signal.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665
  1. /* Copyright (C) 2022-2023 Salvatore Sanfilippo -- All Rights Reserved
  2. * See the LICENSE file for information about the license. */
  3. #include "app.h"
  4. bool decode_signal(RawSamplesBuffer *s, uint64_t len, ProtoViewMsgInfo *info);
  5. /* =============================================================================
  6. * Protocols table.
  7. *
  8. * Supported protocols go here, with the relevant implementation inside
  9. * protocols/<name>.c
  10. * ===========================================================================*/
  11. extern ProtoViewDecoder Oregon2Decoder;
  12. extern ProtoViewDecoder B4B1Decoder;
  13. extern ProtoViewDecoder RenaultTPMSDecoder;
  14. extern ProtoViewDecoder ToyotaTPMSDecoder;
  15. extern ProtoViewDecoder SchraderTPMSDecoder;
  16. extern ProtoViewDecoder SchraderEG53MA4TPMSDecoder;
  17. extern ProtoViewDecoder CitroenTPMSDecoder;
  18. extern ProtoViewDecoder FordTPMSDecoder;
  19. extern ProtoViewDecoder KeeloqDecoder;
  20. extern ProtoViewDecoder ProtoViewChatDecoder;
  21. extern ProtoViewDecoder UnknownDecoder;
  22. ProtoViewDecoder *Decoders[] = {
  23. &Oregon2Decoder, /* Oregon sensors v2.1 protocol. */
  24. &B4B1Decoder, /* PT, SC, ... 24 bits remotes. */
  25. &RenaultTPMSDecoder, /* Renault TPMS. */
  26. &ToyotaTPMSDecoder, /* Toyota TPMS. */
  27. &SchraderTPMSDecoder, /* Schrader TPMS. */
  28. &SchraderEG53MA4TPMSDecoder, /* Schrader EG53MA4 TPMS. */
  29. &CitroenTPMSDecoder, /* Citroen TPMS. */
  30. &FordTPMSDecoder, /* Ford TPMS. */
  31. &KeeloqDecoder, /* Keeloq remote. */
  32. &ProtoViewChatDecoder, /* Protoview simple text messages. */
  33. /* Warning: the following decoder must stay at the end of the
  34. * list. Otherwise would detect most signals and prevent the actaul
  35. * decoders from handling them. */
  36. &UnknownDecoder, /* General protocol detector. */
  37. NULL
  38. };
  39. /* =============================================================================
  40. * Raw signal detection
  41. * ===========================================================================*/
  42. /* Return the time difference between a and b, always >= 0 since
  43. * the absolute value is returned. */
  44. uint32_t duration_delta(uint32_t a, uint32_t b) {
  45. return a > b ? a - b : b - a;
  46. }
  47. /* Reset the current signal, so that a new one can be detected. */
  48. void reset_current_signal(ProtoViewApp *app) {
  49. app->signal_bestlen = 0;
  50. app->signal_offset = 0;
  51. app->signal_decoded = false;
  52. raw_samples_reset(DetectedSamples);
  53. raw_samples_reset(RawSamples);
  54. free_msg_info(app->msg_info);
  55. app->msg_info = NULL;
  56. }
  57. /* This function starts scanning samples at offset idx looking for the
  58. * longest run of pulses, either high or low, that are not much different
  59. * from each other, for a maximum of three duration classes.
  60. * So for instance 50 successive pulses that are roughly long 340us or 670us
  61. * will be sensed as a coherent signal (example: 312, 361, 700, 334, 667, ...)
  62. *
  63. * The classes are counted separtely for high and low signals (RF on / off)
  64. * because many devices tend to have different pulse lenghts depending on
  65. * the level of the pulse.
  66. *
  67. * For instance Oregon2 sensors, in the case of protocol 2.1 will send
  68. * pulses of ~400us (RF on) VS ~580us (RF off). */
  69. #define SEARCH_CLASSES 3
  70. uint32_t search_coherent_signal(RawSamplesBuffer *s, uint32_t idx, uint32_t min_duration) {
  71. struct {
  72. uint32_t dur[2]; /* dur[0] = low, dur[1] = high */
  73. uint32_t count[2]; /* Associated observed frequency. */
  74. } classes[SEARCH_CLASSES];
  75. memset(classes,0,sizeof(classes));
  76. // Set a min/max duration limit for samples to be considered part of a
  77. // coherent signal. The maximum length is fixed while the minimum
  78. // is passed as argument, as depends on the data rate and in general
  79. // on the signal to analyze.
  80. uint32_t max_duration = 4000;
  81. uint32_t len = 0; /* Observed len of coherent samples. */
  82. s->short_pulse_dur = 0;
  83. for (uint32_t j = idx; j < idx+s->total; j++) {
  84. bool level;
  85. uint32_t dur;
  86. raw_samples_get(s, j, &level, &dur);
  87. if (dur < min_duration || dur > max_duration) break; /* return. */
  88. /* Let's see if it matches a class we already have or if we
  89. * can populate a new (yet empty) class. */
  90. uint32_t k;
  91. for (k = 0; k < SEARCH_CLASSES; k++) {
  92. if (classes[k].count[level] == 0) {
  93. classes[k].dur[level] = dur;
  94. classes[k].count[level] = 1;
  95. break; /* Sample accepted. */
  96. } else {
  97. uint32_t classavg = classes[k].dur[level];
  98. uint32_t count = classes[k].count[level];
  99. uint32_t delta = duration_delta(dur,classavg);
  100. /* Is the difference in duration between this signal and
  101. * the class we are inspecting less than a given percentage?
  102. * If so, accept this signal. */
  103. if (delta < classavg/5) { /* 100%/5 = 20%. */
  104. /* It is useful to compute the average of the class
  105. * we are observing. We know how many samples we got so
  106. * far, so we can recompute the average easily.
  107. * By always having a better estimate of the pulse len
  108. * we can avoid missing next samples in case the first
  109. * observed samples are too off. */
  110. classavg = ((classavg * count) + dur) / (count+1);
  111. classes[k].dur[level] = classavg;
  112. classes[k].count[level]++;
  113. break; /* Sample accepted. */
  114. }
  115. }
  116. }
  117. if (k == SEARCH_CLASSES) break; /* No match, return. */
  118. /* If we are here, we accepted this sample. Try with the next
  119. * one. */
  120. len++;
  121. }
  122. /* Update the buffer setting the shortest pulse we found
  123. * among the three classes. This will be used when scaling
  124. * for visualization. */
  125. uint32_t short_dur[2] = {0,0};
  126. for (int j = 0; j < SEARCH_CLASSES; j++) {
  127. for (int level = 0; level < 2; level++) {
  128. if (classes[j].dur[level] == 0) continue;
  129. if (classes[j].count[level] < 3) continue;
  130. if (short_dur[level] == 0 ||
  131. short_dur[level] > classes[j].dur[level])
  132. {
  133. short_dur[level] = classes[j].dur[level];
  134. }
  135. }
  136. }
  137. /* Use the average between high and low short pulses duration.
  138. * Often they are a bit different, and using the average is more robust
  139. * when we do decoding sampling at short_pulse_dur intervals. */
  140. if (short_dur[0] == 0) short_dur[0] = short_dur[1];
  141. if (short_dur[1] == 0) short_dur[1] = short_dur[0];
  142. s->short_pulse_dur = (short_dur[0]+short_dur[1])/2;
  143. return len;
  144. }
  145. /* Called when we detect a message. Just blinks when the message was
  146. * not decoded. Vibrates, too, when the message was correctly decoded. */
  147. void notify_signal_detected(ProtoViewApp *app, bool decoded) {
  148. static const NotificationSequence decoded_seq = {
  149. &message_vibro_on,
  150. &message_green_255,
  151. &message_delay_50,
  152. &message_green_0,
  153. &message_vibro_off,
  154. NULL
  155. };
  156. static const NotificationSequence unknown_seq = {
  157. &message_red_255,
  158. &message_delay_50,
  159. &message_red_0,
  160. NULL
  161. };
  162. if (decoded)
  163. notification_message(app->notification, &decoded_seq);
  164. else
  165. notification_message(app->notification, &unknown_seq);
  166. }
  167. /* Search the source buffer with the stored signal (last N samples received)
  168. * in order to find a coherent signal. If a signal that does not appear to
  169. * be just noise is found, it is set in DetectedSamples global signal
  170. * buffer, that is what is rendered on the screen. */
  171. void scan_for_signal(ProtoViewApp *app, RawSamplesBuffer *source, uint32_t min_duration) {
  172. /* We need to work on a copy: the source buffer may be populated
  173. * by the background thread receiving data. */
  174. RawSamplesBuffer *copy = raw_samples_alloc();
  175. raw_samples_copy(copy,source);
  176. /* Try to seek on data that looks to have a regular high low high low
  177. * pattern. */
  178. uint32_t minlen = 18; /* Min run of coherent samples. With less
  179. than a few samples it's very easy to
  180. mistake noise for signal. */
  181. uint32_t i = 0;
  182. while (i < copy->total-1) {
  183. uint32_t thislen = search_coherent_signal(copy,i,min_duration);
  184. /* For messages that are long enough, attempt decoding. */
  185. if (thislen > minlen) {
  186. /* Allocate the message information that some decoder may
  187. * fill, in case it is able to decode a message. */
  188. ProtoViewMsgInfo *info = malloc(sizeof(ProtoViewMsgInfo));
  189. init_msg_info(info,app);
  190. info->short_pulse_dur = copy->short_pulse_dur;
  191. uint32_t saved_idx = copy->idx; /* Save index, see later. */
  192. /* decode_signal() expects the detected signal to start
  193. * from index zero .*/
  194. raw_samples_center(copy,i);
  195. bool decoded = decode_signal(copy,thislen,info);
  196. copy->idx = saved_idx; /* Restore the index as we are scanning
  197. the signal in the loop. */
  198. /* Accept this signal as the new signal if either it's longer
  199. * than the previous undecoded one, or the previous one was
  200. * unknown and this is decoded. */
  201. bool oldsignal_not_decoded = app->signal_decoded == false ||
  202. app->msg_info->decoder == &UnknownDecoder;
  203. if (oldsignal_not_decoded &&
  204. (thislen > app->signal_bestlen ||
  205. (decoded && info->decoder != &UnknownDecoder)))
  206. {
  207. free_msg_info(app->msg_info);
  208. app->msg_info = info;
  209. app->signal_bestlen = thislen;
  210. app->signal_decoded = decoded;
  211. raw_samples_copy(DetectedSamples,copy);
  212. raw_samples_center(DetectedSamples,i);
  213. FURI_LOG_E(TAG, "===> Displayed sample updated (%d samples %lu us)",
  214. (int)thislen, DetectedSamples->short_pulse_dur);
  215. adjust_raw_view_scale(app,DetectedSamples->short_pulse_dur);
  216. if (app->msg_info->decoder != &UnknownDecoder)
  217. notify_signal_detected(app,decoded);
  218. } else {
  219. /* If the structure was not filled, discard it. Otherwise
  220. * now the owner is app->msg_info. */
  221. free_msg_info(info);
  222. }
  223. }
  224. i += thislen ? thislen : 1;
  225. }
  226. raw_samples_free(copy);
  227. }
  228. /* =============================================================================
  229. * Decoding
  230. *
  231. * The following code will translates the raw singals as received by
  232. * the CC1101 into logical signals: a bitmap of 0s and 1s sampled at
  233. * the detected data clock interval.
  234. *
  235. * Then the converted signal is passed to the protocols decoders, that look
  236. * for protocol-specific information. We stop at the first decoder that is
  237. * able to decode the data, so protocols here should be registered in
  238. * order of complexity and specificity, with the generic ones at the end.
  239. * ===========================================================================*/
  240. /* Set the 'bitpos' bit to value 'val', in the specified bitmap
  241. * 'b' of len 'blen'.
  242. * Out of range bits will silently be discarded. */
  243. void bitmap_set(uint8_t *b, uint32_t blen, uint32_t bitpos, bool val) {
  244. uint32_t byte = bitpos/8;
  245. uint32_t bit = 7-(bitpos&7);
  246. if (byte >= blen) return;
  247. if (val)
  248. b[byte] |= 1<<bit;
  249. else
  250. b[byte] &= ~(1<<bit);
  251. }
  252. /* Get the bit 'bitpos' of the bitmap 'b' of 'blen' bytes.
  253. * Out of range bits return false (not bit set). */
  254. bool bitmap_get(uint8_t *b, uint32_t blen, uint32_t bitpos) {
  255. uint32_t byte = bitpos/8;
  256. uint32_t bit = 7-(bitpos&7);
  257. if (byte >= blen) return 0;
  258. return (b[byte] & (1<<bit)) != 0;
  259. }
  260. /* Copy 'count' bits from the bitmap 's' of 'slen' total bytes, to the
  261. * bitmap 'd' of 'dlen' total bytes. The bits are copied starting from
  262. * offset 'soff' of the source bitmap to the offset 'doff' of the
  263. * destination bitmap. */
  264. void bitmap_copy(uint8_t *d, uint32_t dlen, uint32_t doff,
  265. uint8_t *s, uint32_t slen, uint32_t soff,
  266. uint32_t count)
  267. {
  268. /* If we are byte-aligned in both source and destination, use a fast
  269. * path for the number of bytes we can consume this way. */
  270. if ((doff & 7) == 0 && (soff & 7) == 0) {
  271. uint32_t didx = doff/8;
  272. uint32_t sidx = soff/8;
  273. while(count > 8 && didx < dlen && sidx < slen) {
  274. d[didx++] = s[sidx++];
  275. count -= 8;
  276. }
  277. doff = didx * 8;
  278. soff = sidx * 8;
  279. /* Note that if we entered this path, the count at the end
  280. * of the loop will be < 8. */
  281. }
  282. /* Copy the bits needed to reach an offset where we can copy
  283. * two half bytes of src to a full byte of destination. */
  284. while(count > 8 && (doff&7) != 0) {
  285. bool bit = bitmap_get(s,slen,soff++);
  286. bitmap_set(d,dlen,doff++,bit);
  287. count--;
  288. }
  289. /* If we are here and count > 8, we have an offset that is byte aligned
  290. * to the destination bitmap, but not aligned to the source bitmap.
  291. * We can copy fast enough by shifting each two bytes of the original
  292. * bitmap.
  293. *
  294. * This is how it works:
  295. *
  296. * dst:
  297. * +--------+--------+--------+
  298. * | 0 | 1 | 2 |
  299. * | | | | <- data to fill
  300. * +--------+--------+--------+
  301. * ^
  302. * |
  303. * doff = 8
  304. *
  305. * src:
  306. * +--------+--------+--------+
  307. * | 0 | 1 | 2 |
  308. * |hellowor|ld!HELLO|WORLDS!!| <- data to copy
  309. * +--------+--------+--------+
  310. * ^
  311. * |
  312. * soff = 11
  313. *
  314. * skew = 11%8 = 3
  315. * each destination byte in dst will receive:
  316. *
  317. * dst[doff/8] = (src[soff/8] << skew) | (src[soff/8+1] >> (8-skew))
  318. *
  319. * dstbyte = doff/8 = 8/8 = 1
  320. * srcbyte = soff/8 = 11/8 = 1
  321. *
  322. * so dst[1] will get:
  323. * src[1] << 3, that is "ld!HELLO" << 3 = "HELLO..."
  324. * xored with
  325. * src[2] << 5, that is "WORLDS!!" >> 5 = ".....WOR"
  326. * That is "HELLOWOR"
  327. */
  328. if (count > 8) {
  329. uint8_t skew = soff % 8; /* Don't worry, compiler will optimize. */
  330. uint32_t didx = doff/8;
  331. uint32_t sidx = soff/8;
  332. while(count > 8 && didx < dlen && sidx < slen) {
  333. d[didx] = ((s[sidx] << skew) |
  334. (s[sidx+1] >> (8-skew)));
  335. sidx++;
  336. didx++;
  337. soff += 8;
  338. doff += 8;
  339. count -= 8;
  340. }
  341. }
  342. /* Here count is guaranteed to be < 8.
  343. * Copy the final bits bit by bit. */
  344. while(count) {
  345. bool bit = bitmap_get(s,slen,soff++);
  346. bitmap_set(d,dlen,doff++,bit);
  347. count--;
  348. }
  349. }
  350. /* We decode bits assuming the first bit we receive is the MSB
  351. * (see bitmap_set/get functions). Certain devices send data
  352. * encoded in the reverse way. */
  353. void bitmap_reverse_bytes_bits(uint8_t *p, uint32_t len) {
  354. for (uint32_t j = 0; j < len; j++) {
  355. uint32_t b = p[j];
  356. /* Step 1: swap the two nibbles: 12345678 -> 56781234 */
  357. b = (b&0xf0)>>4 | (b&0x0f)<<4;
  358. /* Step 2: swap adjacent pairs : 56781234 -> 78563412 */
  359. b = (b&0xcc)>>2 | (b&0x33)<<2;
  360. /* Step 3: swap adjacent bits : 78563412 -> 87654321 */
  361. b = (b&0xaa)>>1 | (b&0x55)<<1;
  362. p[j] = b;
  363. }
  364. }
  365. /* Return true if the specified sequence of bits, provided as a string in the
  366. * form "11010110..." is found in the 'b' bitmap of 'blen' bits at 'bitpos'
  367. * position. */
  368. bool bitmap_match_bits(uint8_t *b, uint32_t blen, uint32_t bitpos, const char *bits) {
  369. for (size_t j = 0; bits[j]; j++) {
  370. bool expected = (bits[j] == '1') ? true : false;
  371. if (bitmap_get(b,blen,bitpos+j) != expected) return false;
  372. }
  373. return true;
  374. }
  375. /* Search for the specified bit sequence (see bitmap_match_bits() for details)
  376. * in the bitmap 'b' of 'blen' bytes, looking forward at most 'maxbits' ahead.
  377. * Returns the offset (in bits) of the match, or BITMAP_SEEK_NOT_FOUND if not
  378. * found.
  379. *
  380. * Note: there are better algorithms, such as Boyer-Moore. Here we hope that
  381. * for the kind of patterns we search we'll have a lot of early stops so
  382. * we use a vanilla approach. */
  383. uint32_t bitmap_seek_bits(uint8_t *b, uint32_t blen, uint32_t startpos, uint32_t maxbits, const char *bits) {
  384. uint32_t endpos = startpos+blen*8;
  385. uint32_t end2 = startpos+maxbits;
  386. if (end2 < endpos) endpos = end2;
  387. for (uint32_t j = startpos; j < endpos; j++)
  388. if (bitmap_match_bits(b,blen,j,bits)) return j;
  389. return BITMAP_SEEK_NOT_FOUND;
  390. }
  391. /* Compare bitmaps b1 and b2 (possibly overlapping or the same bitmap),
  392. * at the specified offsets, for cmplen bits. Returns true if the
  393. * exact same bits are found, otherwise false. */
  394. bool bitmap_match_bitmap(uint8_t *b1, uint32_t b1len, uint32_t b1off,
  395. uint8_t *b2, uint32_t b2len, uint32_t b2off,
  396. uint32_t cmplen)
  397. {
  398. for (uint32_t j = 0; j < cmplen; j++) {
  399. bool bit1 = bitmap_get(b1,b1len,b1off+j);
  400. bool bit2 = bitmap_get(b2,b2len,b2off+j);
  401. if (bit1 != bit2) return false;
  402. }
  403. return true;
  404. }
  405. /* Convert 'len' bitmap bits of the bitmap 'bitmap' into a null terminated
  406. * string, stored at 'dst', that must have space at least for len+1 bytes.
  407. * The bits are extracted from the specified offset. */
  408. void bitmap_to_string(char *dst, uint8_t *b, uint32_t blen,
  409. uint32_t off, uint32_t len)
  410. {
  411. for (uint32_t j = 0; j < len; j++)
  412. dst[j] = bitmap_get(b,blen,off+j) ? '1' : '0';
  413. dst[len] = 0;
  414. }
  415. /* Set the pattern 'pat' into the bitmap 'b' of max length 'blen' bytes,
  416. * starting from the specified offset.
  417. *
  418. * The pattern is given as a string of 0s and 1s characters, like "01101001".
  419. * This function is useful in order to set the test vectors in the protocol
  420. * decoders, to see if the decoding works regardless of the fact we are able
  421. * to actually receive a given signal. */
  422. void bitmap_set_pattern(uint8_t *b, uint32_t blen, uint32_t off, const char *pat) {
  423. uint32_t i = 0;
  424. while(pat[i]) {
  425. bitmap_set(b,blen,i+off,pat[i] == '1');
  426. i++;
  427. }
  428. }
  429. /* Take the raw signal and turn it into a sequence of bits inside the
  430. * buffer 'b'. Note that such 0s and 1s are NOT the actual data in the
  431. * signal, but is just a low level representation of the line code. Basically
  432. * if the short pulse we find in the signal is 320us, we convert high and
  433. * low levels in the raw sample in this way:
  434. *
  435. * If for instance we see a high level lasting ~600 us, we will add
  436. * two 1s bit. If then the signal goes down for 330us, we will add one zero,
  437. * and so forth. So for each period of high and low we find the closest
  438. * multiple and set the relevant number of bits.
  439. *
  440. * In case of a short pulse of 320us detected, 320*2 is the closest to a
  441. * high pulse of 600us, so 2 bits will be set.
  442. *
  443. * In other terms what this function does is sampling the signal at
  444. * fixed 'rate' intervals.
  445. *
  446. * This representation makes it simple to decode the signal at a higher
  447. * level later, translating it from Marshal coding or other line codes
  448. * to the actual bits/bytes.
  449. *
  450. * The 'idx' argument marks the detected signal start index into the
  451. * raw samples buffer. The 'count' tells the function how many raw
  452. * samples to convert into bits. The function returns the number of
  453. * bits set into the buffer 'b'. The 'rate' argument, in microseconds, is
  454. * the detected short-pulse duration. We expect the line code to be
  455. * meaningful when interpreted at multiples of 'rate'. */
  456. uint32_t convert_signal_to_bits(uint8_t *b, uint32_t blen, RawSamplesBuffer *s, uint32_t idx, uint32_t count, uint32_t rate) {
  457. if (rate == 0) return 0; /* We can't perform the conversion. */
  458. uint32_t bitpos = 0;
  459. for (uint32_t j = 0; j < count; j++) {
  460. uint32_t dur;
  461. bool level;
  462. raw_samples_get(s, j+idx, &level, &dur);
  463. uint32_t numbits = dur / rate; /* full bits that surely fit. */
  464. uint32_t rest = dur % rate; /* How much we are left with. */
  465. if (rest > rate/2) numbits++; /* There is another one. */
  466. /* Limit how much a single sample can spawn. There are likely no
  467. * protocols doing such long pulses when the rate is low. */
  468. if (numbits > 1024) numbits = 1024;
  469. if (0) /* Super verbose, so not under the DEBUG_MSG define. */
  470. FURI_LOG_E(TAG, "%lu converted into %lu (%d) bits",
  471. dur,numbits,(int)level);
  472. /* If the signal is too short, let's claim it an interference
  473. * and ignore it completely. */
  474. if (numbits == 0) continue;
  475. while(numbits--) bitmap_set(b,blen,bitpos++,level);
  476. }
  477. return bitpos;
  478. }
  479. /* This function converts the line code used to the final data representation.
  480. * The representation is put inside 'buf', for up to 'buflen' bytes of total
  481. * data. For instance in order to convert manchester you can use "10" and "01"
  482. * as zero and one patterns. However this function does not handle differential
  483. * encodings. See below for convert_from_diff_manchester().
  484. *
  485. * The function returns the number of bits converted. It will stop as soon
  486. * as it finds a pattern that does not match zero or one patterns, or when
  487. * the end of the bitmap pointed by 'bits' is reached (the length is
  488. * specified in bytes by the caller, via the 'len' parameters).
  489. *
  490. * The decoding starts at the specified offset (in bits) 'off'. */
  491. uint32_t convert_from_line_code(uint8_t *buf, uint64_t buflen, uint8_t *bits, uint32_t len, uint32_t off, const char *zero_pattern, const char *one_pattern)
  492. {
  493. uint32_t decoded = 0; /* Number of bits extracted. */
  494. len *= 8; /* Convert bytes to bits. */
  495. while(off < len) {
  496. bool bitval;
  497. if (bitmap_match_bits(bits,len,off,zero_pattern)) {
  498. bitval = false;
  499. off += strlen(zero_pattern);
  500. } else if (bitmap_match_bits(bits,len,off,one_pattern)) {
  501. bitval = true;
  502. off += strlen(one_pattern);
  503. } else {
  504. break;
  505. }
  506. bitmap_set(buf,buflen,decoded++,bitval);
  507. if (decoded/8 == buflen) break; /* No space left on target buffer. */
  508. }
  509. return decoded;
  510. }
  511. /* Convert the differential Manchester code to bits. This is similar to
  512. * convert_from_line_code() but specific for diff-Manchester. The user must
  513. * supply the value of the previous symbol before this stream, since
  514. * in differential codings the next bits depend on the previous one.
  515. *
  516. * Parameters and return values are like convert_from_line_code(). */
  517. uint32_t convert_from_diff_manchester(uint8_t *buf, uint64_t buflen, uint8_t *bits, uint32_t len, uint32_t off, bool previous)
  518. {
  519. uint32_t decoded = 0;
  520. len *= 8; /* Conver to bits. */
  521. for (uint32_t j = off; j < len; j += 2) {
  522. bool b0 = bitmap_get(bits,len,j);
  523. bool b1 = bitmap_get(bits,len,j+1);
  524. if (b0 == previous) break; /* Each new bit must switch value. */
  525. bitmap_set(buf,buflen,decoded++,b0 == b1);
  526. previous = b1;
  527. if (decoded/8 == buflen) break; /* No space left on target buffer. */
  528. }
  529. return decoded;
  530. }
  531. /* Free the message info and allocated data. */
  532. void free_msg_info(ProtoViewMsgInfo *i) {
  533. if (i == NULL) return;
  534. fieldset_free(i->fieldset);
  535. free(i->bits);
  536. free(i);
  537. }
  538. /* Reset the message info structure before passing it to the decoding
  539. * functions. */
  540. void init_msg_info(ProtoViewMsgInfo *i, ProtoViewApp *app) {
  541. UNUSED(app);
  542. memset(i,0,sizeof(ProtoViewMsgInfo));
  543. i->bits = NULL;
  544. i->fieldset = fieldset_new();
  545. }
  546. /* This function is called when a new signal is detected. It converts it
  547. * to a bitstream, and the calls the protocol specific functions for
  548. * decoding. If the signal was decoded correctly by some protocol, true
  549. * is returned. Otherwise false is returned. */
  550. bool decode_signal(RawSamplesBuffer *s, uint64_t len, ProtoViewMsgInfo *info) {
  551. uint32_t bitmap_bits_size = 4096*8;
  552. uint32_t bitmap_size = bitmap_bits_size/8;
  553. /* We call the decoders with an offset a few samples before the actual
  554. * signal detected and for a len of a few bits after its end. */
  555. uint32_t before_samples = 32;
  556. uint32_t after_samples = 100;
  557. uint8_t *bitmap = malloc(bitmap_size);
  558. uint32_t bits = convert_signal_to_bits(bitmap,bitmap_size,s,-before_samples,len+before_samples+after_samples,s->short_pulse_dur);
  559. if (DEBUG_MSG) { /* Useful for debugging purposes. Don't remove. */
  560. char *str = malloc(1024);
  561. uint32_t j;
  562. for (j = 0; j < bits && j < 1023; j++) {
  563. str[j] = bitmap_get(bitmap,bitmap_size,j) ? '1' : '0';
  564. }
  565. str[j] = 0;
  566. FURI_LOG_E(TAG, "%lu bits sampled: %s", bits, str);
  567. free(str);
  568. }
  569. /* Try all the decoders available. */
  570. int j = 0;
  571. bool decoded = false;
  572. while(Decoders[j]) {
  573. uint32_t start_time = furi_get_tick();
  574. decoded = Decoders[j]->decode(bitmap,bitmap_size,bits,info);
  575. uint32_t delta = furi_get_tick() - start_time;
  576. FURI_LOG_E(TAG, "Decoder %s took %lu ms",
  577. Decoders[j]->name, (unsigned long)delta);
  578. if (decoded) {
  579. info->decoder = Decoders[j];
  580. break;
  581. }
  582. j++;
  583. }
  584. if (!decoded) {
  585. FURI_LOG_E(TAG, "No decoding possible");
  586. } else {
  587. FURI_LOG_E(TAG, "+++ Decoded %s", info->decoder->name);
  588. /* The message was correctly decoded: fill the info structure
  589. * with the decoded signal. The decoder may not implement offset/len
  590. * filling of the structure. In such case we have no info and
  591. * pulses_count will be set to zero. */
  592. if (info->pulses_count) {
  593. info->bits_bytes = (info->pulses_count+7)/8; // Round to full byte.
  594. info->bits = malloc(info->bits_bytes);
  595. bitmap_copy(info->bits,info->bits_bytes,0,
  596. bitmap,bitmap_size,info->start_off,
  597. info->pulses_count);
  598. }
  599. }
  600. free(bitmap);
  601. return decoded;
  602. }