furi_hal_crypto.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342
  1. #include <furi_hal_crypto.h>
  2. #include <furi_hal_bt.h>
  3. #include <furi_hal_random.h>
  4. #include <stm32wbxx_ll_cortex.h>
  5. #include <stm32wbxx_ll_bus.h>
  6. #include <furi.h>
  7. #include <interface/patterns/ble_thread/shci/shci.h>
  8. #define TAG "FuriHalCrypto"
  9. #define ENCLAVE_FACTORY_KEY_SLOTS 10
  10. #define ENCLAVE_SIGNATURE_SIZE 16
  11. #define CRYPTO_BLK_LEN (4 * sizeof(uint32_t))
  12. #define CRYPTO_TIMEOUT (1000)
  13. #define CRYPTO_MODE_ENCRYPT 0U
  14. #define CRYPTO_MODE_INIT (AES_CR_MODE_0)
  15. #define CRYPTO_MODE_DECRYPT (AES_CR_MODE_1)
  16. #define CRYPTO_MODE_DECRYPT_INIT (AES_CR_MODE_0 | AES_CR_MODE_1)
  17. #define CRYPTO_DATATYPE_32B 0U
  18. #define CRYPTO_KEYSIZE_256B (AES_CR_KEYSIZE)
  19. #define CRYPTO_AES_CBC (AES_CR_CHMOD_0)
  20. static FuriMutex* furi_hal_crypto_mutex = NULL;
  21. static bool furi_hal_crypto_mode_init_done = false;
  22. static const uint8_t enclave_signature_iv[ENCLAVE_FACTORY_KEY_SLOTS][16] = {
  23. {0xac, 0x5d, 0x68, 0xb8, 0x79, 0x74, 0xfc, 0x7f, 0x45, 0x02, 0x82, 0xf1, 0x48, 0x7e, 0x75, 0x8a},
  24. {0x38, 0xe6, 0x6a, 0x90, 0x5e, 0x5b, 0x8a, 0xa6, 0x70, 0x30, 0x04, 0x72, 0xc2, 0x42, 0xea, 0xaf},
  25. {0x73, 0xd5, 0x8e, 0xfb, 0x0f, 0x4b, 0xa9, 0x79, 0x0f, 0xde, 0x0e, 0x53, 0x44, 0x7d, 0xaa, 0xfd},
  26. {0x3c, 0x9a, 0xf4, 0x43, 0x2b, 0xfe, 0xea, 0xae, 0x8c, 0xc6, 0xd1, 0x60, 0xd2, 0x96, 0x64, 0xa9},
  27. {0x10, 0xac, 0x7b, 0x63, 0x03, 0x7f, 0x43, 0x18, 0xec, 0x9d, 0x9c, 0xc4, 0x01, 0xdc, 0x35, 0xa7},
  28. {0x26, 0x21, 0x64, 0xe6, 0xd0, 0xf2, 0x47, 0x49, 0xdc, 0x36, 0xcd, 0x68, 0x0c, 0x91, 0x03, 0x44},
  29. {0x7a, 0xbd, 0xce, 0x9c, 0x24, 0x7a, 0x2a, 0xb1, 0x3c, 0x4f, 0x5a, 0x7d, 0x80, 0x3e, 0xfc, 0x0d},
  30. {0xcd, 0xdd, 0xd3, 0x02, 0x85, 0x65, 0x43, 0x83, 0xf9, 0xac, 0x75, 0x2f, 0x21, 0xef, 0x28, 0x6b},
  31. {0xab, 0x73, 0x70, 0xe8, 0xe2, 0x56, 0x0f, 0x58, 0xab, 0x29, 0xa5, 0xb1, 0x13, 0x47, 0x5e, 0xe8},
  32. {0x4f, 0x3c, 0x43, 0x77, 0xde, 0xed, 0x79, 0xa1, 0x8d, 0x4c, 0x1f, 0xfd, 0xdb, 0x96, 0x87, 0x2e},
  33. };
  34. static const uint8_t enclave_signature_input[ENCLAVE_FACTORY_KEY_SLOTS][ENCLAVE_SIGNATURE_SIZE] = {
  35. {0x9f, 0x5c, 0xb1, 0x43, 0x17, 0x53, 0x18, 0x8c, 0x66, 0x3d, 0x39, 0x45, 0x90, 0x13, 0xa9, 0xde},
  36. {0xc5, 0x98, 0xe9, 0x17, 0xb8, 0x97, 0x9e, 0x03, 0x33, 0x14, 0x13, 0x8f, 0xce, 0x74, 0x0d, 0x54},
  37. {0x34, 0xba, 0x99, 0x59, 0x9f, 0x70, 0x67, 0xe9, 0x09, 0xee, 0x64, 0x0e, 0xb3, 0xba, 0xfb, 0x75},
  38. {0xdc, 0xfa, 0x6c, 0x9a, 0x6f, 0x0a, 0x3e, 0xdc, 0x42, 0xf6, 0xae, 0x0d, 0x3c, 0xf7, 0x83, 0xaf},
  39. {0xea, 0x2d, 0xe3, 0x1f, 0x02, 0x99, 0x1a, 0x7e, 0x6d, 0x93, 0x4c, 0xb5, 0x42, 0xf0, 0x7a, 0x9b},
  40. {0x53, 0x5e, 0x04, 0xa2, 0x49, 0xa0, 0x73, 0x49, 0x56, 0xb0, 0x88, 0x8c, 0x12, 0xa0, 0xe4, 0x18},
  41. {0x7d, 0xa7, 0xc5, 0x21, 0x7f, 0x12, 0x95, 0xdd, 0x4d, 0x77, 0x01, 0xfa, 0x71, 0x88, 0x2b, 0x7f},
  42. {0xdc, 0x9b, 0xc5, 0xa7, 0x6b, 0x84, 0x5c, 0x37, 0x7c, 0xec, 0x05, 0xa1, 0x9f, 0x91, 0x17, 0x3b},
  43. {0xea, 0xcf, 0xd9, 0x9b, 0x86, 0xcd, 0x2b, 0x43, 0x54, 0x45, 0x82, 0xc6, 0xfe, 0x73, 0x1a, 0x1a},
  44. {0x77, 0xb8, 0x1b, 0x90, 0xb4, 0xb7, 0x32, 0x76, 0x8f, 0x8a, 0x57, 0x06, 0xc7, 0xdd, 0x08, 0x90},
  45. };
  46. static const uint8_t enclave_signature_expected[ENCLAVE_FACTORY_KEY_SLOTS][ENCLAVE_SIGNATURE_SIZE] = {
  47. {0xe9, 0x9a, 0xce, 0xe9, 0x4d, 0xe1, 0x7f, 0x55, 0xcb, 0x8a, 0xbf, 0xf2, 0x4d, 0x98, 0x27, 0x67},
  48. {0x34, 0x27, 0xa7, 0xea, 0xa8, 0x98, 0x66, 0x9b, 0xed, 0x43, 0xd3, 0x93, 0xb5, 0xa2, 0x87, 0x8e},
  49. {0x6c, 0xf3, 0x01, 0x78, 0x53, 0x1b, 0x11, 0x32, 0xf0, 0x27, 0x2f, 0xe3, 0x7d, 0xa6, 0xe2, 0xfd},
  50. {0xdf, 0x7f, 0x37, 0x65, 0x2f, 0xdb, 0x7c, 0xcf, 0x5b, 0xb6, 0xe4, 0x9c, 0x63, 0xc5, 0x0f, 0xe0},
  51. {0x9b, 0x5c, 0xee, 0x44, 0x0e, 0xd1, 0xcb, 0x5f, 0x28, 0x9f, 0x12, 0x17, 0x59, 0x64, 0x40, 0xbb},
  52. {0x94, 0xc2, 0x09, 0x98, 0x62, 0xa7, 0x2b, 0x93, 0xed, 0x36, 0x1f, 0x10, 0xbc, 0x26, 0xbd, 0x41},
  53. {0x4d, 0xb2, 0x2b, 0xc5, 0x96, 0x47, 0x61, 0xf4, 0x16, 0xe0, 0x81, 0xc3, 0x8e, 0xb9, 0x9c, 0x9b},
  54. {0xc3, 0x6b, 0x83, 0x55, 0x90, 0x38, 0x0f, 0xea, 0xd1, 0x65, 0xbf, 0x32, 0x4f, 0x8e, 0x62, 0x5b},
  55. {0x8d, 0x5e, 0x27, 0xbc, 0x14, 0x4f, 0x08, 0xa8, 0x2b, 0x14, 0x89, 0x5e, 0xdf, 0x77, 0x04, 0x31},
  56. {0xc9, 0xf7, 0x03, 0xf1, 0x6c, 0x65, 0xad, 0x49, 0x74, 0xbe, 0x00, 0x54, 0xfd, 0xa6, 0x9c, 0x32},
  57. };
  58. void furi_hal_crypto_init() {
  59. furi_hal_crypto_mutex = furi_mutex_alloc(FuriMutexTypeNormal);
  60. FURI_LOG_I(TAG, "Init OK");
  61. }
  62. static bool furi_hal_crypto_generate_unique_keys(uint8_t start_slot, uint8_t end_slot) {
  63. FuriHalCryptoKey key;
  64. uint8_t key_data[32];
  65. FURI_LOG_I(TAG, "Generating keys %u..%u", start_slot, end_slot);
  66. for(uint8_t slot = start_slot; slot <= end_slot; slot++) {
  67. key.type = FuriHalCryptoKeyTypeSimple;
  68. key.size = FuriHalCryptoKeySize256;
  69. key.data = key_data;
  70. furi_hal_random_fill_buf(key_data, 32);
  71. if(!furi_hal_crypto_store_add_key(&key, &slot)) {
  72. FURI_LOG_E(TAG, "Error writing key to slot %u", slot);
  73. return false;
  74. }
  75. }
  76. return true;
  77. }
  78. bool furi_hal_crypto_verify_key(uint8_t key_slot) {
  79. uint8_t keys_nb = 0;
  80. uint8_t valid_keys_nb = 0;
  81. uint8_t last_valid_slot = ENCLAVE_FACTORY_KEY_SLOTS;
  82. uint8_t empty_iv[16] = {0};
  83. furi_hal_crypto_verify_enclave(&keys_nb, &valid_keys_nb);
  84. if(key_slot <= ENCLAVE_FACTORY_KEY_SLOTS) { // It's a factory key
  85. if(key_slot > keys_nb) return false;
  86. } else { // Unique key
  87. if(keys_nb < ENCLAVE_FACTORY_KEY_SLOTS) // Some factory keys are missing
  88. return false;
  89. for(uint8_t i = key_slot; i > ENCLAVE_FACTORY_KEY_SLOTS; i--) {
  90. if(furi_hal_crypto_store_load_key(i, empty_iv)) {
  91. last_valid_slot = i;
  92. furi_hal_crypto_store_unload_key(i);
  93. break;
  94. }
  95. }
  96. if(last_valid_slot == key_slot)
  97. return true;
  98. else // Generate missing unique keys
  99. return furi_hal_crypto_generate_unique_keys(last_valid_slot + 1, key_slot);
  100. }
  101. return true;
  102. }
  103. bool furi_hal_crypto_verify_enclave(uint8_t* keys_nb, uint8_t* valid_keys_nb) {
  104. furi_assert(keys_nb);
  105. furi_assert(valid_keys_nb);
  106. uint8_t keys = 0;
  107. uint8_t keys_valid = 0;
  108. uint8_t buffer[ENCLAVE_SIGNATURE_SIZE];
  109. for(size_t key_slot = 0; key_slot < ENCLAVE_FACTORY_KEY_SLOTS; key_slot++) {
  110. if(furi_hal_crypto_store_load_key(key_slot + 1, enclave_signature_iv[key_slot])) {
  111. keys++;
  112. if(furi_hal_crypto_encrypt(
  113. enclave_signature_input[key_slot], buffer, ENCLAVE_SIGNATURE_SIZE)) {
  114. keys_valid +=
  115. memcmp(buffer, enclave_signature_expected[key_slot], ENCLAVE_SIGNATURE_SIZE) ==
  116. 0;
  117. }
  118. furi_hal_crypto_store_unload_key(key_slot + 1);
  119. }
  120. }
  121. *keys_nb = keys;
  122. *valid_keys_nb = keys_valid;
  123. if(*valid_keys_nb == ENCLAVE_FACTORY_KEY_SLOTS)
  124. return true;
  125. else
  126. return false;
  127. }
  128. bool furi_hal_crypto_store_add_key(FuriHalCryptoKey* key, uint8_t* slot) {
  129. furi_assert(key);
  130. furi_assert(slot);
  131. furi_check(furi_mutex_acquire(furi_hal_crypto_mutex, FuriWaitForever) == FuriStatusOk);
  132. if(!furi_hal_bt_is_alive()) {
  133. return false;
  134. }
  135. SHCI_C2_FUS_StoreUsrKey_Cmd_Param_t pParam;
  136. size_t key_data_size = 0;
  137. if(key->type == FuriHalCryptoKeyTypeMaster) {
  138. pParam.KeyType = KEYTYPE_MASTER;
  139. } else if(key->type == FuriHalCryptoKeyTypeSimple) {
  140. pParam.KeyType = KEYTYPE_SIMPLE;
  141. } else if(key->type == FuriHalCryptoKeyTypeEncrypted) {
  142. pParam.KeyType = KEYTYPE_ENCRYPTED;
  143. key_data_size += 12;
  144. } else {
  145. furi_crash("Incorrect key type");
  146. }
  147. if(key->size == FuriHalCryptoKeySize128) {
  148. pParam.KeySize = KEYSIZE_16;
  149. key_data_size += 16;
  150. } else if(key->size == FuriHalCryptoKeySize256) {
  151. pParam.KeySize = KEYSIZE_32;
  152. key_data_size += 32;
  153. } else {
  154. furi_crash("Incorrect key size");
  155. }
  156. memcpy(pParam.KeyData, key->data, key_data_size);
  157. SHCI_CmdStatus_t shci_state = SHCI_C2_FUS_StoreUsrKey(&pParam, slot);
  158. furi_check(furi_mutex_release(furi_hal_crypto_mutex) == FuriStatusOk);
  159. return (shci_state == SHCI_Success);
  160. }
  161. static void crypto_key_init(uint32_t* key, uint32_t* iv) {
  162. CLEAR_BIT(AES1->CR, AES_CR_EN);
  163. MODIFY_REG(
  164. AES1->CR,
  165. AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD,
  166. CRYPTO_DATATYPE_32B | CRYPTO_KEYSIZE_256B | CRYPTO_AES_CBC);
  167. if(key != NULL) {
  168. AES1->KEYR7 = key[0];
  169. AES1->KEYR6 = key[1];
  170. AES1->KEYR5 = key[2];
  171. AES1->KEYR4 = key[3];
  172. AES1->KEYR3 = key[4];
  173. AES1->KEYR2 = key[5];
  174. AES1->KEYR1 = key[6];
  175. AES1->KEYR0 = key[7];
  176. }
  177. AES1->IVR3 = iv[0];
  178. AES1->IVR2 = iv[1];
  179. AES1->IVR1 = iv[2];
  180. AES1->IVR0 = iv[3];
  181. }
  182. static bool crypto_process_block(uint32_t* in, uint32_t* out, uint8_t blk_len) {
  183. furi_check((blk_len <= 4) && (blk_len > 0));
  184. for(uint8_t i = 0; i < 4; i++) {
  185. if(i < blk_len) {
  186. AES1->DINR = in[i];
  187. } else {
  188. AES1->DINR = 0;
  189. }
  190. }
  191. uint32_t countdown = CRYPTO_TIMEOUT;
  192. while(!READ_BIT(AES1->SR, AES_SR_CCF)) {
  193. if(LL_SYSTICK_IsActiveCounterFlag()) {
  194. countdown--;
  195. }
  196. if(countdown == 0) {
  197. return false;
  198. }
  199. }
  200. SET_BIT(AES1->CR, AES_CR_CCFC);
  201. uint32_t out_temp[4];
  202. for(uint8_t i = 0; i < 4; i++) {
  203. out_temp[i] = AES1->DOUTR;
  204. }
  205. memcpy(out, out_temp, blk_len * sizeof(uint32_t));
  206. return true;
  207. }
  208. bool furi_hal_crypto_store_load_key(uint8_t slot, const uint8_t* iv) {
  209. furi_assert(slot > 0 && slot <= 100);
  210. furi_assert(furi_hal_crypto_mutex);
  211. furi_check(furi_mutex_acquire(furi_hal_crypto_mutex, FuriWaitForever) == FuriStatusOk);
  212. if(!furi_hal_bt_is_alive()) {
  213. return false;
  214. }
  215. furi_hal_crypto_mode_init_done = false;
  216. crypto_key_init(NULL, (uint32_t*)iv);
  217. if(SHCI_C2_FUS_LoadUsrKey(slot) == SHCI_Success) {
  218. return true;
  219. } else {
  220. CLEAR_BIT(AES1->CR, AES_CR_EN);
  221. furi_check(furi_mutex_release(furi_hal_crypto_mutex) == FuriStatusOk);
  222. return false;
  223. }
  224. }
  225. bool furi_hal_crypto_store_unload_key(uint8_t slot) {
  226. if(!furi_hal_bt_is_alive()) {
  227. return false;
  228. }
  229. CLEAR_BIT(AES1->CR, AES_CR_EN);
  230. SHCI_CmdStatus_t shci_state = SHCI_C2_FUS_UnloadUsrKey(slot);
  231. furi_assert(shci_state == SHCI_Success);
  232. FURI_CRITICAL_ENTER();
  233. LL_AHB2_GRP1_ForceReset(LL_AHB2_GRP1_PERIPH_AES1);
  234. LL_AHB2_GRP1_ReleaseReset(LL_AHB2_GRP1_PERIPH_AES1);
  235. FURI_CRITICAL_EXIT();
  236. furi_check(furi_mutex_release(furi_hal_crypto_mutex) == FuriStatusOk);
  237. return (shci_state == SHCI_Success);
  238. }
  239. bool furi_hal_crypto_encrypt(const uint8_t* input, uint8_t* output, size_t size) {
  240. bool state = false;
  241. SET_BIT(AES1->CR, AES_CR_EN);
  242. MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_ENCRYPT);
  243. for(size_t i = 0; i < size; i += CRYPTO_BLK_LEN) {
  244. size_t blk_len = size - i;
  245. if(blk_len > CRYPTO_BLK_LEN) {
  246. blk_len = CRYPTO_BLK_LEN;
  247. }
  248. state = crypto_process_block((uint32_t*)&input[i], (uint32_t*)&output[i], blk_len / 4);
  249. if(state == false) {
  250. break;
  251. }
  252. }
  253. CLEAR_BIT(AES1->CR, AES_CR_EN);
  254. return state;
  255. }
  256. bool furi_hal_crypto_decrypt(const uint8_t* input, uint8_t* output, size_t size) {
  257. bool state = false;
  258. if(!furi_hal_crypto_mode_init_done) {
  259. MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_INIT);
  260. SET_BIT(AES1->CR, AES_CR_EN);
  261. uint32_t countdown = CRYPTO_TIMEOUT;
  262. while(!READ_BIT(AES1->SR, AES_SR_CCF)) {
  263. if(LL_SYSTICK_IsActiveCounterFlag()) {
  264. countdown--;
  265. }
  266. if(countdown == 0) {
  267. return false;
  268. }
  269. }
  270. SET_BIT(AES1->CR, AES_CR_CCFC);
  271. furi_hal_crypto_mode_init_done = true;
  272. }
  273. MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_DECRYPT);
  274. SET_BIT(AES1->CR, AES_CR_EN);
  275. for(size_t i = 0; i < size; i += CRYPTO_BLK_LEN) {
  276. size_t blk_len = size - i;
  277. if(blk_len > CRYPTO_BLK_LEN) {
  278. blk_len = CRYPTO_BLK_LEN;
  279. }
  280. state = crypto_process_block((uint32_t*)&input[i], (uint32_t*)&output[i], blk_len / 4);
  281. if(state == false) {
  282. break;
  283. }
  284. }
  285. CLEAR_BIT(AES1->CR, AES_CR_EN);
  286. return state;
  287. }