app.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. /* Copyright (C) 2022-2023 Salvatore Sanfilippo -- All Rights Reserved
  2. * See the LICENSE file for information about the license. */
  3. #include "app.h"
  4. /* If this define is enabled, ProtoView is going to mess with the
  5. * otherwise opaque SubGhzWorker structure in order to disable
  6. * its filter for samples shorter than a given amount (30us at the
  7. * time I'm writing this comment).
  8. *
  9. * This structure must be taken in sync with the one of the firmware. */
  10. #define PROTOVIEW_DISABLE_SUBGHZ_FILTER 0
  11. #ifdef PROTOVIEW_DISABLE_SUBGHZ_FILTER
  12. struct SubGhzWorker {
  13. FuriThread* thread;
  14. FuriStreamBuffer* stream;
  15. volatile bool running;
  16. volatile bool overrun;
  17. LevelDuration filter_level_duration;
  18. bool filter_running;
  19. uint16_t filter_duration;
  20. SubGhzWorkerOverrunCallback overrun_callback;
  21. SubGhzWorkerPairCallback pair_callback;
  22. void* context;
  23. };
  24. #endif
  25. RawSamplesBuffer *RawSamples, *DetectedSamples;
  26. extern const SubGhzProtocolRegistry protoview_protocol_registry;
  27. /* Draw some text with a border. If the outside color is black and the inside
  28. * color is white, it just writes the border of the text, but the function can
  29. * also be used to write a bold variation of the font setting both the
  30. * colors to black, or alternatively to write a black text with a white
  31. * border so that it is visible if there are black stuff on the background. */
  32. /* The callback actually just passes the control to the actual active
  33. * view callback, after setting up basic stuff like cleaning the screen
  34. * and setting color to black. */
  35. static void render_callback(Canvas *const canvas, void *ctx) {
  36. ProtoViewApp *app = ctx;
  37. /* Clear screen. */
  38. canvas_set_color(canvas, ColorWhite);
  39. canvas_draw_box(canvas, 0, 0, 127, 63);
  40. canvas_set_color(canvas, ColorBlack);
  41. canvas_set_font(canvas, FontPrimary);
  42. /* Call who is in charge right now. */
  43. switch(app->current_view) {
  44. case ViewRawPulses: render_view_raw_pulses(canvas,app); break;
  45. case ViewInfo: render_view_info(canvas,app); break;
  46. case ViewFrequencySettings:
  47. case ViewModulationSettings:
  48. render_view_settings(canvas,app); break;
  49. case ViewDirectSampling: render_view_direct_sampling(canvas,app); break;
  50. case ViewLast: furi_crash(TAG " ViewLast selected"); break;
  51. }
  52. }
  53. /* Here all we do is putting the events into the queue that will be handled
  54. * in the while() loop of the app entry point function. */
  55. static void input_callback(InputEvent* input_event, void* ctx)
  56. {
  57. ProtoViewApp *app = ctx;
  58. furi_message_queue_put(app->event_queue,input_event,FuriWaitForever);
  59. }
  60. /* Called to switch view (when left/right is pressed). Handles
  61. * changing the current view ID and calling the enter/exit view
  62. * callbacks if needed. */
  63. static void app_switch_view(ProtoViewApp *app, SwitchViewDirection dir) {
  64. ProtoViewCurrentView old = app->current_view;
  65. if (dir == AppNextView) {
  66. app->current_view++;
  67. if (app->current_view == ViewLast) app->current_view = 0;
  68. } else if (dir == AppPrevView) {
  69. if (app->current_view == 0)
  70. app->current_view = ViewLast-1;
  71. else
  72. app->current_view--;
  73. }
  74. ProtoViewCurrentView new = app->current_view;
  75. /* Call the enter/exit view callbacks if needed. */
  76. if (old == ViewDirectSampling) view_exit_direct_sampling(app);
  77. if (new == ViewDirectSampling) view_enter_direct_sampling(app);
  78. /* The frequency/modulation settings are actually a single view:
  79. * as long as the user stays between the two modes of this view we
  80. * don't need to call the exit-view callback. */
  81. if ((old == ViewFrequencySettings && new != ViewModulationSettings) ||
  82. (old == ViewModulationSettings && new != ViewFrequencySettings))
  83. view_exit_settings(app);
  84. }
  85. /* Allocate the application state and initialize a number of stuff.
  86. * This is called in the entry point to create the application state. */
  87. ProtoViewApp* protoview_app_alloc() {
  88. ProtoViewApp *app = malloc(sizeof(ProtoViewApp));
  89. // Init shared data structures
  90. RawSamples = raw_samples_alloc();
  91. DetectedSamples = raw_samples_alloc();
  92. //init setting
  93. app->setting = subghz_setting_alloc();
  94. subghz_setting_load(app->setting, EXT_PATH("subghz/assets/setting_user"));
  95. // GUI
  96. app->gui = furi_record_open(RECORD_GUI);
  97. app->view_port = view_port_alloc();
  98. view_port_draw_callback_set(app->view_port, render_callback, app);
  99. view_port_input_callback_set(app->view_port, input_callback, app);
  100. gui_add_view_port(app->gui, app->view_port, GuiLayerFullscreen);
  101. app->event_queue = furi_message_queue_alloc(8, sizeof(InputEvent));
  102. app->current_view = ViewRawPulses;
  103. // Signal found and visualization defaults
  104. app->signal_bestlen = 0;
  105. app->signal_decoded = false;
  106. app->us_scale = PROTOVIEW_RAW_VIEW_DEFAULT_SCALE;
  107. app->signal_offset = 0;
  108. //init Worker & Protocol
  109. app->txrx = malloc(sizeof(ProtoViewTxRx));
  110. /* Setup rx worker and environment. */
  111. app->txrx->freq_mod_changed = false;
  112. app->txrx->debug_direct_sampling = false;
  113. app->txrx->ds_thread = NULL;
  114. app->txrx->worker = subghz_worker_alloc();
  115. #ifdef PROTOVIEW_DISABLE_SUBGHZ_FILTER
  116. app->txrx->worker->filter_running = 0;
  117. #endif
  118. app->txrx->environment = subghz_environment_alloc();
  119. subghz_environment_set_protocol_registry(
  120. app->txrx->environment, (void*)&protoview_protocol_registry);
  121. app->txrx->receiver =
  122. subghz_receiver_alloc_init(app->txrx->environment);
  123. subghz_receiver_set_filter(app->txrx->receiver,
  124. SubGhzProtocolFlag_Decodable);
  125. subghz_worker_set_overrun_callback(
  126. app->txrx->worker,
  127. (SubGhzWorkerOverrunCallback)subghz_receiver_reset);
  128. subghz_worker_set_pair_callback(
  129. app->txrx->worker, (SubGhzWorkerPairCallback)subghz_receiver_decode);
  130. subghz_worker_set_context(app->txrx->worker, app->txrx->receiver);
  131. app->frequency = subghz_setting_get_default_frequency(app->setting);
  132. app->modulation = 0; /* Defaults to ProtoViewModulations[0]. */
  133. furi_hal_power_suppress_charge_enter();
  134. app->running = 1;
  135. return app;
  136. }
  137. /* Free what the application allocated. It is not clear to me if the
  138. * Flipper OS, once the application exits, will be able to reclaim space
  139. * even if we forget to free something here. */
  140. void protoview_app_free(ProtoViewApp *app) {
  141. furi_assert(app);
  142. // Put CC1101 on sleep.
  143. radio_sleep(app);
  144. // View related.
  145. view_port_enabled_set(app->view_port, false);
  146. gui_remove_view_port(app->gui, app->view_port);
  147. view_port_free(app->view_port);
  148. furi_record_close(RECORD_GUI);
  149. furi_message_queue_free(app->event_queue);
  150. app->gui = NULL;
  151. // Frequency setting.
  152. subghz_setting_free(app->setting);
  153. // Worker stuff.
  154. if (!app->txrx->debug_direct_sampling) {
  155. subghz_receiver_free(app->txrx->receiver);
  156. subghz_environment_free(app->txrx->environment);
  157. subghz_worker_free(app->txrx->worker);
  158. }
  159. free(app->txrx);
  160. // Raw samples buffers.
  161. raw_samples_free(RawSamples);
  162. raw_samples_free(DetectedSamples);
  163. furi_hal_power_suppress_charge_exit();
  164. free(app);
  165. }
  166. /* Called periodically. Do signal processing here. Data we process here
  167. * will be later displayed by the render callback. The side effect of this
  168. * function is to scan for signals and set DetectedSamples. */
  169. static void timer_callback(void *ctx) {
  170. ProtoViewApp *app = ctx;
  171. scan_for_signal(app);
  172. }
  173. int32_t protoview_app_entry(void* p) {
  174. UNUSED(p);
  175. ProtoViewApp *app = protoview_app_alloc();
  176. printf("%llu\n", (unsigned long long) DWT->CYCCNT);
  177. printf("%llu\n", (unsigned long long) DWT->CYCCNT);
  178. /* Create a timer. We do data analysis in the callback. */
  179. FuriTimer *timer = furi_timer_alloc(timer_callback, FuriTimerTypePeriodic, app);
  180. furi_timer_start(timer, furi_kernel_get_tick_frequency() / 4);
  181. /* Start listening to signals immediately. */
  182. radio_begin(app);
  183. radio_rx(app);
  184. /* This is the main event loop: here we get the events that are pushed
  185. * in the queue by input_callback(), and process them one after the
  186. * other. The timeout is 100 milliseconds, so if not input is received
  187. * before such time, we exit the queue_get() function and call
  188. * view_port_update() in order to refresh our screen content. */
  189. InputEvent input;
  190. while(app->running) {
  191. FuriStatus qstat = furi_message_queue_get(app->event_queue, &input, 100);
  192. if (qstat == FuriStatusOk) {
  193. if (DEBUG_MSG) FURI_LOG_E(TAG, "Main Loop - Input: type %d key %u",
  194. input.type, input.key);
  195. /* Handle navigation here. Then handle view-specific inputs
  196. * in the view specific handling function. */
  197. if (input.type == InputTypeShort &&
  198. input.key == InputKeyBack)
  199. {
  200. /* Exit the app. */
  201. app->running = 0;
  202. } else if (input.type == InputTypeShort &&
  203. input.key == InputKeyRight)
  204. {
  205. /* Go to the next view. */
  206. app_switch_view(app,AppNextView);
  207. } else if (input.type == InputTypeShort &&
  208. input.key == InputKeyLeft)
  209. {
  210. /* Go to the previous view. */
  211. app_switch_view(app,AppPrevView);
  212. } else {
  213. /* This is where we pass the control to the currently
  214. * active view input processing. */
  215. switch(app->current_view) {
  216. case ViewRawPulses:
  217. process_input_raw_pulses(app,input);
  218. break;
  219. case ViewInfo:
  220. process_input_info(app,input);
  221. break;
  222. case ViewFrequencySettings:
  223. case ViewModulationSettings:
  224. process_input_settings(app,input);
  225. break;
  226. case ViewDirectSampling:
  227. process_input_direct_sampling(app,input);
  228. break;
  229. case ViewLast: furi_crash(TAG " ViewLast selected"); break;
  230. }
  231. }
  232. } else {
  233. /* Useful to understand if the app is still alive when it
  234. * does not respond because of bugs. */
  235. if (DEBUG_MSG) {
  236. static int c = 0; c++;
  237. if (!(c % 20)) FURI_LOG_E(TAG, "Loop timeout");
  238. }
  239. }
  240. view_port_update(app->view_port);
  241. }
  242. /* App no longer running. Shut down and free. */
  243. if (app->txrx->txrx_state == TxRxStateRx) {
  244. FURI_LOG_E(TAG, "Putting CC1101 to sleep before exiting.");
  245. radio_rx_end(app);
  246. radio_sleep(app);
  247. }
  248. furi_timer_free(timer);
  249. protoview_app_free(app);
  250. return 0;
  251. }