. void furi_hal_nfc_ll_set_fdt_poll(uint32_t FDTPoll) {
  691. rfalSetFDTPoll(FDTPoll);
  692. }
  693. void furi_hal_nfc_ll_txrx_on() {
  694. st25r3916TxRxOn();
  695. }
  696. void furi_hal_nfc_ll_txrx_off() {
  697. st25r3916TxRxOff();
  698. }
  699. FuriHalNfcReturn furi_hal_nfc_ll_txrx(
  700. uint8_t* txBuf,
  701. uint16_t txBufLen,
  702. uint8_t* rxBuf,
  703. uint16_t rxBufLen,
  704. uint16_t* actLen,
  705. uint32_t flags,
  706. uint32_t fwt) {
  707. return rfalTransceiveBlockingTxRx(txBuf, txBufLen, rxBuf, rxBufLen, actLen, flags, fwt);
  708. }
  709. FuriHalNfcReturn furi_hal_nfc_ll_txrx_bits(
  710. uint8_t* txBuf,
  711. uint16_t txBufLen,
  712. uint8_t* rxBuf,
  713. uint16_t rxBufLen,
  714. uint16_t* actLen,
  715. uint32_t flags,
  716. uint32_t fwt) {
  717. return rfalTransceiveBitsBlockingTxRx(txBuf, txBufLen, rxBuf, rxBufLen, actLen, flags, fwt);
  718. }
  719. void furi_hal_nfc_ll_poll() {
  720. rfalWorker();
  721. }