| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293 |
- /**
- * Copyright (c) 2000-2001 Aaron D. Gifford
- * Copyright (c) 2013-2014 Pavol Rusnak
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the copyright holder nor the names of contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
- #include <string.h>
- #include <stdint.h>
- #include "sha2.h"
- #include "memzero.h"
- #include "byte_order.h"
- /*
- * ASSERT NOTE:
- * Some sanity checking code is included using assert(). On my FreeBSD
- * system, this additional code can be removed by compiling with NDEBUG
- * defined. Check your own systems manpage on assert() to see how to
- * compile WITHOUT the sanity checking code on your system.
- *
- * UNROLLED TRANSFORM LOOP NOTE:
- * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
- * loop version for the hash transform rounds (defined using macros
- * later in this file). Either define on the command line, for example:
- *
- * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
- *
- * or define below:
- *
- * #define SHA2_UNROLL_TRANSFORM
- *
- */
- /*** SHA-256/384/512 Machine Architecture Definitions *****************/
- /*
- * BYTE_ORDER NOTE:
- *
- * Please make sure that your system defines BYTE_ORDER. If your
- * architecture is little-endian, make sure it also defines
- * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
- * equivilent.
- *
- * If your system does not define the above, then you can do so by
- * hand like this:
- *
- * #define LITTLE_ENDIAN 1234
- * #define BIG_ENDIAN 4321
- *
- * And for little-endian machines, add:
- *
- * #define BYTE_ORDER LITTLE_ENDIAN
- *
- * Or for big-endian machines:
- *
- * #define BYTE_ORDER BIG_ENDIAN
- *
- * The FreeBSD machine this was written on defines BYTE_ORDER
- * appropriately by including <sys/types.h> (which in turn includes
- * <machine/endian.h> where the appropriate definitions are actually
- * made).
- */
- #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
- #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
- #endif
- typedef uint8_t sha2_byte; /* Exactly 1 byte */
- typedef uint32_t sha2_word32; /* Exactly 4 bytes */
- typedef uint64_t sha2_word64; /* Exactly 8 bytes */
- /*** SHA-256/384/512 Various Length Definitions ***********************/
- /* NOTE: Most of these are in sha2.h */
- #define SHA1_SHORT_BLOCK_LENGTH (SHA1_BLOCK_LENGTH - 8)
- #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
- #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
- /*
- * Macro for incrementally adding the unsigned 64-bit integer n to the
- * unsigned 128-bit integer (represented using a two-element array of
- * 64-bit words):
- */
- #define ADDINC128(w,n) { \
- (w)[0] += (sha2_word64)(n); \
- if ((w)[0] < (n)) { \
- (w)[1]++; \
- } \
- }
- #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
- /*** THE SIX LOGICAL FUNCTIONS ****************************************/
- /*
- * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
- *
- * NOTE: In the original SHA-256/384/512 document, the shift-right
- * function was named R and the rotate-right function was called S.
- * (See: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf on the
- * web.)
- *
- * The newer NIST FIPS 180-2 document uses a much clearer naming
- * scheme, SHR for shift-right, ROTR for rotate-right, and ROTL for
- * rotate-left. (See:
- * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
- * on the web.)
- *
- * WARNING: These macros must be used cautiously, since they reference
- * supplied parameters sometimes more than once, and thus could have
- * unexpected side-effects if used without taking this into account.
- */
- /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
- #define SHR(b,x) ((x) >> (b))
- /* 32-bit Rotate-right (used in SHA-256): */
- #define ROTR32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
- /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
- #define ROTR64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
- /* 32-bit Rotate-left (used in SHA-1): */
- #define ROTL32(b,x) (((x) << (b)) | ((x) >> (32 - (b))))
- /* Two of six logical functions used in SHA-1, SHA-256, SHA-384, and SHA-512: */
- #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
- #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
- /* Function used in SHA-1: */
- #define Parity(x,y,z) ((x) ^ (y) ^ (z))
- /* Four of six logical functions used in SHA-256: */
- #define Sigma0_256(x) (ROTR32(2, (x)) ^ ROTR32(13, (x)) ^ ROTR32(22, (x)))
- #define Sigma1_256(x) (ROTR32(6, (x)) ^ ROTR32(11, (x)) ^ ROTR32(25, (x)))
- #define sigma0_256(x) (ROTR32(7, (x)) ^ ROTR32(18, (x)) ^ SHR(3 , (x)))
- #define sigma1_256(x) (ROTR32(17, (x)) ^ ROTR32(19, (x)) ^ SHR(10, (x)))
- /* Four of six logical functions used in SHA-384 and SHA-512: */
- #define Sigma0_512(x) (ROTR64(28, (x)) ^ ROTR64(34, (x)) ^ ROTR64(39, (x)))
- #define Sigma1_512(x) (ROTR64(14, (x)) ^ ROTR64(18, (x)) ^ ROTR64(41, (x)))
- #define sigma0_512(x) (ROTR64( 1, (x)) ^ ROTR64( 8, (x)) ^ SHR( 7, (x)))
- #define sigma1_512(x) (ROTR64(19, (x)) ^ ROTR64(61, (x)) ^ SHR( 6, (x)))
- /*** INTERNAL FUNCTION PROTOTYPES *************************************/
- /* NOTE: These should not be accessed directly from outside this
- * library -- they are intended for private internal visibility/use
- * only.
- */
- static void sha512_Last(SHA512_CTX*);
- /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
- /* Hash constant words K for SHA-1: */
- #define K1_0_TO_19 0x5a827999UL
- #define K1_20_TO_39 0x6ed9eba1UL
- #define K1_40_TO_59 0x8f1bbcdcUL
- #define K1_60_TO_79 0xca62c1d6UL
- /* Initial hash value H for SHA-1: */
- const sha2_word32 sha1_initial_hash_value[SHA1_DIGEST_LENGTH / sizeof(sha2_word32)] = {
- 0x67452301UL,
- 0xefcdab89UL,
- 0x98badcfeUL,
- 0x10325476UL,
- 0xc3d2e1f0UL
- };
- /* Hash constant words K for SHA-256: */
- static const sha2_word32 K256[64] = {
- 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
- 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
- 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
- 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
- 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
- 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
- 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
- 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
- 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
- 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
- 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
- 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
- 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
- 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
- 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
- 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
- };
- /* Initial hash value H for SHA-256: */
- const sha2_word32 sha256_initial_hash_value[8] = {
- 0x6a09e667UL,
- 0xbb67ae85UL,
- 0x3c6ef372UL,
- 0xa54ff53aUL,
- 0x510e527fUL,
- 0x9b05688cUL,
- 0x1f83d9abUL,
- 0x5be0cd19UL
- };
- /* Hash constant words K for SHA-384 and SHA-512: */
- static const sha2_word64 K512[80] = {
- 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
- 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
- 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
- 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
- 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
- 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
- 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
- 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
- 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
- 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
- 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
- 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
- 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
- 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
- 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
- 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
- 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
- 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
- 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
- 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
- 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
- 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
- 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
- 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
- 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
- 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
- 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
- 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
- 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
- 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
- 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
- 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
- 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
- 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
- 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
- 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
- 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
- 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
- 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
- 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
- };
- /* Initial hash value H for SHA-512 */
- const sha2_word64 sha512_initial_hash_value[8] = {
- 0x6a09e667f3bcc908ULL,
- 0xbb67ae8584caa73bULL,
- 0x3c6ef372fe94f82bULL,
- 0xa54ff53a5f1d36f1ULL,
- 0x510e527fade682d1ULL,
- 0x9b05688c2b3e6c1fULL,
- 0x1f83d9abfb41bd6bULL,
- 0x5be0cd19137e2179ULL
- };
- /*
- * Constant used by SHA256/384/512_End() functions for converting the
- * digest to a readable hexadecimal character string:
- */
- static const char *sha2_hex_digits = "0123456789abcdef";
- /*** SHA-1: ***********************************************************/
- void sha1_Init(SHA1_CTX* context) {
- MEMCPY_BCOPY(context->state, sha1_initial_hash_value, SHA1_DIGEST_LENGTH);
- memzero(context->buffer, SHA1_BLOCK_LENGTH);
- context->bitcount = 0;
- }
- #ifdef SHA2_UNROLL_TRANSFORM
- /* Unrolled SHA-1 round macros: */
- #define ROUND1_0_TO_15(a,b,c,d,e) \
- (e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \
- K1_0_TO_19 + ( W1[j] = *data++ ); \
- (b) = ROTL32(30, (b)); \
- j++;
- #define ROUND1_16_TO_19(a,b,c,d,e) \
- T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
- (e) = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
- (b) = ROTL32(30, b); \
- j++;
- #define ROUND1_20_TO_39(a,b,c,d,e) \
- T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
- (e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
- (b) = ROTL32(30, b); \
- j++;
- #define ROUND1_40_TO_59(a,b,c,d,e) \
- T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
- (e) = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
- (b) = ROTL32(30, b); \
- j++;
- #define ROUND1_60_TO_79(a,b,c,d,e) \
- T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
- (e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
- (b) = ROTL32(30, b); \
- j++;
- void sha1_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
- sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0;
- sha2_word32 T1 = 0;
- sha2_word32 W1[16] = {0};
- int j = 0;
- /* Initialize registers with the prev. intermediate value */
- a = state_in[0];
- b = state_in[1];
- c = state_in[2];
- d = state_in[3];
- e = state_in[4];
- j = 0;
- /* Rounds 0 to 15 unrolled: */
- ROUND1_0_TO_15(a,b,c,d,e);
- ROUND1_0_TO_15(e,a,b,c,d);
- ROUND1_0_TO_15(d,e,a,b,c);
- ROUND1_0_TO_15(c,d,e,a,b);
- ROUND1_0_TO_15(b,c,d,e,a);
- ROUND1_0_TO_15(a,b,c,d,e);
- ROUND1_0_TO_15(e,a,b,c,d);
- ROUND1_0_TO_15(d,e,a,b,c);
- ROUND1_0_TO_15(c,d,e,a,b);
- ROUND1_0_TO_15(b,c,d,e,a);
- ROUND1_0_TO_15(a,b,c,d,e);
- ROUND1_0_TO_15(e,a,b,c,d);
- ROUND1_0_TO_15(d,e,a,b,c);
- ROUND1_0_TO_15(c,d,e,a,b);
- ROUND1_0_TO_15(b,c,d,e,a);
- ROUND1_0_TO_15(a,b,c,d,e);
- /* Rounds 16 to 19 unrolled: */
- ROUND1_16_TO_19(e,a,b,c,d);
- ROUND1_16_TO_19(d,e,a,b,c);
- ROUND1_16_TO_19(c,d,e,a,b);
- ROUND1_16_TO_19(b,c,d,e,a);
- /* Rounds 20 to 39 unrolled: */
- ROUND1_20_TO_39(a,b,c,d,e);
- ROUND1_20_TO_39(e,a,b,c,d);
- ROUND1_20_TO_39(d,e,a,b,c);
- ROUND1_20_TO_39(c,d,e,a,b);
- ROUND1_20_TO_39(b,c,d,e,a);
- ROUND1_20_TO_39(a,b,c,d,e);
- ROUND1_20_TO_39(e,a,b,c,d);
- ROUND1_20_TO_39(d,e,a,b,c);
- ROUND1_20_TO_39(c,d,e,a,b);
- ROUND1_20_TO_39(b,c,d,e,a);
- ROUND1_20_TO_39(a,b,c,d,e);
- ROUND1_20_TO_39(e,a,b,c,d);
- ROUND1_20_TO_39(d,e,a,b,c);
- ROUND1_20_TO_39(c,d,e,a,b);
- ROUND1_20_TO_39(b,c,d,e,a);
- ROUND1_20_TO_39(a,b,c,d,e);
- ROUND1_20_TO_39(e,a,b,c,d);
- ROUND1_20_TO_39(d,e,a,b,c);
- ROUND1_20_TO_39(c,d,e,a,b);
- ROUND1_20_TO_39(b,c,d,e,a);
- /* Rounds 40 to 59 unrolled: */
- ROUND1_40_TO_59(a,b,c,d,e);
- ROUND1_40_TO_59(e,a,b,c,d);
- ROUND1_40_TO_59(d,e,a,b,c);
- ROUND1_40_TO_59(c,d,e,a,b);
- ROUND1_40_TO_59(b,c,d,e,a);
- ROUND1_40_TO_59(a,b,c,d,e);
- ROUND1_40_TO_59(e,a,b,c,d);
- ROUND1_40_TO_59(d,e,a,b,c);
- ROUND1_40_TO_59(c,d,e,a,b);
- ROUND1_40_TO_59(b,c,d,e,a);
- ROUND1_40_TO_59(a,b,c,d,e);
- ROUND1_40_TO_59(e,a,b,c,d);
- ROUND1_40_TO_59(d,e,a,b,c);
- ROUND1_40_TO_59(c,d,e,a,b);
- ROUND1_40_TO_59(b,c,d,e,a);
- ROUND1_40_TO_59(a,b,c,d,e);
- ROUND1_40_TO_59(e,a,b,c,d);
- ROUND1_40_TO_59(d,e,a,b,c);
- ROUND1_40_TO_59(c,d,e,a,b);
- ROUND1_40_TO_59(b,c,d,e,a);
- /* Rounds 60 to 79 unrolled: */
- ROUND1_60_TO_79(a,b,c,d,e);
- ROUND1_60_TO_79(e,a,b,c,d);
- ROUND1_60_TO_79(d,e,a,b,c);
- ROUND1_60_TO_79(c,d,e,a,b);
- ROUND1_60_TO_79(b,c,d,e,a);
- ROUND1_60_TO_79(a,b,c,d,e);
- ROUND1_60_TO_79(e,a,b,c,d);
- ROUND1_60_TO_79(d,e,a,b,c);
- ROUND1_60_TO_79(c,d,e,a,b);
- ROUND1_60_TO_79(b,c,d,e,a);
- ROUND1_60_TO_79(a,b,c,d,e);
- ROUND1_60_TO_79(e,a,b,c,d);
- ROUND1_60_TO_79(d,e,a,b,c);
- ROUND1_60_TO_79(c,d,e,a,b);
- ROUND1_60_TO_79(b,c,d,e,a);
- ROUND1_60_TO_79(a,b,c,d,e);
- ROUND1_60_TO_79(e,a,b,c,d);
- ROUND1_60_TO_79(d,e,a,b,c);
- ROUND1_60_TO_79(c,d,e,a,b);
- ROUND1_60_TO_79(b,c,d,e,a);
- /* Compute the current intermediate hash value */
- state_out[0] = state_in[0] + a;
- state_out[1] = state_in[1] + b;
- state_out[2] = state_in[2] + c;
- state_out[3] = state_in[3] + d;
- state_out[4] = state_in[4] + e;
- /* Clean up */
- a = b = c = d = e = T1 = 0;
- }
- #else /* SHA2_UNROLL_TRANSFORM */
- void sha1_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
- sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0;
- sha2_word32 T1 = 0;
- sha2_word32 W1[16] = {0};
- int j = 0;
- /* Initialize registers with the prev. intermediate value */
- a = state_in[0];
- b = state_in[1];
- c = state_in[2];
- d = state_in[3];
- e = state_in[4];
- j = 0;
- do {
- T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + (W1[j] = *data++);
- e = d;
- d = c;
- c = ROTL32(30, b);
- b = a;
- a = T1;
- j++;
- } while (j < 16);
- do {
- T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
- T1 = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + (W1[j&0x0f] = ROTL32(1, T1));
- e = d;
- d = c;
- c = ROTL32(30, b);
- b = a;
- a = T1;
- j++;
- } while (j < 20);
- do {
- T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
- T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + (W1[j&0x0f] = ROTL32(1, T1));
- e = d;
- d = c;
- c = ROTL32(30, b);
- b = a;
- a = T1;
- j++;
- } while (j < 40);
- do {
- T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
- T1 = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + (W1[j&0x0f] = ROTL32(1, T1));
- e = d;
- d = c;
- c = ROTL32(30, b);
- b = a;
- a = T1;
- j++;
- } while (j < 60);
- do {
- T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
- T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + (W1[j&0x0f] = ROTL32(1, T1));
- e = d;
- d = c;
- c = ROTL32(30, b);
- b = a;
- a = T1;
- j++;
- } while (j < 80);
- /* Compute the current intermediate hash value */
- state_out[0] = state_in[0] + a;
- state_out[1] = state_in[1] + b;
- state_out[2] = state_in[2] + c;
- state_out[3] = state_in[3] + d;
- state_out[4] = state_in[4] + e;
- /* Clean up */
- a = b = c = d = e = T1 = 0;
- }
- #endif /* SHA2_UNROLL_TRANSFORM */
- void sha1_Update(SHA1_CTX* context, const sha2_byte *data, size_t len) {
- unsigned int freespace = 0, usedspace = 0;
- if (len == 0) {
- /* Calling with no data is valid - we do nothing */
- return;
- }
- usedspace = (context->bitcount >> 3) % SHA1_BLOCK_LENGTH;
- if (usedspace > 0) {
- /* Calculate how much free space is available in the buffer */
- freespace = SHA1_BLOCK_LENGTH - usedspace;
- if (len >= freespace) {
- /* Fill the buffer completely and process it */
- MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, freespace);
- context->bitcount += freespace << 3;
- len -= freespace;
- data += freespace;
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- for (int j = 0; j < 16; j++) {
- REVERSE32(context->buffer[j],context->buffer[j]);
- }
- #endif
- sha1_Transform(context->state, context->buffer, context->state);
- } else {
- /* The buffer is not yet full */
- MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, len);
- context->bitcount += len << 3;
- /* Clean up: */
- usedspace = freespace = 0;
- return;
- }
- }
- while (len >= SHA1_BLOCK_LENGTH) {
- /* Process as many complete blocks as we can */
- MEMCPY_BCOPY(context->buffer, data, SHA1_BLOCK_LENGTH);
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- for (int j = 0; j < 16; j++) {
- REVERSE32(context->buffer[j],context->buffer[j]);
- }
- #endif
- sha1_Transform(context->state, context->buffer, context->state);
- context->bitcount += SHA1_BLOCK_LENGTH << 3;
- len -= SHA1_BLOCK_LENGTH;
- data += SHA1_BLOCK_LENGTH;
- }
- if (len > 0) {
- /* There's left-overs, so save 'em */
- MEMCPY_BCOPY(context->buffer, data, len);
- context->bitcount += len << 3;
- }
- /* Clean up: */
- usedspace = freespace = 0;
- }
- void sha1_Final(SHA1_CTX* context, sha2_byte digest[SHA1_DIGEST_LENGTH]) {
- unsigned int usedspace = 0;
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != (sha2_byte*)0) {
- usedspace = (context->bitcount >> 3) % SHA1_BLOCK_LENGTH;
- /* Begin padding with a 1 bit: */
- ((uint8_t*)context->buffer)[usedspace++] = 0x80;
- if (usedspace > SHA1_SHORT_BLOCK_LENGTH) {
- memzero(((uint8_t*)context->buffer) + usedspace, SHA1_BLOCK_LENGTH - usedspace);
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- for (int j = 0; j < 16; j++) {
- REVERSE32(context->buffer[j],context->buffer[j]);
- }
- #endif
- /* Do second-to-last transform: */
- sha1_Transform(context->state, context->buffer, context->state);
- /* And prepare the last transform: */
- usedspace = 0;
- }
- /* Set-up for the last transform: */
- memzero(((uint8_t*)context->buffer) + usedspace, SHA1_SHORT_BLOCK_LENGTH - usedspace);
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- for (int j = 0; j < 14; j++) {
- REVERSE32(context->buffer[j],context->buffer[j]);
- }
- #endif
- /* Set the bit count: */
- context->buffer[14] = context->bitcount >> 32;
- context->buffer[15] = context->bitcount & 0xffffffff;
- /* Final transform: */
- sha1_Transform(context->state, context->buffer, context->state);
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert FROM host byte order */
- for (int j = 0; j < 5; j++) {
- REVERSE32(context->state[j],context->state[j]);
- }
- #endif
- MEMCPY_BCOPY(digest, context->state, SHA1_DIGEST_LENGTH);
- }
- /* Clean up state data: */
- memzero(context, sizeof(SHA1_CTX));
- usedspace = 0;
- }
- char *sha1_End(SHA1_CTX* context, char buffer[SHA1_DIGEST_STRING_LENGTH]) {
- sha2_byte digest[SHA1_DIGEST_LENGTH] = {0}, *d = digest;
- int i = 0;
- if (buffer != (char*)0) {
- sha1_Final(context, digest);
- for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
- *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
- *buffer++ = sha2_hex_digits[*d & 0x0f];
- d++;
- }
- *buffer = (char)0;
- } else {
- memzero(context, sizeof(SHA1_CTX));
- }
- memzero(digest, SHA1_DIGEST_LENGTH);
- return buffer;
- }
- void sha1_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA1_DIGEST_LENGTH]) {
- SHA1_CTX context = {0};
- sha1_Init(&context);
- sha1_Update(&context, data, len);
- sha1_Final(&context, digest);
- }
- char* sha1_Data(const sha2_byte* data, size_t len, char digest[SHA1_DIGEST_STRING_LENGTH]) {
- SHA1_CTX context = {0};
- sha1_Init(&context);
- sha1_Update(&context, data, len);
- return sha1_End(&context, digest);
- }
- /*** SHA-256: *********************************************************/
- void sha256_Init(SHA256_CTX* context) {
- if (context == (SHA256_CTX*)0) {
- return;
- }
- MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
- memzero(context->buffer, SHA256_BLOCK_LENGTH);
- context->bitcount = 0;
- }
- void sha256_Init_ex(SHA256_CTX *context, const uint32_t state[8], uint64_t bitcount) {
- if (context == (SHA256_CTX*)0) {
- return;
- }
- MEMCPY_BCOPY(context->state, state, SHA256_DIGEST_LENGTH);
- memzero(context->buffer, SHA256_BLOCK_LENGTH);
- context->bitcount = bitcount;
- }
- #ifdef SHA2_UNROLL_TRANSFORM
- /* Unrolled SHA-256 round macros: */
- #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
- K256[j] + (W256[j] = *data++); \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
- #define ROUND256(a,b,c,d,e,f,g,h) \
- s0 = W256[(j+1)&0x0f]; \
- s0 = sigma0_256(s0); \
- s1 = W256[(j+14)&0x0f]; \
- s1 = sigma1_256(s1); \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
- (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
- void sha256_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
- sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, s0 = 0, s1 = 0;
- sha2_word32 T1 = 0;
- sha2_word32 W256[16] = {0};
- int j = 0;
- /* Initialize registers with the prev. intermediate value */
- a = state_in[0];
- b = state_in[1];
- c = state_in[2];
- d = state_in[3];
- e = state_in[4];
- f = state_in[5];
- g = state_in[6];
- h = state_in[7];
- j = 0;
- do {
- /* Rounds 0 to 15 (unrolled): */
- ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
- ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
- ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
- ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
- ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
- ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
- ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
- ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
- } while (j < 16);
- /* Now for the remaining rounds to 64: */
- do {
- ROUND256(a,b,c,d,e,f,g,h);
- ROUND256(h,a,b,c,d,e,f,g);
- ROUND256(g,h,a,b,c,d,e,f);
- ROUND256(f,g,h,a,b,c,d,e);
- ROUND256(e,f,g,h,a,b,c,d);
- ROUND256(d,e,f,g,h,a,b,c);
- ROUND256(c,d,e,f,g,h,a,b);
- ROUND256(b,c,d,e,f,g,h,a);
- } while (j < 64);
- /* Compute the current intermediate hash value */
- state_out[0] = state_in[0] + a;
- state_out[1] = state_in[1] + b;
- state_out[2] = state_in[2] + c;
- state_out[3] = state_in[3] + d;
- state_out[4] = state_in[4] + e;
- state_out[5] = state_in[5] + f;
- state_out[6] = state_in[6] + g;
- state_out[7] = state_in[7] + h;
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = 0;
- }
- #else /* SHA2_UNROLL_TRANSFORM */
- void sha256_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
- sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, s0 = 0, s1 = 0;
- sha2_word32 T1 = 0, T2 = 0 , W256[16] = {0};
- int j = 0;
- /* Initialize registers with the prev. intermediate value */
- a = state_in[0];
- b = state_in[1];
- c = state_in[2];
- d = state_in[3];
- e = state_in[4];
- f = state_in[5];
- g = state_in[6];
- h = state_in[7];
- j = 0;
- do {
- /* Apply the SHA-256 compression function to update a..h with copy */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
- j++;
- } while (j < 16);
- do {
- /* Part of the message block expansion: */
- s0 = W256[(j+1)&0x0f];
- s0 = sigma0_256(s0);
- s1 = W256[(j+14)&0x0f];
- s1 = sigma1_256(s1);
- /* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
- (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
- j++;
- } while (j < 64);
- /* Compute the current intermediate hash value */
- state_out[0] = state_in[0] + a;
- state_out[1] = state_in[1] + b;
- state_out[2] = state_in[2] + c;
- state_out[3] = state_in[3] + d;
- state_out[4] = state_in[4] + e;
- state_out[5] = state_in[5] + f;
- state_out[6] = state_in[6] + g;
- state_out[7] = state_in[7] + h;
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = T2 = 0;
- }
- #endif /* SHA2_UNROLL_TRANSFORM */
- void sha256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
- unsigned int freespace = 0, usedspace = 0;
- if (len == 0) {
- /* Calling with no data is valid - we do nothing */
- return;
- }
- usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
- if (usedspace > 0) {
- /* Calculate how much free space is available in the buffer */
- freespace = SHA256_BLOCK_LENGTH - usedspace;
- if (len >= freespace) {
- /* Fill the buffer completely and process it */
- MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, freespace);
- context->bitcount += freespace << 3;
- len -= freespace;
- data += freespace;
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- for (int j = 0; j < 16; j++) {
- REVERSE32(context->buffer[j],context->buffer[j]);
- }
- #endif
- sha256_Transform(context->state, context->buffer, context->state);
- } else {
- /* The buffer is not yet full */
- MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, len);
- context->bitcount += len << 3;
- /* Clean up: */
- usedspace = freespace = 0;
- return;
- }
- }
- while (len >= SHA256_BLOCK_LENGTH) {
- /* Process as many complete blocks as we can */
- MEMCPY_BCOPY(context->buffer, data, SHA256_BLOCK_LENGTH);
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- for (int j = 0; j < 16; j++) {
- REVERSE32(context->buffer[j],context->buffer[j]);
- }
- #endif
- sha256_Transform(context->state, context->buffer, context->state);
- context->bitcount += SHA256_BLOCK_LENGTH << 3;
- len -= SHA256_BLOCK_LENGTH;
- data += SHA256_BLOCK_LENGTH;
- }
- if (len > 0) {
- /* There's left-overs, so save 'em */
- MEMCPY_BCOPY(context->buffer, data, len);
- context->bitcount += len << 3;
- }
- /* Clean up: */
- usedspace = freespace = 0;
- }
- void sha256_Final(SHA256_CTX* context, sha2_byte digest[SHA256_DIGEST_LENGTH]) {
- unsigned int usedspace = 0;
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != (sha2_byte*)0) {
- usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
- /* Begin padding with a 1 bit: */
- ((uint8_t*)context->buffer)[usedspace++] = 0x80;
- if (usedspace > SHA256_SHORT_BLOCK_LENGTH) {
- memzero(((uint8_t*)context->buffer) + usedspace, SHA256_BLOCK_LENGTH - usedspace);
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- for (int j = 0; j < 16; j++) {
- REVERSE32(context->buffer[j],context->buffer[j]);
- }
- #endif
- /* Do second-to-last transform: */
- sha256_Transform(context->state, context->buffer, context->state);
- /* And prepare the last transform: */
- usedspace = 0;
- }
- /* Set-up for the last transform: */
- memzero(((uint8_t*)context->buffer) + usedspace, SHA256_SHORT_BLOCK_LENGTH - usedspace);
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- for (int j = 0; j < 14; j++) {
- REVERSE32(context->buffer[j],context->buffer[j]);
- }
- #endif
- /* Set the bit count: */
- context->buffer[14] = context->bitcount >> 32;
- context->buffer[15] = context->bitcount & 0xffffffff;
- /* Final transform: */
- sha256_Transform(context->state, context->buffer, context->state);
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert FROM host byte order */
- for (int j = 0; j < 8; j++) {
- REVERSE32(context->state[j],context->state[j]);
- }
- #endif
- MEMCPY_BCOPY(digest, context->state, SHA256_DIGEST_LENGTH);
- }
- /* Clean up state data: */
- memzero(context, sizeof(SHA256_CTX));
- usedspace = 0;
- }
- char *sha256_End(SHA256_CTX* context, char buffer[SHA256_DIGEST_STRING_LENGTH]) {
- sha2_byte digest[SHA256_DIGEST_LENGTH] = {0}, *d = digest;
- int i = 0;
- if (buffer != (char*)0) {
- sha256_Final(context, digest);
- for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
- *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
- *buffer++ = sha2_hex_digits[*d & 0x0f];
- d++;
- }
- *buffer = (char)0;
- } else {
- memzero(context, sizeof(SHA256_CTX));
- }
- memzero(digest, SHA256_DIGEST_LENGTH);
- return buffer;
- }
- void sha256_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA256_DIGEST_LENGTH]) {
- SHA256_CTX context = {0};
- sha256_Init(&context);
- sha256_Update(&context, data, len);
- sha256_Final(&context, digest);
- }
- char* sha256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
- SHA256_CTX context = {0};
- sha256_Init(&context);
- sha256_Update(&context, data, len);
- return sha256_End(&context, digest);
- }
- /*** SHA-512: *********************************************************/
- void sha512_Init(SHA512_CTX* context) {
- if (context == (SHA512_CTX*)0) {
- return;
- }
- MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
- memzero(context->buffer, SHA512_BLOCK_LENGTH);
- context->bitcount[0] = context->bitcount[1] = 0;
- }
- #ifdef SHA2_UNROLL_TRANSFORM
- /* Unrolled SHA-512 round macros: */
- #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
- T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
- K512[j] + (W512[j] = *data++); \
- (d) += T1; \
- (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
- j++
- #define ROUND512(a,b,c,d,e,f,g,h) \
- s0 = W512[(j+1)&0x0f]; \
- s0 = sigma0_512(s0); \
- s1 = W512[(j+14)&0x0f]; \
- s1 = sigma1_512(s1); \
- T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
- (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
- (d) += T1; \
- (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
- j++
- void sha512_Transform(const sha2_word64* state_in, const sha2_word64* data, sha2_word64* state_out) {
- sha2_word64 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, s0 = 0, s1 = 0;
- sha2_word64 T1 = 0, W512[16] = {0};
- int j = 0;
- /* Initialize registers with the prev. intermediate value */
- a = state_in[0];
- b = state_in[1];
- c = state_in[2];
- d = state_in[3];
- e = state_in[4];
- f = state_in[5];
- g = state_in[6];
- h = state_in[7];
- j = 0;
- do {
- ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
- ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
- ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
- ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
- ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
- ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
- ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
- ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
- } while (j < 16);
- /* Now for the remaining rounds up to 79: */
- do {
- ROUND512(a,b,c,d,e,f,g,h);
- ROUND512(h,a,b,c,d,e,f,g);
- ROUND512(g,h,a,b,c,d,e,f);
- ROUND512(f,g,h,a,b,c,d,e);
- ROUND512(e,f,g,h,a,b,c,d);
- ROUND512(d,e,f,g,h,a,b,c);
- ROUND512(c,d,e,f,g,h,a,b);
- ROUND512(b,c,d,e,f,g,h,a);
- } while (j < 80);
- /* Compute the current intermediate hash value */
- state_out[0] = state_in[0] + a;
- state_out[1] = state_in[1] + b;
- state_out[2] = state_in[2] + c;
- state_out[3] = state_in[3] + d;
- state_out[4] = state_in[4] + e;
- state_out[5] = state_in[5] + f;
- state_out[6] = state_in[6] + g;
- state_out[7] = state_in[7] + h;
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = 0;
- }
- #else /* SHA2_UNROLL_TRANSFORM */
- void sha512_Transform(const sha2_word64* state_in, const sha2_word64* data, sha2_word64* state_out) {
- sha2_word64 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, s0 = 0, s1 = 0;
- sha2_word64 T1 = 0, T2 = 0, W512[16] = {0};
- int j = 0;
- /* Initialize registers with the prev. intermediate value */
- a = state_in[0];
- b = state_in[1];
- c = state_in[2];
- d = state_in[3];
- e = state_in[4];
- f = state_in[5];
- g = state_in[6];
- h = state_in[7];
- j = 0;
- do {
- /* Apply the SHA-512 compression function to update a..h with copy */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
- T2 = Sigma0_512(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
- j++;
- } while (j < 16);
- do {
- /* Part of the message block expansion: */
- s0 = W512[(j+1)&0x0f];
- s0 = sigma0_512(s0);
- s1 = W512[(j+14)&0x0f];
- s1 = sigma1_512(s1);
- /* Apply the SHA-512 compression function to update a..h */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
- (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
- T2 = Sigma0_512(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
- j++;
- } while (j < 80);
- /* Compute the current intermediate hash value */
- state_out[0] = state_in[0] + a;
- state_out[1] = state_in[1] + b;
- state_out[2] = state_in[2] + c;
- state_out[3] = state_in[3] + d;
- state_out[4] = state_in[4] + e;
- state_out[5] = state_in[5] + f;
- state_out[6] = state_in[6] + g;
- state_out[7] = state_in[7] + h;
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = T2 = 0;
- }
- #endif /* SHA2_UNROLL_TRANSFORM */
- void sha512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
- unsigned int freespace = 0, usedspace = 0;
- if (len == 0) {
- /* Calling with no data is valid - we do nothing */
- return;
- }
- usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
- if (usedspace > 0) {
- /* Calculate how much free space is available in the buffer */
- freespace = SHA512_BLOCK_LENGTH - usedspace;
- if (len >= freespace) {
- /* Fill the buffer completely and process it */
- MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, freespace);
- ADDINC128(context->bitcount, freespace << 3);
- len -= freespace;
- data += freespace;
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- for (int j = 0; j < 16; j++) {
- REVERSE64(context->buffer[j],context->buffer[j]);
- }
- #endif
- sha512_Transform(context->state, context->buffer, context->state);
- } else {
- /* The buffer is not yet full */
- MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, len);
- ADDINC128(context->bitcount, len << 3);
- /* Clean up: */
- usedspace = freespace = 0;
- return;
- }
- }
- while (len >= SHA512_BLOCK_LENGTH) {
- /* Process as many complete blocks as we can */
- MEMCPY_BCOPY(context->buffer, data, SHA512_BLOCK_LENGTH);
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- for (int j = 0; j < 16; j++) {
- REVERSE64(context->buffer[j],context->buffer[j]);
- }
- #endif
- sha512_Transform(context->state, context->buffer, context->state);
- ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
- len -= SHA512_BLOCK_LENGTH;
- data += SHA512_BLOCK_LENGTH;
- }
- if (len > 0) {
- /* There's left-overs, so save 'em */
- MEMCPY_BCOPY(context->buffer, data, len);
- ADDINC128(context->bitcount, len << 3);
- }
- /* Clean up: */
- usedspace = freespace = 0;
- }
- static void sha512_Last(SHA512_CTX* context) {
- unsigned int usedspace = 0;
- usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
- /* Begin padding with a 1 bit: */
- ((uint8_t*)context->buffer)[usedspace++] = 0x80;
- if (usedspace > SHA512_SHORT_BLOCK_LENGTH) {
- memzero(((uint8_t*)context->buffer) + usedspace, SHA512_BLOCK_LENGTH - usedspace);
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- for (int j = 0; j < 16; j++) {
- REVERSE64(context->buffer[j],context->buffer[j]);
- }
- #endif
- /* Do second-to-last transform: */
- sha512_Transform(context->state, context->buffer, context->state);
- /* And prepare the last transform: */
- usedspace = 0;
- }
- /* Set-up for the last transform: */
- memzero(((uint8_t*)context->buffer) + usedspace, SHA512_SHORT_BLOCK_LENGTH - usedspace);
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- for (int j = 0; j < 14; j++) {
- REVERSE64(context->buffer[j],context->buffer[j]);
- }
- #endif
- /* Store the length of input data (in bits): */
- context->buffer[14] = context->bitcount[1];
- context->buffer[15] = context->bitcount[0];
- /* Final transform: */
- sha512_Transform(context->state, context->buffer, context->state);
- }
- void sha512_Final(SHA512_CTX* context, sha2_byte digest[SHA512_DIGEST_LENGTH]) {
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != (sha2_byte*)0) {
- sha512_Last(context);
- /* Save the hash data for output: */
- #if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert FROM host byte order */
- for (int j = 0; j < 8; j++) {
- REVERSE64(context->state[j],context->state[j]);
- }
- #endif
- MEMCPY_BCOPY(digest, context->state, SHA512_DIGEST_LENGTH);
- }
- /* Zero out state data */
- memzero(context, sizeof(SHA512_CTX));
- }
- char *sha512_End(SHA512_CTX* context, char buffer[SHA512_DIGEST_STRING_LENGTH]) {
- sha2_byte digest[SHA512_DIGEST_LENGTH] = {0}, *d = digest;
- int i = 0;
- if (buffer != (char*)0) {
- sha512_Final(context, digest);
- for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
- *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
- *buffer++ = sha2_hex_digits[*d & 0x0f];
- d++;
- }
- *buffer = (char)0;
- } else {
- memzero(context, sizeof(SHA512_CTX));
- }
- memzero(digest, SHA512_DIGEST_LENGTH);
- return buffer;
- }
- void sha512_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA512_DIGEST_LENGTH]) {
- SHA512_CTX context = {0};
- sha512_Init(&context);
- sha512_Update(&context, data, len);
- sha512_Final(&context, digest);
- }
- char* sha512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
- SHA512_CTX context = {0};
- sha512_Init(&context);
- sha512_Update(&context, data, len);
- return sha512_End(&context, digest);
- }
|