avr_isp.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491
  1. #include "avr_isp.h"
  2. #include "../lib/driver/avr_isp_prog_cmd.h"
  3. #include "../lib/driver/avr_isp_spi_sw.h"
  4. #include <furi.h>
  5. #define AVR_ISP_PROG_TX_RX_BUF_SIZE 320
  6. #define TAG "AvrIsp"
  7. struct AvrIsp {
  8. AvrIspSpiSw* spi;
  9. bool pmode;
  10. AvrIspCallback callback;
  11. void* context;
  12. };
  13. AvrIsp* avr_isp_alloc(void) {
  14. AvrIsp* instance = malloc(sizeof(AvrIsp));
  15. return instance;
  16. }
  17. void avr_isp_free(AvrIsp* instance) {
  18. furi_assert(instance);
  19. if(instance->spi) avr_isp_end_pmode(instance);
  20. free(instance);
  21. }
  22. void avr_isp_set_tx_callback(AvrIsp* instance, AvrIspCallback callback, void* context) {
  23. furi_assert(instance);
  24. furi_assert(context);
  25. instance->callback = callback;
  26. instance->context = context;
  27. }
  28. uint8_t avr_isp_spi_transaction(
  29. AvrIsp* instance,
  30. uint8_t cmd,
  31. uint8_t addr_hi,
  32. uint8_t addr_lo,
  33. uint8_t data) {
  34. furi_assert(instance);
  35. avr_isp_spi_sw_txrx(instance->spi, cmd);
  36. avr_isp_spi_sw_txrx(instance->spi, addr_hi);
  37. avr_isp_spi_sw_txrx(instance->spi, addr_lo);
  38. return avr_isp_spi_sw_txrx(instance->spi, data);
  39. }
  40. static bool avr_isp_set_pmode(AvrIsp* instance, uint8_t a, uint8_t b, uint8_t c, uint8_t d) {
  41. furi_assert(instance);
  42. uint8_t res = 0;
  43. avr_isp_spi_sw_txrx(instance->spi, a);
  44. avr_isp_spi_sw_txrx(instance->spi, b);
  45. res = avr_isp_spi_sw_txrx(instance->spi, c);
  46. avr_isp_spi_sw_txrx(instance->spi, d);
  47. return res == 0x53;
  48. }
  49. void avr_isp_end_pmode(AvrIsp* instance) {
  50. furi_assert(instance);
  51. if(instance->pmode) {
  52. avr_isp_spi_sw_res_set(instance->spi, true);
  53. // We're about to take the target out of reset
  54. // so configure SPI pins as input
  55. if(instance->spi) avr_isp_spi_sw_free(instance->spi);
  56. instance->spi = NULL;
  57. }
  58. instance->pmode = false;
  59. }
  60. static bool avr_isp_start_pmode(AvrIsp* instance, AvrIspSpiSwSpeed spi_speed) {
  61. furi_assert(instance);
  62. // Reset target before driving PIN_SCK or PIN_MOSI
  63. // SPI.begin() will configure SS as output,
  64. // so SPI master mode is selected.
  65. // We have defined RESET as pin 10,
  66. // which for many arduino's is not the SS pin.
  67. // So we have to configure RESET as output here,
  68. // (reset_target() first sets the correct level)
  69. if(instance->spi) avr_isp_spi_sw_free(instance->spi);
  70. instance->spi = avr_isp_spi_sw_init(spi_speed);
  71. avr_isp_spi_sw_res_set(instance->spi, false);
  72. // See avr datasheets, chapter "SERIAL_PRG Programming Algorithm":
  73. // Pulse RESET after PIN_SCK is low:
  74. avr_isp_spi_sw_sck_set(instance->spi, false);
  75. // discharge PIN_SCK, value arbitrally chosen
  76. furi_delay_ms(20);
  77. avr_isp_spi_sw_res_set(instance->spi, true);
  78. // Pulse must be minimum 2 target CPU speed cycles
  79. // so 100 usec is ok for CPU speeds above 20KHz
  80. furi_delay_ms(1);
  81. avr_isp_spi_sw_res_set(instance->spi, false);
  82. // Send the enable programming command:
  83. // datasheet: must be > 20 msec
  84. furi_delay_ms(50);
  85. if(avr_isp_set_pmode(instance, AVR_ISP_SET_PMODE)) {
  86. instance->pmode = true;
  87. return true;
  88. }
  89. return false;
  90. }
  91. bool avr_isp_auto_set_spi_speed_start_pmode(AvrIsp* instance) {
  92. furi_assert(instance);
  93. AvrIspSpiSwSpeed spi_speed[] = {
  94. AvrIspSpiSwSpeed1Mhz,
  95. AvrIspSpiSwSpeed400Khz,
  96. AvrIspSpiSwSpeed250Khz,
  97. AvrIspSpiSwSpeed125Khz,
  98. AvrIspSpiSwSpeed60Khz,
  99. AvrIspSpiSwSpeed40Khz,
  100. AvrIspSpiSwSpeed20Khz,
  101. AvrIspSpiSwSpeed10Khz,
  102. AvrIspSpiSwSpeed5Khz,
  103. AvrIspSpiSwSpeed1Khz,
  104. };
  105. for(uint8_t i = 0; i < COUNT_OF(spi_speed); i++) {
  106. if(avr_isp_start_pmode(instance, spi_speed[i])) {
  107. AvrIspSignature sig = avr_isp_read_signature(instance);
  108. AvrIspSignature sig_examination = avr_isp_read_signature(instance); //-V656
  109. uint8_t y = 0;
  110. while(y < 8) {
  111. if(memcmp((uint8_t*)&sig, (uint8_t*)&sig_examination, sizeof(AvrIspSignature)) !=
  112. 0)
  113. break;
  114. sig_examination = avr_isp_read_signature(instance);
  115. y++;
  116. }
  117. if(y == 8) {
  118. if(spi_speed[i] > AvrIspSpiSwSpeed1Mhz) {
  119. if(i < (COUNT_OF(spi_speed) - 1)) {
  120. avr_isp_end_pmode(instance);
  121. i++;
  122. return avr_isp_start_pmode(instance, spi_speed[i]);
  123. }
  124. }
  125. return true;
  126. }
  127. }
  128. }
  129. if(instance->spi) avr_isp_spi_sw_free(instance->spi);
  130. return false;
  131. }
  132. static void avr_isp_commit(AvrIsp* instance, uint16_t addr, uint8_t data) {
  133. furi_assert(instance);
  134. avr_isp_spi_transaction(instance, AVR_ISP_COMMIT(addr));
  135. /* polling flash */
  136. if(data == 0xFF) {
  137. furi_delay_ms(5);
  138. } else {
  139. /* polling flash */
  140. uint32_t starttime = furi_get_tick();
  141. while((furi_get_tick() - starttime) < 30) {
  142. if(avr_isp_spi_transaction(instance, AVR_ISP_READ_FLASH_HI(addr)) != 0xFF) {
  143. break;
  144. };
  145. }
  146. }
  147. }
  148. static uint16_t avr_isp_current_page(AvrIsp* instance, uint32_t addr, uint16_t page_size) {
  149. furi_assert(instance);
  150. uint16_t page = 0;
  151. switch(page_size) {
  152. case 32:
  153. page = addr & 0xFFFFFFF0;
  154. break;
  155. case 64:
  156. page = addr & 0xFFFFFFE0;
  157. break;
  158. case 128:
  159. page = addr & 0xFFFFFFC0;
  160. break;
  161. case 256:
  162. page = addr & 0xFFFFFF80;
  163. break;
  164. default:
  165. page = addr;
  166. break;
  167. }
  168. return page;
  169. }
  170. static bool avr_isp_flash_write_pages(
  171. AvrIsp* instance,
  172. uint16_t addr,
  173. uint16_t page_size,
  174. uint8_t* data,
  175. uint32_t data_size) {
  176. furi_assert(instance);
  177. size_t x = 0;
  178. uint16_t page = avr_isp_current_page(instance, addr, page_size);
  179. while(x < data_size) {
  180. if(page != avr_isp_current_page(instance, addr, page_size)) {
  181. avr_isp_commit(instance, page, data[x - 1]);
  182. page = avr_isp_current_page(instance, addr, page_size);
  183. }
  184. avr_isp_spi_transaction(instance, AVR_ISP_WRITE_FLASH_LO(addr, data[x++]));
  185. avr_isp_spi_transaction(instance, AVR_ISP_WRITE_FLASH_HI(addr, data[x++]));
  186. addr++;
  187. }
  188. avr_isp_commit(instance, page, data[x - 1]);
  189. return true;
  190. }
  191. bool avr_isp_erase_chip(AvrIsp* instance) {
  192. furi_assert(instance);
  193. bool ret = false;
  194. if(!instance->pmode) avr_isp_auto_set_spi_speed_start_pmode(instance);
  195. if(instance->pmode) {
  196. avr_isp_spi_transaction(instance, AVR_ISP_ERASE_CHIP);
  197. furi_delay_ms(100);
  198. avr_isp_end_pmode(instance);
  199. ret = true;
  200. }
  201. return ret;
  202. }
  203. static bool
  204. avr_isp_eeprom_write(AvrIsp* instance, uint16_t addr, uint8_t* data, uint32_t data_size) {
  205. furi_assert(instance);
  206. for(uint16_t i = 0; i < data_size; i++) {
  207. avr_isp_spi_transaction(instance, AVR_ISP_WRITE_EEPROM(addr, data[i]));
  208. furi_delay_ms(10);
  209. addr++;
  210. }
  211. return true;
  212. }
  213. bool avr_isp_write_page(
  214. AvrIsp* instance,
  215. uint32_t mem_type,
  216. uint32_t mem_size,
  217. uint16_t addr,
  218. uint16_t page_size,
  219. uint8_t* data,
  220. uint32_t data_size) {
  221. furi_assert(instance);
  222. bool ret = false;
  223. switch(mem_type) {
  224. case STK_SET_FLASH_TYPE:
  225. if((addr + data_size / 2) <= mem_size) {
  226. ret = avr_isp_flash_write_pages(instance, addr, page_size, data, data_size);
  227. }
  228. break;
  229. case STK_SET_EEPROM_TYPE:
  230. if((addr + data_size) <= mem_size) {
  231. ret = avr_isp_eeprom_write(instance, addr, data, data_size);
  232. }
  233. break;
  234. default:
  235. furi_crash(TAG " Incorrect mem type.");
  236. break;
  237. }
  238. return ret;
  239. }
  240. static bool avr_isp_flash_read_page(
  241. AvrIsp* instance,
  242. uint16_t addr,
  243. uint16_t page_size,
  244. uint8_t* data,
  245. uint32_t data_size) {
  246. furi_assert(instance);
  247. if(page_size > data_size) return false;
  248. for(uint16_t i = 0; i < page_size; i += 2) {
  249. data[i] = avr_isp_spi_transaction(instance, AVR_ISP_READ_FLASH_LO(addr));
  250. data[i + 1] = avr_isp_spi_transaction(instance, AVR_ISP_READ_FLASH_HI(addr));
  251. addr++;
  252. }
  253. return true;
  254. }
  255. static bool avr_isp_eeprom_read_page(
  256. AvrIsp* instance,
  257. uint16_t addr,
  258. uint16_t page_size,
  259. uint8_t* data,
  260. uint32_t data_size) {
  261. furi_assert(instance);
  262. if(page_size > data_size) return false;
  263. for(uint16_t i = 0; i < page_size; i++) {
  264. data[i] = avr_isp_spi_transaction(instance, AVR_ISP_READ_EEPROM(addr));
  265. addr++;
  266. }
  267. return true;
  268. }
  269. bool avr_isp_read_page(
  270. AvrIsp* instance,
  271. uint32_t mem_type,
  272. uint16_t addr,
  273. uint16_t page_size,
  274. uint8_t* data,
  275. uint32_t data_size) {
  276. furi_assert(instance);
  277. bool res = false;
  278. if(mem_type == STK_SET_FLASH_TYPE)
  279. res = avr_isp_flash_read_page(instance, addr, page_size, data, data_size);
  280. if(mem_type == STK_SET_EEPROM_TYPE)
  281. res = avr_isp_eeprom_read_page(instance, addr, page_size, data, data_size);
  282. return res;
  283. }
  284. AvrIspSignature avr_isp_read_signature(AvrIsp* instance) {
  285. furi_assert(instance);
  286. AvrIspSignature signature;
  287. signature.vendor = avr_isp_spi_transaction(instance, AVR_ISP_READ_VENDOR);
  288. signature.part_family = avr_isp_spi_transaction(instance, AVR_ISP_READ_PART_FAMILY);
  289. signature.part_number = avr_isp_spi_transaction(instance, AVR_ISP_READ_PART_NUMBER);
  290. return signature;
  291. }
  292. uint8_t avr_isp_read_lock_byte(AvrIsp* instance) {
  293. furi_assert(instance);
  294. uint8_t data = 0;
  295. uint32_t starttime = furi_get_tick();
  296. while((furi_get_tick() - starttime) < 300) {
  297. data = avr_isp_spi_transaction(instance, AVR_ISP_READ_LOCK_BYTE);
  298. if(avr_isp_spi_transaction(instance, AVR_ISP_READ_LOCK_BYTE) == data) {
  299. break;
  300. };
  301. data = 0x00;
  302. }
  303. return data;
  304. }
  305. bool avr_isp_write_lock_byte(AvrIsp* instance, uint8_t lock) {
  306. furi_assert(instance);
  307. bool ret = false;
  308. if(avr_isp_read_lock_byte(instance) == lock) {
  309. ret = true;
  310. } else {
  311. avr_isp_spi_transaction(instance, AVR_ISP_WRITE_LOCK_BYTE(lock));
  312. /* polling lock byte */
  313. uint32_t starttime = furi_get_tick();
  314. while((furi_get_tick() - starttime) < 30) {
  315. if(avr_isp_spi_transaction(instance, AVR_ISP_READ_LOCK_BYTE) == lock) {
  316. ret = true;
  317. break;
  318. };
  319. }
  320. }
  321. return ret;
  322. }
  323. uint8_t avr_isp_read_fuse_low(AvrIsp* instance) {
  324. furi_assert(instance);
  325. uint8_t data = 0;
  326. uint32_t starttime = furi_get_tick();
  327. while((furi_get_tick() - starttime) < 300) {
  328. data = avr_isp_spi_transaction(instance, AVR_ISP_READ_FUSE_LOW);
  329. if(avr_isp_spi_transaction(instance, AVR_ISP_READ_FUSE_LOW) == data) {
  330. break;
  331. };
  332. data = 0x00;
  333. }
  334. return data;
  335. }
  336. bool avr_isp_write_fuse_low(AvrIsp* instance, uint8_t lfuse) {
  337. furi_assert(instance);
  338. bool ret = false;
  339. if(avr_isp_read_fuse_low(instance) == lfuse) {
  340. ret = true;
  341. } else {
  342. avr_isp_spi_transaction(instance, AVR_ISP_WRITE_FUSE_LOW(lfuse));
  343. /* polling fuse */
  344. uint32_t starttime = furi_get_tick();
  345. while((furi_get_tick() - starttime) < 30) {
  346. if(avr_isp_spi_transaction(instance, AVR_ISP_READ_FUSE_LOW) == lfuse) {
  347. ret = true;
  348. break;
  349. };
  350. }
  351. }
  352. return ret;
  353. }
  354. uint8_t avr_isp_read_fuse_high(AvrIsp* instance) {
  355. furi_assert(instance);
  356. uint8_t data = 0;
  357. uint32_t starttime = furi_get_tick();
  358. while((furi_get_tick() - starttime) < 300) {
  359. data = avr_isp_spi_transaction(instance, AVR_ISP_READ_FUSE_HIGH);
  360. if(avr_isp_spi_transaction(instance, AVR_ISP_READ_FUSE_HIGH) == data) {
  361. break;
  362. };
  363. data = 0x00;
  364. }
  365. return data;
  366. }
  367. bool avr_isp_write_fuse_high(AvrIsp* instance, uint8_t hfuse) {
  368. furi_assert(instance);
  369. bool ret = false;
  370. if(avr_isp_read_fuse_high(instance) == hfuse) {
  371. ret = true;
  372. } else {
  373. avr_isp_spi_transaction(instance, AVR_ISP_WRITE_FUSE_HIGH(hfuse));
  374. /* polling fuse */
  375. uint32_t starttime = furi_get_tick();
  376. while((furi_get_tick() - starttime) < 30) {
  377. if(avr_isp_spi_transaction(instance, AVR_ISP_READ_FUSE_HIGH) == hfuse) {
  378. ret = true;
  379. break;
  380. };
  381. }
  382. }
  383. return ret;
  384. }
  385. uint8_t avr_isp_read_fuse_extended(AvrIsp* instance) {
  386. furi_assert(instance);
  387. uint8_t data = 0;
  388. uint32_t starttime = furi_get_tick();
  389. while((furi_get_tick() - starttime) < 300) {
  390. data = avr_isp_spi_transaction(instance, AVR_ISP_READ_FUSE_EXTENDED);
  391. if(avr_isp_spi_transaction(instance, AVR_ISP_READ_FUSE_EXTENDED) == data) {
  392. break;
  393. };
  394. data = 0x00;
  395. }
  396. return data;
  397. }
  398. bool avr_isp_write_fuse_extended(AvrIsp* instance, uint8_t efuse) {
  399. furi_assert(instance);
  400. bool ret = false;
  401. if(avr_isp_read_fuse_extended(instance) == efuse) {
  402. ret = true;
  403. } else {
  404. avr_isp_spi_transaction(instance, AVR_ISP_WRITE_FUSE_EXTENDED(efuse));
  405. /* polling fuse */
  406. uint32_t starttime = furi_get_tick();
  407. while((furi_get_tick() - starttime) < 30) {
  408. if(avr_isp_spi_transaction(instance, AVR_ISP_READ_FUSE_EXTENDED) == efuse) {
  409. ret = true;
  410. break;
  411. };
  412. }
  413. }
  414. return ret;
  415. }
  416. void avr_isp_write_extended_addr(AvrIsp* instance, uint8_t extended_addr) {
  417. furi_assert(instance);
  418. avr_isp_spi_transaction(instance, AVR_ISP_EXTENDED_ADDR(extended_addr));
  419. furi_delay_ms(10);
  420. }